Generalized pure Lovelock gravity
Concha, Patrick; Rodríguez, Evelyn
2017-11-01
We present a generalization of the n-dimensional (pure) Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.
Generalized pure Lovelock gravity
Directory of Open Access Journals (Sweden)
Patrick Concha
2017-11-01
Full Text Available We present a generalization of the n-dimensional (pure Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.
Lorentzian wormholes in Lovelock gravity
International Nuclear Information System (INIS)
Dehghani, M. H.; Dayyani, Z.
2009-01-01
In this paper, we introduce the n-dimensional Lorentzian wormhole solutions of third order Lovelock gravity. In contrast to Einstein gravity and as in the case of Gauss-Bonnet gravity, we find that the wormhole throat radius r 0 has a lower limit that depends on the Lovelock coefficients, the dimensionality of the spacetime, and the shape function. We study the conditions of having normal matter near the throat, and find that the matter near the throat can be normal for the region r 0 ≤r≤r max , where r max depends on the Lovelock coefficients and the shape function. We also find that the third order Lovelock term with negative coupling constant enlarges the radius of the region of normal matter, and conclude that the higher order Lovelock terms with negative coupling constants enlarge the region of normal matter near the throat.
f(Lovelock) theories of gravity
Bueno, Pablo; Cano, Pablo A.; Óscar Lasso, A.; Ramírez, Pedro F.
2016-04-01
f(Lovelock) gravities are simple generalizations of the usual f( R) and Lovelock theories in which the gravitational action depends on some arbitrary function of the corresponding dimensionally-extended Euler densities. In this paper we study several aspects of these theories in general dimensions. We start by identifying the generalized boundary term which makes the gravitational variational problem well-posed. Then, we show that these theories are equivalent to certain scalar-tensor theories and how this relation is characterized by the Hessian of f. We also study the linearized equations of the theory on general maximally symmetric backgrounds. Remarkably, we find that these theories do not propagate the usual ghost-like massive gravitons characteristic of higher-derivative gravities on such backgrounds. In some non-trivial cases, the additional scalar associated to the trace of the metric perturbation is also absent, being the usual graviton the only dynamical field. In those cases, the linearized equations are exactly the same as in Einstein gravity up to an overall factor, making them appealing as holographic toy models. We also find constraints on the couplings of a broad family of five-dimensional f(Lovelock) theories using holographic entanglement entropy. Finally, we construct new analytic asymptotically flat and AdS/dS black hole solutions for some classes of f(Lovelock) gravities in various dimensions.
f(Lovelock) theories of gravity
International Nuclear Information System (INIS)
Bueno, Pablo; Cano, Pablo A.; Óscar, Lasso A.; Ramírez, Pedro F.
2016-01-01
f(Lovelock) gravities are simple generalizations of the usual f(R) and Lovelock theories in which the gravitational action depends on some arbitrary function of the corresponding dimensionally-extended Euler densities. In this paper we study several aspects of these theories in general dimensions. We start by identifying the generalized boundary term which makes the gravitational variational problem well-posed. Then, we show that these theories are equivalent to certain scalar-tensor theories and how this relation is characterized by the Hessian of f. We also study the linearized equations of the theory on general maximally symmetric backgrounds. Remarkably, we find that these theories do not propagate the usual ghost-like massive gravitons characteristic of higher-derivative gravities on such backgrounds. In some non-trivial cases, the additional scalar associated to the trace of the metric perturbation is also absent, being the usual graviton the only dynamical field. In those cases, the linearized equations are exactly the same as in Einstein gravity up to an overall factor, making them appealing as holographic toy models. We also find constraints on the couplings of a broad family of five-dimensional f(Lovelock) theories using holographic entanglement entropy. Finally, we construct new analytic asymptotically flat and AdS/dS black hole solutions for some classes of f(Lovelock) gravities in various dimensions.
5D Lovelock gravity: New exact solutions with torsion
Cvetković, B.; Simić, D.
2016-10-01
Five-dimensional Lovelock gravity is investigated in the first order formalism. A new class of exact solutions is constructed: the Bañados, Teitelboim, Zanelli black rings with and without torsion. We show that our solution with torsion exists in a different sector of the Lovelock gravity, as compared to the Lovelock Chern-Simons sector or the one investigated by Canfora et al. The conserved charges of the solutions are found using Nester's formula, and the results are confirmed by the canonical method. We show that the theory linearized around the background with torsion possesses two additional degrees of freedom with respect to general relativity.
Teleparallel equivalent of Lovelock gravity
González, P. A.; Vásquez, Yerko
2015-12-01
There is a growing interest in modified gravity theories based on torsion, as these theories exhibit interesting cosmological implications. In this work inspired by the teleparallel formulation of general relativity, we present its extension to Lovelock gravity known as the most natural extension of general relativity in higher-dimensional space-times. First, we review the teleparallel equivalent of general relativity and Gauss-Bonnet gravity, and then we construct the teleparallel equivalent of Lovelock gravity. In order to achieve this goal, we use the vielbein and the connection without imposing the Weitzenböck connection. Then, we extract the teleparallel formulation of the theory by setting the curvature to null.
Wenjie Tian, David; Booth, Ivan
2016-02-01
According to Lovelock’s theorem, the Hilbert-Einstein and the Lovelock actions are indistinguishable from their field equations. However, they have different scalar-tensor counterparts, which correspond to the Brans-Dicke and the Lovelock-Brans-Dicke (LBD) gravities, respectively. In this paper the LBD model of alternative gravity with the Lagrangian density {{L}}{LBD}=\\frac{1}{16π }≤ft[φ ≤ft(R+\\frac{a}{\\sqrt{-g}}{}*{RR}+b{ G }\\right)-\\frac{{ω }{{L}}}{φ }{{{\
A black hole with torsion in 5D Lovelock gravity
Cvetković, B.; Simić, D.
2018-03-01
We analyze static spherically symmetric solutions of five dimensional (5D) Lovelock gravity in the first order formulation. In the Riemannian sector, when torsion vanishes, the Boulware–Deser black hole represents a unique static spherically symmetric black hole solution for the generic choice of the Lagrangian parameters. We show that a special choice of the Lagrangian parameters, different from the Lovelock Chern–Simons gravity, leads to the existence of a static black hole solution with torsion, the metric of which is asymptotically anti-de Sitter (AdS). We calculate the conserved charges and thermodynamical quantities of this black hole solution.
Black holes in pure Lovelock gravities
International Nuclear Information System (INIS)
Cai Ronggen; Ohta, Nobuyoshi
2006-01-01
Lovelock gravity is a fascinating extension of general relativity, whose action consists of dimensionally extended Euler densities. Compared to other higher order derivative gravity theories, Lovelock gravity is attractive since it has a lot of remarkable features such as the fact that there are no more than second order derivatives with respect to the metric in its equations of motion, and that the theory is free of ghosts. Recently, in the study of black strings and black branes in Lovelock gravity, a special class of Lovelock gravity is considered, which is named pure Lovelock gravity, where only one Euler density term exists. In this paper we study black hole solutions in the special class of Lovelock gravity and associated thermodynamic properties. Some interesting features are found, which are quite different from the corresponding ones in general relativity
Holographic Lovelock gravities and black holes
de Boer, J.; Kulaxizi, M.; Parnachev, A.
2010-01-01
We study holographic implications of Lovelock gravities in AdS spacetimes. For a generic Lovelock gravity in arbitrary spacetime dimensions we formulate the existence condition of asymptotically AdS black holes. We consider small fluctuations around these black holes and determine the constraint on
Holographic entanglement entropy in Lovelock gravities
de Boer, J.; Kulaxizi, M.; Parnachev, A.
2011-01-01
We study entanglement entropies of simply connected surfaces in field theories dual to Lovelock gravities. We consider Gauss-Bonnet and cubic Lovelock gravities in detail. In the conformal case the logarithmic terms in the entanglement entropy are governed by the conformal anomalies of the CFT; we
Kaluza-Klein cosmology from five-dimensional Lovelock-Cartan theory
Castillo-Felisola, Oscar; Corral, Cristóbal; del Pino, Simón; Ramírez, Francisca
2016-12-01
We study the Kaluza-Klein dimensional reduction of the Lovelock-Cartan theory in five-dimensional spacetime, with a compact dimension of S1 topology. We find cosmological solutions of the Friedmann-Robertson-Walker class in the reduced spacetime. The torsion and the fields arising from the dimensional reduction induce a nonvanishing energy-momentum tensor in four dimensions. We find solutions describing expanding, contracting, and bouncing universes. The model shows a dynamical compactification of the extra dimension in some regions of the parameter space.
Geometrodynamics of spherically symmetric Lovelock gravity
International Nuclear Information System (INIS)
Kunstatter, Gabor; Taves, Tim; Maeda, Hideki
2012-01-01
We derive the Hamiltonian for spherically symmetric Lovelock gravity using the geometrodynamics approach pioneered by Kuchar (1994 Phys. Rev. D 50 3961) in the context of four-dimensional general relativity. When written in terms of the areal radius, the generalized Misner-Sharp mass and their conjugate momenta, the generic Lovelock action and Hamiltonian take on precisely the same simple forms as in general relativity. This result supports the interpretation of Lovelock gravity as the natural higher dimensional extension of general relativity. It also provides an important first step towards the study of the quantum mechanics, Hamiltonian thermodynamics and formation of generic Lovelock black holes. (fast track communication)
Lanczos–Lovelock models of gravity
International Nuclear Information System (INIS)
Padmanabhan, T.; Kothawala, D.
2013-01-01
Lanczos–Lovelock models of gravity represent a natural and elegant generalization of Einstein’s theory of gravity to higher dimensions. They are characterized by the fact that the field equations only contain up to second derivatives of the metric even though the action functional can be a quadratic or higher degree polynomial in the curvature tensor. Because these models share several key properties of Einstein’s theory they serve as a useful set of candidate models for testing the emergent paradigm for gravity. This review highlights several geometrical and thermodynamical aspects of Lanczos–Lovelock models which have attracted recent attention
Hoffmann-Infeld black-hole solutions in Lovelock gravity
Energy Technology Data Exchange (ETDEWEB)
Aiello, MatIas [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Instituto de AstronomIa y Fisica del Espacio, C.C. 67, Suc. 28, 1428 Buenos Aires (Argentina); Ferraro, Rafael [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Instituto de AstronomIa y Fisica del Espacio, C.C. 67, Suc. 28, 1428 Buenos Aires (Argentina); Giribet, Gaston [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Departamento de Fisica, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina)
2005-07-07
Five-dimensional black holes are studied in Lovelock gravity coupled to Hoffmann-Infeld nonlinear electrodynamics. It is shown that some of these solutions present a double peak behaviour of the temperature as a function of the horizon radius. This feature suggests that the evaporation process, though drastic for a period, leads to an eternal black-hole remnant. In fact, the form of the caloric curve corresponds to the existence of a plateau in the evaporation rate, which implies that black holes of intermediate scales turn out to be unstable. The geometrical aspects, such as the absence of conical singularity, the structure of horizons, etc are also discussed. In particular, solutions that are asymptotically AdS arise for special choices of the parameters, corresponding to charged solutions of five-dimensional Chern-Simons gravity.
Hoffmann-Infeld black-hole solutions in Lovelock gravity
International Nuclear Information System (INIS)
Aiello, MatIas; Ferraro, Rafael; Giribet, Gaston
2005-01-01
Five-dimensional black holes are studied in Lovelock gravity coupled to Hoffmann-Infeld nonlinear electrodynamics. It is shown that some of these solutions present a double peak behaviour of the temperature as a function of the horizon radius. This feature suggests that the evaporation process, though drastic for a period, leads to an eternal black-hole remnant. In fact, the form of the caloric curve corresponds to the existence of a plateau in the evaporation rate, which implies that black holes of intermediate scales turn out to be unstable. The geometrical aspects, such as the absence of conical singularity, the structure of horizons, etc are also discussed. In particular, solutions that are asymptotically AdS arise for special choices of the parameters, corresponding to charged solutions of five-dimensional Chern-Simons gravity
Dynamical structure of pure Lovelock gravity
Dadhich, Naresh; Durka, Remigiusz; Merino, Nelson; Miskovic, Olivera
2016-03-01
We study the dynamical structure of pure Lovelock gravity in spacetime dimensions higher than four using the Hamiltonian formalism. The action consists of a cosmological constant and a single higher-order polynomial in the Riemann tensor. Similarly to the Einstein-Hilbert action, it possesses a unique constant curvature vacuum and charged black hole solutions. We analyze physical degrees of freedom and local symmetries in this theory. In contrast to the Einstein-Hilbert case, the number of degrees of freedom depends on the background and can vary from zero to the maximal value carried by the Lovelock theory.
Lovelock gravities from Born–Infeld gravity theory
Directory of Open Access Journals (Sweden)
P.K. Concha
2017-02-01
Full Text Available We present a Born–Infeld gravity theory based on generalizations of Maxwell symmetries denoted as Cm. We analyze different configuration limits allowing to recover diverse Lovelock gravity actions in six dimensions. Further, the generalization to higher even dimensions is also considered.
Lovelock gravities from Born-Infeld gravity theory
Concha, P. K.; Merino, N.; Rodríguez, E. K.
2017-02-01
We present a Born-Infeld gravity theory based on generalizations of Maxwell symmetries denoted as Cm. We analyze different configuration limits allowing to recover diverse Lovelock gravity actions in six dimensions. Further, the generalization to higher even dimensions is also considered.
Smarr formula and an extended first law for Lovelock gravity
Energy Technology Data Exchange (ETDEWEB)
Kastor, David; Traschen, Jennie [Department of Physics, University of Massachusetts, Amherst, MA 01003 (United States); Ray, Sourya, E-mail: kastor@physics.umass.ed, E-mail: ray@cecs.c, E-mail: traschen@physics.umass.ed [Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile)
2010-12-07
We study properties of static, asymptotically AdS black holes in Lovelock gravity. Our main result is a Smarr formula that gives the mass in terms of geometrical quantities together with the parameters of the Lovelock theory. As in Einstein gravity, the Smarr formula follows from applying the first law to an infinitesimal change in the overall length scale. However, because the Lovelock couplings are dimensionful, we must first prove an extension of the first law that includes their variations. Key ingredients in this construction are the Killing-Lovelock potentials associated with each of the higher curvature Lovelock interactions. Geometric expressions are obtained for the new thermodynamic potentials conjugate to the variation of the Lovelock couplings.
Rotating solutions in critical Lovelock gravities
Cvetič, M.; Feng, Xing-Hui; Lü, H.; Pope, C. N.
2017-02-01
For appropriate choices of the coupling constants, the equations of motion of Lovelock gravities up to order n in the Riemann tensor can be factorized such that the theories admit a single (A)dS vacuum. In this paper we construct two classes of exact rotating metrics in such critical Lovelock gravities of order n in d = 2 n + 1 dimensions. In one class, the n angular momenta in the n orthogonal spatial 2-planes are equal, and hence the metric is of cohomogeneity one. We construct these metrics in a Kerr-Schild form, but they can then be recast in terms of Boyer-Lindquist coordinates. The other class involves metrics with only a single non-vanishing angular momentum. Again we construct them in a Kerr-Schild form, but in this case it does not seem to be possible to recast them in Boyer-Lindquist form. Both classes of solutions have naked curvature singularities, arising because of the over rotation of the configurations.
Rotating solutions in critical Lovelock gravities
Directory of Open Access Journals (Sweden)
M. Cvetič
2017-02-01
Full Text Available For appropriate choices of the coupling constants, the equations of motion of Lovelock gravities up to order n in the Riemann tensor can be factorized such that the theories admit a single (AdS vacuum. In this paper we construct two classes of exact rotating metrics in such critical Lovelock gravities of order n in d=2n+1 dimensions. In one class, the n angular momenta in the n orthogonal spatial 2-planes are equal, and hence the metric is of cohomogeneity one. We construct these metrics in a Kerr–Schild form, but they can then be recast in terms of Boyer–Lindquist coordinates. The other class involves metrics with only a single non-vanishing angular momentum. Again we construct them in a Kerr–Schild form, but in this case it does not seem to be possible to recast them in Boyer–Lindquist form. Both classes of solutions have naked curvature singularities, arising because of the over rotation of the configurations.
Taub-NUT black holes in third order Lovelock gravity
International Nuclear Information System (INIS)
Hendi, S.H.; Dehghani, M.H.
2008-01-01
We consider the existence of Taub-NUT solutions in third order Lovelock gravity with cosmological constant, and obtain the general form of these solutions in eight dimensions. We find that, as in the case of Gauss-Bonnet gravity and in contrast with the Taub-NUT solutions of Einstein gravity, the metric function depends on the specific form of the base factors on which one constructs the circle fibration. Thus, one may say that the independence of the NUT solutions on the geometry of the base space is not a robust feature of all generally covariant theories of gravity and is peculiar to Einstein gravity. We find that when Einstein gravity admits non-extremal NUT solutions with no curvature singularity at r=N, then there exists a non-extremal NUT solution in third order Lovelock gravity. In 8-dimensional spacetime, this happens when the metric of the base space is chosen to be CP 3 . Indeed, third order Lovelock gravity does not admit non-extreme NUT solutions with any other base space. This is another property which is peculiar to Einstein gravity. We also find that the third order Lovelock gravity admits extremal NUT solution when the base space is T 2 xT 2 xT 2 or S 2 xT 2 xT 2 . We have extended these observations to two conjectures about the existence of NUT solutions in Lovelock gravity in any even-dimensional spacetime
Lanczos-Lovelock gravity from a thermodynamic perspective
International Nuclear Information System (INIS)
Chakraborty, Sumanta
2015-01-01
The deep connection between gravitational dynamics and horizon thermodynamics leads to several intriguing features both in general relativity and in Lanczos-Lovelock theories of gravity. Recently in http://arxiv.org/abs/1312.3253 several additional results strengthening the above connection have been established within the framework of general relativity. In this work we provide a generalization of the above setup to Lanczos-Lovelock gravity as well. To our expectation it turns out that most of the results obtained in the context of general relativity generalize to Lanczos-Lovelock gravity in a straightforward but non-trivial manner. First, we provide an alternative and more general derivation of the connection between Noether charge for a specific time evolution vector field and gravitational heat density of the boundary surface. This will lead to holographic equipartition for static spacetimes in Lanczos-Lovelock gravity as well. Taking a cue from this, we have introduced naturally defined four-momentum current associated with gravity and matter energy momentum tensor for both Lanczos-Lovelock Lagrangian and its quadratic part. Then, we consider the concepts of Noether charge for null boundaries in Lanczos-Lovelock gravity by providing a direct generalization of previous results derived in the context of general relativity. Another very interesting feature for gravity is that gravitational field equations for arbitrary static and spherically symmetric spacetimes with horizon can be written as a thermodynamic identity in the near horizon limit. This result holds in both general relativity and in Lanczos-Lovelock gravity as well. In a previous work [http://arxiv.org/abs/1505.05297] we have shown that, for an arbitrary spacetime, the gravitational field equations near any null surface generically leads to a thermodynamic identity. In this work, we have also generalized this result to Lanczos-Lovelock gravity by showing that gravitational field equations for Lanczos-Lovelock
Universality of isothermal fluid spheres in Lovelock gravity
Dadhich, Naresh; Hansraj, Sudan; Maharaj, Sunil D.
2016-02-01
We show universality of isothermal fluid spheres in pure Lovelock gravity where the equation of motion has only one N th order term coming from the corresponding Lovelock polynomial action of degree N . Isothermality is characterized by the equation of state, p =α ρ and the property, ρ ˜1 /r2 N . Then the solution describing isothermal spheres, which exist only for the pure Lovelock equation, is of the same form for the general Lovelock degree N in all dimensions d ≥2 N +2 . We further prove that the necessary and sufficient condition for the isothermal sphere is that its metric is conformal to the massless global monopole or the solid angle deficit metric, and this feature is also universal.
The Lovelock gravity in the critical spacetime dimension
International Nuclear Information System (INIS)
Dadhich, Naresh; Ghosh, Sushant G.; Jhingan, Sanjay
2012-01-01
It is well known that the vacuum in the Einstein gravity, which is linear in the Riemann curvature, is trivial in the critical (2+1=3) dimension because vacuum solution is flat. It turns out that this is true in general for any odd critical d=2n+1 dimension where n is the degree of homogeneous polynomial in Riemann defining its higher order analogue whose trace is the nth order Lovelock polynomial. This is the “curvature” for nth order pure Lovelock gravity as the trace of its Bianchi derivative gives the corresponding analogue of the Einstein tensor as defined by Dadhich (2010) . Thus the vacuum in the pure Lovelock gravity is always trivial in the odd critical (2n+1) dimension which means it is pure Lovelock flat but it is not Riemann flat unless n=1 and then it describes a field of a global monopole. Further by adding Λ we obtain the Lovelock analogue of the BTZ black hole.
Topologically nontrivial black holes in Lovelock-Born-Infeld gravity
Farhangkhah, N.
2018-04-01
We present the black hole solutions possessing horizon with nonconstant-curvature and additional scalar restrictions on the base manifold in Lovelock gravity coupled to Born-Infeld (BI) nonlinear electrodynamics. The asymptotic and near origin behavior of the metric is presented and we analyze different behaviors of the singularity. We find that, in contrast to the case of black hole solutions of BI-Lovelock gravity with constant curvature horizon and Maxwell-Lovelock gravity with non constant horizon which have only timelike singularities, spacelike, and timelike singularities may exist for BI-Lovelock black holes with nonconstant curvature horizon. By calculating the thermodynamic quantities, we study the effects of nonlinear electrodynamics via the Born-Infeld action. Stability analysis shows that black holes with positive sectional curvature, κ , possess an intermediate unstable phase and large and small black holes are stable. We see that while Ricci flat Lovelock-Born-Infeld black holes having exotic horizons are stable in the presence of Maxwell field or either Born Infeld field with large born Infeld parameter β , unstable phase appears for smaller values of β , and therefore nonlinearity brings in the instability.
Quasinormal modes of black holes in Lovelock gravity
Yoshida, Daiske; Soda, Jiro
2016-02-01
We study quasinormal modes of black holes in Lovelock gravity. We formulate the WKB method adapted to Lovelock gravity for the calculation of quasinormal frequencies (QNFs). As a demonstration, we calculate various QNFs of Lovelock black holes in seven and eight dimensions. We find that the QNFs show remarkable features depending on the coefficients of the Lovelock terms, the species of perturbations, and spacetime dimensions. In the case of the scalar field, when we increase the coefficient of the third order Lovelock term, the real part of QNFs increases, but the decay rate becomes small irrespective of the mass of the black hole. For small black holes, the decay rate ceases to depend on the Gauss-Bonnet term. In the case of tensor type perturbations of the metric field, the tendency of the real part of QNFs is opposite to that of the scalar field. The QNFs of vector type perturbations of the metric show no particular behavior. The behavior of QNFs of the scalar type perturbations of the metric field is similar to the vector type. However, available data are rather sparse, which indicates that the WKB method is not applicable to many models for this sector.
Characterization of the Lovelock gravity by Bianchi derivative
Indian Academy of Sciences (India)
Characterization of the Lovelock gravity by Bianchi derivative. NARESH DADHICH. Inter-University Centre for Astronomy & Astrophysics, Post Bag 4, Pune 411 007, India. E-mail: nkd@iucaa.ernet.in. MS received 30 November 2009; revised 15 February 2010; accepted 19 February 2010. Abstract. We prove the theorem: ...
Born–Infeld extension of Lovelock brane gravity
International Nuclear Information System (INIS)
Cruz, Miguel; Rojas, Efraín
2013-01-01
We present a Born–Infeld-type theory to describe the evolution of p-branes propagating in an N = (p + 2)-dimensional Minkowski spacetime. The expansion of the BI-type volume element gives rise to the (p + 1) Lovelock brane invariants associated with the worldvolume swept out by the brane. Contrary to the Lovelock theory in gravity, the number of Lovelock brane Lagrangians differs in this case, depending on the dimension of the worldvolume as a consequence that we consider the embedding functions, instead of the metric, as the field variables. This model depends on the intrinsic and the extrinsic geometries of the worldvolume and in consequence is a second-order theory as shown in the main text. A classically equivalent action is discussed and we comment on its Weyl invariance in any dimension which naturally requires the introduction of some auxiliary fields. (paper)
Field Equations for Lovelock Gravity: An Alternative Route
Directory of Open Access Journals (Sweden)
Sumanta Chakraborty
2018-01-01
Full Text Available We present an alternative derivation of the gravitational field equations for Lovelock gravity starting from Newton’s law, which is closer in spirit to the thermodynamic description of gravity. As a warm up exercise, we have explicitly demonstrated that, projecting the Riemann curvature tensor appropriately and taking a cue from Poisson’s equation, Einstein’s equations immediately follow. The above derivation naturally generalizes to Lovelock gravity theories where an appropriate curvature tensor satisfying the symmetries as well as the Bianchi derivative properties of the Riemann tensor has to be used. Interestingly, in the above derivation, the thermodynamic route to gravitational field equations, suited for null hypersurfaces, emerges quiet naturally.
Criticality in third order lovelock gravity and butterfly effect
International Nuclear Information System (INIS)
Qaemmaqami, Mohammad M.
2018-01-01
We study third order Lovelock Gravity in D = 7 at the critical point which three (A)dS vacua degenerate into one. We see there is not propagating graviton at the critical point. And also we compute the butterfly velocity for this theory at the critical point by considering the shock wave solutions near horizon, this is important to note that although there is no propagating graviton at the critical point, due to boundary gravitons the butterfly velocity is non-zero. Finally we observe that the butterfly velocity for third order Lovelock Gravity at the critical point in D = 7 is less than the butterfly velocity for Einstein-Gauss-Bonnet Gravity at the critical point in D = 7 which is less than the butterfly velocity in D = 7 for Einstein Gravity, v B E.H > v B E.G.B > v B 3rdLovelock . Maybe we can conclude that by adding higher order curvature corrections to Einstein Gravity the butterfly velocity decreases. (orig.)
Criticality in third order lovelock gravity and butterfly effect
Energy Technology Data Exchange (ETDEWEB)
Qaemmaqami, Mohammad M. [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of)
2018-01-15
We study third order Lovelock Gravity in D = 7 at the critical point which three (A)dS vacua degenerate into one. We see there is not propagating graviton at the critical point. And also we compute the butterfly velocity for this theory at the critical point by considering the shock wave solutions near horizon, this is important to note that although there is no propagating graviton at the critical point, due to boundary gravitons the butterfly velocity is non-zero. Finally we observe that the butterfly velocity for third order Lovelock Gravity at the critical point in D = 7 is less than the butterfly velocity for Einstein-Gauss-Bonnet Gravity at the critical point in D = 7 which is less than the butterfly velocity in D = 7 for Einstein Gravity, v{sub B}{sup E.H} > v{sub B}{sup E.G.B} > v{sub B}{sup 3rdLovelock}. Maybe we can conclude that by adding higher order curvature corrections to Einstein Gravity the butterfly velocity decreases. (orig.)
Criticality in third order lovelock gravity and butterfly effect
Qaemmaqami, Mohammad M.
2018-01-01
We study third order Lovelock Gravity in D=7 at the critical point which three (A)dS vacua degenerate into one. We see there is not propagating graviton at the critical point. And also we compute the butterfly velocity for this theory at the critical point by considering the shock wave solutions near horizon, this is important to note that although there is no propagating graviton at the critical point, due to boundary gravitons the butterfly velocity is non-zero. Finally we observe that the butterfly velocity for third order Lovelock Gravity at the critical point in D=7 is less than the butterfly velocity for Einstein-Gauss-Bonnet Gravity at the critical point in D=7 which is less than the butterfly velocity in D = 7 for Einstein Gravity, vB^{E.H}>vB^{E.G.B}>vB^{3rd Lovelock} . Maybe we can conclude that by adding higher order curvature corrections to Einstein Gravity the butterfly velocity decreases.
Pure Lovelock gravity and Chern-Simons theory
Concha, P. K.; Durka, R.; Inostroza, C.; Merino, N.; Rodríguez, E. K.
2016-07-01
We explore the possibility of finding pure Lovelock gravity as a particular limit of a Chern-Simons action for a specific expansion of the AdS algebra in odd dimensions. We derive in detail this relation at the level of the action in five and seven dimensions. We provide a general result for higher dimensions and discuss some issues arising from the obtained dynamics.
Kink-antikink, trapping bags and five-dimensional Gauss-Bonnet gravity
Giovannini, Massimo
2006-01-01
Five-dimensional Gauss-Bonnet gravity, with one warped extra-dimension, allows classes of solutions where two scalar fields combine either in a kink-antikink system or in a trapping bag configuration. While the kink-antikink system can be interpreted as a pair of gravitating domain walls with opposite topological charges, the trapping bag solution consists of a domain wall supplemented by a non-topological defect. In both classes of solutions, for large absolute values of the bulk coordinate (i.e. far from the core of the defects), the geometry is given by five-dimensional anti-de Sitter space.
Holography in Lovelock Chern-Simons AdS gravity
Cvetković, Branislav; Miskovic, Olivera; Simić, Dejan
2017-08-01
We analyze holographic field theory dual to Lovelock Chern-Simons anti-de Sitter (AdS) gravity in higher dimensions using first order formalism. We first find asymptotic symmetries in the AdS sector showing that they consist of local translations, local Lorentz rotations, dilatations and non-Abelian gauge transformations. Then, we compute 1-point functions of energy-momentum and spin currents in a dual conformal field theory and write Ward identities. We find that the holographic theory possesses Weyl anomaly and also breaks non-Abelian gauge symmetry at the quantum level.
Universal regularization prescription for Lovelock AdS gravity
International Nuclear Information System (INIS)
Kofinas, Georgios; Olea, Rodrigo
2007-01-01
A definite form for the boundary term that produces the finiteness of both the conserved quantities and Euclidean action for any Lovelock gravity with AdS asymptotics is presented. This prescription merely tells even from odd bulk dimensions, regardless the particular theory considered, what is valid even for Einstein-Hilbert and Einstein-Gauss-Bonnet AdS gravity. The boundary term is a given polynomial of the boundary extrinsic and intrinsic curvatures (also referred to as Kounterterms series). Only the coupling constant of the boundary term changes accordingly, such that it always preserves a well-posed variational principle for boundary conditions suitable for asymptotically AdS spaces. The background-independent conserved charges associated to asymptotic symmetries are found. In odd bulk dimensions, this regularization produces a generalized formula for the vacuum energy in Lovelock AdS gravity. The standard entropy for asymptotically AdS black holes is recovered directly from the regularization of the Euclidean action, and not only from the first law of thermodynamics associated to the conserved quantities
Beyond Lovelock gravity: Higher derivative metric theories
Crisostomi, M.; Noui, K.; Charmousis, C.; Langlois, D.
2018-02-01
We consider theories describing the dynamics of a four-dimensional metric, whose Lagrangian is diffeomorphism invariant and depends at most on second derivatives of the metric. Imposing degeneracy conditions we find a set of Lagrangians that, apart form the Einstein-Hilbert one, are either trivial or contain more than 2 degrees of freedom. Among the partially degenerate theories, we recover Chern-Simons gravity, endowed with constraints whose structure suggests the presence of instabilities. Then, we enlarge the class of parity violating theories of gravity by introducing new "chiral scalar-tensor theories." Although they all raise the same concern as Chern-Simons gravity, they can nevertheless make sense as low energy effective field theories or, by restricting them to the unitary gauge (where the scalar field is uniform), as Lorentz breaking theories with a parity violating sector.
Kink-antikink, trapping bags and five-dimensional Gauss-Bonnet gravity
Giovannini, Massimo
2006-01-01
Five-dimensional Gauss-Bonnet gravity, with one warped extra-dimension, allows classes of solutions where two scalar fields combine either in a kink-antikink system or in a trapping bag configuration. While the kink-antikink system can be interpreted as a pair of gravitating domain walls with opposite topological charges, the trapping bag solution consists of a domain wall supplemented by a non-topological defect. In both classes of solutions, for large absolute values of the bulk coordinate ...
Charges and Energy in Chern-Simons Theories and Lovelock Gravity
Allemandi, G.; Francaviglia, M.; Raiteri, M.
2003-01-01
Starting from the SO(2,2n) Chern-Simons form in (2n+1) dimensions we calculate the variation of conserved quantities in Lovelock gravity and Lovelock-Maxwell gravity through the covariant formalism developed in gr-qc/0305047. Despite the technical complexity of the Lovelock Lagrangian we obtain a remarkably simple expression for the variation of the charges ensuing from the diffeomorphism covariance of the theory. The viability of the result is tested in specific applications and the formal e...
Covariant approach of perturbations in Lovelock type brane gravity
Bagatella-Flores, Norma; Campuzano, Cuauhtemoc; Cruz, Miguel; Rojas, Efraín
2016-12-01
We develop a covariant scheme to describe the dynamics of small perturbations on Lovelock type extended objects propagating in a flat Minkowski spacetime. The higher-dimensional analogue of the Jacobi equation in this theory becomes a wave type equation for a scalar field Φ . Whithin this framework, we analyse the stability of membranes with a de Sitter geometry where we find that the Jacobi equation specializes to a Klein-Gordon (KG) equation for Φ possessing a tachyonic mass. This shows that, to some extent, these types of extended objects share the symmetries of the Dirac-Nambu-Goto (DNG) action which is by no means coincidental because the DNG model is the simplest included in this type of gravity.
Charged shells in Lovelock gravity: Hamiltonian treatment and physical implications
International Nuclear Information System (INIS)
Dias, Goncalo A. S.; Gao, Sijie; Lemos, Jose P. S.
2007-01-01
Using a Hamiltonian treatment, charged thin shells, static and dynamic, in spherically symmetric spacetimes, containing black holes or other specific types of solutions, in d dimensional Lovelock-Maxwell theory are studied. The free coefficients that appear in the Lovelock theory are chosen to obtain a sensible theory, with a negative cosmological constant appearing naturally. Using an Arnowitt-Deser-Misner (ADM) description, one then finds the Hamiltonian for the charged shell system. Variation of the Hamiltonian with respect to the canonical coordinates and conjugate momenta, and the relevant Lagrange multipliers, yields the dynamic and constraint equations. The vacuum solutions of these equations yield a division of the theory into two branches, namely d-2k-1>0 (which includes general relativity, Born-Infeld type theories, and other generic gravities) and d-2k-1=0 (which includes Chern-Simons type theories), where k is the parameter giving the highest power of the curvature in the Lagrangian. There appears an additional parameter χ=(-1) k+1 , which gives the character of the vacuum solutions. For χ=1 the solutions, being of the type found in general relativity, have a black hole character. For χ=-1 the solutions, being of a new type not found in general relativity, have a totally naked singularity character. Since there is a negative cosmological constant, the spacetimes are asymptotically anti-de Sitter (AdS), and AdS when empty (for zero cosmological constant the spacetimes are asymptotically flat). The integration from the interior to the exterior vacuum regions through the thin shell takes care of a smooth junction, showing the power of the method. The subsequent analysis is divided into two cases: static charged thin shell configurations, and gravitationally collapsing charged dust shells (expanding shells are the time reversal of the collapsing shells). In the collapsing case, into an initially nonsingular spacetime with generic character or an empty
Brown-York quasilocal energy in Lanczos-Lovelock gravity and black hole horizons
Chakraborty, Sumanta; Dadhich, Naresh
2015-12-01
A standard candidate for quasilocal energy in general relativity is the Brown-York energy, which is essentially a two dimensional surface integral of the extrinsic curvature on the two-boundary of a spacelike hypersurface referenced to flat spacetime. Several years back one of us had conjectured that the black hole horizon is defined by equipartition of gravitational and non-gravitational energy. By employing the above definition of quasilocal Brown-York energy, we have verified the equipartition conjecture for static charged and charged axi-symmetric black holes in general relativity. We have further generalized the Brown-York formalism to all orders in Lanczos-Lovelock theories of gravity and have verified the conjecture for pure Lovelock charged black hole in all even d = 2 m + 2 dimensions, where m is the degree of Lovelock action. It turns out that the equipartition conjecture works only for pure Lovelock, and not for Einstein-Lovelock black holes.
Brown-York quasilocal energy in Lanczos-Lovelock gravity and black hole horizons
International Nuclear Information System (INIS)
Chakraborty, Sumanta; Dadhich, Naresh
2015-01-01
A standard candidate for quasilocal energy in general relativity is the Brown-York energy, which is essentially a two dimensional surface integral of the extrinsic curvature on the two-boundary of a spacelike hypersurface referenced to flat spacetime. Several years back one of us had conjectured that the black hole horizon is defined by equipartition of gravitational and non-gravitational energy. By employing the above definition of quasilocal Brown-York energy, we have verified the equipartition conjecture for static charged and charged axi-symmetric black holes in general relativity. We have further generalized the Brown-York formalism to all orders in Lanczos-Lovelock theories of gravity and have verified the conjecture for pure Lovelock charged black hole in all even d=2m+2 dimensions, where m is the degree of Lovelock action. It turns out that the equipartition conjecture works only for pure Lovelock, and not for Einstein-Lovelock black holes.
BIonic system: Extraction of Lovelock gravity from a Born-Infeld-type theory
Naimi, Yaghoob; Sepehri, Alireza; Ghaffary, Tooraj; Ghaforyan, Hossein; Ebrahimzadeh, Majid
It was shown that both Lovelock gravity and Born-Infeld (BI) electrodynamics can be obtained from low effective limit of string theory. Motivated by the mentioned unique origin of the gauge-gravity theories, we are going to find a close relation between them. In this research, we start from the Lagrangian of a BI-type nonlinear electrodynamics with an exponential form to extract the action of Lovelock gravity. We investigate the origin of Lovelock gravity in a system of branes which are connected with each other by different wormholes through a BIonic system. These wormholes are produced as due to the nonlinear electrodynamics which are emerged on the interacting branes. By approaching branes, wormholes dissolve into branes and Lovelock gravity is generated. Also, throats of some wormholes become smaller than their horizons and they transit to black holes. Generalizing calculations to M-theory, it is found that by compacting Mp-branes, Lovelock gravity changes to nonlinear electrodynamics and thus both of them have the same origin. This result is consistent with the prediction of BIonic model in string theory.
Black hole thermodynamics in Lovelock gravity's rainbow with (A)dS asymptote
Energy Technology Data Exchange (ETDEWEB)
Hendi, Seyed Hossein, E-mail: hendi@shirazu.ac.ir [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Research Institute for Astrophysics and Astronomy of Maragha (RIAAM), P.O. Box 55134-441, Maragha (Iran, Islamic Republic of); Dehghani, Ali, E-mail: ali.dehghani.phys@gmail.com [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Faizal, Mir, E-mail: f2mir@uwaterloo.ca [Irving K. Barber School of Arts and Sciences, University of British Columbia – Okanagan, Kelowna, BC V1V 1V7 (Canada); Department of Physics and Astronomy, University of Lethbridge, Lethbridge, AB T1K 3M4 (Canada)
2017-01-15
In this paper, we combine Lovelock gravity with gravity's rainbow to construct Lovelock gravity's rainbow. Considering the Lovelock gravity's rainbow coupled to linear and also nonlinear electromagnetic gauge fields, we present two new classes of topological black hole solutions. We compute conserved and thermodynamic quantities of these black holes (such as temperature, entropy, electric potential, charge and mass) and show that these quantities satisfy the first law of thermodynamics. In order to study the thermal stability in canonical ensemble, we calculate the heat capacity and determinant of the Hessian matrix and show in what regions there are thermally stable phases for black holes. Also, we discuss the dependence of thermodynamic behavior and thermal stability of black holes on rainbow functions. Finally, we investigate the critical behavior of black holes in the extended phase space and study their interesting properties.
Black hole thermodynamics in Lovelock gravity's rainbow with (AdS asymptote
Directory of Open Access Journals (Sweden)
Seyed Hossein Hendi
2017-01-01
Full Text Available In this paper, we combine Lovelock gravity with gravity's rainbow to construct Lovelock gravity's rainbow. Considering the Lovelock gravity's rainbow coupled to linear and also nonlinear electromagnetic gauge fields, we present two new classes of topological black hole solutions. We compute conserved and thermodynamic quantities of these black holes (such as temperature, entropy, electric potential, charge and mass and show that these quantities satisfy the first law of thermodynamics. In order to study the thermal stability in canonical ensemble, we calculate the heat capacity and determinant of the Hessian matrix and show in what regions there are thermally stable phases for black holes. Also, we discuss the dependence of thermodynamic behavior and thermal stability of black holes on rainbow functions. Finally, we investigate the critical behavior of black holes in the extended phase space and study their interesting properties.
Black hole thermodynamics in Lovelock gravity's rainbow with (A)dS asymptote
Hendi, Seyed Hossein; Dehghani, Ali; Faizal, Mir
2017-01-01
In this paper, we combine Lovelock gravity with gravity's rainbow to construct Lovelock gravity's rainbow. Considering the Lovelock gravity's rainbow coupled to linear and also nonlinear electromagnetic gauge fields, we present two new classes of topological black hole solutions. We compute conserved and thermodynamic quantities of these black holes (such as temperature, entropy, electric potential, charge and mass) and show that these quantities satisfy the first law of thermodynamics. In order to study the thermal stability in canonical ensemble, we calculate the heat capacity and determinant of the Hessian matrix and show in what regions there are thermally stable phases for black holes. Also, we discuss the dependence of thermodynamic behavior and thermal stability of black holes on rainbow functions. Finally, we investigate the critical behavior of black holes in the extended phase space and study their interesting properties.
Static and radiating solutions of Lovelock gravity in the presence of a perfect fluid
International Nuclear Information System (INIS)
Dehghani, M.H.; Farhangkhah, N.
2009-01-01
We present a general solution of third order Lovelock gravity in the presence of a specific type II perfect fluid. This solution for linear equation of state, p=w(ρ-4B) contains all the known solutions of third order Lovelock gravity in the literature and some new static and radiating solutions for different values of w and B. Specially, we consider the properties of static and radiating solutions for w=0 and w=(n-2) -1 with B=0 and B≠0. These solutions are asymptotically flat for B=0, while they are asymptotically (anti-)de Sitter for B≠0. The new static solutions for these choices of B and w present black holes with one or two horizons, extreme black holes or naked singularities provided the parameters of the solutions are chosen suitable. The static solution with w=0 and vanishing geometrical mass (m=0) may present a black hole with two inner and outer horizons. This is a peculiar feature of the third order Lovelock gravity, which does not occur in lower order Lovelock gravity. We also, investigate the properties of radiating solutions for these values of B and w, and compare the singularity strengths of them with the known radiating solutions of third order Lovelock gravity.
Topological black holes in Lovelock-Born-Infeld gravity
International Nuclear Information System (INIS)
Dehghani, M. H.; Alinejadi, N.; Hendi, S. H.
2008-01-01
In this paper, we present topological black holes of third order Lovelock gravity in the presence of cosmological constant and nonlinear electromagnetic Born-Infeld field. Depending on the metric parameters, these solutions may be interpreted as black hole solutions with inner and outer event horizons, an extreme black hole or naked singularity. We investigate the thermodynamics of asymptotically flat solutions and show that the thermodynamic and conserved quantities of these black holes satisfy the first law of thermodynamic. We also endow the Ricci flat solutions with a global rotation and calculate the finite action and conserved quantities of these class of solutions by using the counterterm method. We compute the entropy through the use of the Gibbs-Duhem relation and find that the entropy obeys the area law. We obtain a Smarr-type formula for the mass as a function of the entropy, the angular momenta, and the charge, and compute temperature, angular velocities, and electric potential and show that these thermodynamic quantities coincide with their values which are computed through the use of geometry. Finally, we perform a stability analysis for this class of solutions in both the canonical and the grand-canonical ensemble and show that the presence of a nonlinear electromagnetic field and higher curvature terms has no effect on the stability of the black branes, and they are stable in the whole phase space
Resolving the issue of branched Hamiltonian in modified Lanczos-Lovelock gravity
Ruz, Soumendranath; Mandal, Ranajit; Debnath, Subhra; Sanyal, Abhik Kumar
2016-07-01
The Hamiltonian constraint H_c = N{H} = 0, defines a diffeomorphic structure on spatial manifolds by the lapse function N in general theory of relativity. However, it is not manifest in Lanczos-Lovelock gravity, since the expression for velocity in terms of the momentum is multivalued. Thus the Hamiltonian is a branch function of momentum. Here we propose an extended theory of Lanczos-Lovelock gravity to construct a unique Hamiltonian in its minisuperspace version, which results in manifest diffeomorphic invariance and canonical quantization.
Birkhoff’s theorem in Lovelock gravity for general base manifolds
Ray, Sourya
2015-10-01
We extend the Birkhoff’s theorem in Lovelock gravity for arbitrary base manifolds using an elementary method. In particular, it is shown that any solution of the form of a warped product of a two-dimensional transverse space and an arbitrary base manifold must be static. Moreover, the field equations restrict the base manifold such that all the non-trivial intrinsic Lovelock tensors of the base manifold are constants, which can be chosen arbitrarily, and the metric in the transverse space is determined by a single function of a spacelike coordinate which satisfies an algebraic equation involving the constants characterizing the base manifold along with the coupling constants.
Two aspects of black hole entropy in Lanczos-Lovelock models of gravity
Kolekar, Sanved; Kothawala, Dawood; Padmanabhan, T.
2012-03-01
We consider two specific approaches to evaluate the black hole entropy which are known to produce correct results in the case of Einstein’s theory and generalize them to Lanczos-Lovelock models. In the first approach (which could be called extrinsic), we use a procedure motivated by earlier work by Pretorius, Vollick, and Israel, and by Oppenheim, and evaluate the entropy of a configuration of densely packed gravitating shells on the verge of forming a black hole in Lanczos-Lovelock theories of gravity. We find that this matter entropy is not equal to (it is less than) Wald entropy, except in the case of Einstein theory, where they are equal. The matter entropy is proportional to the Wald entropy if we consider a specific mth-order Lanczos-Lovelock model, with the proportionality constant depending on the spacetime dimensions D and the order m of the Lanczos-Lovelock theory as (D-2m)/(D-2). Since the proportionality constant depends on m, the proportionality between matter entropy and Wald entropy breaks down when we consider a sum of Lanczos-Lovelock actions involving different m. In the second approach (which could be called intrinsic), we generalize a procedure, previously introduced by Padmanabhan in the context of general relativity, to study off-shell entropy of a class of metrics with horizon using a path integral method. We consider the Euclidean action of Lanczos-Lovelock models for a class of metrics off shell and interpret it as a partition function. We show that in the case of spherically symmetric metrics, one can interpret the Euclidean action as the free energy and read off both the entropy and energy of a black hole spacetime. Surprisingly enough, this leads to exactly the Wald entropy and the energy of the spacetime in Lanczos-Lovelock models obtained by other methods. We comment on possible implications of the result.
A novel derivation of the boundary term for the action in Lanczos-Lovelock gravity
Chakraborty, Sumanta; Parattu, Krishnamohan; Padmanabhan, T.
2017-09-01
We present a novel derivation of the boundary term for the action in Lanczos-Lovelock gravity, starting from the boundary contribution in the variation of the Lanczos-Lovelock action. The derivation presented here is straightforward, i.e., one starts from the Lanczos-Lovelock action principle and the action itself dictates the boundary structure and hence the boundary term one needs to add to the action to make it well-posed. It also gives the full structure of the contribution at the boundary of the complete action, enabling us to read off the degrees of freedom to be fixed at the boundary, their corresponding conjugate momenta and the total derivative contribution on the boundary. We also provide a separate derivation of the Gauss-Bonnet case.
Non-analyticity of holographic Rényi entropy in Lovelock gravity
Puletti, V. Giangreco M.; Pourhasan, Razieh
2017-08-01
We compute holographic Rényi entropies for spherical entangling surfaces on the boundary while considering third order Lovelock gravity with negative cosmological constant in the bulk. Our study shows that third order Lovelock black holes with hyperbolic event horizon are unstable, and at low temperatures those with smaller mass are favoured, giving rise to first order phase transitions in the bulk. We determine regions in the Lovelock parameter space in arbitrary dimensions, where bulk phase transitions happen and where boundary causality constraints are met. We show that each of these points corresponds to a dual boundary conformal field theory whose Rényi entropy exhibits a kink at a certain critical index n.
Thermodynamics of hairy black holes in Lovelock gravity
Energy Technology Data Exchange (ETDEWEB)
Hennigar, Robie A. [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1 (Canada); Tjoa, Erickson [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences,Nanyang Technological University, Singapore, 637371 (Singapore); Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1 (Canada); Mann, Robert B. [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1 (Canada)
2017-02-14
We perform a thorough study of the thermodynamic properties of a class of Lovelock black holes with conformal scalar hair arising from coupling of a real scalar field to the dimensionally extended Euler densities. We study the linearized equations of motion of the theory and describe constraints under which the theory is free from ghosts/tachyons. We then consider, within the context of black hole chemistry, the thermodynamics of the hairy black holes in the Gauss-Bonnet and cubic Lovelock theories. We clarify the connection between isolated critical points and thermodynamic singularities, finding a one parameter family of these critical points which occur for well-defined thermodynamic parameters. We also report on a number of novel results, including ‘virtual triple points’ and the first example of a ‘λ-line’ — a line of second order phase transitions — in black hole thermodynamics.
Extended First Law for Entanglement Entropy in Lovelock Gravity
Directory of Open Access Journals (Sweden)
David Kastor
2016-05-01
Full Text Available The first law for the holographic entanglement entropy of spheres in a boundary CFT (Conformal Field Theory with a bulk Lovelock dual is extended to include variations of the bulk Lovelock coupling constants. Such variations in the bulk correspond to perturbations within a family of boundary CFTs. The new contribution to the first law is found to be the product of the variation δ a of the “A”-type trace anomaly coefficient for even dimensional CFTs, or more generally its extension δ a * to include odd dimensional boundaries, times the ratio S / a * . Since a * is a measure of the number of degrees of freedom N per unit volume of the boundary CFT, this new term has the form μ δ N , where the chemical potential μ is given by the entanglement entropy per degree of freedom.
Thermodynamics of hairy black holes in Lovelock gravity
Hennigar, Robie A.; Tjoa, Erickson; Mann, Robert B.
2017-02-01
We perform a thorough study of the thermodynamic properties of a class of Lovelock black holes with conformal scalar hair arising from coupling of a real scalar field to the dimensionally extended Euler densities. We study the linearized equations of motion of the theory and describe constraints under which the theory is free from ghosts/tachyons. We then consider, within the context of black hole chemistry, the thermodynamics of the hairy black holes in the Gauss-Bonnet and cubic Lovelock theories. We clarify the connection between isolated critical points and thermodynamic singularities, finding a one parameter family of these critical points which occur for well-defined thermodynamic parameters. We also report on a number of novel results, including `virtual triple points' and the first example of a `λ-line' — a line of second order phase transitions — in black hole thermodynamics.
The fate of the zero mode of the five-dimensional kink in the presence of gravity
International Nuclear Information System (INIS)
Shaposhnikov, Mikhail; Tinyakov, Petr; Zuleta, Katarzyna
2005-01-01
We investigate what becomes of the translational zero-mode of a five-dimensional domain wall in the presence of gravity, studying the scalar perturbations of a thick gravitating domain wall with AdS asymptotics and a well-defined zero-gravity limit. Our analysis reveals the presence of a wide resonance which can be seen as a remnant of the translational zero-mode present in the domain wall in the absence of gravity and which ensures a continuous change of the physical quantities (such as e.g. static potential between sources) when the Planck mass is sent to infinity. Provided that the thickness of the wall is much smaller than the AdS radius of the space-time, the parameters of this resonance do not depend on details of the domain wall's structure, but solely on the geometry of the space-time
Kastor, David; Ray, Sourya; Traschen, Jennie
2017-10-01
We study the problem of finding brane-like solutions to Lovelock gravity, adopting a general approach to establish conditions that a lower dimensional base metric must satisfy in order that a solution to a given Lovelock theory can be constructed in one higher dimension. We find that for Lovelock theories with generic values of the coupling constants, the Lovelock tensors (higher curvature generalizations of the Einstein tensor) of the base metric must all be proportional to the metric. Hence, allowed base metrics form a subclass of Einstein metrics. This subclass includes so-called ‘universal metrics’, which have been previously investigated as solutions to quantum-corrected field equations. For specially tuned values of the Lovelock couplings, we find that the Lovelock tensors of the base metric need to satisfy fewer constraints. For example, for Lovelock theories with a unique vacuum there is only a single such constraint, a case previously identified in the literature, and brane solutions can be straightforwardly constructed.
International Nuclear Information System (INIS)
Kastor, David; Traschen, Jennie; Ray, Sourya
2017-01-01
We study the problem of finding brane-like solutions to Lovelock gravity, adopting a general approach to establish conditions that a lower dimensional base metric must satisfy in order that a solution to a given Lovelock theory can be constructed in one higher dimension. We find that for Lovelock theories with generic values of the coupling constants, the Lovelock tensors (higher curvature generalizations of the Einstein tensor) of the base metric must all be proportional to the metric. Hence, allowed base metrics form a subclass of Einstein metrics. This subclass includes so-called ‘universal metrics’, which have been previously investigated as solutions to quantum-corrected field equations. For specially tuned values of the Lovelock couplings, we find that the Lovelock tensors of the base metric need to satisfy fewer constraints. For example, for Lovelock theories with a unique vacuum there is only a single such constraint, a case previously identified in the literature, and brane solutions can be straightforwardly constructed. (paper)
Spherically Symmetric Gravitational Collapse of a Dust Cloud in Third-Order Lovelock Gravity
Zhou, Kang; Yang, Zhan-Ying; Zou, De-Cheng; Yue, Rui-Hong
We investigate the spherically symmetric gravitational collapse of an incoherent dust cloud by considering a LTB-type spacetime in third-order Lovelock Gravity without cosmological constant, and give three families of LTB-like solutions which separately corresponding to hyperbolic, parabolic and elliptic. Notice that the contribution of high-order curvature corrections have a profound influence on the nature of the singularity, and the global structure of spacetime changes drastically from the analogous general relativistic case. Interestingly, the presence of high order Lovelock terms leads to the formation of massive, naked and timelike singularities in the 7D spacetime, which is disallowed in general relativity. Moveover, we point out that the naked singularities in the 7D case may be gravitational weak therefore may not be a serious threat to the cosmic censorship hypothesis, while the naked singularities in the D ≥ 8 inhomogeneous collapse violate the cosmic censorship hypothesis seriously.
Vacuum degeneracy and Conformal Mass in Lovelock AdS gravity
Arenas-Henriquez, Gabriel; Miskovic, Olivera; Olea, Rodrigo
2017-11-01
It is shown that the notion of Conformal Mass can be defined within a given anti-de Sitter (AdS) branch of a Lovelock gravity theory as long as the corresponding vacuum is not degenerate. Indeed, conserved charges obtained by the addition of Kounterterms to the bulk action turn out to be proportional to the electric part of the Weyl tensor, when the fall-off of a generic solution in that AdS branch is considered. The factor of proportionality is the degeneracy condition for the vacua in the particular Lovelock AdS theory under study. This last feature explains the obstruction to define Conformal Mass in the degenerate case.
n + 1 formalism of f (Lovelock) gravity
Lachaume, Xavier
2018-06-01
In this note we perform the n + 1 decomposition, or Arnowitt–Deser–Misner (ADM) formulation of gravity theory. The Hamiltonian form of Lovelock gravity was known since the work of Teitelboim and Zanelli in 1987, but this result had not yet been extended to gravity. Besides, field equations of have been recently computed by Bueno et al, though without ADM decomposition. We focus on the non-degenerate case, i.e. when the Hessian of f is invertible. Using the same Legendre transform as for theories, we can identify the partial derivatives of f as scalar fields, and consider the theory as a generalised scalar‑tensor theory. We then derive the field equations, and project them along a n + 1 decomposition. We obtain an original system of constraint equations for gravity, as well as dynamical equations. We give explicit formulas for the case.
Buchdahl-Vaidya-Tikekar model for stellar interior in pure Lovelock gravity
Molina, Alfred; Dadhich, Naresh; Khugaev, Avas
2017-07-01
In the paper (Khugaev et al. in Phys Rev D94:064065. arXiv: 1603.07118, 2016), we have shown that for perfect fluid spheres the pressure isotropy equation for Buchdahl-Vaidya-Tikekar metric ansatz continues to have the same Gauss form in higher dimensions, and hence higher dimensional solutions could be obtained by redefining the space geometry characterizing Vaidya-Tikekar parameter K. In this paper we extend this analysis to pure Lovelock gravity; i.e. a (2N+2)-dimensional solution with a given K_{2N+2} can be taken over to higher n-dimensional pure Lovelock solution with K_n=(K_{2N+2}-n+2N+2)/(n-2N-1) where N is degree of Lovelock action. This ansatz includes the uniform density Schwarzshild and the Finch-Skea models, and it is interesting that the two define the two ends of compactness, the former being the densest and while the latter rarest. All other models with this ansatz lie in between these two limiting distributions.
Traversable wormholes satisfying the weak energy condition in third-order Lovelock gravity
Zangeneh, Mahdi Kord; Lobo, Francisco S. N.; Dehghani, Mohammad Hossein
2015-12-01
In this paper, we consider third-order Lovelock gravity with a cosmological constant term in an n -dimensional spacetime M4×Kn -4, where Kn -4 is a constant curvature space. We decompose the equations of motion to four and higher dimensional ones and find wormhole solutions by considering a vacuum Kn -4 space. Applying the latter constraint, we determine the second- and third-order Lovelock coefficients and the cosmological constant in terms of specific parameters of the model, such as the size of the extra dimensions. Using the obtained Lovelock coefficients and Λ , we obtain the four-dimensional matter distribution threading the wormhole. Furthermore, by considering the zero tidal force case and a specific equation of state, given by ρ =(γ p -τ )/[ω (1 +γ )], we find the exact solution for the shape function which represents both asymptotically flat and nonflat wormhole solutions. We show explicitly that these wormhole solutions in addition to traversibility satisfy the energy conditions for suitable choices of parameters and that the existence of a limited spherically symmetric traversable wormhole with normal matter in a four-dimensional spacetime implies a negative effective cosmological constant.
International Nuclear Information System (INIS)
Vladimirov, Yu.S.; Kislov, V.V.
1982-01-01
Basic equations of the united five-dimensional theory of gravity, electromagnetism and scalar field are given. Discussed is one of the given theory consequences - dependence of electric charge ratio to the e/m test, particle mass on fundamental scalar field value in the specified point. The latter is determined by the solution of the Einstein, Maxwell and Klein-Fock equations system. In particular, this field varies in the Sun-Earth system for an observer bound to the Earth owing to orbit ellipticity of the Earth. The formula describing the e/m variation is given. Data on measuring Josephson frequency revealing the tendency of season dependence (Earth-Sun distances) which raises the problem of performing direct experiments for controlling e/m ratio stability are reproduced
Exact solutions of Lovelock-Born-Infeld black holes
International Nuclear Information System (INIS)
Aiello, Matias; Ferraro, Rafael; Giribet, Gaston
2004-01-01
The exact five-dimensional charged black hole solution in Lovelock gravity coupled to Born-Infeld electrodynamics is presented. This solution interpolates between the Hoffmann black hole for the Einstein-Born-Infeld theory and other solutions in the Lovelock theory previously studied in the literature. It is shown how the conical singularity of the metric around the origin can be removed by a proper choice of the black hole parameters. The differences existing with the Reissner-Nordstroem black holes are discussed. In particular, we show the existence of charged black holes with a unique horizon
Generalized Gödel universes in higher dimensions and pure Lovelock gravity
Dadhich, Naresh; Molina, Alfred; Pons, Josep M.
2017-10-01
The Gödel universe is a homogeneous rotating dust with negative Λ which is a direct product of a three-dimensional pure rotation metric with a line. We would generalize it to higher dimensions for Einstein and pure Lovelock gravity with only one N th-order term. For higher-dimensional generalization, we have to include more rotations in the metric, and hence we shall begin with the corresponding pure rotation odd (d =2 n +1 )-dimensional metric involving n rotations, which eventually can be extended by a direct product with a line or a space of constant curvature for yielding a higher-dimensional Gödel universe. The considerations of n rotations and also of constant curvature spaces is a new line of generalization and is being considered for the first time.
Li, Gu-Qiang
2017-04-01
The tunneling radiation of particles from black holes in Lovelock-Born-Infeld (LBI) gravity is studied by using the Parikh-Wilczek (PW) method, and the emission rate of a particle is calculated. It is shown that the emission spectrum deviates from the purely thermal spectrum but is consistent with an underlying unitary theory. Compared to the conventional tunneling rate related to the increment of black hole entropy, the entropy of the black hole in LBI gravity is obtained. The entropy does not obey the area law unless all the Lovelock coefficients equal zero, but it satisfies the first law of thermodynamics and is in accordance with earlier results. It is distinctly shown that the PW tunneling framework is related to the thermodynamic laws of the black hole. Supported by Guangdong Natural Science Foundation (2016A030307051, 2015A030313789)
Sepehri, Alireza; Rahaman, Farook; Capozziello, Salvatore; Ali, Ahmed Farag; Pradhan, Anirudh
Recently, it has been suggested in [S. Chakraborty and N. Dadhich, Brown-York quasilocal energy in Lanczos-Lovelock gravity and black hole horizons, J. High Energ. Phys. 12 (2015) 003.] that the Brown-York mechanism can be used to measure the quasilocal energy in Lovelock gravity. We have used this method in a system of M0-branes and show that the Brown-York energy evolves in the process of birth and growth of Lovelock gravity. This can help us to predict phenomenological events which are emerged as due to dynamical structure of Lovelock gravity in our universe. In this model, first, M0-branes join each other and form an M3-brane and an anti-M3-branes connected by an M2-brane. This system is named BIon. Universes and anti-universes live on M3-branes and M2 plays the role of wormhole between them. By passing time, M2 dissolves in M3’s and nonlinear massive gravities like Lovelock massive gravity emerges and grows. By closing M3-branes, BIon evolves and wormhole between branes makes a transition to black hole. During this stage, Brown-York energy increases and shrinks to large values at the colliding points of branes. By approaching M3-branes towards each other, the square energy of their system becomes negative and some tachyonic states are produced. To remove these states, M3-branes compact, the sign of compacted gravity changes, anti-gravity is created which leads to getting away of branes from each other. Also, the Lovelock gravity disappears and its energy forms a new M2 between M3-branes. By getting away of branes from each other, Brown-York energy decreases and shrinks to zero.
Counterterms for static Lovelock solutions
International Nuclear Information System (INIS)
Mehdizadeh, M.R.; Dehghani, M.H.; Zangeneh, M.K.
2015-01-01
In this paper, we introduce the counterterms that remove the non-logarithmic divergences of the action in third order Lovelock gravity for static spacetimes. We do this by defining the cosmological constant in such a way that the asymptotic form of the metric have the same form in Lovelock and Einstein gravities. Thus, we employ the counterterms of Einstein gravity and show that the power law divergences of the action of Lovelock gravity for static spacetimes can be removed by suitable choice of coefficients. We find that the dependence of these coefficients on the dimension in Lovelock gravity is the same as in Einstein gravity. We also introduce the finite energy-momentum tensor and employ these counterterms to calculate the finite action and mass of static black hole solutions of third order Lovelock gravity. Next, we calculate the thermodynamic quantities and show that the entropy calculated through the use of Gibbs-Duhem relation is consistent with the obtained entropy by Wald's formula. Furthermore, we find that in contrast to Einstein gravity in which there exists no uncharged extreme black hole, third order Lovelock gravity can have these kind of black holes. Finally, we investigate the stability of static charged black holes of Lovelock gravity in canonical ensemble and find that small black holes show a phase transition between very small and small black holes, while the large ones are stable. (orig.)
Counterterms for static Lovelock solutions
Energy Technology Data Exchange (ETDEWEB)
Mehdizadeh, M.R. [Shahid Bahonar University, Department of Physics, PO Box 76175, Kerman (Iran, Islamic Republic of); Dehghani, M.H. [Research Institute for Astrophysics and Astronomy of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Zangeneh, M.K. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of)
2015-06-15
In this paper, we introduce the counterterms that remove the non-logarithmic divergences of the action in third order Lovelock gravity for static spacetimes. We do this by defining the cosmological constant in such a way that the asymptotic form of the metric have the same form in Lovelock and Einstein gravities. Thus, we employ the counterterms of Einstein gravity and show that the power law divergences of the action of Lovelock gravity for static spacetimes can be removed by suitable choice of coefficients. We find that the dependence of these coefficients on the dimension in Lovelock gravity is the same as in Einstein gravity. We also introduce the finite energy-momentum tensor and employ these counterterms to calculate the finite action and mass of static black hole solutions of third order Lovelock gravity. Next, we calculate the thermodynamic quantities and show that the entropy calculated through the use of Gibbs-Duhem relation is consistent with the obtained entropy by Wald's formula. Furthermore, we find that in contrast to Einstein gravity in which there exists no uncharged extreme black hole, third order Lovelock gravity can have these kind of black holes. Finally, we investigate the stability of static charged black holes of Lovelock gravity in canonical ensemble and find that small black holes show a phase transition between very small and small black holes, while the large ones are stable. (orig.)
International Nuclear Information System (INIS)
Madriz Aguilar, Jose Edgar; Bellini, Mauricio
2009-01-01
Considering a five-dimensional (5D) Riemannian spacetime with a particular stationary Ricci-flat metric, we obtain in the framework of the induced matter theory an effective 4D static and spherically symmetric metric which give us ordinary gravitational solutions on small (planetary and astrophysical) scales, but repulsive (anti gravitational) forces on very large (cosmological) scales with ω=-1. Our approach is an unified manner to describe dark energy, dark matter and ordinary matter. We illustrate the theory with two examples, the solar system and the great attractor. From the geometrical point of view, these results follow from the assumption that exists a confining force that make possible that test particles move on a given 4D hypersurface.
Madriz Aguilar, José Edgar; Bellini, Mauricio
2009-08-01
Considering a five-dimensional (5D) Riemannian spacetime with a particular stationary Ricci-flat metric, we obtain in the framework of the induced matter theory an effective 4D static and spherically symmetric metric which give us ordinary gravitational solutions on small (planetary and astrophysical) scales, but repulsive (anti gravitational) forces on very large (cosmological) scales with ω=-1. Our approach is an unified manner to describe dark energy, dark matter and ordinary matter. We illustrate the theory with two examples, the solar system and the great attractor. From the geometrical point of view, these results follow from the assumption that exists a confining force that make possible that test particles move on a given 4D hypersurface.
Energy Technology Data Exchange (ETDEWEB)
Madriz Aguilar, Jose Edgar [Instituto de Fisica de la Universidad de Guanajuato, C.P. 37150, Leon Guanajuato (Mexico); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina)], E-mail: madriz@mdp.edu.ar; Bellini, Mauricio [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)], E-mail: mbellini@mdp.edu.ar
2009-08-31
Considering a five-dimensional (5D) Riemannian spacetime with a particular stationary Ricci-flat metric, we obtain in the framework of the induced matter theory an effective 4D static and spherically symmetric metric which give us ordinary gravitational solutions on small (planetary and astrophysical) scales, but repulsive (anti gravitational) forces on very large (cosmological) scales with {omega}=-1. Our approach is an unified manner to describe dark energy, dark matter and ordinary matter. We illustrate the theory with two examples, the solar system and the great attractor. From the geometrical point of view, these results follow from the assumption that exists a confining force that make possible that test particles move on a given 4D hypersurface.
TeV-scale black hole lifetimes in extra-dimensional Lovelock gravity
International Nuclear Information System (INIS)
Rizzo, Thomas G
2006-01-01
We examine the mass loss rates and lifetimes of TeV-scale extra-dimensional black holes (BH) in Arkani-Hamed, Dimopoulos and Dvali-like models with Lovelock higher-curvature terms present in the action. In particular, we focus on the predicted differences between the canonical and microcanonical ensemble statistical mechanics descriptions of the Hawking radiation that result in the decay of these BH. In even numbers of extra dimensions, the employment of the microcanonical approach is shown to generally lead to a significant increase in the BH lifetime as in the case of the Einstein-Hilbert action. For odd numbers of extra dimensions, stable BH remnants occur when employing either description provided the highest order allowed Lovelock invariant is present. However, in this case, the time dependence of the mass loss rates obtained employing the two approaches will be different. These effects are in principle measurable at future colliders
Entropy of nonrotating isolated horizons in Lovelock theory from loop quantum gravity
Wang, Jing-Bo; Huang, Chao-Guang; Li, Lin
2016-08-01
In this paper, the BF theory method is applied to the nonrotating isolated horizons in Lovelock theory. The final entropy matches the Wald entropy formula for this theory. We also confirm the conclusion obtained by Bodendorfer et al. that the entropy is related to the flux operator rather than the area operator in general diffeomorphic-invariant theory. Supported by National Natural Science Foundation of China (11275207)
The Riemann-Lovelock curvature tensor
International Nuclear Information System (INIS)
Kastor, David
2012-01-01
In order to study the properties of Lovelock gravity theories in low dimensions, we define the kth-order Riemann-Lovelock tensor as a certain quantity having a total 4k-indices, which is kth order in the Riemann curvature tensor and shares its basic algebraic and differential properties. We show that the kth-order Riemann-Lovelock tensor is determined by its traces in dimensions 2k ≤ D < 4k. In D = 2k + 1 this identity implies that all solutions of pure kth-order Lovelock gravity are 'Riemann-Lovelock' flat. It is verified that the static, spherically symmetric solutions of these theories, which are missing solid angle spacetimes, indeed satisfy this flatness property. This generalizes results from Einstein gravity in D = 3, which corresponds to the k = 1 case. We speculate about some possible further consequences of Riemann-Lovelock curvature. (paper)
The Riemann-Lovelock Curvature Tensor
Kastor, David
2012-01-01
In order to study the properties of Lovelock gravity theories in low dimensions, we define the kth-order Riemann-Lovelock tensor as a certain quantity having a total 4k-indices, which is kth-order in the Riemann curvature tensor and shares its basic algebraic and differential properties. We show that the kth-order Riemann-Lovelock tensor is determined by its traces in dimensions 2k \\le D
Causality violations in Lovelock theories
Brustein, Ram; Sherf, Yotam
2018-04-01
Higher-derivative gravity theories, such as Lovelock theories, generalize Einstein's general relativity (GR). Modifications to GR are expected when curvatures are near Planckian and appear in string theory or supergravity. But can such theories describe gravity on length scales much larger than the Planck cutoff length scale? Here we find causality constraints on Lovelock theories that arise from the requirement that the equations of motion (EOM) of perturbations be hyperbolic. We find a general expression for the "effective metric" in field space when Lovelock theories are perturbed around some symmetric background solution. In particular, we calculate explicitly the effective metric for a general Lovelock theory perturbed around cosmological Friedman-Robertson-Walker backgrounds and for some specific cases when perturbed around Schwarzschild-like solutions. For the EOM to be hyperbolic, the effective metric needs to be Lorentzian. We find that, unlike for GR, the effective metric is generically not Lorentzian when the Lovelock modifications are significant. So, we conclude that Lovelock theories can only be considered as perturbative extensions of GR and not as truly modified theories of gravity. We compare our results to those in the literature and find that they agree with and reproduce the results of previous studies.
On Lovelock analogs of the Riemann tensor
Camanho, Xián O.; Dadhich, Naresh
2016-03-01
It is possible to define an analog of the Riemann tensor for Nth order Lovelock gravity, its characterizing property being that the trace of its Bianchi derivative yields the corresponding analog of the Einstein tensor. Interestingly there exist two parallel but distinct such analogs and the main purpose of this note is to reconcile both formulations. In addition we will introduce a simple tensor identity and use it to show that any pure Lovelock vacuum in odd d=2N+1 dimensions is Lovelock flat, i.e. any vacuum solution of the theory has vanishing Lovelock-Riemann tensor. Further, in the presence of cosmological constant it is the Lovelock-Weyl tensor that vanishes.
Causality and hyperbolicity of Lovelock theories
International Nuclear Information System (INIS)
Reall, Harvey S; Tanahashi, Norihiro; Way, Benson
2014-01-01
In Lovelock theories, gravity can travel faster or slower than light. The causal structure is determined by the characteristic hypersurfaces. We generalize a recent result of Izumi to prove that any Killing horizon is a characteristic hypersurface for all gravitational degrees of freedom of a Lovelock theory. Hence gravitational signals cannot escape from the region inside such a horizon. We investigate the hyperbolicity of Lovelock theories by determining the characteristic hypersurfaces for various backgrounds. First we consider Ricci flat type N spacetimes. We show that characteristic hypersurfaces are generically all non-null and that Lovelock theories are hyperbolic in any such spacetime. Next we consider static, maximally symmetric black hole solutions of Lovelock theories. Again, characteristic surfaces are generically non-null. For some small black holes, hyperbolicity is violated near the horizon. This implies that the stability of such black holes is not a well-posed problem. (paper)
Lovelock action with nonsmooth boundaries
Cano, Pablo A.
2018-05-01
We examine the variational problem in Lovelock gravity when the boundary contains timelike and spacelike segments nonsmoothly glued. We show that two kinds of contributions have to be added to the action. The first one is associated with the presence of a boundary in every segment and it depends on intrinsic and extrinsic curvatures. We can think of this contribution as adding a total derivative to the usual surface term of Lovelock gravity. The second one appears in every joint between two segments and it involves the integral along the joint of the Jacobson-Myers entropy density weighted by the Lorentz boost parameter, which relates the orthonormal frames in each segment. We argue that this term can be straightforwardly extended to the case of joints involving null boundaries. As an application, we compute the contribution of these terms to the complexity of global anti-de Sitter space in Lovelock gravity by using the "complexity =action " proposal and we identify possible universal terms for arbitrary values of the Lovelock couplings. We find that they depend on the charge a* controlling the holographic entanglement entropy and on a new constant that we characterize.
Thermodynamics of Lovelock-Lifshitz black branes
International Nuclear Information System (INIS)
Dehghani, M. H.; Mann, R. B.
2010-01-01
We investigate the thermodynamics of Lovelock-Lifshitz black branes. We begin by introducing the finite action of third order Lovelock gravity in the presence of a massive vector field for a flat boundary, and use it to compute the energy density of these black branes. Using the field equations, we find a conserved quantity along the r coordinate that relates the metric parameters at the horizon and at infinity. Remarkably, though the subleading large-r behavior of Lovelock-Lifshitz black branes differs substantively from their Einsteinian Lifshitz counterparts, we find that the relationship between the energy density, temperature, and entropy density is unchanged from Einsteinian gravity. Using the first law of thermodynamics to obtain the relationship between entropy and temperature, we find that it too is the same as the Einsteinian case, apart from a constant of integration that depends on the Lovelock coefficients.
Dadhich, Naresh
2010-01-01
We show that the asymptotic large $r$ limit of all Lovelock vacuum and electrovac solutions with $\\Lambda$ is always the Einstein solution in $d \\geq 2n+1$ dimensions. It is completely free of the order $n$ of the Lovelock polynomial indicating universal asymptotic behaviour.
Energy Technology Data Exchange (ETDEWEB)
Sepehri, Alireza, E-mail: alireza.sepehri@uk.ac.ir [Faculty of Physics, Shahid Bahonar University, P.O. Box 76175, Kerman (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P.O. Box 55134-441, Maragha (Iran, Islamic Republic of)
2016-07-01
Recently, some authors (Cruz and Rojas, 2013 [1]) have constructed a Born–Infeld type action which may be written in terms of the Lovelock brane Lagrangians for a given dimension p. We reconsider their model in M-theory and study the process of birth and growth of nonlinear spinor and bosonic gravity during the construction of Mp-branes. Then, by application of this idea to BIonic system, we construct a BIonic superconductor in the background of nonlinear gravity. In this model, first, M0-branes link to each other and build an M5-brane and an anti-M5-brane connected by an M2-brane. M0-branes are zero dimensional objects that only scalars are attached to them. By constructing higher dimensional branes from M0-branes, gauge fields are produced. Also, if M0-branes don't link to each other completely, the symmetry of system is broken and fermions are created. The curvature produced by fermions has the opposite sign the curvature produced by gauge fields. Fermions on M5-branes and M2 plays the role of bridge between them. By passing time, M2 dissolves in M5's and nonlinear bosonic and spinor gravities are produced. By closing M5-branes towards each other, coupling of two identical fermions on two branes to each other causes that the square mass of their system becomes negative and some tachyonic states are created. For removing these tachyons, M5-branes compact, the sign of gravity between branes reverses, anti-gravity is produced which causes that branes and identical fermions get away from each other. This is the reason for the emergence of Pauli exclusion principle in Bionic system. Also, the spinor gravity vanishes and its energy builds a new M2 between M5-branes. We obtain the resistivity in this system and find that its value decreases by closing M5 branes to each other and shrinks to zero at colliding point of branes. This idea has different applications. For example, in cosmology, universes are located on M5-branes and M2-brane has the role of bridge
International Nuclear Information System (INIS)
Sepehri, Alireza
2016-01-01
Recently, some authors (Cruz and Rojas, 2013 [1]) have constructed a Born–Infeld type action which may be written in terms of the Lovelock brane Lagrangians for a given dimension p. We reconsider their model in M-theory and study the process of birth and growth of nonlinear spinor and bosonic gravity during the construction of Mp-branes. Then, by application of this idea to BIonic system, we construct a BIonic superconductor in the background of nonlinear gravity. In this model, first, M0-branes link to each other and build an M5-brane and an anti-M5-brane connected by an M2-brane. M0-branes are zero dimensional objects that only scalars are attached to them. By constructing higher dimensional branes from M0-branes, gauge fields are produced. Also, if M0-branes don't link to each other completely, the symmetry of system is broken and fermions are created. The curvature produced by fermions has the opposite sign the curvature produced by gauge fields. Fermions on M5-branes and M2 plays the role of bridge between them. By passing time, M2 dissolves in M5's and nonlinear bosonic and spinor gravities are produced. By closing M5-branes towards each other, coupling of two identical fermions on two branes to each other causes that the square mass of their system becomes negative and some tachyonic states are created. For removing these tachyons, M5-branes compact, the sign of gravity between branes reverses, anti-gravity is produced which causes that branes and identical fermions get away from each other. This is the reason for the emergence of Pauli exclusion principle in Bionic system. Also, the spinor gravity vanishes and its energy builds a new M2 between M5-branes. We obtain the resistivity in this system and find that its value decreases by closing M5 branes to each other and shrinks to zero at colliding point of branes. This idea has different applications. For example, in cosmology, universes are located on M5-branes and M2-brane has the role of bridge between
Sepehri, Alireza
2016-07-01
Recently, some authors (Cruz and Rojas, 2013 [1]) have constructed a Born-Infeld type action which may be written in terms of the Lovelock brane Lagrangians for a given dimension p. We reconsider their model in M-theory and study the process of birth and growth of nonlinear spinor and bosonic gravity during the construction of Mp-branes. Then, by application of this idea to BIonic system, we construct a BIonic superconductor in the background of nonlinear gravity. In this model, first, M0-branes link to each other and build an M5-brane and an anti-M5-brane connected by an M2-brane. M0-branes are zero dimensional objects that only scalars are attached to them. By constructing higher dimensional branes from M0-branes, gauge fields are produced. Also, if M0-branes don't link to each other completely, the symmetry of system is broken and fermions are created. The curvature produced by fermions has the opposite sign the curvature produced by gauge fields. Fermions on M5-branes and M2 plays the role of bridge between them. By passing time, M2 dissolves in M5's and nonlinear bosonic and spinor gravities are produced. By closing M5-branes towards each other, coupling of two identical fermions on two branes to each other causes that the square mass of their system becomes negative and some tachyonic states are created. For removing these tachyons, M5-branes compact, the sign of gravity between branes reverses, anti-gravity is produced which causes that branes and identical fermions get away from each other. This is the reason for the emergence of Pauli exclusion principle in Bionic system. Also, the spinor gravity vanishes and its energy builds a new M2 between M5-branes. We obtain the resistivity in this system and find that its value decreases by closing M5 branes to each other and shrinks to zero at colliding point of branes. This idea has different applications. For example, in cosmology, universes are located on M5-branes and M2-brane has the role of bridge between
Lovelock black holes surrounded by quintessence
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Sushant G. [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa); Centre for Theoretical Physics, Multidisciplinary Centre for Advanced Research and Studies (MCARS), New Delhi (India); Maharaj, Sunil D.; Baboolal, Dharmanand; Lee, Tae-Hun [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa)
2018-02-15
Lovelock gravity consisting of the dimensionally continued Euler densities is a natural generalization of general relativity to higher dimensions such that equations of motion are still second order, and the theory is free of ghosts. A scalar field with a positive potential that yields an accelerating universe has been termed quintessence. We present exact black hole solutions in D-dimensional Lovelock gravity surrounded by quintessence matter and also perform a detailed thermodynamical study. Further, we find that the mass, entropy and temperature of the black hole are corrected due to the quintessence background. In particular, we find that a phase transition occurs with a divergence of the heat capacity at the critical horizon radius, and that specific heat becomes positive for r{sub h} < r{sub c} allowing the black hole to become thermodynamically stable. (orig.)
Lovelock black holes surrounded by quintessence
Ghosh, Sushant G.; Maharaj, Sunil D.; Baboolal, Dharmanand; Lee, Tae-Hun
2018-02-01
Lovelock gravity consisting of the dimensionally continued Euler densities is a natural generalization of general relativity to higher dimensions such that equations of motion are still second order, and the theory is free of ghosts. A scalar field with a positive potential that yields an accelerating universe has been termed quintessence. We present exact black hole solutions in D-dimensional Lovelock gravity surrounded by quintessence matter and also perform a detailed thermodynamical study. Further, we find that the mass, entropy and temperature of the black hole are corrected due to the quintessence background. In particular, we find that a phase transition occurs with a divergence of the heat capacity at the critical horizon radius, and that specific heat becomes positive for r_h
Buchdahl compactness limit for a pure Lovelock static fluid star
Dadhich, Naresh; Chakraborty, Sumanta
2017-03-01
We obtain the Buchdahl compactness limit for a pure Lovelock static fluid star and verify that the limit following from the uniform-density Schwarzschild's interior solution, which is universal irrespective of the gravitational theory (Einstein or Lovelock), is true in general. In terms of surface potential Φ (r ) , it means at the surface of the star r =r0, Φ (r0)Lovelock order, respectively. For a given N , Φ (r0) is maximum for d =2 N +2 , while it is always 4 /9 , Buchdahl's limit, for d =3 N +1 . It is also remarkable that for N =1 Einstein gravity, or for pure Lovelock in d =3 N +1 , Buchdahl's limit is equivalent to the criterion that gravitational field energy exterior to the star must be less than half its gravitational mass, having no reference to the interior at all.
Exploring Lovelock theory moduli space for Schrödinger solutions
Directory of Open Access Journals (Sweden)
Dileep P. Jatkar
2016-09-01
Full Text Available We look for Schrödinger solutions in Lovelock gravity in D>4. We span the entire parameter space and determine parametric relations under which the Schrödinger solution exists. We find that in arbitrary dimensions pure Lovelock theories have Schrödinger solutions of arbitrary radius, on a co-dimension one locus in the Lovelock parameter space. This co-dimension one locus contains the subspace over which the Lovelock gravity can be written in the Chern–Simons form. Schrödinger solutions do not exist outside this locus and on this locus they exist for arbitrary dynamical exponent z. This freedom in z is due to the degeneracy in the configuration space. We show that this degeneracy survives certain deformation away from the Lovelock moduli space.
Exploring Lovelock theory moduli space for Schrödinger solutions
Jatkar, Dileep P.; Kundu, Nilay
2016-09-01
We look for Schrödinger solutions in Lovelock gravity in D > 4. We span the entire parameter space and determine parametric relations under which the Schrödinger solution exists. We find that in arbitrary dimensions pure Lovelock theories have Schrödinger solutions of arbitrary radius, on a co-dimension one locus in the Lovelock parameter space. This co-dimension one locus contains the subspace over which the Lovelock gravity can be written in the Chern-Simons form. Schrödinger solutions do not exist outside this locus and on this locus they exist for arbitrary dynamical exponent z. This freedom in z is due to the degeneracy in the configuration space. We show that this degeneracy survives certain deformation away from the Lovelock moduli space.
Lovelock black holes with maximally symmetric horizons
Energy Technology Data Exchange (ETDEWEB)
Maeda, Hideki; Willison, Steven; Ray, Sourya, E-mail: hideki@cecs.cl, E-mail: willison@cecs.cl, E-mail: ray@cecs.cl [Centro de Estudios CientIficos (CECs), Casilla 1469, Valdivia (Chile)
2011-08-21
We investigate some properties of n( {>=} 4)-dimensional spacetimes having symmetries corresponding to the isometries of an (n - 2)-dimensional maximally symmetric space in Lovelock gravity under the null or dominant energy condition. The well-posedness of the generalized Misner-Sharp quasi-local mass proposed in the past study is shown. Using this quasi-local mass, we clarify the basic properties of the dynamical black holes defined by a future outer trapping horizon under certain assumptions on the Lovelock coupling constants. The C{sup 2} vacuum solutions are classified into four types: (i) Schwarzschild-Tangherlini-type solution; (ii) Nariai-type solution; (iii) special degenerate vacuum solution; and (iv) exceptional vacuum solution. The conditions for the realization of the last two solutions are clarified. The Schwarzschild-Tangherlini-type solution is studied in detail. We prove the first law of black-hole thermodynamics and present the expressions for the heat capacity and the free energy.
Compact objects in pure Lovelock theory
Dadhich, Naresh; Hansraj, Sudan; Chilambwe, Brian
For static fluid interiors of compact objects in pure Lovelock gravity (involving only one Nth order term in the equation), we establish similarity in solutions for the critical odd and even d = 2N + 1, 2N + 2 dimensions. It turns out that in critical odd d = 2N + 1 dimensions, there cannot exist any bound distribution with a finite radius, while in critical even d = 2N + 2 dimensions, all solutions have similar behavior. For exhibition of similarity, we would compare star solutions for N = 1, 2 in d = 4 Einstein and d = 6 in Gauss-Bonnet theory, respectively. We also obtain the pure Lovelock analogue of the Finch-Skea model.
Hairy black holes in cubic quasi-topological gravity
Energy Technology Data Exchange (ETDEWEB)
Dykaar, Hannah [Department of Physics and Astronomy, University of Waterloo,200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada); Department of Physics, McGill University,3600 rue University, Montreal, QC, H3A 2T8 (Canada); Hennigar, Robie A.; Mann, Robert B. [Department of Physics and Astronomy, University of Waterloo,200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada)
2017-05-09
We construct a class of five dimensional black hole solutions to cubic quasi-topological gravity with conformal scalar hair and study their thermodynamics. We find these black holes provide the second example of black hole λ-lines: a line of second order (continuous) phase transitions, akin to the fluid/superfluid transition of {sup 4}He. Examples of isolated critical points are found for spherical black holes, marking the first in the literature to date. We also find various novel and interesting phase structures, including an isolated critical point occurring in conjunction with a double reentrant phase transition. The AdS vacua of the theory are studied, finding ghost-free configurations where the scalar field takes on a non-zero constant value, in notable contrast to the five dimensional Lovelock case.
Vacuum static compactified wormholes in eight-dimensional Lovelock theory
International Nuclear Information System (INIS)
Canfora, Fabrizio; Giacomini, Alex
2008-01-01
In this paper, new exact solutions in eight-dimensional Lovelock theory will be presented. These solutions are the vacuum static wormhole, the black hole, and generalized Bertotti-Robinson space-times with nontrivial torsion. All of the solutions have a cross product structure of the type M 5 xΣ 3 , where M 5 is a five-dimensional manifold and Σ 3 a compact constant curvature manifold. The wormhole is the first example of a smooth vacuum static Lovelock wormhole which is neither Chern-Simons nor Born-Infeld. It will be also discussed how the presence of torsion affects the 'navigableness' of the wormhole for scalar and spinning particles. It will be shown that the wormhole with torsion may act as 'geometrical filter': A very large torsion may 'increase the traversability' for scalars while acting as a 'polarizator' on spinning particles. This may have interesting phenomenological consequences.
Novel third-order Lovelock wormhole solutions
Mehdizadeh, Mohammad Reza; Lobo, Francisco S. N.
2016-06-01
In this work, we consider wormhole geometries in third-order Lovelock gravity and investigate the possibility that these solutions satisfy the energy conditions. In this framework, by applying a specific equation of state, we obtain exact wormhole solutions, and by imposing suitable values for the parameters of the theory, we find that these geometries satisfy the weak energy condition in the vicinity of the throat, due to the presence of higher-order curvature terms. Finally, we trace out a numerical analysis, by assuming a specific redshift function, and find asymptotically flat solutions that satisfy the weak energy condition throughout the spacetime.
Universal contributions to scalar masses from five dimensional supergravity
Dudas, Emilian
2012-01-01
We compute the effective Kahler potential for matter fields in warped compactifications, starting from five dimensional gauged supergravity, as a function of the matter fields localization. We show that truncation to zero modes is inconsistent and the tree-level exchange of the massive gravitational multiplet is needed for consistency of the four-dimensional theory. In addition to the standard Kahler coming from dimensional reduction, we find the quartic correction coming from integrating out the gravity multiplet. We apply our result to the computation of scalar masses, by assuming that the SUSY breaking field is a bulk hypermultiplet. In the limit of extreme opposite localization of the matter and the spurion fields, we find zero scalar masses, consistent with sequestering arguments. Surprisingly enough, for all the other cases the scalar masses are tachyonic. This suggests the holographic interpretation that a CFT sector always generates operators contributing in a tachyonic way to scalar masses. Viability...
Lovelock terms and BRST cohomology
International Nuclear Information System (INIS)
Cnockaert, Sandrine; Henneaux, Marc
2005-01-01
Lovelock terms are polynomial scalar densities in the Riemann curvature tensor that have the remarkable property that their Euler-Lagrange derivatives contain derivatives of the metric of an order not higher than 2 (while generic polynomial scalar densities lead to Euler-Lagrange derivatives with derivatives of the metric of order 4). A characteristic feature of Lovelock terms is that their first nonvanishing term in the expansion g λμ = η λμ + h λμ of the metric around flat space is a total derivative. In this paper, we investigate generalized Lovelock terms defined as polynomial scalar densities in the Riemann curvature tensor and its covariant derivatives (of arbitrarily high but finite order) such that their first nonvanishing term in the expansion of the metric around flat space is a total derivative. This is done by reformulating the problem as a BRST cohomological one and by using cohomological tools. We determine all the generalized Lovelock terms. We find, in fact, that the class of nontrivial generalized Lovelock terms contains only the usual ones. Allowing covariant derivatives of the Riemann tensor does not lead to a new structure. Our work provides a novel algebraic understanding of the Lovelock terms in the context of BRST cohomology
Hairy Lovelock black holes and Stueckelberg mechanism for Weyl symmetry
International Nuclear Information System (INIS)
Chernicoff, Mariano; Giribet, Gaston; Oliva, Julio
2016-01-01
Lovelock theory of gravity -and, in particular, Einstein theory- admits black hole solutions that can be equipped with a hair by conformally coupling the theory to a real scalar field. This is a secondary hair, meaning that it does not endow the black hole with new quantum numbers. It rather consists of a non-trivial scalar field profile of fixed intensity which turns out to be regular everywhere outside and on the horizon and, provided the cosmological constant is negative, behaves at large distance in a way compatible with the Anti-de Sitter (AdS) asymptotic. In this paper, we review the main features of these hairy black hole solutions, such as their geometrical and thermodynamical properties. The conformal coupling to matter in dimension D > 4 in principle includes higher-curvature terms. These couplings are obtained from the Lovelock action through the Stueckelberg strategy. As a consequence, the resulting scalar-tensor theory exhibits a self-duality under field redefinition that resembles T-duality. Through this field redefinition, the matter content of the theory transforms into a Lovelock action for a dual geometry. Since the hairy black holes only exist for special relations between the dual Lovelock coupling constants, it is natural to compare those relations with the causality bounds coming from AdS/CFT. We observe that, while the lower causality bound is always obeyed, the upper causality bound is violated. The latter, however, is saturated in the large D limit. (paper)
Hairy Lovelock black holes and Stueckelberg mechanism for Weyl symmetry
Chernicoff, Mariano; Giribet, Gaston; Oliva, Julio
2016-10-01
Lovelock theory of gravity -and, in particular, Einstein theory- admits black hole solutions that can be equipped with a hair by conformally coupling the theory to a real scalar field. This is a secondary hair, meaning that it does not endow the black hole with new quantum numbers. It rather consists of a non-trivial scalar field profile of fixed intensity which turns out to be regular everywhere outside and on the horizon and, provided the cosmological constant is negative, behaves at large distance in a way compatible with the Anti-de Sitter (AdS) asymptotic. In this paper, we review the main features of these hairy black hole solutions, such as their geometrical and thermodynamical properties. The conformal coupling to matter in dimension D > 4 in principle includes higher-curvature terms. These couplings are obtained from the Lovelock action through the Stueckelberg strategy. As a consequence, the resulting scalar-tensor theory exhibits a self-duality under field redefinition that resembles T-duality. Through this field redefinition, the matter content of the theory transforms into a Lovelock action for a dual geometry. Since the hairy black holes only exist for special relations between the dual Lovelock coupling constants, it is natural to compare those relations with the causality bounds coming from AdS/CFT. We observe that, while the lower causality bound is always obeyed, the upper causality bound is violated. The latter, however, is saturated in the large D limit.
Catastrophic Instability of Small Lovelock Black Holes
Takahashi, Tomohiro; Soda, Jiro
2010-01-01
We study the stability of static black holes in Lovelock theory which is a natural higher dimensional generalization of Einstein theory. We show that Lovelock black holes are stable under vector perturbations in all dimensions. However, we prove that small Lovelock black holes are unstable under tensor perturbations in even-dimensions and under scalar perturbations in odd-dimensions. Therefore, we can conclude that small Lovelock black holes are unstable in any dimensions. The instability is ...
Lovelock vacua with a recurrent null vector field
Czech Academy of Sciences Publication Activity Database
Ortaggio, Marcello
2018-01-01
Roč. 97, č. 4 (2018), č. článku 044051. ISSN 2470-0010 R&D Projects: GA ČR GA13-10042S Institutional support: RVO:67985840 Keywords : Lovelock gravity * recurrent null vector field Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.044051
Lovelock vacua with a recurrent null vector field
Czech Academy of Sciences Publication Activity Database
Ortaggio, Marcello
2018-01-01
Roč. 97, č. 4 (2018), č. článku 044051. ISSN 2470-0010 R&D Projects: GA ČR GA13-10042S Institutional support: RVO:67985840 Keywords : Lovelock gravity * recurrent null vector field Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals. aps .org/prd/abstract/10.1103/PhysRevD.97.044051
Mass and free energy of Lovelock black holes
International Nuclear Information System (INIS)
Kastor, David; Traschen, Jennie; Ray, Sourya
2011-01-01
An explicit formula for the ADM mass of an asymptotically AdS black hole in a generic Lovelock gravity theory is presented, identical in form to that in Einstein gravity, but multiplied by a function of the Lovelock coupling constants and the AdS curvature radius. A Gauss' law-type formula relates the mass, which is an integral at infinity, to an expression depending instead on the horizon radius. This and other thermodynamic quantities, such as the free energy, are then analyzed in the limits of small and large horizon radius, yielding results that are independent of the detailed choice of Lovelock couplings. In even dimensions, the temperature diverges in both limits, implying the existence of a minimum temperature for black holes. The negative free energy of sufficiently large black holes implies the existence of a Hawking-Page transition. In odd dimensions, the temperature still diverges for large black holes, which again have negative free energy. However, the temperature vanishes as the horizon radius tends to zero and sufficiently small black holes have positive specific heat.
Generalized Vaidya spacetime for cubic gravity
Ruan, Shan-Ming
2016-03-01
We present a kind of generalized Vaidya solution of a new cubic gravity in five dimensions whose field equations in spherically symmetric spacetime are always second order like the Lovelock gravity. We also study the thermodynamics of its spherically symmetric apparent horizon and get its entropy expression and generalized Misner-Sharp energy. Finally, we present the first law and second law hold in this gravity. Although all the results are analogous to those in Lovelock gravity, we in fact introduce the contribution of a new cubic term in five dimensions where the cubic Lovelock term is just zero.
Thermodynamical universality of the Lovelock black holes
Dadhich, Naresh; Pons, Josep M.; Prabhu, Kartik
2011-01-01
The necessary and sufficient condition for the thermodynamical universality of the static spherically symmetric Lovelock black hole is that it is the pure Lovelock {\\Lambda}-vacuum solution. By universality we mean the thermodynamical parameters: temperature and entropy always bear the same relationship to the horizon radius irrespective of the Lovelock order and the spacetime dimension. For instance, the entropy always goes in terms of the horizon radius as rh and r^2 respectively for h odd ...
Hidden symmetries in five-dimensional supergravity
International Nuclear Information System (INIS)
Poessel, M.
2003-05-01
This thesis is concerned with the study of hidden symmetries in supergravity, which play an important role in the present picture of supergravity and string theory. Concretely, the appearance of a hidden G 2(+2) /SO(4) symmetry is studied in the dimensional reduction of d=5, N=2 supergravity to three dimensions - a parallel model to the more famous E 8(+8) /SO(16) case in eleven-dimensional supergravity. Extending previous partial results for the bosonic part, I give a derivation that includes fermionic terms. This sheds new light on the appearance of the local hidden symmetry SO(4) in the reduction, and shows up an unusual feature which follows from an analysis of the R-symmetry associated with N=4 supergravity and of the supersymmetry variations, and which has no parallel in the eleven-dimensional case: The emergence of an additional SO(3) as part of the enhanced local symmetry, invisible in the dimensional reduction of the gravitino, and corresponding to the fact that, of the SO(4) used in the coset model, only the diagonal SO(3) is visible immediately upon dimensional reduction. The uncovering of the hidden symmetries proceeds via the construction of the proper coset gravity in three dimensions, and matching it with the Lagrangian obtained from the reduction. (orig.)
Lovelock black holes with a nonlinear Maxwell field
International Nuclear Information System (INIS)
Maeda, Hideki; Hassaiene, Mokhtar; Martinez, Cristian
2009-01-01
We derive electrically charged black hole solutions of the Einstein-Gauss-Bonnet equations with a nonlinear electrodynamics source in n(≥5) dimensions. The spacetimes are given as a warped product M 2 xK n-2 , where K n-2 is a (n-2)-dimensional constant curvature space. We establish a generalized Birkhoff's theorem by showing that it is the unique electrically charged solution with this isometry and for which the orbit of the warp factor on K n-2 is non-null. An extension of the analysis for full Lovelock gravity is also achieved with a particular attention to the Chern-Simons case.
Towards a second law for Lovelock theories
Energy Technology Data Exchange (ETDEWEB)
Bhattacharyya, Sayantani [Indian Institute of Technology Kanpur,Kanpur 208016 (India); Haehl, Felix M. [Department of Physics and Astronomy, University of British Columbia,6224 Agricultural Road, Vancouver, B.C. V6T 1Z1 (Canada); Kundu, Nilay [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics (YITP), Kyoto University,Kyoto 606-8502 (Japan); Loganayagam, R. [International Centre for Theoretical Sciences (ICTS-TIFR), Shivakote, Hesaraghatta Hobli, Bengaluru 560089 (India); Rangamani, Mukund [Center for Quantum Mathematics and Physics (QMAP), Department of Physics, University of California,Davis, CA 95616 (United States)
2017-03-13
In classical general relativity described by Einstein-Hilbert gravity, black holes behave as thermodynamic objects. In particular, the laws of black hole mechanics can be interpreted as laws of thermodynamics. The first law of black hole mechanics extends to higher derivative theories via the Noether charge construction of Wald. One also expects the statement of the second law, which in Einstein-Hilbert theory owes to Hawking’s area theorem, to extend to higher derivative theories. To argue for this however one needs a notion of entropy for dynamical black holes, which the Noether charge construction does not provide. We propose such an entropy function for the family of Lovelock theories, treating the higher derivative terms as perturbations to the Einstein-Hilbert theory. Working around a dynamical black hole solution, and making no assumptions about the amplitude of departure from equilibrium, we construct a candidate entropy functional valid to all orders in the low energy effective field theory. This entropy functional satisfies a second law, modulo a certain subtle boundary term, which deserves further investigation in non-spherically symmetric situations.
Towards a second law for Lovelock theories
Bhattacharyya, Sayantani; Haehl, Felix M.; Kundu, Nilay; Loganayagam, R.; Rangamani, Mukund
2017-03-01
In classical general relativity described by Einstein-Hilbert gravity, black holes behave as thermodynamic objects. In particular, the laws of black hole mechanics can be interpreted as laws of thermodynamics. The first law of black hole mechanics extends to higher derivative theories via the Noether charge construction of Wald. One also expects the statement of the second law, which in Einstein-Hilbert theory owes to Hawking's area theorem, to extend to higher derivative theories. To argue for this however one needs a notion of entropy for dynamical black holes, which the Noether charge construction does not provide. We propose such an entropy function for the family of Lovelock theories, treating the higher derivative terms as perturbations to the Einstein-Hilbert theory. Working around a dynamical black hole solution, and making no assumptions about the amplitude of departure from equilibrium, we construct a candidate entropy functional valid to all orders in the low energy effective field theory. This entropy functional satisfies a second law, modulo a certain subtle boundary term, which deserves further investigation in non-spherically symmetric situations.
Stationary closed strings in five-dimensional flat spacetime
Igata, Takahisa; Ishihara, Hideki; Nishiwaki, Keisuke
2012-11-01
We investigate stationary rotating closed Nambu-Goto strings in five-dimensional flat spacetime. The stationary string is defined as a world sheet that is tangent to a timelike Killing vector. The Nambu-Goto equation of motion for the stationary string is reduced to the geodesic equation on the orbit space of the isometry group action generated by the Killing vector. We take a linear combination of a time-translation vector and space-rotation vectors as the Killing vector, and explicitly construct general solutions of stationary rotating closed strings in five-dimensional flat spacetime. We show a variety of their configurations and properties.
General supersymmetric solutions of five-dimensional supergravity
International Nuclear Information System (INIS)
Gutowski, Jan B.; Sabra, Wafic
2005-01-01
The classification of 1/4-supersymmetric solutions of five dimensional gauged supergravity coupled to arbitrary many abelian vector multiplets, which was initiated elsewhere, is completed. The structure of all solutions for which the Killing vector constructed from the Killing spinor is null is investigated in both the gauged and the ungauged theories and some new solutions are constructed
Chronoprojective invariance of the five-dimensional Schroedinger formalism
International Nuclear Information System (INIS)
Perrin, M.; Burdet, G.; Duval, C.
1984-10-01
Invariance properties of the five-dimensional Schroedinger formalism describing a quantum test particle in the Newton-Cartan theory of gravitation are studied. The geometry which underlies these invariance properties is presented as a reduction of the 0(5,2) conformal geometry various applications are given
Five-dimensional gauge theory and compactification on a torus
Haghighat, B.; Vandoren, S.J.G.
2011-01-01
We study five-dimensional minimally supersymmetric gauge theory compactified on a torus down to three dimensions, and its embedding into string/M-theory using geometric engineering. The moduli space on the Coulomb branch is hyperkaehler equipped with a metric with modular transformation properties.
On the WDVV equations in five-dimensional gauge theories
Hoevenaars, L.K.; Martini, Ruud
2003-01-01
It is well known that the perturbative prepotentials of four-dimensional N = 2 supersymmetric Yang–Mills theories satisfy the generalized WDVV equations, regardless of the gauge group. In this Letter we study perturbative prepotentials of the five-dimensional theories for some classical gauge groups
International Nuclear Information System (INIS)
Canfora, Fabrizio; Willison, Steven; Giacomini, Alex; Troncoso, Ricardo
2009-01-01
It is shown that Einstein gravity in four dimensions with small cosmological constant and small extra dimensions can be obtained by spontaneous compactification of Lovelock gravity in vacuum. Assuming that the extra dimensions are compact spaces of constant curvature, general relativity is recovered within a certain class of Lovelock theories possessing necessarily cubic or higher order terms in curvature. This bounds the higher dimension to at least 7. Remarkably, the effective gauge coupling and Newton constant in four dimensions are not proportional to the gravitational constant in higher dimensions, but are shifted with respect to their standard values. This effect opens up new scenarios where a maximally symmetric solution in higher dimensions could decay into the compactified spacetime either by tunneling or through a gravitational analog of ghost condensation. Indeed, this is what occurs requiring both the extra dimensions and the four-dimensional cosmological constant to be small.
A General Expression for the Quartic Lovelock Tensor
Briggs, C. C.
1997-01-01
A general expression is given for the quartic Lovelock tensor in terms of the Riemann-Christoffel and Ricci curvature tensors and the Riemann curvature scalar for n-dimensional differentiable manifolds having a general linear connection. In addition, expressions are given (in the appendix) for the coefficient of the quartic Lovelock Lagrangian as well as for lower-order Lovelock tensors and Lovelock Lagrangian coefficients.
Lovelock vacua with a recurrent null vector field
Ortaggio, Marcello
2018-02-01
Vacuum solutions of Lovelock gravity in the presence of a recurrent null vector field (a subset of Kundt spacetimes) are studied. We first discuss the general field equations, which constrain both the base space and the profile functions. While choosing a "generic" base space puts stronger constraints on the profile, in special cases there also exist solutions containing arbitrary functions (at least for certain values of the coupling constants). These and other properties (such as the p p - waves subclass and the overlap with VSI, CSI and universal spacetimes) are subsequently analyzed in more detail in lower dimensions n =5 , 6 as well as for particular choices of the base manifold. The obtained solutions describe various classes of nonexpanding gravitational waves propagating, e.g., in Nariai-like backgrounds M2×Σn -2. An Appendix contains some results about general (i.e., not necessarily Kundt) Lovelock vacua of Riemann type III/N and of Weyl and traceless-Ricci type III/N. For example, it is pointed out that for theories admitting a triply degenerate maximally symmetric vacuum, all the (reduced) field equations are satisfied identically, giving rise to large classes of exact solutions.
Fermions in five-dimensional brane world models
Energy Technology Data Exchange (ETDEWEB)
Smolyakov, Mikhail N. [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University,119991, Moscow (Russian Federation)
2016-06-28
In the present paper the fermion fields, living in the background of five-dimensional warped brane world models with compact extra dimension, are thoroughly examined. The Kaluza-Klein decomposition and isolation of the physical degrees of freedom is performed for those five-dimensional fermion field Lagrangians, which admit such a decomposition to be performed in a mathematically consistent way and provide a physically reasonable four-dimensional effective theory. It is also shown that for the majority of five-dimensional fermion field Lagrangians there are no (at least rather obvious) ways to perform the Kaluza-Klein decomposition consistently. Moreover, in these cases one may expect the appearance of various pathologies in the four-dimensional effective theory. Among the cases, for which the Kaluza-Klein decomposition can be performed in a mathematically consistent way, the case, which reproduces the Standard Model by the zero Kaluza-Klein modes most closely regardless of the size of the extra dimension, is examined in detail in the background of the Randall-Sundrum model.
Thermodynamics of charged Lovelock: AdS black holes
International Nuclear Information System (INIS)
Prasobh, C.B.; Suresh, Jishnu; Kuriakose, V.C.
2016-01-01
We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime. (orig.)
Thermodynamics of charged Lovelock: AdS black holes
Prasobh, C. B.; Suresh, Jishnu; Kuriakose, V. C.
2016-04-01
We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime.
Euler–Chern–Simons gravity from Lovelock–Born–Infeld gravity
Izaurieta, F.; Rodriguez, E.; Salgado, P.
2004-01-01
In the context of a gauge theoretical formulation, higher dimensional gravity invariant under the AdS group is dimensionally reduced to Euler-Chern-Simons gravity. The dimensional reduction procedure of Grignani-Nardelli [Phys. Lett. B 300, 38 (1993)] is generalized so as to permit reducing D-dimensional Lanczos Lovelock gravity to d=D-1 dimensions.
International Nuclear Information System (INIS)
Porfyriadis, Achilleas P.
2009-01-01
The anomaly cancellation method proposed by Wilczek et al. is applied to the general charged rotating black holes in five-dimensional minimal gauged supergravity. Thus Hawking temperature and fluxes are found. The Hawking temperature obtained agrees with the surface gravity formula. The black holes have charge and two unequal angular momenta, and these give rise to appropriate terms in the effective U(1) gauge field of the reduced (1+1)-dimensional theory. In particular, it is found that the terms in this U(1) gauge field correspond exactly to the correct electrostatic potential and the two angular velocities on the horizon of the black holes, and so the results for the Hawking fluxes derived here from the anomaly cancellation method are in complete agreement with the ones obtained from integrating the Planck distribution.
Quantum Statistical Entropy of Five-Dimensional Black Hole
Institute of Scientific and Technical Information of China (English)
ZHAO Ren; WU Yue-Qin; ZHANG Sheng-Li
2006-01-01
The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole.By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of the five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is not the divergent logarithmic term as in the original brick-wall method. And it is obtained that the quantum statistic entropy corresponding to black hole horizon is proportional to the area of the horizon. Further it is shown that the entropy of black hole is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. It makes people further understand the quantum statistic entropy.
Quantum Statistical Entropy of Five-Dimensional Black Hole
International Nuclear Information System (INIS)
Zhao Ren; Zhang Shengli; Wu Yueqin
2006-01-01
The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of the five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is not the divergent logarithmic term as in the original brick-wall method. And it is obtained that the quantum statistic entropy corresponding to black hole horizon is proportional to the area of the horizon. Further it is shown that the entropy of black hole is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. It makes people further understand the quantum statistic entropy.
Canonical sectors of five-dimensional Chern-Simons theories
International Nuclear Information System (INIS)
Miskovic, Olivera; Troncoso, Ricardo; Zanelli, Jorge
2005-01-01
The dynamics of five-dimensional Chern-Simons theories is analyzed. These theories are characterized by intricate self couplings which give rise to dynamical features not present in standard theories. As a consequence, Dirac's canonical formalism cannot be directly applied due to the presence of degeneracies of the symplectic form and irregularities of the constraints on some surfaces of phase space, obscuring the dynamical content of these theories. Here we identify conditions that define sectors where the canonical formalism can be applied for a class of non-Abelian Chern-Simons theories, including supergravity. A family of solutions satisfying the canonical requirements is explicitly found. The splitting between first and second class constraints is performed around these backgrounds, allowing the construction of the charge algebra, including its central extension
Five-dimensional gauge theory and compactification on a torus
Haghighat, Babak; Vandoren, Stefan
2011-09-01
We study five-dimensional minimally supersymmetric gauge theory compactified on a torus down to three dimensions, and its embedding into string/M-theory using geometric engineering. The moduli space on the Coulomb branch is hyperkähler equipped with a metric with modular transformation properties. We determine the one-loop corrections to the metric and show that they can be interpreted as worldsheet and D1-brane instantons in type IIB string theory. Furthermore, we analyze instanton corrections coming from the solitonic BPS magnetic string wrapped over the torus. In particular, we show how to compute the path-integral for the zero-modes from the partition function of the M5 brane, or, using a 2d/4d correspondence, from the partition function of N=4 SYM theory on a Hirzebruch surface.
Five-dimensional black hole capture cross sections
International Nuclear Information System (INIS)
Gooding, Cisco; Frolov, Andrei V.
2008-01-01
We study scattering and capture of particles by a rotating black hole in the five-dimensional spacetime described by the Myers-Perry metric. The equations of geodesic motion are integrable, and allow us to calculate capture conditions for a free particle sent towards a black hole from infinity. We introduce a three-dimensional impact parameter describing asymptotic initial conditions in the scattering problem for a given initial velocity. The capture surface in impact parameter space is a sphere for a nonrotating black hole, and is deformed for a rotating black hole. We obtain asymptotic expressions that describe such deformations for small rotational parameters, and use numerical calculations to investigate the arbitrary rotation case, which allows us to visualize the capture surface as extremal rotation is approached
Five-dimensional Nernst branes from special geometry
Energy Technology Data Exchange (ETDEWEB)
Dempster, P.; Errington, D. [Department of Mathematical Sciences, University of LiverpoolPeach Street, Liverpool L69 7ZL (United Kingdom); Gutowski, J. [Department of Mathematics, University of Surrey,Guildford, GU2 7XH (United Kingdom); Mohaupt, T. [Department of Mathematical Sciences, University of LiverpoolPeach Street, Liverpool L69 7ZL (United Kingdom)
2016-11-21
We construct Nernst brane solutions, that is black branes with zero entropy density in the extremal limit, of FI-gauged minimal five-dimensional supergravity coupled to an arbitrary number of vector multiplets. While the scalars take specific constant values and dynamically determine the value of the cosmological constant in terms of the FI-parameters, the metric takes the form of a boosted AdS Schwarzschild black brane. This metric can be brought to the Carter-Novotný-Horský form that has previously been observed to occur in certain limits of boosted D3-branes. By dimensional reduction to four dimensions we recover the four-dimensional Nernst branes of arXiv:1501.07863 and show how the five-dimensional lift resolves all their UV singularities. The dynamics of the compactification circle, which expands both in the UV and in the IR, plays a crucial role. At asymptotic infinity, the curvature singularity of the four-dimensional metric and the run-away behaviour of the four-dimensional scalar combine in such a way that the lifted solution becomes asymptotic to AdS{sub 5}. Moreover, the existence of a finite chemical potential in four dimensions is related to fact that the compactification circle has a finite minimal value. While it is not clear immediately how to embed our solutions into string theory, we argue that the same type of dictionary as proposed for boosted D3-branes should apply, although with a lower amount of supersymmetry.
On the local well-posedness of Lovelock and Horndeski theories
Papallo, Giuseppe; Reall, Harvey S.
2017-08-01
We investigate local well-posedness of the initial value problem for Lovelock and Horndeski theories of gravity. A necessary condition for local well-posedness is strong hyperbolicity of the equations of motion. Even weak hyperbolicity can fail for strong fields so we restrict to weak fields. The Einstein equation is known to be strongly hyperbolic in harmonic gauge so we study Lovelock theories in harmonic gauge. We show that the equation of motion is always weakly hyperbolic for weak fields but, in a generic weak-field background, it is not strongly hyperbolic. For Horndeski theories, we prove that, for weak fields, the equation of motion is always weakly hyperbolic in any generalized harmonic gauge. For some Horndeski theories there exists a generalized harmonic gauge for which the equation of motion is strongly hyperbolic in a weak-field background. This includes "k-essence" like theories. However, for more general Horndeski theories, there is no generalized harmonic gauge for which the equation of motion is strongly hyperbolic in a generic weak-field background. Our results show that the standard method used to establish local well-posedness of the Einstein equation does not extend to Lovelock or general Horndeski theories. This raises the possibility that these theories may not admit a well-posed initial value problem even for weak fields.
Protein energy landscapes determined by five-dimensional crystallography
International Nuclear Information System (INIS)
Schmidt, Marius; Srajer, Vukica; Henning, Robert; Ihee, Hyotcherl; Purwar, Namrta; Tenboer, Jason; Tripathi, Shailesh
2013-01-01
Barriers of activation within the photocycle of a photoactive protein were extracted from comprehensive time courses of time resolved crystallographic data collected at multiple temperature settings. Free-energy landscapes decisively determine the progress of enzymatically catalyzed reactions [Cornish-Bowden (2012 ▶), Fundamentals of Enzyme Kinetics, 4th ed.]. Time-resolved macromolecular crystallography unifies transient-state kinetics with structure determination [Moffat (2001 ▶), Chem. Rev.101, 1569–1581; Schmidt et al. (2005 ▶), Methods Mol. Biol.305, 115–154; Schmidt (2008 ▶), Ultrashort Laser Pulses in Medicine and Biology] because both can be determined from the same set of X-ray data. Here, it is demonstrated how barriers of activation can be determined solely from five-dimensional crystallography, where in addition to space and time, temperature is a variable as well [Schmidt et al. (2010 ▶), Acta Cryst. A66, 198–206]. Directly linking molecular structures with barriers of activation between them allows insight into the structural nature of the barrier to be gained. Comprehensive time series of crystallographic data at 14 different temperature settings were analyzed and the entropy and enthalpy contributions to the barriers of activation were determined. One hundred years after the discovery of X-ray scattering, these results advance X-ray structure determination to a new frontier: the determination of energy landscapes
Five-dimensional ultrasound system for soft tissue visualization.
Deshmukh, Nishikant P; Caban, Jesus J; Taylor, Russell H; Hager, Gregory D; Boctor, Emad M
2015-12-01
A five-dimensional ultrasound (US) system is proposed as a real-time pipeline involving fusion of 3D B-mode data with the 3D ultrasound elastography (USE) data as well as visualization of these fused data and a real-time update capability over time for each consecutive scan. 3D B-mode data assist in visualizing the anatomy of the target organ, and 3D elastography data adds strain information. We investigate the feasibility of such a system and show that an end-to-end real-time system, from acquisition to visualization, can be developed. We present a system that consists of (a) a real-time 3D elastography algorithm based on a normalized cross-correlation (NCC) computation on a GPU; (b) real-time 3D B-mode acquisition and network transfer; (c) scan conversion of 3D elastography and B-mode volumes (if acquired by 4D wobbler probe); and (d) visualization software that fuses, visualizes, and updates 3D B-mode and 3D elastography data in real time. We achieved a speed improvement of 4.45-fold for the threaded version of the NCC-based 3D USE versus the non-threaded version. The maximum speed was 79 volumes/s for 3D scan conversion. In a phantom, we validated the dimensions of a 2.2-cm-diameter sphere scan-converted to B-mode volume. Also, we validated the 5D US system visualization transfer function and detected 1- and 2-cm spherical objects (phantom lesion). Finally, we applied the system to a phantom consisting of three lesions to delineate the lesions from the surrounding background regions of the phantom. A 5D US system is achievable with real-time performance. We can distinguish between hard and soft areas in a phantom using the transfer functions.
A General Expression for the Quintic Lovelock Tensor
Briggs, C. C.
1996-01-01
A general expression is given for the quintic Lovelock tensor as well as for the coefficient of the quintic Lovelock Lagrangian in terms of the Riemann-Christoffel and Ricci curvature tensors and the Riemann curvature scalar for n-dimensional differentiable manifolds having a general linear connection.
Gamow, George
2003-01-01
A distinguished physicist and teacher, George Gamow also possessed a special gift for making the intricacies of science accessible to a wide audience. In Gravity, he takes an enlightening look at three of the towering figures of science who unlocked many of the mysteries behind the laws of physics: Galileo, the first to take a close look at the process of free and restricted fall; Newton, originator of the concept of gravity as a universal force; and Einstein, who proposed that gravity is no more than the curvature of the four-dimensional space-time continuum.Graced with the author's own draw
Instability of small Lovelock black holes in even dimensions
International Nuclear Information System (INIS)
Takahashi, Tomohiro; Soda, Jiro
2009-01-01
We study the stability of static black holes in Lovelock theory, which is a natural higher dimensional generalization of Einstein theory. We derive a master equation for tensor perturbations in general Lovelock theory. It turns out that the resultant equation is characterized by one functional which determines the background black hole solutions. Thus, the stability issue of static black holes under tensor perturbations in general dimensions is reduced to an algebraic problem. We show that small Lovelock black holes in even-dimensions are unstable.
International Nuclear Information System (INIS)
Kimura, Masashi
2008-01-01
We show that there exist five-dimensional multi-black hole solutions which have analytic event horizons when the space-time has nontrivial asymptotic structure, unlike the case of five-dimensional multi-black hole solutions in asymptotically flat space-time.
Indian Academy of Sciences (India)
We study the cosmological dynamics for R p exp( λ R ) gravity theory in the metric formalism, using dynamical systems approach. Considering higher-dimensional FRW geometries in case of an imperfect fluid which has two different scale factors in the normal and extra dimensions, we find the exact solutions, and study its ...
Smarr formula for Lovelock black holes: A Lagrangian approach
Liberati, Stefano; Pacilio, Costantino
2016-04-01
The mass formula for black holes can be formally expressed in terms of a Noether charge surface integral plus a suitable volume integral, for any gravitational theory. The integrals can be constructed as an application of Wald's formalism. We apply this formalism to compute the mass and the Smarr formula for static Lovelock black holes. Finally, we propose a new prescription for Wald's entropy in the case of Lovelock black holes, which takes into account topological contributions to the entropy functional.
Characterization of the Lovelock gravity by Bianchi derivative
Indian Academy of Sciences (India)
We prove the theorem: The second-order quasilinear differential operator as a second-rank divergence-free tensor in the equation of motion for gravitation could always be derived from the trace of the Bianchi derivative of the fourth-rank tensor, which is a homogeneous polynomial in curvatures. The existence of such a ...
The curvature and the algebra of Killing vectors in five-dimensional space
International Nuclear Information System (INIS)
Rcheulishvili, G.
1990-12-01
This paper presents the Killing vectors for a five-dimensional space with the line element. The algebras which are formed by these vectors are written down. The curvature two-forms are described. (author). 10 refs
Hawking radiation of five-dimensional charged black holes with scalar fields
Directory of Open Access Journals (Sweden)
Yan-Gang Miao
2017-09-01
Full Text Available We investigate the Hawking radiation cascade from the five-dimensional charged black hole with a scalar field coupled to higher-order Euler densities in a conformally invariant manner. We give the semi-analytic calculation of greybody factors for the Hawking radiation. Our analysis shows that the Hawking radiation cascade from this five-dimensional black hole is extremely sparse. The charge enhances the sparsity of the Hawking radiation, while the conformally coupled scalar field reduces this sparsity.
Five-dimensional projective unified theory and the principle of equivalence
International Nuclear Information System (INIS)
De Sabbata, V.; Gasperini, M.
1984-01-01
We investigate the physical consequences of a new five-dimensional projective theory unifying gravitation and electromagnetism. Solving the field equations in the linear approximation and in the static limit, we find that a celestial body would act as a source of a long-range scalar field, and that macroscopic test bodies with different internal structure would accelerate differently in the solar gravitational field; this seems to be in disagreement with the equivalence principle. To avoid this contradiction, we suggest a possible modification of the geometrical structure of the five-dimensional projective space
Time-dependent gravitating solitons in five dimensional warped space-times
Giovannini, Massimo
2007-01-01
Time-dependent soliton solutions are explicitly derived in a five-dimensional theory endowed with one (warped) extra-dimension. Some of the obtained geometries, everywhere well defined and technically regular, smoothly interpolate between two five-dimensional anti-de Sitter space-times for fixed value of the conformal time coordinate. Time dependent solutions containing both topological and non-topological sectors are also obtained. Supplementary degrees of freedom can be also included and, in this case, the resulting multi-soliton solutions may describe time-dependent kink-antikink systems.
Fermionic greybody factors of two and five-dimensional dilatonic black holes
Energy Technology Data Exchange (ETDEWEB)
Becar, Ramon [Universidad Catolica de Temuco, Departamento de Ciencias Matematicas y Fisicas, Temuco (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)
2014-08-15
We study fermionic perturbations in the background of a two and five-dimensional dilatonic black holes. Then, we compute the reflection and transmission coefficients and the absorption cross section for fermionic fields, and we show numerically that the absorption cross section vanishes in the low and high frequency limit. Also we find that beyond a certain value of the horizon radius r{sub 0} the absorption cross section for five-dimensional dilatonic black hole is constant. Besides, we have find that the absorption cross section decreases for higher angular momentum, and it decreases when the mass of the fermionic field increases. (orig.)
Five-dimensional Myers-Perry black holes cannot be overspun in gedanken experiments
An, Jincheng; Shan, Jieru; Zhang, Hongbao; Zhao, Suting
2018-05-01
We apply the new version of a gedanken experiment designed recently by Sorce and Wald to overspin the five-dimensional Myers-Perry black holes. As a result, the extremal black holes cannot be overspun at the linear order. On the other hand, although the nearly extremal black holes could be overspun at the linear order, this process is shown to be prohibited by the quadratic order correction. Thus, no violation of the weak cosmic censorship conjecture occurs around the five-dimensional Myers-Perry black holes.
Five-dimensional Lattice Gauge Theory as Multi-Layer World
Murata, Michika; So, Hiroto
2003-01-01
A five-dimensional lattice space can be decomposed into a number of four-dimens ional lattices called as layers. The five-dimensional gauge theory on the lattice can be interpreted as four-dimensional gauge theories on the multi-layer with interactions between neighboring layers. In the theory, there exist two independent coupling constants; $\\beta_4$ controls the dynamics inside a layer and $\\beta_5$ does the strength of the inter-layer interaction.We propose the new possibility to realize t...
Five-dimensional Monopole Equation with Hedge-Hog Ansatz and Abel's Differential Equation
Kihara, Hironobu
2008-01-01
We review the generalized monopole in the five-dimensional Euclidean space. A numerical solution with the Hedge-Hog ansatz is studied. The Bogomol'nyi equation becomes a second order autonomous non-linear differential equation. The equation can be translated into the Abel's differential equation of the second kind and is an algebraic differential equation.
The D4-D8 Brane System and Five Dimensional Fixed Points
Brandhuber, A; Oz, Y
1999-01-01
We construct dual Type I' string descriptions to five dimensional supersymmetric fixed points with $E_{N_f+1}$ global symmetry. The background is obtained as the near horizon geometry of the D4-D8 brane system in massive Type IIA supergravity. We use the dual description to deduce some properties of the fixed points.
Collapsing perfect fluid in self-similar five dimensional space-time and cosmic censorship
International Nuclear Information System (INIS)
Ghosh, S.G.; Sarwe, S.B.; Saraykar, R.V.
2002-01-01
We investigate the occurrence and nature of naked singularities in the gravitational collapse of a self-similar adiabatic perfect fluid in a five dimensional space-time. The naked singularities are found to be gravitationally strong in the sense of Tipler and thus violate the cosmic censorship conjecture
Wormholes in higher dimensions with non-linear curvature terms from quantum gravity corrections
Energy Technology Data Exchange (ETDEWEB)
El-Nabulsi, Ahmad Rami [Neijiang Normal University, Neijiang, Sichuan (China)
2011-11-15
In this work, we discuss a 7-dimensional universe in the presence of a static traversable wormhole and a decaying cosmological constant and dominated by higher-order curvature effects expected from quantum gravity corrections. We confirmed the existence of wormhole solutions in the form of the Lovelock gravity. Many interesting and attractive features are discussed in some detail.
Lovelock inflation and the number of large dimensions
Ferrer, Francesc
2007-01-01
We discuss an inflationary scenario based on Lovelock terms. These higher order curvature terms can lead to inflation when there are more than three spatial dimensions. Inflation will end if the extra dimensions are stabilised, so that at most three dimensions are free to expand. This relates graceful exit to the number of large dimensions.
[Dr James Lovelock and story about GAIA hypothesis].
Gajić, Vladimir
2011-01-01
Gaia is the Anglo-Saxon term for the Hellenic term Gea or Ge, which means Earth. The GAIA hypothesis was launched almost 40 years ago by the famous chemist James Lovelock, who was engaged by the National Aeronautics and Space Administration (NASA) to create a sensitive instrument for searching forms of extraterrestrial life on other planets. Then he published the book The ages of GAIA, which perturbed the world's scientific public of those days. Lovelock struck upon this idea in the late sixties of the past century, during the space race with Russians, when he was hired hy the National Aeronautics and Space Administration to conduct a series of experiments to find and explore life forms on the planet Mars. Experiments executed by the American module Viking failed to trace any life form, as Lovelock had predicted. He called it a dead equilibrium. Then he turned to Earth, whose perspective is totally different from its first neighbors. Venus and Mars, and is far from a dead equilibrium. DAISYWORLD: In this hypothesis. Lovelock represents Earth as one living, giant super organism, composed of all living creatures and its material environnent. In that super organisnm, the level of oxygen, weather conditions, ocean salinity and so on are under constant influence of physical, chemical and biological processes, which provide the existence for such life forms on Earth. Dr James Lovelock represents a pioneer of climatology, and his hypothesis gives a unique insight into the correlation of dynamic processes on our planet, no matter whether they are of physical or biological nature.
Quasi-local conserved charges in Lorenz-diffeomorphism covariant theory of gravity
Energy Technology Data Exchange (ETDEWEB)
Adami, H.; Setare, M.R. [University of Kurdistan, Department of Science, Sanandaj (Iran, Islamic Republic of)
2016-04-15
In this paper, using the combined Lorenz-diffeomorphism symmetry, we find a general formula for the quasi-local conserved charge of the covariant gravity theories in a first order formalism of gravity. We simplify the general formula for the Lovelock theory of gravity. Afterwards, we apply the obtained formula on BHT gravity to obtain the energy and angular momentum of the rotating OTT black hole solution in the context of this theory. (orig.)
Quasi-local conserved charges in Lorenz-diffeomorphism covariant theory of gravity
Adami, H.; Setare, M. R.
2016-04-01
In this paper, using the combined Lorenz-diffeomorphism symmetry, we find a general formula for the quasi-local conserved charge of the covariant gravity theories in a first order formalism of gravity. We simplify the general formula for the Lovelock theory of gravity. Afterwards, we apply the obtained formula on BHT gravity to obtain the energy and angular momentum of the rotating OTT black hole solution in the context of this theory.
Simple compactifications and black p-branes in Gauss-Bonnet and Lovelock theories
International Nuclear Information System (INIS)
Giribet, Gaston; Oliva, Julio; Troncoso, Ricardo
2006-01-01
We look for the existence of asymptotically flat simple compactifications of the form M D-p x T p in D-dimensional gravity theories with higher powers of the curvature. Assuming the manifold M D-p to be spherically symmetric, it is shown that the Einstein-Gauss-Bonnet theory admits this class of solutions only for the pure Einstein-Hilbert or Gauss-Bonnet Lagrangians, but not for an arbitrary linear combination of them. Once these special cases have been selected, the requirement of spherical symmetry is no longer relevant since actually any solution of the pure Einstein or pure Gauss-Bonnet theories can then be toroidally extended to higher dimensions. Depending on p and the spacetime dimension, the metric on M D-p may describe a black hole or a spacetime with a conical singularity, so that the whole spacetime describes a black or a cosmic p-brane, respectively. For the purely Gauss-Bonnet theory it is shown that, if M D-p is four-dimensional, a new exotic class of black hole solutions exists, for which spherical symmetry can be relaxed. Under the same assumptions, it is also shown that simple compactifications acquire a similar structure for a wide class of theories among the Lovelock family which accepts this toroidal extension. The thermodynamics of black p-branes is also discussed, and it is shown that a thermodynamical analogue of the Gregory-Laflamme transition always occurs regardless the spacetime dimension or the theory considered, hence not only for General Relativity. Relaxing the asymptotically flat behavior, it is also shown that exact black brane solutions exist within a very special class of Lovelock theories
An infinite number of stationary soliton solutions to the five-dimensional vacuum Einstein equation
International Nuclear Information System (INIS)
Azuma, Takahiro; Koikawa, Takao
2006-01-01
We obtain an infinite number of soliton solutions to the five-dimensional stationary Einstein equation with axial symmetry by using the inverse scattering method. We start with the five-dimensional Minkowski space as a seed metric to obtain these solutions. The solutions are characterized by two soliton numbers and a constant appearing in the normalization factor which is related to a coordinate condition. We show that the (2, 0)-soliton solution is identical to the Myers-Perry solution with one angular momentum variable by imposing a condition on the relation between parameters. We also show that the (2, 2)-soliton solution is different from the black ring solution discovered by Emparan and Reall, although one component of the two metrics can be identical. (author)
Phases of five-dimensional theories, monopole walls, and melting crystals
Cherkis, Sergey A.
2014-06-01
Moduli spaces of doubly periodic monopoles, also called monopole walls or monowalls, are hyperkähler; thus, when four-dimensional, they are self-dual gravitational instantons. We find all monowalls with lowest number of moduli. Their moduli spaces can be identified, on the one hand, with Coulomb branches of five-dimensional supersymmetric quantum field theories on 3 × T 2 and, on the other hand, with moduli spaces of local Calabi-Yau metrics on the canonical bundle of a del Pezzo surface. We explore the asymptotic metric of these moduli spaces and compare our results with Seiberg's low energy description of the five-dimensional quantum theories. We also give a natural description of the phase structure of general monowall moduli spaces in terms of triangulations of Newton polygons, secondary polyhedra, and associahedral projections of secondary fans.
Some five-dimensional Bianchi type-iii string cosmological models in general relativity
International Nuclear Information System (INIS)
Samanta, G.C.; Biswal, S.K.; Mohanty, G.; Rameswarpatna, Bhubaneswar
2011-01-01
In this paper we have constructed some five-dimensional Bianchi type-III cosmological models in general relativity when source of gravitational field is a massive string. We obtained different classes of solutions by considering different functional forms of metric potentials. It is also observed that one of the models is not physically acceptable and the other models possess big-bang singularity. The physical and kinematical behaviors of the models are discussed
A study of the Higgs effect in the five-dimensional Kaluza-Klein theory
International Nuclear Information System (INIS)
Maheshwari, A.
1985-08-01
The complete expression of the five-dimensional Einstein-Hilbert action as an expansion in fields in the Appelquist-Chodos parametrization of the Kaluza-Klein metric has been given in this paper. It is explicitly shown that a unitary gauge can be fixed in which in each of the charge sectors the vector and the scalar fields are absorbed as Goldstone modes leaving behind the Pauli-Fierz Lagrangian for massive charged spin-2 field. (author)
Five-dimensional rotating black hole in a uniform magnetic field: The gyromagnetic ratio
International Nuclear Information System (INIS)
Aliev, A.N.; Frolov, Valeri P.
2004-01-01
In four-dimensional general relativity, the fact that a Killing vector in a vacuum spacetime serves as a vector potential for a test Maxwell field provides one with an elegant way of describing the behavior of electromagnetic fields near a rotating Kerr black hole immersed in a uniform magnetic field. We use a similar approach to examine the case of a five-dimensional rotating black hole placed in a uniform magnetic field of configuration with biazimuthal symmetry that is aligned with the angular momenta of the Myers-Perry spacetime. Assuming that the black hole may also possess a small electric charge we construct the five-vector potential of the electromagnetic field in the Myers-Perry metric using its three commuting Killing vector fields. We show that, like its four-dimensional counterparts, the five-dimensional Myers-Perry black hole rotating in a uniform magnetic field produces an inductive potential difference between the event horizon and an infinitely distant surface. This potential difference is determined by a superposition of two independent Coulomb fields consistent with the two angular momenta of the black hole and two nonvanishing components of the magnetic field. We also show that a weakly charged rotating black hole in five dimensions possesses two independent magnetic dipole moments specified in terms of its electric charge, mass, and angular momentum parameters. We prove that a five-dimensional weakly charged Myers-Perry black hole must have the value of the gyromagnetic ratio g=3
International Nuclear Information System (INIS)
Lo, C.Y.; Goldstein, G.R.; Napier, A.
1989-01-01
A unified theory of electromagnetic and gravitational fields should modify classical electrodynamics to account for the radiation reaction force. A conjecture that the radiation reaction force and the Lorentz force should be distinct, but in unified forms, results in a five-dimensional unified theory of five variables. It is found that a semicylindrical condition can reconcile the apparent differences between a five-dimensional physical space and our four-dimensional perceptions. Analysis of the geodesic equations results in the notion of gauge dynamics which manifests the influence of the unrestricted fifth variable. The element g 55 of the five-dimensional metric is identified as the radiation potential, which can directly determine the radiation reaction force. This gives a distinct physical origin for the radiation process in classical theory. The potential suggests that the electron can have excited states in quantum electrodynamics. This theory is supported with calculations which demonstrate that the motion of the fifth variable directly causes physical changes in the four-dimensional subspace
The portrait of eikonal instability in Lovelock theories
Konoplya, R. A.; Zhidenko, A.
2017-05-01
Perturbations and eikonal instabilities of black holes and branes in the Einstein-Gauss-Bonnet theory and its Lovelock generalization were considered in the literature for several particular cases, where the asymptotic conditions (flat, dS, AdS), the number of spacetime dimensions D, non-vanishing coupling constants (α1, α2, α3 etc.) and other parameters have been chosen in a specific way. Here we give a comprehensive analysis of the eikonal instabilities of black holes and branes for the most general Lovelock theory, not limited by any of the above cases. Although the part of the stability analysis is performed here purely analytically and formulated in terms of the inequalities for the black hole parameters, the most general case is treated numerically and the accurate regions of instabilities are presented. The shared Mathematica® code allows the reader to construct the regions of eikonal instability for any desired values of the parameters.
Counterterms and dual holographic anomalies in CS gravity
Energy Technology Data Exchange (ETDEWEB)
Banados, Maximo [Departamento de Fisica, P. Universidad Catolica de Chile, Casilla 306, Santiago 22, Chile (Chile); Olea, Rodrigo [Departamento de Fisica, P. Universidad Catolica de Chile, Casilla 306, Santiago 22, Chile (Chile); Theisen, Stefan [Max-Planck-Institut fuer Gravitationphysik, Albert-Einstein-Institut, 14476 Golm (Germany)
2005-10-15
The holographic Weyl anomaly associated to Chern-Simons gravity in 2n+1 dimensions is proportional to the Euler term in 2n dimensions, with no contributions from the Weyl tensor. We compute the holographic energy-momentum tensor associated to Chern-Simons gravity directly from the action, in an arbitrary odd-dimensional spacetime. We show, in particular, that the counterterms rendering the action finite contain only terms of the Lovelock type.
Quintic quasi-topological gravity
Energy Technology Data Exchange (ETDEWEB)
Cisterna, Adolfo [Vicerrectoría académica, Universidad Central de Chile,Toesca 1783 Santiago (Chile); Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile,Casilla 567, Valdivia (Chile); Guajardo, Luis; Hassaïne, Mokhtar [Instituto de Matemática y Física, Universidad de Talca,Casilla 747, Talca (Chile); Oliva, Julio [Departamento de Física, Universidad de Concepción,Casilla, 160-C, Concepción (Chile)
2017-04-11
We construct a quintic quasi-topological gravity in five dimensions, i.e. a theory with a Lagrangian containing R{sup 5} terms and whose field equations are of second order on spherically (hyperbolic or planar) symmetric spacetimes. These theories have recently received attention since when formulated on asymptotically AdS spacetimes might provide for gravity duals of a broad class of CFTs. For simplicity we focus on five dimensions. We show that this theory fulfils a Birkhoff’s Theorem as it is the case in Lovelock gravity and therefore, for generic values of the couplings, there is no s-wave propagating mode. We prove that the spherically symmetric solution is determined by a quintic algebraic polynomial equation which resembles Wheeler’s polynomial of Lovelock gravity. For the black hole solutions we compute the temperature, mass and entropy and show that the first law of black holes thermodynamics is fulfilled. Besides of being of fourth order in general, we show that the field equations, when linearized around AdS are of second order, and therefore the theory does not propagate ghosts around this background. Besides the class of theories originally introduced in https://arxiv.org/abs/1003.4773, the general geometric structure of these Lagrangians remains an open problem.
Energy Technology Data Exchange (ETDEWEB)
Chatzistavrakidis, Athanasios [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Khoo, Fech Scen [Department of Physics and Earth Sciences, Jacobs University Bremen,Campus Ring 1, 28759 Bremen (Germany); Roest, Diederik [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Schupp, Peter [Department of Physics and Earth Sciences, Jacobs University Bremen,Campus Ring 1, 28759 Bremen (Germany)
2017-03-13
The particular structure of Galileon interactions allows for higher-derivative terms while retaining second order field equations for scalar fields and Abelian p-forms. In this work we introduce an index-free formulation of these interactions in terms of two sets of Grassmannian variables. We employ this to construct Galileon interactions for mixed-symmetry tensor fields and coupled systems thereof. We argue that these tensors are the natural generalization of scalars with Galileon symmetry, similar to p-forms and scalars with a shift-symmetry. The simplest case corresponds to linearised gravity with Lovelock invariants, relating the Galileon symmetry to diffeomorphisms. Finally, we examine the coupling of a mixed-symmetry tensor to gravity, and demonstrate in an explicit example that the inclusion of appropriate counterterms retains second order field equations.
National Uranium Resource Evaluation: Lovelock Quadrangle, Nevada and California
International Nuclear Information System (INIS)
Berry, V.P.; Bradley, M.T.; Nagy, P.A.
1982-08-01
Uranium resources of the Lovelock Quadrangle, Nevada and California, were evaluated to a depth of 1500 m using available surface and subsurface geological information. Uranium occurrences reported in the literature and in reports of the Atomic Energy Commission were located, sampled, and described in detail. Areas of anomalous radioactivity, as interpreted from the aerial radiometric reconnaissance survey and from the hydrochemical and stream-sediment reconnaissance survey reports, were also investigated. A general reconnaissance of the geologic environments exposed in surface outcrops was carried out; and over 400 rock, sediment, and water geochemical analyses were made from the samples taken. Additionally, 119 rock samples were petrographically studied. A total of 21 occurrences were located, sampled, and described in detail. Six uranium occurrences, previously unreported in the literature, were located during hydrogeochemical and stream-sediment reconnaissance, aerial radiometric reconnaissance survey followup, or general outcrop reconnaissance. Nine areas of uranium favorability were delineated within the Lovelock Quadrangle. One area, which contains the basal units of the Hartford Hill Rhyolite, is favorable for hydroallogenic uranium deposits. Eight areas are favorable for uranium deposits in playa sediments. These playas are considered favorable for nonmarine carbonaceous sediment deposits and evaporative deposits. The total volume of rock in favorable areas of the Lovelock Quadrangle is estimated to be 190 km 3 . The remaining geologic units are considered to be unfavorable for uranium deposits. These include upper Paleozoic and Mesozoic volcanic, plutonic, sedimentary, and metamorphic rocks. Also unfavorable are Tertiary and Quaternary volcanic flows and intrusive phases, tuffs, and sediments
Quasinormal modes of asymptotically (A)dS black hole in Lovelock background
Abbasvandi, N.; Soleimani, M. J.; Abdullah, W. A. T. Wan; Radiman, Shahidan
2017-03-01
We study the quasinormal modes of the massless scalar field in asymptotically (A)dS black holes in Lovelock spacetime by using the sixth order of the WKB approximation. We consider the effects of the second and third order of Lovelock coupling constants on quasinormal frequencies spectrum as well as cosmological constant.
Five-dimensional Hamiltonian-Jacobi approach to relativistic quantum mechanics
International Nuclear Information System (INIS)
Rose, Harald
2003-01-01
A novel theory is outlined for describing the dynamics of relativistic electrons and positrons. By introducing the Lorentz-invariant universal time as a fifth independent variable, the Hamilton-Jacobi formalism of classical mechanics is extended from three to four spatial dimensions. This approach allows one to incorporate gravitation and spin interactions in the extended five-dimensional Lagrangian in a covariant form. The universal time has the function of a hidden Bell parameter. By employing the method of variation with respect to the four coordinates of the particle and the components of the electromagnetic field, the path equation and the electromagnetic field produced by the charge and the spin of the moving particle are derived. In addition the covariant equations for the dynamics of the components of the spin tensor are obtained. These equations can be transformed to the familiar BMT equation in the case of homogeneous electromagnetic fields. The quantization of the five-dimensional Hamilton-Jacobi equation yields a five-dimensional spinor wave equation, which degenerates to the Dirac equation in the stationary case if we neglect gravitation. The quantity which corresponds to the probability density of standard quantum mechanics is the four-dimensional mass density which has a real physical meaning. By means of the Green method the wave equation is transformed into an integral equation enabling a covariant relativistic path integral formulation. Using this approach a very accurate approximation for the four-dimensional propagator is derived. The proposed formalism makes Dirac's hole theory obsolete and can readily be extended to many particles
On a Five-Dimensional Nonautonomous Schistosomiasis Model with Latent Period
Directory of Open Access Journals (Sweden)
Shujing Gao
2016-01-01
Full Text Available A five-dimensional nonautonomous schistosomiasis model which include latent period is proposed and studied. By constructing several auxiliary functions and using some skills, we obtain some sufficient conditions for the extinction and permanence (uniform persistence of infectious population of the model. New threshold values of integral form are obtained. For the corresponding autonomous schistosomiasis model, our results are consistent with the past results. For the periodic and almost periodic cases, some corollaries for the extinction and permanence of the disease are established. In order to illustrate our theoretical analysis, some numerical simulations are presented.
Dynamics of toroidal spiral strings around five-dimensional black holes
International Nuclear Information System (INIS)
Igata, Takahisa; Ishihara, Hideki
2010-01-01
We examine the separability of the Nambu-Goto equation for test strings in a shape of toroidal spiral in a five-dimensional Kerr-AdS black hole. In particular, for a 'Hopf loop' string which is a special class of the toroidal spiral strings, we show the complete separation of variables occurs in two cases, Kerr background and Kerr-AdS background with equal angular momenta. We also obtain the dynamical solution for the Hopf loop around a black hole and for the general toroidal spiral in Minkowski background.
Five-dimensional collective Hamiltonian with the Gogny force: An ongoing saga
Energy Technology Data Exchange (ETDEWEB)
Libert, J.; Delaroche, J.P.; Girod, M. [CEA, DAM, DIF, Arpajon (France)
2016-07-15
We provide a sample of analyses for nuclear spectroscopic properties based on the five-dimensional collective Hamiltonian (5DCH) implemented with the Gogny force. The very first illustration is dating back to the late 70's. It is next followed by others, focusing on shape coexistence, shape isomerism, superdeformation, and systematics over the periodic table. Finally, the inclusion of Thouless-Valatin dynamical contributions to vibrational mass parameters is briefly discussed as a mean of strengthening the basis of the 5DCH theory. (orig.)
Matrix models from localization of five-dimensional supersymmetric noncommutative U(1) gauge theory
International Nuclear Information System (INIS)
Lee, Bum-Hoon; Ro, Daeho; Yang, Hyun Seok
2017-01-01
We study localization of five-dimensional supersymmetric U(1) gauge theory on S 3 ×ℝ θ 2 where ℝ θ 2 is a noncommutative (NC) plane. The theory can be isomorphically mapped to three-dimensional supersymmetric U(N→∞) gauge theory on S 3 using the matrix representation on a separable Hilbert space on which NC fields linearly act. Therefore the NC space ℝ θ 2 allows for a flexible path to derive matrix models via localization from a higher-dimensional supersymmetric NC U(1) gauge theory. The result shows a rich duality between NC U(1) gauge theories and large N matrix models in various dimensions.
Five-dimensional null-cone structure of big bang singularity
International Nuclear Information System (INIS)
Lauro, S.; Schucking, E.L.
1985-01-01
The Friedmann model PHI of positive space curvature, vanishing pressure and cosmological constant when isometrically imbedded as a hypersurface in five-dimensional Minkowski space M 5 is globally rigid: if F(PHI) and F'(PHI) are isometric embeddings in M 5 there is a motion π of M 5 such that F'=π 0 F. The big bang singularity is the vertex of a null half-cone in M 5 . Global rigidity leads to an invariant characterization of the singularity. The structure of matter at the singularity is governed by the de Sitter group. (author)
Five-dimensional null-cone structure of big bang singularity
Energy Technology Data Exchange (ETDEWEB)
Lauro, S.; Schucking, E.L.
1985-04-01
The Friedmann model PHI of positive space curvature, vanishing pressure and cosmological constant when isometrically imbedded as a hypersurface in five-dimensional Minkowski space MV is globally rigid: if F(PHI) and F'(PHI) are isometric embeddings in MV there is a motion of MV such that F'= F. The big bang singularity is the vertex of a null half-cone in MV. Global rigidity leads to an invariant characterization of the singularity. The structure of matter at the singularity is governed by the de Sitter group.
International Nuclear Information System (INIS)
Dvali, Gia; Kolanovic, Marko; Nitti, Francesco; Gabadadze, Gregory
2002-01-01
We propose a framework in which the quantum gravity scale can be as low as 10 -3 eV. The key assumption is that the standard model ultraviolet cutoff is much higher than the quantum gravity scale. This ensures that we observe conventional weak gravity. We construct an explicit brane-world model in which the brane-localized standard model is coupled to strong 5D gravity of infinite-volume flat extra space. Because of the high ultraviolet scale, the standard model fields generate a large graviton kinetic term on the brane. This kinetic term 'shields' the standard model from the strong bulk gravity. As a result, an observer on the brane sees weak 4D gravity up to astronomically large distances beyond which gravity becomes five dimensional. Modeling quantum gravity above its scale by the closed string spectrum we show that the shielding phenomenon protects the standard model from an apparent phenomenological catastrophe due to the exponentially large number of light string states. The collider experiments, astrophysics, cosmology and gravity measurements independently point to the same lower bound on the quantum gravity scale, 10 -3 eV. For this value the model has experimental signatures both for colliders and for submillimeter gravity measurements. Black holes reveal certain interesting properties in this framework
Quantum statistical entropy corresponding to cosmic horizon in five-dimensional spacetime
Institute of Scientific and Technical Information of China (English)
2008-01-01
The generalized uncertainty relation is introduced to calculate the quantum statis-tical entropy corresponding to cosmic horizon. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is no divergent logarithmic term in the original brick-wall method. And it is obtained that the quantum statistical en-tropy corresponding to cosmic horizon is proportional to the area of the horizon. Further it is shown that the entropy corresponding to cosmic horizon is the entropy of quantum state on the surface of horizon. The black hole’s entropy is the intrinsic property of the black hole. The entropy is a quantum effect. In our calculation, by using the quantum statistical method, we obtain the partition function of Bose field and Fermi field on the background of five-dimensional spacetime. We provide a way to study the quantum statistical entropy corresponding to cosmic horizon in the higher-dimensional spacetime.
Revisiting the ADT mass of the five-dimensional rotating black holes with squashed horizons
Energy Technology Data Exchange (ETDEWEB)
Peng, Jun-Jin [Guizhou Normal University, Guizhou Provincial Key Laboratory of Radio Astronomy and Data Processing, Guiyang (China)
2017-10-15
We evaluate the Abbott-Deser-Tekin (ADT) mass of the five-dimensional rotating black holes with squashed horizons on two different on-shell reference backgrounds, which are the flat background and the boundary matched Kaluza-Klein (KK) monopole. The mass on the former, identified with the one on the background of the asymptotic geometry, differs from the mass on the latter by that of the KK monopole. However, each mass satisfies the first law of black hole thermodynamics. To test the results in five dimensions, we compute the mass in the context of the dimensionally reduced theory. Finally, in contrast with the original ADT formulation, its off-shell generalisation is applied to calculate the mass as well. (orig.)
Painleve-gullstrand-type Coordinates for the Five-dimensional Myers-Perry Black Hole
Finch, Tehani Kahi
2013-01-01
The Painleve-Gullstrand coordinates provide a convenient framework for presenting the Schwarzschild geometry because of their flat constant-time hypersurfaces, and the fact that they are free of coordinate singularities outside r=0. Generalizations of Painlev´e-Gullstrand coordinates suitable for the Kerr geometry have been presented by Doran and Nat´ario. These coordinate systems feature a time coordinate identical to the proper time of zero-angular-momentum observers that are dropped from infinity. Here, the methods of Doran and Nat´ario are extended to the five-dimensional rotating black hole found by Myers and Perry. The result is a new formulation of the Myers-Perry metric. The properties and physical significance of these new coordinates are discussed.
Thermodynamics and Hawking radiation of five-dimensional rotating charged Goedel black holes
International Nuclear Information System (INIS)
Wu Shuangqing; Peng Junjin
2011-01-01
We study the thermodynamics of Goedel-type rotating charged black holes in five-dimensional minimal supergravity. These black holes exhibit some peculiar features such as the presence of closed timelike curves and the absence of a globally spatial-like Cauchy surface. We explicitly compute their energies, angular momenta, and electric charges that are consistent with the first law of thermodynamics. Besides, we extend the covariant anomaly cancellation method, as well as the approach of the effective action, to derive their Hawking fluxes. Both the methods of the anomaly cancellation and the effective action give the same Hawking fluxes as those from the Planck distribution for blackbody radiation in the background of the charged rotating Goedel black holes. Our results further support that Hawking radiation is a quantum phenomenon arising at the event horizon.
Revisiting the ADT mass of the five-dimensional rotating black holes with squashed horizons
International Nuclear Information System (INIS)
Peng, Jun-Jin
2017-01-01
We evaluate the Abbott-Deser-Tekin (ADT) mass of the five-dimensional rotating black holes with squashed horizons on two different on-shell reference backgrounds, which are the flat background and the boundary matched Kaluza-Klein (KK) monopole. The mass on the former, identified with the one on the background of the asymptotic geometry, differs from the mass on the latter by that of the KK monopole. However, each mass satisfies the first law of black hole thermodynamics. To test the results in five dimensions, we compute the mass in the context of the dimensionally reduced theory. Finally, in contrast with the original ADT formulation, its off-shell generalisation is applied to calculate the mass as well. (orig.)
Revisiting the ADT mass of the five-dimensional rotating black holes with squashed horizons
Peng, Jun-Jin
2017-10-01
We evaluate the Abbott-Deser-Tekin (ADT) mass of the five-dimensional rotating black holes with squashed horizons on two different on-shell reference backgrounds, which are the flat background and the boundary matched Kaluza-Klein (KK) monopole. The mass on the former, identified with the one on the background of the asymptotic geometry, differs from the mass on the latter by that of the KK monopole. However, each mass satisfies the first law of black hole thermodynamics. To test the results in five dimensions, we compute the mass in the context of the dimensionally reduced theory. Finally, in contrast with the original ADT formulation, its off-shell generalisation is applied to calculate the mass as well.
Remarks on a five-dimensional Kaluza-Klein theory of the massive Dirac monopole
International Nuclear Information System (INIS)
Cotaescu, Ion I.
2005-01-01
The Gross-Perry-Sorkin spacetime, formed by the Euclidean Taub-Newman-Unti-Tamburino space with the time trivially added, is the appropriate background of the Dirac magnetic monopole without an explicit mass term. We show that there exists a very simple five-dimensional metric of spacetimes carrying massive magnetic monopoles that is an exact solution of the vacuum Einstein equations. Moreover, the same isometry properties as the original Euclidean Taub-Newman-Unti-Tamburino space are preserved. This leads to an Abelian Kaluza-Klein theory whose metric appears as a combination between the Gross-Perry-Sorkin and Schwarzschild ones. The asymptotic motion of the scalar charged test particles is discussed, now by accounting for the mixing between the gravitational and magnetic effects
Black objects and hoop conjecture in five-dimensional space-time
Energy Technology Data Exchange (ETDEWEB)
Yamada, Yuta; Shinkai, Hisa-aki, E-mail: m1m08a26@info.oit.ac.j, E-mail: shinkai@is.oit.ac.j [Faculty of Information Science and Technology, Osaka Institute of Technology, 1-79-1 Kitayama, Hirakata, Osaka 573-0196 (Japan)
2010-02-21
We numerically investigated the sequences of initial data of a thin spindle and a thin ring in five-dimensional space-time in the context of the cosmic censorship conjecture. We modeled the matter in non-rotating homogeneous spheroidal or toroidal configurations under the momentarily static assumption, solved the Hamiltonian constraint equation and searched the apparent horizons. We discussed when S{sup 3} (black-hole) or S{sup 1} x S{sup 2} (black-ring) horizons ('black objects') are formed. By monitoring the location of the maximum Kretchmann invariant, an appearance of 'naked singularity' or 'naked ring' under special situations is suggested. We also discuss the validity of the hyper-hoop conjecture using a minimum area around the object, and show that the appearance of the ring horizon does not match with this hoop.
Five-dimensional visualization of phase transition in BiNiO3 under high pressure
International Nuclear Information System (INIS)
Liu, Yijin; Wang, Junyue; Yang, Wenge; Azuma, Masaki; Mao, Wendy L.
2014-01-01
Colossal negative thermal expansion was recently discovered in BiNiO 3 associated with a low density to high density phase transition under high pressure. The varying proportion of co-existing phases plays a key role in the macroscopic behavior of this material. Here, we utilize a recently developed X-ray Absorption Near Edge Spectroscopy Tomography method and resolve the mixture of high/low pressure phases as a function of pressure at tens of nanometer resolution taking advantage of the charge transfer during the transition. This five-dimensional (X, Y, Z, energy, and pressure) visualization of the phase boundary provides a high resolution method to study the interface dynamics of high/low pressure phase
Hassaine, Mokhtar
2016-01-01
This book grew out of a set of lecture notes on gravitational Chern–Simons (CS) theories developed over the past decade for several schools and different audiences including graduate students and researchers.CS theories are gauge-invariant theories that can include gravity consistently. They are only defined in odd dimensions and represent a very special class of theories in the Lovelock family. Lovelock gravitation theories are the natural extensions of General Relativity for dimensions greater than four that yield second-order field equations for the metric. These theories also admit local supersymmetric extensions where supersymmetry is an off-shell symmetry of the action, as in a standard gauge theory.Apart from the arguments of mathematical elegance and beauty, the gravitational CS actions are exceptionally endowed with physical attributes that suggest the viability of a quantum interpretation. CS theories are gauge-invariant, scale-invariant and background independent; they have no dimensional couplin...
The generalized second law of thermodynamics in generalized gravity theories
International Nuclear Information System (INIS)
Wu Shaofeng; Yang Guohong; Wang Bin; Zhang Pengming
2008-01-01
We investigate the generalized second law of thermodynamics (GSL) in generalized theories of gravity. We examine the total entropy evolution with time including the horizon entropy, the non-equilibrium entropy production, and the entropy of all matter, field and energy components. We derive a universal condition to protect the generalized second law and study its validity in different gravity theories. In Einstein gravity (even in the phantom-dominated universe with a Schwarzschild black hole), Lovelock gravity and braneworld gravity, we show that the condition to keep the GSL can always be satisfied. In f(R) gravity and scalar-tensor gravity, the condition to protect the GSL can also hold because the temperature should be positive, gravity is always attractive and the effective Newton constant should be an approximate constant satisfying the experimental bounds
The portrait of eikonal instability in Lovelock theories
Energy Technology Data Exchange (ETDEWEB)
Konoplya, R.A. [Theoretical Astrophysics, Eberhard-Karls University of Tübingen, Tübingen 72076 (Germany); Zhidenko, A., E-mail: roman.konoplya@gmail.com, E-mail: olexandr.zhydenko@ufabc.edu.br [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC (UFABC), Rua Abolição, CEP: 09210-180, Santo André, SP (Brazil)
2017-05-01
Perturbations and eikonal instabilities of black holes and branes in the Einstein-Gauss-Bonnet theory and its Lovelock generalization were considered in the literature for several particular cases, where the asymptotic conditions (flat, dS, AdS), the number of spacetime dimensions D , non-vanishing coupling constants (α{sub 1}, α{sub 2}, α{sub 3} etc.) and other parameters have been chosen in a specific way. Here we give a comprehensive analysis of the eikonal instabilities of black holes and branes for the most general Lovelock theory, not limited by any of the above cases. Although the part of the stability analysis is performed here purely analytically and formulated in terms of the inequalities for the black hole parameters, the most general case is treated numerically and the accurate regions of instabilities are presented. The shared Mathematica® code allows the reader to construct the regions of eikonal instability for any desired values of the parameters.
International Nuclear Information System (INIS)
Bruckman, W.
1986-01-01
The inverse scattering method of Belinsky and Zakharov is used to investigate axially symmetric stationary vacuum soliton solutions in the five-dimensional representation of the Brans-Dicke-Jordan theory of gravitation, where the scalar field of the theory is an element of a five-dimensional metric. The resulting equations for the spacetime metric are similar to those of solitons in general relativity, while the scalar field generated is the product of a simple function of the coordinates and an already known scalar field solution. A family of solutions is considered that reduce, in the absence of rotation, to the five-dimensional form of a well-known Weyl-Levi Civita axially symmetric static vacuum solution. With a suitable choice of parameters, this static limit becomes equivalent to the spherically symmetric solution of the Brans-Dicke theory. An exact metric, in which the Kerr-scalar McIntosh solution is a special case, is given explicitly
Miniature robust five-dimensional fingertip force/torque sensor with high performance
International Nuclear Information System (INIS)
Liang, Qiaokang; Huang, Xiuxiang; Li, Zhongyang; Zhang, Dan; Ge, Yunjian
2011-01-01
This paper proposes an innovative design and investigation for a five-dimensional fingertip force/torque sensor with a dual annular diaphragm. This sensor can be applied to a robot hand to measure forces along the X-, Y- and Z-axes (F x , F y and F z ) and moments about the X- and Y-axes (M x and M y ) simultaneously. Particularly, the details of the sensing principle, the structural design and the overload protection mechanism are presented. Afterward, based on the design of experiments approach provided by the software ANSYS®, a finite element analysis and an optimization design are performed. These are performed with the objective of achieving both high sensitivity and stiffness of the sensor. Furthermore, static and dynamic calibrations based on the neural network method are carried out. Finally, an application of the developed sensor on a dexterous robot hand is demonstrated. The results of calibration experiments and the application show that the developed sensor possesses high performance and robustness
International Nuclear Information System (INIS)
Cardoso, Vitor; Lemos, Jose P.S.; Yoshida, Shijun
2003-01-01
We calculate the quasi normal modes (QNMs) for gravitational perturbations of the Schwarzschild black hole in the five dimensional (5D) spacetime with a continued fraction method. For all the types of perturbations (scalar-gravitational, vector-gravitational, and tensor-gravitational perturbations), the QNMs associated with l = 2, l 3, and l = 4 are calculated. Our numerical results are summarized as follows: (i) The three types of gravitational perturbations associated with the same angular quantum number l have a different set of the quasi normal (QN) frequencies; (ii) There is no purely imaginary frequency mode; (iii) The three types of gravitational perturbations have the same asymptotic behavior of the QNMs in the limit of the large imaginary frequencies, which are given by ωT H -1 → log 3+ 2πi(n+1/2) as n → ∞, where ω, T H , and n are the oscillation frequency, the Hawking temperature of the black hole, and the mode number, respectively. (author)
A realistic pattern of fermion masses from a five-dimensional SO(10) model
International Nuclear Information System (INIS)
Feruglio, Ferruccio; Patel, Ketan M.; Vicino, Denise
2015-01-01
We provide a unified description of fermion masses and mixing angles in the framework of a supersymmetric grand unified SO(10) model with anarchic Yukawa couplings of order unity. The space-time is five dimensional and the extra flat spatial dimension is compactified on the orbifold S 1 /(Z 2 ×Z 2 ′ ), leading to Pati-Salam gauge symmetry on the boundary where Yukawa interactions are localised. The gauge symmetry breaking is completed by means of a rather economic scalar sector, avoiding the doublet-triplet splitting problem. The matter fields live in the bulk and their massless modes get exponential profiles, which naturally explain the mass hierarchy of the different fermion generations. Quarks and leptons properties are naturally reproduced by a mechanism, first proposed by Kitano and Li, that lifts the SO(10) degeneracy of bulk masses in terms of a single parameter. The model provides a realistic pattern of fermion masses and mixing angles for large values of tan β. It favours normally ordered neutrino mass spectrum with the lightest neutrino mass below 0.01 eV and no preference for leptonic CP violating phases. The right handed neutrino mass spectrum is very hierarchical and does not allow for thermal leptogenesis. We analyse several variants of the basic framework and find that the results concerning the fermion spectrum are remarkably stable.
Maxwell’s equal area law for Lovelock thermodynamics
Xu, Hao; Xu, Zhen-Ming
We present the construction of Maxwell’s equal area law for the Guass-Bonnet AdS black holes in d = 5, 6 and third-order Lovelock AdS black holes in d = 7, 8. The equal area law can be used to find the number and location of the points of intersection in the plots of Gibbs free energy, so that we can get the thermodynamically preferred solution which corresponds to the first-order phase transition. We obtain the radius of the small and large black holes in the phase transition which share the same Gibbs free energy. The case with two critical points is explored in much more details. The latent heat is also studied.
Briggs, C C
2000-01-01
An overview is given of various occurrences of general expressions for the coefficients of Lovelock Lagrangians and for Lovelock tensors from the 0th to the 5th order in curvature in terms of the Riemann-Christoffel and Ricci curvature tensors and the Riemann curvature scalar for n-dimensional differentiable manifolds having a general linear connection.
Effective action in multidimensional quantum gravity and spontaneous compactification
International Nuclear Information System (INIS)
Bagrov, V.G.; Bukhbinder, I.L.; Odintsov, S.D.
1987-01-01
One-loop effective action (the Casimir energy) is obtained for a special model of multidimensional quantum gravity and several variants of the d-dimensional quantum R 2 gravity in the space M 4 xT d-4 , where M 4 is the Minkowski space and T d-4 is the (d-4)-dimensional torus. It is shown that the effective action for the conformal gravity and the R 2 gravity without cosmological and Einstein's terms lead to an instability of the classical compactification. A numerical calculation reveals that the effective action for the five-dimensional R 2 gravity with the cosmological term is compatible with a self-consistent spontaneous compactification. The one-loop effective action is also obtained for the five dimensional Einstein gravity with the antisymmetrical torsion in the space M 4 xS 1 , where S 1 is the one-dimensional sphere
Effective action in multidimensional quantum gravity, and spontaneous compactification
International Nuclear Information System (INIS)
Bagrov, V.G.; Bukhbinder, I.L.; Odintsov, S.D.
1987-01-01
The one-loop effective action (Casimir energy) is obtained for a special form of model of multidimensional quantum gravity and for several variants of d-dimensional quantum R 2 -gravity on the space M 4 x T/sub d//sub -4/, where M 4 is Minkowski space and T/sub d//sub -4/ is the (d-4)-dimensional torus. It is shown that the effective action of the model of multidimensional quantum gravity and R 2 -gravity without the cosmological term and Einstein term leads to instability of the classical compactification. By a numerical calculation it is demonstrated that the effective action of five-dimensional R 2 -gravity with the cosmological term admits a self-consistent spontaneous compactification. The one-loop effective action is also found for five-dimensional Einstein gravity with antisymmetric torsion on the space M 4 x S 1 (S 1 is the one-dimensional sphere)
On a Five-Dimensional Chaotic System Arising from Double-Diffusive Convection in a Fluid Layer
Directory of Open Access Journals (Sweden)
R. Idris
2013-01-01
Full Text Available A chaotic system arising from double-diffusive convection in a fluid layer is investigated in this paper based on the theory of dynamical systems. A five-dimensional model of chaotic system is obtained using the Galerkin truncated approximation. The results showed that the transition from steady convection to chaos via a Hopf bifurcation produced a limit cycle which may be associated with a homoclinic explosion at a slightly subcritical value of the Rayleigh number.
Five-dimensional PPN formalism and experimental test of Kaluza-Klein theory
International Nuclear Information System (INIS)
Xu Peng; Ma Yongge
2007-01-01
The parametrized post-Newtonian formalism for 5-dimensional metric theories with a compact extra dimension is developed. The relation of the 5-dimensional and 4-dimensional formulations is then analyzed, in order to compare the higher dimensional theories of gravity with experiments. It turns out that the value of post-Newtonian parameter γ in the reduced 5-dimensional Kaluza-Klein theory is two times smaller than that in 4-dimensional general relativity. The departure is due to the existence of an extra dimension in the Kaluza-Klein theory. Thus the confrontation between the reduced 4-dimensional formalism and Solar system experiments raises a severe challenge to the classical Kaluza-Klein theory
Instability of black strings in the third-order Lovelock theory
Giacomini, Alex; Henríquez-Báez, Carla; Lagos, Marcela; Oliva, Julio; Vera, Aldo
2016-05-01
We show that homogeneous black strings of third-order Lovelock theory are unstable under s-wave perturbations. This analysis is done in dimension D =9 , which is the lowest dimension that allows the existence of homogeneous black strings in a theory that contains only the third-order Lovelock term in the Lagrangian. As is the case in general relativity, the instability is produced by long wavelength perturbations and it stands for the perturbative counterpart of a thermal instability. We also provide a comparative analysis of the instabilities of black strings at a fixed radius in general relativity, Gauss-Bonnet, and third-order Lovelock theories. We show that the minimum critical wavelength that triggers the instability grows with the power of the curvature defined in the Lagrangian. The maximum exponential growth during the time of the perturbation is the largest in general relativity and it decreases with the number of curvatures involved in the Lagrangian.
International Nuclear Information System (INIS)
Idomura, Yasuhiro; Jolliet, Sebastien
2010-01-01
A gyrokinetic toroidal five dimensional Eulerian code GT5D is ported on six advanced massively parallel platforms and comprehensive benchmark tests are performed. A parallelisation technique based on physical properties of the gyrokinetic equation is presented. By extending the parallelisation technique with a hybrid parallel model, the scalability of the code is improved on platforms with multi-core processors. In the benchmark tests, a good salability is confirmed up to several thousands cores on every platforms, and the maximum sustained performance of ∼18.6 Tflops is achieved using 16384 cores of BX900. (author)
Energy Technology Data Exchange (ETDEWEB)
Lennernaes, Bo (Dept. of Oncology, Sahlgrenska Hospital and Academy, Univ. of Gothenburg, Gothenburg (Sweden)), e-mail: bo.lennernas@telia.com; Castellanos, Enrique; Nilsson, Sten; Levitt, Seymour (Dept. of Oncology/Pathology, Karolinska Univ. Hospital and Institutet, Stockholm (Sweden))
2011-06-15
Radiotherapy (RT) always requires a compromise between tumor control and normal tissue side-effects. Technical innovation in radiation therapy (RT), such as three dimensional RT, is now established. Concerning prostate cancer (PC), it is reasonable to assume that RT of PC will increase in the future. The combination of small margins, a movable target (prostate), few fractions and high doses will probably demand dynamically positioning systems and in real time. This is called four dimensional radiotherapy (4DRT). Moreover, biological factors must be included in new treatments such as hypofractionation schedules. This new era is called five dimensional radiotherapy, 5DRT. In this paper we discuss new concepts in RT in respect to PC
Energy Technology Data Exchange (ETDEWEB)
Breban, Romulus [Institut Pasteur, Paris Cedex 15 (France)
2016-09-15
Five-dimensional (5D) space-time symmetry greatly facilitates how a 4D observer perceives the propagation of a single spinless particle in a 5D space-time. In particular, if the 5D geometry is independent of the fifth coordinate then the 5D physics may be interpreted as 4D quantum mechanics. In this work we address the case where the symmetry is approximate, focusing on the case where the 5D geometry depends weakly on the fifth coordinate. We show that concepts developed for the case of exact symmetry approximately hold when other concepts such as decaying quantum states, resonant quantum scattering, and Stokes drag are adopted, as well. We briefly comment on the optical model of the nuclear interactions and Millikan's oil drop experiment. (orig.)
International Nuclear Information System (INIS)
Myung, Y.S.
2003-01-01
We calculate corrections to the Bekenstein-Hawking entropy formula for the five-dimensional topological AdS (TAdS)-black holes and topological de Sitter (TdS) spaces due to thermal fluctuations. We can derive all thermal properties of the TdS spaces from those of the TAdS black holes by replacing k by -k. Also we obtain the same correction to the Cardy-Verlinde formula for TAdS and TdS cases including the cosmological horizon of the Schwarzschild-de Sitter (SdS) black hole. Finally we discuss the AdS/CFT and dS/CFT correspondences and their dynamic correspondences
International Nuclear Information System (INIS)
Bezerra de Mello, E.R.
2006-01-01
In this paper we present, in a integral form, the Euclidean Green function associated with a massless scalar field in the five-dimensional Kaluza-Klein magnetic monopole superposed to a global monopole, admitting a nontrivial coupling between the field with the geometry. This Green function is expressed as the sum of two contributions: the first one related with uncharged component of the field, is similar to the Green function associated with a scalar field in a four-dimensional global monopole space-time. The second contains the information of all the other components. Using this Green function it is possible to study the vacuum polarization effects on this space-time. Explicitly we calculate the renormalized vacuum expectation value * (x)Φ(x)> Ren , which by its turn is also expressed as the sum of two contributions
Brane cosmology in teleparallel and f (T ) gravity
International Nuclear Information System (INIS)
Atazadeh, K; Eghbali, A
2015-01-01
We consider the cosmology of a brane-world scenario in the framework of teleparallel and f(T) gravity in a way that matter is localized on the brane. We show that the cosmology of such branes is different from the standard cosmology in teleparallelism. In particular, we obtain a class of new solutions with a constant five-dimensional radius and cosmologically evolving brane in the context of constant torsion f(T) gravity. (paper)
Equivalence between the Lovelock-Cartan action and a constrained gauge theory
International Nuclear Information System (INIS)
Junqueira, O.C.; Sadovski, G.; Santos, T.R.S.; Sobreiro, R.F.; Pereira, A.D.; Tomaz, A.A.
2017-01-01
We show that the four-dimensional Lovelock-Cartan action can be derived from a massless gauge theory for the SO(1, 3) group with an additional BRST trivial part. The model is originally composed of a topological sector and a BRST exact piece and has no explicit dependence on the metric, the vierbein or a mass parameter. The vierbein is introduced together with a mass parameter through some BRST trivial constraints. The effect of the constraints is to identify the vierbein with some of the additional fields, transforming the original action into the Lovelock-Cartan one. In this scenario, the mass parameter is identified with Newton's constant, while the gauge field is identified with the spin connection. The symmetries of the model are also explored. Moreover, the extension of the model to a quantum version is qualitatively discussed. (orig.)
Equivalence between the Lovelock-Cartan action and a constrained gauge theory
Energy Technology Data Exchange (ETDEWEB)
Junqueira, O.C.; Sadovski, G.; Santos, T.R.S.; Sobreiro, R.F. [UFF-Universidade Federal Fluminense, Instituto de Fisica, Niteroi, RJ (Brazil); Pereira, A.D. [UERJ-Universidade Estadual do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro, RJ (Brazil); Tomaz, A.A. [UFF-Universidade Federal Fluminense, Instituto de Fisica, Niteroi, RJ (Brazil); CBPF-Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ (Brazil)
2017-04-15
We show that the four-dimensional Lovelock-Cartan action can be derived from a massless gauge theory for the SO(1, 3) group with an additional BRST trivial part. The model is originally composed of a topological sector and a BRST exact piece and has no explicit dependence on the metric, the vierbein or a mass parameter. The vierbein is introduced together with a mass parameter through some BRST trivial constraints. The effect of the constraints is to identify the vierbein with some of the additional fields, transforming the original action into the Lovelock-Cartan one. In this scenario, the mass parameter is identified with Newton's constant, while the gauge field is identified with the spin connection. The symmetries of the model are also explored. Moreover, the extension of the model to a quantum version is qualitatively discussed. (orig.)
Equivalence between the Lovelock-Cartan action and a constrained gauge theory
Junqueira, O. C.; Pereira, A. D.; Sadovski, G.; Santos, T. R. S.; Sobreiro, R. F.; Tomaz, A. A.
2017-04-01
We show that the four-dimensional Lovelock-Cartan action can be derived from a massless gauge theory for the SO(1, 3) group with an additional BRST trivial part. The model is originally composed of a topological sector and a BRST exact piece and has no explicit dependence on the metric, the vierbein or a mass parameter. The vierbein is introduced together with a mass parameter through some BRST trivial constraints. The effect of the constraints is to identify the vierbein with some of the additional fields, transforming the original action into the Lovelock-Cartan one. In this scenario, the mass parameter is identified with Newton's constant, while the gauge field is identified with the spin connection. The symmetries of the model are also explored. Moreover, the extension of the model to a quantum version is qualitatively discussed.
Energy Technology Data Exchange (ETDEWEB)
Escalante, Alberto, E-mail: aescalan@ifuap.buap.mx; Zarate, Moises, E-mail: mzarate@ifuap.buap.mx
2015-02-15
A detailed Hamiltonian analysis for a five-dimensional Stüeckelberg theory with a compact dimension is performed. First, we develop a pure Dirac’s analysis of the theory; we show that after performing the compactification, the theory is reduced to four-dimensional Stüeckelberg theory plus a tower of Kaluza–Klein modes. We develop a complete analysis of the constraints, we fix the gauge and we show that there are present pseudo-Goldstone bosons. Then we quantize the theory by constructing the Dirac brackets. As complementary work, we perform the Faddeev–Jackiw quantization for the theory under study, and we calculate the generalized Faddeev–Jackiw brackets, we show that both the Faddeev–Jackiw and Dirac’s brackets are the same. Finally we discuss some remarks and prospects. - Highlights: • Dirac’s method for 5D Stueckelberg theory with a compact dimension is performed. • By fixing the gauge in the effective theory we find present pseudo-Goldstone bosons. • Dirac’s brackets are constructed for the zero-modes and the kk-excitations. • The Faddeev–Jackiw quantization is performed. • The equivalence between generalized Faddeev–Jackiw and Dirac’s brackets is shown.
(Super-)Gravities of a different sort
International Nuclear Information System (INIS)
Edelstein, Jose D; Zanelli, Jorge
2006-01-01
We review the often forgotten fact that gravitation theories invariant under local de Sitter, anti-de Sitter or Poincare transformations can be constructed in all odd dimensions. These theories belong to the Chern-Simons family and are particular cases of the so-called Lovelock gravities, constructed as the dimensional continuations of the lower dimensional Euler classes. The supersymmetric extensions of these theories exist for the AdS and Poincare groups, and the fields are components of a single connection for the corresponding Lie algebras. In 11 dimensions these supersymmetric theories are gauge theories for the osp(1/32) and the M algebra, respectively. The relation between these new supergravities and the standard theories, as well as some of their dynamical features are also discussed
Fan, T. S.; Wang, Z. M.; Zhu, X.; Zhu, W. J.; Zhong, C. L.
2017-09-01
In this work, the nuclear potential-energy of the deformed nuclei as a function of shape coordinates is calculated in a five-dimensional (5D) parameter space of the axially symmetric generalized Lawrence shapes, on the basis of the macroscopic-microscopic method. The liquid-drop part of the nuclear energy is calculated according to the Myers-Swiatecki model and the Lublin-Strasbourg-drop (LSD) formula. The Woods-Saxon and the folded-Yukawa potentials for deformed nuclei are used for the shell and pairing corrections of the Strutinsky-type. The pairing corrections are calculated at zero temperature, T, related to the excitation energy. The eigenvalues of Hamiltonians for protons and neutrons are found by expanding the eigen-functions in terms of harmonic-oscillator wave functions of a spheroid. Then the BCS pair is applied on the smeared-out single-particle spectrum. By comparing the results obtained by different models, the most favorable combination of the macroscopic-microscopic model is known as the LSD formula with the folded-Yukawa potential. Potential-energy landscapes for actinide isotopes are investigated based on a grid of more than 4,000,000 deformation points and the heights of static fission barriers are obtained in terms of a double-humped structure on the full 5D parameter space. In order to locate the ground state shapes, saddle points, scission points and optimal fission path on the calculated 5D potential-energy surface, the falling rain algorithm and immersion method are designed and implemented. The comparison of our results with available experimental data and others' theoretical results confirms the reliability of our calculations.
Sauppe, Sebastian; Hahn, Andreas; Brehm, Marcus; Paysan, Pascal; Seghers, Dieter; Kachelrieß, Marc
2016-03-01
We propose an adapted method of our previously published five-dimensional (5D) motion compensation (MoCo) algorithm1, developed for micro-CT imaging of small animals, to provide for the first time motion artifact-free 5D cone-beam CT (CBCT) images from a conventional flat detector-based CBCT scan of clinical patients. Image quality of retrospectively respiratory- and cardiac-gated volumes from flat detector CBCT scans is deteriorated by severe sparse projection artifacts. These artifacts further complicate motion estimation, as it is required for MoCo image reconstruction. For high quality 5D CBCT images at the same x-ray dose and the same number of projections as todays 3D CBCT we developed a double MoCo approach based on motion vector fields (MVFs) for respiratory and cardiac motion. In a first step our already published four-dimensional (4D) artifact-specific cyclic motion-compensation (acMoCo) approach is applied to compensate for the respiratory patient motion. With this information a cyclic phase-gated deformable heart registration algorithm is applied to the respiratory motion-compensated 4D CBCT data, thus resulting in cardiac MVFs. We apply these MVFs on double-gated images and thereby respiratory and cardiac motion-compensated 5D CBCT images are obtained. Our 5D MoCo approach processing patient data acquired with the TrueBeam 4D CBCT system (Varian Medical Systems). Our double MoCo approach turned out to be very efficient and removed nearly all streak artifacts due to making use of 100% of the projection data for each reconstructed frame. The 5D MoCo patient data show fine details and no motion blurring, even in regions close to the heart where motion is fastest.
Radar time delays in the dynamic theory of gravity
Directory of Open Access Journals (Sweden)
Haranas I.I.
2004-01-01
Full Text Available There is a new theory gravity called the dynamic theory, which is derived from thermodynamic principles in a five dimensional space, radar signals traveling times and delays are calculated for the major planets in the solar system, and compared to those of general relativity. This is done by using the usual four dimensional spherically symmetric space-time element of classical general relativistic gravity which has now been slightly modified by a negative inverse radial exponential term due to the dynamic theory of gravity potential.
Holographic heat engine within the framework of massive gravity
Mo, Jie-Xiong; Li, Gu-Qiang
2018-05-01
Heat engine models are constructed within the framework of massive gravity in this paper. For the four-dimensional charged black holes in massive gravity, it is shown that the existence of graviton mass improves the heat engine efficiency significantly. The situation is more complicated for the five-dimensional neutral black holes since the constant which corresponds to the third massive potential also contributes to the efficiency. It is also shown that the existence of graviton mass can improve the heat engine efficiency. Moreover, we probe how the massive gravity influences the behavior of the heat engine efficiency approaching the Carnot efficiency.
Universal instability of hairy black holes in Lovelock-Galileon theories in D dimensions
Takahashi, Kazufumi; Suyama, Teruaki; Kobayashi, Tsutomu
2016-03-01
We analyze spherically symmetric black hole solutions with time-dependent scalar hair in a class of Lovelock-Galileon theories, which are the scalar-tensor theories with second-order field equations in arbitrary dimensions. We first show that known black hole solutions in five dimensions are always plagued by the ghost/gradient instability in the vicinity of the horizon. We then generalize such black hole solutions to higher dimensions and show that the same instability found in five dimensions appears universally in any number of dimensions.
Data on ground-water quality for the Lovelock 1 degree by 2 degree quadrangle, western Nevada
Welch, Alan H.; Williams, Rhea P.
1987-01-01
Water quality data for groundwater has been compiled for the Lovelock 1 degree x 2 degree quadrangle which covers a portion of western Nevada. Chemical characteristics of the water are shown on a map (at a scale of 1:250,000) and on trilinear diagrams for the major ions. The data for the area are also presented in a table. (USGS)
Quasi-topological Ricci polynomial gravities
Li, Yue-Zhou; Liu, Hai-Shan; Lü, H.
2018-02-01
Quasi-topological terms in gravity can be viewed as those that give no contribution to the equations of motion for a special subclass of metric ansätze. They therefore play no rôle in constructing these solutions, but can affect the general perturbations. We consider Einstein gravity extended with Ricci tensor polynomial invariants, which admits Einstein metrics with appropriate effective cosmological constants as its vacuum solutions. We construct three types of quasi-topological gravities. The first type is for the most general static metrics with spherical, toroidal or hyperbolic isometries. The second type is for the special static metrics where g tt g rr is constant. The third type is the linearized quasitopological gravities on the Einstein metrics. We construct and classify results that are either dependent on or independent of dimensions, up to the tenth order. We then consider a subset of these three types and obtain Lovelock-like quasi-topological gravities, that are independent of the dimensions. The linearized gravities on Einstein metrics on all dimensions are simply Einstein and hence ghost free. The theories become quasi-topological on static metrics in one specific dimension, but non-trivial in others. We also focus on the quasi-topological Ricci cubic invariant in four dimensions as a specific example to study its effect on holography, including shear viscosity, thermoelectric DC conductivities and butterfly velocity. In particular, we find that the holographic diffusivity bounds can be violated by the quasi-topological terms, which can induce an extra massive mode that yields a butterfly velocity unbound above.
Gravity mediated supersymmetry breaking in six dimensions
International Nuclear Information System (INIS)
Falkowski, A.; Lee, H.M.; Luedeling, C.
2005-04-01
We study gravity mediated supersymmetry breaking in four-dimensional effective theories derived from six-dimensional brane-world supergravities. Using the Noether method we construct a locally supersymmetric action for a bulk-brane system consisting of the minimal six-dimensional supergravity coupled to vector and chiral multiplets located at four-dimensional branes. We compactify this system on T 2 /Z 2 and derive the four-dimensional effective supergravity. Most interestingly, sequestering of the matter living on different branes is not explicit in the tree-level Kaehler potential (but of course the action obtained from this Kaehler potential is consistent with higher dimensional locality). As a consequence, the features of gravity mediation are different than in five-dimensional models. We identify one scenario of moduli stabilization that yields positive gravity mediated soft scalar masses squared. (orig.)
Black hole production in particle collisions and higher curvature gravity
International Nuclear Information System (INIS)
Rychkov, Vyacheslav S.
2004-01-01
The problem of black hole production in trans-Planckian particle collisions is revisited, in the context of large extra dimensions scenarios of TeV-scale gravity. The validity of the standard description of this process (two colliding Aichelburg-Sexl shock waves in classical Einstein gravity) is questioned. It is observed that the classical spacetime has large curvature along the transverse collision plane, as signaled by the curvature invariant (R μνλσ ) 2 . Thus quantum gravity effects, and in particular higher curvature corrections to the Einstein gravity, cannot be ignored. To give a specific example of what may happen, the collision is reanalyzed in the Einstein-Lanczos-Lovelock gravity theory, which modifies the Einstein-Hilbert Lagrangian by adding a particular 'Gauss-Bonnet' combination of curvature squared terms. The analysis uses a series of approximations, which reduce the field equations to a tractable second order nonlinear PDE of the Monge-Ampere type. It is found that the resulting spacetime is significantly different from the pure Einstein case in the future of the transverse collision plane. These considerations cast serious doubts on the geometric cross section estimate, which is based on the classical Einstein gravity description of the black hole production process
de Rham, Claudia
2014-01-01
We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware–Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alt...
Gravity and antigravity in a brane world with metastable gravitons
Gregory, R.; Rubakov, V. A.; Sibiryakov, S. M.
2000-09-01
In the framework of a five-dimensional three-brane model with quasi-localized gravitons we evaluate metric perturbations induced on the positive tension brane by matter residing thereon. We find that at intermediate distances, the effective four-dimensional theory coincides, up to small corrections, with General Relativity. This is in accord with Csaki, Erlich and Hollowood and in contrast to Dvali, Gabadadze and Porrati. We show, however, that at ultra-large distances this effective four-dimensional theory becomes dramatically different: conventional tensor gravity changes into scalar anti-gravity.
Mashhoon, Bahram
2017-01-01
Relativity theory is based on a postulate of locality, which means that the past history of the observer is not directly taken into account. This book argues that the past history should be taken into account. In this way, nonlocality---in the sense of history dependence---is introduced into relativity theory. The deep connection between inertia and gravitation suggests that gravity could be nonlocal, and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein's theory of gravitation has recently been developed. A significant consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. According to nonlocal gravity theory, what astronomers attribute to dark matter should instead be due to the nonlocality of gravitation. Nonlocality dominates on the scale of galaxies and beyond. Memory fades with time; therefore, the nonlocal aspect of gravity becomes wea...
Black holes in quasi-topological gravity and conformal couplings
Chernicoff, Mariano; Fierro, Octavio; Giribet, Gaston; Oliva, Julio
2017-02-01
Lovelock theory of gravity provides a tractable model to investigate the effects of higher-curvature terms in the context of AdS/CFT. Yielding second order, ghost-free field equations, this theory represents a minimal setup in which higher-order gravitational couplings in asymptotically Anti-de Sitter (AdS) spaces, including black holes, can be solved analytically. This however has an obvious limitation as in dimensions lower than seven, the contribution from cubic or higher curvature terms is merely topological. Therefore, in order to go beyond quadratic order and study higher terms in AdS5 analytically, one is compelled to look for other toy models. One such model is the so-called quasi-topological gravity, which, despite being a higher-derivative theory, provides a tractable setup with R 3 and R 4 terms. In this paper, we investigate AdS5 black holes in quasi-topological gravity. We consider the theory conformally coupled to matter and in presence of Abelian gauge fields. We show that charged black holes in AdS5 which, in addition, exhibit a backreaction of the matter fields on the geometry can be found explicitly in this theory. These solutions generalize the black hole solution of quasi-topological gravity and exist in a region of the parameter spaces consistent with the constraints coming from causality and other consistency conditions. They have finite conserved charges and exhibit non-trivial thermodynamical properties.
Black holes in quasi-topological gravity and conformal couplings
International Nuclear Information System (INIS)
Chernicoff, Mariano; Fierro, Octavio; Giribet, Gaston; Oliva, Julio
2017-01-01
Lovelock theory of gravity provides a tractable model to investigate the effects of higher-curvature terms in the context of AdS/CFT. Yielding second order, ghost-free field equations, this theory represents a minimal setup in which higher-order gravitational couplings in asymptotically Anti-de Sitter (AdS) spaces, including black holes, can be solved analytically. This however has an obvious limitation as in dimensions lower than seven, the contribution from cubic or higher curvature terms is merely topological. Therefore, in order to go beyond quadratic order and study higher terms in AdS 5 analytically, one is compelled to look for other toy models. One such model is the so-called quasi-topological gravity, which, despite being a higher-derivative theory, provides a tractable setup with R 3 and R 4 terms. In this paper, we investigate AdS 5 black holes in quasi-topological gravity. We consider the theory conformally coupled to matter and in presence of Abelian gauge fields. We show that charged black holes in AdS 5 which, in addition, exhibit a backreaction of the matter fields on the geometry can be found explicitly in this theory. These solutions generalize the black hole solution of quasi-topological gravity and exist in a region of the parameter spaces consistent with the constraints coming from causality and other consistency conditions. They have finite conserved charges and exhibit non-trivial thermodynamical properties.
Massive gravity from bimetric gravity
International Nuclear Information System (INIS)
Baccetti, Valentina; Martín-Moruno, Prado; Visser, Matt
2013-01-01
We discuss the subtle relationship between massive gravity and bimetric gravity, focusing particularly on the manner in which massive gravity may be viewed as a suitable limit of bimetric gravity. The limiting procedure is more delicate than currently appreciated. Specifically, this limiting procedure should not unnecessarily constrain the background metric, which must be externally specified by the theory of massive gravity itself. The fact that in bimetric theories one always has two sets of metric equations of motion continues to have an effect even in the massive gravity limit, leading to additional constraints besides the one set of equations of motion naively expected. Thus, since solutions of bimetric gravity in the limit of vanishing kinetic term are also solutions of massive gravity, but the contrary statement is not necessarily true, there is no complete continuity in the parameter space of the theory. In particular, we study the massive cosmological solutions which are continuous in the parameter space, showing that many interesting cosmologies belong to this class. (paper)
Wilfinger, Roman
2008-01-01
The basic goal of the study is to develop a five dimensional leadership questionnaire for a project leader in an international scientific research laboratory and to verify statistically the independency of the individual questions from each other to ensure low overlap in content and meaning by achieving low correlation coefficients. This leadership questionnaire is designed to examine the behavior, personality, and character attributes of a project or experiment team leader in an international scientific research laboratory as perceived by her/his team members during the planning, design, implementation, and execution of the project itself. The leadership questionnaire is applied to a sample of about 40 participants from different international scientific research laboratories. This sample should represent in age, rank, and profession the whole population of employees and team members currently working in different international scientific research laboratories dealing with physics, informatics, and engineeri...
Higher-order gravity in higher dimensions: geometrical origins of four-dimensional cosmology?
Energy Technology Data Exchange (ETDEWEB)
Troisi, Antonio [Universita degli Studi di Salerno, Dipartimento di Fisica ' ' E.R. Caianiello' ' , Salerno (Italy)
2017-03-15
Determining the cosmological field equations is still very much debated and led to a wide discussion around different theoretical proposals. A suitable conceptual scheme could be represented by gravity models that naturally generalize Einstein theory like higher-order gravity theories and higher-dimensional ones. Both of these two different approaches allow one to define, at the effective level, Einstein field equations equipped with source-like energy-momentum tensors of geometrical origin. In this paper, the possibility is discussed to develop a five-dimensional fourth-order gravity model whose lower-dimensional reduction could provide an interpretation of cosmological four-dimensional matter-energy components. We describe the basic concepts of the model, the complete field equations formalism and the 5-D to 4-D reduction procedure. Five-dimensional f(R) field equations turn out to be equivalent, on the four-dimensional hypersurfaces orthogonal to the extra coordinate, to an Einstein-like cosmological model with three matter-energy tensors related with higher derivative and higher-dimensional counter-terms. By considering the gravity model with f(R) = f{sub 0}R{sup n} the possibility is investigated to obtain five-dimensional power law solutions. The effective four-dimensional picture and the behaviour of the geometrically induced sources are finally outlined in correspondence to simple cases of such higher-dimensional solutions. (orig.)
Lujan, Richard E.
2001-01-01
A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.
Directory of Open Access Journals (Sweden)
Barceló Carlos
2005-12-01
Full Text Available Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.
Alvarez, Enrique
2004-01-01
Gravitons should have momentum just as photons do; and since graviton momentum would cause compression rather than elongation of spacetime outside of matter; it does not appear that gravitons are compatible with Swartzchild's spacetime curvature. Also, since energy is proportional to mass, and mass is proportional to gravity; the energy of matter is proportional to gravity. The energy of matter could thus contract space within matter; and because of the inter-connectedness of space, cause the...
On the universality of thermodynamics and η/s ratio for the charged Lovelock black branes
Cadoni, Mariano; Frassino, Antonia M.; Tuveri, Matteo
2016-05-01
We investigate general features of charged Lovelock black branes by giving a detailed description of geometrical, thermodynamic and holographic properties of charged Gauss-Bonnet (GB) black branes in five dimensions. We show that when expressed in terms of effective physical parameters, the thermodynamic behaviour of charged GB black branes is completely indistinguishable from that of charged Einstein black branes. Moreover, the extremal, near-horizon limit of the two classes of branes is exactly the same as they allow for the same AdS2 × R 3, near-horizon, exact solution. This implies that, although in the UV the associated dual QFTs are different, they flow in the IR to the same fixed point. The calculation of the shear viscosity to entropy ratio η/s confirms these results. Despite the GB dual plasma has in general a non-universal temperature-dependent η/s, it flows monotonically to the universal value 1 /4 π in the IR. For negative (positive) GB coupling constant, η/s is an increasing (decreasing) function of the temperature and the flow respects (violates) the KSS bound.
Five-dimensional trinification improved
International Nuclear Information System (INIS)
Carone, Christopher D.; Conroy, Justin M.
2005-01-01
We present improved models of trinification in five dimensions. Unified symmetry is broken by a combination of orbifold projections and a boundary Higgs sector. The latter can be decoupled from the theory, realizing a Higgsless limit in which the scale of exotic massive gauge fields is set by the compactification radius. Electroweak Higgs doublets are identified with the fifth components of gauge fields and Yukawa interactions arise via Wilson loops. The result is a simple low-energy effective theory that is consistent with the constraints from proton decay and gauge unification
Horizon thermodynamics and gravitational field equations in Horava-Lifshitz gravity
International Nuclear Information System (INIS)
Cai Ronggen; Ohta, Nobuyoshi
2010-01-01
We explore the relationship between the first law of thermodynamics and gravitational field equation at a static, spherically symmetric black hole horizon in Horava-Lifshitz theory with/without detailed balance. It turns out that as in the cases of Einstein gravity and Lovelock gravity, the gravitational field equation can be cast to a form of the first law of thermodynamics at the black hole horizon. This way we obtain the expressions for entropy and mass in terms of black hole horizon, consistent with those from other approaches. We also define a generalized Misner-Sharp energy for static, spherically symmetric spacetimes in Horava-Lifshitz theory. The generalized Misner-Sharp energy is conserved in the case without matter field, and its variation gives the first law of black hole thermodynamics at the black hole horizon.
Flavorful hybrid anomaly-gravity mediation
International Nuclear Information System (INIS)
Gross, Christian; Hiller, Gudrun
2011-01-01
We consider supersymmetric models where anomaly and gravity mediation give comparable contributions to the soft terms and discuss how this can be realized in a five-dimensional brane world. The gaugino mass pattern of anomaly mediation is preserved in such a hybrid setup. The flavorful gravity-mediated contribution cures the tachyonic slepton problem of anomaly mediation. The supersymmetric flavor puzzle is solved by alignment. We explicitly show how a working flavor-tachyon link can be realized with Abelian flavor symmetries and give the characteristic signatures of the framework, including O(1) slepton mass splittings between different generations and between doublets and singlets. This provides opportunities for same flavor dilepton edge measurements with missing energy at the Large Hadron Collider (LHC). Rare lepton decay rates could be close to their current experimental limit. Compared to pure gravity mediation, the hybrid model is advantageous because it features a heavy gravitino which can avoid the cosmological gravitino problem of gravity-mediated models combined with leptogenesis.
De Sitter space in gauge/gravity duality
Directory of Open Access Journals (Sweden)
Lilia Anguelova
2015-10-01
Full Text Available We investigate gauge/gravity duality for gauge theories in de Sitter space. More precisely, we study a five-dimensional consistent truncation of type IIB supergravity, which encompasses a wide variety of gravity duals of strongly coupled gauge theories, including the Maldacena–Nunez solution and its walking deformations. We find several solutions of the 5d theory with dS4 spacetime and nontrivial profiles for (some of the scalars along the fifth (radial direction. In the process, we prove that one of the equations of motion becomes dependent on the others, for nontrivial warp factor. This dependence reduces the number of field equations and, thus, turns out to be crucial for the existence of solutions with (AdS4 spacetime. Finally, we comment on the implications of our dS4 solutions for building gravity duals of Glueball Inflation.
Directory of Open Access Journals (Sweden)
Carlos Barceló
2011-05-01
Full Text Available Analogue gravity is a research programme which investigates analogues of general relativistic gravitational fields within other physical systems, typically but not exclusively condensed matter systems, with the aim of gaining new insights into their corresponding problems. Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.
International Nuclear Information System (INIS)
Gregory, Ruth
2007-01-01
The study of braneworlds has been an area of intense activity over the past decade, with thousands of papers being written, and many important technical advances being made. This book focuses on a particular aspect of braneworlds, namely perturbative gravity in one specific model: the Randall-Sundrum model. The book starts with an overview of the Randall-Sundrum model, discussing anti-de Sitter (AdS) space and the Israel equations in some detail. It then moves on to discuss cosmological branes, focusing on branes with constant curvature. The book then turns to brane gravity, i.e. what do we, as brane observers, perceive the gravitational interaction to be on the brane as derived from the actual five-dimensional gravitational physics? After a derivation of the general brane equations from the Israel equations, the remainder of the book deals with perturbative gravity. This part of the book is extremely detailed, with calculations given explicitly. Overall, the book is quite pedagogical in style, with the aim being to explain in detail the topics it chooses to cover. While it is not unusual to have books written on current and extremely popular research areas, it is unusual to have calculations written so explicitly. This is both a strength and a weakness of this book. It is a strength because the calculations are presented in a detail that students learning the topic will definitely appreciate; however, the narrow focus of the book also means that it lacks perspective and fails to present the broader context. In choosing to focus on one particular aspect of Randall-Sundrum branes, the book has not managed to communicate why a large number of theorists have worked so intensively on this model. In its early stages, the explicit detail of the Randall-Sundrum model would be extremely useful for a student starting out in this research area. In addition, the calculational detail later in the computation of the graviton propagator on the brane would also be welcome not
International Nuclear Information System (INIS)
Giribet, G E
2005-01-01
Claus Kiefer presents his book, Quantum Gravity, with his hope that '[the] book will convince readers of [the] outstanding problem [of unification and quantum gravity] and encourage them to work on its solution'. With this aim, the author presents a clear exposition of the fundamental concepts of gravity and the steps towards the understanding of its quantum aspects. The main part of the text is dedicated to the analysis of standard topics in the formulation of general relativity. An analysis of the Hamiltonian formulation of general relativity and the canonical quantization of gravity is performed in detail. Chapters four, five and eight provide a pedagogical introduction to the basic concepts of gravitational physics. In particular, aspects such as the quantization of constrained systems, the role played by the quadratic constraint, the ADM decomposition, the Wheeler-de Witt equation and the problem of time are treated in an expert and concise way. Moreover, other specific topics, such as the minisuperspace approach and the feasibility of defining extrinsic times for certain models, are discussed as well. The ninth chapter of the book is dedicated to the quantum gravitational aspects of string theory. Here, a minimalistic but clear introduction to string theory is presented, and this is actually done with emphasis on gravity. It is worth mentioning that no hard (nor explicit) computations are presented, even though the exposition covers the main features of the topic. For instance, black hole statistical physics (within the framework of string theory) is developed in a pedagogical and concise way by means of heuristical arguments. As the author asserts in the epilogue, the hope of the book is to give 'some impressions from progress' made in the study of quantum gravity since its beginning, i.e., since the end of 1920s. In my opinion, Kiefer's book does actually achieve this goal and gives an extensive review of the subject. (book review)
First law of black ring thermodynamics in higher dimensional Chern-Simons gravity
International Nuclear Information System (INIS)
Rogatko, Marek
2007-01-01
The physical process version and the equilibrium state version of the first law of black ring thermodynamics in n-dimensional Einstein gravity with Chern-Simons term were derived. This theory constitutes the simplest generalization of the five-dimensional one admitting a stationary black ring solution. The equilibrium state version of the first law of black ring mechanics was achieved by choosing any cross section of the event horizon to the future of the bifurcation surface
Bucher, Meredith A; Samuel, Douglas B
2018-02-01
Although there has been widespread consensus on the use of the Five-Factor Model (FFM) of general personality functioning in personality research, there are various, diverse models of the lower order traits of the FFM domains. Given the usefulness of these finer grained traits, it is imperative to integrate facets proposed across a variety of models and eventually reach consensus on the lower level traits of the FFM. Due to its depth and coverage, the Abridged Big Five-Dimensional Circumplex (AB5C) model potentially provides a useful framework for organizing various faceted models due to its conceptual organization and inclusiveness. The only measure of this model-the IPIP-AB5C-has shown promise, but is limited by its length (i.e., 485 items). This study developed an abbreviated version of the IPIP-AB5C using an iterative process including item response theory methods. The shorter version maintained key features of the long form including a factor structure that matched the full form as well as facets that correlated in expected ways with other FFM measures. Building on this support, the short form was used to contextualize and organize the facets from 2 commonly used measures.
Iqbal, Zohaib; Wilson, Neil E; Thomas, M Albert
2017-07-24
1 H Magnetic Resonance Spectroscopic imaging (SI) is a powerful tool capable of investigating metabolism in vivo from mul- tiple regions. However, SI techniques are time consuming, and are therefore difficult to implement clinically. By applying non-uniform sampling (NUS) and compressed sensing (CS) reconstruction, it is possible to accelerate these scans while re- taining key spectral information. One recently developed method that utilizes this type of acceleration is the five-dimensional echo planar J-resolved spectroscopic imaging (5D EP-JRESI) sequence, which is capable of obtaining two-dimensional (2D) spectra from three spatial dimensions. The prior-knowledge fitting (ProFit) algorithm is typically used to quantify 2D spectra in vivo, however the effects of NUS and CS reconstruction on the quantitation results are unknown. This study utilized a simulated brain phantom to investigate the errors introduced through the acceleration methods. Errors (normalized root mean square error >15%) were found between metabolite concentrations after twelve-fold acceleration for several low concentra- tion (OGM) human brain matter were quantified in vivo using the 5D EP-JRESI sequence with eight-fold acceleration.
International Nuclear Information System (INIS)
Shiota, Fuyuhiko; Morokuma, Tadashi
2006-01-01
An improved optical system for five-dimensional measurement has been developed for the correction of vertical displacement error due to the attitude change of a superconducting floating body that shows five degrees of freedom besides a vertical displacement of 10 mm. The available solid angle for the optical measurement is extremely limited because of the cryogenic laser interferometer sharing the optical window of a vacuum chamber in addition to the basic structure of the cryogenic vessel for liquid helium. The aim of the design was to develop a more practical as well as better optical system compared with the prototype system. Various artifices were built into this optical system and the result shows a satisfactory performance and easy operation overcoming the extremely severe spatial difficulty in the levitation system. Although the system described here is specifically designed for our magnetic levitation system, the concept and each artifice will be applicable to the optical measurement system for an object in a high-vacuum chamber and/or cryogenic vessel where the available solid angle for an optical path is extremely limited
Off-Shell ADT charges of five-dimensional Myers-Perry black holes%五维Myers-Perry黑洞的离壳ADT荷
Institute of Scientific and Technical Information of China (English)
安旭强; 景艺德; 彭俊金
2018-01-01
In this work,we have calculated the conserved charges,such as mass and angular momentum,of five-dimensional rotating Myers-Perry black holes via the off-shell generalized Abbott-DeserTekin (ADT) method.These conserved charges strictly satisfy the differential and integral forms of the first law for black holes.Moreover,we compare the off-shell ADT conserved charges with those via both the formalisms of the well-known ADM and Komar integral,finding that all the results are correspondingly identified with each other.%基于离壳推广的Abbott-Deser-Tekin (ADT)定义,给出了五维时空中双转动的Myers-Perry黑洞的离壳ADT质量与角动量等守恒荷.在此基础上,验证了这些守恒荷严格满足黑洞热力学第一定律的微分与积分形式.此外,通过离壳推广的ADT方法与ADM定义以及Komar公式的比较,我们发现,对于五维Myers-Perry黑洞来说,此3种方法给出的守恒荷完全一致.
Pipinos, Savas
2010-01-01
This article describes one classroom activity in which the author simulates the Newtonian gravity, and employs the Euclidean Geometry with the use of new technologies (NT). The prerequisites for this activity were some knowledge of the formulae for a particle free fall in Physics and most certainly, a good understanding of the notion of similarity…
F.C. Gruau; J.T. Tromp (John)
1999-01-01
textabstractWe consider the problem of establishing gravity in cellular automata. In particular, when cellular automata states can be partitioned into empty, particle, and wall types, with the latter enclosing rectangular areas, we desire rules that will make the particles fall down and pile up on
Gravity localization in sine-Gordon braneworlds
International Nuclear Information System (INIS)
Cruz, W.T.; Maluf, R.V.; Sousa, L.J.S.; Almeida, C.A.S.
2016-01-01
In this work we study two types of five-dimensional braneworld models given by sine-Gordon potentials. In both scenarios, the thick brane is generated by a real scalar field coupled to gravity. We focus our investigation on the localization of graviton field and the behaviour of the massive spectrum. In particular, we analyse the localization of massive modes by means of a relative probability method in a Quantum Mechanics context. Initially, considering a scalar field sine-Gordon potential, we find a localized state to the graviton at zero mode. However, when we consider a double sine-Gordon potential, the brane structure is changed allowing the existence of massive resonant states. The new results show how the existence of an internal structure can aid in the emergence of massive resonant modes on the brane.
Generalized Galilean algebras and Newtonian gravity
González, N.; Rubio, G.; Salgado, P.; Salgado, S.
2016-04-01
The non-relativistic versions of the generalized Poincaré algebras and generalized AdS-Lorentz algebras are obtained. These non-relativistic algebras are called, generalized Galilean algebras of type I and type II and denoted by GBn and GLn respectively. Using a generalized Inönü-Wigner contraction procedure we find that the generalized Galilean algebras of type I can be obtained from the generalized Galilean algebras type II. The S-expansion procedure allows us to find the GB5 algebra from the Newton Hooke algebra with central extension. The procedure developed in Ref. [1] allows us to show that the nonrelativistic limit of the five dimensional Einstein-Chern-Simons gravity is given by a modified version of the Poisson equation. The modification could be compatible with the effects of Dark Matter, which leads us to think that Dark Matter can be interpreted as a non-relativistic limit of Dark Energy.
International Nuclear Information System (INIS)
Isham, C.
1989-01-01
Gravitational effects are seen as arising from a curvature in spacetime. This must be reconciled with gravity's apparently passive role in quantum theory to achieve a satisfactory quantum theory of gravity. The development of grand unified theories has spurred the search, with forces being of equal strength at a unification energy of 10 15 - 10 18 GeV, with the ''Plank length'', Lp ≅ 10 -35 m. Fundamental principles of general relativity and quantum mechanics are outlined. Gravitons are shown to have spin-0, as mediators of gravitation force in the classical sense or spin-2 which are related to the quantisation of general relativity. Applying the ideas of supersymmetry to gravitation implies partners for the graviton, especially the massless spin 3/2 fermion called a gravitino. The concept of supersymmetric strings is introduced and discussed. (U.K.)
International Nuclear Information System (INIS)
Markov, M.A.; West, P.C.
1984-01-01
This book discusses the state of the art of quantum gravity, quantum effects in cosmology, quantum black-hole physics, recent developments in supergravity, and quantum gauge theories. Topics considered include the problems of general relativity, pregeometry, complete cosmological theories, quantum fluctuations in cosmology and galaxy formation, a new inflationary universe scenario, grand unified phase transitions and the early Universe, the generalized second law of thermodynamics, vacuum polarization near black holes, the relativity of vacuum, black hole evaporations and their cosmological consequences, currents in supersymmetric theories, the Kaluza-Klein theories, gauge algebra and quantization, and twistor theory. This volume constitutes the proceedings of the Second Seminar on Quantum Gravity held in Moscow in 1981
Is nonrelativistic gravity possible?
International Nuclear Information System (INIS)
Kocharyan, A. A.
2009-01-01
We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of Horava gravity are locally identical.
A new cubic theory of gravity in five dimensions: black hole, Birkhoff's theorem and C-function
Energy Technology Data Exchange (ETDEWEB)
Oliva, Julio [Instituto de Fisica, Facultad de Ciencias, Universidad Austral de Chile, Valdivia (Chile); Ray, Sourya, E-mail: julio.oliva@docentes.uach.c, E-mail: ray@cecs.c [Centro de Estudios CientIficos (CECS), Casilla 1469, Valdivia (Chile)
2010-11-21
We present a new cubic theory of gravity in five dimensions which has second-order traced field equations, analogous to BHT new massive gravity in three dimensions. Moreover, for static spherically symmetric spacetimes all the field equations are of second order, and the theory admits a new asymptotically locally flat black hole. Furthermore, we prove the uniqueness of this solution, study its thermodynamical properties and show the existence of a C-function for the theory following the arguments of Anber and Kastor (2008 J. High Energy Phys. JHEP05(2008)061 (arXiv:0802.1290 [hep-th])) in pure Lovelock theories. Finally, we include the Einstein-Gauss-Bonnet and cosmological terms and find new asymptotically AdS black holes at the point where the three maximally symmetric solutions of the theory coincide. These black holes may also possess a Cauchy horizon.
Static wormhole solution for higher-dimensional gravity in vacuum
International Nuclear Information System (INIS)
Dotti, Gustavo; Oliva, Julio; Troncoso, Ricardo
2007-01-01
A static wormhole solution for gravity in vacuum is found for odd dimensions greater than four. In five dimensions the gravitational theory considered is described by the Einstein-Gauss-Bonnet action where the coupling of the quadratic term is fixed in terms of the cosmological constant. In higher dimensions d=2n+1, the theory corresponds to a particular case of the Lovelock action containing higher powers of the curvature, so that in general, it can be written as a Chern-Simons form for the AdS group. The wormhole connects two asymptotically locally AdS spacetimes each with a geometry at the boundary locally given by RxS 1 xH d-3 . Gravity pulls towards a fixed hypersurface located at some arbitrary proper distance parallel to the neck. The causal structure shows that both asymptotic regions are connected by light signals in a finite time. The Euclidean continuation of the wormhole is smooth independently of the Euclidean time period, and it can be seen as instanton with vanishing Euclidean action. The mass can also be obtained from a surface integral and it is shown to vanish
Black holes in quasi-topological gravity and conformal couplings
Energy Technology Data Exchange (ETDEWEB)
Chernicoff, Mariano [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México,A.P. 70-542, México D.F. 04510 (Mexico); Fierro, Octavio [Departamento de Matemática y Física Aplicadas,Universidad Católica de la Santísima Concepción,Alonso de Rivera 2850, Concepción (Chile); Giribet, Gaston [Martin Fisher School of Physics, Brandeis University,Waltham, Massachusetts 02453 (United States); Departamento de Física, Universidad de Buenos Aires FCEN-UBA and IFIBA-CONICET, Ciudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina); Oliva, Julio [Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile)
2017-02-02
Lovelock theory of gravity provides a tractable model to investigate the effects of higher-curvature terms in the context of AdS/CFT. Yielding second order, ghost-free field equations, this theory represents a minimal setup in which higher-order gravitational couplings in asymptotically Anti-de Sitter (AdS) spaces, including black holes, can be solved analytically. This however has an obvious limitation as in dimensions lower than seven, the contribution from cubic or higher curvature terms is merely topological. Therefore, in order to go beyond quadratic order and study higher terms in AdS{sub 5} analytically, one is compelled to look for other toy models. One such model is the so-called quasi-topological gravity, which, despite being a higher-derivative theory, provides a tractable setup with R{sup 3} and R{sup 4} terms. In this paper, we investigate AdS{sub 5} black holes in quasi-topological gravity. We consider the theory conformally coupled to matter and in presence of Abelian gauge fields. We show that charged black holes in AdS{sub 5} which, in addition, exhibit a backreaction of the matter fields on the geometry can be found explicitly in this theory. These solutions generalize the black hole solution of quasi-topological gravity and exist in a region of the parameter spaces consistent with the constraints coming from causality and other consistency conditions. They have finite conserved charges and exhibit non-trivial thermodynamical properties.
International Nuclear Information System (INIS)
Schupp, P.
2007-01-01
Heuristic arguments suggest that the classical picture of smooth commutative spacetime should be replaced by some kind of quantum / noncommutative geometry at length scales and energies where quantum as well as gravitational effects are important. Motivated by this idea much research has been devoted to the study of quantum field theory on noncommutative spacetimes. More recently the focus has started to shift back to gravity in this context. We give an introductory overview to the formulation of general relativity in a noncommutative spacetime background and discuss the possibility of exact solutions. (author)
Haldar, Amritendu; Biswas, Ritabrata
2018-06-01
We investigate the effect of thermal fluctuations on the thermodynamics of a Lovelock-AdS black hole. Taking the first order logarithmic correction term in entropy we analyze the thermodynamic potentials like Helmholtz free energy, enthalpy and Gibbs free energy. We find that all the thermodynamic potentials are decreasing functions of correction coefficient α . We also examined this correction coefficient must be positive by analysing P{-}V diagram. Further we study the P{-}V criticality and stability and find that presence of logarithmic correction in it is necessary to have critical points and stable phases. When P{-}V criticality appears, we calculate the critical volume V_c, critical pressure P_c and critical temperature T_c using different equations and show that there is no critical point for this black hole without thermal fluctuations. We also study the geometrothermodynamics of this kind of black holes. The Ricci scalar of the Ruppeiner metric is graphically analysed.
International Nuclear Information System (INIS)
Hooft, G.
2012-01-01
The dynamical degree of freedom for the gravitational force is the metric tensor, having 10 locally independent degrees of freedom (of which 4 can be used to fix the coordinate choice). In conformal gravity, we split this field into an overall scalar factor and a nine-component remainder. All unrenormalizable infinities are in this remainder, while the scalar component can be handled like any other scalar field such as the Higgs field. In this formalism, conformal symmetry is spontaneously broken. An imperative demand on any healthy quantum gravity theory is that black holes should be described as quantum systems with micro-states as dictated by the Hawking-Bekenstein theory. This requires conformal symmetry that may be broken spontaneously but not explicitly, and this means that all conformal anomalies must cancel out. Cancellation of conformal anomalies yields constraints on the matter sector as described by some universal field theory. Thus black hole physics may eventually be of help in the construction of unified field theories. (author)
National Oceanic and Atmospheric Administration, Department of Commerce — This data base (14,559 records) was received in January 1986. Principal gravity parameters include elevation and observed gravity. The observed gravity values are...
National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Absolute Gravity data (78 stations) was received in July 1993. Principal gravity parameters include Gravity Value, Uncertainty, and Vertical Gradient. The...
Three types of superpotentials for perturbations in the Einstein-Gauss-Bonnet gravity
International Nuclear Information System (INIS)
Petrov, A N
2009-01-01
Superpotentials (antisymmetric tensor densities) in the Einstein-Gauss-Bonnet (EGB) gravity for arbitrary types of perturbations on arbitrary curved backgrounds are constructed. As a basis, the generalized conservation laws in the framework of an arbitrary D-dimensional metric theory, where conserved currents are expressed through divergences of superpotentials, are used. Such a derivation is exact (perturbations are not infinitesimal) and is approached when a solution (dynamical) is considered as a perturbed system with respect to another solution (background). Three known prescriptions are elaborated: they are the canonical Noether theorem, the Belinfante symmetrization rule and the field-theoretical derivation. All three approaches are presented in a unique way convenient for comparisons and development. Exact expressions for the 01-component of the three types of the superpotentials are derived in the case when an arbitrary static Schwarzschild-like solution in the EGB gravity is considered as a perturbed system with respect to a background of the same type. These formulae are used for calculating the mass of the Schwarzschild-anti-de Sitter black hole in the EGB gravity. As a background, both the anti-de Sitter spacetime in arbitrary dimensions and a 'mass gap' vacuum, which has no maximal set of symmetries, in five dimensions are considered. Problems and perspectives for future development, including the Lovelock gravity, are discussed.
Newtonian gravity in loop quantum gravity
Smolin, Lee
2010-01-01
We apply a recent argument of Verlinde to loop quantum gravity, to conclude that Newton's law of gravity emerges in an appropriate limit and setting. This is possible because the relationship between area and entropy is realized in loop quantum gravity when boundaries are imposed on a quantum spacetime.
Byrne, Michael
1999-01-01
Einstein said that gravity is an acceleration like any other acceleration. But gravity causes relativistic effects at non-relativistic speeds; so gravity could have relativistic origins. And since the strong force is thought to cause most of mass, and mass is proportional to gravity; the strong force is therefore also proportional to gravity. The strong force could thus cause relativistic increases of mass through the creation of virtual gluons; along with a comparable contraction of space ar...
Distribution Function of the Atoms of Spacetime and the Nature of Gravity
Directory of Open Access Journals (Sweden)
Thanu Padmanabhan
2015-10-01
Full Text Available The fact that the equations of motion for matter remain invariant when a constant is added to the Lagrangian suggests postulating that the field equations of gravity should also respect this symmetry. This principle implies that: (1 the metric cannot be varied in any extremum principle to obtain the field equations; and (2 the stress-tensor of matter should appear in the variational principle through the combination Tabnanb where na is an auxiliary null vector field, which could be varied to get the field equations. This procedure uniquely selects the Lanczos–Lovelock models of gravity in D-dimensions and Einstein’s theory in D = 4. Identifying na with the normals to the null surfaces in the spacetime in the macroscopic limit leads to a thermodynamic interpretation for gravity. Several geometrical variables and the equation describing the spacetime evolution acquire a thermodynamic interpretation. Extending these ideas one level deeper, we can obtain this variational principle from a distribution function for the “atoms of spacetime”, which counts the number of microscopic degrees of freedom of the geometry. This is based on the curious fact that the renormalized spacetime endows each event with zero volume, but finite area!
Surface charges for gravity and electromagnetism in the first order formalism
Frodden, Ernesto; Hidalgo, Diego
2018-02-01
A new derivation of surface charges for 3 + 1 gravity coupled to electromagnetism is obtained. Gravity theory is written in the tetrad-connection variables. The general derivation starts from the Lagrangian, and uses the covariant symplectic formalism in the language of forms. For gauge theories, surface charges disentangle physical from gauge symmetries through the use of Noether identities and the exactness symmetry condition. The surface charges are quasilocal, explicitly coordinate independent, gauge invariant and background independent. For a black hole family solution, the surface charge conservation implies the first law of black hole mechanics. As a check, we show the first law for an electrically charged, rotating black hole with an asymptotically constant curvature (the Kerr–Newman (anti-)de Sitter family). The charges, including the would-be mass term appearing in the first law, are quasilocal. No reference to the asymptotic structure of the spacetime nor the boundary conditions is required and therefore topological terms do not play a rôle. Finally, surface charge formulae for Lovelock gravity coupled to electromagnetism are exhibited, generalizing the one derived in a recent work by Barnich et al Proc. Workshop ‘ About Various Kinds of Interactions’ in honour of Philippe Spindel (4–5 June 2015, Mons, Belgium) C15-06-04 (2016 (arXiv:1611.01777 [gr-qc])). The two different symplectic methods to define surface charges are compared and shown equivalent.
Chiral gravity, log gravity, and extremal CFT
International Nuclear Information System (INIS)
Maloney, Alexander; Song Wei; Strominger, Andrew
2010-01-01
We show that the linearization of all exact solutions of classical chiral gravity around the AdS 3 vacuum have positive energy. Nonchiral and negative-energy solutions of the linearized equations are infrared divergent at second order, and so are removed from the spectrum. In other words, chirality is confined and the equations of motion have linearization instabilities. We prove that the only stationary, axially symmetric solutions of chiral gravity are BTZ black holes, which have positive energy. It is further shown that classical log gravity--the theory with logarithmically relaxed boundary conditions--has finite asymptotic symmetry generators but is not chiral and hence may be dual at the quantum level to a logarithmic conformal field theories (CFT). Moreover we show that log gravity contains chiral gravity within it as a decoupled charge superselection sector. We formally evaluate the Euclidean sum over geometries of chiral gravity and show that it gives precisely the holomorphic extremal CFT partition function. The modular invariance and integrality of the expansion coefficients of this partition function are consistent with the existence of an exact quantum theory of chiral gravity. We argue that the problem of quantizing chiral gravity is the holographic dual of the problem of constructing an extremal CFT, while quantizing log gravity is dual to the problem of constructing a logarithmic extremal CFT.
Holographic renormalization group and cosmology in theories with quasilocalized gravity
International Nuclear Information System (INIS)
Csaki, Csaba; Erlich, Joshua; Hollowood, Timothy J.; Terning, John
2001-01-01
We study the long distance behavior of brane theories with quasilocalized gravity. The five-dimensional (5D) effective theory at large scales follows from a holographic renormalization group flow. As intuitively expected, the graviton is effectively four dimensional at intermediate scales and becomes five dimensional at large scales. However, in the holographic effective theory the essentially 4D radion dominates at long distances and gives rise to scalar antigravity. The holographic description shows that at large distances the Gregory-Rubakov-Sibiryakov (GRS) model is equivalent to the model recently proposed by Dvali, Gabadadze, and Porrati (DGP), where a tensionless brane is embedded into 5D Minkowski space, with an additional induced 4D Einstein-Hilbert term on the brane. In the holographic description the radion of the GRS model is automatically localized on the tensionless brane, and provides the ghostlike field necessary to cancel the extra graviton polarization of the DGP model. Thus, there is a holographic duality between these theories. This analysis provides physical insight into how the GRS model works at intermediate scales; in particular it sheds light on the size of the width of the graviton resonance, and also demonstrates how the holographic renormalization group can be used as a practical tool for calculations
International Nuclear Information System (INIS)
Schoutens, K.; van Nieuwenhuizen, P.; State Univ. of New York, Stony Brook, NY
1991-11-01
We briefly review some results in the theory of quantum W 3 gravity in the chiral gauge. We compare them with similar results in the analogous but simpler cases of d = 2 induced gauge theories and d = 2 induced gravity
... medlineplus.gov/ency/article/003587.htm Urine specific gravity test To use the sharing features on this page, please enable JavaScript. Urine specific gravity is a laboratory test that shows the concentration ...
Cadiz, California Gravity Data
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (32 records) were gathered by Mr. Seth I. Gutman for AridTech Inc., Denver, Colorado using a Worden Prospector gravity meter. This data base...
National Oceanic and Atmospheric Administration, Department of Commerce — The Central Andes gravity data (6,151 records) were compiled by Professor Gotze and the MIGRA Group. This data base was received in April, 1997. Principal gravity...
National Oceanic and Atmospheric Administration, Department of Commerce — The Decade of North American Geology (DNAG) gravity grid values, spaced at 6 km, were used to produce the Gravity Anomaly Map of North America (1987; scale...
International Nuclear Information System (INIS)
Pinheiro, R.
1979-01-01
The properties and production of gravitational radiation are described. The prospects for their detection are considered including the Weber apparatus and gravity-wave telescopes. Possibilities of gravity-wave astronomy are noted
Northern Oklahoma Gravity Data
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (710 records) were compiled by Professor Ahern. This data base was received in June 1992. Principal gravity parameters include latitude,...
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (24,284 records) were compiled by the U. S. Geological Survey. This data base was received on February 23, 1993. Principal gravity...
International Nuclear Information System (INIS)
Vega, H.J. de
1990-01-01
One of the main challenges in theoretical physics today is the unification of all interactions including gravity. At present, string theories appear as the most promising candidates to achieve such a unification. However, gravity has not completely been incorporated in string theory, many technical and conceptual problems remain and a full quantum theory of gravity is still non-existent. Our aim is to properly understand strings in the context of quantum gravity. Attempts towards this are reviewed. (author)
International Nuclear Information System (INIS)
La, H.
1992-01-01
A new geometric formulation of Liouville gravity based on the area preserving diffeo-morphism is given and a possible alternative to reinterpret Liouville gravity is suggested, namely, a scalar field coupled to two-dimensional gravity with a curvature constraint
Bergshoeff, E.; Pope, C.N.; Stelle, K.S.
1990-01-01
We discuss the notion of higher-spin covariance in w∞ gravity. We show how a recently proposed covariant w∞ gravity action can be obtained from non-chiral w∞ gravity by making field redefinitions that introduce new gauge-field components with corresponding new gauge transformations.
Induced quantum conformal gravity
International Nuclear Information System (INIS)
Novozhilov, Y.V.; Vassilevich, D.V.
1988-11-01
Quantum gravity is considered as induced by matter degrees of freedom and related to the symmetry breakdown in the low energy region of a non-Abelian gauge theory of fundamental fields. An effective action for quantum conformal gravity is derived where both the gravitational constant and conformal kinetic term are positive. Relation with induced classical gravity is established. (author). 15 refs
Amelino-Camelia, Giovanni
2003-01-01
Comment: 9 pages, LaTex. These notes were prepared while working on an invited contribution to the November 2003 issue of Physics World, which focused on quantum gravity. They intend to give a non-technical introduction (accessible to readers from outside quantum gravity) to "Quantum Gravity Phenomenology"
MacKeown, P. K.
1984-01-01
Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)
Thick brane in f(R) gravity with Palatini dynamics
International Nuclear Information System (INIS)
Bazeia, D.; Losano, L.; Menezes, R.; Olmo, Gonzalo J.; Rubiera-Garcia, D.
2015-01-01
This work deals with modified gravity in five-dimensional space-time. We study a thick Palatini f(R) brane, that is, a braneworld scenario described by an anti-de Sitter warped geometry with a single extra dimension of infinite extent, sourced by a real scalar field under the Palatini approach, where the metric and the connection are regarded as independent degrees of freedom. We consider a first-order framework which we use to provide exact solutions for the scalar field and warp factor. We also investigate a perturbative scenario such that the Palatini approach is implemented through a Lagrangian f(R)=R+ϵR n , where the small parameter ϵ controls the deviation from the standard thick brane case. In both cases it is found that the warp factor tends to localize the extra dimension due to the nonlinear corrections
Static solutions in Einstein-Chern-Simons gravity
Energy Technology Data Exchange (ETDEWEB)
Crisóstomo, J.; Gomez, F.; Mella, P.; Quinzacara, C.; Salgado, P., E-mail: jcrisostomo@udec.cl, E-mail: fernagomez@udec.cl, E-mail: patriciomella@udec.cl, E-mail: cristian.cortesq@uss.cl, E-mail: pasalgad@udec.cl [Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile)
2016-06-01
In this paper we study static solutions with more general symmetries than the spherical symmetry of the five-dimensional Einstein-Chern-Simons gravity. In this context, we study the coupling of the extra bosonic field h{sup a} with ordinary matter which is quantified by the introduction of an energy-momentum tensor field associated with h{sup a}. It is found that exist (i) a negative tangential pressure zone around low-mass distributions (μ < μ{sub 1}) when the coupling constant α is greater than zero; (ii) a maximum in the tangential pressure, which can be observed in the outer region of a field distribution that satisfies μ < μ{sub 2}; (iii) solutions that behave like those obtained from models with negative cosmological constant. In such a situation, the field h{sup a} plays the role of a cosmological constant.
Thick brane in f(R) gravity with Palatini dynamics
Energy Technology Data Exchange (ETDEWEB)
Bazeia, D., E-mail: bazeia@fisica.ufpb.br; Losano, L., E-mail: losano@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, 58051-900, João Pessoa, PB (Brazil); Menezes, R., E-mail: rmenezes@dce.ufpb.br [Departamento de Ciências Exatas, Universidade Federal da Paraíba, 58297-000, Rio Tinto, PB (Brazil); Departamento de Física, Universidade Federal de Campina Grande, 58109-970, Campina Grande, PB (Brazil); Olmo, Gonzalo J., E-mail: gonzalo.olmo@csic.es [Departamento de Física, Universidade Federal da Paraíba, 58051-900, João Pessoa, PB (Brazil); Departamento de Física Teórica, IFIC, Centro Mixto Universidad de Valencia-CSIC, Universidad de Valencia, 46100, Burjassot, Valencia (Spain); Rubiera-Garcia, D., E-mail: drgarcia@fc.ul.pt [Departamento de Física, Universidade Federal da Paraíba, 58051-900, João Pessoa, PB (Brazil); Faculdade de Ciências, Instituto de Astrofísica e Ciências do Espaço, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon (Portugal); Department of Physics, Center for Field Theory and Particle Physics, Fudan University, 220 Handan Road, 200433, Shanghai (China)
2015-11-30
This work deals with modified gravity in five-dimensional space-time. We study a thick Palatini f(R) brane, that is, a braneworld scenario described by an anti-de Sitter warped geometry with a single extra dimension of infinite extent, sourced by a real scalar field under the Palatini approach, where the metric and the connection are regarded as independent degrees of freedom. We consider a first-order framework which we use to provide exact solutions for the scalar field and warp factor. We also investigate a perturbative scenario such that the Palatini approach is implemented through a Lagrangian f(R)=R+ϵR{sup n}, where the small parameter ϵ controls the deviation from the standard thick brane case. In both cases it is found that the warp factor tends to localize the extra dimension due to the nonlinear corrections.
Thick brane in f(R) gravity with Palatini dynamics
Energy Technology Data Exchange (ETDEWEB)
Bazeia, D.; Losano, L. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Menezes, R. [Universidade Federal da Paraiba, Departamento de Ciencias Exatas, Rio Tinto, PB (Brazil); Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, PB (Brazil); Olmo, Gonzalo J. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Universidad de Valencia, Departamento de Fisica Teorica, IFIC, Centro Mixto Universidad de Valencia-CSIC, Burjassot, Valencia (Spain); Rubiera-Garcia, D. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Universidade de Lisboa, Faculdade de Ciencias, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal); Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China)
2015-12-15
This work deals with modified gravity in five-dimensional space-time. We study a thick Palatini f(R) brane, that is, a braneworld scenario described by an anti-de Sitter warped geometry with a single extra dimension of infinite extent, sourced by a real scalar field under the Palatini approach, where the metric and the connection are regarded as independent degrees of freedom. We consider a first-order framework which we use to provide exact solutions for the scalar field and warp factor. We also investigate a perturbative scenario such that the Palatini approach is implemented through a Lagrangian f(R) = R + εR{sup n}, where the small parameter ε controls the deviation from the standard thick brane case. In both cases it is found that the warp factor tends to localize the extra dimension due to the nonlinear corrections. (orig.)
Einstein gravity emerging from quantum weyl gravity
International Nuclear Information System (INIS)
Zee, A.
1983-01-01
We advocate a conformal invariant world described by the sum of the Weyl, Dirac, and Yang-Mills action. Quantum fluctuations bring back Einstein gravity so that the long-distance phenomenology is as observed. Formulas for the induced Newton's constant and Eddington's constant are derived in quantized Weyl gravity. We show that the analogue of the trace anomaly for the Weyl action is structurally similar to that for the Yang-Mills action
International Nuclear Information System (INIS)
Puchlik, K.P.; Holder, B.E.; Smith, C.F.
1978-01-01
This report presents the results of the Winnemucca Dry Lake Basin, Nevada, orientation study in the Lovelock and Reno 1 0 x 2 0 quadrangles of the National Topographic Map Series (NTMS). Wet, dry, and playa sediment samples were collected throughout the 597 km 2 semi-arid, closed basin. Water samples were collected at the few available streams and springs. In addition to neutron activation analysis for uranium and 15 to 20 trace elements on all samples, field and laboratory measurements were made on water samples. Analytical data and field measurements are presented in tabular hardcopy and fiche format. Eight full-size overlays for use with the Lovelock and Reno NTMS 1:250,000 quadrangles are included. Water sample site locations, water sample uranium concentration, sediment sample site locations, and sediment sample total uranium concentration are shown on the separate overlays. A general description of the area and the rock type distribution is presented. Some of the data in this report have been issued previously in ''Preliminary Report on the Winnemucca Dry Lake Basin Pilot Study,'' GJBX-41(76), August 1976
Higher order corrections to holographic black hole chemistry
Sinamuli, Musema; Mann, Robert B.
2017-10-01
We investigate the holographic Smarr relation beyond the large N limit. By making use of the holographic dictionary, we find that the bulk correlates of subleading 1 /N corrections to this relation are related to the couplings in Lovelock gravity theories. We likewise obtain a holographic equation of state and check its validity for a variety of interesting and nontrivial black holes, including rotating planar black holes in Gauss-Bonnet-Born-Infeld gravity, and nonextremal rotating black holes in minimal five-dimensional gauged supergravity. We provide an explanation of the N -dependence of the holographic Smarr relation in terms of contributions due to planar and nonplanar diagrams in the dual theory.
International Nuclear Information System (INIS)
Brown, J.D.
1988-01-01
This book addresses the subject of gravity theories in two and three spacetime dimensions. The prevailing philosophy is that lower dimensional models of gravity provide a useful arena for developing new ideas and insights, which are applicable to four dimensional gravity. The first chapter consists of a comprehensive introduction to both two and three dimensional gravity, including a discussion of their basic structures. In the second chapter, the asymptotic structure of three dimensional Einstein gravity with a negative cosmological constant is analyzed. The third chapter contains a treatment of the effects of matter sources in classical two dimensional gravity. The fourth chapter gives a complete analysis of particle pair creation by electric and gravitational fields in two dimensions, and the resulting effect on the cosmological constant
Gravity interpretation via EULDPH
International Nuclear Information System (INIS)
Ebrahimzadeh Ardestani, V.
2003-01-01
Euler's homogeneity equation for determining the coordinates of the source body especially to estimate the depth (EULDPH) is discussed at this paper. This method is applied to synthetic and high-resolution real data such as gradiometric or microgravity data. Low-quality gravity data especially in the areas with a complex geology structure has rarely been used. The Bouguer gravity anomalies are computed from absolute gravity data after the required corrections. Bouguer anomaly is transferred to residual gravity anomaly. The gravity gradients are estimated from residual anomaly values. Bouguer anomaly is the gravity gradients, using EULDPH. The coordinates of the perturbing body will be determined. Two field examples one in the east of Tehran (Mard Abad) where we would like to determine the location of the anomaly (hydrocarbon) and another in the south-east of Iran close to the border with Afghanistan (Nosrat Abad) where we are exploring chromite are presented
International Nuclear Information System (INIS)
Mielke, Eckehard W.
2006-01-01
Anomalies in Yang-Mills type gauge theories of gravity are reviewed. Particular attention is paid to the relation between the Dirac spin, the axial current j5 and the non-covariant gauge spin C. Using diagrammatic techniques, we show that only generalizations of the U(1)- Pontrjagin four-form F and F = dC arise in the chiral anomaly, even when coupled to gravity. Implications for Ashtekar's canonical approach to quantum gravity are discussed
Directory of Open Access Journals (Sweden)
Animesh Mukherjee
1991-01-01
Full Text Available Based upon Biot's [1965] theory of initial stresses of hydrostatic nature produced by the effect of gravity, a study is made of surface waves in higher order visco-elastic media under the influence of gravity. The equation for the wave velocity of Stonely waves in the presence of viscous and gravitational effects is obtained. This is followed by particular cases of surface waves including Rayleigh waves and Love waves in the presence of viscous and gravity effects. In all cases the wave-velocity equations are found to be in perfect agreement with the corresponding classical results when the effects of gravity and viscosity are neglected.
International Nuclear Information System (INIS)
Burkhard, N.R.
1979-01-01
The gravity inversion code applies stabilized linear inverse theory to determine the topography of a subsurface density anomaly from Bouguer gravity data. The gravity inversion program consists of four source codes: SEARCH, TREND, INVERT, and AVERAGE. TREND and INVERT are used iteratively to converge on a solution. SEARCH forms the input gravity data files for Nevada Test Site data. AVERAGE performs a covariance analysis on the solution. This document describes the necessary input files and the proper operation of the code. 2 figures, 2 tables
Classical Weyl transverse gravity
Energy Technology Data Exchange (ETDEWEB)
Oda, Ichiro [University of the Ryukyus, Department of Physics, Faculty of Science, Nishihara, Okinawa (Japan)
2017-05-15
We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge-fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally invariant scalar tensor gravity and the WTDiff gravity is a ''fake'' symmetry. We find it possible to extend this proof to all matter fields, i.e. the Weyl-invariant scalar, vector and spinor fields. Fourthly, it is explicitly shown that in the WTDiff gravity the Schwarzschild black hole metric and a charged black hole one are classical solutions to the equations of motion only when they are expressed in the Cartesian coordinate system. Finally, we consider the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology and provide some exact solutions. (orig.)
Interior Alaska Bouguer Gravity Anomaly
National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. Only those grid cells within 10 kilometers of a gravity data point have gravity values....
Cosmological and black hole brane-world universes in higher derivative gravity
International Nuclear Information System (INIS)
Nojiri, Shin'ichi; Odintsov, Sergei D.; Ogushi, Sachiko
2002-01-01
A general model of multidimensional R 2 gravity including a Riemann tensor square term (nonzero c case) is considered. The number of brane-worlds in such a model is constructed (mainly in five dimensions) and their properties are discussed. The thermodynamics of a Schwarzschild-anti-deSitter (S-AdS) BH (with boundary) is presented when perturbation on c is used. The entropy, free energy, and energy are calculated. For a nonzero c the entropy (energy) is not proportional to the area (mass). The equation of motion of the brane in a BH background is presented as a FRW equation. Using a dual CFT description it is shown that the dual field theory is not a conformal one when c is not zero. In this case the holographic entropy does not coincide with the BH entropy (they coincide for Einstein gravity or c=0 HD gravity where the AdS/CFT description is well applied). An asymmetrically warped background (an analogue of a charged AdS BH) where Lorentz invariance violation occurs is found. The cosmological 4D dS brane connecting two dS bulk spaces is formulated in terms of the parameters of R 2 gravity. Within the proposed dS/CFT correspondence the holographic conformal anomaly from five-dimensional higher derivative gravity in a de Sitter background is evaluated
Consistency of orthodox gravity
Energy Technology Data Exchange (ETDEWEB)
Bellucci, S. [INFN, Frascati (Italy). Laboratori Nazionali di Frascati; Shiekh, A. [International Centre for Theoretical Physics, Trieste (Italy)
1997-01-01
A recent proposal for quantizing gravity is investigated for self consistency. The existence of a fixed-point all-order solution is found, corresponding to a consistent quantum gravity. A criterion to unify couplings is suggested, by invoking an application of their argument to more complex systems.
Holographic RG flows from Quasi-Topological Gravity
International Nuclear Information System (INIS)
Camara da Silva, U.; Sotkov, G.M.
2013-01-01
We investigate the holographic Renormalization Group (RG) flows and the critical phenomena that take place in the QFT's dual to the d-dimensional cubic Quasi-Topological Gravity coupled to scalar matter. The knowledge of the corresponding flat Domain Walls (DW's) solutions allows us to derive the explicit form of the QFT's β-functions, as well as of the trace anomalies a(l) and c(l), in terms of the matter superpotential. As a consequence we are able to determine the complete set of CFT data characterizing the universality classes of the UV and IR critical points and to follow the particular RG evolution of this data. We further analyse the dependence of the critical properties of such dual QFT's on the values of the Lovelock couplings and on the shape of the superpotential. For odd values of d, the explicit form of the “a and c-central charges” as functions of the running coupling constant, enable us to establish the conditions under which the a and c-Theorems for their decreasing are valid. The restrictions imposed on the massless holographic RG flows by the requirements of the positivity of the energy fluxes are derived. The particular case of quartic Higgs-like superpotential is studied in detail. It provides an example of unitary dual QFT's having few c≠a-critical points representing second or infinite order phase transitions. Depending on the range of the values of the coupling constant they exhibit massive and massless phases, described by a chain of distinct DW's solutions sharing common boundaries
Extended DBI massive gravity with generalized fiducial metric
Chullaphan, Tossaporn; Tannukij, Lunchakorn; Wongjun, Pitayuth
2015-06-01
We consider an extended model of DBI massive gravity by generalizing the fiducial metric to be an induced metric on the brane corresponding to a domain wall moving in five-dimensional Schwarzschild-Anti-de Sitter spacetime. The model admits all solutions of FLRW metric including flat, closed and open geometries while the original one does not. The background solutions can be divided into two branches namely self-accelerating branch and normal branch. For the self-accelerating branch, the graviton mass plays the role of cosmological constant to drive the late-time acceleration of the universe. It is found that the number degrees of freedom of gravitational sector is not correct similar to the original DBI massive gravity. There are only two propagating degrees of freedom from tensor modes. For normal branch, we restrict our attention to a particular class of the solutions which provides an accelerated expansion of the universe. It is found that the number of degrees of freedom in the model is correct. However, at least one of them is ghost degree of freedom which always present at small scale implying that the theory is not stable.
Extended DBI massive gravity with generalized fiducial metric
International Nuclear Information System (INIS)
Chullaphan, Tossaporn; Tannukij, Lunchakorn; Wongjun, Pitayuth
2015-01-01
We consider an extended model of DBI massive gravity by generalizing the fiducial metric to be an induced metric on the brane corresponding to a domain wall moving in five-dimensional Schwarzschild-Anti-de Sitter spacetime. The model admits all solutions of FLRW metric including flat, closed and open geometries while the original one does not. The background solutions can be divided into two branches namely self-accelerating branch and normal branch. For the self-accelerating branch, the graviton mass plays the role of cosmological constant to drive the late-time acceleration of the universe. It is found that the number degrees of freedom of gravitational sector is not correct similar to the original DBI massive gravity. There are only two propagating degrees of freedom from tensor modes. For normal branch, we restrict our attention to a particular class of the solutions which provides an accelerated expansion of the universe. It is found that the number of degrees of freedom in the model is correct. However, at least one of them is ghost degree of freedom which always present at small scale implying that the theory is not stable.
Algebraic solutions of anti-self-dual gravity
International Nuclear Information System (INIS)
Sheftel, M.B.
2011-01-01
Full text: (author)It is considered a four-dimensional PDE: complex Monge-Amp'ere equation (CMA), solutions of which govern anti-self-dual gravity, i.e. determine anti-self-dual Ricci-flat Kahler metrics, solutions of the vacuum Einstein equations with the Euclidean signature. It is used simultaneously two mutually complex conjugate pairs of partner symmetries of CMA related by a recursion relation. For both pairs of partner symmetries, using Lie equations, it is introduced explicitly group parameters as additional variables, replacing symmetry characteristics and their complex conjugates by derivatives of the unknown with respect to group parameters. It is studied the resulting system of six equations in the eight-dimensional space, that includes CMA, four equations of the recursion between partner symmetries and one integrability condition of this system. It is used point symmetries of this extended system for performing its symmetry reduction with respect to group parameters that facilitates solving the extended system. This procedure does not imply a reduction in the number of physical variables and hence it is ended up with orbits of non-invariant solutions of CMA, generated by one partner symmetry, not used in the reduction. These solutions are determined by six linear equations with constant coefficients in the five-dimensional space which are obtained by a three-dimensional Legendre transformation of the reduced extended system. It is presented an example of algebraic solutions that govern Legendre-transformed Ricci-flat Kahler metrics with no Killing vectors. It is defined as a set of roots of a homogeneous polynomial of degree 6 in the six complex variables which determines a four-dimensional compact manifold in a five-dimensional complex projective space
International Nuclear Information System (INIS)
Jevicki, A.; Ninomiya, M.
1985-01-01
We are concerned with applications of the simplicial discretization method (Regge calculus) to two-dimensional quantum gravity with emphasis on the physically relevant string model. Beginning with the discretization of gravity and matter we exhibit a discrete version of the conformal trace anomaly. Proceeding to the string problem we show how the direct approach of (finite difference) discretization based on Nambu action corresponds to unsatisfactory treatment of gravitational degrees. Based on the Regge approach we then propose a discretization corresponding to the Polyakov string. In this context we are led to a natural geometric version of the associated Liouville model and two-dimensional gravity. (orig.)
CERN. Geneva
2007-01-01
Of the four fundamental forces, gravity has been studied the longest, yet gravitational physics is one of the most rapidly developing areas of science today. This talk will give a broad brush survey of the past achievements and future prospects of general relativistic gravitational physics. Gravity is a two frontier science being important on both the very largest and smallest length scales considered in contemporary physics. Recent advances and future prospects will be surveyed in precision tests of general relativity, gravitational waves, black holes, cosmology and quantum gravity. The aim will be an overview of a subject that is becoming increasingly integrated with experiment and other branches of physics.
Directory of Open Access Journals (Sweden)
J. Ambjørn
1995-07-01
Full Text Available The 2-point function is the natural object in quantum gravity for extracting critical behavior: The exponential falloff of the 2-point function with geodesic distance determines the fractal dimension dH of space-time. The integral of the 2-point function determines the entropy exponent γ, i.e. the fractal structure related to baby universes, while the short distance behavior of the 2-point function connects γ and dH by a quantum gravity version of Fisher's scaling relation. We verify this behavior in the case of 2d gravity by explicit calculation.
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (71 records) were gathered by various governmental organizations (and academia) using a variety of methods. This data base was received in...
Bergshoeff, Eric A.; Hohm, Olaf; Townsend, Paul K.
2012-01-01
We present a brief review of New Massive Gravity, which is a unitary theory of massive gravitons in three dimensions obtained by considering a particular combination of the Einstein-Hilbert and curvature squared terms.
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (65,164 records) were gathered by various governmental organizations (and academia) using a variety of methods. The data base was received...
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (55,907 records) were gathered by various governmental organizations (and academia) using a variety of methods. This data base was received...
International Nuclear Information System (INIS)
Hertog, Thomas; Hollands, Stefan
2005-01-01
We study the stability of designer gravity theories, in which one considers gravity coupled to a tachyonic scalar with anti-de Sitter (AdS) boundary conditions defined by a smooth function W. We construct Hamiltonian generators of the asymptotic symmetries using the covariant phase space method of Wald et al and find that they differ from the spinor charges except when W = 0. The positivity of the spinor charge is used to establish a lower bound on the conserved energy of any solution that satisfies boundary conditions for which W has a global minimum. A large class of designer gravity theories therefore have a stable ground state, which the AdS/CFT correspondence indicates should be the lowest energy soliton. We make progress towards proving this by showing that minimum energy solutions are static. The generalization of our results to designer gravity theories in higher dimensions involving several tachyonic scalars is discussed
Carroll versus Galilei gravity
Energy Technology Data Exchange (ETDEWEB)
Bergshoeff, Eric [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Gomis, Joaquim [Departament de Física Cuàntica i Astrofísica and Institut de Ciències del Cosmos,Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain); Rollier, Blaise [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Rosseel, Jan [Faculty of Physics, University of Vienna,Boltzmanngasse 5, A-1090 Vienna (Austria); Veldhuis, Tonnis ter [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands)
2017-03-30
We consider two distinct limits of General Relativity that in contrast to the standard non-relativistic limit can be taken at the level of the Einstein-Hilbert action instead of the equations of motion. One is a non-relativistic limit and leads to a so-called Galilei gravity theory, the other is an ultra-relativistic limit yielding a so-called Carroll gravity theory. We present both gravity theories in a first-order formalism and show that in both cases the equations of motion (i) lead to constraints on the geometry and (ii) are not sufficient to solve for all of the components of the connection fields in terms of the other fields. Using a second-order formalism we show that these independent components serve as Lagrange multipliers for the geometric constraints we found earlier. We point out a few noteworthy differences between Carroll and Galilei gravity and give some examples of matter couplings.
International Nuclear Information System (INIS)
Williams, Ruth M
2006-01-01
A review is given of a number of approaches to discrete quantum gravity, with a restriction to those likely to be relevant in four dimensions. This paper is dedicated to Rafael Sorkin on the occasion of his sixtieth birthday
Garland, G D; Wilson, J T
2013-01-01
The Earth's Shape and Gravity focuses on the progress of the use of geophysical methods in investigating the interior of the earth and its shape. The publication first offers information on gravity, geophysics, geodesy, and geology and gravity measurements. Discussions focus on gravity measurements and reductions, potential and equipotential surfaces, absolute and relative measurements, and gravity networks. The text then elaborates on the shape of the sea-level surface and reduction of gravity observations. The text takes a look at gravity anomalies and structures in the earth's crust; interp
Streaming gravity mode instability
International Nuclear Information System (INIS)
Wang Shui.
1989-05-01
In this paper, we study the stability of a current sheet with a sheared flow in a gravitational field which is perpendicular to the magnetic field and plasma flow. This mixing mode caused by a combined role of the sheared flow and gravity is named the streaming gravity mode instability. The conditions of this mode instability are discussed for an ideal four-layer model in the incompressible limit. (author). 5 refs
International Nuclear Information System (INIS)
Accioly, A.J.
1987-01-01
A possible classical route conducting towards a general relativity theory with higher-derivatives starting, in a sense, from first principles, is analysed. A completely causal vacuum solution with the symmetries of the Goedel universe is obtained in the framework of this higher-derivative gravity. This very peculiar and rare result is the first known vcuum solution of the fourth-order gravity theory that is not a solution of the corresponding Einstein's equations.(Author) [pt
Nelson, George
2004-01-01
Gravity is the name given to the phenomenon that any two masses, like you and the Earth, attract each other. One pulls on the Earth and the Earth pulls on one the same amount. And one does not have to be touching. Gravity acts over vast distances, like the 150 million kilometers (93 million miles) between the Earth and the Sun or the billions of…
Automated borehole gravity meter system
International Nuclear Information System (INIS)
Lautzenhiser, Th.V.; Wirtz, J.D.
1984-01-01
An automated borehole gravity meter system for measuring gravity within a wellbore. The gravity meter includes leveling devices for leveling the borehole gravity meter, displacement devices for applying forces to a gravity sensing device within the gravity meter to bring the gravity sensing device to a predetermined or null position. Electronic sensing and control devices are provided for (i) activating the displacement devices, (ii) sensing the forces applied to the gravity sensing device, (iii) electronically converting the values of the forces into a representation of the gravity at the location in the wellbore, and (iv) outputting such representation. The system further includes electronic control devices with the capability of correcting the representation of gravity for tidal effects, as well as, calculating and outputting the formation bulk density and/or porosity
Gravity Before Einstein and Schwinger Before Gravity
Trimble, Virginia L.
2012-05-01
Julian Schwinger was a child prodigy, and Albert Einstein distinctly not; Schwinger had something like 73 graduate students, and Einstein very few. But both thought gravity was important. They were not, of course, the first, nor is the disagreement on how one should think about gravity that is being highlighted here the first such dispute. The talk will explore, first, several of the earlier dichotomies: was gravity capable of action at a distance (Newton), or was a transmitting ether required (many others). Did it act on everything or only on solids (an odd idea of the Herschels that fed into their ideas of solar structure and sunspots)? Did gravitational information require time for its transmission? Is the exponent of r precisely 2, or 2 plus a smidgeon (a suggestion by Simon Newcomb among others)? And so forth. Second, I will try to say something about Scwinger's lesser known early work and how it might have prefigured his "source theory," beginning with "On the Interaction of Several Electrons (the unpublished, 1934 "zeroth paper," whose title somewhat reminds one of "On the Dynamics of an Asteroid," through his days at Berkeley with Oppenheimer, Gerjuoy, and others, to his application of ideas from nuclear physics to radar and of radar engineering techniques to problems in nuclear physics. And folks who think good jobs are difficult to come by now might want to contemplate the couple of years Schwinger spent teaching elementary physics at Purdue before moving on to the MIT Rad Lab for war work.
International Nuclear Information System (INIS)
Capozziello, Salvatore; De Laurentis, Mariafelicia
2011-01-01
Extended Theories of Gravity can be considered as a new paradigm to cure shortcomings of General Relativity at infrared and ultraviolet scales. They are an approach that, by preserving the undoubtedly positive results of Einstein’s theory, is aimed to address conceptual and experimental problems recently emerged in astrophysics, cosmology and High Energy Physics. In particular, the goal is to encompass, in a self-consistent scheme, problems like inflation, dark energy, dark matter, large scale structure and, first of all, to give at least an effective description of Quantum Gravity. We review the basic principles that any gravitational theory has to follow. The geometrical interpretation is discussed in a broad perspective in order to highlight the basic assumptions of General Relativity and its possible extensions in the general framework of gauge theories. Principles of such modifications are presented, focusing on specific classes of theories like f(R)-gravity and scalar–tensor gravity in the metric and Palatini approaches. The special role of torsion is also discussed. The conceptual features of these theories are fully explored and attention is paid to the issues of dynamical and conformal equivalence between them considering also the initial value problem. A number of viability criteria are presented considering the post-Newtonian and the post-Minkowskian limits. In particular, we discuss the problems of neutrino oscillations and gravitational waves in extended gravity. Finally, future perspectives of extended gravity are considered with possibility to go beyond a trial and error approach.
Gravity localization in non-minimally coupled scalar thick braneworlds with a Gauss-Bonnet term
International Nuclear Information System (INIS)
Malagon-Morejon, D; Quiros, I; Herrera-Aguilar, A
2011-01-01
We consider a warped five-dimensional thick braneworld with a four-dimensional Poincare invariant space-time in the framework of scalar matter non-minimally coupled to gravity plus a Gauss-Bonnet term in the bulk. Scalar field and higher curvature corrections to the background equations as well as the perturbed equations are shown. A relationship between 4-dimensional and 5-dimensional Planck masses is studied in general terms. By imposing finiteness of the 4-dimensional Planck mass and regularity of the geometry, the localization properties of the tensor modes of the first order perturbed geometry are analized for an important class of solutions motivated by models with scalar fields which are minimally coupled to gravity. In order to study the gravity localization properties for this model, the normalizability condition for the lowest level of the tensor fluctuations is analized. We see that for the class of solutions examined, gravity in 4 dimensions is recovered if the curvature invariants are regular and Planck masses are finite.
Directory of Open Access Journals (Sweden)
Cahill R. T.
2015-10-01
Full Text Available A new quantum gravity experiment is reported with the data confirming the generali- sation of the Schrödinger equation to include the interaction of the wave function with dynamical space. Dynamical space turbulence, via this interaction process, raises and lowers the energy of the electron wave function, which is detected by observing conse- quent variations in the electron quantum barrier tunnelling rate in reverse-biased Zener diodes. This process has previously been reported and enabled the measurement of the speed of the dynamical space flow, which is consistent with numerous other detection experiments. The interaction process is dependent on the angle between the dynamical space flow velocity and the direction of the electron flow in the diode, and this depen- dence is experimentally demonstrated. This interaction process explains gravity as an emergent quantum process, so unifying quantum phenomena and gravity. Gravitational waves are easily detected.
Ortín, Tomás
2015-01-01
Self-contained and comprehensive, this definitive new edition of Gravity and Strings is a unique resource for graduate students and researchers in theoretical physics. From basic differential geometry through to the construction and study of black-hole and black-brane solutions in quantum gravity - via all the intermediate stages - this book provides a complete overview of the intersection of gravity, supergravity, and superstrings. Now fully revised, this second edition covers an extensive array of topics, including new material on non-linear electric-magnetic duality, the electric-tensor formalism, matter-coupled supergravity, supersymmetric solutions, the geometries of scalar manifolds appearing in 4- and 5-dimensional supergravities, and much more. Covering reviews of important solutions and numerous solution-generating techniques, and accompanied by an exhaustive index and bibliography, this is an exceptional reference work.
International Nuclear Information System (INIS)
Goetz, G.
1988-01-01
It is shown that the plane-wave solutions for the equations governing the motion of a self-gravitating isothermal fluid in Newtonian hydrodynamics are generated by a sine-Gordon equation which is solvable by an 'inverse scattering' transformation. A transformation procedure is outlined by means of which one can construct solutions of the gravity system out of a pair of solutions of the sine-Gordon equation, which are interrelated via an auto-Baecklund transformation. In general the solutions to the gravity system are obtained in a parametric representation in terms of characteristic coordinates. All solutions of the gravity system generated by the one-and two-soliton solutions of the sine-Gordon equation can be constructed explicitly. These might provide models for the evolution of flat structures as they are predicted to arise in the process of galaxy formation. (author)
International Nuclear Information System (INIS)
Rumpf, H.
1987-01-01
We begin with a naive application of the Parisi-Wu scheme to linearized gravity. This will lead into trouble as one peculiarity of the full theory, the indefiniteness of the Euclidean action, shows up already at this level. After discussing some proposals to overcome this problem, Minkowski space stochastic quantization will be introduced. This will still not result in an acceptable quantum theory of linearized gravity, as the Feynman propagator turns out to be non-causal. This defect will be remedied only after a careful analysis of general covariance in stochastic quantization has been performed. The analysis requires the notion of a metric on the manifold of metrics, and a natural candidate for this is singled out. With this a consistent stochastic quantization of Einstein gravity becomes possible. It is even possible, at least perturbatively, to return to the Euclidean regime. 25 refs. (Author)
Linder, Eric V.
2018-03-01
A subclass of the Horndeski modified gravity theory we call No Slip Gravity has particularly interesting properties: 1) a speed of gravitational wave propagation equal to the speed of light, 2) equality between the effective gravitational coupling strengths to matter and light, Gmatter and Glight, hence no slip between the metric potentials, yet difference from Newton's constant, and 3) suppressed growth to give better agreement with galaxy clustering observations. We explore the characteristics and implications of this theory, and project observational constraints. We also give a simple expression for the ratio of the gravitational wave standard siren distance to the photon standard candle distance, in this theory and others, and enable a direct comparison of modified gravity in structure growth and in gravitational waves, an important crosscheck.
Gerhardt, Claus
2018-01-01
A unified quantum theory incorporating the four fundamental forces of nature is one of the major open problems in physics. The Standard Model combines electro-magnetism, the strong force and the weak force, but ignores gravity. The quantization of gravity is therefore a necessary first step to achieve a unified quantum theory. In this monograph a canonical quantization of gravity has been achieved by quantizing a geometric evolution equation resulting in a gravitational wave equation in a globally hyperbolic spacetime. Applying the technique of separation of variables we obtain eigenvalue problems for temporal and spatial self-adjoint operators where the temporal operator has a pure point spectrum with eigenvalues $\\lambda_i$ and related eigenfunctions, while, for the spatial operator, it is possible to find corresponding eigendistributions for each of the eigenvalues $\\lambda_i$, if the Cauchy hypersurface is asymptotically Euclidean or if the quantized spacetime is a black hole with a negative cosmological ...
Airborne Gravity: NGS' Gravity Data for EN08 (2013)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Vermont, New Hampshire, Massachusettes, Maine, and Canada collected in 2013 over 1 survey. This data set is part of the Gravity...
Airborne Gravity: NGS' Gravity Data for TS01 (2014)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Puerto Rico and the Virgin Islands collected in 2009 over 1 survey. This data set is part of the Gravity for the Re-definition of the...
Airborne Gravity: NGS' Gravity Data for AN08 (2016)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2016 over one survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...
Airborne Gravity: NGS' Gravity Data for CN02 (2013 & 2014)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Nebraska collected in 2013 & 2014 over 3 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical...
Airborne Gravity: NGS' Gravity Data for EN01 (2011)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Canada, and Lake Ontario collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the...
Airborne Gravity: NGS' Gravity Data for AN03 (2010)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 and 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...
Airborne Gravity: NGS' Gravity Data for EN06 (2016)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Maine, Canada, and the Atlantic Ocean collected in 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the...
Airborne Gravity: NGS' Gravity Data for ES01 (2013)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Florida, the Bahamas, and the Atlantic Ocean collected in 2013 over 1 survey. This data set is part of the Gravity for the Re-definition of...
Zhou, Xiao; Yang, Gongliu; Wang, Jing; Wen, Zeyang
2018-05-14
In recent decades, gravity compensation has become an important way to reduce the position error of an inertial navigation system (INS), especially for a high-precision INS, because of the extensive application of high precision inertial sensors (accelerometers and gyros). This paper first deducts the INS's solution error considering gravity disturbance and simulates the results. Meanwhile, this paper proposes a combined gravity compensation method using a simplified gravity model and gravity database. This new combined method consists of two steps all together. Step 1 subtracts the normal gravity using a simplified gravity model. Step 2 first obtains the gravity disturbance on the trajectory of the carrier with the help of ELM training based on the measured gravity data (provided by Institute of Geodesy and Geophysics; Chinese Academy of sciences), and then compensates it into the error equations of the INS, considering the gravity disturbance, to further improve the navigation accuracy. The effectiveness and feasibility of this new gravity compensation method for the INS are verified through vehicle tests in two different regions; one is in flat terrain with mild gravity variation and the other is in complex terrain with fierce gravity variation. During 2 h vehicle tests, the positioning accuracy of two tests can improve by 20% and 38% respectively, after the gravity is compensated by the proposed method.
Miniaturised Gravity Sensors for Remote Gravity Surveys.
Middlemiss, R. P.; Bramsiepe, S. G.; Hough, J.; Paul, D. J.; Rowan, S.; Samarelli, A.; Hammond, G.
2016-12-01
Gravimetry lets us see the world from a completely different perspective. The ability to measure tiny variations in gravitational acceleration (g), allows one to see not just the Earth's gravitational pull, but the influence of smaller objects. The more accurate the gravimeter, the smaller the objects one can see. Gravimetry has applications in many different fields: from tracking magma moving under volcanoes before eruptions; to locating hidden tunnels. The top commercial gravimeters weigh tens of kg and cost at least $100,000, limiting the situations in which they can be used. By contrast, smart phones use a MEMS (microelectromechanical system) accelerometer that can measure the orientation of the device. These are not nearly sensitive or stable enough to be used for the gravimetry but they are cheap, light-weight and mass-producible. At Glasgow University we have developed a MEMS device with both the stability and sensitivity for useful gravimetric measurements. This was demonstrated by a measurement of the Earth tides - the first time this has been achieved with a MEMS sensor. A gravimeter of this size opens up the possiblility for new gravity imaging modalities. Thousands of gravimeters could be networked over a survey site, storing data on an SD card or communicating wirelessly to a remote location. These devices could also be small enough to be carried by a UAVs: airborne gravity surveys could be carried out at low altitude by mulitple UAVs, or UAVs could be used to deliver ground based gravimeters to remote or inaccessible locations.
Pizzo, Nick
2017-11-01
A simple criterion for water particles to surf an underlying surface gravity wave is presented. It is found that particles travelling near the phase speed of the wave, in a geometrically confined region on the forward face of the crest, increase in speed. The criterion is derived using the equation of John (Commun. Pure Appl. Maths, vol. 6, 1953, pp. 497-503) for the motion of a zero-stress free surface under the action of gravity. As an example, a breaking water wave is theoretically and numerically examined. Implications for upper-ocean processes, for both shallow- and deep-water waves, are discussed.
International Nuclear Information System (INIS)
Romney, B.; Barrau, A.; Vidotto, F.; Le Meur, H.; Noui, K.
2011-01-01
The loop quantum gravity is the only theory that proposes a quantum description of space-time and therefore of gravitation. This theory predicts that space is not infinitely divisible but that is has a granular structure at the Planck scale (10 -35 m). Another feature of loop quantum gravity is that it gets rid of the Big-Bang singularity: our expanding universe may come from the bouncing of a previous contracting universe, in this theory the Big-Bang is replaced with a big bounce. The loop quantum theory predicts also the huge number of quantum states that accounts for the entropy of large black holes. (A.C.)
Terrestrial gravity data analysis for interim gravity model improvement
1987-01-01
This is the first status report for the Interim Gravity Model research effort that was started on June 30, 1986. The basic theme of this study is to develop appropriate models and adjustment procedures for estimating potential coefficients from terrestrial gravity data. The plan is to use the latest gravity data sets to produce coefficient estimates as well as to provide normal equations to NASA for use in the TOPEX/POSEIDON gravity field modeling program.
Gravity Data for South America
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (152,624 records) were compiled by the University of Texas at Dallas. This data base was received in June 1992. Principal gravity parameters...
Interior Alaska Gravity Station Data
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 9416 records. This data base was received in March 1997. Principal gravity parameters include Free-air Anomalies which have been...
Gravity Station Data for Spain
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 28493 records. This data base was received in April 1997. Principal gravity parameters include Free-air Anomalies which have been...
Gravity Station Data for Portugal
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 3064 records. This data base was received in April 1997. Principal gravity parameters include Free-air Anomalies which have been...
International Nuclear Information System (INIS)
Faria, F. F.
2014-01-01
We construct a massive theory of gravity that is invariant under conformal transformations. The massive action of the theory depends on the metric tensor and a scalar field, which are considered the only field variables. We find the vacuum field equations of the theory and analyze its weak-field approximation and Newtonian limit.
DEFF Research Database (Denmark)
Skielboe, Andreas
Gravity governs the evolution of the universe on the largest scales, and powers some of the most extreme objects at the centers of galaxies. Determining the masses and kinematics of galaxy clusters provides essential constraints on the large-scale structure of the universe, and act as direct probes...
Newburgh, Ronald
2010-01-01
It's both surprising and rewarding when an old, standard problem reveals a subtlety that expands its pedagogic value. I realized recently that the role of gravity in the range equation for a projectile is not so simple as first appears. This realization may be completely obvious to others but was quite new to me.
Discrete Lorentzian quantum gravity
Loll, R.
2000-01-01
Just as for non-abelian gauge theories at strong coupling, discrete lattice methods are a natural tool in the study of non-perturbative quantum gravity. They have to reflect the fact that the geometric degrees of freedom are dynamical, and that therefore also the lattice theory must be formulated
International Nuclear Information System (INIS)
Pullin, J.
2015-01-01
Loop quantum gravity is one of the approaches that are being studied to apply the rules of quantum mechanics to the gravitational field described by the theory of General Relativity . We present an introductory summary of the main ideas and recent results. (Author)
International Nuclear Information System (INIS)
Meszaros, A.
1984-05-01
In case the graviton has a very small non-zero mass, the existence of six additional massive gravitons with very big masses leads to a finite quantum gravity. There is an acausal behaviour on the scales that is determined by the masses of additional gravitons. (author)
Venus - Ishtar gravity anomaly
Sjogren, W. L.; Bills, B. G.; Mottinger, N. A.
1984-01-01
The gravity anomaly associated with Ishtar Terra on Venus is characterized, comparing line-of-sight acceleration profiles derived by differentiating Pioneer Venus Orbiter Doppler residual profiles with an Airy-compensated topographic model. The results are presented in graphs and maps, confirming the preliminary findings of Phillips et al. (1979). The isostatic compensation depth is found to be 150 + or - 30 km.
International Nuclear Information System (INIS)
Aros, Rodrigo; Contreras, Mauricio
2006-01-01
In this work the Poincare-Chern-Simons and anti-de Sitter-Chern-Simons gravities are studied. For both, a solution that can be cast as a black hole with manifest torsion is found. Those solutions resemble Schwarzschild and Schwarzschild-AdS solutions, respectively
International Nuclear Information System (INIS)
Williams, J.W.
1992-01-01
After a brief introduction to Regge calculus, some examples of its application is quantum gravity are described in this paper. In particular, the earliest such application, by Ponzano and Regge, is discussed in some detail and it is shown how this leads naturally to current work on invariants of three-manifolds
Directory of Open Access Journals (Sweden)
Rovelli Carlo
1998-01-01
Full Text Available The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. Research in loop quantum gravity today forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained are: (i The computation of the physical spectra of geometrical quantities such as area and volume, which yields quantitative predictions on Planck-scale physics. (ii A derivation of the Bekenstein-Hawking black hole entropy formula. (iii An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime ``foam''. Long standing open problems within the approach (lack of a scalar product, over-completeness of the loop basis, implementation of reality conditions have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.
Quantum Gravity Effects in Cosmology
Directory of Open Access Journals (Sweden)
Gu Je-An
2018-01-01
Full Text Available Within the geometrodynamic approach to quantum cosmology, we studied the quantum gravity effects in cosmology. The Gibbons-Hawking temperature is corrected by quantum gravity due to spacetime fluctuations and the power spectrum as well as any probe field will experience the effective temperature, a quantum gravity effect.
Even-dimensional topological gravity from Chern-Simons gravity
International Nuclear Information System (INIS)
Merino, N.; Perez, A.; Salgado, P.
2009-01-01
It is shown that the topological action for gravity in 2n-dimensions can be obtained from the (2n+1)-dimensional Chern-Simons gravity genuinely invariant under the Poincare group. The 2n-dimensional topological gravity is described by the dynamics of the boundary of a (2n+1)-dimensional Chern-Simons gravity theory with suitable boundary conditions. The field φ a , which is necessary to construct this type of topological gravity in even dimensions, is identified with the coset field associated with the non-linear realizations of the Poincare group ISO(d-1,1).
Directory of Open Access Journals (Sweden)
A. V. Vikulin
2014-01-01
Full Text Available Gravity phenomena related to the Earth movements in the Solar System and through the Galaxy are reviewed. Such movements are manifested by geological processes on the Earth and correlate with geophysical fields of the Earth. It is concluded that geodynamic processes and the gravity phenomena (including those of cosmic nature are related. The state of the geomedium composed of blocks is determined by stresses with force moment and by slow rotational waves that are considered as a new type of movements [Vikulin, 2008, 2010]. It is shown that the geomedium has typical rheid properties [Carey, 1954], specifically an ability to flow while being in the solid state [Leonov, 2008]. Within the framework of the rotational model with a symmetric stress tensor, which is developed by the authors [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013], such movement of the geomedium may explain the energy-saturated state of the geomedium and a possibility of its movements in the form of vortex geological structures [Lee, 1928]. The article discusses the gravity wave detection method based on the concept of interactions between gravity waves and crustal blocks [Braginsky et al., 1985]. It is concluded that gravity waves can be recorded by the proposed technique that detects slow rotational waves. It is shown that geo-gravitational movements can be described by both the concept of potential with account of gravitational energy of bodies [Kondratyev, 2003] and the nonlinear physical acoustics [Gurbatov et al., 2008]. Based on the combined description of geophysical and gravitational wave movements, the authors suggest a hypothesis about the nature of spin, i.e. own moment as a demonstration of the space-time ‘vortex’ properties.
Magnetized black holes and black rings in the higher dimensional dilaton gravity
International Nuclear Information System (INIS)
Yazadjiev, Stoytcho S.
2006-01-01
In this paper we consider magnetized black holes and black rings in the higher dimensional dilaton gravity. Our study is based on exact solutions generated by applying a Harrison transformation to known asymptotically flat black hole and black ring solutions in higher dimensional spacetimes. The explicit solutions include the magnetized version of the higher dimensional Schwarzschild-Tangherlini black holes, Myers-Perry black holes, and five-dimensional (dipole) black rings. The basic physical quantities of the magnetized objects are calculated. We also discuss some properties of the solutions and their thermodynamics. The ultrarelativistic limits of the magnetized solutions are briefly discussed and an explicit example is given for the D-dimensional magnetized Schwarzschild-Tangherlini black holes
Effects of backreaction on power-Maxwell holographic superconductors in Gauss-Bonnet gravity
Energy Technology Data Exchange (ETDEWEB)
Salahi, Hamid Reza; Montakhab, Afshin [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Sheykhi, Ahmad [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P.O. Box 55134-441, Maragha (Iran, Islamic Republic of)
2016-10-15
We analytically and numerically investigate the properties of s-wave holographic superconductors by considering the effects of scalar and gauge fields on the background geometry in five-dimensional Einstein-Gauss-Bonnet gravity. We assume the gauge field to be in the form of the power-Maxwell nonlinear electrodynamics. We employ the Sturm-Liouville eigenvalue problem for analytical calculation of the critical temperature and the shooting method for the numerical investigation. Our numerical and analytical results indicate that higher curvature corrections affect condensation of the holographic superconductors with backreaction. We observe that the backreaction can decrease the critical temperature of the holographic superconductors, while the power-Maxwell electrodynamics and Gauss-Bonnet coefficient term may increase the critical temperature of the holographic superconductors. We find that the critical exponent has the mean-field value β = 1/2, regardless of the values of Gauss-Bonnet coefficient, backreaction and power-Maxwell parameters. (orig.)
Metastable gravity on classical defects
International Nuclear Information System (INIS)
Ringeval, Christophe; Rombouts, Jan-Willem
2005-01-01
We discuss the realization of metastable gravity on classical defects in infinite-volume extra dimensions. In dilatonic Einstein gravity, it is found that the existence of metastable gravity on the defect core requires violation of the dominant energy condition for codimension N c =2 defects. This is illustrated with a detailed analysis of a six-dimensional hyperstring minimally coupled to dilaton gravity. We present the general conditions under which a codimension N c >2 defect admits metastable modes, and find that they differ from lower codimensional models in that, under certain conditions, they do not require violation of energy conditions to support quasilocalized gravity
Scalar brane backgrounds in higher order curvature gravity
International Nuclear Information System (INIS)
Charmousis, Christos; Davis, Stephen C.; Dufaux, Jean-Francois
2003-01-01
We investigate maximally symmetric brane world solutions with a scalar field. Five-dimensional bulk gravity is described by a general lagrangian which yields field equations containing no higher than second order derivatives. This includes the Gauss-Bonnet combination for the graviton. Stability and gravitational properties of such solutions are considered, and we particularly emphasise the modifications induced by the higher order terms. In particular it is shown that higher curvature corrections to Einstein theory can give rise to instabilities in brane world solutions. A method for analytically obtaining the general solution for such actions is outlined. Generically, the requirement of a finite volume element together with the absence of a naked singularity in the bulk imposes fine-tuning of the brane tension. A model with a moduli scalar field is analysed in detail and we address questions of instability and non-singular self-tuning solutions. In particular, we discuss a case with a normalisable zero mode but infinite volume element. (author)
Spherical perturbations of hairy black holes in designer gravity theories
International Nuclear Information System (INIS)
Battarra, Lorenzo
2012-01-01
We study the spectrum of the scalar l = 0 quasi-normal frequencies of anti-de Sitter hairy black holes in four- and five-dimensional designer gravity theories of the Einstein-scalar type, arising as consistent truncations of N= 8 gauged supergravity. In the dual field theory, such hairy black holes represent thermal states in which the operator corresponding to the bulk scalar field is condensed, due to the multi-trace deformation associated with non-standard boundary conditions. We show that, in a particular class of models, the effective potential describing the vacua of the deformed dual theory can be identified, at large values of the condensate, with the deformation plus the conformal coupling of the condensate to the curvature of the boundary geometry. In this limit, we show that the least damped quasi-normal frequency of the corresponding hairy black holes can be accurately predicted by the curvature of the effective potential describing the field theory at finite entropy. (paper)
Reduction of entanglement degradation in Einstein-Gauss-Bonnet gravity
International Nuclear Information System (INIS)
Nasr Esfahani, B.; Shamirzaie, M.; Soltani, M.
2011-01-01
Bipartite entanglement for states of a noninteracting bosonic or fermionic field in the spacetime of a spherically symmetric black hole of Einstein-Gauss-Bonnet gravity is investigated. Although the initial state is chosen to be maximally entangled as the Bell states, the Hawking-Unruh effect causes the state to be mixed and the entanglement degrades, but with different asymptotic behaviors for the fermionic and bosonic fields. The Gauss-Bonnet term with positive α can play an antigravitation role and so this causes a decrease in the Hawking-Unruh effect and consequently reduces the entanglement degradation. On the other hand, the suggested higher dimensions for the spacetime lead to increased entanglement degradation by increasing the dimension. There is a dramatic difference between the behaviors of the entanglement in terms of the radius of the horizon for a five-dimensional black hole and that for higher dimensional black holes. Both bosonic and fermionic fields entanglements are treated beyond the single-mode approximation. Also, the cases where the accelerating observers located at regions near and far from the event horizon of black hole are studied separately.
Quantum gravity from noncommutative spacetime
International Nuclear Information System (INIS)
Lee, Jungjai; Yang, Hyunseok
2014-01-01
We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative *-algebra) of quantum gravity.
Quantum gravity from noncommutative spacetime
Energy Technology Data Exchange (ETDEWEB)
Lee, Jungjai [Daejin University, Pocheon (Korea, Republic of); Yang, Hyunseok [Korea Institute for Advanced Study, Seoul (Korea, Republic of)
2014-12-15
We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative *-algebra) of quantum gravity.
Fermion localization in higher curvature and scalar-tensor theories of gravity
Energy Technology Data Exchange (ETDEWEB)
Mitra, Joydip [Scottish Church College, Department of Physics, Kolkata (India); Paul, Tanmoy; SenGupta, Soumitra [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)
2017-12-15
It is well known that, in a braneworld model, the localization of fermions on a lower dimensional submanifold (say a TeV 3-brane) is governed by the gravity in the bulk, which also determines the corresponding phenomenology on the brane. Here we consider a five dimensional warped spacetime where the bulk geometry is governed by higher curvature like F(R) gravity. In such a scenario, we explore the role of higher curvature terms on the localization of bulk fermions which in turn determines the effective radion-fermion coupling on the brane. Our result reveals that, for appropriate choices of the higher curvature parameter, the profiles of the massless chiral modes of the fermions may get localized near the TeV brane, while those for massive Kaluza-Klein (KK) fermions localize towards the Planck brane. We also explore these features in the dual scalar-tensor model by appropriate transformations. The localization property turns out to be identical in the two models. This rules out the possibility of any signature of massive KK fermions in TeV scale collider experiments due to higher curvature gravity effects. (orig.)
DEFF Research Database (Denmark)
Forsberg, René; Sideris, M.G.; Shum, C.K.
2005-01-01
The gravity field of the earth is a natural element of the Global Geodetic Observing System (GGOS). Gravity field quantities are like spatial geodetic observations of potential very high accuracy, with measurements, currently at part-per-billion (ppb) accuracy, but gravity field quantities are also...... unique as they can be globally represented by harmonic functions (long-wavelength geopotential model primarily from satellite gravity field missions), or based on point sampling (airborne and in situ absolute and superconducting gravimetry). From a GGOS global perspective, one of the main challenges...... is to ensure the consistency of the global and regional geopotential and geoid models, and the temporal changes of the gravity field at large spatial scales. The International Gravity Field Service, an umbrella "level-2" IAG service (incorporating the International Gravity Bureau, International Geoid Service...
Accelerated FRW solutions in Chern-Simons gravity
International Nuclear Information System (INIS)
Cataldo, Mauricio; Crisostomo, Juan; Gomez, Fernando; Salgado, Patricio; Campo, Sergio del; Quinzacara, Cristian C.
2014-01-01
We consider a five-dimensional Einstein-Chern-Simons action which is composed of a gravitational sector and a sector of matter where the gravitational sector is given by a Chern-Simons gravity action instead of the Einstein-Hilbert action and where the matter sector is given by the so-called perfect fluid. It is shown that (i) the Einstein-Chern-Simons (EChS) field equations subject to suitable conditions can be written in a similar way to the Einstein-Maxwell field equations; (ii) these equations have solutions that describe an accelerated expansion for the three possible cosmological models of the universe, namely, spherical expansion, flat expansion, and hyperbolic expansion when α a parameter of the theory, is greater than zero. This result allows us to conjecture that these solutions are compatible with the era of dark energy and that the energy-momentum tensor for the field h a , a bosonic gauge field from the Chern-Simons gravity action, corresponds to a form of positive cosmological constant. It is also shown that the EChS field equations have solutions compatible with the era of matter: (i) In the case of an open universe, the solutions correspond to an accelerated expansion (α > 0) with a minimum scale factor at initial time that, when time goes to infinity, the scale factor behaves as a hyperbolic sine function. (ii) In the case of a flat universe, the solutions describe an accelerated expansion whose scale factor behaves as an exponential function of time. (iii) In the case of a closed universe there is found only one solution for a universe in expansion, which behaves as a hyperbolic cosine function of time. (orig.)
Scalar-tensor Theories of Gravity: Some personal history
Brans, Carl H.
2008-12-01
From a perspective of some 50 years or more, this paper reviews my recall of the early days of scalar-tensor alternatives to standard Einstein general relativistic theory of gravity. Of course, the story begins long before my involvement, going back to the proposals of Nordström in 1914, and that of Kaluza, Klein, et al., a few years later, sol include reviews of these seminal ideas and those that followed in the 1920's through the 1940's. This early work concerned the search for a Unified Field Theory, unifying gravity and Electromagnetism, using five dimensional manifolds. This formalism included not only the electromagnetic spacetime vector potential within the five-metric, but also a spacetime scalar as the five-five metric component. Although this was at first regarded more as a nuisance, to be set to a constant, it turned out later that Fierz, Jordan, Einstein and Bergmann noticed that this scalar could be a field, possibly related to the Newtonian gravitational constant. Relatively little theoretical and experimental attention was given to these ideas until after the second world war when Bob Dicke, motivated by the ideas of Mach, Dirac, and others, suggested that this additional scalar, coupled only to the metric and matter, could provide a reasonable and viable alternative to standard Einstein theory. This is the point of my direct involvement with these topics. However, it was Dicke's prominence and expertise in experimental work, together with the blossoming of NASA's experimental tools, that caused the explosion of interest, experimental and theoretical, in this possible alternative to standard Einstein theory. This interest has waxed and waned over the last 50 years, and we summarize some of this work.
CERN. Geneva
2017-01-01
Extensions of Einstein’s theory of General Relativity are under investigation as a potential explanation of the accelerating expansion rate of the universe. I’ll present a cosmologist’s overview of attempts to test these ideas in an efficient and unbiased manner. I’ll start by introducing the bestiary of alternative gravity theories that have been put forwards. This proliferation of models motivates us to develop model-independent, agnostic tools for comparing the theory space to cosmological data. I’ll introduce the effective field theory for cosmological perturbations, a framework designed to unify modified gravity theories in terms of a manageable set of parameters. Having outlined the formalism, I’ll talk about the current constraints on this framework, and the improvements expected from the next generation of large galaxy clustering, weak lensing and intensity mapping experiments.
The relativistic gravity train
Seel, Max
2018-05-01
The gravity train that takes 42.2 min from any point A to any other point B that is connected by a straight-line tunnel through Earth has captured the imagination more than most other applications in calculus or introductory physics courses. Brachystochron and, most recently, nonlinear density solutions have been discussed. Here relativistic corrections are presented. It is discussed how the corrections affect the time to fall through Earth, the Sun, a white dwarf, a neutron star, and—the ultimate limit—the difference in time measured by a moving, a stationary and the fiducial observer at infinity if the density of the sphere approaches the density of a black hole. The relativistic gravity train can serve as a problem with approximate and exact analytic solutions and as numerical exercise in any introductory course on relativity.
International Nuclear Information System (INIS)
Brown, R.E.; Camp, J.B.; Darling, T.W.
1990-01-01
An experiment is being developed to measure the acceleration of the antiproton in the gravitational field of the earth. Antiprotons of a few MeV from the LEAR facility at CERN will be slowed, captured, cooled to a temperature of about 10 K, and subsequently launched a few at a time into a drift tube where the effect of gravity on their motion will be determined by a time-of-flight method. Development of the experiment is proceeding at Los Alamos using normal matter. The fabrication of a drift tube that will produce a region of space in which gravity is the dominant force on moving ions is of major difficulty. This involves a study of methods of minimizing the electric fields produced by spatially varying work functions on conducting surfaces. Progress in a number of areas is described, with stress on the drift-tube development
Gomberoff, Andres
2006-01-01
The 2002 Pan-American Advanced Studies Institute School on Quantum Gravity was held at the Centro de Estudios Cientificos (CECS),Valdivia, Chile, January 4-14, 2002. The school featured lectures by ten speakers, and was attended by nearly 70 students from over 14 countries. A primary goal was to foster interaction and communication between participants from different cultures, both in the layman’s sense of the term and in terms of approaches to quantum gravity. We hope that the links formed by students and the school will persist throughout their professional lives, continuing to promote interaction and the essential exchange of ideas that drives research forward. This volume contains improved and updated versions of the lectures given at the School. It has been prepared both as a reminder for the participants, and so that these pedagogical introductions can be made available to others who were unable to attend. We expect them to serve students of all ages well.
Energy Technology Data Exchange (ETDEWEB)
Lamon, Raphael
2010-06-29
Quantum gravity is an attempt to unify general relativity with quantum mechanics which are the two highly successful fundamental theories of theoretical physics. The main difficulty in this unification arises from the fact that, while general relativity describes gravity as a macroscopic geometrical theory, quantum mechanics explains microscopic phenomena. As a further complication, not only do both theories describe different scales but also their philosophical ramifications and the mathematics used to describe them differ in a dramatic way. Consequently, one possible starting point of an attempt at a unification is quantum mechanics, i.e. particle physics, and try to incorporate gravitation. This pathway has been chosen by particle physicists which led to string theory. On the other hand, loop quantum gravity (LQG) chooses the other possibility, i.e. it takes the geometrical aspects of gravity seriously and quantizes geometry. The first part of this thesis deals with a generalization of loop quantum cosmology (LQC) to toroidal topologies. LQC is a quantization of homogenous solutions of Einstein's field equations using tools from LQG. First the general concepts of closed topologies is introduced with special emphasis on Thurston's theorem and its consequences. It is shown that new degrees of freedom called Teichmueller parameters come into play and their dynamics can be described by a Hamiltonian. Several numerical solutions for a toroidal universe are presented and discussed. Following the guidelines of LQG this dynamics are rewritten using the Ashtekar variables and numerical solutions are shown. However, in order to find a suitable Hilbert space a canonical transformation must be performed. On the other hand this transformation makes the quantization of geometrical quantities less tractable such that two different ways are presented. It is shown that in both cases the spectrum of such geometrical operators depends on the initial value problem
International Nuclear Information System (INIS)
Lamon, Raphael
2010-01-01
Quantum gravity is an attempt to unify general relativity with quantum mechanics which are the two highly successful fundamental theories of theoretical physics. The main difficulty in this unification arises from the fact that, while general relativity describes gravity as a macroscopic geometrical theory, quantum mechanics explains microscopic phenomena. As a further complication, not only do both theories describe different scales but also their philosophical ramifications and the mathematics used to describe them differ in a dramatic way. Consequently, one possible starting point of an attempt at a unification is quantum mechanics, i.e. particle physics, and try to incorporate gravitation. This pathway has been chosen by particle physicists which led to string theory. On the other hand, loop quantum gravity (LQG) chooses the other possibility, i.e. it takes the geometrical aspects of gravity seriously and quantizes geometry. The first part of this thesis deals with a generalization of loop quantum cosmology (LQC) to toroidal topologies. LQC is a quantization of homogenous solutions of Einstein's field equations using tools from LQG. First the general concepts of closed topologies is introduced with special emphasis on Thurston's theorem and its consequences. It is shown that new degrees of freedom called Teichmueller parameters come into play and their dynamics can be described by a Hamiltonian. Several numerical solutions for a toroidal universe are presented and discussed. Following the guidelines of LQG this dynamics are rewritten using the Ashtekar variables and numerical solutions are shown. However, in order to find a suitable Hilbert space a canonical transformation must be performed. On the other hand this transformation makes the quantization of geometrical quantities less tractable such that two different ways are presented. It is shown that in both cases the spectrum of such geometrical operators depends on the initial value problem. Furthermore, we
International Nuclear Information System (INIS)
Hartle, J.B.
1985-01-01
Simplicial approximation and the ideas associated with the Regge calculus provide a concrete way of implementing a sum over histories formulation of quantum gravity. A simplicial geometry is made up of flat simplices joined together in a prescribed way together with an assignment of lengths to their edges. A sum over simplicial geometries is a sum over the different ways the simplices can be joined together with an integral over their edge lengths. The construction of the simplicial Euclidean action for this approach to quantum general relativity is illustrated. The recovery of the diffeomorphism group in the continuum limit is discussed. Some possible classes of simplicial complexes with which to define a sum over topologies are described. In two dimensional quantum gravity it is argued that a reasonable class is the class of pseudomanifolds
International Nuclear Information System (INIS)
Konopleva, N.P.
1996-01-01
The problems of application of nonperturbative quantization methods in the theories of the gauge fields and gravity are discussed. Unification of interactions is considered in the framework of the geometrical gauge fields theory. Vacuum conception in the unified theory of interactions and instantons role in the vacuum structure are analyzed. The role of vacuum solutions of Einstein equations in definition of the gauge field vacuum is demonstrated
Gravity, Time, and Lagrangians
Huggins, Elisha
2010-01-01
Feynman mentioned to us that he understood a topic in physics if he could explain it to a college freshman, a high school student, or a dinner guest. Here we will discuss two topics that took us a while to get to that level. One is the relationship between gravity and time. The other is the minus sign that appears in the Lagrangian. (Why would one…
Spontaneously generated gravity
International Nuclear Information System (INIS)
Zee, A.
1981-01-01
We show, following a recent suggestion of Adler, that gravity may arise as a consequence of dynamical symmetry breaking in a scale- and gauge-invariant world. Our calculation is not tied to any specific scheme of dynamical symmetry breaking. A representation for Newton's coupling constant in terms of flat-space quantities is derived. The sign of Newton's coupling constant appears to depend on infrared details of the symmetry-breaking mechanism
Rovelli, Carlo
2008-01-01
The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime , is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i) The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii) A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler's "spacetime foam" intuition. (iii) Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv) A derivation of the Bekenstein-Hawking black-hole entropy. (v) Low-energy calculations, yielding n -point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.
Directory of Open Access Journals (Sweden)
Rovelli Carlo
2008-07-01
Full Text Available The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime, is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler’s “spacetime foam” intuition. (iii Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv A derivation of the Bekenstein–Hawking black-hole entropy. (v Low-energy calculations, yielding n-point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.
Semiclassical unimodular gravity
International Nuclear Information System (INIS)
Fiol, Bartomeu; Garriga, Jaume
2010-01-01
Classically, unimodular gravity is known to be equivalent to General Relativity (GR), except for the fact that the effective cosmological constant Λ has the status of an integration constant. Here, we explore various formulations of unimodular gravity beyond the classical limit. We first consider the non-generally covariant action formulation in which the determinant of the metric is held fixed to unity. We argue that the corresponding quantum theory is also equivalent to General Relativity for localized perturbative processes which take place in generic backgrounds of infinite volume (such as asymptotically flat spacetimes). Next, using the same action, we calculate semiclassical non-perturbative quantities, which we expect will be dominated by Euclidean instanton solutions. We derive the entropy/area ratio for cosmological and black hole horizons, finding agreement with GR for solutions in backgrounds of infinite volume, but disagreement for backgrounds with finite volume. In deriving the above results, the path integral is taken over histories with fixed 4-volume. We point out that the results are different if we allow the 4-volume of the different histories to vary over a continuum range. In this ''generalized'' version of unimodular gravity, one recovers the full set of Einstein's equations in the classical limit, including the trace, so Λ is no longer an integration constant. Finally, we consider the generally covariant theory due to Henneaux and Teitelboim, which is classically equivalent to unimodular gravity. In this case, the standard semiclassical GR results are recovered provided that the boundary term in the Euclidean action is chosen appropriately
Granular Superconductors and Gravity
Noever, David; Koczor, Ron
1999-01-01
As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.
Sjogren, W. L.; Ananda, M.; Williams, B. G.; Birkeland, P. W.; Esposito, P. S.; Wimberly, R. N.; Ritke, S. J.
1981-01-01
Results of Pioneer Venus Orbiter observations concerning the gravity field of Venus are presented. The gravitational data was obtained from reductions of Doppler radio tracking data for the Orbiter, which is in a highly eccentric orbit with periapsis altitude varying from 145 to 180 km and nearly fixed periapsis latitude of 15 deg N. The global gravity field was obtained through the simultaneous estimation of the orbit state parameters and gravity coefficients from long-period variations in orbital element rates. The global field has been described with sixth degree and order spherical harmonic coefficients, which are capable of resolving the three major topographical features on Venus. Local anomalies have been mapped using line-of-sight accelerations derived from the Doppler residuals between 40 deg N and 10 deg S latitude at approximately 300 km spatial resolution. Gravitational data is observed to correspond to topographical data obtained by radar altimeter, with most of the gravitational anomalies about 20-30 milligals. Simulations evaluating the isostatic states of two topographic features indicate that at least partial isostasy prevails, with the possibility of complete compensation.
Polar gravity fields from GOCE and airborne gravity
DEFF Research Database (Denmark)
Forsberg, René; Olesen, Arne Vestergaard; Yidiz, Hasan
2011-01-01
Airborne gravity, together with high-quality surface data and ocean satellite altimetric gravity, may supplement GOCE to make consistent, accurate high resolution global gravity field models. In the polar regions, the special challenge of the GOCE polar gap make the error characteristics...... of combination models especially sensitive to the correct merging of satellite and surface data. We outline comparisons of GOCE to recent airborne gravity surveys in both the Arctic and the Antarctic. The comparison is done to new 8-month GOCE solutions, as well as to a collocation prediction from GOCE gradients...... in Antarctica. It is shown how the enhanced gravity field solutions improve the determination of ocean dynamic topography in both the Arctic and in across the Drake Passage. For the interior of Antarctica, major airborne gravity programs are currently being carried out, and there is an urgent need...
Gravity signatures of terrane accretion
Franco, Heather; Abbott, Dallas
1999-01-01
In modern collisional environments, accreted terranes are bracketed by forearc gravity lows, a gravitational feature which results from the abandonment of the original trench and the initiation of a new trench seaward of the accreted terrane. The size and shape of the gravity low depends on the type of accreted feature and the strength of the formerly subducting plate. Along the Central American trench, the accretion of Gorgona Island caused a seaward trench jump of 48 to 66 km. The relict trench axes show up as gravity lows behind the trench with minimum values of -78 mgal (N of Gorgona) and -49 mgal (S of Gorgona) respectively. These forearc gravity lows have little or no topographic expression. The active trench immediately seaward of these forearc gravity lows has minimum gravity values of -59 mgal (N of Gorgona) and -58 mgal (S of Gorgona), respectively. In the north, the active trench has a less pronounced gravity low than the sediment covered forearc. In the Mariana arc, two Cretaceous seamounts have been accreted to the Eocene arc. The northern seamount is most likely a large block, the southern seamount may be a thrust slice. These more recent accretion events have produced modest forearc topographic and gravity lows in comparison with the topographic and gravity lows within the active trench. However, the minimum values of the Mariana forearc gravity lows are modest only by comparison to the Mariana Trench (-216 mgal); their absolute values are more negative than at Gorgona Island (-145 to -146 mgal). We speculate that the forearc gravity lows and seaward trench jumps near Gorgona Island were produced by the accretion of a hotspot island from a strong plate. The Mariana gravity lows and seaward trench jumps (or thrust slices) were the result of breaking a relatively weak plate close to the seamount edifice. These gravity lows resulting from accretion events should be preserved in older accreted terranes.
Cosmological tests of modified gravity.
Koyama, Kazuya
2016-04-01
We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.
Norsk, P.; Shelhamer, M.
2016-01-01
This panel will present NASA's plans for ongoing and future research to define the requirements for Artificial Gravity (AG) as a countermeasure against the negative health effects of long-duration weightlessness. AG could mitigate the gravity-sensitive effects of spaceflight across a host of physiological systems. Bringing gravity to space could mitigate the sensorimotor and neuro-vestibular disturbances induced by G-transitions upon reaching a planetary body, and the cardiovascular deconditioning and musculoskeletal weakness induced by weightlessness. Of particular interest for AG during deep-space missions is mitigation of the Visual Impairment Intracranial Pressure (VIIP) syndrome that the majority of astronauts exhibit in space to varying degrees, and which presumably is associated with weightlessness-induced fluid shift from lower to upper body segments. AG could be very effective for reversing the fluid shift and thus help prevent VIIP. The first presentation by Dr. Charles will summarize some of the ground-based and (very little) space-based research that has been conducted on AG by the various space programs. Dr. Paloski will address the use of AG during deep-space exploration-class missions and describe the different AG scenarios such as intra-vehicular, part-of-vehicle, or whole-vehicle centrifugations. Dr. Clement will discuss currently planned NASA research as well as how to coordinate future activities among NASA's international partners. Dr. Barr will describe some possible future plans for using space- and ground-based partial-G analogs to define the relationship between physiological responses and G levels between 0 and 1. Finally, Dr. Stenger will summarize how the human cardiovascular system could benefit from intermittent short-radius centrifugations during long-duration missions.
Directory of Open Access Journals (Sweden)
Shan Gao
2011-04-01
Full Text Available The remarkable connections between gravity and thermodynamics seem to imply that gravity is not fundamental but emergent, and in particular, as Verlinde suggested, gravity is probably an entropic force. In this paper, we will argue that the idea of gravity as an entropic force is debatable. It is shown that there is no convincing analogy between gravity and entropic force in Verlinde’s example. Neither holographic screen nor test particle satisfies all requirements for the existence of entropic force in a thermodynamics system. Furthermore, we show that the entropy increase of the screen is not caused by its statistical tendency to increase entropy as required by the existence of entropic force, but in fact caused by gravity. Therefore, Verlinde’s argument for the entropic origin of gravity is problematic. In addition, we argue that the existence of a minimum size of spacetime, together with the Heisenberg uncertainty principle in quantum theory, may imply the fundamental existence of gravity as a geometric property of spacetime. This may provide a further support for the conclusion that gravity is not an entropic force.
Active Response Gravity Offload System
Valle, Paul; Dungan, Larry; Cunningham, Thomas; Lieberman, Asher; Poncia, Dina
2011-01-01
The Active Response Gravity Offload System (ARGOS) provides the ability to simulate with one system the gravity effect of planets, moons, comets, asteroids, and microgravity, where the gravity is less than Earth fs gravity. The system works by providing a constant force offload through an overhead hoist system and horizontal motion through a rail and trolley system. The facility covers a 20 by 40-ft (approximately equals 6.1 by 12.2m) horizontal area with 15 ft (approximately equals4.6 m) of lifting vertical range.
International Nuclear Information System (INIS)
Aldama, Mariana Espinosa
2015-01-01
The gravity apple tree is a genealogical tree of the gravitation theories developed during the past century. The graphic representation is full of information such as guides in heuristic principles, names of main proponents, dates and references for original articles (See under Supplementary Data for the graphic representation). This visual presentation and its particular classification allows a quick synthetic view for a plurality of theories, many of them well validated in the Solar System domain. Its diachronic structure organizes information in a shape of a tree following similarities through a formal concept analysis. It can be used for educational purposes or as a tool for philosophical discussion. (paper)
Airborne Gravity: NGS' Gravity Data for AN05 (2011)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for AN06 (2011)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for CS08 (2015)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for CS08 collected in 2006 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for AS02 (2010)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for ES02 (2013)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Florida and the Gulf of Mexico collected in 2013 over 1 survey. This data set is part of the Gravity for the Re-definition of the American...
Airborne Gravity: NGS' Gravity Data for AN04 (2010)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for CS05 (2014)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas collected in 2014 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for CS07 (2014 & 2016)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas collected in 2014 & 2016 over 3 surveys,TX14-2, TX16-1 and TX16-2. This data set is part of the Gravity for the Re-definition of...
Airborne Gravity: NGS' Gravity Data for AS01 (2008)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2008 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for CS04 (2009)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas collected in 2009 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for AN02 (2010)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Contravariant gravity on Poisson manifolds and Einstein gravity
International Nuclear Information System (INIS)
Kaneko, Yukio; Watamura, Satoshi; Muraki, Hisayoshi
2017-01-01
A relation between gravity on Poisson manifolds proposed in Asakawa et al (2015 Fortschr. Phys . 63 683–704) and Einstein gravity is investigated. The compatibility of the Poisson and Riemann structures defines a unique connection, the contravariant Levi-Civita connection, and leads to the idea of the contravariant gravity. The Einstein–Hilbert-type action yields an equation of motion which is written in terms of the analog of the Einstein tensor, and it includes couplings between the metric and the Poisson tensor. The study of the Weyl transformation reveals properties of those interactions. It is argued that this theory can have an equivalent description as a system of Einstein gravity coupled to matter. As an example, it is shown that the contravariant gravity on a two-dimensional Poisson manifold can be described by a real scalar field coupled to the metric in a specific manner. (paper)
Alvarez-Gaume, Luis; Kounnas, Costas; Lust, Dieter; Riotto, Antonio
2016-01-01
We discuss quadratic gravity where terms quadratic in the curvature tensor are included in the action. After reviewing the corresponding field equations, we analyze in detail the physical propagating modes in some specific backgrounds. First we confirm that the pure $R^2$ theory is indeed ghost free. Then we point out that for flat backgrounds the pure $R^2$ theory propagates only a scalar massless mode and no spin-two tensor mode. However, the latter emerges either by expanding the theory around curved backgrounds like de Sitter or anti-de Sitter, or by changing the long-distance dynamics by introducing the standard Einstein term. In both cases, the theory is modified in the infrared and a propagating graviton is recovered. Hence we recognize a subtle interplay between the UV and IR properties of higher order gravity. We also calculate the corresponding Newton's law for general quadratic curvature theories. Finally, we discuss how quadratic actions may be obtained from a fundamental theory like string- or M-...
International Nuclear Information System (INIS)
Jones, K.R.W.
1995-01-01
We develop a nonlinear quantum theory of Newtonian gravity consistent with an objective interpretation of the wavefunction. Inspired by the ideas of Schroedinger, and Bell, we seek a dimensional reduction procedure to map complex wavefunctions in configuration space onto a family of observable fields in space-time. Consideration of quasi-classical conservation laws selects the reduced one-body quantities as the basis for an explicit quasi-classical coarse-graining. These we interpret as describing the objective reality of the laboratory. Thereafter, we examine what may stand in the role of the usual Copenhagen observer to localise this quantity against macroscopic dispersion. Only a tiny change is needed, via a generically attractive self-potential. A nonlinear treatment of gravitational self-energy is thus advanced. This term sets a scale for all wavepackets. The Newtonian cosmology is thus closed, without need of an external observer. Finally, the concept of quantisation is re-interpreted as a nonlinear eigenvalue problem. To illustrate, we exhibit an elementary family of gravitationally self-bound solitary waves. Contrasting this theory with its canonically quantised analogue, we find that the given interpretation is empirically distinguishable, in principle. This result encourages deeper study of nonlinear field theories as a testable alternative to canonically quantised gravity. (author). 46 refs., 5 figs
International Nuclear Information System (INIS)
Goldman, T.; Hughes, R.J.; Nieto, M.M.
1988-01-01
No one has ever dropped a single particle of antimatter. Yet physicists assume that it would fall to the ground just like ordinary matter. Their arguments are based on two well established ideas: the equivalence principle of gravitation and the quantum-mechanical symmetry between matter and antimatter. Today this line of reasoning is being undermined by the possibility that the first of these ideas, the principle of equivalence, may not be true. Indeed all modern attempts to include gravity with the other forces of nature in a consistent, unified quantum theory predict the existence of new gravitational-strength forces, that among other things, will violate the principle. Such effects have been seen already in recent experiments. Hence, an experiment to measure the gravitational acceleration of antimatter could be of great importance to the understanding of quantum gravity. An international team has been formed to measure the graviational acceleration of antiprotons. Such an experiment would provide an unambiquous test, if new gravitational interactions do exist. 10 figs
Is there a quantum theory of gravity
International Nuclear Information System (INIS)
Strominger, A.
1984-01-01
The paper concerns attempts to construct a unitary, renormalizable quantum field theory of gravity. Renormalizability and unitarity in quantum gravity; the 1/N expansion; 1/D expansions; and quantum gravity and particle physics; are all discussed. (U.K.)
Quantum Gravity in Two Dimensions
DEFF Research Database (Denmark)
Ipsen, Asger Cronberg
The topic of this thesis is quantum gravity in 1 + 1 dimensions. We will focus on two formalisms, namely Causal Dynamical Triangulations (CDT) and Dy- namical Triangulations (DT). Both theories regularize the gravity path integral as a sum over triangulations. The difference lies in the class...
Topological strings from Liouville gravity
International Nuclear Information System (INIS)
Ishibashi, N.; Li, M.
1991-01-01
We study constrained SU(2) WZW models, which realize a class of two-dimensional conformal field theories. We show that they give rise to topological gravity coupled to the topological minimal models when they are coupled to Liouville gravity. (orig.)
Newton-Cartan gravity revisited
Andringa, Roel
2016-01-01
In this research Newton's old theory of gravity is rederived using an algebraic approach known as the gauging procedure. The resulting theory is Newton's theory in the mathematical language of Einstein's General Relativity theory, in which gravity is spacetime curvature. The gauging procedure sheds
Fixed points of quantum gravity
Litim, D F
2003-01-01
Euclidean quantum gravity is studied with renormalisation group methods. Analytical results for a non-trivial ultraviolet fixed point are found for arbitrary dimensions and gauge fixing parameter in the Einstein-Hilbert truncation. Implications for quantum gravity in four dimensions are discussed.
Neutron Stars : Magnetism vs Gravity
Indian Academy of Sciences (India)
however, in the magnetosphere, electromagnetic forces dominate over gravity : Fgr = mg ~ 10-18 Newton ; Fem = e V B ~ 10-5 Newton; (for a single electron of mass m and charge e ) ; Hence, the electromagnetic force is 1013 times stronger than gravity !!
Measuring wood specific gravity, correctly
G. Bruce Williamson; Michael C. Wiemann
2010-01-01
The specific gravity (SG) of wood is a measure of the amount of structural material a tree species allocates to support and strength. In recent years, wood specific gravity, traditionally a foresterâs variable, has become the domain of ecologists exploring the universality of plant functional traits and conservationists estimating global carbon stocks. While these...
Magnetic Fields Versus Gravity
Hensley, Kerry
2018-04-01
Deep within giant molecular clouds, hidden by dense gas and dust, stars form. Unprecedented data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the intricate magnetic structureswoven throughout one of the most massive star-forming regions in the Milky Way.How Stars Are BornThe Horsehead Nebulasdense column of gas and dust is opaque to visible light, but this infrared image reveals the young stars hidden in the dust. [NASA/ESA/Hubble Heritage Team]Simple theory dictates that when a dense clump of molecular gas becomes massive enough that its self-gravity overwhelms the thermal pressure of the cloud, the gas collapses and forms a star. In reality, however, star formation is more complicated than a simple give and take between gravity and pressure. Thedusty molecular gas in stellar nurseries is permeated with magnetic fields, which are thought to impede the inward pull of gravity and slow the rate of star formation.How can we learn about the magnetic fields of distant objects? One way is by measuring dust polarization. An elongated dust grain will tend to align itself with its short axis parallel to the direction of the magnetic field. This systematic alignment of the dust grains along the magnetic field lines polarizes the dust grains emission perpendicular to the local magnetic field. This allows us to infer the direction of the magnetic field from the direction of polarization.Magnetic field orientations for protostars e2 and e8 derived from Submillimeter Array observations (panels a through c) and ALMA observations (panels d and e). Click to enlarge. [Adapted from Koch et al. 2018]Tracing Magnetic FieldsPatrick Koch (Academia Sinica, Taiwan) and collaborators used high-sensitivity ALMA observations of dust polarization to learn more about the magnetic field morphology of Milky Way star-forming region W51. W51 is one of the largest star-forming regions in our galaxy, home to high-mass protostars e2, e8, and North.The ALMA observations reveal
Superconducting gravity gradiometer for sensitive gravity measurements. I. Theory
International Nuclear Information System (INIS)
Chan, H.A.; Paik, H.J.
1987-01-01
Because of the equivalence principle, a global measurement is necessary to distinguish gravity from acceleration of the reference frame. A gravity gradiometer is therefore an essential instrument needed for precision tests of gravity laws and for applications in gravity survey and inertial navigation. Superconductivity and SQUID (superconducting quantum interference device) technology can be used to obtain a gravity gradiometer with very high sensitivity and stability. A superconducting gravity gradiometer has been developed for a null test of the gravitational inverse-square law and space-borne geodesy. Here we present a complete theoretical model of this instrument. Starting from dynamical equations for the device, we derive transfer functions, a common mode rejection characteristic, and an error model of the superconducting instrument. Since a gradiometer must detect a very weak differential gravity signal in the midst of large platform accelerations and other environmental disturbances, the scale factor and common mode rejection stability of the instrument are extremely important in addition to its immunity to temperature and electromagnetic fluctuations. We show how flux quantization, the Meissner effect, and properties of liquid helium can be utilized to meet these challenges
Energy Technology Data Exchange (ETDEWEB)
Maxfield, Travis; Sethi, Savdeep [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States)
2017-02-22
We study the dynamics of gravitational lumps. By a lump, we mean a metric configuration that asymptotes to a flat space-time. Such lumps emerge in string theory as strong coupling descriptions of D-branes. We provide a physical argument that the broken global symmetries of such a background, generated by certain large diffeomorphisms, constrain the dynamics of localized modes. These modes include the translation zero modes and any localized tensor modes. The constraints we find are gravitational analogues of those found in brane physics. For the example of a Taub-NUT metric in eleven-dimensional supergravity, we argue that a critical value for the electric field arises from standard gravity without higher derivative interactions.
International Nuclear Information System (INIS)
Francaviglia, M.
1990-01-01
Although general relativity is a well-established discipline the theory deserves efforts aimed at producing alternative or more general frameworks for investigating the classical properties of gravity. These are either devoted to producing alternative viewpoints or interpretations of standard general relativity, or at constructing, discussing and proposing experimental tests for alternative descriptions of the dynamics of the gravitational field and its interaction (or unification) with external matter fields. Classical alternative theories of gravitation can roughly classified as follows; theories based on a still 4-dimensional picture, under the assumption that the dynamics of the gravitational field is more complicated than Einstein's and theories based on higher-dimensional pictures. This leads to supergravity and strings which are not included here. Theories based on higher-dimensional pictures on the assumption that space-time is replaced by a higher-dimensional manifold. Papers on these classifications are reviewed. (author)
Is quantum gravity unpredictable
International Nuclear Information System (INIS)
Gross, D.J.
1984-01-01
An investigation of Hawking's proposal that the inclusion of topologically non-trivial manifolds in the functional integral of quantum gravity leads to the loss of quantum coherence is carried out. We discuss some of the problems associated with Hawking's Dollar-matrix theory, including the breakdown of the connection between symmetry principles and conservation laws. It is proposed to use Kaluza-Klein theories to study this issue, since these theories contain well-defined euclidean instantons. These can be used to perform explicit semiclassical calculations of the effects of space-time foam. A general method is presented for constructing Kaluza-Klein instantons based on solutions of ordinary Yang-Mills theory. It is argued that none of these will lead to a breakdown of quantum mechanics. The physical effects of space-time foam are discussed in some detail using explicit instantons of a four-dimensional Kaluza-Klein theory. (orig.)
International Nuclear Information System (INIS)
Henneaux, Marc; Teitelboim, Claudio
2005-01-01
We show that duality transformations of linearized gravity in four dimensions, i.e., rotations of the linearized Riemann tensor and its dual into each other, can be extended to the dynamical fields of the theory so as to be symmetries of the action and not just symmetries of the equations of motion. Our approach relies on the introduction of two superpotentials, one for the spatial components of the spin-2 field and the other for their canonically conjugate momenta. These superpotentials are two-index, symmetric tensors. They can be taken to be the basic dynamical fields and appear locally in the action. They are simply rotated into each other under duality. In terms of the superpotentials, the canonical generator of duality rotations is found to have a Chern-Simons-like structure, as in the Maxwell case
Stochastic quantization and gravity
International Nuclear Information System (INIS)
Rumpf, H.
1984-01-01
We give a preliminary account of the application of stochastic quantization to the gravitational field. We start in Section I from Nelson's formulation of quantum mechanics as Newtonian stochastic mechanics and only then introduce the Parisi-Wu stochastic quantization scheme on which all the later discussion will be based. In Section II we present a generalization of the scheme that is applicable to fields in physical (i.e. Lorentzian) space-time and treat the free linearized gravitational field in this manner. The most remarkable result of this is the noncausal propagation of conformal gravitons. Moreover the concept of stochastic gauge-fixing is introduced and a complete discussion of all the covariant gauges is given. A special symmetry relating two classes of covariant gauges is exhibited. Finally Section III contains some preliminary remarks on full nonlinear gravity. In particular we argue that in contrast to gauge fields the stochastic gravitational field cannot be transformed to a Gaussian process. (Author)
International Nuclear Information System (INIS)
Maity, Debaprasad
2015-01-01
In this work we propose a mechanism of natural preheating of our universe induced by the inflation field dependent effective mass term for the gravitational wave. For any single field inflationary model, the inflation must go through the oscillatory phase after the end of inflation. As has recently been shown, if the gravitational fluctuation has inflation dependent mass term, there will be a resonant amplification of the amplitude of the gravitational wave during the oscillatory phase of inflation though parametric resonance. Because of this large enhancement of the amplitude of the gravitational wave, we show that universe can be naturally pre-heated through a minimally coupled matter field with gravity. Therefore, during the pre-heating phase, there is no need to introduce any arbitrary coupling between the matter field and the inflation. (author)
Teleparallel Gravity An Introduction
Aldrovandi, Ruben
2013-01-01
Teleparallel Gravity (TG) is an alternative theory for gravitation, which is equivalent to General Relativity (GR). However, it is conceptually different. For example in GR geometry replaces the concept of force, and the trajectories are determined by geodesics. TG attributes gravitation to torsion, which accounts for gravitation by acting as a force. TG has already solved some old problems of gravitation (like the energy-momentum density of the gravitational field). The interest in TG has grown in the last few years. The book here proposed will be the first one dedicated exclusively to TG, and will include the foundations of the theory, as well as applications to specific problems to illustrate how the theory works.
Frè, Pietro Giuseppe
2013-01-01
‘Gravity, a Geometrical Course’ presents general relativity (GR) in a systematic and exhaustive way, covering three aspects that are homogenized into a single texture: i) the mathematical, geometrical foundations, exposed in a self consistent contemporary formalism, ii) the main physical, astrophysical and cosmological applications, updated to the issues of contemporary research and observations, with glimpses on supergravity and superstring theory, iii) the historical development of scientific ideas underlying both the birth of general relativity and its subsequent evolution. The book is divided in two volumes. Volume One is dedicated to the development of the theory and basic physical applications. It guides the reader from the foundation of special relativity to Einstein field equations, illustrating some basic applications in astrophysics. A detailed account of the historical and conceptual development of the theory is combined with the presentation of its mathematical foundations. Differe...
Mannheim, Philip D
2005-01-01
This timely and valuable book provides a detailed pedagogical introduction and treatment of the brane-localized gravity program of Randall and Sundrum, in which gravitational signals are able to localize around our four-dimensional world in the event that it is a brane embedded in an infinitely-sized, higher dimensional anti-de Sitter bulk space. A completely self-contained development of the material needed for brane-world studies is provided for both students and workers in the field, with a significant amount of the material being previously unpublished. Particular attention is given to issues not ordinarily treated in the brane-world literature, such as the completeness of tensor gravitational fluctuation modes, the causality of brane-world propagators, and the status of the massless graviton fluctuation mode in brane worlds in which it is not normalizable.
International Nuclear Information System (INIS)
Pope, C.N.
1980-02-01
The material contained in this thesis is concerned with the functional integral approach to the quantum theory of gravity. It seems to be necessary to work with metrics of positive definite signature (Euclidean metrics) and then analytically continue the result back to the Lorentzian regime. The dominant contributions to the functional integral come from metrics which are stationary points of the action, i.e. classical solutions of the Euclideanized Einstein equations. These are known as Gravitational Instantons. Boundary conditions have to be placed upon the metrics included in the functional integral, and these are determined by the physical problem being considered. Three types of boundary condition have arisen in this context, corresponding to (i) zero temperature physics, and the calculation of particle scattering amplitudes, (ii) finite temperature effects, such as black hole radiance, and (iii) the study of the structure of the gravitational vacuum on Planck length scales. Instantons in the first category are asymptotically flat in all four directions, those in the second are asymptotically flat in three directions and periodic in the fourth, and those which arise in studying the gravitational vacuum are compact without boundaries. Much of the thesis is concerned with considering these various kinds of instanton, and particularly with the effects of their non-trivial topology. One way in which this can be investigated is by means of the various topological index theorems, and these are applied to a variety of situations. Self-dual metrics seem to have particular significance in quantum gravity, and they are discussed in detail. Finally, some recent work on the calculation of the propagation of particles in the gravitational vacuum is described. (author)
Burrage, Clare; Sakstein, Jeremy
2018-03-01
Theories of modified gravity, where light scalars with non-trivial self-interactions and non-minimal couplings to matter—chameleon and symmetron theories—dynamically suppress deviations from general relativity in the solar system. On other scales, the environmental nature of the screening means that such scalars may be relevant. The highly-nonlinear nature of screening mechanisms means that they evade classical fifth-force searches, and there has been an intense effort towards designing new and novel tests to probe them, both in the laboratory and using astrophysical objects, and by reinterpreting existing datasets. The results of these searches are often presented using different parametrizations, which can make it difficult to compare constraints coming from different probes. The purpose of this review is to summarize the present state-of-the-art searches for screened scalars coupled to matter, and to translate the current bounds into a single parametrization to survey the state of the models. Presently, commonly studied chameleon models are well-constrained but less commonly studied models have large regions of parameter space that are still viable. Symmetron models are constrained well by astrophysical and laboratory tests, but there is a desert separating the two scales where the model is unconstrained. The coupling of chameleons to photons is tightly constrained but the symmetron coupling has yet to be explored. We also summarize the current bounds on f( R) models that exhibit the chameleon mechanism (Hu and Sawicki models). The simplest of these are well constrained by astrophysical probes, but there are currently few reported bounds for theories with higher powers of R. The review ends by discussing the future prospects for constraining screened modified gravity models further using upcoming and planned experiments.
2000-01-01
The space vehicle Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. In this photograph, engineer Gary Reynolds is inspecting the inside of the probe neck during probe thermal repairs. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Gravity Probe B, Stanford University)
Gravity-matter entanglement in Regge quantum gravity
International Nuclear Information System (INIS)
Paunković, Nikola; Vojinović, Marko
2016-01-01
We argue that Hartle-Hawking states in the Regge quantum gravity model generically contain non-trivial entanglement between gravity and matter fields. Generic impossibility to talk about “matter in a point of space” is in line with the idea of an emergent spacetime, and as such could be taken as a possible candidate for a criterion for a plausible theory of quantum gravity. Finally, this new entanglement could be seen as an additional “effective interaction”, which could possibly bring corrections to the weak equivalence principle. (paper)
Artificial gravity - The evolution of variable gravity research
Fuller, Charles A.; Sulzman, Frank M.; Keefe, J. Richard
1987-01-01
The development of a space life science research program based on the use of rotational facilities is described. In-flight and ground centrifuges can be used as artificial gravity environments to study the following: nongravitational biological factors; the effects of 0, 1, and hyper G on man; counter measures for deconditioning astronauts in weightlessness; and the development of suitable artificial gravity for long-term residence in space. The use of inertial fields as a substitute for gravity, and the relations between the radius of the centrifuge and rotation rate and specimen height and rotation radius are examined. An example of a centrifuge study involving squirrel monkeys is presented.
A self-tuning exact solution and the non-existence of horizons in 5d gravity-scalar system
International Nuclear Information System (INIS)
Zhu Chuan-Jie; Abdus Salam International Centre for Theoretical Physics, Trieste
2000-05-01
We present an exact thick domain wall solution with naked singularities to five dimensional gravity coupled with a scalar field with exponential potential. In our solution we found exactly the special coefficient of the exponent as coming from compactification of string theory with cosmological constant. We show that this solution is self-tuning when a 3-brane is included. In searching for a solution with horizon we found a similar exact solution with fine-tuned exponent coefficient with an integration constant. Failing to find a solution with horizon we prove the non-existence of horizons. These naked singularities actually can't be resolved by horizon. We also comment on the physical relevance of this solution. (author)
Recent advancements in conformal gravity
International Nuclear Information System (INIS)
O’Brien, James G.; Chaykov, Spasen S.; Moss, Robert J.; Dentico, Jeremy; Stulge, Modestas; Stefanski, Brian
2017-01-01
In recent years, due to the lack of direct observed evidence of cold dark matter, coupled with the shrinking parameter space to search for new dark matter particles, there has been increased interest in Alternative Gravitational theories. This paper, addresses three recent advances in conformal gravity, a fourth order renormalizable metric theory of gravitation originally formulated by Weyl, and later advanced by Mannheim and Kazanas. The first section of the paper applies conformal gravity to the rotation curves of the LITTLE THINGS survey, extending the total number of rotation curves successfully fit by conformal gravity to well over 200 individual data sets without the need for additional dark matter. Further, in this rotation curve study, we show how MOND and conformal gravity compare for each galaxy in the sample. Second, we look at the original Zwicky problem of applying the virial theorem to the Coma cluster in order to get an estimate for the cluster mass. However, instead of using the standard Newtonian potential, here we use the weak field approximation of conformal gravity. We show that in the conformal case we can get a much smaller mass estimate and thus there is no apparent need to include dark matter. We then show that this calculation is in agreement with the observational data from other well studied clusters. Last, we explore the calculation of the deflection of starlight through conformal gravity, as a first step towards applying conformal gravity to gravitaitonal lensing. (paper)
Stochastic Gravity: Theory and Applications
Directory of Open Access Journals (Sweden)
Hu Bei Lok
2008-05-01
Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein–Langevin equation, which has, in addition, sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bitensor, which describes the fluctuations of quantum-matter fields in curved spacetimes. A new improved criterion for the validity of semiclassical gravity may also be formulated from the viewpoint of this theory. In the first part of this review we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to the correlation functions. The functional approach uses the Feynman–Vernon influence functional and the Schwinger–Keldysh closed-time-path effective action methods. In the second part, we describe three applications of stochastic gravity. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic-gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, using the Einstein–Langevin equation, we discuss the backreaction of Hawking radiation and the behavior of metric fluctuations for both the quasi-equilibrium condition of a black-hole in a box and the fully nonequilibrium condition of an evaporating black hole spacetime. Finally, we briefly discuss the theoretical structure of stochastic gravity in relation to quantum gravity and point out
Airborne Gravity: NGS' Gravity Data for ES03 (2013)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Maryland, Pennsylvania, New Jersey, West Virginia, Virginia, Delaware, and the Atlantic Ocean collected in 2013 over 1 survey. This data...
Airborne Gravity: NGS' Gravity Data for EN10 (2013)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Pennsylvania, New Jersey, Connecticut and the Atlantic Ocean collected in 2013 over 1 survey. This data set is part of the...
Airborne Gravity: NGS' Gravity Data for EN09 (2016)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Massachusetts, Connecticut, Rhode Island, New Hampshire, New York, and the Atlantic Ocean collected in 2012 over 1 survey. This data set is...
Singularity resolution in quantum gravity
International Nuclear Information System (INIS)
Husain, Viqar; Winkler, Oliver
2004-01-01
We examine the singularity resolution issue in quantum gravity by studying a new quantization of standard Friedmann-Robertson-Walker geometrodynamics. The quantization procedure is inspired by the loop quantum gravity program, and is based on an alternative to the Schroedinger representation normally used in metric variable quantum cosmology. We show that in this representation for quantum geometrodynamics there exists a densely defined inverse scale factor operator, and that the Hamiltonian constraint acts as a difference operator on the basis states. We find that the cosmological singularity is avoided in the quantum dynamics. We discuss these results with a view to identifying the criteria that constitute 'singularity resolution' in quantum gravity
Natural inflation and quantum gravity.
de la Fuente, Anton; Saraswat, Prashant; Sundrum, Raman
2015-04-17
Cosmic inflation provides an attractive framework for understanding the early Universe and the cosmic microwave background. It can readily involve energies close to the scale at which quantum gravity effects become important. General considerations of black hole quantum mechanics suggest nontrivial constraints on any effective field theory model of inflation that emerges as a low-energy limit of quantum gravity, in particular, the constraint of the weak gravity conjecture. We show that higher-dimensional gauge and gravitational dynamics can elegantly satisfy these constraints and lead to a viable, theoretically controlled and predictive class of natural inflation models.
International Nuclear Information System (INIS)
Goradia, S.G.
2006-01-01
Why is gravity weak? Gravity is plagued with this and many other questions. After decades of exhausting work we do not have a clear answer. In view of this fact it will be shown in the following pages that there are reasons for thinking that gravity is just a composite force consisting of the long-range manifestations of short range nuclear forces that are too tiny to be measured at illuminated or long ranges by particle colliders. This is consistent with Einstein's proposal in 1919
Mars - Hellas Planitia gravity analysis
Sjogren, W. L.; Wimberley, R. N.
1981-01-01
Doppler radio tracking data from Viking Orbiter 1 has provided new detailed observations of gravity variations over Hellas Planitia. Line-of-sight Bouguer gravity definitely indicates that isostatic adjustment has occurred. Two theoretical models were tested to obtain fits to the gravity data. Results for a surface deficit model, and a model with a surface deficit and a mass excess at depth are displayed. The mass-at-depth model produced very marked improvement in the data fit as compared to the surface deficit model. The optimum depth for the mass excess is 130 km.
Cutoff for extensions of massive gravity and bi-gravity
International Nuclear Information System (INIS)
Matas, Andrew
2016-01-01
Recently there has been interest in extending ghost-free massive gravity, bi-gravity, and multi-gravity by including non-standard kinetic terms and matter couplings. We first review recent proposals for this class of extensions, emphasizing how modifications of the kinetic and potential structure of the graviton and modifications of the coupling to matter are related. We then generalize existing no-go arguments in the metric language to the vielbein language in second-order form. We give an ADM argument to show that the most promising extensions to the kinetic term and matter coupling contain a Boulware–Deser ghost. However, as recently emphasized, we may still be able to view these extensions as effective field theories below some cutoff scale. To address this possibility, we show that there is a decoupling limit where a ghost appears for a wide class of matter couplings and kinetic terms. In particular, we show that there is a decoupling limit where the linear effective vielbein matter coupling contains a ghost. Using the insight we gain from this decoupling limit analysis, we place an upper bound on the cutoff for the linear effective vielbein coupling. This result can be generalized to new kinetic interactions in the vielbein language in second-order form. Combined with recent results, this provides a strong uniqueness argument on the form of ghost-free massive gravity, bi-gravity, and multi-gravity. (paper)
International Nuclear Information System (INIS)
Ne'eman, Y.
1998-01-01
The relatively simple Fibre-Bundle geometry of a Yang-Mills gauge theory - mainly the clear distinction between base and fibre - made it possible, between 1953 and 1971, to construct a fully quantized version and prove that theory's renormalizability; moreover, nonperturbative (topological) solutions were subsequently found in both the fully symmetric and the spontaneously broken modes (instantons, monopoles). Though originally constructed as a model formalism, it became in 1974 the mathematical mold holding the entire Standard Model (i.e. QCD and the Electroweak theory). On the other hand, between 1974 and 1984, Einstein's theory was shown to be perturbatively nonrenormalizable. Since 1974, the search for Quantum Gravity has therefore provided the main motivation for the construction of Gauge Theories of Gravity. Earlier, however, in 1958-76 several such attempts were initiated, for aesthetic or heuristic reasons, to provide a better understanding of the algebraic structure of GR. A third motivation has come from the interest in Unification, making it necessary to bring GR into a form compatible with an enlargement of the Standard Model. Models can be classified according to the relevant structure group in the fibre. Within the Poincare group, this has been either the R 4 translations, or the Lorentz group SL(2, C) - or the entire Poincare SL(2, C) x R 4 . Enlarging the group has involved the use of the Conformal SU(2, 2), the special Affine SA(4, R) = SL(4, R) x R 4 or Affine A(4, R) groups. Supergroups have included supersymmetry, i.e. the graded-Poincare group (n =1...8 m its extensions) or the superconformal SU(2, 2/n). These supergravity theories have exploited the lessons of the aesthetic-heuristic models - Einstein-Cartan etc. - and also achieved the Unification target. Although perturbative renormalizability has been achieved in some models, whether they satisfy unitarity is not known. The nonperturbative Ashtekar program has exploited the understanding of
Renormalization and asymptotic freedom in quantum gravity
International Nuclear Information System (INIS)
Tomboulis, E.T.
1984-01-01
The article reviews some recent attempts to construct satisfactory theories of quantum gravity within the framework of local, continuum field theory. Quantum gravity; the renormalization group and its fixed points; fixed points and dimensional continuation in gravity; and quantum gravity at d=4-the 1/N expansion-asymptotic freedom; are all discussed. (U.K.)
Quantum gravity and quantum cosmology
Papantonopoulos, Lefteris; Siopsis, George; Tsamis, Nikos
2013-01-01
Quantum gravity has developed into a fast-growing subject in physics and it is expected that probing the high-energy and high-curvature regimes of gravitating systems will shed some light on how to eventually achieve an ultraviolet complete quantum theory of gravity. Such a theory would provide the much needed information about fundamental problems of classical gravity, such as the initial big-bang singularity, the cosmological constant problem, Planck scale physics and the early-time inflationary evolution of our Universe. While in the first part of this book concepts of quantum gravity are introduced and approached from different angles, the second part discusses these theories in connection with cosmological models and observations, thereby exploring which types of signatures of modern and mathematically rigorous frameworks can be detected by experiments. The third and final part briefly reviews the observational status of dark matter and dark energy, and introduces alternative cosmological models. ...
Topological gravity with minimal matter
International Nuclear Information System (INIS)
Li Keke
1991-01-01
Topological minimal matter, obtained by twisting the minimal N = 2 supeconformal field theory, is coupled to two-dimensional topological gravity. The free field formulation of the coupled system allows explicit representations of BRST charge, physical operators and their correlation functions. The contact terms of the physical operators may be evaluated by extending the argument used in a recent solution of topological gravity without matter. The consistency of the contact terms in correlation functions implies recursion relations which coincide with the Virasoro constraints derived from the multi-matrix models. Topological gravity with minimal matter thus provides the field theoretic description for the multi-matrix models of two-dimensional quantum gravity. (orig.)
Alternative Hamiltonian representation for gravity
Energy Technology Data Exchange (ETDEWEB)
Rosas-RodrIguez, R [Instituto de Fisica, Universidad Autonoma de Puebla, Apdo. Postal J-48, 72570, Puebla, Pue. (Mexico)
2007-11-15
By using a Hamiltonian formalism for fields wider than the canonical one, we write the Einstein vacuum field equations in terms of alternative variables. This variables emerge from the Ashtekar's formalism for gravity.
Alternative Hamiltonian representation for gravity
International Nuclear Information System (INIS)
Rosas-RodrIguez, R
2007-01-01
By using a Hamiltonian formalism for fields wider than the canonical one, we write the Einstein vacuum field equations in terms of alternative variables. This variables emerge from the Ashtekar's formalism for gravity
Random manifolds and quantum gravity
International Nuclear Information System (INIS)
Krzywicki, A.
2000-01-01
The non-perturbative, lattice field theory approach towards the quantization of Euclidean gravity is reviewed. Included is a tentative summary of the most significant results and a presentation of the current state of art
Gravity Data For Colombia 1997
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (9,050 records), were observed and processed by the Instituto Geografico Agustin Codazzi(IGAC), in Colombia from 1958 to 1996. This data...
Interior Alaska Bouguer Gravity Anomaly
National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. All grid cells within the rectangular data area (from 61 to 66 degrees North latitude and...
Unifying Einstein and Palatini gravities
International Nuclear Information System (INIS)
Amendola, Luca; Enqvist, Kari; Koivisto, Tomi
2011-01-01
We consider a novel class of f(R) gravity theories where the connection is related to the conformally scaled metric g μν =C(R)g μν with a scaling that depends on the scalar curvature R only. We call them C theories and show that the Einstein and Palatini gravities can be obtained as special limits. In addition, C theories include completely new physically distinct gravity theories even when f(R)=R. With nonlinear f(R), C theories interpolate and extrapolate the Einstein and Palatini cases and may avoid some of their conceptual and observational problems. We further show that C theories have a scalar-tensor formulation, which in some special cases reduces to simple Brans-Dicke-type gravity. If matter fields couple to the connection, the conservation laws in C theories are modified. The stability of perturbations about flat space is determined by a simple condition on the Lagrangian.
Defying gravity using Jenga™ blocks
Tan, Yin-Soo; Yap, Kueh-Chin
2007-11-01
This paper describes how Jenga™ blocks can be used to demonstrate the physics of an overhanging tower that appears to defy gravity. We also propose ideas for how this demonstration can be adapted for the A-level physics curriculum.
Badler, N. I.; Fishwick, P.; Taft, N.; Agrawala, M.
1985-01-01
The use of computer graphics to simulate the movement of articulated animals and mechanisms has a number of uses ranging over many fields. Human motion simulation systems can be useful in education, medicine, anatomy, physiology, and dance. In biomechanics, computer displays help to understand and analyze performance. Simulations can be used to help understand the effect of external or internal forces. Similarly, zero-gravity simulation systems should provide a means of designing and exploring the capabilities of hypothetical zero-gravity situations before actually carrying out such actions. The advantage of using a simulation of the motion is that one can experiment with variations of a maneuver before attempting to teach it to an individual. The zero-gravity motion simulation problem can be divided into two broad areas: human movement and behavior in zero-gravity, and simulation of articulated mechanisms.
Distinguishing modified gravity models
International Nuclear Information System (INIS)
Brax, Philippe; Davis, Anne-Christine
2015-01-01
Modified gravity models with screening in local environments appear in three different guises: chameleon, K-mouflage and Vainshtein mechanisms. We propose to look for differences between these classes of models by considering cosmological observations at low redshift. In particular, we analyse the redshift dependence of the fine structure constant and the proton to electron mass ratio in each of these scenarios. When the absorption lines belong to unscreened regions of space such as dwarf galaxies, a time variation would be present for chameleons. For both K-mouflage and Vainshtein mechanisms, the cosmological time variation of the scalar field is not suppressed in both unscreened and screened environments, therefore enhancing the variation of constants and their detection prospect. We also consider the time variation of the redshift of distant objects using their spectrocopic velocities. We find that models of the K-mouflage and Vainshtein types have very different spectroscopic velocities as a function of redshift and that their differences with the Λ-CDM template should be within reach of the future ELT-HIRES observations
International Nuclear Information System (INIS)
Deser, S.
1987-01-01
We obtain the Einstein action plus quadratic curvature corrections generated by closed bosonic, heterotic and supersymmetric strings by matching the four-graviton amplitude (to first order in the slope parameter and fourth power of momenta) with an effective local gravitational action. The resulting corrections are first shown to be of the Gauss-Bonnet form. It is then noted that, by the very nature of the slope expansion, the field-redefinition theorem applies. Consequently, only the curvature-squared term is determined, while squares of its contractions are explicitly seen not to contribute. This latter property has a generalization to all orders which implies that the effective gravitational action is unavoidably ghost-free. The properties of solutions to these corrected theories are then examined. First neglecting dilatons, we find the explicit 'Schwarzschild' metrics. Both asymptotically flat and de Sitter solutions are present. The latter are however shown to be unstable. The former have horizons and singularities which are respectively smaller and less violent than in Einstein gravity; the correct sign of the slope parameter also ensures absence of naked singularities. When dilatons are included, the cosmological vacua are gratifyingly excluded. (orig.)
2004-01-01
In this photo, the Gravity Probe B (GP-B) space vehicle is being encapsulated atop the Delta II launch vehicle. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).
Dubovsky, S L
2004-01-01
We systematically study the most general Lorentz-violating graviton mass invariant under three-dimensional Eucledian group using the explicitly covariant language. We find that at general values of mass parameters the massive graviton has six propagating degrees of freedom, and some of them are ghosts or lead to rapid classical instabilities. However, there is a number of different regions in the mass parameter space where massive gravity can be described by a consistent low-energy effective theory with cutoff $\\sim\\sqrt{mM_{Pl}}$ free of rapid instabilities and vDVZ discontinuity. Each of these regions is characterized by certain fine-tuning relations between mass parameters, generalizing the Fierz--Pauli condition. In some cases the required fine-tunings are consequences of the existence of the subgroups of the diffeomorphism group that are left unbroken by the graviton mass. We found two new cases, when the resulting theories have a property of UV insensitivity, i.e. remain well behaved after inclusion of ...
Distinguishing modified gravity models
Energy Technology Data Exchange (ETDEWEB)
Brax, Philippe [Institut de Physique Théorique, Université Paris-Saclay, CEA, CNRS, F-91191 Gif/Yvette Cedex (France); Davis, Anne-Christine, E-mail: philippe.brax@cea.fr, E-mail: A.C.Davis@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WA (United Kingdom)
2015-10-01
Modified gravity models with screening in local environments appear in three different guises: chameleon, K-mouflage and Vainshtein mechanisms. We propose to look for differences between these classes of models by considering cosmological observations at low redshift. In particular, we analyse the redshift dependence of the fine structure constant and the proton to electron mass ratio in each of these scenarios. When the absorption lines belong to unscreened regions of space such as dwarf galaxies, a time variation would be present for chameleons. For both K-mouflage and Vainshtein mechanisms, the cosmological time variation of the scalar field is not suppressed in both unscreened and screened environments, therefore enhancing the variation of constants and their detection prospect. We also consider the time variation of the redshift of distant objects using their spectrocopic velocities. We find that models of the K-mouflage and Vainshtein types have very different spectroscopic velocities as a function of redshift and that their differences with the Λ-CDM template should be within reach of the future ELT-HIRES observations.
Nonperturbative quantum gravity
International Nuclear Information System (INIS)
Ambjørn, J.; Görlich, A.; Jurkiewicz, J.; Loll, R.
2012-01-01
Asymptotic safety describes a scenario in which general relativity can be quantized as a conventional field theory, despite being nonrenormalizable when expanding it around a fixed background geometry. It is formulated in the framework of the Wilsonian renormalization group and relies crucially on the existence of an ultraviolet fixed point, for which evidence has been found using renormalization group equations in the continuum. “Causal Dynamical Triangulations” (CDT) is a concrete research program to obtain a nonperturbative quantum field theory of gravity via a lattice regularization, and represented as a sum over spacetime histories. In the Wilsonian spirit one can use this formulation to try to locate fixed points of the lattice theory and thereby provide independent, nonperturbative evidence for the existence of a UV fixed point. We describe the formalism of CDT, its phase diagram, possible fixed points and the “quantum geometries” which emerge in the different phases. We also argue that the formalism may be able to describe a more general class of Hořava–Lifshitz gravitational models.
Directory of Open Access Journals (Sweden)
Bernard S. Kay
2015-12-01
Full Text Available We give a review, in the style of an essay, of the author’s 1998 matter-gravity entanglement hypothesis which, unlike the standard approach to entropy based on coarse-graining, offers a definition for the entropy of a closed system as a real and objective quantity. We explain how this approach offers an explanation for the Second Law of Thermodynamics in general and a non-paradoxical understanding of information loss during black hole formation and evaporation in particular. It also involves a radically different from usual description of black hole equilibrium states in which the total state of a black hole in a box together with its atmosphere is a pure state—entangled in just such a way that the reduced state of the black hole and of its atmosphere are each separately approximately thermal. We also briefly recall some recent work of the author which involves a reworking of the string-theory understanding of black hole entropy consistent with this alternative description of black hole equilibrium states and point out that this is free from some unsatisfactory features of the usual string theory understanding. We also recall the author’s recent arguments based on this alternative description which suggest that the Anti de Sitter space (AdS/conformal field theory (CFT correspondence is a bijection between the boundary CFT and just the matter degrees of freedom of the bulk theory.
PPN-limit of Fourth Order Gravity inspired by Scalar-Tensor Gravity
Capozziello, S.; Troisi, A.
2005-01-01
Based on the {\\it dynamical} equivalence between higher order gravity and scalar-tensor gravity the PPN-limit of fourth order gravity is discussed. We exploit this analogy developing a fourth order gravity version of the Eddington PPN-parameters. As a result, Solar System experiments can be reconciled with higher order gravity, if physical constraints descending from experiments are fulfilled.
Radion and holographic brane gravity
International Nuclear Information System (INIS)
Kanno, Sugumi; Soda, Jiro
2002-01-01
The low energy effective theory for the Randall-Sundrum two-brane system is investigated with an emphasis on the role of the nonlinear radion in the brane world. The equations of motion in the bulk are solved using a low energy expansion method. This allows us, through the junction conditions, to deduce the effective equations of motion for gravity on the brane. It is shown that the gravity on the brane world is described by a quasi-scalar-tensor theory with a specific coupling function ω(Ψ)=3Ψ/2(1-Ψ) on the positive tension brane and ω(Φ)=-3Φ/2(1+Φ) on the negative tension brane, where Ψ and Φ are nonlinear realizations of the radion on the positive and negative tension branes, respectively. In contrast with the usual scalar-tensor gravity, the quasi-scalar-tensor gravity couples with two kinds of matter; namely, the matter on both positive and negative tension branes, with different effective gravitational coupling constants. In particular, the radion disguised as the scalar fields Ψ and Φ couples with the sum of the traces of the energy-momentum tensor on both branes. In the course of the derivation, it is revealed that the radion plays an essential role in converting the nonlocal Einstein gravity with generalized dark radiation to local quasi-scalar-tensor gravity. For completeness, we also derive the effective action for our theory by substituting the bulk solution into the original action. It is also shown that quasi-scalar-tensor gravity works as a hologram at low energy in the sense that the bulk geometry can be reconstructed from the solution of quasi-scalar-tensor gravity
Curved backgrounds in emergent gravity
Chaurasia, Shikha; Erlich, Joshua; Zhou, Yiyu
2018-06-01
Field theories that are generally covariant but nongravitational at tree level typically give rise to an emergent gravitational interaction whose strength depends on a physical regulator. We consider emergent gravity models in which scalar fields assume the role of clock and rulers, addressing the problem of time in quantum gravity. We discuss the possibility of nontrivial dynamics for clock and ruler fields, and describe some of the consequences of those dynamics for the emergent gravitational theory.
Minimal Length, Measurability and Gravity
Directory of Open Access Journals (Sweden)
Alexander Shalyt-Margolin
2016-03-01
Full Text Available The present work is a continuation of the previous papers written by the author on the subject. In terms of the measurability (or measurable quantities notion introduced in a minimal length theory, first the consideration is given to a quantum theory in the momentum representation. The same terms are used to consider the Markov gravity model that here illustrates the general approach to studies of gravity in terms of measurable quantities.
Scattering of internal gravity waves
Leaman Nye, Abigail
2011-01-01
Internal gravity waves play a fundamental role in the dynamics of stably stratified regions of the atmosphere and ocean. In addition to the radiation of momentum and energy remote from generation sites, internal waves drive vertical transport of heat and mass through the ocean by wave breaking and the mixing subsequently produced. Identifying regions where internal gravity waves contribute to ocean mixing and quantifying this mixing are therefore important for accurate climate ...
Absolute gravity measurements in California
Zumberge, M. A.; Sasagawa, G.; Kappus, M.
1986-08-01
An absolute gravity meter that determines the local gravitational acceleration by timing a freely falling mass with a laser interferometer has been constructed. The instrument has made measurements at 11 sites in California, four in Nevada, and one in France. The uncertainty in the results is typically 10 microgal. Repeated measurements have been made at several of the sites; only one shows a substantial change in gravity.
Dark Matter in Quantum Gravity
Calmet, Xavier; Latosh, Boris
2018-01-01
We show that quantum gravity, whatever its ultra-violet completion might be, could account for dark matter. Indeed, besides the massless gravitational field recently observed in the form of gravitational waves, the spectrum of quantum gravity contains two massive fields respectively of spin 2 and spin 0. If these fields are long-lived, they could easily account for dark matter. In that case, dark matter would be very light and only gravitationally coupled to the standard model particles.
International Nuclear Information System (INIS)
Au, G.
1995-03-01
One of the greatest challenges facing theoretical physics lies in reconciling Einstein's classical theory of gravity - general relativity -with quantum field theory. Although both theories have been experimentally supported in their respective regimes, they are as compatible as a square peg and a round hole. This article summarises the current status of the superstring approach to the problem, the status of the Ashtekar program, and problem of time in quantum gravity
Gravity as Quantum Entanglement Force
Lee, Jae-Weon; Kim, Hyeong-Chan; Lee, Jungjai
2010-01-01
We conjecture that the total quantum entanglement of matter and vacuum in the universe tends to increase with time, like entropy, and that an effective force is associated with this tendency. We also suggest that gravity and dark energy are types of quantum entanglement forces, similar to Verlinde's entropic force, and give holographic dark energy with an equation of state comparable to current observational data. This connection between quantum entanglement and gravity could give some new in...
Gravity as a thermodynamic phenomenon
Moustos, Dimitris
2017-01-01
The analogy between the laws of black hole mechanics and the laws of thermodynamics led Bekenstein and Hawking to argue that black holes should be considered as real thermodynamic systems that are characterised by entropy and temperature. Black hole thermodynamics indicates a deeper connection between thermodynamics and gravity. We review and examine in detail the arguments that suggest an interpretation of gravity itself as a thermodynamic theory.
Energy Technology Data Exchange (ETDEWEB)
Au, G
1995-03-01
One of the greatest challenges facing theoretical physics lies in reconciling Einstein`s classical theory of gravity - general relativity -with quantum field theory. Although both theories have been experimentally supported in their respective regimes, they are as compatible as a square peg and a round hole. This article summarises the current status of the superstring approach to the problem, the status of the Ashtekar program, and problem of time in quantum gravity.
Gravity a very short introduction
Clifton, Timothy
2017-01-01
Gravity is one of the four fundamental interactions that exist in nature. It also has the distinction of being the oldest, weakest, and most difficult force to quantize. Understanding gravity is not only essential for understanding the motion of objects on Earth, but also the motion of all celestial objects, and even the expansion of the Universe itself. It was the study of gravity that led Einstein to his profound realizations about the nature of space and time. Gravity is not only universal, it is also essential for understanding the behavior of the Universe, and all astrophysical bodies within it. In this Very Short Introduction Timothy Clifton looks at the development of our understanding of gravity since the early observations of Kepler and Newtonian theory. He discusses Einstein's theory of gravity, which now supplants Newton's, showing how it allows us to understand why the frequency of light changes as it passes through a gravitational field, why GPS satellites need their clocks corrected as they orbi...
2000-01-01
In this photo, the Gravity Probe B (GP-B) space vehicle is being assembled at the Sunnyvale, California location of the Lockheed Martin Corporation. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).
Relativistic theory of gravity
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvili, M.A.
1985-01-01
This work presents an unambiguous construction of the relativistic theory of gravity (RTG) in the framework of relativity and the geometrization principle. The gauge principle has been formulated, and the Lagrangian density of the gravitational field has thus been constructed. This theory explains the totality of the available experimental data on the solar system and predicts the existence of gravitational waves of the Faraday-Maxwell type. According to the RTG, the Universe is infinite and ''flat'', hence it follows that its matter density should be equal to its critical density. Therefore, an appreciable ''hidden mass'' exceeding the presently observed mass of the matter almost 40-fold should exist in the Universe in some form of the matter or other. In accordance with the RTG, a massive body having a finite density ceases to contract under gravitational forces within a finite interval of proper time. From the viewpoint of an external reference frame, the brightness of the body decreases exponentially (it is getting darker), but nothing extraordinary happens in this case because its density always remains finite and, for example, for a body with the mass of about 10 8 M 0 it is equal to 2 g/cm 3 . That is why it follows from the RTG that there could be no object whatsoever (black holes) in which gravitational collapse of matter develops to an infinite density. As has been shown, the presence of a cosmological term necessarily requires the introduction of a term with an explicit dependence on the Minkowski metrics. For the long-range gravitational forces the cosmological constant vanishes
Superconducting gravity gradiometer for sensitive gravity measurements. II. Experiment
International Nuclear Information System (INIS)
Chan, H.A.; Moody, M.V.; Paik, H.J.
1987-01-01
A sensitive superconducting gravity gradiometer has been constructed and tested. Coupling to gravity signals is obtained by having two superconducting proof masses modulate magnetic fields produced by persistent currents. The induced electrical currents are differenced by a passive superconducting circuit coupled to a superconducting quantum interference device. The experimental behavior of this device has been shown to follow the theoretical model closely in both signal transfer and noise characteristics. While its intrinsic noise level is shown to be 0.07 E Hz/sup -1/2/ (1 Eequivalent10/sup -9/ sec/sup -2/), the actual performance of the gravity gradiometer on a passive platform has been limited to 0.3--0.7 E Hz/sup -1/2/ due to its coupling to the environmental noise. The detailed structure of this excess noise is understood in terms of an analytical error model of the instrument. The calibration of the gradiometer has been obtained by two independent methods: by applying a linear acceleration and a gravity signal in two different operational modes of the instrument. This device has been successfully operated as a detector in a new null experiment for the gravitational inverse-square law. In this paper we report the design, fabrication, and detailed test results of the superconducting gravity gradiometer. We also present additional theoretical analyses which predict the specific dynamic behavior of the gradiometer and of the test
Anisotropic, time-dependent solutions in maximally Gauss-Bonnet extended gravity
International Nuclear Information System (INIS)
Kitaura, Takayuki; Wheeler, J.T.
1991-01-01
In an arbitrary number of dimensions, we find the full exact anisotropic, time-dependent, diagonal-metric solutions to maximally Gauss-Bonnet extended gravity theory. This class of theories for which the lagrangian is an arbitrary linear combination of dimensionally extnded Euler forms, is the most general gravitational theory in which the field equations contain no more than second derivatives of the metric. We show that the space-time exponentially approaches an asymptotic state of constant, anisotropic curvature and prove three theorems concerning two generic types of singularities. The first theorem gives conditions for the existence of Kasner-like curvature singularities. For these the metric diverges as tsup(p i ) where Σp i = 2 k max -1 and k max is the highest power of the curvature in the lagrangian. Other critical point singularities can arise from the polynomial nature of the theory. The remaining theorems demonstrate that the generic solution is extendible at all of these other critical points and that the generic critical points occur at moments of extremal volume density of space-time. We give an explicit coordinate transformation which produces a smooth extension through the critical point. The space-time may therefore alternately expand and contract for many cycles before expanding forever or contracting to a singularity. Many particular cases are treated in detail including several power series solutions, the generalized Kasner solution to general relativity with or without cosmological constant, the perturbative solution for quadratic string gravity, and five-dimensional extended gravity. (orig.)
Light fermions in quantum gravity
International Nuclear Information System (INIS)
Eichhorn, Astrid; Gies, Holger
2011-01-01
We study the impact of quantum gravity, formulated as a quantum field theory of the metric, on chiral symmetry in a fermionic matter sector. Specifically we address the question of whether metric fluctuations can induce chiral symmetry breaking and bound state formation. Our results based on the functional renormalization group indicate that chiral symmetry is left intact even at strong gravitational coupling. In particular, we found that asymptotically safe quantum gravity where the gravitational couplings approach a non-Gaußian fixed point generically admits universes with light fermions. Our results thus further support quantum gravity theories built on fluctuations of the metric field such as the asymptotic-safety scenario. A study of chiral symmetry breaking through gravitational quantum effects may also serve as a significant benchmark test for other quantum gravity scenarios, since a completely broken chiral symmetry at the Planck scale would not be in accordance with the observation of light fermions in our universe. We demonstrate that this elementary observation already imposes constraints on a generic UV completion of gravity. (paper)
Quantum gravity as Escher's dragon
International Nuclear Information System (INIS)
Smilga, A.V.
2003-01-01
The main obstacle in attempts to construct a consistent quantum gravity is the absence of independent flat time. This can in principle be cured by going out to higher dimensions. The modern paradigm assumes that the fundamental theory of everything is some form of string theory living in space of more than four dimensions. We advocate another possibility that the fundamental theory is a form of D = 4 higher derivative gravity. This class of theories has a nice feature of renormalizability, so that perturbative calculations are feasible. There are also finite N = 4 supersymmetric conformal supergravity theories. This possibility is particularly attractive. Einstein's gravity is obtained in a natural way as an effective low-energy theory. The N= 1 supersymmetric version of the theory has a natural higher dimensional interpretation due to V.I. Ogievetsky and E.S. Sokatchev, which involves embedding our curved Minkowski spacetime manifold into flat eight-dimensional space. Assuming that a variant of the finite N = 4 theory also admits a similar interpretation, this may eventually allow one to construct consistent quantum theory of gravity. We argue, however, that, even though future gravity theory will probably use higher dimensions as construction scaffolds, its physical content and meaning should refer to four dimensions, where an observer lives
The Juno Gravity Science Instrument
Asmar, Sami W.; Bolton, Scott J.; Buccino, Dustin R.; Cornish, Timothy P.; Folkner, William M.; Formaro, Roberto; Iess, Luciano; Jongeling, Andre P.; Lewis, Dorothy K.; Mittskus, Anthony P.; Mukai, Ryan; Simone, Lorenzo
2017-11-01
The Juno mission's primary science objectives include the investigation of Jupiter interior structure via the determination of its gravitational field. Juno will provide more accurate determination of Jupiter's gravity harmonics that will provide new constraints on interior structure models. Juno will also measure the gravitational response from tides raised on Jupiter by Galilean satellites. This is accomplished by utilizing Gravity Science instrumentation to support measurements of the Doppler shift of the Juno radio signal by NASA's Deep Space Network at two radio frequencies. The Doppler data measure the changes in the spacecraft velocity in the direction to Earth caused by the Jupiter gravity field. Doppler measurements at X-band (˜ 8 GHz) are supported by the spacecraft telecommunications subsystem for command and telemetry and are used for spacecraft navigation as well as Gravity Science. The spacecraft also includes a Ka-band (˜ 32 GHz) translator and amplifier specifically for the Gravity Science investigation contributed by the Italian Space Agency. The use of two radio frequencies allows for improved accuracy by removal of noise due to charged particles along the radio signal path.
Self Completeness of Einstein Gravity
Dvali, Gia
2010-01-01
We argue, that in Einsteinian gravity the Planck length is the shortest length of nature, and any attempt of resolving trans-Planckian physics bounces back to macroscopic distances due to black hole formation. In Einstein gravity trans-Planckian propagating quantum degrees of freedom cannot exist, instead they are equivalent to the classical black holes that are fully described by lighter infra-red degrees of freedom and give exponentially-soft contribution into the virtual processes. Based on this property we argue that pure-Einstein (super)gravity and its high-dimensional generalizations are self-complete in deep-UV, but not in standard Wilsonian sense. We suggest that certain strong-coupling limit of string theory is built-in in pure Einstein gravity, whereas the role of weakly-coupled string theory limit is to consistently couple gravity to other particle species, with their number being set by the inverse string coupling. We also discuss some speculative ideas generalizing the notion of non-Wilsonian sel...
Scale-invariant gravity: geometrodynamics
International Nuclear Information System (INIS)
Anderson, Edward; Barbour, Julian; Foster, Brendan; Murchadha, Niall O
2003-01-01
We present a scale-invariant theory, conformal gravity, which closely resembles the geometrodynamical formulation of general relativity (GR). While previous attempts to create scale-invariant theories of gravity have been based on Weyl's idea of a compensating field, our direct approach dispenses with this and is built by extension of the method of best matching w.r.t. scaling developed in the parallel particle dynamics paper by one of the authors. In spatially compact GR, there is an infinity of degrees of freedom that describe the shape of 3-space which interact with a single volume degree of freedom. In conformal gravity, the shape degrees of freedom remain, but the volume is no longer a dynamical variable. Further theories and formulations related to GR and conformal gravity are presented. Conformal gravity is successfully coupled to scalars and the gauge fields of nature. It should describe the solar system observations as well as GR does, but its cosmology and quantization will be completely different
Gravity gradient preprocessing at the GOCE HPF
Bouman, J.; Rispens, S.; Gruber, T.; Schrama, E.; Visser, P.; Tscherning, C. C.; Veicherts, M.
2009-04-01
One of the products derived from the GOCE observations are the gravity gradients. These gravity gradients are provided in the Gradiometer Reference Frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. In order to use these gravity gradients for application in Earth sciences and gravity field analysis, additional pre-processing needs to be done, including corrections for temporal gravity field signals to isolate the static gravity field part, screening for outliers, calibration by comparison with existing external gravity field information and error assessment. The temporal gravity gradient corrections consist of tidal and non-tidal corrections. These are all generally below the gravity gradient error level, which is predicted to show a 1/f behaviour for low frequencies. In the outlier detection the 1/f error is compensated for by subtracting a local median from the data, while the data error is assessed using the median absolute deviation. The local median acts as a high-pass filter and it is robust as is the median absolute deviation. Three different methods have been implemented for the calibration of the gravity gradients. All three methods use a high-pass filter to compensate for the 1/f gravity gradient error. The baseline method uses state-of-the-art global gravity field models and the most accurate results are obtained if star sensor misalignments are estimated along with the calibration parameters. A second calibration method uses GOCE GPS data to estimate a low degree gravity field model as well as gravity gradient scale factors. Both methods allow to estimate gravity gradient scale factors down to the 10-3 level. The third calibration method uses high accurate terrestrial gravity data in selected regions to validate the gravity gradient scale factors, focussing on the measurement band. Gravity gradient scale factors may be estimated down to the 10-2 level with this method.
Generalized uncertainty principle, quantum gravity and Horava-Lifshitz gravity
International Nuclear Information System (INIS)
Myung, Yun Soo
2009-01-01
We investigate a close connection between generalized uncertainty principle (GUP) and deformed Horava-Lifshitz (HL) gravity. The GUP commutation relations correspond to the UV-quantum theory, while the canonical commutation relations represent the IR-quantum theory. Inspired by this UV/IR quantum mechanics, we obtain the GUP-corrected graviton propagator by introducing UV-momentum p i =p 0i (1+βp 0 2 ) and compare this with tensor propagators in the HL gravity. Two are the same up to p 0 4 -order.
Dilaton gravity, Poisson sigma models and loop quantum gravity
International Nuclear Information System (INIS)
Bojowald, Martin; Reyes, Juan D
2009-01-01
Spherically symmetric gravity in Ashtekar variables coupled to Yang-Mills theory in two dimensions and its relation to dilaton gravity and Poisson sigma models are discussed. After introducing its loop quantization, quantum corrections for inverse triad components are shown to provide a consistent deformation without anomalies. The relation to Poisson sigma models provides a covariant action principle of the quantum-corrected theory with effective couplings. Results are also used to provide loop quantizations of spherically symmetric models in arbitrary D spacetime dimensions.
Dualities and emergent gravity: Gauge/gravity duality
de Haro, Sebastian
2017-08-01
In this paper I develop a framework for relating dualities and emergence: two notions that are close to each other but also exclude one another. I adopt the conception of duality as 'isomorphism', from the physics literature, cashing it out in terms of three conditions. These three conditions prompt two conceptually different ways in which a duality can be modified to make room for emergence; and I argue that this exhausts the possibilities for combining dualities and emergence (via coarse-graining). I apply this framework to gauge/gravity dualities, considering in detail three examples: AdS/CFT, Verlinde's scheme, and black holes. My main point about gauge/gravity dualities is that the theories involved, qua theories of gravity, must be background-independent. I distinguish two senses of background-independence: (i) minimalistic and (ii) extended. I argue that the former is sufficiently strong to allow for a consistent theory of quantum gravity; and that AdS/CFT is background-independent on this account; while Verlinde's scheme best fits the extended sense of background-independence. I argue that this extended sense should be applied with some caution: on pain of throwing the baby (general relativity) out with the bath-water (extended background-independence). Nevertheless, it is an interesting and potentially fruitful heuristic principle for quantum gravity theory construction. It suggests some directions for possible generalisations of gauge/gravity dualities. The interpretation of dualities is discussed; and the so-called 'internal' vs. 'external' viewpoints are articulated in terms of: (i) epistemic and metaphysical commitments; (ii) parts vs. wholes. I then analyse the emergence of gravity in gauge/gravity dualities in terms of the two available conceptualisations of emergence; and I show how emergence in AdS/CFT and in Verlinde's scenario differ from each other. Finally, I give a novel derivation of the Bekenstein-Hawking black hole entropy formula based on
Partial gravity - Human impacts on facility design
Capps, Stephen; Moore, Nathan
1990-01-01
Partial gravity affects the body differently than earth gravity and microgravity environments. The main difference from earth gravity is human locomotion; while the main dfference from microgravity is the specific updown orientation and reach envelopes which increase volume requirements. Much data are available on earth gravity and microgravity design; however, very little information is available on human reactions to reduced gravity levels in IVA situations (without pressure suits). Therefore, if humans commit to permanent lunar habitation, much research should be conducted in the area of partial gravity effects on habitat design.
Energy Technology Data Exchange (ETDEWEB)
Herrmann, Enrico [Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States); Trnka, Jaroslav [Center for Quantum Mathematics and Physics (QMAP),Department of Physics, University of California,Davis, CA 95616 (United States)
2016-11-22
We study on-shell diagrams for gravity theories with any number of supersymmetries and find a compact Grassmannian formula in terms of edge variables of the graphs. Unlike in gauge theory where the analogous form involves only dlog-factors, in gravity there is a non-trivial numerator as well as higher degree poles in the edge variables. Based on the structure of the Grassmannian formula for N=8 supergravity we conjecture that gravity loop amplitudes also possess similar properties. In particular, we find that there are only logarithmic singularities on cuts with finite loop momentum and that poles at infinity are present, in complete agreement with the conjecture presented in http://dx.doi.org/10.1007/JHEP06(2015)202.
Universality of quantum gravity corrections.
Das, Saurya; Vagenas, Elias C
2008-11-28
We show that the existence of a minimum measurable length and the related generalized uncertainty principle (GUP), predicted by theories of quantum gravity, influence all quantum Hamiltonians. Thus, they predict quantum gravity corrections to various quantum phenomena. We compute such corrections to the Lamb shift, the Landau levels, and the tunneling current in a scanning tunneling microscope. We show that these corrections can be interpreted in two ways: (a) either that they are exceedingly small, beyond the reach of current experiments, or (b) that they predict upper bounds on the quantum gravity parameter in the GUP, compatible with experiments at the electroweak scale. Thus, more accurate measurements in the future should either be able to test these predictions, or further tighten the above bounds and predict an intermediate length scale between the electroweak and the Planck scale.
Experimental tests of relativistic gravity
International Nuclear Information System (INIS)
Damour, Thibault
2000-01-01
The confrontation between Einstein's gravitation theory and experimental results, notably binary pulsar data, is summarized and its significance discussed. Experiment and theory agree at the 10 -3 level or better. All the basic structures of Einstein's theory (coupling of gravity matter; propagation and self-interaction of the gravitational field, including in strong field conditions) have been verified. However, the theoretical possibility that scalar couplings be naturally driven toward zero by the cosmological expansion suggests that the present agreement between Einstein's theory and experiment might be compatible with the existence of a long-range scalar contribution to gravity (such as the dilation field, or a moduli field, of string theory). This provides a new theoretical paradigm, and new motivations for improving the experimental tests of gravity
Rheological measurements in reduced gravity
Bakhtiyarov, Sayavur I.; Overfelt, Ruel A.
1999-01-01
Rheology of fluidized beds and settling suspensions were studied experimentally in a series of reduced gravity parabolic flights aboard NASA's KC-135 aircraft. Silica sands of two different size distributions were fluidized by air. The slurries were made using silica sand and Glycerol solution. The experimental set up incorporated instrumentation to measure the air flow rate, the pressure drop and the apparent viscosity of the fluidized sand and sand suspensions at a wide range of the shear rates. The fluidization chamber and container had transparent walls to allow visualization of the structure changes involved in fluidization and in Couette flow in reduced gravity. Experiments were performed over a broad range of gravitational accelerations including microgravity and double gravity conditions. The results of the flight and ground experiments reveal significant differences in overall void fraction and hence in the apparent viscosity of fluidized sand and sand suspensions under microgravity as compared to one-g conditions.
Studies in gravity and supergravity
International Nuclear Information System (INIS)
Castellani, L.
1981-01-01
The canonical treatment for theories with local gauge invariances is reviewed and an algorithm for the construction of all the gauge generators is found. This algorithm is then applied to Yang-Mills theories and to (metric) gravity. The first part of the work is concluded with a complete treatment of hamiltonian first order tetrad gravity. In the second part, the geometrical aspects of (super)gravity theories are concentrated on. After an interlude with path integrals in curved space (equivalence is shown with canonical quantization), N = 2 supergravity in superspace, and conformal supergravity in the group manifold scenario are studied. A progress report is added, regarding a study on higher divergences in quantum field theory
Gravity with Intermediate Goods Trade
Directory of Open Access Journals (Sweden)
Sujin Jang
2017-12-01
Full Text Available This paper derives the gravity equation with intermediate goods trade. We extend a standard monopolistic competition model to incorporate intermediate goods trade, and show that the gravity equation with intermediates trade is identical to the one without it except in that gross output should be used as the output measure instead of value added. We also show that the output elasticity of trade is significantly underestimated when value added is used as the output measure. This implies that with the conventional gravity equation, the contribution of output growth can be substantially underestimated and the role of trade costs reduction can be exaggerated in explaining trade expansion, as we demonstrate for the case of Korea's trade growth between 1995 and 2007.
Observational tests of modified gravity
International Nuclear Information System (INIS)
Jain, Bhuvnesh; Zhang Pengjie
2008-01-01
Modifications of general relativity provide an alternative explanation to dark energy for the observed acceleration of the Universe. Modified gravity theories have richer observational consequences for large-scale structures than conventional dark energy models, in that different observables are not described by a single growth factor even in the linear regime. We examine the relationships between perturbations in the metric potentials, density and velocity fields, and discuss strategies for measuring them using gravitational lensing, galaxy cluster abundances, galaxy clustering/dynamics, and the integrated Sachs-Wolfe effect. We show how a broad class of gravity theories can be tested by combining these probes. A robust way to interpret observations is by constraining two key functions: the ratio of the two metric potentials, and the ratio of the gravitational 'constant' in the Poisson equation to Newton's constant. We also discuss quasilinear effects that carry signatures of gravity, such as through induced three-point correlations. Clustering of dark energy can mimic features of modified gravity theories and thus confuse the search for distinct signatures of such theories. It can produce pressure perturbations and anisotropic stresses, which break the equality between the two metric potentials even in general relativity. With these two extra degrees of freedom, can a clustered dark energy model mimic modified gravity models in all observational tests? We show with specific examples that observational constraints on both the metric potentials and density perturbations can in principle distinguish modifications of gravity from dark energy models. We compare our result with other recent studies that have slightly different assumptions (and apparently contradictory conclusions).
Acoustic-gravity nonlinear structures
Directory of Open Access Journals (Sweden)
D. Jovanović
2002-01-01
Full Text Available A catalogue of nonlinear vortex structures associated with acoustic-gravity perturbations in the Earth's atmosphere is presented. Besides the previously known Kelvin-Stewart cat's eyes, dipolar and tripolar structures, new solutions having the form of a row of counter-rotating vortices, and several weakly two-dimensional vortex chains are given. The existence conditions for these nonlinear structures are discussed with respect to the presence of inhomogeneities of the shear flows. The mode-coupling mechanism for the nonlinear generation of shear flows in the presence of linearly unstable acoustic-gravity waves, possibly also leading to intermittency and chaos, is presented.
Airborne Gravity: NGS' Gravity Data for MS02 (2016)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data over southern Arizona and New Mexico overlapping into Mexico collected in 2016 over 2 surveys, AZ16-1 and AZ16-2. This data set is part of the...
Gravity Data for California and Southern Nevada
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity data (88,514 records) were compiled largely from a state-wide regional gravity study program organized by the California Division of Mines and Geology in...
Gravity Data for Indiana (300 records compiled)
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity data (300 records) were compiled by Purdue University. This data base was received in February 1993. Principal gravity parameters include Free-air...
Gravity Data for the Greater Portland Area
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (1,522 records) were compiled by the Portland State University. This data base was received in August 1990. Principal gravity parameters...
Steps towards a quantum theory of gravity
International Nuclear Information System (INIS)
Unruh, W.G.
1984-01-01
The paper concerns simple experiments in quantum gravity. 'Schroedinger's Cat' experiment to test semiclassical quantum gravity, and the gravitational single slit experiment to demonstrate the wave-particle duality for photons, are both described and discussed. (U.K.)
Idaho Batholith Study Area Gravity Data
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (32,152 records) were compiled by the U. S. Geological Survey. This data base was received on February 23, 1993. Principal gravity...
Nevada Isostatic Residual Gravity Over Basement
National Oceanic and Atmospheric Administration, Department of Commerce — This study of gravity data from Nevada is part of a statewide analysis of mineral resources. The main objective of the gravity study were: 1) to infer the structure...