WorldWideScience

Sample records for fitting uo2 interatomic

  1. Assessment of structures and stabilities of defect clusters and surface energies predicted by nine interatomic potentials for UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Taller, Stephen A. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Bai, Xian-Ming, E-mail: xianming.bai@inl.gov [Fuels Modeling and Simulation Department, Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

    2013-11-15

    The irradiation in nuclear reactors creates many point defects and defect clusters in uranium dioxide (UO{sub 2}) and their evolution severely degrades the thermal and mechanical properties of the nuclear fuels. Previously many empirical interatomic potentials have been developed for modeling defect production and evolution in UO{sub 2}. However, the properties of defect clusters and extended defects are usually not fitted into these potentials. In this work nine interatomic potentials for UO{sub 2} are examined by using molecular statics and molecular dynamics to assess their applicability in predicting the properties of various types of defect clusters in UO{sub 2}. The binding energies and structures for these defect clusters have been evaluated for each potential. In addition, the surface energies of voids of different radii and (1 1 0) flat surfaces predicted by these potentials are also evaluated. It is found that both good agreement and significant discrepancies exist for these potentials in predicting these properties. For oxygen interstitial clusters, these potentials predict significantly different defect cluster structures and stabilities; For defect clusters consisting of both uranium and oxygen defects, the prediction is in better agreement; The surface energies predicted by these potentials have significant discrepancies, and some of them are much higher than the experimentally measured values. The results from this work can provide insight on interpreting the outcome of atomistic modeling of defect production using these potentials and may provide guidelines for choosing appropriate potential models to study problems of interest in UO{sub 2}.

  2. Xenon Defects in Uranium Dioxide From First Principles and Interatomic Potentials

    Science.gov (United States)

    Thompson, Alexander

    In this thesis, we examine the defect energetics and migration energies of xenon atoms in uranium dioxide (UO2) from first principles and interatomic potentials. We also parameterize new, accurate interatomic potentials for xenon and uranium dioxide. To achieve accurate energetics and provide a foundation for subsequent calculations, we address difficulties in finding consistent energetics within Hubbard U corrected density functional theory (DFT+U). We propose a method of slowly ramping the U parameter in order to guide the calculation into low energy orbital occupations. We find that this method is successful for a variety of materials. We then examine the defect energetics of several noble gas atoms in UO2 for several different defect sites. We show that the energy to incorporate large noble gas atoms into interstitial sites is so large that it is energetically favorable for a Schottky defect cluster to be created to relieve the strain. We find that, thermodynamically, xenon will rarely ever be in the interstitial site of UO2. To study larger defects associated with the migration of xenon in UO 2, we turn to interatomic potentials. We benchmark several previously published potentials against DFT+U defect energetics and migration barriers. Using a combination of molecular dynamics and nudged elastic band calculations, we find a new, low energy migration pathway for xenon in UO2. We create a new potential for xenon that yields accurate defect energetics. We fit this new potential with a method we call Iterative Potential Refinement that parameterizes potentials to first principles data via a genetic algorithm. The potential finds accurate energetics for defects with relatively low amounts of strain (xenon in defect clusters). It is important to find accurate energetics for these sorts of low-strain defects because they essentially represent small xenon bubbles. Finally, we parameterize a new UO2 potential that simultaneously yields accurate vibrational properties

  3. Thermal transport in UO2 with defects and fission products by molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cooper, Michael William Donald [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mcclellan, Kenneth James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lashley, Jason Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Byler, Darrin David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-14

    The importance of the thermal transport in nuclear fuel has motivated a wide range of experimental and modelling studies. In this report, the reduction of thermal transport in UO2 due to defects and fission products has been investigated using non-equilibrium MD simulations, with two sets of empirical potentials for studying the degregation of UO2 thermal conductivity including a Buckingham type interatomic potential and a recently developed EAM type interatomic potential. Additional parameters for U5+ and Zr4+ in UO2 have been developed for the EAM potential. The thermal conductivity results from MD simulations are then corrected for the spin-phonon scattering through Callaway model formulations. To validate the modelling results, comparison was made with experimental measurements on single crystal hyper-stoichiometric UO2+x samples.

  4. A charge-optimized many-body potential for the U-UO2-O2 system

    Science.gov (United States)

    Li, Yangzhong; Liang, Tao; Sinnott, Susan B.; Phillpot, Simon R.

    2013-12-01

    Building on previous charge-optimized many-body (COMB) potentials for metallic α-U and gaseous O2, we have developed a new potential for UO2, which also allows the simulation of U-UO2-O2 systems. The UO2 lattice parameter, elastic constants and formation energies of stoichiometric and non-stoichiometric intrinsic defects are well reproduced. Moreover, this is the first rigid-ion potential that produces the correct deviation of the Cauchy relation, as well as the first classical interatomic potential that is able to determine the defect energies of non-stoichiometric intrinsic point defects in UO2 with an appropriate reference state. The oxygen molecule interstitial in the α-U structure is shown to decompose, with some U-O bonds approaching the natural bond length of perfect UO2. Finally, we demonstrate the capability of this COMB potential to simulate a complex system by performing a simulation of the α-U + O2UO2 phase transformation. We also identify a possible mechanism for uranium oxidation and the orientation of the resulting fluorite UO2 structure relative to the coordinate system of orthorhombic α-U.

  5. Evaluation of melting point of UO2 by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Arima, Tatsumi; Idemitsu, Kazuya; Inagaki, Yaohiro; Tsujita, Yuichi; Kinoshita, Motoyasu; Yakub, Eugene

    2009-01-01

    The melting point of UO 2 has been evaluated by molecular dynamics simulation (MD) in terms of interatomic potential, pressure and Schottky defect concentration. The Born-Mayer-Huggins potentials with or without a Morse potential were explored in the present study. Two-phase simulation whose supercell at the initial state consisted of solid and liquid phases gave the melting point comparable to the experimental data using the potential proposed by Yakub. The heat of fusion was determined by the difference in enthalpy at the melting point. In addition, MD calculations showed that the melting point increased with pressure applied to the system. Thus, the Clausius-Clapeyron equation was verified. Furthermore, MD calculations clarified that an addition of Schottky defects, which generated the local disorder in the UO 2 crystal, lowered the melting point.

  6. Grain growth in UO2

    International Nuclear Information System (INIS)

    Hastings, I.J.; Scoberg, J.A.; Walden, W.

    1979-06-01

    Grain growth studies have been carried out on UO 2 to provide data for the fuel modelling program and to evaluate fuel fabricated in commissioning the Mixed Oxide Fuel Fabrication Laboratory at Chalk River Nuclear Laboratories. Fuel examined includes natural UO 2 commercially fabricated from ADU powder for CANDU reactors; natural UO 2 commercially fabricated from AU powder; natural UO 2 from ADU and AU powder, fabricated in the MOFFL; and commercially fabricated UO 2 enriched 1.7, 4.5, and 9.6 wt. percent U-235 in U. Samples were step-annealed in vacuo at 1870-2070 K for up to 32.5 h. All data fit a (grain size)sup(2.5) versus annealing time relationship. Apparent activation energy for grain growth, Q, depends on fuel type and varies from 150+-10 kJ/mol for early AU powder to 360+-10 kJ/mol for pellets from ADU fabricated in the MOFFL. Grain sizes calculated using the laboratory equation in a fuel performance code tend to be greater than those measured in irradiated natural fuel, suggesting irradiation-induced inhibition of grain growth. However, any inhibition is equivalent to that expected for a systematic 5 percent underpredicition in reactor power. (author)

  7. Mechanism for transient migration of xenon in UO2

    International Nuclear Information System (INIS)

    Liu, X.-Y.; Uberuaga, B. P.; Andersson, D. A.; Stanek, C. R.; Sickafus, K. E.

    2011-01-01

    In this letter, we report recent work on atomistic modeling of diffusion migration events of the fission gas product xenon in UO 2 nuclear fuel. Under nonequilibrium conditions, Xe atoms can occupy the octahedral interstitial site, in contrast to the thermodynamically most stable uranium substitutional site. A transient migration mechanism involving Xe and two oxygen atoms is identified using basin constrained molecular dynamics employing a Buckingham type interatomic potential. This mechanism is then validated using density functional theory calculations using the nudged elastic band method. An overall reduction in the migration barrier of 1.6-2.7 eV is obtained compared to vacancy-mediated diffusion on the uranium sublattice.

  8. Interatom results for stage 2

    International Nuclear Information System (INIS)

    Coors, D.

    1990-01-01

    This report contains the Interatom results for Stage 2 of the ''IWGFR Programme on Intercomparison of LMFBR Core Mechanics Codes'' which was agreed upon on a Consultants Meeting in Vienna, 8-10 December, 1987. The calculations were performed with the 3D core mechanics code system DDT developed at Interatom and with the 2D core mechanics code FIAT. (author). 5 refs, 11 figs, 8 tabs

  9. Irradiation of UO{sub 2}; Ozracivanje UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Stevanovic, M [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-10-15

    Based on the review of the available literature concerned with UO{sub 2} irradiation, this paper describes and explains the phenomena initiated by irradiation of the UO{sub 2} fuel in a reactor dependent on the burnup level and temperature. A comprehensive review of UO{sub 2} radiation damage studies is given as a broad research program. This part includes the abilities of our reactor as well as needed elements for such study. The third part includes the defions of the specific power, burnup level and temperature in the center of the fuel element needed for planning and performing the irradiation. Methods for calculating these parameters are includedSerb. Na osnovu pregleda dostupne literature o ozracivanju UO{sub 2} u ovom radu su izlozene i objasnjene pojave koje nastaju pri ozracivanju goriva od UO{sub 2} u reaktoru do razlicitih stepena izgaranja i na razlicitim temperaturama. Pored toga, dat je pregled svih mogucih ispitivanja na radijacionom ostecenju UO{sub 2} u formi sirokog programa istrazivanja. Ovaj deo je dopunjen sudom o mogucnostima naseg reaktora kao i o elementima koji su potrebni za ovakav rad. U trecem delu su izlozeni definicija parametara: specificna snaga, stepen izgaranja i temperatura centra goriva i njihovo izracunavanje za potrebe postavljanja i izvodjenja ozracivanja (author)

  10. Ceramic UO2 powder production at Cameco Corporation

    International Nuclear Information System (INIS)

    Kwong, A.K.; Kuchurean, S.M.

    1997-01-01

    This presentation covers the various aspects of ceramic grade uranium dioxide (UO 2 ) powder production at Cameco Corporation and its use as fuel and blanket fuel for heavy-water and light-water reactors, respectively. In addition, it discusses the significant production variables that affect production and product quality. It also provides an insight into how various support groups such as Quality Assurance, Analytical Services, and Technology Development fit into the quality cycle and contribute to a successful operation. The ability of Cameco to identify, measure and control the physical and chemical properties of ceramic grade UO 2 has resulted in the production of uniform quality powder. This has meant that 100% of Cameco's ceramic grade UO 2 powder produced since mid-1989 has been accepted by the fuel manufacturers. (author)

  11. Critical sizes of light-water moderated UO2 and PuO2-UO2 lattices

    International Nuclear Information System (INIS)

    Tsuruta, Harumichi; Kobayashi, Iwao; Suzuki, Takenori; Ohno, Akio; Murakami, Kiyonobu

    1978-02-01

    Experimental critical sizes are presented for a total of about 250 lattices with 2.6 w/o UO 2 and 3.0 w/o PuO 2 -natural UO 2 fuel rods. The moderator was H 2 O and water-to-fuel volume ratios in the lattice cells ranged from 1.50 to 3.00 in the UO 2 lattices and from 2.42 to 5.55 in the PuO 2 -UO 2 lattices. The critical sizes were determined with the number of the fuel rods and a water level which were required to make the lattice critical in the shape of a rectangular parallelepiped over the temperature range from room temperature to 80 0 C. Reactivity variations of the PuO 2 -UO 2 lattices due to decaying of 241 Pu to 241 Am were traced during 3 years. Some critical sizes of the UO 2 and PuO 2 -UO 2 lattices with a water gap and of the UO 2 lattices with liquid poison in the moderator are also reported. Some physics parameters, such as the temperature coefficient of reactivity, the water-level worth, the reflector saving, the ratio between a migration area and an infinite multiplication factor and the critical buckling, are shown in relation to the critical sizes of the unperturbed lattices without the water gap and liquid poison. (auth.)

  12. Fission and explosive energy releases of PuO2, PuO2--UO2, UO2, and UO3 assemblies

    International Nuclear Information System (INIS)

    Koelling, J.J.; Hansen, G.E.; Byers, C.C.

    1977-01-01

    The critical masses and fission and explosive energy releases of PuO 2 , PuO 2 --UO 2 , UO 2 , and UO 3 assemblies have been calculated. The parameters selected for the model are conservative. They were chosen after review of appropriate plants that have been and are proposed for construction in the future. The resulting data envelopes are intended to include any conceivable set of circumstances that could ultimately lead to a nuclear incident. All energy release analysis was performed for initial fission spikes only: recriticality mechanisms were not considered

  13. Characterization of UO{sub 2}, a) Characterization of UO{sub 2} powder; b) Investigation of U-O system by DDK and TGA methods; Karakterizacija UO{sub 2}, a) Karakterizacija praha UO{sub 2}; b) Ispitivanje sistema U-O metodama DDK i TGA

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, M M [Institute of Nuclear Sciences Vinca, Laboratorija za reaktorske materijale, Beograd (Serbia and Montenegro)

    1962-10-15

    The objectives of the study of U-O powder system were: detailed characterization of the UO{sub 2} powder which will be used for studying the sintering process, and more detailed properties of the U-O system (thermodynamic aspects of oxidation kinetics). Study of the physical and chemical properties of UO{sub 2} powder were performed and then oxidation kinetics of UO{sub 2} {yields}U{sub 3}O{sub 7} was investigated. Detailed qualitative DDK analysis was done. Owing to the TGA equipment there was a possibility to obtain U{sub 3}O{sub 7} study of U{sub 3}O{sub 7} {yields} U{sub 3}O{sub 8} oxidation was possible.

  14. Measurements of thermal disadvantage factors in light-water moderated PuO2-UO2 and UO2 lattices

    International Nuclear Information System (INIS)

    Ohno, Akio; Kobayashi, Iwao; Tsuruta, Harumichi; Hashimoto, Masao; Suzaki, Takenori

    1980-01-01

    The disadvantage factor for thermal neutrons in light-water moderated PuO 2 -UO 2 and UO 2 square lattices were obtained from measurements of thermal neutron density distributions in a unit lattice cell, measured with Dy-Al wire detectors. The lattices consisted of 3.4 w/o PuO 2 .UO 2 and 2.6 w/o UO 2 fuel rods, and the water-to-fuel volume ratio within the unit cell was parametrically changed. The PuO 2 .UO 2 and UO 2 fuel rods were designed to realize equal fissile atomic number density. The disadvantage factors thus measured were 1.36 +- 0.07, 1.37 +- 0.08, 1.40 +- 0.06 and 1.38 +- 0.06 in the PuO 2 .UO 2 fuel lattices, and 1.30 +- 0.06, 1.31 +- 0.08, 1.30 +- 0.08 and 1.33 +- 0.06 in the UO 2 , for water-to-fuel volume ratios, of 1.76, 2.00, 2.38 and 2.95, respectively. This difference in disadvantage factor between PuO 2 .UO 2 and UO 2 fuel lattices corresponds to about 8%. Calculated results obtained by multigroup transport code LASER agreed well with the measured ones. (author)

  15. Use of UO 2 films for electrochemical studies

    Science.gov (United States)

    Miserque, F.; Gouder, T.; Wegen, D. H.; Bottomley, P. D. W.

    2001-10-01

    UO 2 films have been prepared by dc reactive sputtering of a uranium metal target in an Ar/O 2 atmosphere. We have used the films deposited on gold substrates as working electrodes for electrochemical investigations as simulating the surfaces of fuel pellets. Film composition was determined by photoelectron spectroscopy (XPS and UPS) and X-ray diffraction (XRD). The oxide stoichiometry as a function of deposition conditions was determined and the appropriate conditions for UO 2.0 formation established. AC impedance and cyclic voltammetry measurements were performed. A double RC electrical equivalent circuit was used to fit the data from impedance measurements, similar to those used in unirradiated UO 2 or spent fuel pellets. However due to the porosity or adhesion defects on the thin films that permitted a direct contact between the solution and the gold substrate, we were obliged to add a contribution simulating the water-gold system. Cyclic voltammetry measurements show the influence of pH on the dissolution mechanism. Alkaline solutions permit the formation of an oxidised layer (UO 2.33) which is not present in the acidic solutions. In both pH=2 and pH=6 solutions, a U VI species layer is formed.

  16. Sintering of nonstoichiometric UO2

    International Nuclear Information System (INIS)

    Susnik, D.; Holc, J.

    1983-01-01

    Activated sintering of UO 2 pellets at 1100 deg C is described. In CO 2 atmosphere is UO 2 is nonstoichiometric and pellets from active UO 2 powders sinter at 900 deg C to high density. At 1100 deg C the final sintered density is practically achieved at heating on sintering temperature. After reduction and cooling in H 2 atmosphere which is followed sintering in CO 2 the structure is identical to the structured UO 2 pellets sintered at high temperature in H 2 . Density of activated sintered UO 2 pellets is stable, even after additional sintering at 1800 deg C. (author)

  17. High-precision molecular dynamics simulation of UO2–PuO2: Anion self-diffusion in UO2

    International Nuclear Information System (INIS)

    Potashnikov, S.I.; Boyarchenkov, A.S.; Nekrasov, K.A.; Kupryazhkin, A.Ya.

    2013-01-01

    Highlights: ► We perform MD simulation of oxygen diffusion in UO2 (up to 50 000 ions and 1 μs time). ► We reached 1400 K and 10 −12 cm 2 /sec, which allowed direct comparison to experiments. ► S-shaped T-dependence of activation energy and λ-peak of its derivative were obtained. ► Continual superionic phase transition (rather than first or second order) was proved. ► Activation energy of exchange diffusion equals anti-Frenkel defect formation energy. -- Abstract: Our series of articles is devoted to high-precision molecular dynamics simulation of mixed actinide-oxide (MOX) fuel in the approximation of rigid ions and pair interactions (RIPI) using high-performance graphics processors (GPU). In this article we study self-diffusion mechanisms of oxygen anions in uranium dioxide (UO 2 ) with the 10 recent and widely used sets of interatomic pair potentials (SPP) under periodic (PBC) and isolated (IBC) boundary conditions. Wide range of measured diffusion coefficients (from 10 −3 cm 2 /s at melting point down to 10 −12 cm 2 /s at 1400 K) made possible a direct comparison (without extrapolation) of the simulation results with the experimental data, which have been known only at low temperatures (T < 1500 K). A highly detailed (with the temperature step of 1 K) calculation of the diffusion coefficient allowed us to plot temperature dependences of the diffusion activation energy and its derivative, both of which show a wide (∼1000 K) superionic transition region confirming the broad λ-peaks of heat capacity obtained by us earlier. It is shown that regardless of SPP the anion self-diffusion in model crystals without surface or artificially embedded defects goes on via exchange mechanism, rather than interstitial or vacancy mechanisms suggested by the previous works. The activation energy of exchange diffusion turned out to coincide with the anti-Frenkel defect formation energy calculated by the lattice statics

  18. Optimization of UO{sub 2} Granule Characteristics for UO{sub 2}-Mo Pellet Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongjoo; Rhee, Young Woo; Kim, Jong Hun; Kim, Keon Sik; Oh, Jang Soo; Yang, Jae Ho; Koo, Yanghyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The in-reactor performance, integrity, safety and accident tolerance of the nuclear fuel can be significantly affected by the thermal conductivity of the UO{sub 2} fuel pellet. The improvement in the thermal conductivity of the UO{sub 2} fuel pellet can enhance the fuel performance in various ways. Typically, the FGR (Fission Gas Release) can be reduced by the application of a large-grain fuel pellet because the moving path of the fission gas to the grain boundary is much longer. In addition, the mobility of the fission gases is reduced by the lower temperature gradient in the UO{sub 2} fuel pellet. That is to say, the capacity of the fission gas retention of the fuel pellet can increase. In addition, the lower centerline temperature of the fuel pellet affects the accident tolerance for nuclear fuel as well as the enhancement of fuel safety and fuel pellet integrity under normal operation conditions. In addition, the nuclear reactor power can be uprated owing to the higher safety margin. Thus, many researches on enhancing the thermal conductivity of a nuclear fuel pellet for LWRs have been performed in various ways. From the viewpoint of the development of fuel pellet fabrication technology, an enhancement of the thermal conductivity of a pellet can be obtained by the addition of a higher thermal conductive material in the UO{sub 2} pellet. It is known that a UO{sub 2}-metal composite pellet is one of the most effective concepts. However, to maximize the effect of the metallic phase for thermal conductivity enhancement, a continuous channel of the metallic phase in the UO{sub 2} matrix must be formed. Additionally, if the fabrication process of a UO{sub 2}-metal composite pellet is compatible with a conventional sintering process, the developed technology will be favorable. To enhance the thermal conductivity of a UO{sub 2} pellet, there are the various methods for an appropriate arrangement of the high thermal conductive material in a UO{sub 2} matrix. In this

  19. Fabrication of ThO2, UO2, and PuO2-UO2 pellets

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Jentzen, W.R.; McCord, R.B.

    1978-01-01

    Fabrication of ThO pellets for EBR-II irradiation testing and fabrication of UO 2 and PuO 2 -UO 2 pellets for United Kingdom Prototype Fast Reactor (PFR) irradiation testing is discussed. Effect of process parameters on density and microstructure of pellets fabricated by the cold press and sinter technique is reviewed

  20. The uranium(VI) oxoazides [UO{sub 2}(N{sub 3}){sub 2}.CH{sub 3}CN], [(bipy){sub 2}(UO{sub 2}){sub 2}(N{sub 3}){sub 4}], [(bipy)UO{sub 2}(N{sub 3}){sub 3}]{sup -}, [UO{sub 2}(N{sub 3}){sub 4}]{sup 2-}, and [(UO{sub 2}){sub 2}(N{sub 3}){sub 8}]{sup 4-}

    Energy Technology Data Exchange (ETDEWEB)

    Haiges, Ralf; Christe, Karl O. [Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, CA (United States); Vasiliu, Monica; Dixon, David A. [Department of Chemistry, The University of Alabama, Tuscaloosa, AL (United States)

    2017-01-12

    The reaction between [UO{sub 2}F{sub 2}] and an excess of Me{sub 3}SiN{sub 3} in acetonitrile solution results in fluoride-azide exchange and the uranium(VI) dioxodiazide adduct [UO{sub 2}(N{sub 3}){sub 2}.CH{sub 3}CN] was isolated in quantitative yield. The subsequent reaction of [UO{sub 2}(N{sub 3}){sub 2}.CH{sub 3}CN] with 2,2{sup '}-bipyridine (bipy) resulted in the formation of the azido-bridged binuclear complex [(bipy){sub 2}(UO{sub 2}){sub 2}(N{sub 3}){sub 4}]. The triazido anion [(bipy)UO{sub 2}(N{sub 3}){sub 3}]{sup -} was obtained by the reaction of [UO{sub 2}(N{sub 3}){sub 2}.CH{sub 3}CN] with stoichiometric amounts of bipy and the ionic azide [PPh{sub 4}][N{sub 3}]. The reaction of [UO{sub 2}(N{sub 3}){sub 2}] with two equivalents of the [PPh{sub 4}][N{sub 3}] resulted in the formation of the mononuclear tetraazido anion [UO{sub 2}(N{sub 3}){sub 4}]{sup 2-} as well as the azido-bridged binuclear anion [(UO{sub 2}){sub 2}(N{sub 3}){sub 8}]{sup 4-}. The novel uranium oxoazides were characterized by their vibrational spectra and in the case of [(bipy){sub 2}(UO{sub 2}){sub 2}(N{sub 3}){sub 4}].CH{sub 3}CN, [PPh{sub 4}][(bipy)UO{sub 2}(N{sub 3}){sub 3}], [PPh{sub 4}]{sub 2}[UO{sub 2}(N{sub 3}){sub 4}], [PPh{sub 4}]{sub 2}[UO{sub 2}(N{sub 3}){sub 4}].2CH{sub 3}CN, and [PPh{sub 4}]{sub 4}[(UO{sub 2}){sub 2}(N{sub 3}){sub 8}].4CH{sub 3}CN by their X-ray crystal structures. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. A Characterization Research of UO2 Powder for UO2 Pellet Fabrication of Candu Type

    International Nuclear Information System (INIS)

    Rachmawati, M.

    1998-01-01

    A characterization research of of UO 2 powder for UO 2 pellet fabrication of Candu type is reported in this paper. The research has been conducted by characterizing sinterability, compactibility, and compressibility of UO 2 (Cameco) without a pre-compacting and UO 2 powder the result of a pre-compacting. The pre-compacting UO 2 powder has been done to have particle size to less than 150 mu (150-800) mu, and more than 800 mu with distribution varied. Sinterability of each group of particle sizes is analyzed using Thermogravimetric-Differential Thermal Analysis (TG-DTA). Then the final compacting to the powder is done using compaction pressure varied from 1 MP to 4 MP to the all groups of the particle sizes to find the optimum pressure by measuring the density and mechanical strength of the UO 2 green pellet. Both measurements are performed using Micrometer and Universal Testing Machine respectively. The result of this investigation shows that the group of UO 2 powder with no pre-compacting with particle size of less than 150 mu with 60% distribution and (150-800) mu size with 40% distribution are the UO 2 pellets which are eligible in terms of their density and mechanical strength

  2. Heat conductance of sintered UO{sub 2}; Toplotna provodljivost sinterovanog UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Katanic-Popovic, J; Stevanovic, M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1966-11-15

    Phenomena influencing the heat conductance of the sintered UO{sub 2} were analyzed, first of all when used as nuclear fuel. Influence of temperature, density and porosity, additives and irradiation in the reactor are shown. Based on the available literature, the measured heat conductance values were analyzed for the sintered UO{sub 2} outside the reactor and in the reactor during irradiation. Analizirane su pojave koje uticu na toplotnu provodljivost sinterovanog UO{sub 2}, pre svega, sa aspekta njegove primene kao goriva. Izlozen je uticaj temperature, gustine i poroznosti, aditiva i ozracivanja u reaktoru. Na osnovu pregleda dostupne literature kriticki su prikazani rezultati merenja toplotne provodljivosti sinterovanog UO{sub 2} van reaktora i u reaktoru pri ozracivanju (author)

  3. Etching of UO2 in NF3 RF Plasma Glow Discharge

    International Nuclear Information System (INIS)

    John M. Veilleux

    1999-01-01

    A series of room temperature, low pressure (10.8 to 40 Pa), low power (25 to 210 W) RF plasma glow discharge experiments with UO 2 were conducted to demonstrate that plasma treatment is a viable method for decontaminating UO 2 from stainless steel substrates. Experiments were conducted using NF 3 gas to decontaminate depleted uranium dioxide from stainless-steel substrates. Depleted UO 2 samples each containing 129.4 Bq were prepared from 100 microliter solutions of uranyl nitrate hexahydrate solution. The amorphous UO 2 in the samples had a relatively low density of 4.8 gm/cm 3 . Counting of the depleted UO 2 on the substrate following plasma immersion was performed using liquid scintillation counting with alpha/beta discrimination due to the presence of confounding beta emitting daughter products, 234 Th and 234 Pa. The alpha emission peak from each sample was integrated using a gaussian and first order polynomial fit to improve quantification. The uncertainties in the experimental measurement of the etched material were estimated at about ± 2%. Results demonstrated that UO 2 can be completely removed from stainless-steel substrates after several minutes processing at under 200 W. At 180 W and 32.7 Pa gas pressure, over 99% of all UO 2 in the samples was removed in just 17 minutes. The initial etch rate in the experiments ranged from 0.2 to 7.4 microm/min. Etching increased with the plasma absorbed power and feed gas pressure in the range of 10.8 to 40 Pa. A different pressure effect on UO 2 etching was also noted below 50 W in which etching increased up to a maximum pressure, approximately23 Pa, then decreased with further increases in pressure

  4. Thermal conductivity of the sintered UO{sub 2}; Toplotna provodljivost sinterovanog UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Katanic-Popovic, J; Stevanovic, M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1967-04-15

    Phenomena influencing the thermal conductivity of the sintered UO{sub 2} fuel were analyzed. Influence of temperature, density and porosity, additives and irradiation in the reactor core are presented. Thermal conductivity of sintered UO{sub 2} was measured both outside the reactor and during the irradiation in the reactor. Results are discussed and analyzed based on the available literature. Analizirane su pojave koje uticu na toplotnu provodljivost sinterovanog UO{sub 2}, pre svega, sa aspekta njegove primene kao goriva. Izlozen je uticaj temperature, gustine i poroznosti, aditiva i ozracivanja u reaktoru. Na osnovu pregleda dostupne literature kriticki su prikazani rezultati merenja toplotne provodljivosti sinterovanog UO{sub 2} van reaktora i u reaktoru pri ozracivanju (author)

  5. Modeling of UO2 aqueous dissolution over a wide range of conditions

    International Nuclear Information System (INIS)

    Steward, S.A.; Weed, H.C.

    1993-11-01

    Previously it was not possible to predict reliably the rate at which spent fuel would react with groundwater because of conflicting data in the literature. The dissolution of the UO 2 spent fuel matrix is a necessary step for aqueous release of radioactive fission products. Statistical experimental design was used to plan a set of UO 2 dissolution experiments to examine systematically the effects of temperature (25--75C), dissolved oxygen (0.002--0.2 atm overpressure), pH (8--10) and carbonate (2-200x10 -4 molar) concentrations on UO 2 dissolution. The average uranium dissolution rate was 4.3 mg/m 2 /day. The regression fit of the data indicate an Arrhenius type activation energy of 8750 cal/mol and a half-power dependence on dissolved oxygen in the simulated groundwater

  6. Irradiation of UO2

    International Nuclear Information System (INIS)

    Stevanovic, M.

    1965-10-01

    Based on the review of the available literature concerned with UO 2 irradiation, this paper describes and explains the phenomena initiated by irradiation of the UO 2 fuel in a reactor dependent on the burnup level and temperature. A comprehensive review of UO 2 radiation damage studies is given as a broad research program. This part includes the abilities of our reactor as well as needed elements for such study. The third part includes the definitions of the specific power, burnup level and temperature in the center of the fuel element needed for planning and performing the irradiation. Methods for calculating these parameters are included [sr

  7. Development of ceramics based fuel, Phase I, Kinetics of UO{sub 2} sintering by vibration compacting of UO{sub 2} powder (Introductory report); Razvoj goriva na bazi keramike, I faza, Kinetika sinterovanja UO{sub 2} vibraciono kompaktiranje praha UO{sub 2} (Uvodni izvestaj)

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, M M [Institute of Nuclear Sciences Vinca, Laboratorija za reaktorske materijale, Beograd (Serbia and Montenegro)

    1962-10-15

    After completing the Phase I of the task related to development of ceramics nuclear fuel the following reports are presented: Kinetics of UO{sub 2} sintering; Vibrational compacting and sintering of UO{sub 2}; Characterisation of of UO{sub 2} powder by DDK and TGA methods; Separation of UO{sub 2} powder.

  8. Separation of UO{sub 2} powder; Separacija praha UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, M M [Institute of Nuclear Sciences Vinca, Laboratorija za reaktorske materijale, Beograd (Serbia and Montenegro)

    1962-10-15

    This report deals with theoretical approach to separation process and describes the constructed separator with liquid medium. The separator was calibrated and tested with Al{sub 3}O{sub 3} and UO{sub 2}. it has been concluded that it can be used for separation of powders with sufficient accuracy if the separation is performed for a longer period of time. The separated fractions were characterised by microscopic method and the UO{sub 2} fraction additionally by sedimentation method.

  9. Kinetics of UO{sub 2} sintering; Kinetika sinterovanja UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, M M [Institute of Nuclear Sciences Vinca, Laboratorija za reaktorske materijale, Beograd (Serbia and Montenegro)

    1962-10-15

    Detailed conclusions related to the UO{sub 2} sintering can be drawn from investigating the kinetics of the sintering process. This report gives an thorough analysis of the the data concerned with sintering available in the literature taking into account the Jander and Arrhenius laws. This analysis completes the study of influence of the O/U ratio and the atmosphere on the sintering. Results presented are fundamentals of future theoretical and experimental work related to characterisation of the UO{sub 2} sintering process.

  10. Cation interdiffusion in the UO2 - (U, Pu)O2 and UO2 - PuO2 systems

    International Nuclear Information System (INIS)

    Leme, D.G.

    1985-01-01

    The interdiffusion of U and Pu ions in UO sub(2 +- x) - (U sub(0,83) Pu sub(0,17))O sub(2 + - x) and UO sub(2 + - x) -PuO sub(2 - x) sintered pellets and UO sub(2 +- x) -(U sub(0,82) Pu sub(0,18))O sub(2 + - x) single crystals has been studied as a function of the oxygen potential ΔG sup(-) (O 2 ) or the stoichiometric ratio O/M. The diffusion profiles of UO 2 /(U,Pu)O 2 and UO 2 /PuO 2 couples of different O/M ratios have been measured using high resolution α-spectrometer and microprobe. Thermal annealing of the specimens was performed in controlled atmospheres using either CO-CO 2 gas mixtures for constant O/M ratios or purified argon. The interdiffusion profiles have been analysed by means of the Boltzmann-Matano and Hall methods. The interdiffusion coefficient D sus(approx.) increases with increasing Pu content in sintered pellets (up to 17 wt. %PuO 2 ) showing a strong dependence of D sup(approx.) on the O/M ratio. The micropobe results show that the interdiffusion along grain boundaries is the main diffusion mechanism in the pellets. Experiments have also been carried out in single cristals to measure just the bulk-interdiffusion and avoiding effects due to grain boundaries. A marked dependence of D sup(approx.) on O/M ratio or on oxygen potential ΔG sup(-) (O 2 ), similar to the dependence already reported for self diffusion by means of radioactive tracers, has also been observed. (Author) [pt

  11. Inter-atomic interaction between electrons, 2

    International Nuclear Information System (INIS)

    Haga, Eijiro; Kato, Tomohiko; Aisaka, Tsuyoshi.

    1978-01-01

    Intra- and inter-atomic interactions in the exchange process are defined with respect to the Wannier function rather than the atomic function. In relation to the neutron scattering data for nickel, the behavior for the effective exchange parameter I(q) in the q-dependent susceptibility is, in RPA, investigated by taking into account the main types of the nearest neighbor interactions and by extending our previous treatment. The different types of interactions lead to different behavior for the q-dependence of I(q). The contribution to I(q) from inter-atomic interactions other than the exchange type decreases as the surface area of the Fermi surface becomes large. For the exchange type, the l-th neighbor interaction with l<=4 is taken into account, and, from the comparison with the empirical result for I(q), it is found that the inter-atomic contribution to I(0) is about thirty percent with a reasonable decrease against l. (author)

  12. Phonon density of states and anharmonicity of UO2

    Science.gov (United States)

    Pang, Judy W. L.; Chernatynskiy, Aleksandr; Larson, Bennett C.; Buyers, William J. L.; Abernathy, Douglas L.; McClellan, Kenneth J.; Phillpot, Simon R.

    2014-03-01

    Phonon density of states (PDOS) measurements have been performed on polycrystalline UO2 at 295 and 1200 K using time-of-flight inelastic neutron scattering to investigate the impact of anharmonicity on the vibrational spectra and to benchmark ab initio PDOS simulations performed on this strongly correlated Mott insulator. Time-of-flight PDOS measurements include anharmonic linewidth broadening, inherently, and the factor of ˜7 enhancement of the oxygen spectrum relative to the uranium component by the increased neutron sensitivity to the oxygen-dominated optical phonon modes. The first-principles simulations of quasiharmonic PDOS spectra were neutron weighted and anharmonicity was introduced in an approximate way by convolution with wave-vector-weighted averages over our previously measured phonon linewidths for UO2, which are provided in numerical form. Comparisons between the PDOS measurements and the simulations show reasonable agreement overall, but they also reveal important areas of disagreement for both high and low temperatures. The discrepancies stem largely from a ˜10 meV compression in the overall bandwidth (energy range) of the oxygen-dominated optical phonons in the simulations. A similar linewidth-convoluted comparison performed with the PDOS spectrum of Dolling et al. obtained by shell-model fitting to their historical phonon dispersion measurements shows excellent agreement with the time-of-flight PDOS measurements reported here. In contrast, we show by comparisons of spectra in linewidth-convoluted form that recent first-principles simulations for UO2 fail to account for the PDOS spectrum determined from the measurements of Dolling et al. These results demonstrate PDOS measurements to be stringent tests for ab inito simulations of phonon physics in UO2 and they indicate further the need for advances in theory to address the lattice dynamics of UO2.

  13. Densification Behavior of BN-added UO2

    International Nuclear Information System (INIS)

    Rhee, Young Woo; Kim, Keonsik; Kim, Dong Joo; Kim, Jong Hun; Oh, Jang Soo; Yang, Jae Ho

    2013-01-01

    Local wall thinning in pipelines affects the structural integrity of industries like nuclear power plants (NPPs). In the present study a pulsed eddy current (PEC) technology to detect the wall thing of carbon steel pipe covered with insulation is developed. Boron is commercially used as a neutron absorber fuel. A neutron absorber fuel is burned out or depleted during reactor operation. Westinghouse have been produced the Integral Fuel Burnable Absorber (IFBA) which is enriched UO 2 fuel pellets with a thin coating of zirconium diboride (ZrB 2 ) on the outer surface. Standard sintered fuel pellets are sputter coated with ZrB 2 . It is known that IFBA fuel can incur 20% to 30% additional fabrication costs. Boron-dispersed UO 2 fuel pellet made by the conventional pressing and sintering process of a powder mixture of UO 2 and B compound might be more cost-effective than IFBAs. M. G. Andrew et al. tried to sinter boron-dispersed UO 2 green pellet. However, they reported that boron-dispersed UO 2 fuel pellet is very difficult to be fabricated with a sufficient level of boron retention and high sintered density (greater than 90 % of theoretical density) because of the volatilization of boron oxide. We have investigated the densification behavior of mixtures of UO 2 and various boron compounds, such as B 4 C, BN, TiB 2 , ZrB 2 , SiB 6 , and HfB 2 . Boron compounds seemed to act as a sintering additive for UO 2 at a certain low temperature range. In this study, the densification behavior of BN-added UO 2 pellet has been investigated by sintering green pellets of a mixture of UO 2 powder and BN powder in H 2 atmosphere. A high density BN-added UO 2 pellet can be fabricated after sintering at 1200 .deg. C for more than 1 h in a H 2 atmosphere. The sintered density of BN-added UO 2 pellet can be increased up to about 95 %TD

  14. Characterization of UO2 by infrared spectroscopy

    International Nuclear Information System (INIS)

    Faeda, Kelly C.M.; Machado, Geraldo C.; Lameiras, Fernando S.

    2011-01-01

    The characterization of nuclear fuel is of great importance to minimize the effects related to burnup and temperature and to achieve stability during in-core operation. The understanding the U-O system and its thermodynamic properties has fundamental importance in nuclear industry. Many physical properties of UO 2±x depend on the ratio O / U, such as the electrical conductivity and thermal properties, as well as the diffusivities of its constituents and solutes. The U-O system presents various oxides such as UO 2±x , U 4 O 9 , U 3 O 8 , and UO 3 . The control of the O/U relation is critical to the manufacturing process of UO 2 . In this work, the infrared spectroscopy was used to identify the presence of phases in UO 2 powder samples that cannot be identified by thermogravimetry and X-ray diffraction. (author)

  15. Study of UO2 radioinduced densification

    International Nuclear Information System (INIS)

    Stora, J.P.; Bruet, M.

    1975-01-01

    Measurements of radioinduced densification were performed on UO 2 DCN (intergranular fine porosity) and UO 2 DCI (interaggregate coarse porosity) in the Anemone device. The densification kinetics was followed by measuring the shrinkage of the oxide column on neutron radiographic plates. UO 2 DCI was found stable in regard to densification. At power near 450Wcm -1 , densification is hitten by restructuring phenomena [fr

  16. Migration behavior of palladium in UO2, (3)

    International Nuclear Information System (INIS)

    Yoneyama, Mitsuru; Sato, Seichi; Ohashi, Hiroshi; Ogawa, Toru; Ito, Akinori; Fukuda, Kousaku.

    1992-08-01

    Palladium (Pd) is easily released from UO 2 kernels in HTGR coated fuel particles, and reacts with SiC coating layer. In addition, Pd is one of metallic fission products in irradiation UO 2 , which constitutes in dissoluble residue in reprocessing of LWR fuels. In the present investigation, the migration of palladium in UO 2 was examined by heating diffusion pairs sandwiched Pd foil between UO 2 wafers at 1300 ∼ 1800degC. Experiments were also carried out on affinity of Pd to UP 2 and a formation of U-Pd alloy. Pd was found mainly in the pores of UO 2 . The maximum depth intruded by Pd in fairly large amount was more than 100 μm for UO 2 with 90%TD and 50μm for UO 2 with 95%TD, while the maximum length of open pores was 330 μm for UO 2 with 90%TD, and 50 m for that with 95%TD. Fused Pd wetted UO 2 very much. Pd intruded deeply into UO 2 , especially in the edge of Pd droplet. Furthermore, U was detected either in precipitates or the Pd source with α-Pd phase of U-Pd alloy containing Pd at about 10at%. This fact indicates that Pd highly reacts with UO 2 . From the above results, the transport of Pd in UO 2 was explained by the model of gaseous diffusion through pores in UO 2 , which is retarded by formation of U-Pd alloy. It is also indicated that UPd 3 forms even at the oxygen potential condition of O/U ratio, which is a little higher than 2.00 on the basis of thermodynamic calculation. (author)

  17. Parameterization of interatomic potential by genetic algorithms: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Partha S., E-mail: psghosh@barc.gov.in; Arya, A.; Dey, G. K. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Ranawat, Y. S. [Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi-221005 (India)

    2015-06-24

    A framework for Genetic Algorithm based methodology is developed to systematically obtain and optimize parameters for interatomic force field functions for MD simulations by fitting to a reference data base. This methodology is applied to the fitting of ThO{sub 2} (CaF{sub 2} prototype) – a representative of ceramic based potential fuel for nuclear applications. The resulting GA optimized parameterization of ThO{sub 2} is able to capture basic structural, mechanical, thermo-physical properties and also describes defect structures within the permissible range.

  18. New UO2 fuel studies

    International Nuclear Information System (INIS)

    Dehaudt, P.; Lemaignan, C.; Caillot, L.; Mocellin, A.; Eminet, G.

    1998-01-01

    With improved UO 2 fuels, compared with the current PWR, one would enable to: retain the fission products, rise higher burn-ups and deliver the designed power in reactor for longer times, limit the pellet cladding interaction effects by easier deformation at high temperatures. Specific studies are made in each field to understand the basic mechanisms responsible for these improvements. Four programs on new UO 2 fuels are underway in the laboratory: advanced microstructure fuels (doped fuels), fuels containing Er 2 O 3 a burnable absorber, fuels with improved caesium retention, composite fuels. The advanced microstructure UO 2 fuels have special features such as: high grain sizes to lengthen the fission gas diffusion paths, intragranular precipitates as fission gas atoms pinning sites, intergranular silica based viscoplastic phases to improve the creep properties. The grain size growth can be obtained with a long time annealing or with corundum type oxide additives partly soluble in the UO 2 lattice. The amount of doping element compared with its solubility limit and the sintering conditions allows to obtain oxide or metallic precipitates. The fuels containing Er 2 O 3 as a burnable absorber are under irradiation in the TANOX device at the present time. Specific sintering conditions are required to improve the erbium solubility in UO 2 and to reach standard or large grain sizes. The improved caesium retention fuels are doped with SiO 2 +A1 2 O 3 or SiO 2 +ZrO 2 additives which may form stable compounds with the Cs element in accidental conditions. The composite fuels are made of UO 2 particles of about 100 μm in size dispersed in a molybdenum metallic (CERMET) or MgA1 2 O 4 ceramic (CERCER) matrix. The CERMET has a considerably higher thermal conductivity and remains ''cold'' during irradiation. The concept of double barrier (matrix+fuel) against fission products is verified for the CERMET fuel. A thermal analysis of all the irradiated rods shows that the thermal

  19. Development of ceramics based fuel, Phase I, Kinetics of UO2 sintering by vibration compacting of UO2 powder (Introductory report)

    International Nuclear Information System (INIS)

    Ristic, M.M.

    1962-10-01

    After completing the Phase I of the task related to development of ceramics nuclear fuel the following reports are presented: Kinetics of UO 2 sintering; Vibrational compacting and sintering of UO 2 ; Characterisation of of UO 2 powder by DDK and TGA methods; Separation of UO 2 powder

  20. Summary report on UO2 thermal conductivity model refinement and assessment studies

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cooper, Michael William Donald [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mcclellan, Kenneth James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lashley, Jason Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Byler, Darrin David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bell, B. D.C. [Imperial College, London (United Kingdom); Grimes, R. W. [Imperial College, London (United Kingdom); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersson, David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-03

    Uranium dioxide (UO2) is the most commonly used fuel in light water nuclear reactors and thermal conductivity controls the removal of heat produced by fission, therefore, governing fuel temperature during normal and accident conditions. The use of fuel performance codes by the industry to predict operational behavior is widespread. A primary source of uncertainty in these codes is thermal conductivity, and optimized fuel utilization may be possible if existing empirical models were replaced with models that incorporate explicit thermal conductivity degradation mechanisms during fuel burn-up. This approach is able to represent the degradation of thermal conductivity due to each individual defect type, rather than the overall burn-up measure typically used which is not an accurate representation of the chemical or microstructure state of the fuel that actually governs thermal conductivity and other properties. To generate a mechanistic thermal conductivity model, molecular dynamics (MD) simulations of UO2 thermal conductivity including representative uranium and oxygen defects and fission products are carried out. These calculations employ a standard Buckingham type interatomic potential and a potential that combines the many-body embedded atom method potential with Morse-Buckingham pair potentials. Potential parameters for UO2+x and ZrO2 are developed for the latter potential. Physical insights from the resonant phonon-spin scattering mechanism due to spins on the magnetic uranium ions have been introduced into the treatment of the MD results, with the corresponding relaxation time derived from existing experimental data. High defect scattering is predicted for Xe atoms compared to that of La and Zr ions. Uranium defects reduce the thermal conductivity more than oxygen defects. For each defect and fission product, scattering parameters are derived for application in both a Callaway model and the corresponding high

  1. Thermal expansion of UO2-Gd2O3 fuel pellets

    International Nuclear Information System (INIS)

    Une, Katsumi

    1986-01-01

    In recent years, more consideration has been given to the application of UO 2 -Gd 2 O 3 burnable poison fuel to LWRs in order to improve the core physics and to extend the burnup. It has been known that UO 2 forms a single phase cubic fluorite type solid solution with Gd 2 O 3 up to 20 - 30 wt.% above 1300 K. The addition of Gd 2 O 3 to UO 2 lattices changes the properties of the fuel pellets. The limited data on the thermal expansion of UO 2 -Gd 2 O 3 fuel exist, but those are inconsistent. UO 2 -Gd 2 O 3 fuel pellets were fabricated, and the linear thermal expansion of UO 2 and UO 2 -(5, 8 and 10 wt.%)Gd 2 O 3 fuel pellets was measured with a differential dilatometer over the temperature range of 298 - 1973 K. A sapphire rod of 6 mm diameter and 15.5 mm length was used as the reference material. After the preheating cycle, the measurement was performed in argon atmosphere. The results for UO 2 pellets showed excellent agreement with the data in literatures. The linear thermal expansion of UO 2 -Gd 2 O 3 fuel pellets showed the increase with increasing the Gd 2 O 3 content. Consideration must be given to this excessive expansion in the fuel design of UO 2 -Gd 2 O 3 pellets. The equations for the linear thermal expansion and density of UO 2 -Gd 2 O 3 fuel pellets were derived by the method of least squares. (Kako, I.)

  2. Thermodynamic Behaviour of Hypostoichiometric UO{sub 2}; Comportement Thermodynamique de UO{sub 2} HypostoeChiometrique; Termodinamicheskoe povedenie gipostekhiometricheskoj UO{sub 2}; Comportamiento Termodinamico del UO{sub 2} Subestequiometrico

    Energy Technology Data Exchange (ETDEWEB)

    Aitken, E. A.; Brassfield, H. C.; Fryxell, R. E. [General Electric Company, Nuclear Materials and Propulsion Operation, Cincinnati, OH (United States)

    1966-02-15

    The ability of the UO{sub 2}-type structure to accomodate excess oxygen is well known. Recent evidence has indicated that this structure is stable also in the hypostoichiometric state at high temperatures and low oxygen partial pressures, but its manifestation occurs as a uranium metal precipitate in the oxide after cooling from high temperatures. This paper presents further evidence of the existence, at high temperatures, of a stable hypostoichiometric urania and describes in part the variation in thermodynamic properties across its homogeneity range. Hypostoichiometric UO{sub 2} evaporates congruently during free vaporization in slowly flowing hydrogen (-40 Degree-Sign C dew point) at 2400 Degree-Sign C at a composition having oxygen-to-uranium ratio of 1.88. If the temperature is decreased or the moisture content (oxygen partial pressure) increased, the congruent composition increases. The water content of the hydrogen at 2400 Degree-Sign C must be at least one per cent to maintain stoichiometric uranium dioxide. When UO{sub 2} pellets are sealed in tantalum cans and heated above 1700 Degree-Sign C, the O/U ratio of the pellet changes and reaches an equilibrium value which is governed by the oxygen activity of the atmosphere surrounding the can. UO{sub 2} does not react with tantalum but, because of the high solubility of oxygen in tantalum, the latter functions as a membrane. Using the data from congruent evaporation, and tantalum capsule tests, conducted in various argon-hydrogen mixtures, the oxygen activity in urania as a function of stoichiometry has been determined. The partial molar free energy of oxygen, G(O{sub 2} ), increases almost linearly on the oxygen deficient side with increasing oxygen-to-uranium ratio. Near the stoichiometric composition G(O{sub 2}) rises steeply. Using these results together with estimated G(O{sub 2}) values on the oxygen excess side obtained from the literature, it is shown that the data at a given temperature are consistent

  3. Measurements of the viscosity of sodium tetraborate (borax)-UO2 and of sodium metaborate-UO2 liquid solutions

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Roth, A.

    1983-01-01

    Adding UO 2 produces an increase of viscosity of borax and sodium metaborate. For temperatures below 920 0 C the measurements with the borax-UO 2 solution show a phase separation. Contrary to borax the sodium metaborate solutions indicate a well defined melting point. At temperatures slightly below the melting point a solid phase is formed. The tested sodium-borates-UO 2 mixtures are in liquid form. (DG)

  4. Tracer surface diffusion on UO2

    International Nuclear Information System (INIS)

    Zhou, S.Y.; Olander, D.R.

    1983-06-01

    Surface diffusion on UO 2 was measured by the spreading of U-234 tracer on the surface of a duplex diffusion couple consisting of wafers of depleted and enriched UO 2 joined by a bond of uranium metal

  5. UO2 pellet and manufacturing method

    International Nuclear Information System (INIS)

    Komada, Kiichi; Nishinaka, Keiji; Adachi, Kazunori; Fujiwara, Shuji.

    1995-01-01

    The present invention concerns an uranium dioxide pellet having a large crystal grain size. The grain size of the pellet is enlarged to increase the distance of an FP gas generated in the crystal grain to reach the grain boundary and, as a result, decrease the releasing speed of the FP gas. A UO 2 powder having a specific surface area of from 5 to 50m 2 /g is used as a starting powder in a step of forming a molding product, and chlorine or a chlorine compound is added in such an amount that the chlorine content in the UO 2 pellet is from 3 to 25ppm, in one of a production step, a molding step or a sintering step for UO 2 powder. With such procedures, a UO 2 pellet having a large crystal grain size can be prepared with good reproducibility. (T.M.)

  6. Thermal conductivity and thermal diffusivity of solid UO2

    International Nuclear Information System (INIS)

    Fink, J.K.; Chasanov, M.G.; Leibowitz, L.

    1981-06-01

    New equations for the thermal conductivity of solid UO 2 were derived based upon a nonlinear least squares fit of the data available in the literature. In the development of these equations, consideration was given to their thermodynamic consistency with heat capacity and density and theoretical consistency with enthalpy and heat capacity. Consistent with our previous treatment of enthalpy and heat capacity, 2670 K was selected as the temperature of a phase transition. A nonlinear equation, whose terms represent contributions due to phonons and electrons, was selected for the temperature region below 2670 K. Above 2670 K, the data were fit by a linear equation

  7. Study of UO{sub 2}F{sub 2} - H{sub 2}O - HF compounds; Etude des composes UO{sub 2}F{sub 2} - H{sub 2}O - HF

    Energy Technology Data Exchange (ETDEWEB)

    Neveu, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    We study various compounds resulting from the interaction of UO{sub 2}F{sub 2} with H{sub 2}O and HF (gas), and various triple compounds UO{sub 2}F{sub 2} - H{sub 2}O - HF; the conditions of decomposition and the thermodynamic limits of stability are specified. (author) [French] Nous etudions divers composes formes par reaction de UO{sub 2}F{sub 2} avec H{sub 2}O et HF (gaz) et divers composes triples UO{sub 2}F{sub 2} - H{sub 2}O - HF, en essayant de preciser les decompositions et domaines d'exisfence thermodynamiques de ces corps. (auteur)

  8. Dissolution of UO2 in redox conditions

    International Nuclear Information System (INIS)

    Casas, I.; Pablo de, J.; Rovira, M.

    1998-01-01

    The performance assessment of the final disposal of the spent nuclear fuel in geological formations is strongly dependent on the spent fuel matrix dissolution. Unirradiated uranium (IV) dioxide has shown to be very useful for such purposes. The stability of UO 2 is very dependent on vault redox conditions. At reducing conditions, which are expected in deep groundwaters, the dissolution of the UO 2 -matrix can be explained in terms of solubility, while under oxidizing conditions, the UO 2 is thermodynamically unstable and the dissolution is kinetically controlled. In this report the parameters which affect the uranium solubility under reducing conditions, basically pH and redox potential are discussed. Under oxidizing conditions, UO 2 dissolution rate equations as a function of pH, carbonate concentration and oxidant concentration are reported. Dissolution experiments performed with spent fuel are also reviewed. The experimental equations presented in this work, have been used to model independent dissolution experiments performed with both unirradiated and irradiated UO 2 . (Author)

  9. Photochemical synthesis of UO2 nanoparticles

    International Nuclear Information System (INIS)

    Rath, M.C.; Keny, Sangeeta; Naik, D.B.

    2014-01-01

    UO 2 nanoparticles have been recently synthesized by us from aqueous solutions of uranyl nitrate through radiolytic method on high-energy electron beam irradiation. In this study, the synthesis of UO 2 nanoparticles through photochemical method is reported which is a complementary route to radiation chemical method

  10. Etching of UO2 in NF3 RF Plasma Glow Discharge

    Energy Technology Data Exchange (ETDEWEB)

    Veilleux, John M. [Univ. of California, Berkeley, CA (United States)

    1999-08-01

    A series of room temperature, low pressure (10.8 to 40 Pa), low power (25 to 210 W) RF plasma glow discharge experiments with UO2 were conducted to demonstrate that plasma treatment is a viable method for decontaminating UO2 from stainless steel substrates. Experiments were conducted using NF3 gas to decontaminate depleted uranium dioxide from stainless-steel substrates. Depleted UO2 samples each containing 129.4 Bq were prepared from 100 microliter solutions of uranyl nitrate hexahydrate solution. The amorphous UO2 in the samples had a relatively low density of 4.8 gm/cm3. Counting of the depleted UO2 on the substrate following plasma immersion was performed using liquid scintillation counting with alpha/beta discrimination due to the presence of confounding beta emitting daughter products, 234Th and 234Pa. The alpha emission peak from each sample was integrated using a gaussian and first order polynomial fit to improve quantification. The uncertainties in the experimental measurement of the etched material were estimated at about ± 2%. Results demonstrated that UO2 can be completely removed from stainless-steel substrates after several minutes processing at under 200 W. At 180 W and 32.7 Pa gas pressure, over 99% of all UO2 in the samples was removed in just 17 minutes. The initial etch rate in the experiments ranged from 0.2 to 7.4 μm/min. Etching increased with the plasma absorbed power and feed gas pressure in the range of 10.8 to 40 Pa. A different pressure effect on UO2 etching was also noted below 50 W in which etching increased up to a maximum pressure, ~23 Pa, then decreased with further increases in pressure.

  11. Spent fuel UO2 matrix corrosion behaviour studies through alpha-doped UO2 pellets leaching

    International Nuclear Information System (INIS)

    Muzeau, B.; Jegou, C.; Broudic, V.

    2005-01-01

    Full text of publication follows: The option of direct disposal of spent nuclear fuel in a deep geological formation raises the need to investigate the long-term behaviour of the UO 2 matrix in aqueous media subjected to α-β-γ radiations. The β-γ emitters account for the most of the activity of spent fuel at the moment it is removed from the reactor, but diminish within a millennial time frame by over three orders of magnitude to less than the long-term activity. The latter persist over much longer time periods and must therefore be taken into account over geological disposal scale. In the present investigation the UO 2 matrix corrosion under alpha radiation is studied as a function of different parameters such as: the alpha activity, the carbonates and hydrogen concentrations,.. In order to study the effect of alpha radiolysis of water on the UO 2 matrix, 238/239 Pu doped UO 2 pellets (0.22 %wt. Pu total) were fabricated with different 238 Pu/ 239 Pu ratio to reproduce the alpha activity of a 47 GWd.t HMi -1 UOX spent fuel at different milestones in time (15, 50, 1500, 10000 and 40000 years). Undoped UO 2 pellets were also available as reference sample. Leaching experiments were conducted in deionized or carbonated water (NaHCO 3 1 mM), under Argon (O 2 2 30% gas mixture. Previous experiments conducted in deionized water under argon atmosphere, have shown a good correlation between alpha activity and uranium release for the 15-, 1500- and 40000-years alpha doped UO 2 batches. Besides, uranium release in the leachate is controlled either by the kinetics, or by the thermodynamics. Provided the solubility limit of uranium is not achieved, uranium concentration increases and is only limited by the kinetics, unless precipitation occurs and the uranium concentration remains constant over time. These controls are highly dependant on the solution chemistry (HCO 3 - , pH, Eh,..), the atmosphere (Ar, Ar/H 2 ,..), and the radiolysis strength. The experimental matrix

  12. The heating of UO_2 kernels in argon gas medium on the physical properties of sintered UO_2 kernels

    International Nuclear Information System (INIS)

    Damunir; Sri Rinanti Susilowati; Ariyani Kusuma Dewi

    2015-01-01

    The heating of UO_2 kernels in argon gas medium on the physical properties of sinter UO_2 kernels was conducted. The heated of the UO_2 kernels was conducted in a sinter reactor of a bed type. The sample used was the UO_2 kernels resulted from the reduction results at 800 °C temperature for 3 hours that had the density of 8.13 g/cm"3; porosity of 0.26; O/U ratio of 2.05; diameter of 1146 μm and sphericity of 1.05. The sample was put into a sinter reactor, then it was vacuumed by flowing the argon gas at 180 mmHg pressure to drain the air from the reactor. After that, the cooling water and argon gas were continuously flowed with the pressure of 5 mPa with 1.5 liter/minutes velocity. The reactor temperature was increased and variated at 1200-1500 °C temperature and for 1-4 hours. The sinters UO_2 kernels resulted from the study were analyzed in term of their physical properties including the density, porosity, diameter, sphericity, and specific surface area. The density was analyzed using pycnometer with CCl_4 solution. The porosity was determined using Haynes equation. The diameters and sphericity were showed using the Dino-lite microscope. The specific surface area was determined using surface area meter Nova-1000. The obtained products showed the the heating of UO_2 kernel in argon gas medium were influenced on the physical properties of sinters UO_2 kernel. The condition of best relatively at 1400 °C temperature and 2 hours time. The product resulted from the study was relatively at its best when heating was conducted at 1400 °C temperature and 2 hours time, produced sinters UO_2 kernel with density of 10.14 gr/ml; porosity of 7 %; diameters of 893 μm; sphericity of 1.07 and specific surface area of 4.68 m"2/g with solidify shrinkage of 22 %. (author)

  13. Separation of UO2 powder

    International Nuclear Information System (INIS)

    Ristic, M.M.

    1962-01-01

    This report deals with theoretical approach to separation process and describes the constructed separator with liquid medium. The separator was calibrated and tested with Al 3 O 3 and UO 2 . it has been concluded that it can be used for separation of powders with sufficient accuracy if the separation is performed for a longer period of time. The separated fractions were characterised by microscopic method and the UO 2 fraction additionally by sedimentation method

  14. First identification and thermodynamic characterization of the ternary U(VI) species, UO2(O2)(CO3)2(4-), in UO2-H2O2-K2CO3 solutions.

    Science.gov (United States)

    Goff, George S; Brodnax, Lia F; Cisneros, Michael R; Peper, Shane M; Field, Stephanie E; Scott, Brian L; Runde, Wolfgang H

    2008-03-17

    In alkaline carbonate solutions, hydrogen peroxide can selectively replace one of the carbonate ligands in UO2(CO3)3(4-) to form the ternary mixed U(VI) peroxo-carbonato species UO2(O2)(CO3)2(4-). Orange rectangular plates of K4[UO2(CO3)2(O2)].H2O were isolated and characterized by single crystal X-ray diffraction studies. Crystallographic data: monoclinic, space group P2(1)/ n, a = 6.9670(14) A, b = 9.2158(10) A, c = 18.052(4) A, Z = 4. Spectrophotometric titrations with H 2O 2 were performed in 0.5 M K 2CO 3, with UO2(O2)(CO3)2(4-) concentrations ranging from 0.1 to 0.55 mM. The molar absorptivities (M(-1) cm(-1)) for UO2(CO3)3(4-) and UO2(O2)(CO3)2(4-) were determined to be 23.3 +/- 0.3 at 448.5 nm and 1022.7 +/- 19.0 at 347.5 nm, respectively. Stoichiometric analyses coupled with spectroscopic comparisons between solution and solid state indicate that the stable solution species is UO2(O2)(CO3)2(4-), which has an apparent formation constant of log K' = 4.70 +/- 0.02 relative to the tris-carbonato complex.

  15. Oxidation kinetic changes of UO2 by additive addition and irradiation

    International Nuclear Information System (INIS)

    You, Gil-Sung; Kim, Keon-Sik; Min, Duck-Kee; Ro, Seung-Gy

    2000-01-01

    The kinetic changes of air-oxidation of UO 2 by additive addition and irradiation were investigated. Several kinds of specimens, such as unirradiated-UO 2 , simulated-UO 2 for spent PWR fuel (SIMFUEL), unirradiated-Gd-doped UO 2 , irradiated-UO 2 and -Gd-doped UO 2 , were used for these experiments. The oxidation results represented that the kinetic patterns among those samples are remarkably different. It was also revealed that the oxidation kinetics of irradiated-UO 2 seems to be more similar to that of unirradiated-Gd-doped UO 2 than that of SIMFUEL

  16. The compaction and sintering of UO_2-Zr cermet pellets

    International Nuclear Information System (INIS)

    Tri Yulianto; Meniek Rachmawati; Etty Mutiara

    2013-01-01

    An innovative fuel pellet of UO_2-Zr cermet has been developed to improve thermal conductivity of UO_2 pellet by adding small amount Zr metal in to UO_2 matrix below 10 % weight. Zirconium powder will serve for the creation of bridges or web structure during compaction and will effectively reduce contact between of UO_2 particles. Based on the theory of phase equilibrium of metals-metal oxides-ceramic, this fabrication technique may produce UO_2 pellets containing continuous metal channel on the grain boundary of UO_2 through sintering in a reduction atmosphere. The fabrication was done by varying process parameters of mixing and compaction. Characterisation of UO_2-Zr cermet pellet involved visual test, dimensional and density measurement, and ceramography test. This advanced cermet fabrication technology may address common issue with cermet fuels such as microstructure with continuous metal channel structure in the UO_2 matrix, which is more effectively than the commonly accepted microstructure involving fraction of UO_2 pellet by standard fabrication route. (author)

  17. Fabrication of nano-structured UO2 fuel pellets

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kang, Ki Won; Rhee, Young Woo; Kim, Dong Joo; Kim, Jong Heon; Kim, Keon Sik; Song, Kun Woo

    2007-01-01

    Nano-structured materials have received much attention for their possibility for various functional materials. Ceramics with a nano-structured grain have some special properties such as super plasticity and a low sintering temperature. To reduce the fuel cycle costs and the total mass of spent LWR fuels, it is necessary to extend the fuel discharged burn-up. In order to increase the fuel burn-up, it is important to understand the fuel property of a highly irradiated fuel pellet. Especially, research has focused on the formation of a porous and small grained microstructure in the rim area of the fuel, called High Burn-up Structure (HBS). The average grain size of HBS is about 300nm. This paper deals with the feasibility study on the fabrication of nano-structured UO 2 pellets. The nano sized UO 2 particles are prepared by a combined process of a oxidation-reducing and a mechanical milling of UO 2 powder. Nano-structured UO 2 pellets (∼300nm) with a density of ∼93%TD can be obtained by sintering nano-sized UO 2 compacts. The SEM study reveals that the microstructure of the fabricated nano-structure UO 2 pellet is similar to that of HBS. Therefore, this bulk nano-structured UO 2 pellet can be used as a reference pellet for a measurement of the physical properties of HBS

  18. Perovskite phases in the systems AO-SE/sub 2/O/sub 3/-UO/sub 2,x/ with A=alkaline earth metal and SE=rare earths, La, and Y. VII. The systems Ba/sub 2/CaUO/sub 6/-Ba/sub 2/Gd/sub 0. 67/UO/sub 6/ and Ba/sub 2/CaUO/sub 6/-Ba/sub 2/Y/sub 0. 67/UO/sub 6/

    Energy Technology Data Exchange (ETDEWEB)

    Kemmler-Sack, S; Seemann, I; Schittenhelm, H J [Tuebingen Univ. (F.R. Germany). Institut fuer Anorganische Chemie

    1976-05-01

    The ordered perovskite Ba/sub 2/CaUO/sub 6/ forms a solid solution series with Ba/sub 2/Gdsub(0.67)UO/sub 6/ and Ba/sub 2/Ysub(0.67)UO/sub 6/, respectively. The deviations from the ideal behaviour are studied by X-ray, diffuse reflectance and vibrational methods.

  19. Perovskite phases in the systems AO-SE/sub 2/O/sub 3/-UO/sub 2,x/ with A=alkaline earth metal and SE=rare earths, La, and Y. IX. The systems Ba/sub 2/SrUO/sub 6/-Ba/sub 2/Gd/sub 0. 67/UO/sub 6/ and Ba/sub 2/SrUO/sub 6/-Ba/sub 2/Y/sub 0. 67/UO/sub 6/

    Energy Technology Data Exchange (ETDEWEB)

    Kemmler-Sack, S; Seemann, I [Tuebingen Univ. (F.R. Germany). Inst. fuer Anorganische Chemie I

    1976-07-01

    The ordered perovskite Ba/sub 2/SrUO/sub 6/ forms a solid solution series with Ba/sub 2/Gdsub(0.67)UO/sub 6/ and Ba/sub 2/Ysub(0.67)UO/sub 6/ respectively. The deviations from the ideal behaviour are studied by X-ray, diffuse reflectance and vibrational methods.

  20. High density UO2 powder preparation for HWR fuel

    International Nuclear Information System (INIS)

    Hwang, S. T.; Chang, I. S.; Choi, Y. D.; Cho, B. R.; Kwon, S. W.; Kim, B. H.; Moon, B. H.; Kim, S. D.; Phyu, K. M.; Lee, K. A.

    1992-01-01

    The objective of this project is to study on the preparation of method high density UO 2 powder for HWR Fuel. Accordingly, it is necessary to character ize the AUC processed UO 2 powder and to search method for the preparation of high density UO 2 powder for HWR Fuel. Therefore, it is expected that the results of this study can effect the producing of AUC processed UO 2 powder having sinterability. (Author)

  1. Kinetics of UO2 sintering

    International Nuclear Information System (INIS)

    Ristic, M.M.

    1962-01-01

    Detailed conclusions related to the UO 2 sintering can be drawn from investigating the kinetics of the sintering process. This report gives an thorough analysis of the the data concerned with sintering available in the literature taking into account the Jander and Arrhenius laws. This analysis completes the study of influence of the O/U ratio and the atmosphere on the sintering. Results presented are fundamentals of future theoretical and experimental work related to characterisation of the UO 2 sintering process

  2. Formation of ternary CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) complexes under neutral to weakly alkaline conditions.

    Science.gov (United States)

    Lee, Jun-Yeop; Yun, Jong-Il

    2013-07-21

    The chemical behavior of ternary Ca-UO2-CO3 complexes was investigated by using time-resolved laser fluorescence spectroscopy (TRLFS) in combination with EDTA complexation at pH 7-9. A novel TRLFS revealed two distinct fluorescence lifetimes of 12.7 ± 0.2 ns and 29.2 ± 0.4 ns for uranyl complexes which were formed increasingly dependent upon the calcium ion concentration, even though nearly indistinguishable fluorescence peak shapes and positions were measured for both Ca-UO2-CO3 complexes. For identifying the stoichiometric number of complexed calcium ions, slope analysis in terms of relative fluorescence intensity versus calcium concentration was employed in a combination with the complexation reaction of CaEDTA(2-) by adding EDTA. The formation of CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) was identified under given conditions and their formation constants were determined at I = 0.1 M Na/HClO4 medium, and extrapolated to infinitely dilute solution using specific ion interaction theory (SIT). As a result, the formation constants for CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) were found to be log β113(0) = 27.27 ± 0.14 and log β213(0) = 29.81 ± 0.19, respectively, providing that the ternary Ca-UO2-CO3 complexes were predominant uranium(vi) species at neutral to weakly alkaline pH in the presence of Ca(2+) and CO3(2-) ions.

  3. Development of irradiated UO2 thermal conductivity model

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Bang Je-Geon; Kim Dae Ho; Jung Youn Ho

    2001-01-01

    Thermal conductivity model of the irradiated UO 2 pellet was developed, based upon the thermal diffusivity data of the irradiated UO 2 pellet measured during thermal cycling. The model predicts the thermal conductivity by multiplying such separate correction factors as solid fission products, gaseous fission products, radiation damage and porosity. The developed model was validated by comparison with the variation of the measured thermal diffusivity data during thermal cycling and prediction of other UO 2 thermal conductivity models. Since the developed model considers the effect of gaseous fission products as a separate factor, it can predict variation of thermal conductivity in the rim region of high burnup UO 2 pellet where the fission gases in the matrix are precipitated into bubbles, indicating that decrease of thermal conductivity by bubble precipitation in rim region would be significantly compensated by the enhancing effect of fission gas depletion in the UO 2 matrix. (author)

  4. Microstructure study of AUC and UO2

    International Nuclear Information System (INIS)

    Pan Ying; Gao Dihua; Lu Huaichang

    1992-01-01

    The microstructures of AUC, UO 2 powder and pellets were investigated with metallo-scope, SEM, TEM, XRD, and image analyzer. The influence of the reduction conditions of AUC on the microstructures of UO 2 powder and pellet were studied

  5. Formation of (Cr, Al)UO{sub 4} from doped UO{sub 2} and its influence on partition of soluble fission products

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, M.W.D. [Department of Materials, Imperial College London, London (United Kingdom); Gregg, D.J.; Zhang, Y.; Thorogood, G.J.; Lumpkin, G.R. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales (Australia); Grimes, R.W. [Department of Materials, Imperial College London, London (United Kingdom); Middleburgh, S.C., E-mail: simm@ansto.gov.au [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales (Australia)

    2013-11-15

    CrUO{sub 4} and (Cr, Al)UO{sub 4} have been fabricated by a sol–gel method, studied using diffraction techniques and modelled using empirical pair potentials. Cr{sub 2}O{sub 3} was predicted to preferentially form CrUO{sub 4} over entering solution into hyper-stoichiometric UO{sub 2+x} by atomic scale simulation. Further, it was predicted that the formation of CrUO{sub 4} can proceed by removing excess oxygen from the UO{sub 2} lattice. Attempts to synthesise AlUO{sub 4} failed, instead forming U{sub 3}O{sub 8} and Al{sub 2}O{sub 3}. X-ray diffraction confirmed the structure of CrUO{sub 4} and identifies the existence of a (Cr, Al)UO{sub 4} phase for the first time (with a maximum Al to Cr mole ratio of 1:3). Simulation was subsequently used to predict the partition energies for the removal of fission products or fuel additives from hyper-stoichiometric UO{sub 2+x} and their incorporation into the secondary phase. The partition energies are consistent only with smaller cations (e.g. Zr{sup 4+}, Mo{sup 4+} and Fe{sup 3+}) residing in CrUO{sub 4}, while all divalent cations are predicted to remain in UO{sub 2+x}. Additions of Al had little effect on partition behaviour. The reduction of UO{sub 2+x} due to the formation of CrUO{sub 4} has important implications for the solution limits of other fission products as many species are less soluble in UO{sub 2} than UO{sub 2+x}.

  6. Microbes make average 2 nanometer diameter crystalline UO2 particles.

    Science.gov (United States)

    Suzuki, Y.; Kelly, S. D.; Kemner, K. M.; Banfield, J. F.

    2001-12-01

    It is well known that phylogenetically diverse groups of microorganisms are capable of catalyzing the reduction of highly soluble U(VI) to highly insoluble U(IV), which rapidly precipitates as uraninite (UO2). Because biological uraninite is highly insoluble, microbial uranyl reduction is being intensively studied as the basis for a cost-effective in-situ bioremediation strategy. Previous studies have described UO2 biomineralization products as amorphous or poorly crystalline. The objective of this study is to characterize the nanocrystalline uraninite in detail in order to determine the particle size, crystallinity, and size-related structural characteristics, and to examine the implications of these for reoxidation and transport. In this study, we obtained U-contaminated sediment and water from an inactive U mine and incubated them anaerobically with nutrients to stimulate reductive precipitation of UO2 by indigenous anaerobic bacteria, mainly Gram-positive spore-forming Desulfosporosinus and Clostridium spp. as revealed by RNA-based phylogenetic analysis. Desulfosporosinus sp. was isolated from the sediment and UO2 was precipitated by this isolate from a simple solution that contains only U and electron donors. We characterized UO2 formed in both of the experiments by high resolution-TEM (HRTEM) and X-ray absorption fine structure analysis (XAFS). The results from HRTEM showed that both the pure and the mixed cultures of microorganisms precipitated around 1.5 - 3 nm crystalline UO2 particles. Some particles as small as around 1 nm could be imaged. Rare particles around 10 nm in diameter were also present. Particles adhere to cells and form colloidal aggregates with low fractal dimension. In some cases, coarsening by oriented attachment on \\{111\\} is evident. Our preliminary results from XAFS for the incubated U-contaminated sample also indicated an average diameter of UO2 of 2 nm. In nanoparticles, the U-U distance obtained by XAFS was 0.373 nm, 0.012 nm

  7. UO2/magnetite concrete interaction and penetration study

    International Nuclear Information System (INIS)

    Farhadieh, R.; Purviance, R.; Carlson, N.

    1983-01-01

    The concrete structure represents a line of defense in safety assessment of containment integrity and possible minimization of radiological releases following a reactor accident. The penetration study of hot UO 2 particles into limestone concrete and basalt concrete highlighted some major differences between the two concretes. These included penetration rate, melting and dissolution phenomena, released gases, pressurization of the UO 2 chamber, and characteristics of post-test concrete. The present study focuses on the phenomena associated with core debris interaction with and penetration into magnetite type concrete. The real material experiment was carried out with UO 2 particles and magnetite concrete in a test apparatus similar to the one utilized in the UO 2 /limestone experiment

  8. Heat transfer coefficient between UO2 and Zircaloy-2

    International Nuclear Information System (INIS)

    Ross, A.M.; Stoute, R.L.

    1962-06-01

    This paper provides some experimental values of the heat-transfer coefficient between UO 2 and Zircaloy-2 surfaces in contact under conditions of interfacial pressure, temperature, surface roughness and interface atmosphere, that are relevant to UO 2 /Zircaloy-2 fuel elements operating in pressurized-water power reactors. Coefficients were obtained from eight UO 2 / Zircaloy-2 pairs in atmospheres of helium, argon, krypton or xenon, at atmosphere pressure and in vacuum. Interfacial pressures were varied from 50 to 550 kgf/cm 2 while surface roughness heights were in the range 0.2 x 10 -4 to 3.5 x 10 -4 cm. The effect on the coefficients of cycling the interfacial pressure, of interface gas pressure and of temperature were examined. The experimental values of the coefficients were used to test the predictions of expressions for the heat-transfer between two solids in contact. For the particular UO 2 / Zircaloy-2 pairs examined, numerical values were assigned to several parameters that related the surface roughnesses to either the radius of solid/solid contact spots or to the mean thickness of the interface voids and that accounted for the imperfect accommodation of the void gas on the test surfaces. (author)

  9. Oxidative dissolution of ADOPT compared to standard UO2 fuel

    International Nuclear Information System (INIS)

    Nilsson, Kristina; Roth, Olivia; Jonsson, Mats

    2017-01-01

    In this work we have studied oxidative dissolution of pure UO 2 and ADOPT (UO 2 doped with Al and Cr) pellets using H 2 O 2 and gammaradiolysis to induce the process. There is a small but significant difference in the oxidative dissolution rate of UO 2 and ADOPT pellets, respectively. However, the difference in oxidative dissolution yield is insignificant. Leaching experiments were also performed on in-reactor irradiated ADOPT and UO 2 pellets under oxidizing conditions. The results indicate that the U(VI) release is slightly slower from the ADOPT pellet compared to the UO 2. This could be attributed to differences in exposed surface area. However, fission products with low UO 2 solubility display a higher relative release from ADOPT fuel compared to standard UO 2 -fuel. This is attributed to a lower matrix solubility imposed by the dopants in ADOPT fuel. The release of Cs is higher from UO 2 which is attributed to the larger grain size of ADOPT. - Highlights: •Oxidative dissolution of ADOPT fuel is compared to standard UO 2 fuel. •Only marginal differences are observed. •The main difference observed is in the relative release rate of fission products. •Differences are claimed to be attributed to a lower matrix solubility imposed by the dopants in ADOPT fuel.

  10. Modern x-ray spectral methods in the study of the electronic structure of actinide compounds: Uranium oxide UO2 as an example

    Directory of Open Access Journals (Sweden)

    Teterin Yury A.

    2004-01-01

    Full Text Available Fine X-ray photo electron spectral (XPS structure of uranium dioxide UO2 in the binding energy (BE range 0-~č40 eV was associated mostly with the electrons of the outer (OVMO (0-15 eV BE and inner (IVMO (15-40 eV BE valence molecular orbitals formed from the incompletely U5f,6d,7s and O2p and completely filled U6p and O2s shells of neighboring uranium and oxygen ions. It agrees with the relativistic calculation results of the electronic structure for the UO812–(Oh cluster reflecting uranium close environment in UO2, and was confirmed by the X-ray (conversion electron, non-resonance and resonance O4,5(U emission, near O4,5(U edge absorption, resonance photoelectron, Auger spectroscopy data. The fine OVMO and IVMO related XPS structure was established to yield conclusions on the degree of participation of the U6p,5f electrons in the chemical bond, uranium close environment structure and interatomic distances in oxides. Total contribution of the IVMO electrons to the covalent part of the chemical bond can be comparable with that of the OVMO electrons. It has to be noted that the IVMO formation can take place in compounds of any elements from the periodic table. It is a novel scientific fact in solid-state chemistry and physics.

  11. Thermal and Mechanical Properties of UO2 and PuO2

    International Nuclear Information System (INIS)

    Kato, M.; Matsumoto, T.

    2015-01-01

    It is important to evaluate basic properties of UO 2 and PuO 2 as fundamental aspects of MA-bearing MOX fuel development. In this work, mechanical properties of UO 2 and PuO 2 were investigated by an ultrasound pulse-echo method. Longitudinal and transversal wave velocities were measured in UO 2 and PuO 2 pellets, and Young's modulus and shear modulus were evaluated, which were 219 MPa and 89 MPa for PuO 2 , and 249 MPa and 95 MPa for UO 2 , respectively. Poisson's ratio was 0.32 in both materials. The relationship between mechanical and thermal properties was described by using thermal expansion data which had been reported previously, and the heat capacity and thermal conductivity were analysed. (authors)

  12. Thermal expansion of UO2 and simulated DUPIC fuel

    International Nuclear Information System (INIS)

    Ho Kang, Kweon; Jin Ryu, Ho; Chan Song, Kee; Seung Yang, Myung

    2002-01-01

    The lattice parameters of simulated DUPIC fuel and UO 2 were measured from room temperature to 1273 K using neutron diffraction to investigate the thermal expansion and density variation with temperature. The lattice parameter of simulated DUPIC fuel is lower than that of UO 2 , and the linear thermal expansion of simulated DUPIC fuel is higher than that of UO 2 . For the temperature range from 298 to 1273 K, the average linear thermal expansion coefficients for UO 2 and simulated DUPIC fuel are 10.471x10 -6 and 10.751x10 -6 K -1 , respectively

  13. The bare uranyl(2+) ion, UO22+

    International Nuclear Information System (INIS)

    Cornehl, H.H.; Heinemann, C.; Marcalo, J.; Pires de Matos, A.; Schwarz, H.

    1996-01-01

    Ion-molecule reactions between U 2+ and oxygen donors or charge-stripping collisions between singly charged UO 2 2 ions and O 2 collision partners generate uranyl(2+) ions in the gas phase. These do not readily dissociate into singly charged fragments. The standard enthalpy of formation for UO 2 2+ is estimated to be 371±60 kcal mol -1 , in accord with the results of ab initio calculations. (orig.)

  14. The effect of fuel chemistry on UO{sub 2} dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Casella, Amanda, E-mail: amanda.casella@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-25, Richland, WA 99352 (United States); Hanson, Brady, E-mail: brady.hanson@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-27, Richland, WA 99352 (United States); Miller, William [University of Missouri Research Reactor, 1513 Research Park Drive, Columbia, MO 65211 (United States)

    2016-08-01

    The dissolution rate of both unirradiated UO{sub 2} and used nuclear fuel has been studied by numerous countries as part of the performance assessment of proposed geologic repositories. In the scenario of waste package failure and groundwater contact with the fuel, the effects of variables such as temperature, dissolved oxygen, and water and fuel chemistry on the dissolution rates of the fuel are necessary to provide a quantitative estimate of the potential release over geologic time frames. The primary objective of this research was to determine the influence these parameters, with primary focus on the fuel chemistry, have on the dissolution rate of unirradiated UO{sub 2} under oxidizing repository conditions and compare them to the rates predicted by current dissolution models. Both unirradiated UO{sub 2} and UO{sub 2} doped with varying concentrations of Gd{sub 2}O{sub 3}, to simulate used fuel composition after long time periods when radiolysis has minor contributions to dissolution, were examined. In general, a rise in temperature increased the dissolution rate of UO{sub 2} and had a larger effect on pure UO{sub 2} than on those doped with Gd{sub 2}O{sub 3}. Oxygen dependence was observed in the UO{sub 2} samples with no dopant and increased as the temperature rose; in the doped fuels less dependence was observed. The addition of gadolinia into the UO{sub 2} matrix resulted in a significant decrease in the dissolution rate. The matrix stabilization effect resulting from the dopant proved even more beneficial in lowering the dissolution rate at higher temperatures and dissolved O{sub 2} concentrations in the leachate where the rates would typically be elevated. - Highlights: • UO{sub 2} dissolution rates were measured for a matrix of repository relevant conditions. • Dopants in the UO{sub 2} matrix lowered the dissolution rate. • Reduction in rates by dopants were increased at elevated temperature and O{sub 2} levels. • UO{sub 2} may be overly

  15. Formation, stability and structural characterization of ternary MgUO{sub 2}(CO{sub 3}){sub 3}{sup 2-} and Mg{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun-Yeop; Yun, Jong-Il [KAIST, Daejeon (Korea, Republic of). Dept. of Nuclear and Quantum Engineering; Vespa, Marika; Gaona, Xavier; Dardenne, Kathy; Rothe, Joerg; Rabung, Thomas; Altmaier, Marcus [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. for Nuclear Waste Disposal

    2017-06-01

    The formation of ternary Mg-UO{sub 2}-CO{sub 3} complexes under weakly alkaline pH conditions was investigated by time-resolved laser fluorescence spectroscopy (TRLFS) and extended X-ray absorption fine structure (EXAFS) and compared to Ca-UO{sub 2}-CO{sub 3} complexes. The presence of two different Mg-UO{sub 2}-C{sub 3} complexes was identified by means of two distinct fluorescence lifetimes of 17±2 ns and 51±2 ns derived from the multi-exponential decay of the fluorescence signal. Slope analysis in terms of fluorescence intensity coupled with fluorescence intensity factor as a function of log [Mg(II)] was conducted for the identification of the Mg-UO{sub 2}-CO{sub 3} complexes forming. For the first time, the formation of both MgUO{sub 2}(CO{sub 3}){sub 3}{sup 2-} and Mg{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) species was confirmed and the corresponding equilibrium constants were determined as log β {sub 113}=25.8±0.3 and β {sub 213}=27.1±0.6, respectively. Complementarily, fundamental structural information for both Ca-UO{sub 2}-CO{sub 3} and Mg-UO{sub 2}-CO{sub 3} complexes was gained by extended EXAFS revealing very similar structures between these two species, except for the clearly shorter U-Mg distance (3.83 Aa) compared with U-Ca distance (4.15 Aa). These results confirmed the inner-sphere character of the Ca/Mg-UO{sub 2}-CO{sub 3} complexes. The formation constants determined for MgUO{sub 2}(CO{sub 3}){sub 3}{sup 2-} and Mg{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) species indicate that ternary Mg-UO{sub 2}-CO{sub 3} complexes contribute to the relevant uranium species in carbonate saturated solutions under neutral to weakly alkaline pH conditions in the presence of Mg(II) ions, which will induce notable influences on the U(VI) chemical species under seawater conditions.

  16. Preparation of UO2 fragments for fuel-debris experiments

    International Nuclear Information System (INIS)

    Tinkle, M.C.; Kircher, J.A.; Zinn, R.M.; Eash, D.T.

    1982-01-01

    A unique process was developed for preparing multi-kilogram quantities of > 90% dense fragments of enriched and depleted UO 2 sized 20 mm to 0.038 mm for fuel debris experiments. Precipitates of UO 4 . xH 2 O were treated to obtain UO 2 powders that would yield large cohesive green pieces when isostatically pressed to 206 MPa. The pressed pieces were crushed into fragments that were about 30% oversized, and heated to 1800 0 C for 24 h in H 2 . Oversizing compensates for shrinkage during densification. Effort was dramatically reduced by working on a large scale and by presizing the green UO 2 instead of directly crushing densified pellets

  17. Technological investigation for producing UO2 powder from ADU by using rotary furnace

    International Nuclear Information System (INIS)

    Pham Duc Thai; Ngo Trong Hiep; Dam Van Tien; Vu Quang Chat; Nguyen Duy Lam; Ngo Xuan Hung; Ngo Quang Hien; Tran Duy Hai; Nguyen Van Sinh

    2003-01-01

    Uranium dioxide powder UO 2 is main material for producing UO 2 fuel ceramic pellets. The technical characteristics of UO 2 powder directly affect on mechanical and physical characteristics of UO 2 fuel ceramic pellets. Project titled 'Technological investigation for producing UO 2 powder from ADU by using rotary furnace' with the code number BO/01/03-06 for two years 2001 and 2002, on purpose to step by step perfect the technology and equipments for producing UO 2 powder, that is as nuclear fuel. This UO 2 powder may be good material for producing UO 2 fuel ceramic pellets. The results had been achieved as follows: 1. Study on the perfection of the reduction process U 3 O 8 to UO 2 in the gas mixture of 3H 2 + N 2 in inactive condition. 2. Study, design and production of active device system called rotary furnace for manufacturing UO 2 powder from ADU. 3. Study on 4 steps of technology process: drying, calcination, reduction and stabilization of UO 2 powder in the system of rotary furnace from which obtained UO 2 with technical characteristics meeting basic criteria of UO 2 fuel powder. (author)

  18. Vibrational compacting of UO{sub 2} samples in the cladding; Vibraciono kompaktiranje uzoraka UO{sub 2} u zastitnoj kosuljici

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, M M [Institute of Nuclear Sciences Vinca, Laboratorija za reaktorske materijale, Beograd (Serbia and Montenegro)

    1962-12-15

    Vibrational compacting was considered as a feasible method for fuel element fabrication. This report describes calibration of the vibrational compacting device. Vibrational compacting of UO{sub 2} was investigated. Obtained densities were not higher than 42% of the theoretical value, i.e. 70% of the possible compacting density. Influence of frequency, acceleration, power and time on the compacted samples was tested. Optimal conditions for UO{sub 2} compacting were as follows: frequency range from 2500 - 4000 Hz; acceleration range from 40 - 100 Hz; maximum power; time of compacting {approx} 5 min. Comparative evaluation of UO{sub 2} and SiO{sub 2} powders was done in order to improve the future development of this method for fabrication of fuel elements.

  19. Studi On Oxidation State Of U In Ba2NdUO6

    International Nuclear Information System (INIS)

    Firman Windarto, Hendri

    1996-01-01

    Ba 2 NdUO 6 is not of the important compounds that is formed from a solidification process for high level liquid waste using super high temperature method Ba 2 NdUO 6 has ordered perovskite structure. The objective of this study is to investigate oxidation state of U in Ba 2 NdUO 6 . The properties of Ba 2 NdUO 6 were observed by using Faraday-type torsion magnetometer and X-ray Photoelectron Spectrometer (XPS). The magnetic susceptibility measured in the temperature range of 4K to room temperature showed that the Ba 2 NdUO 6 is paramagnetism that obeys the Curie-Weiss law. The effective moment of Ba 2 NdUO 6 is 3.04 μB. The results of xPs spectrum showed that the peaks of U4f for Ba 2 NdUO 6 appeared exactly between binding energy of UO 2 and UO 3 . It can be concluded that Ba 2 NdUO 6 has binding energy peaks corresponding to pentavalent uranium

  20. Interesting Developments in UO{sub 2} Technology; Progres interessants dans la technologie du bioxyde d'uranium; Interesnye usovershenstvovaniya tekhnologii UO{sub 2}; Recientes progresos en la tecnologia del UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, J. A.L. [Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada)

    1963-11-15

    Now that several UO{sub 2}-fuelled reactors are operating routinely, good irradiation performance of UO{sub 2} is taken for granted. It is therefore stimulating to find that significant developments are still occurring. Most exciting was the recent discovery by Battelle Memorial Institute workers that a particular single crystal of UO{sub 2} had a very high thermal conductivity at elevated temperatures. Following controversy over the matter, an irradiation at Chalk River demonstrated that the large grains formed in operating fuel elements do not necessarily exhibit this enhanced conductivity. Our laboratory experiments have shown that the enhancement is only present in hypostoichiometric compositions and depends little, if any, on the absence of grain boundaries. Indeed, the high conductivity can be obtained in polycrystalline sinters by controlling the stoichiometry. It has long been known that sheath elongation could be reduced by fabricating the UO{sub 2} pellets with depressions in their end faces. Later it was shown that movement of the fuel into a void at the end of the pellet stack was impeded by diametral expansion of the fuel and its mechanical interaction with the sheath. The biggest advance in minimizing sheath distensions has been the realization that longitudinal and diametral expansions are interrelated through the volume expansion of the fuel whose hot core is appreciably plastic. Our empirical knowledge of the factors determining the release of fission-product gases from UO{sub 2} has improved. In particular, increasing the irradiation exposure from 10{sup 15} to 10{sup 18} fissions/cm{sup 3} can reduce the apparent diffusion rates for xenon in UO{sub 2} during subsequent anneals by a factor of 10{sup 3}. The gas is probably immobilized in minute traps, some existing in the original material and some generated by irradiation damage. Detailed analysis indicated slow escape from the traps, presumably from the finite solubility of the xenon in UO{sub 2

  1. Spent fuel UO{sub 2} matrix corrosion behaviour studies through alpha-doped UO{sub 2} pellets leaching

    Energy Technology Data Exchange (ETDEWEB)

    Muzeau, B.; Jegou, C.; Broudic, V. [CEA-Valrho DEN/DTCD/SECM Laboratoire des Materiaux et Procedes Actifs BP 17171 F-30207 Bagnols-sur-Ceze cedex (France)

    2005-07-01

    Full text of publication follows: The option of direct disposal of spent nuclear fuel in a deep geological formation raises the need to investigate the long-term behaviour of the UO{sub 2} matrix in aqueous media subjected to {alpha}-{beta}-{gamma} radiations. The {beta}-{gamma} emitters account for the most of the activity of spent fuel at the moment it is removed from the reactor, but diminish within a millennial time frame by over three orders of magnitude to less than the long-term activity. The latter persist over much longer time periods and must therefore be taken into account over geological disposal scale. In the present investigation the UO{sub 2} matrix corrosion under alpha radiation is studied as a function of different parameters such as: the alpha activity, the carbonates and hydrogen concentrations,.. In order to study the effect of alpha radiolysis of water on the UO{sub 2} matrix, {sup 238/239}Pu doped UO{sub 2} pellets (0.22 %wt. Pu total) were fabricated with different {sup 238}Pu/{sup 239}Pu ratio to reproduce the alpha activity of a 47 GWd.t{sub HMi}{sup -1} UOX spent fuel at different milestones in time (15, 50, 1500, 10000 and 40000 years). Undoped UO{sub 2} pellets were also available as reference sample. Leaching experiments were conducted in deionized or carbonated water (NaHCO{sub 3} 1 mM), under Argon (O{sub 2} < 0.1 ppm), or Ar/H{sub 2} 30% gas mixture. Previous experiments conducted in deionized water under argon atmosphere, have shown a good correlation between alpha activity and uranium release for the 15-, 1500- and 40000-years alpha doped UO{sub 2} batches. Besides, uranium release in the leachate is controlled either by the kinetics, or by the thermodynamics. Provided the solubility limit of uranium is not achieved, uranium concentration increases and is only limited by the kinetics, unless precipitation occurs and the uranium concentration remains constant over time. These controls are highly dependant on the solution chemistry

  2. The Surface Reactions of Ethanol over UO2(100) Thin Film

    KAUST Repository

    Senanayake, Sanjaya D.

    2015-10-08

    The study of the reactions of oxygenates on well-defined oxide surfaces is important for the fundamental understanding of heterogeneous chemical pathways that are influenced by atomic geometry, electronic structure and chemical composition. In this work, an ordered uranium oxide thin film surface terminated in the (100) orientation is prepared on a LaAlO3 substrate and studied for its reactivity with a C-2 oxygenate, ethanol (CH3CH2OH). With the use of synchrotron X-ray photoelectron spectroscopy (XPS), we have probed the adsorption and desorption processes observed in the valence band, C1s, O1s and U4f to investigate the bonding mode, surface composition, electronic structure and probable chemical changes to the stoichiometric-UO2(100) [smooth-UO2(100)] and Ar+-sputtered UO2(100) [rough-UO2(100)] surfaces. Unlike UO2(111) single crystal and UO2 thin film, Ar-ion sputtering of this UO2(100) did not result in noticeable reduction of U cations. The ethanol molecule has C-C, C-H, C-O and O-H bonds, and readily donates the hydroxyl H while interacting strongly with the UO2 surfaces. Upon ethanol adsorption (saturation occurred at 0.5 ML), only ethoxy (CH3CH2O-) species is formed on smooth-UO2(100) whereas initially formed ethoxy species are partially oxidized to surface acetate (CH3COO-) on the Ar+-sputtered UO2(100) surface. All ethoxy and acetate species are removed from the surface between 600 and 700 K.

  3. The Surface Reactions of Ethanol over UO2(100) Thin Film

    KAUST Repository

    Senanayake, Sanjaya D.; Mudiyanselage, Kumudu; Burrell, Anthony K; Sadowski, Jerzy T.; Idriss, Hicham

    2015-01-01

    The study of the reactions of oxygenates on well-defined oxide surfaces is important for the fundamental understanding of heterogeneous chemical pathways that are influenced by atomic geometry, electronic structure and chemical composition. In this work, an ordered uranium oxide thin film surface terminated in the (100) orientation is prepared on a LaAlO3 substrate and studied for its reactivity with a C-2 oxygenate, ethanol (CH3CH2OH). With the use of synchrotron X-ray photoelectron spectroscopy (XPS), we have probed the adsorption and desorption processes observed in the valence band, C1s, O1s and U4f to investigate the bonding mode, surface composition, electronic structure and probable chemical changes to the stoichiometric-UO2(100) [smooth-UO2(100)] and Ar+-sputtered UO2(100) [rough-UO2(100)] surfaces. Unlike UO2(111) single crystal and UO2 thin film, Ar-ion sputtering of this UO2(100) did not result in noticeable reduction of U cations. The ethanol molecule has C-C, C-H, C-O and O-H bonds, and readily donates the hydroxyl H while interacting strongly with the UO2 surfaces. Upon ethanol adsorption (saturation occurred at 0.5 ML), only ethoxy (CH3CH2O-) species is formed on smooth-UO2(100) whereas initially formed ethoxy species are partially oxidized to surface acetate (CH3COO-) on the Ar+-sputtered UO2(100) surface. All ethoxy and acetate species are removed from the surface between 600 and 700 K.

  4. Oxidative dissolution of ADOPT compared to standard UO{sub 2} fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Kristina [School of Chemical Science and Engineering, Applied Physical Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Roth, Olivia [Studsvik Nuclear AB, SE-611 82 Nyköping (Sweden); Jonsson, Mats, E-mail: matsj@kth.se [School of Chemical Science and Engineering, Applied Physical Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm (Sweden)

    2017-05-15

    In this work we have studied oxidative dissolution of pure UO{sub 2} and ADOPT (UO{sub 2} doped with Al and Cr) pellets using H{sub 2}O{sub 2} and gammaradiolysis to induce the process. There is a small but significant difference in the oxidative dissolution rate of UO{sub 2} and ADOPT pellets, respectively. However, the difference in oxidative dissolution yield is insignificant. Leaching experiments were also performed on in-reactor irradiated ADOPT and UO{sub 2} pellets under oxidizing conditions. The results indicate that the U(VI) release is slightly slower from the ADOPT pellet compared to the UO{sub 2.} This could be attributed to differences in exposed surface area. However, fission products with low UO{sub 2} solubility display a higher relative release from ADOPT fuel compared to standard UO{sub 2}-fuel. This is attributed to a lower matrix solubility imposed by the dopants in ADOPT fuel. The release of Cs is higher from UO{sub 2} which is attributed to the larger grain size of ADOPT. - Highlights: •Oxidative dissolution of ADOPT fuel is compared to standard UO{sub 2} fuel. •Only marginal differences are observed. •The main difference observed is in the relative release rate of fission products. •Differences are claimed to be attributed to a lower matrix solubility imposed by the dopants in ADOPT fuel.

  5. Removal of UO{sup 2+}{sub 2} from aqueous solution using halloysite nanotube-Fe{sub 3}O{sub 4} composite

    Energy Technology Data Exchange (ETDEWEB)

    He, Wenfang; Chen, Yuantao; Zhang, Wei; Hu, Chunlian; Wang, Jian; Wang, Pingping [Qinghai Normal University, Xining (China)

    2016-01-15

    Halloysite nanotubes (HNTs) were modified with Fe{sub 3}O{sub 4} to form novel magnetic HNTs-Fe{sub 3}O{sub 4} composites, and the composites were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR) and vibrating sample magnetometer (VSM). The as-obtained results indicated that Fe{sub 3}O{sub 4} nanoparticles were successfully installed on the surface of HNTs. The adsorption of UO{sup 2+}{sub 2} on HNTs-Fe{sub 3}O{sub 4} was investigated as a function of solid content, contact time, pH, ionic strength and temperature by batch experiments. The consequences revealed that the adsorption of UO{sup 2+}{sub 2} onto HNTs-Fe{sub 3}O{sub 4} was strongly dependent on pH and ionic strength. Equilibrium data fitted well with the Langmuir isotherm. The experimental results demonstrated that the adsorbents with HNTs-Fe{sub 3}O{sub 4} had the largest adsorption capacity of 88.32mg/g for UO{sup 2+}{sub 2}.

  6. Determination of the UO2-ZrO2-BaO equilibrium diagram

    International Nuclear Information System (INIS)

    Paschoal, J.O.A.; Kleykanp, H.; Thuemmler, F.

    1984-01-01

    It is determined the equilibrium diagram of UO 2 - ZrO 2 - BaO to interpret and predict changes in the chemical properties of ceramic (oxide) nuclear fuels during irradiation. The isothermal section of the system at 1700 0 C was determined experimentally, utilizing the techniques of ceramography, X-ray diffraction analysis, microprobe analysis and differential thermal analysis. The solid solubility limits at 1700 0 C between UO 2 and ZrO 2 , UO 2 and BaO, ZrO 2 and BaO, ZrO 2 and BaO and BaUO 3 and BaZrO 3 is presented. The influence of oxygen potential in relation to the different phases is discussed and the phase diagram of the system presented. (M.C.K.) [pt

  7. Adsorptive features of poli(acrylic acid-co-hydroxyapatite) composite for UO22+

    International Nuclear Information System (INIS)

    Liu Tonghuan; Xu Zhen; Tan Yinping; Zhong Qiangqiang; Wu Wangsuo

    2016-01-01

    The copolymer of poli(acrylic acid-co-hydroxyapatite) (PAA-HAP) was prepared and characterized by means of FT-IR and SEM analysis. The adsorptive features of PAA-HAP for UO 2 2+ was studied as a function of pH, adsorbent dosage, initial metal ion concentration and temperature. The adsorption isotherm data fitted well to the Langmuir isotherm model. The adsorbed UO 2 2+ can be desorbed effectively by 0.1 M HNO 3 . The maximum adsorption capacities for UO 2 2+ of the dry PAA-HAP was 1.86 x 10 -4 mol/g. The high adsorption capacity and kinetics results indicate that PAA-HAP can be used as an alternative adsorbent to remove UO 2 2+ from aqueous solution. (author)

  8. Ceramic UO2 powder production at Cameco Corporation

    International Nuclear Information System (INIS)

    Mulligan, J.J.

    2005-01-01

    This paper describes the various aspects of ceramic grade UO 2 powder production at Cameco Corporation's Port Hope conversion facility. It discusses the significant safety systems, production processes and plant monitoring and control systems. It also provides an insight into how various support groups such as Quality Assurance, Analytical Services, and Technology Development contribute to the consistent production of high quality UO 2 powder. The ability of Cameco to identify, measure and control the physical and chemical properties of ceramic grade UO 2 has resulted in the production of uniform quality powder that has consistently met customer requirements. (author)

  9. Potentiometric and spectrophotometric characterization of the UO{sub 2}{sup 2+}-citrate complexes in aqueous solution, at different concentrations, ionic strengths and supporting electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Berto, S.; Daniele, P.G.; Prenesti, E. [Torino Univ. (Italy). Dipt. di Chimica Analitica; Crea, F.; De Stefano, C.; Sammartano, S. [Messina Univ. (Italy). Dipt. di Chimica Inorganica, Chimica Analitica e Chimica Fisica

    2012-07-01

    In this paper we report an investigation on the interactions between dioxouranium(VI) and citrate using potentiometry (H{sup +}-glass electrode) and UV-spectrophotometry. Potentiometric measurements were carried out in NaCl and KNO{sub 3} aqueous solutions at t = 25 C in a wide range of experimental conditions (concentrations, ligand/metal molar ratio, pH, titrants). Measurements in NaCl were carried out at different ionic strength values (0.1 {<=} I/mol L{sup -1} {<=} 1.0); different procedures were employed for the acquisition of experimental data and careful analysis of these data performed. In all cases the speciation model that best fits experimental data takes into account the formation of the following species: UO{sub 2}(Cit){sup -}, (UO{sub 2}){sub 2}(Cit){sub 2}{sup 2-}, (UO{sub 2}){sub 2}(Cit){sub 2}(OH){sub 2}{sup 4-}, (UO{sub 2}){sub 2}(Cit){sub 2}(OH){sup 3-}, (UO{sub 2}){sub 2}(Cit)(OH){sub 2}{sup -}, (UO{sub 2}){sub 2}(Cit)(OH){sup 0}, (UO{sub 2}){sub 3}(Cit){sub 2}(OH){sub 5}{sup 5-}. The dependence on ionic strength of formation constants was taken into account by using both a simple Debye-Hueckel type equation and the SIT (specific ion interaction theory) approach. Moreover, a visible absorption spectrum for each complex reaching a significant percentage of formation in solution (KNO{sub 3} medium) has been calculated to characterise the compounds found by pH-metric refinement. Recommended values for the uranyl-citrate species were proposed for each ionic strength values in NaCl aqueous solution. Comparison with literature stability constants is reported too. (orig.)

  10. Overview of interatomic potentials

    International Nuclear Information System (INIS)

    Bonny, G.; Malerba, L.

    2005-12-01

    In this report an overview on interatomic potentials is given. This overview is by no means complete and it has merely the intention to give the reader an idea of where interatomic potentials come from, as well as to provide the basic ideas behind some commonly used methods for deriving interatomic potentials for molecular dynamics applications. We start by giving a short introduction about the concept of interatomic potential in the framework of quantum mechanics, followed by a short description of commonly used methods for deriving semi-empirical interatomic potentials. After some short theoretical notions on each method, some practical parameterizations of commonly used potentials are given, including very recent ones. An effort has been made to classify existing approaches within a rational and consequent scheme, which is believed to be of use for a thorough comprehension of the topic. Although these approaches can be used in a variety of different materials, we will only discuss the practical cases of metals. Following this, some widespread ad hoc modification of the general methods are discussed. The report is concluded by a generalization of the methods to multi-component materials, in particular metallic alloys. (author)

  11. Fabrication of ThO2 and ThO2-UO2 pellets for proliferation resistant fuels

    International Nuclear Information System (INIS)

    Matthews, R.B.; Davis, N.C.

    1979-10-01

    To meet this objective, batches of ThO 2 powders were compared and milling parameters, pressing and sintering conditions were established. A method for blending ThO 2 and UO 2 into homogeneous powders that press and sinter into 95% TD pellets was determined. The effect of UO 2 additions on ThO 2 -UO 2 pellet properties was determined and a process for fabricating irradiation test quality ThO 2 -20 wt% UO 2 pellets containing CaO as a dissolution aid was established

  12. Measurement of the friction coefficient between UO2 and cladding tube

    International Nuclear Information System (INIS)

    Tachibana, Toshimichi; Narita, Daisuke; Kaneko, Hiromitsu; Honda, Yutaka

    1978-01-01

    Most of fuel rods used for light water reactors or fast reactors consist of the cladding tubes filled with UO 2 -PuO 2 pellets. The measurement was made on the coefficient of static friction and the coefficient of dynamic friction in helium under high contact load on UO 2 /Zry-2 and UO 2 /SUS 316 combined samples at the temperature ranging from room temperature to 400 deg. C and from room temperature to 600 deg. C, respectively. The coefficient of static friction for Zry-2 tube and UO 2 pellets was 0.32 +- 0.08 at room temperature and 0.47 +- 0.07 at 400 deg. C, and increased with temperature rise in this temperature range. The coefficient of static friction between 316 stainless steel tube and UO 2 pellets was 0.29 +- 0.04 at room temperature and 1.2 +- 0.2 at 600 deg. C, and increased with temperature rise in this temperature range. The coefficient of dynamic friction for both UO 2 /Zry-2 and UO 2 /SUS 316 combinations seems to be equal to or about 10% excess of the coefficient of static friction. The coefficient of static friction for UO 2 /SUS 316 combination decreased with the increasing number of repetition, when repeating slip several times on the same contact surfaces. (Kobatake, H.)

  13. Some aspects of UO{sub 2} powder production

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishna, P; Asnani, C K; Prabhakar Rao, L; Kartha, R M; Pillai, P K.M. [Nuclear Fuel Complex, Hyderabad (India)

    1994-06-01

    UO{sub 2} powder is being produced in a chemical plant from enriched UF{sub 6} and supplied to the pelletizing plant. Small quantities of scrap UO{sub 2} received back from the pelletizing plant are also recycled in the chemical plant to produce UO{sub 2} powder. The powder should be of a consistently high quality so as to finally yield high density sintered pellets with minimum rejection. The final yield of acceptable finished pellets depends on the quality of the powder in the chemical plant as well as the quality of pressing in the pelletizing plant. In this paper, some examples of measures adopted for achieving good quality powder production are presented. (author). 9 refs., 2 figs.

  14. Photochemical assessment of UO2+2 complexation in Triton X-100 micellar system

    International Nuclear Information System (INIS)

    Das, S.K.; Ganguly, B.N.

    1994-01-01

    This is a report on the spectral characteristics of UO 2 +2 in the excited state in the Triton X-100 micellar medium. The downward curving of the Stern-Volmer plot explains the two kinds of populations of UO 2 +2 upon micellization. A blue shift of the quenched emission is ascribed due to the collisional encounter of UO 2 +2 with the head groups of Triton X-100. (author). 5 refs., 2 figs

  15. Thermal expansion of ThO2-2 wt% UO2 by HT-XRD

    International Nuclear Information System (INIS)

    Tyagi, A.K.; Mathews, M.D.

    2000-01-01

    The linear thermal expansion of polycrystalline ThO 2 -2 wt% UO 2 has been investigated from room temperature to 1473 K in flowing helium atmosphere using high temperature X-ray diffractometry. ThO 2 -2 wt% UO 2 shows a marginally higher linear thermal expansion as compared to pure ThO 2 . The average linear and volume thermal expansion coefficients of ThO 2 -2 wt% UO 2 are found to be α-bar a =9.74x10 -6 K -1 and α-bar v =29.52x10 -6 K -1 (298-1473 K). This study will be useful in designing the nuclear reactor fuel assembly based on ThO 2

  16. Antiferromagnetic-ferromagnetic crossover in UO2-TiOx multi-phase systems

    International Nuclear Information System (INIS)

    Nakamura, Akio; Tsutsui, Satoshi; Yoshii, Kenji

    2001-01-01

    An antiferromagnetic (AF)-weakly ferromagnetic (WF) crossover has been found for UO 2 -TiO x multi-phase systems, (1-y)UO 2 +yTiO x (y=0.05-0.72, x=0, 1.0, 1.5 and 2.0), when these mixtures are heat treated at high temperature in vacuum. From the powder X-ray diffraction and electron-microprobe analyses, their phase assemblies were as follows: for x=0, 1.0 and 1.5, a heterogeneous two-phase mixture of UO 2 +TiO x ; for x=2.0, that of UO 2 +UTi 2 O 6 for y 0.67 that of UTi 2 O 6 +TiO 2 (plus residual minor UO 2 ). Magnetic susceptibility (χ) of the present UO 2 powder was confirmed to exhibit an antiferromagnetic sharp drop at T N (=30.5 K). In contrast, χ of these multi-phase systems was found to exhibit a sharp upturn at the respective T N , while their T N values remained almost constant with varying y. This χ upturn at T N is most pronounced for UO 2 +Ti-oxide (titania) systems (x=1.0, 1.5 and 2.0) over the wide mixture ratio above y∼0.10. These observations indicate that an AF-WF crossover is induced for these multi-phase systems, plausibly due to the interfacial magnetic modification of UO 2 in contact with the oxide partners

  17. Development on UO3-K2O and MoO3-K2O binary systems and study of UO2MoO4-MoO3 domain within UO3-MoO3-K2O ternary system

    International Nuclear Information System (INIS)

    Dion, C.; Noel, A.

    1983-01-01

    This paper confirms the previous study on the MoO 3 -K 2 O system, and constitutes a clarity of the UO 3 -K 2 O system. Four distinct uranates VI with alkaline metal/uranium ratio's 2, 1, 0,5 and 0,285 exist. Preparation conditions and powder diffraction spectra of these compounds are given. Additional informations relative to K 2 MoO 4 allotropic transformations are provided. Study of UO 2 MoO 4 -K 2 MoO 4 diagram has brought three new phases into prominence: (B) K 6 UMo 4 O 18 incongruently melting point, (E) K 2 UMo 2 O 10 congruently melting and (F) K 2 U 3 Mo 4 O 22 incongruently melting point. Within MoO 3 -K 2 MoO 4 -UO 2 MoO 4 ternary system, no new phase is found. The general appearance of ternary liquidus and crystallization fields of several compounds are given. These three new compounds become identified with these of UO 2 MoO 4 -Na 2 MoO 4 binary system [fr

  18. Fabrication and testing of ceramic UO{sub 2} fuel - I-III. Part II, Fabrication of sintered pressed samples UO{sub 2} (Final report); Izrada i ispitivanje keramickog goriva na bazi UO{sub 2}- I-III, II Deo - Dobijanje sinterovanih ispresaka UO{sub 2} (zavrsni izvestaj)

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, M; Ristic, M M [Institute of Nuclear Sciences Boris Kidric, Laboratorija za termotehniku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    Procedure for fabrication of sintered ceramic UO{sub 2} pellets was developed in the Department of reactor materials. The tasks described in this report deal with design and construction of laboratory equipment for treatment of ceramic materials, and fabrication of UO{sub 2} pellets. The procedure was based on cold pressing of appropriately prepared powder and sintering of the of thus obtained pressed samples.

  19. Particle size distribution of UO sub 2 aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Raghunath, B. (Radiation Safety Systems Div., BARC, Bombay (India)); Ramachandran, R.; Majumdar, S. (Radiometallurgy Div., BARC, Bombay (India))

    1991-12-01

    The Anderson cascade impactor has been used to determine the activity mean aerodynamic diameter and the particle size distribution of UO{sub 2} powders dispersed in the form of stable aerosols in an air medium. The UO{sub 2} powders obtained by the calcination of ammonium uranyl carbonate (AUC) and ammonium diuranate (ADU) precipitates have been used. (orig./MM).

  20. Porosity influence on UO2 pellet fracture

    International Nuclear Information System (INIS)

    Quadros, N.F. de; Abreu Aires, M. de; Gentile, E.F.

    1976-01-01

    Compression tests were made with UO 2 pellets with grain size of 0,01 mm, approximately the same for all pellets, and with different porosities. The strain rate was 5,5 X 10 -5 sec -1 at room temperature. From fractographic studies and observations made during the compression tests, it was suggested that the pores and flaws resulting from sintering at 1650 0 C, play a fundamental role on the fracture mechanism of the UO 2 pellets [pt

  1. Recycling process of Mn-Al doped large grain UO2 pellets

    International Nuclear Information System (INIS)

    Nam, Ik Hui; Yang, Jae Ho; Rhee, Young Woo; Kim, Dong Joo; Kim, Jong Hun; Kim, Keon Sik; Song, Kun Woo

    2010-01-01

    To reduce the fuel cycle costs and the total mass of spent light water reactor (LWR) fuels, it is necessary to extend the fuel discharged burn-up. Research on fuel pellets focuses on increasing the pellet density and grain size to increase the uranium contents and the high burnup safety margins for LWRs. KAERI are developing the large grain UO 2 pellet for the same purpose. Small amount of additives doping technology are used to increase the grain size and the high temperature deformation of UO 2 pellets. Various promising additive candidates had been developed during the last 3 years and the MnO-Al 2 O 3 doped UO 2 fuel pellet is one of the most promising candidates. In a commercial UO 2 fuel pellet manufacturing process, defective UO 2 pellets or scraps are produced and those should be reused. A common recycling method for defective UO 2 pellets or scraps is that they are oxidized in air at about 450 .deg. C to make U 3 O 8 powder and then added to UO 2 powder. In the oxidation of a UO 2 pellet, the oxygen propagates along the grain boundary. The U 3 O 8 formation on the grain boundary causes a spallation of the grains. So, size and shape of U 3 O 8 powder deeply depend on the initial grain size of UO 2 pellets. In the case of Mn-Al doped large grain pellets, the average grain size is about 45μm and about 5 times larger than a typical un-doped UO 2 pellet which has grain size of about 8∼10μm. That big difference in grain size is expected to cause a big difference in recycled U 3 O 8 powder morphology. Addition of U 3 O 8 to UO 2 leads to a drop in the pellet density, impeding a grain growth and the formation of graph- like pore segregates. Such degradation of the UO 2 pellet properties by adding the recycled U 3 O 8 powder depend on the U 3 O 8 powder properties. So, it is necessary to understand the property and its effect on the pellet of the recycled U 3 O 8 . This paper shows a preliminary result about the recycled U 3 O 8 powder which was obtained by

  2. Thermal reactions of uranium metal, UO 2, U 3O 8, UF 4, and UO 2F 2 with NF 3 to produce UF 6

    Science.gov (United States)

    McNamara, Bruce; Scheele, Randall; Kozelisky, Anne; Edwards, Matthew

    2009-11-01

    This paper demonstrates that NF 3 fluorinates uranium metal, UO 2, UF 4, UO 3, U 3O 8, and UO 2F 2·2H 2O to produce the volatile UF 6 at temperatures between 100 and 550 °C. Thermogravimetric and differential thermal analysis reaction profiles are described that reflect changes in the uranium fluorination/oxidation state, physiochemical effects, and instances of discrete chemical speciation. Large differences in the onset temperatures for each system investigated implicate changes in mode of the NF 3 gas-solid surface interaction. These studies also demonstrate that NF 3 is a potential replacement fluorinating agent in the existing nuclear fuel cycle and in actinide volatility reprocessing.

  3. The production of sinterable UO2 from AUC

    International Nuclear Information System (INIS)

    Chang, I.S.; Do, J.B.; Choi, Y.D.; Park, M.H.; Yun, H.H.; Kim, E.H.; Kim, Y.W.

    1982-01-01

    Fluidization, feeding and discharging, and mixing of fine particles (-up to 40μ in diameter) in fluidized bed reactor has been examined. The degree of conversion has been estimated using the kinetic data differential scanning colorimetry(DSC) and thermogravimetic analysis (TGA) of ammonium uranyl carbonate (AUC) and residence time distribution data. Satisfactory operation is obtained with a sintered ceramic distributor and filters. The reactor equilvalent to approximately 1.1-1.3 stages. Thermal analysis of AUC in hydrogen atmosphere shows that the decomposition of AUC to UO 3 at 200degC is followed by reduction of UO 3 to UO 2 in two steps in the range between 400degC and 500degC and the complete conversion to UO 2 takes two minutes at 550degC. The overall conversion of above 99.5% in the fluidized bed reactor is estimated with 40 minutes of a mean particle residence time at 600degC. (Author)

  4. Creep of UO2 at 25000C

    International Nuclear Information System (INIS)

    Slagle, O.D.

    1977-01-01

    Until an improved high temperature relationship is available, the previously derived low temperature relationship is a reasonable means for predicting the creep rates of UO 2 at 2500 0 C. The activation energy determined for creep at 2500 0 C is at least two times larger than that measured previously at the lower temperature. Stress induced grain growth under uniaxial compression at high temperatures in UO 2 results in preferential growth of grains having a cube axis closely aligned with the stress axis

  5. Geometrical dimensioning of PWR UO2 pellets

    International Nuclear Information System (INIS)

    Silva, A.T.

    1988-08-01

    The finite element structural program SAP-IV is used to calculate UO 2 pellet strains developed under thermal gradients in pressurized water reactors. The applied procedure allows to analyse the influence of various aspects of pelet geometry on cladding strains and can be utilized for the dimensioning of UO 2 pellets. Pellets purchased with flat ends, with dishes pressed into both ends, shouders, and a 45-deg edge chamfer are analysed. The analyse results are compared with experiemtnal data. (author) [pt

  6. TCA UO2/MOX core analyses

    International Nuclear Information System (INIS)

    Tahara, Yoshihisa; Noda, Hideyuki

    2000-01-01

    In order to examine the adequacy of nuclear data, the TCA UO 2 and MOX core experiments were analyzed with MVP using the libraries based on ENDF/B-VI Mod.3 and JENDL-3.2. The ENDF/B-VI data underpredict k eff values. The replacement of 238 U data with the JENDL-3.2 data and the adjustment of 235 ν-value raise the k eff values by 0.3% for UO 2 cores, but still underpredict k eff values. On the other hand, the nuclear data of JENDL-3.2 for H, O, Al, 238 U and 235 U of ENDF/B-VI whose 235 ν-value in thermal energy region is adjusted to the average value of JENDL-3.2 give a good prediction of k eff . (author)

  7. A Feasibility Study on UO2/ZrO2 Mixture Melting using Induction Skull Melting Method

    International Nuclear Information System (INIS)

    Hong, S. W.; Kim, J. H.; Kim, H. D.

    1998-01-01

    Using ISM(Induction Skull Melting) method, which is usually used for the crystallization of refractory materials, a feasibility study on melting of the UO 2 /ZrO 2 mixture(w/o 8:2) is carried out. Frequency, one of main design parameters for ISM, is determined from electrical resistance of UO 2 /ZrO 2 mixture. Heat loss from the crucible for UO 2 /ZrO 2 20kg melting is predicted by comparison with the existing experimental data for UO , ZrO 2 , and ThO 2 . The analysis shows that melting and superheating of the UO 2 /ZrO 2 mixture using induction skull melting method is possible. To attain the superheat of 300K for 20 kg of UO 2 /ZrO 2 , 100kHz, 100 kW power input for induction coil, and 570L/min coolant flow rate are found to be required. The results of this feasibility study will be adopted for designing UO 2 /ZrO 2 furnace using actual corium material at KAERI

  8. Irradiation of UO2+x fuels in the TANOX device

    International Nuclear Information System (INIS)

    Dehaudt, P.; Caillot, L.; Delette, G.; Eminet, G.; Mocellin, A.

    1998-01-01

    The TANOX analytical irradiation device is presented and the first results concerning stoichiometric and hyper stoichiometric uranium dioxide fuels with two different grain sizes are given. The TANOX device is designed to obtain rapidly significant burnups in fuels at relatively low temperatures. It is placed at the periphery of the SILOE reactor and translated to adjust the irradiation power. The continuous measure of the centre-line temperature allows to control the experiment and to evaluate the thermal behaviour of the rods. A TANOX fuel rod has a length of 100 mm with 20 fuel pellets in a stainless steel cladding and is inserted in a thick aluminium alloy overcladding which is cooled by the primary water circuit reactor. These conditions of small size pellets and improved thermal exchanges have been designed to dissipate the heat power due to fission densities three to five times higher than in a PWR. The first analytical irradiation was devoted to the study of UO 2.00 , UO 2.01 and UO 2.02 fuels with standard and large grain sizes obtained by annealing. A burnup of about 9000 MWd.t -1 U was reached in these fuels. The thermal analysis shows a degraded conductivity for the UO 2.02 fuel rod due to the hyper stoichiometry. The released fractions of 85 Kr during irradiation are negligible as expected (lower than 0,1%). Some of the pellets were heat treated at 1700 deg. C for 5 hours. The gas release was analysed after 30 minutes and at the end of the treatment. The main results are as follows: the fission gas release (FGR) of the standard UO 2 varies from one sample to another; the FGR of the hyper stoichiometric fuels is of the same order of magnitude than that of the stoichiometric UO 2 fuel of normal grain sizes; the grain size increase has no effect on FGR for UO 2.00 but considerably decreases the FGR for UO 2.01 and UO 2.02 fuels. These heat treated samples are also observed to characterize the inter- and intragranular fission gas bubbles. (author)

  9. Defect trap model of gas behaviour in UO2 fuel during irradiation

    International Nuclear Information System (INIS)

    Szuta, A.

    2003-01-01

    Fission gas behaviour is one of the central concern in the fuel design, performance and hypothetical accident analysis. The report 'Defect trap model of gas behaviour in UO 2 fuel during irradiation' is the worldwide literature review of problems studied, experimental results and solutions proposed in related topics. Some of them were described in details in the report chapters. They are: anomalies in the experimental results; fission gas retention in the UO 2 fuel; microstructure of the UO 2 fuel after irradiation; fission gas release models; defect trap model of fission gas behaviour; fission gas release from UO 2 single crystal during low temperature irradiation in terms of a defect trap model; analysis of dynamic release of fission gases from single crystal UO 2 during low temperature irradiation in terms of defect trap model; behaviour of fission gas products in single crystal UO 2 during intermediate temperature irradiation in terms of a defect trap model; modification of re-crystallization temperature of UO 2 in function of burnup and its impact on fission gas release; apparent diffusion coefficient; formation of nanostructures in UO 2 fuel at high burnup; applications of the defect trap model to the gas leaking fuel elements number assessment in the nuclear power station (VVER-PWR)

  10. Characterization of Compaction Process on UO2 Powder Pelletisation

    International Nuclear Information System (INIS)

    Rachmawati, M; Langenati, R; Saputra, T.T; Mahpudin, A; Histori; Sutarya, D; Zahedi

    1998-01-01

    Determination of compaction pressure of pelletization which is based on density characterization in conjunction with satisfactory green strength of the UO 2 pellet, is carried out in this experiment. Cameco UO 2 powder has been mixed up with Zn-stearate lubricant prior to compaction process. The compaction pressure is varied from the range of 2 Mp up to 6 Mp. The mechanical strength is determined using diametral compression strength with the speed of loading of 0.1 mm.min 1 . The density measurement and compression strength test are performed on each of the applied pressure. The result shows that compaction at 5 Mp gives the maximum green strength of UO 2 pellet, while the maximum density is achieved at 5.7 Mp. The maximum green strength and green density of UO 2 (+ TiO 2 ) pellets is achieved at the addition of 0.25% and 0.125% TiO 2 respectively. The compaction pressure which is showing the maximum pellet green strength but still having the required density, is chosen to be the determinant compaction pressure in condition of pelletization

  11. A Knowledge- Based Computer System for UO2 Characterization According to ASTM Requirements

    International Nuclear Information System (INIS)

    Afifi, Y.K.; El-Hakim, E.

    2000-01-01

    The uranium dioxde (UO 2 ) powder properties and the pellets fabrication processes determine the characteristics of the sintered UO 2 pellets. The powder properties include chemical and physical characteristics. The physical and chemical properties of UO 2 powder are normally checked to ensure consistency and reproducibility of the sintered UO 2 pellets. Powder characteristics are known to influence the subsequent manufacturing performance or the fuel properties. The aim of this paper is to provide the nuclear industry with a program dealing with the processes and the related requirements to determine the specifications of UO 2 powder according to the American Standards for Testing and Materials (ASTM). This program covers the physical and chemical characteristics of UO 2 powder. A group of logic flow charts dealing with the data and information available in the ASTM for each step in the characterization of UO 2 powder process and the technical assistance are constructed. These logic flow charts are collected to form a module of the software to qualify the UO 2 powder. The program contains 8 modules, each one deals with one object. This program saves time, is also considered as a collective schema for all the required UO 2 powder characterization and the related processes, and could be used as a training tool for less skilled personnel involved in UO 2 powder characterization laboratories

  12. PROCESS FOR THE PRODUCTION OF AN ACTIVATED FORM OF UO$sub 2$

    Science.gov (United States)

    Polissar, M.J.

    1957-09-24

    A process for producing a highly active form of UO/sub 2/ characterized both by rapid oxidation in air and by rapid chlorination with CCl/sub 4/ vapor at an elevated temperature is reported. In accordance with the process, commercial UO/sub 2/, is subjected to a series of oxidation-reduction operations to produce a form of UC/sub 2/ of enhanced reactivity. By treatimg commercial UO/sub 2/ at a temperature between 335 and 485 deg C with methane, then briefly with an oxygen containing gas and followimg this by a second treatment with a methane containing gas, the original relatively stable charge of UO/sub 2/ will be transformed into an active form of UO/sub 2/.

  13. Study on the retention of enriched UO2F2 in the mouse and its radiogenotoxicological effects

    International Nuclear Information System (INIS)

    Hu Qiyue; Zhu Shoupeng

    1991-06-01

    The study on toxicological effects of enriched UO 2 F 2 was undertaken in purebred BALB/c male mice to examine: (a) the retention in body; (b) the testicular clearance; (c) the effect of sperm abnormality; (d) the effect of chromosomal aberrations in spermatogonia and primary spermatocytes; and (e) the effect of DNA damage in germ cells in various spermiogenic stages. Results show that enriched UO 2 F 2 mainly deposited in the kidneys, then the skeleton and liver. The amount of enriched UO 2 F 2 depositing in other tissues was small. Enriched UO 2 F 2 was similar to the natural uranium in transference and retention in the body. The testis had efficient clearance of enriched UO 2 F 2 . Enriched UO 2 F 2 could result in sperm abnormality. Even with the same treating does but at different treating time the rates of sperm abnormality were different. Enriched UO 2 F 2 could result in chromosomal aberrations in spermatogonia and primary spermatocytes. The important type of aberrations in spermatogonia was break. For primary spermatocytes the most significant aberration was multivalents. Enriched UO 2 F 2 could also result in DNA breakage in germ cells. The sensitivity of mouse germ cells at various stages to enriched UO 2 F 2 was different. There was a linear relationship between the amount of sperm DNA eluted and enriched UO 2 F 2 dose

  14. A calorimetric and thermodynamic investigation of A2[(UO2)2(MoO4)O2] compounds with A = K and Rb and calculated phase relations in the system (K2MoO4 + UO3 + H2O)

    International Nuclear Information System (INIS)

    Lelet, Maxim I.; Suleimanov, Evgeny V.; Golubev, Aleksey V.; Geiger, Charles A.; Bosbach, Dirk; Alekseev, Evgeny V.

    2015-01-01

    Highlights: • We determined the low temperature heat capacity of A 2 [(UO 2 ) 2 (MoO 4 )O 2 ] compounds with A = K and Rb. • We determined enthalpy of formation of K 2 [(UO 2 ) 2 (MoO 4 )O 2 ] by HF solution calorimetry. • We calculated Δ f G° (T = 298 K) of all phases from studied series. • Using obtained data we performed a thermodynamic modelling in the system (K 2 MoO 4 + UO 3 + H 2 O). - Abstract: A calorimetric and thermodynamic investigation of two alkali-metal uranyl molybdates with general composition A 2 [(UO 2 ) 2 (MoO 4 )O 2 ], where A = K and Rb, was performed. Both phases were synthesized by solid-state sintering of a mixture of potassium or rubidium nitrate, molybdenum (VI) oxide and gamma-uranium (VI) oxide at high temperatures. The synthetic products were characterised by X-ray powder diffraction and X-ray fluorescence methods. The enthalpy of formation of K 2 [(UO 2 ) 2 (MoO 4 )O 2 ] was determined using HF-solution calorimetry giving Δ f H° (T = 298 K, K 2 [(UO 2 ) 2 (MoO 4 )O 2 ], cr) = −(4018 ± 8) kJ · mol −1 . The low-temperature heat capacity, C p °, was measured using adiabatic calorimetry from T = (7 to 335) K for K 2 [(UO 2 ) 2 (MoO 4 )O 2 ] and from T = (7 to 326) K for Rb 2 [(UO 2 ) 2 (MoO 4 )O 2 ]. Using these C p ° values, the third law entropy at T = 298.15 K, S°, is calculated as (374 ± 1) J · K −1 · mol −1 for K 2 [(UO 2 ) 2 (MoO 4 )O 2 ] and (390 ± 1) J · K −1 · mol −1 for Rb 2 [(UO 2 ) 2 (MoO 4 )O 2 ]. These new experimental results, together with literature data, are used to calculate the Gibbs energy of formation, Δ f G°, for both phases giving: Δ f G° (T = 298 K, K 2 [(UO 2 ) 2 (MoO 4 )O 2 ], cr) = (−3747 ± 8) kJ · mol −1 and Δ f G° (T = 298 K, Rb 2 [(UO 2 ) 2 (MoO 4 )], cr) = −3736 ± 5 kJ · mol −1 . Smoothed C p °(T) values between 0 K and 320 K are presented, along with values for S° and the functions [H°(T) − H°(0)] and [G°(T) − H°(0)], for both phases. The

  15. Experimental investigations into the spectral reflectivity and emissivity of liquid UO2, UC, ThO2, and Nd2O3

    International Nuclear Information System (INIS)

    Karow, H.U.; Bober, M.

    1979-01-01

    Fast reactor safety research requires knowledge of emissivity data of nuclear fuel materials up to temperatures of the liquid state. A special integrating sphere laser reflectometer has been used to measure the normal reflectivity and emissivity of UO 2 , UC, ThO 2 , and in addition of Nd 2 O 3 in the solid state (premolten, refrozen material) and in the liquid state up to temperatures of 4000 to 4800 K. The measuring wavelengths have been 0.63 μm and 10.6 μm. The emissivity curves of the oxidic specimens measured at 0.63 μm show the same characteristic course: little temperature dependence below the melting point, distinct increase in the liquid state. In the case of UO 2 the emissivity at the melting point (3120 K) is 0.84, at 4100 K it is 0.92. At 10.6 μm, a decrease has been measured for the liquid state of UO 2 and ThO 2 . UC shows in the solid and in the liquid state only a small temperature dependence with a marked drop, however, at the melting point (2780 K) from 0.54 to 0.45. The measuring results are presented by diagrams and by fit equations related to the true and the black temperature, respectively. (orig./HP) [de

  16. Vapor deposition of large area NpO2 and UO2 deposits

    International Nuclear Information System (INIS)

    Adair, H.L.; Gibson, J.R.; Kobisk, E.H.; Dailey, J.M.

    1976-01-01

    Deposition of NpO 2 and UO 2 thin films over an area of 7.5 to 10 cm diam has become a routine operation in preparation of fission chamber plates. Vacuum evaporation or electroplating has been used for this purpose. The ''paint brush'' technique has been used as well; however, uniformity requirements normally eliminate this procedure. Vapor deposition in vacuum appears to be the most suitable technique for preparing NpO 2 and UO 2 deposits of >200 cm 2 . This paper describes the procedures used in preparing uniform large area deposits of NpO 2 (approximately 300 cm 2 ) and UO 2 (approximately 2000 cm 2 ) by vacuum evaporation using electron bombardment heating and several substrate motion and heating methods to achieve uniformity and adhesion

  17. Sinterability of mixtures of UO2 of different morphological features

    International Nuclear Information System (INIS)

    Villegas de Maroto, Marina; Celora de Lavagnino, Julia; Marajofsky, Adolfo; Leyva, A.G.

    1981-01-01

    The reprocessing of scrap in the production of UO2 pellets, is important from an economical view-point of the fuel cycle. The recovery method by means of a humid process, tested for UO2 scrap, includes the dissolution of the pellets in a nitric media at boiling point, the precipitation of ammonium diuranates (ADU) and its conversion into UO2 at 600 deg C. The microestructural results and the sintering density of the pellets produced in these tests are compared. It is shown that, although the addition of said UO2 powders impaires the performance of the original mixture produced by the factory, the results thus obtained are, nevertheless, within specifications. This facts show that the mixture would then be able for production. (M.E.L.) [es

  18. A new UO2 sintering technology for the recycling of defective fuel pellets

    International Nuclear Information System (INIS)

    Song, K. W.; Kim, K. S.; Jeong, Y. H.

    1998-01-01

    A new UO 2 sintering technology to recycle defective UO 2 pellets has been developed. The defective UO 2 pellets were oxidized in an air to produce U 3 O 8 powder, and the U 3 O 8 powder was mixed with fresh AUC-UO 2 powder in the range of 10 to 100 wt%. Nb 2 O 5 and TiO 2 are added to the mixed powder. The mixed powder was pressed and sintered at 1680 deg C for 4 hours in hydrogen. The density of UO 2 pellets without sintering agents decreased linearly with the U 3 O 8 content at the rate of 0.2 %TD per 1 wt% U 3 O 8 , and the density was below 93.5 %TD at the U 3 O 8 contents above 10 wt%. However, the mixed UO 2 and U 3 O 8 powder containing Nb 2 O 5 (≥0.3 wt%) and TiO 2 (≥0.1 wt%) yielded a sintered density above 94 %TD in all ranges of U 3 O 8 contents. It was found that higher mixing ratios of U 3 O 8 to UO 2 powder did not affect the grain size of UO 2 pellets under the addition of Nb 2 O 5 , but decreased the grain size of UO 2 pellets under the addition of TiO 2 . The doped UO 2 pellets have grain sizes larger than 20 μm, and have small density gain after re-sintering test, owing to large pores. Therefore, the sintering agents such as Nb 2 O 5 and TiO 2 can make highly densified UO 2 pellets from the powder comprising a large amount of U 3 O 8 powder

  19. Boiling point measurements on liquid UO2

    International Nuclear Information System (INIS)

    Bober, M.; Singer, J.; Trapp, M.

    1986-01-01

    In analogy to the classic boiling point method, a quasi-stationary millisecond laser-heating technique was applied to measure the saturated-vapour pressure curve of liquid UO 2 in the temperature range of 3500 to 4500 K. The result is represented by log p(MPa) 5.049 -23042/T(K) according to an average heat of vaporization of 441 kJ/mol and a normal boiling point of 3808 K. Besides, spectral emissivities of liquid UO 2 were measured at the pyrometer wavelengths of 752 and 1064 nm. (author)

  20. UO2: production based on two alternative lines

    International Nuclear Information System (INIS)

    Coppa, R.C.; Martin, H.R.

    1987-01-01

    The production of the uranium dioxide (UO 2 ) is carried out at the Cordoba factory, of the Argentine National Atomic Energy Commission, by the uranil carbonate method (AUC). The commercial uranium concentrates (yellow cake) is dissolved with HNO 3 and purificated with tributil phosphate (TBP). The pure uranium compound coming from the reextraction, is concentrated to 0.4 Kg U/l, then the precipitation with CO 2 and NH 3 gives the AUC crystalls. After conversion of AUC to UO 2 powder, the pellets are obtained by direct compacting. In the second experimental method used by CNEA, the yellow cake is dissolved with H 2 SO 4 , and then it is purified with a terciary amine and precipitated with (NH 4 ) 2 CO 3 . In this form the ammonium uranil tri-carbonate (AUT) crystals are obtained. The convertion to UO 2 is made under an atmosphere of dissociated NH 3 . (M.E.L.) [es

  1. Molybdenum-UO2 cerment irradiation at 1145 K

    Science.gov (United States)

    Mcdonald, G.

    1971-01-01

    Two molybdenum-UO2 cermet fuel pins were fission heated in a helium-cooled loop at a temperature of 1145 K and to a total burnup of 5.3 % of the U-235. After irradiation the fuel pins were measured to check dimensional stability, punctured at the plenums to determine fission gas release, and examined metallographically to determine the effect of irradiation. Burnup was determined in several sections of the fuel pin. The results of the postirradiation examination indicated: (1) There was no visible change in the fuel pins on irradiation under the above conditions. (2) The maximum swelling of the fuel pins was less than 1%. (3) There was no migration of UO2 and no visible interaction between the molybdenum and the UO2. (4) Approximately 12% of the fission gas formed was released from the cermet cone into the gas plenum.

  2. Dissolution kinetics of UO2: Flow-through tests on UO2.00 pellets and polycrystalline schoepite samples in oxygenated, carbonate/bicarbonate buffer solutions at 25 degree C

    International Nuclear Information System (INIS)

    Nguyen, S.N.; Weed, H.C.; Leider, H.R.; Stout, R.B.

    1991-10-01

    The modelling of radionuclide release from waste forms is an important part of the performance assessment of a potential, high-level radioactive waste repository. Since spent fuel consists of UO 2 containing actinide elements and other fission products, it is necessary to determine the principal parameters affecting UO 2 dissolution and quantify their effects on the dissolution rate before any prediction of long term release rates of radionuclides from the spent fuel can be made. As part of a complex matrix to determine the dissolution kinetics of UO 2 as a function of time, pH, carbonate/bicarbonate concentration and oxygen activity, we have measured the dissolution rates at 25 degrees C of: (1) UO 2 pellets; (2) UO 2.00 powder and (3) synthetic dehydrated schoepite, UO 3 .H 2 O using a single-pass flow through system in an argon-atmosphere glove box. Carbonate, carbonate/bicarbonate, and bicarbonate buffers with concentrations ranging from 0.0002 M to 0.02 M and pH values form 8 to 11 have been used. Argon gas mixtures containing oxygen (from 0.002 to 0.2 atm) and carbon dioxide (from 0 to 0.011 atm) were bubbled through the buffers to stabilize their pH values. 12 refs., 2 tabs

  3. Characterisation and compaction behaviour of UO2 powder prepared from ADU and AUC

    International Nuclear Information System (INIS)

    Rachmawati, M.

    2000-01-01

    UO 2 powder prepared from ADU and AUC route process are characterised primarily in terms of compaction and sintering behaviour. Scientific understanding of the phenomena will give useful information leading to processing and product improvement. The investigation has been done by characterising the particle size/shape distribution using SEM and compacting the powder at 4 and 5.4 tons/cm 2 . The behaviour of the powder under compaction is observed by characterizing the pellet length, green density, microstructure, and the compression strength using micrometer SEM, and Universal Testing Machine. The results of the experiment show that the UO 2 powder ex-AUC has particles of spherical type and separate individually which provide the flowable characteristic, important for the die filling aspect during compaction step. The UO 2 powder ex-ADU is more or less agglomerated and contains very fine particles causing the difficulty in pressing. Therefore the green density resulted from UO 2 ex-AUC (6.415 g/cm 3 ) is higher than UO 2 powder of UO 2 ex-ADU (6.117 g/cm 3 . UO 2 at lower pressure (4 tons/cm 3 ) the compression strength ex-AUC green pellet (47.144 kgf) is lower than UO 2 ex-ADU (63,364 kgf), and at higher temperature the compression strength of ex-AUC (92.86 kgf) is higher than UO 2 ex-ADU (82.664 kgf). It is suggested that UO 2 ex-ADU has to be precompacted and granulated in order to increase its flowability so that the pellet length can easily be controlled during pressing (improve reproducibility). (author)

  4. Effect of alpha irradiation on UO2 surface reactivity in aqueous media

    International Nuclear Information System (INIS)

    Jegou, C.; Muzeau, B.; Broudic, V.; Poulesquen, A.; Roudil, D.; Jorion, F.; Corbel, C.

    2005-01-01

    The option of direct disposal of spent nuclear fuel in a deep geological formation raises the need to investigate the long-term behavior of the UO 2 matrix in aqueous media subjected to α-β-γ radiation. The β-γ emitters account for most of the activity of spent fuel at the moment it is removed from the reactor, but diminish within a millennial time frame by over three orders of magnitude to less than the long-term activity. The latter persists over much longer time periods and must therefore be taken into account over a geological disposal time scale. Leaching experiments with solution renewal were carried out on UO 2 pellets doped with alpha emitters ( 238 Pu and 239 Pu) to quantify the impact of alpha irradiation on UO 2 matrix alteration. Three batches of doped UO 2 pellets with different alpha flux levels (3.30 x 10 4 , 3.30 x 10 5 , and 3.2 x 10 6 α cm -2 s -1 ) were studied. The results obtained in aerated and deaerated media immediately after sample annealing or interim storage in air provide a better understanding of the UO 2 matrix alteration mechanisms under alpha irradiation. Interim storage in air of UO 2 pellets doped with alpha emitters results in variations of the UO 2 surface reactivity, which depends on the alpha particle flux at the interface and on the interim storage duration. The variation in the surface reactivity and the greater uranium release following interim storage cannot be attributed to the effect of alpha radiolysis in aerated media since the uranium release tends toward the same value after several leaching cycles for the doped UO 2 pellet batches and spent fuel. Oxygen diffusion enhanced by alpha irradiation of the extreme surface layer and/or radiolysis of the air could account for the oxidation of the surface UO 2 to UO 2+x . However, leaching experiments performed in deaerated media after annealing the samples and preleaching the surface suggest that alpha radiolysis does indeed affect the dissolution, which varies with the

  5. Methods of modification and investigations of properties of fuel UO2

    International Nuclear Information System (INIS)

    Kurina, I.; Popov, V.; Rogov, S.; Dvoryashin, A.; Serebrennikova, O.

    2009-01-01

    In the SSC RF-IPPE the researches are carried out directed towards the uranium dioxide fuel pellets modification with the purpose of improvement of their performance parameters (increase of thermal conductivity, growth of grain for decrease gas release, decrease of interaction with coolant). The following technological methods of manufacturing of modified pellets UO 2 were used: 1) The water method including precipitation of Ammonium Polyuranate (APU) with manufacturing of simultaneously coarse and super dispersed particles, and also coprecipitation APU with additives (Cr, Ti, etc.), with the after calcination of powders, reduction to UO 2 pressing and sintering of pellets; 2) A method including addition of chemical reagent containing ammonia to the powder UO 2 manufactured under the dry or water technology; mechanical mixture; pressing and sintering of pellets. Application of the specified up methods makes manufacturing the UO 2 fuel pellets having the properties differing from pellets manufactured by industrial technology. Conclusions: 1) Properties of powders and the pellets manufactured by different technologies considerably differ; 2) Precipitate manufactured by water industrial technology, consists of phase NH 3 ·3UO 3 ·5H 2 O whereas the precipitate manufactured by nanotechnology contains in addition phase NH 3 ·2UO 3 ·3H 2 O; 3) Powders of U 3 O 8 manufactured by water nanotechnology have particles size 300-500 nm and ultra dispersive particles size ∼70-75 nm; 4) Powder UO 2 obtained by water nanotechnology differs by greater activity because all phase changes under oxidation result at lower temperatures; 5) Basic differences of properties of modified UO 2 pellets was established: decreasing of defects inside and on grains boundaries, minor porosity (pore size 0,05-0,5 μm), presence of pore of spherical form, presence of additional chemical bond U-U (presence of metal clusters), polyvalence of U; 6) Methods including addition of Cr and Ti under

  6. Development of an empirical interatomic potential for the Ag–Ti system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ying, E-mail: y.zhou3@lboro.ac.uk [Department of Mathematical Sciences, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Smith, Roger [Department of Mathematical Sciences, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Kenny, Steven D. [Department of Materials, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Lloyd, Adam L. [Department of Mathematical Sciences, Loughborough University, Leicestershire LE11 3TU (United Kingdom)

    2017-02-15

    Highlights: • A new modified embedded-atom method interatomic potential for Ag and Ti was developed. • Binding energies for various configurations were calculated using SIESTA and were used as the fitting target. • Two mixing rules for the embedded-atom method based on the same elemental potentials were also investigated. • The results showed that the MEAM with the optimised parameters gives the best agreement to the DFT results. - Abstract: Two interatomic potential mixing rules for the Ti–Ag system were investigated based on the embedded-atom method (EAM) elemental potentials. First principles calculations were performed using SIESTA for various configurations of the Ti–Ag system to see which model best fitted the ab initio results. The results showed that the surface energies, especially that of Ti, were not well fitted by either model and the surface binding energies differed from the ab initio calculations. As a result, the modified embedded-atom method (MEAM) was investigated. In contrast to the other models, surface energies for pure Ti calculated by MEAM were in good agreement with the experimental data and the ab initio results. The MEAM mixing rule was used to investigate Ag ad-atoms on Ti and Ti ad-atoms on Ag. The results showed good agreement with SIESTA after parameter optimisation.

  7. Synthesis and sintering of UN-UO{sub 2} fuel composites

    Energy Technology Data Exchange (ETDEWEB)

    Jaques, Brian J., E-mail: BrianJaques@BoiseState.edu [Department of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Watkins, Jennifer; Croteau, Joseph R.; Alanko, Gordon A. [Department of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Tyburska-Püschel, Beata [Department of Engineering Physics, University of Wisconsin–Madison, 1500 Engineering Dr., Madison, WI 53706 (United States); Meyer, Mitch [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Xu, Peng; Lahoda, Edward J. [Westinghouse Electric Company LLC, Pittsburgh, PA 15235 (United States); Butt, Darryl P., E-mail: DarrylButt@BoiseState.edu [Department of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States)

    2015-11-15

    The design and development of an economical, accident tolerant fuel (ATF) for use in the current light water reactor (LWR) fleet is highly desirable for the future of nuclear power. Uranium mononitride has been identified as an alternative fuel with higher uranium density and thermal conductivity when compared to the benchmark, UO{sub 2}, which could also provide significant economic benefits. However, UN by itself reacts with water at reactor operating temperatures. In order to reduce its reactivity, the addition of UO{sub 2} to UN has been suggested. In order to avoid carbon impurities, UN was synthesized from elemental uranium using a hydride-dehydride-nitride thermal synthesis route prior to mixing with up to 10 wt% UO{sub 2} in a planetary ball mill. UN and UN – UO{sub 2} composite pellets were sintered in Ar – (0–1 at%) N{sub 2} to study the effects of nitrogen concentration on the evolved phases and microstructure. UN and UN-UO{sub 2} composite pellets were also sintered in Ar – 100 ppm N{sub 2} to assess the effects of temperature (1700–2000 °C) on the final grain morphology and phase concentration.

  8. Evaluation of the effective thermal conductivity of UO{sub 2} fuel by combining Potts model and finite difference method

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jae-Yong, E-mail: tylor@kaeri.re.kr [Korea Atomic Energy Research Institute, Daedeok-daero 1045, Yuseong, Daejeon 305-353 (Korea, Republic of); Koo, Yang-Hyun; Lee, Byung-Ho; Tahk, Young-Wook [Korea Atomic Energy Research Institute, Daedeok-daero 1045, Yuseong, Daejeon 305-353 (Korea, Republic of)

    2011-07-15

    This paper evaluated the effects of porosity on the effective thermal conductivity of UO{sub 2} fuel by combining the Potts model and the finite difference method (FDM). Two types of microstructures representing irradiated UO{sub 2} microstructures were simulated by the Potts model in the three dimensional cubic system. One represented very small intragranular bubbles and a few intergranular bubbles under a low temperature condition. The other represented large intergranular bubbles under a high temperature or annealing condition. For the simulated microstructures, the effective thermal conductivities were determined by FDM calculation of the temperature distributions under steady state condition. They were compared with an experimental equation and the effect of bubble morphology was investigated by fitting a porosity shape factor in the Maxwell-Eucken equation. The simulation results showed a good agreement with an experimental equation and demonstrated the capability of the Potts model to provide information on microstructure for calculating the effective thermal conductivity of UO{sub 2} fuel.

  9. Oxidation of UO2 at 150 to 3500C

    International Nuclear Information System (INIS)

    White, G.D.; Knox, C.A.; Gilbert, E.R.; Johnson, A.B. Jr.

    1983-07-01

    Oxidation of UO 2 through breached LWR spent fuel rods during interim storage in air atmospheres is a potential mechanism for degradation of cladding integrity. The temperature-time range of published data are inadequate to establish long term behavior under dry storage conditions. Consequently, tests are being conducted in the temperature range of 150 to 350 0 C on unirradiated pellets to evaluate fuel oxidation behavior. The tests have revealed significant-to-minor oxidation at temperatures down to 200 0 C and no measurable oxidation at 150 0 C for times up to 3000 hours. Oxidation at 200 0 C for 2000 hours led to formation of low density particulate U 3 O 8 which destroys pellet integrity. Oxidation of UO 2 pellets at 215 and 250 0 C was signifcantly accelerated by the presence of 1 volume percent NO 2 in the air. NO 2 is a potential constituent of the air, forming by radiolysis in the gamma radiation field associated with spent fuel assemblies. NO 2 reaction with UO 2 pellets leads to accelerated formation of UO 3 and pellet disintegration. 11 references, 15 figures

  10. Preparation of high density (8 to 9) uranium oxide UO2

    International Nuclear Information System (INIS)

    Eichner, C.; Ertaud, A.; Ortel, Y.; Stohr, J.; Vautrey, L.

    1948-10-01

    This report describes the process elaborated for the preparation of high density UO 2 . The thermal decomposition of uranium peroxide leads to UO 3 which is reduced by an hydrogen flow to obtain UO 2 . A UO 2 powder of good quality is obtained for temperatures below 650 deg. C. The powder is pulverized to obtain an homogeneous grain size and compressed inside a die to make pellets. Pellets are sintered up to 1600 deg. C in a reducing atmosphere and following a temperature rise law of 150 deg. C/hour. The equipment used (furnaces, gases purifier, control equipment, power supplies, thermoregulation systems) is described at the end. (J.S.)

  11. Simulations and Experimental Measurements of UO2 Thermal Conductivity

    International Nuclear Information System (INIS)

    Stanek, Christopher Richard; Gofryk, Krzysztof; Tonks, Michael; Andersson, Anders David Ragnar; Liu, Xiang-Yang; Lashley, Jason Charles; Uberuaga, Blas P.; Mcclellan, Kenneth James

    2015-01-01

    Spin-phonon interactions lead to low @@ of UO 2 (and behave like a defect), and this has implications for nuclear fuel performace. The inability to capture spin-phonon scattering leads to inherent errors. The interplay between magnetism and structural asymmetry in UO 2 displays rich physics. Grain boundary structure plays a role which must be taken into account.

  12. Production and release of the fission gas in (Th U)O2 fuel rods

    International Nuclear Information System (INIS)

    Dias, Marcio S.

    1982-06-01

    The volume, composition and release of the fission gas products were caculated for (Th, U)O 2 fuel rods. The theorectical calculations were compared with experimental results available on the literature. In ThO 2 + 5% UO 2 fuel rods it will be produced approximated 5% more fission gas as compared to UO 2 fuel rods. The fission gas composition or Xe to Kr ratio has showed a decreasing fuel brunup dependence, in opposition to that of UO 2 . Under the same fuel rod operational conditions, the (Th, U)O 2 fission gas release will be smaller as compared to UO 2 . This behaviour of (Th, U)O 2 fuel comes from smallest gas atom difusivity and higher activation energies of the processes that increase the fission gas release. (Author) [pt

  13. Contribution of the study of a nuclear reactor accident: residual power aspects and thermodynamic of U-UO_2 and UO_2-ZrO_2 systems

    International Nuclear Information System (INIS)

    Baichi, Mehdi

    2001-01-01

    This work is a contribution to the study of early delocalization and fission product releases during the formation of corium coming from a nuclear reactor accident. The first part deals with an analysis of corium cooling. The contribution to the power of each corium element has been calculated with time. The main elements are represented but the addition of Pu, Mo and Nb has been proposed. The last release experimental data taken into account result in a loss of residual power of 25% exclusive of corium between the emergency stop and ten days. The second part deals with the early delocalization observed during Vercors experiments. A critical selection on the U-UO_2 and UO_2-ZrO_2 systems has been carried out. In order to complete the small and inconsistent data, thermodynamic activity measurements have been performed by mass spectrometry. The UO_2 activity on UO_2-ZrO_2 presents a positive deviation from ideality at 2200 K and approximates ideality at 2400 K. All the data have been used for optimizing the systems with Thermo-Calc. This work has allowed to calculate the ternary systems and to define the required approach to analyze the metallic phase and corium oxides densities. (author) [fr

  14. Measurement of thermal conductivity of sintered UO{sub 2} in the reactor; Merenje toplotne provodljivosti sinterovanog UO{sub 2} u reaktoru

    Energy Technology Data Exchange (ETDEWEB)

    Katanic, J; Stevanovic, M [Institute of Nuclear Sciences Vinca, Beograd (Serbia and Montenegro)

    1965-10-15

    Thermal conductivity is considered one of the fundamental properties of sintered UO{sub 2} fuel. Samples should be tested under real core conditions. This paper covers the methods and instruments for thermal conductivity measurement of UO{sub 2} samples in the reactor core, measurements outside the core under conditions similar to those in the core and outside the core after irradiation. Fuel samples are placed in capsules for irradiation in the reactor in-core loops.

  15. Electron probe micro-analysis of irradiated Triso-coated UO2 particles, (1)

    International Nuclear Information System (INIS)

    Ogawa, Toru; Minato, Kazuo; Fukuda, Kosaku; Ikawa, Katsuichi

    1983-11-01

    The Triso-coated low-enriched UO 2 particles were subjected to the post-irradiation electron probe micro-analysis. Observations and analyses on the amoeba effect, inclusions and solutes in the UO 2 matrix were made. In the cooler side of the particle which suffered extensive kernel migration, two significant features were observed: (1) the wake of minute particles, presumably UO 2 , left by the moving kernel in the carbon phase and (2) carbon precipitation in the pores and along the grain boundaries of the UO 2 kernel. Both features could be hardly explained by the gas-phase mechanism of carbon transport and rather suggest the solid state mechanism. Two-types of 4d-transition metal inclusions were observed: the one which was predominantly Mo with a fraction of Tc and another which was enriched with Ru and containing significant amount of Si. The Mo and Si were also found in the UO 2 matrix; the observation led to the discussion of the oxygen potential in the irradiated Triso-coated UO 2 particle. (author)

  16. Fabrication and testing of ceramic UO{sub 2} fuel - I-III. Part I; Izrada i ispitivanje keramickog goriva na bazi UO{sub 2}- I-III, I Deo

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, M [Institute of Nuclear Sciences Boris Kidric, Laboratorija za termotehniku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    The task described consists of the following: fabrication of UO{sub 2} with different granulation from uranyl nitrate by ammonia diuranate; determination of size and shape distributions of metal and ceramic powders; fabrication of sintered pressed samples UO{sub 2}; investigating the properties of sintered uranium dioxide dependent on the fabrication process; producing a vibrator for compacting UO{sub 2} powder. This volume includes reports on the first two tasks.

  17. Radiation damage of UO{sub 2} fuel; Radijaciono ostecenje UO{sub 2} goriva

    Energy Technology Data Exchange (ETDEWEB)

    Stevanovic, M; Sigulinski, F [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1966-11-15

    Radiation damage study of fuel and fuel elements covers: study of radiation damage methods in Sweden; analysis of testing the fuel and fuel elements at the RA reactor; feasibility study of irradiation in the Institute compared to irradiation abroad in respect to the reactor possibilities. Tasks included in this study are relater to testing of irradiated UO{sub 2} and ceramic fuel elements.

  18. [UO{sub 2}Cl{sub 2}(phen){sub 2}], a simple uranium(VI) compound with a significantly bent uranyl unit (phen=1,10-phenanthroline)

    Energy Technology Data Exchange (ETDEWEB)

    Schoene, Sebastian; Radoske, Thomas; Maerz, Juliane; Stumpf, Thorsten; Patzschke, Michael; Ikeda-Ohno, Atsushi [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, Dresden (Germany)

    2017-10-04

    A simple synthesis based on UO{sub 2}Cl{sub 2}.n H{sub 2}O and 1,10-phenanthroline (phen) resulted in the formation of a new uranyl(VI) complex [UO{sub 2}Cl{sub 2}(phen){sub 2}] (1), revealing a unique dodecadeltahedron coordination geometry around the uranium center with significant bending of the robust linear arrangement of the uranyl (O-U-O) unit. Quantum chemical calculations on complex 1 indicated that the weak but distinct interactions between the uranyl oxygens and the adjacent hydrogens of phen molecules play an important role in forming the dodecadeltahedron geometry that fits to the crystal structure of 1, resulting in the bending the uranyl unit. The uranyl oxygens in 1 are anticipated to be activated as compared with those in other linear uranyl(VI) compounds. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Structural effects in UO{sub 2} thin films irradiated with U ions

    Energy Technology Data Exchange (ETDEWEB)

    Popel, A.J., E-mail: apopel@cantab.net [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); Adamska, A.M.; Martin, P.G.; Payton, O.D. [Interface Analysis Centre, School of Physics, University of Bristol, Bristol BS8 1TL (United Kingdom); Lampronti, G.I. [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); Picco, L.; Payne, L.; Springell, R.; Scott, T.B. [Interface Analysis Centre, School of Physics, University of Bristol, Bristol BS8 1TL (United Kingdom); Monnet, I.; Grygiel, C. [CIMAP, CEA-CNRS-ENSICAEN-Université de Caen, BP 5133, 14070 Caen Cedex5 (France); Farnan, I. [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom)

    2016-11-01

    Highlights: • Quantitative characterisation of radiation damage by kernel average misorientation. • UO{sub 2} (1 1 1) plane showed higher irradiation tolerance than (1 1 0) plane. • UO{sub 2} film-YSZ substrate interface is stable under low fluence irradiation. • (0 0 1), (1 1 0), (1 1 1) single crystal UO{sub 2} thin films on YSZ substrates are expected. - Abstract: This work presents the results of a detailed structural characterisation of irradiated and unirradiated single crystal thin films of UO{sub 2}. Thin films of UO{sub 2} were produced by reactive magnetron sputtering onto (0 0 1), (1 1 0) and (1 1 1) single crystal yttria-stabilised zirconia (YSZ) substrates. Half of the samples were irradiated with 110 MeV {sup 238}U{sup 31+} ions to fluences of 5 × 10{sup 10}, 5 × 10{sup 11} and 5 × 10{sup 12} ions/cm{sup 2} to induce radiation damage, with the remainder kept for reference measurements. It was observed that as-produced UO{sub 2} films adopted the crystallographic orientation of their YSZ substrates. The irradiation fluences used in this study however, were not sufficient to cause any permanent change in the crystalline nature of UO{sub 2}. It has been demonstrated that the effect of epitaxial re-crystallisation of the induced radiation damage can be quantified in terms of kernel average misorientation (KAM) and different crystallographic orientations of UO{sub 2} respond differently to ion irradiation.

  20. INTERATOM experience of cleaning sodium-wetted components

    International Nuclear Information System (INIS)

    Haubold, W.

    1978-01-01

    INTERATOM has been concerned since 1967 with the development, testing, and application of methods to clean sodium wetted components by moist nitrogen, vacuum distillation or alcohol. The activities of INTERATOM in this area have been reported at the IAEA Specialists Meeting on 'Decontamination of Plant Components from Sodium and Radioactivity' in Dounreay, April 9-12, 1973. The three cleaning methods mentioned above are practised at present, too - with minor modifications - by INTERATOM and in the facilities of the SNR project. This note summarizes the experiences of INTERATOM with methods of sodium removal since 1973

  1. Determination of UO2 little quantity in UF4 by X-rays diffraction

    International Nuclear Information System (INIS)

    Costa, M.I.; Sato, I.M.; Imakuma, K.

    1977-01-01

    In the fluorination process, the final product UF 4 contain different levels of UO 2 as a contaminant. A routine method for quantitative analysis by x-ray diffraction has been developed. Standard curves have been plotted using mixtures of UO 2 /UF 4 with measures of intensity of (III) peak of UO 2 by the step scanning process. The integrated intensity versus UO 2 concentration curves present a linear behavior in the range from 0 to 4%. A good reprodutibility of measuring process has been observed through statistical analysis which permits to determine low fractions of UO 2 in UF 4 with +- 0,08% of accuracy [pt

  2. Accumulation of enriched uranium UO2F2 in ultrastructure as studied by electron microscopic autoradiography

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Wang Yuanchang

    1992-01-01

    A study was made on the retention of soluble enriched uranium UO 2 F 2 in ultrastructure by electron microscopic autoradiography. The early dynamic accumulation of radioactivity in the body showed that enriched uranium UO 2 F 2 was mainly localized in kidneys, especially accumulated in epithelial cells of proximal convoluted tubules leading to degeneration and necrosis of the tubules. In liver cells, enriched uranium UO 2 F 2 at first deposited in nuclei of the cells and in soluble proteins of the plasma, and later accumulated selectively in mitochondria and lysosomes. On electron microscopic autoradiographic study it was shown that the dynamic retention of radioactivity of enriched uranium UO 2 F 2 in skeleton increased steadily through the time period of exposure. Enriched uranium UO 2 F 2 chiefly deposited in nuclei and mitochondria of osteoblasts as well as of osteoclasts

  3. Correlation between fuel structure and mechanical properties of UO2

    International Nuclear Information System (INIS)

    Blank, H.; Mandler, R.; Matzke, H.; Routbort, J.; Werner, P.

    1982-10-01

    The relation between the structure of a UO 2 fuel and its mechanical properties are discussed and illustrated for particular types of UO 2 by measurements of fracture surface energy, hardness, fracture stress and of compressive deformation at 1870 and 1970 0 K. This gives the background for treating the question whether it is possible to find a simple experimental method for correlating the mechanical properties of UO 2 before irradiation with those after various irradiation histories. Hardness measurements might be such a method if combined with a detailed structural analysis and sufficient knowledge about the irradiation history

  4. Uranium migration in spark plasma sintered W/UO2 CERMETS

    Science.gov (United States)

    Tucker, Dennis S.; Wu, Yaqiao; Burns, Jatuporn

    2018-03-01

    W/UO2 CERMET samples were sintered in a Spark Plasma Sintering (SPS) furnace at various temperature under vacuum and pressure. High Resolution Transmission Electron Microscopy (HRTEM) with Energy Dispersive Spectroscopy (EDS) was performed on the samples to determine interface structures and uranium diffusion from the UO2 particles into the tungsten matrix. Local Electrode Atom Probe (LEAP) was also performed to determine stoichiometry of the UO2 particles. It was seen that uranium diffused approximately 10-15 nm into the tungsten matrix. This is explained in terms of production of oxygen vacancies and Fick's law of diffusion.

  5. Electrochemical studies of the effect of H2 on UO2 dissolution

    International Nuclear Information System (INIS)

    King, F.; Shoesmith, D.W.

    2004-09-01

    This report summarises evidence for the effect of H 2 on the oxidation and dissolution of UO 2 derived from electrochemical studies. In the presence of γ-radiation or with SIMFUEL electrodes containing ε-particles, the corrosion potential (E CORR ) of UO 2 is observed to be suppressed in the presence of H 2 by up to several hundred milli volts. This effect has been observed at room temperature with 5 MPa H 2 (in the case of γ-irradiated solutions) and at 60 deg C with a H 2 partial pressure of only 0.002-0.014 MPa H 2 with the SIMFUEL electrode. The suppression of E CORR in the presence of H 2 indicates that the degree of surface oxidation and the rate of dissolution of UO 2 is lower in the presence of H 2 .The precise mechanism of the effect of H 2 is unclear at this time. The mechanism appears to involve a surface heterogeneous process, rather than a homogeneous solution process. Under some circumstances the value of E CORR approaches the equilibrium potential for the H 2 /H + couple, suggesting galvanic coupling between sites on which this electrochemical process is catalysed and the rest of the UO 2 surface. It is also possible that H* radical species, either produced radiolytically from H 2 O or by dissociation of H 2 on ε-particles or surface-active UO 2+x sites, reduce oxidised U(V)/U(VI) surface states to U(IV). The effect of H 2 on reducing the degree of surface oxidation is only partially reversible, since surfaces reduced in H 2 atmospheres (re-)oxidise more slowly and to a lesser degree than surfaces not previously exposed to H 2 . Homogeneous reactions between dissolved H 2 and either oxidants or dissolved U(VI) cannot explain the observed effects.Regardless of the precise mechanism, the suppression of the degree of surface oxidation results in lower UO 2 dissolution rates in the presence of H 2 . Application of an electro-chemical dissolution model to the observed E CORR values suggests that the fractional dissolution rate of used fuel in the

  6. Geometric dimensioning of UO2 pellets for PWR

    International Nuclear Information System (INIS)

    Teixeira e Silva, A.

    1988-01-01

    The finite element structural program SAP-IV is used to calculate UO 2 pellet strains developed under thermal gradients in pressurized water reactors. The applied procedure allows to analyse the influence of various aspects of pellet geometry on cladding strains and can be utilized for the dimensioning of UO 2 pellets. Pellets purchased with flat ends, with dishes pressed into both ends, shouders, and a 45-deg edge chamfer are analysed. The analyse results are compared with experimental data.(autor) [pt

  7. Complexing in (NH4)2SeO4-UO2SeO4 H2O system

    International Nuclear Information System (INIS)

    Serezhkina, L.B.

    1994-01-01

    Isotherm of solubility in the (NH 4 ) 2 SeO 4 -UO 2 SeO 4 -H 2 O system has been constructed at 25 deg C. (NH 4 ) 2 (UO 2 ) 2 (SeO 4 ) 3 x6H 2 O formation is established for the first time and certain its physicochemical properties are determined. Regularities of complexing in the R 2 Se) 4 -UO 2 SeO 4 -H 2 O systems, where R-univalent cation are under discussion. 6 refs.; 3 tabs

  8. Preparation of high density (8 to 9) uranium oxide UO{sub 2}; Preparation de l'oxyde d'uranium UO{sub 2} de densite elevee (8 a 9)

    Energy Technology Data Exchange (ETDEWEB)

    Eichner, C; Ertaud, A; Ortel, Y; Stohr, J; Vautrey, L

    1948-10-01

    This report describes the process elaborated for the preparation of high density UO{sub 2}. The thermal decomposition of uranium peroxide leads to UO{sub 3} which is reduced by an hydrogen flow to obtain UO{sub 2}. A UO{sub 2} powder of good quality is obtained for temperatures below 650 deg. C. The powder is pulverized to obtain an homogeneous grain size and compressed inside a die to make pellets. Pellets are sintered up to 1600 deg. C in a reducing atmosphere and following a temperature rise law of 150 deg. C/hour. The equipment used (furnaces, gases purifier, control equipment, power supplies, thermoregulation systems) is described at the end. (J.S.)

  9. Fuel elements based on mixed oxides UO{sub 2} - PuO{sub 2}; Gorivni elementi na bazi mesanih oksida UO{sub 2} - PuO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Katanic-Popovic, J; Stevanovic, M [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)

    1978-07-01

    Questions concerning utilization of plutonium as a fissionable material in fuel elements for nuclear power plants have been discussed. Characteristics and application of fuel elements with mixed UO{sub 2} - PuO{sub 2} fuel for thermal and fast breeder reactors have also been dealt with. In the presentation of technological processes for production of fuel elements based on mixed oxides specific characteristics are given with respect to the work with plutonium and relatively high production costs as compared to classical fuel elements based on sintered UO{sub 2}. (author)

  10. The treatment of large quantities of high fluorin contents UO2 by ammonium double uranate (ADU) techniques

    International Nuclear Information System (INIS)

    Wang Bangwu; Chen Ying

    2010-01-01

    The paper has discussed the sinter action of UO 2 in low temperature. The study indicates the over hot part of UO 2 by the deoxidization hot of oxidation uranate mostly results in the sinter in the process of trans form ADU into UO 2 . The UO 2 settling times in kiln little influences the sinter performance of UO 2 in the same condition of high fluorin contents UO 2 returning kiln, and high fluorin contents UO 2 returning kiln does not sinter UO 2 again. Experiment on large quantities of high fluorin contents UO 2 by Ammonium Double Uranate (ADU) techniques direct returning kiln, the result shows the sinter performance of UO 2 doesn't drop in the process of high fluor in contents UO 2 direct returning kiln, and the performance of UO 2 can meet specification. (authors)

  11. Reinvestigation of the crystal structure of kasolite, Pb[(UO{sub 2})(SiO{sub 4})](H{sub 2}O), an important alteration product of uraninite, UO{sub 2+x}

    Energy Technology Data Exchange (ETDEWEB)

    Fejfarová, Karla; Dušek, Michal [Institute of Physics ASCR, v.v.i., Na Slovance 2, 18221 Praha (Czech Republic); Plášil, Jakub, E-mail: jakub_plasil@nm.cz [Department of Mineralogy and Petrology, National Museum, Václavské nám. 68, Prague 1, 115 79-CZ (Czech Republic); Institute of Geological Science, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37, Brno (Czech Republic); Čejka, Jiří; Sejkora, Jiří [Department of Mineralogy and Petrology, National Museum, Václavské nám. 68, Prague 1, 115 79-CZ (Czech Republic); Škoda, Radek [Institute of Geological Science, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37, Brno (Czech Republic)

    2013-03-15

    The crystal structure of kasolite, Pb[(UO{sub 2})(SiO{sub 4})](H{sub 2}O), Z = 4, monoclinic, with a = 6.7050(3), b = 6.9257(2), c = 13.2857(5) Å, β = 105.064(4)°, V = 595.74(3) Å{sup 3}, the space group P2{sub 1}/c, has been solved by charge-flipping method and refined by the full-matrix least-squares techniques to an agreement factor (R{sub obs}) of 2.2% and, a goodness-of-fit (GOF) of 1.26 using 1243 unique observed diffraction maxima (I{sub obs} > 3σ(I)) collected with MoKα X-radiation and a 4 K CCD area detector. The crystal structure of kasolite contains 1 unique U{sup 6+} position that is part of a nearly linear uranyl ion (UO{sub 2}){sup 2+}, coordinated in the equatorial plane by five O ligands, forming pentagonal bipyramid. The uranyl pentagonal bipyramids share edges to form chains parallel to [0 1 0]. The additional edge of uranyl polyhedra is shared by silicate tetrahedra to form sheets parallel to (1 0 0). There is one unique position of Pb{sup 2+} in the interlayer. O ligands and 1 (H{sub 2}O) non-transformer group coordinate Pb{sup 2+} exhibiting [2 + 6] coordination. A network of H-bonds provides an additional linkage of an interlayer to the sheets besides Pb–O bonds. Chemical composition of the studied crystals, obtained by the electron microprobe, is reported and is in agreement with the crystal structure refinement.

  12. State of the art of UO2 fuel fabrication processes

    International Nuclear Information System (INIS)

    Henke, M.; Klemm, U.

    1980-01-01

    Starting from the need of UO 2 for thermal power reactors in the period from 1980 to 1990 and the role of UF 6 conversion into UO 2 within the fuel cycle, the state-of-the-art of the three established industrial processes - ADU process, AUC process, IDR process - is assessed. The number of process stages and requirements on process management are discussed. In particular, the properties of the fabricated UO 2 powders, their influence on the following pellet production and on operational behaviour of the fuel elements under reactor conditions are described. Hence, an evaluation of the three essential conversion processes is derived. (author)

  13. Crystal structure of [UO2(NH35]NO3·NH3

    Directory of Open Access Journals (Sweden)

    Patrick Woidy

    2016-12-01

    Full Text Available Pentaammine dioxide uranium(V nitrate ammonia (1/1, [UO2(NH35]NO3·NH3, was obtained in the form of yellow crystals from the reaction of caesium uranyl nitrate, Cs[UO2(NO33], and uranium tetrafluoride, UF4, in dry liquid ammonia. The [UO2]+ cation is coordinated by five ammine ligands. The resulting [UO2(NH35] coordination polyhedron is best described as a pentagonal bipyramid with the O atoms forming the apices. In the crystal, numerous N—H...N and N—H...O hydrogen bonds are present between the cation, anion and solvent molecules, leading to a three-dimensional network.

  14. Molecular dynamics simulation of local structure and vibrational spectrum of uranyl (UO2)2+ in vitreous B2O3

    International Nuclear Information System (INIS)

    Zhuang, Z.-H.; Liu, G. K.; Beitz, J. V.

    2000-01-01

    Laser spectroscopic and extended X-ray absorption fine structure (EXAFS) spectra have shown that uranium in B 2 O 3 glass matrix forms uranyl in the electronic configuration of (UO 2 ) 2+ ,but its surrounding structure is not well known. Understanding of uranyl local structure, ion-ligand interaction, and chemical stability on the nanometer scale in glasses is essential in management of long-term performance of high-level nuclear wastes after disposal in a geologic repository. In the present work, the structure, phonon density of states, and vibrational spectrum of vitreous B 2 O 3 and the surrounding environment that contains a uranyl ion have been studied using a molecular dynamics (MD) simulation method that utilizes the Born-Mayer-Huggins and Coulomb pair potentials and the Stillinger-Weber three-body potential. A system of 406 ions was considered in our calculation. Simulation of a thermal quenching from 3000 K to 300 K was performed to generate a uniform and equilibrium model glass matrix before structure configuration and vibrational frequencies were obtained from the system. The structure of the simulated glass is in agreement with that reported by Krogh-Moe and Mozzi et al. The characteristic network of planar boroxol (B 3 O 6 ) rings is evident in the simulated system. A configuration of a U 6+ cation in the vitreous B 2 O 3 matrix is shown in Fig. 1. It is shown that a nearly linear (UO 2 ) 2+ uranyl ion is coordinated by four equatorial oxygen anions in an approximately planar arrangement. The U-O bond length is approximately 0.178 nm for the axial oxygen and 0.254 nm for the equatorial oxygen, which is in good agreement with the U-O distances obtained from fitting EXAFS spectra. Based on the simulated model structure, the uranyl vibrational spectrum is simulated and compared with experimental results obtained using site-selective fluorescence line narrowing (FLN) techniques

  15. Fabrication and testing of ceramic UO2 fuel - I-III. Part I

    International Nuclear Information System (INIS)

    Novakovic, M.

    1961-12-01

    The task described consists of the following: fabrication of UO 2 with different granulation from uranyl nitrate by ammonia diuranate; determination of size and shape distributions of metal and ceramic powders; fabrication of sintered pressed samples UO 2 ; investigating the properties of sintered uranium dioxide dependent on the fabrication process; producing a vibrator for compacting UO 2 powder. This volume includes reports on the first two tasks

  16. Homogenization in powder compacts of UO2-PuO2

    International Nuclear Information System (INIS)

    Verma, R.

    1979-01-01

    The homogenization kinetics in mixed UO 2 -PuO 2 compacts have been studied by adopting a concentric core-shell model of diffusion. An equation relating the extent of homogenization expressed in terms of the fraction of UO 2 remaining undissolved and the time of annealing has been derived. From the equation, the periods required at different annealing temperatures to attain a specified level of homogenization have been calculated. These calculated homogenization times have been found to be in fair agreement with the experimentally observed homogenization times. The derived relationship has also been shown to satisfactorily predict homogenization in Cu-Ni powder compacts. (Auth.)

  17. UO2 dissolution rates: A review

    International Nuclear Information System (INIS)

    McKenzie, W.F.

    1992-09-01

    This report reviews literature data on UO 2 dissolution kinetics and provides a framework for guiding future experimental studies as well as theoretical modeling studies. Under oxidizing conditions, UO 2 dissolution involves formation of an oxidized surface layer which is then dissolved by formation of aqueous complexes. Higher oxygen pressures or other oxidants are required at higher temperatures to have dissolution rates independent of oxygen pressure. At high oxygen pressures (1-5 atm, 25-70 C), the dissolution rate has a one-half order dependence on oxygen pressure, whereas at oxygen pressures below 0.2 atm, Grandstaff (1976), but nobody else, observed a first-order dependence on dissolution rate. Most people found a first-order dependence on carbonate concentration; Posey-Dowty (1987) found independence of carbonate at pH 7 to 8.2. Dissolution rates increase with temperature except in experiments involving granitic groundwater. Dissolution rates were generally greater under acid or basic conditions than near neutral pH

  18. The uranium recovery from UO{sub 2} kernel production effluent

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaotong, E-mail: chenxiaotong@tsinghua.edu.cn; He, Linfeng; Liu, Bing; Tang, Yaping; Tang, Chunhe

    2016-12-15

    Graphical abstract: In this study, a flow sheet including evaporation, flocculation, filtration, adsorption, and reverse osmosis was established for the UO{sub 2} kernel production effluent of HTR spherical fuel elements. The uranium recovery could reach 99.9% after the treatment, with almost no secondary pollution produced. Based on the above experimental results, the treating flow process in this study would be feasible for laboratory- and engineering-scale treatment of UO{sub 2} kernel production effluent of HTR spherical fuel elements. - Highlights: • A flow sheet including evaporation, flocculation, filtration, adsorption, and reverse osmosis was established for the UO{sub 2} kernel production effluent. • The uranium recovery could reach 99.9% after the treatment, with almost no secondary pollution produced. • The treating flow process would be feasible for laboratory- and engineering-scale treatment of UO{sub 2} kernel production effluent. - Abstract: For the fabrication of coated particle fuel elements of high temperature gas cooled reactors, the ceramic UO{sub 2} kernels are prepared through chemical gelation of uranyl nitrate solution droplets, which produces radioactive effluent with components of ammonia, uranium, organic compounds and ammonium nitrate. In this study, a flow sheet including evaporation, flocculation, filtration, adsorption, and reverse osmosis was established for the effluent treating. The uranium recovery could reach 99.9% after the treatment, with almost no secondary pollution produced.

  19. Effect of alpha irradiation on UO{sub 2} surface reactivity in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Jegou, C.; Muzeau, B.; Broudic, V.; Poulesquen, A.; Roudil, D. [Commissariat a l' Energie Atomique (CEA), Rhone Valley Research Center, DIEC/SESC/LMPA, Bagnols-sur-Ceze (France); Jorion, F. [Commissariat a l' Energie Atomique (CEA), Rhone Valley Research Center, DRCP/SE2A/LEMA, Bagnols-sur-Ceze (France); Corbel, C. [Commissariat a l' Energie Atomique (CEA), Saclay Research Center, DSM/DRECAM/SCM, Gif sur Yvette (France)

    2005-07-01

    The option of direct disposal of spent nuclear fuel in a deep geological formation raises the need to investigate the long-term behavior of the UO{sub 2} matrix in aqueous media subjected to {alpha}-{beta}-{gamma} radiation. The {beta}-{gamma} emitters account for most of the activity of spent fuel at the moment it is removed from the reactor, but diminish within a millennial time frame by over three orders of magnitude to less than the long-term activity. The latter persists over much longer time periods and must therefore be taken into account over a geological disposal time scale. Leaching experiments with solution renewal were carried out on UO{sub 2} pellets doped with alpha emitters ({sup 238}Pu and {sup 239}Pu) to quantify the impact of alpha irradiation on UO{sub 2} matrix alteration. Three batches of doped UO{sub 2} pellets with different alpha flux levels (3.30 x 10{sup 4}, 3.30 x 10{sup 5}, and 3.2 x 10{sup 6} {alpha} cm{sup -2} s{sup -1}) were studied. The results obtained in aerated and deaerated media immediately after sample annealing or interim storage in air provide a better understanding of the UO{sub 2} matrix alteration mechanisms under alpha irradiation. Interim storage in air of UO{sub 2} pellets doped with alpha emitters results in variations of the UO{sub 2} surface reactivity, which depends on the alpha particle flux at the interface and on the interim storage duration. The variation in the surface reactivity and the greater uranium release following interim storage cannot be attributed to the effect of alpha radiolysis in aerated media since the uranium release tends toward the same value after several leaching cycles for the doped UO{sub 2} pellet batches and spent fuel. Oxygen diffusion enhanced by alpha irradiation of the extreme surface layer and/or radiolysis of the air could account for the oxidation of the surface UO{sub 2} to UO{sub 2+x}. However, leaching experiments performed in deaerated media after annealing the samples and

  20. Analysis of flux standards in a fluized bed for AUC - UO2 convertion

    International Nuclear Information System (INIS)

    Juanico, L.E.; Clausse, A.; Guido Lavalle, G.

    1990-01-01

    One of the fuel cycle stages is the convertion (reduction) of ammonium uranyl carbonate (AUC) in UO 2 which, after being directly compacted, allows pellet obtainment acquire the correct density to be used as nuclear fuel during sintering. AUC's reduction in UO 2 is made on a fluidized bed in which AUC powder going into the upper part at a countercurrent to the gas flux (superheated steam), is converted into UO 2 ; after the reaction, UO 2 is collected at the lower part of the reactor. (Author) [es

  1. Study on factors affecting sintering density of Gd2O3-UO2 pellets

    International Nuclear Information System (INIS)

    Zhu Shuming; Zou Congpei; Yang Jing; Yang Youqing; Mei Xiaohui

    1996-02-01

    The sintered density of Gd 2 O 3 -UO 2 burnable poison fuel pellets is an important quality index and is one of main QC items. Therefore, the efforts were made to investigate the factors affecting the sintered density of Gd 2 O 3 -UO 2 , that is, the influences of pre-treatment of Gd 2 O 3 powder, additives, mixing methods and time, sintering atmosphere, sintering temperature and time on the final density of Gd 2 O 3 UO 2 pellets contained 0, 3%, 7% and 10% (mass percentage) Gd 2 O 3 . The results show: the pre-treatment is useful for improving the distribution of Gd 2 O 3 ; the additive of ammonium oxalate will effectively adjust the density of pellets; 1750 degree C is the suitable sintering temperature. The proper process parameters have been obtained, and the Gd 2 O 3 -UO 2 pellets prepared for in-pile irradiation test meet the design requirements for the density (93.5%∼96.5% of T.D.), homogeneity, microstructure, etc. (8 refs., 3 figs., 8 tabs.)

  2. Variable dimensionality and new uranium oxide topologies in the alkaline-earth metal uranyl selenites AE[UO2)(SeO3)2] (AE=Ca, Ba) and Sr[UO2)(SeO3)2] · 2H2O

    International Nuclear Information System (INIS)

    Almond, Philip M.; Peper, Shane M.; Bakker, Eric; Albrecht-Schmitt, Thomas E.

    2002-01-01

    Three new alkaline-earth metal uranyl selenites, Ca[UO 2 )(SeO 3 ) 2 ] (1), Sr[UO 2 )(SeO 3 ) 2 ] · 2H 2 O (2), and Ba[UO 2 )(SeO 3 ) 2 ] (3), have been prepared from the reactions of CaCO 3 and Ca(OH) 2 , SrCl 2 and Sr(OH) 2 , or BaCl 2 and Ba(OH) 2 with UO 3 and SeO 2 under mild hydrothermal conditions. Single-crystal X-ray diffraction experiments reveal that the structures of 1-3 differ in both connectivity and dimensionality even though all contain the same fundamental building unit, namely [UO 2 (SeO 3 ) 4 ]. This polyhedron consists of a linear uranyl unit that is bound by one chelating and three bridging selenite anions creating a pentagonal bipyramidal environment around the U(VI) center. The crystal structure of 1 contains one-dimensional ribbons where the edges are terminated by monodentate selenite anions. The interior of the ribbons are constructed from edge-sharing pentagonal bipyramidal UO 7 units. The structure of 2 is also one-dimensional; however, here there are chains of edge-sharing pentagonal bipyramidal UO 7 dimers that are connected by bridging selenite anions. Ba[(UO 2 )(SeO 3 ) 2 ] (3) is two-dimensional, and the highly ruffled anionic sheets present in this structure are formed from both bridging and chelating/bridging selenite anions bound to uranyl moieties. The anionic substructures in 1-3 are separated by Ca 2+ , Sr 2+ , or Ba 2+ cations. Crystallographic data (193 K, MoKα, λ=0.71073): 1, triclinic, space group P1-bar, a=5.5502(6) A, b=6.6415(7) A, c=11.013(1) A, α=104.055(2) deg., β=93.342(2) deg., γ=110.589(2) deg. , Z=2, R(F)=4.56% for 100 parameters with 1530 reflections with I>2σ(I); 2, triclinic, space group P1-bar, a=7.0545(5) A, b=7.4656(5) A, c=10.0484(6) A, α=106.995(1) deg., β=108.028(1) deg., γ=98.875(1) deg., Z=2, R(F)= 2.43% for 128 parameters with 2187 reflections with I>2σ(I); 3, monoclinic, space group P2 1 /c, a=7.3067(6) A, b=8.1239(7) A, c=13.651(1) A, β=100.375(2) deg., Z=4, R(F)=4.31% for 105 parameters

  3. Construction of the vibrator for UO{sub 2} powder compacting; Izrada vibratora za kompaktiranje praha UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Vrgora, M [Institute of Nuclear Sciences Boris Kidric, Laboratorija za termotehniku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    This report contains the description and the scheme of the device for vibration compacting of sintered UO{sub 2} powder. This device was designed and constructed in the Department for reactor materials.

  4. UO{sub 2} Kernel Preparation by M-EG Process and Its Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, K. C.; Eom, S. H.; Kim, Y. K.; Yeo, S. H.; Kim, Y. M.; Kim, B. G.; Cho, M. S. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Kernels of KAERI TRISO fuels are prepared in the following steps: (1) preparation of a raw material solution(UN solution) by UO{sub 3} (or U{sub 3}O{sub 8}) powder dissolution in the concentrated HNO{sub 3}; (2) broth preparation and physical property control by mixing UN, THFA, PVA, and H{sub 2}O; (3) preparation of spherical liquid gel droplets and dried-ADU gels in sequence through a reaction between uranyl ions and ammonia ions in a gelation column; (4) ageing, washing, and drying processes of ADU gel using AWD equipment; (5) UO{sub 3} calcination by thermal decomposition of driedADU gel in the air; (6) fabrication of UO{sub 2} kernel by reducing the UO{sub 3} and sintering in the H{sub 2}. In this study, improved KAERI processes for UO{sub 2} kernel preparation were presented. ADU gel washing procedure in AWD processes and the heating mode in sintering process were modified and the internal structures of UO{sub 2} kernels are presented as a result.

  5. SEM hot stage sintering of UO2

    International Nuclear Information System (INIS)

    Miller, D.J.

    1976-06-01

    The sintering of hyperstoichiometric uranium dioxide powder compacts, in the hot stage of a scanning electron microscope, was continuously monitored using 16 mm time lapse movies. From alumina microspheres placed on the surface of the compacts, shrinkage measurements were obtained. Converting shrinkage measurements into densification profiles indicates that a maximum densification rate is reached at a critical density, independent of the constant heating rates. At temperatures above 1350 0 C, the movement of the reference microspheres made shrinkage measurements impossible. It is believed the evolution of UO 3 gas from hyperstoichiometric UO 2 is the cause of this limitation

  6. Experimental Determination of the Neutron Characteristics of UO{sub 2}-PuO{sub 2}-H{sub 2}O Lattices; Determination Experimentale Des Caracteristiques Neutroniques De Reseaux UO{sub 2}-PuO{sub 2}-H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Debrue, J.; Fabry, A.; Leenders, L.; Motte, F.; Van Den Broeck, H. [Centre d' Etude de l' Energie Nucleaire, Mol (Belgium)

    1967-09-15

    As part of the investigation, in the VENUS test facility, of the variably moderated core of the BR3/VULCAIN reactor, a fuel assembly consisting of 37 UO{sub 2}-PuO{sub 2} pins (94% natural UO{sub 2}, 6% PuO{sub 2} ) was substituted for one of the enriched (to 7% {sup 235}U) UO{sub 2} fuel assemblies constituting the reactor core. Experiments were carried out with the object of refining the mathematical models for calculating the performance of this special assembly; inter alia, the fission density distribution and the changing ratio of the effective cross-sections for fission in the {sup 233}Pu and {sup 235}U were measured. Using the same critical facility, the authors are carrying out a critical experiment related directly to the problems of plutonium recycling in pressurized light-water thermal reactors. Three types of fuel are being used: UO{sub 2}-PuO{sub 2} with 3% {sup 235}U and 1% fissile plutonium, UO{sub 2}-PuO{sub 2} with 2% {sup 235}U and 2% fissile plutonium, and UO{sub 2} with 4% {sup 235}U. The two UO{sub 2}-PuO{sub 2} mixtures have completely different isotopic contents of {sup 240}Pu: 7% and 17%. In the first part of the experimental programme, a study is being made of regular lattices in cores having two co-axial cylindrical zones: a UO{sub 2}-PuO{sub 2} zone and a UO{sub 2} zone. Particular attention is being paid to investigating the region on either side of the interface separating the two zones, where the neutron spectrum reflects the characteristic energy distributions in each of the two lattices. The experimental results are to be used in calibrating the computational methods. In the second part of the experimental programme, parts of the core of the SENA power reactor will be simulated with a view to studying the problems of reloading one third of the core with mixed UO{sub 2}-PuO{sub 2} fuel. Among the experimental techniques employed in these various experiments emphasis is given to those most specifically related to the presence of

  7. Factors Affecting the Sintering of UO2 Pellets

    International Nuclear Information System (INIS)

    El-Hakim, E.; Afifi, Y.K.

    1999-01-01

    Sintering of UO 2 pellets is affected by many parameters such as; UO 2 powder parameters, the conditions followed for preparing the green UO 2 pellets and the sintering scheme(heating and cooling rate, soaking time and temperature). The aim of this work is to study the effect of some these parameters on the characteristics of the sintered UO 2 pellets were qualified according to the technical specifications of Candu fuel. Pressed green pellets at different pressing force (15 to 50 k N) were sintered at 1650 ±20 degree for two hours to study the effect of pressing force on the sintered pellets characteristics; visual inspection, pellet dimensions, density and shrinkage ratio. Compacted green pellets at a pressing force of 48 k N were sintered at different sintering temperature (1600± 20 degree, 1650 ±20 degree, 1700± 20 degree) for two hours to study the effect of sintering temperature on the sintered pellets characteristics. The effect of the heating rate (200,300 and 400 degree per hour) on the sintered pellets characteristics was also investigated. It was found that the pressing force used to compact the green pellets had an effect on the density of the sintered pellets. Pellets pressed at 15 k N have a density of 10.3 g/cm 3 while, those pressed at 50 k N have a density of 10.6 g/cm 3. It was observed that increasing the heating rate to 400 degree /h lead to cracked pellets

  8. The influence of moisture on air oxidation of UO2: Calculations and observations

    International Nuclear Information System (INIS)

    Taylor, P.; Lemire, R.J.; Wood, D.D.

    1993-01-01

    Phase relationships among solids in the UO 2 -O 2 -H 2 O system at 25, 100, and 200C and pressures to 2 MPa have been calculated from critically evaluated thermodynamic data. Stability limits of the solids are expressed in terms of oxygen and water partial pressures at each temperature. The results are then discussed in terms of known UO 2 oxidation reactions and uranium mineralogy. Particular attention is paid to UO 3 hydrates, some of which are shown to be stable phases in air at very low relative humidities (down to ∼0.1% at 25C). This is relevant to fuel storage because of the very high molar volumes of these phases, relative to UO 2 , and consequent potential for damage to defected fuel assemblies. Comparison of the calculated phase relationships with observed UO 2 oxidation behavior helps to identify those phase interconversions that are kinetically constrained

  9. Hypoeutectic melting in the UO{sub 2-x}-Gd{sub 2}O{sub 3} system

    Energy Technology Data Exchange (ETDEWEB)

    Journeau, Christophe, E-mail: christophe.journeau@cea.fr [CEA, DEN, SMTA, LPMA, Cadarache, F13108 St Paul lez Durance (France); Fouquart, Pascal [CEA, DEN, SMTA, LPMA, Cadarache, F13108 St Paul lez Durance (France); Domenger, Renaud; Allegri, Patrick [CEA, DEN, SGCS, LMAC, Marcoule, F30207 Bagnols sur Cèze (France)

    2017-05-15

    Gadolinium is one of the best neutron absorber materials and its use can be considered as a sacrificial material in a Sodium Fast Reactor core catcher in view of preventing recriticallity. A series of experiments have been conducted in the VITI induction-heated facility to study the melting in the UO{sub 2-x}-Gd{sub 2}O{sub 3} system with 60–87 mol% gadolinia. These experiments have indicated that the eutectic composition is around 92 mol% Gd{sub 2}O{sub 3} – 8 mol% UO{sub 2-x} and that the liquidus line is close to that of Popov et al. [Atom. Energ. 110 (2011) pp. 221–229] phase diagram. - Highlights: •Melting/Solidification experiments with UO{sub 2-x} and Gd{sub 2}O{sub 3} in reducing environment. •Eutectic composition around 92 mol% Gd{sub 2}O{sub 3}-8 mol% UO{sub 2-x}. •UO{sub 2-x} - Gd{sub 2}O{sub 3} liquidus line seems close to that of the pseudobinary phase diagram proposed by Popov et al. •Results will support the assessment of Gd{sub 2}O{sub 3} as a sacrificial material to mitigate criticality risk in SFR core catchers.

  10. Electrochemical Reduction of solid UO2 in Molten Fluoride Salts

    International Nuclear Information System (INIS)

    Gibilaro, Mathieu; Cassayre, Laurent; Massot, Laurent; Chamelot, Pierre; Malmbeck, Rikard; Dugne, Olivier; Allegri, Patrick

    2010-01-01

    The direct electrochemical reduction of UO 2 solid pellets was carried out in LiF-CaF 2 (+ 2wt % Li 2 O) at 850 deg. C. An inert gold anode was used instead of the usual reactive sacrificial carbon anode. In this case, reduction of oxide ions yields O 2 gas evolution on the anode. Electrochemical characterisations of UO 2 pellets have been performed by linear sweep voltammetry at 10 mV/s and reduction waves associated to its direct reduction have been observed at a potential 150 mV more positive in comparison with the solvent reduction. Then, galvano-static electrolyses runs have been realised and products were characterised by SEM-EDX, EPMA/WDS and XRD. In one of the runs, uranium oxide was partially reduced and three phases were observed: non reduced UO 2 in the centre, pure metallic uranium on the external layer and an intermediate phase representing the initial stage of reduction taking place at the grain boundaries. In another run, the UO 2 sample was fully reduced. Due to oxygen removal, the U matrix had a typical coral-like structure which is characteristic of the pattern observed after the electroreduction of solid oxides. (authors)

  11. Near Surface Stoichiometry in UO2: A Density Functional Theory Study

    Directory of Open Access Journals (Sweden)

    Jianguo Yu

    2015-01-01

    Full Text Available The mechanisms of oxygen stoichiometry variation in UO2 at different temperature and oxygen partial pressure are important for understanding the dynamics of microstructure in these crystals. However, very limited experimental studies have been performed to understand the atomic structure of UO2 near surface and defect effects of near surface on stoichiometry in which the system can exchange atoms with the external reservoir. In this study, the near (110 surface relaxation and stoichiometry in UO2 have been studied with density functional theory (DFT calculations. On the basis of the point-defect model (PDM, a general expression for the near surface stoichiometric variation is derived by using DFT total-energy calculations and atomistic thermodynamics, in an attempt to pin down the mechanisms of oxygen exchange between the gas environment and defected UO2. By using the derived expression, it is observed that, under poor oxygen conditions, the stoichiometry of near surface is switched from hyperstoichiometric at 300 K with a depth around 3 nm to near-stoichiometric at 1000 K and hypostoichiometric at 2000 K. Furthermore, at very poor oxygen concentrations and high temperatures, our results also suggest that the bulk of the UO2 prefers to be hypostoichiometric, although the surface is near-stoichiometric.

  12. Homogeneity Study of UO2 Pellet Density for Quality Control

    International Nuclear Information System (INIS)

    Moon, Je Seon; Park, Chang Je; Kang, Kwon Ho; Moon, Heung Soo; Song, Kee Chan

    2005-01-01

    A homogeneity study has been performed with various densities of UO 2 pellets as the work of a quality control. The densities of the UO 2 pellets are distributed randomly due to several factors such as the milling conditions and sintering environments, etc. After sintering, total fourteen bottles were chosen for UO 2 density and each bottle had three samples. With these bottles, the between-bottle and within-bottle homogeneity were investigated via the analysis of the variance (ANOVA). From the results of ANOVA, the calculated F-value is used to determine whether the distribution is accepted or rejected from the view of a homogeneity under a certain confidence level. All the homogeneity checks followed the International Standard Guide 35

  13. Thermodynamic properties and behaviour of A2[(UO2)(MoO4)2] compounds with A = Li, Na, K, Rb, and Cs

    International Nuclear Information System (INIS)

    Lelet, Maxim I.; Suleimanov, Evgeny V.; Golubev, Aleksey V.; Geiger, Charles A.; Depmeier, Wulf; Bosbach, Dirk; Alekseev, Evgeny V.

    2014-01-01

    Highlights: • Low temperature heat capacity of A 2 [(UO 2 )(MoO 4 ) 2 ] (A = Li, Na, K, Rb, and Cs) series was determined. • Enthalpy of formation of Li 2 [(UO 2 )(MoO 4 ) 2 ] was determined by HF solution calorimetry. • Δ f G° (T = 298 K) of all phases from studied series were calculated. - Abstract: A thermodynamic investigation of five alkali-metal uranyl molybdates of the general formula A 2 [(UO 2 )(MoO 4 ) 2 ], where A = Li, Na, K, Rb, and Cs, was undertaken. The various phases were synthesized by solid-state reaction of ANO 3, with A = Li, Na, K, Rb, or Cs, MoO 3 and γ-UO 3 . The synthetic products were characterized by X-ray powder diffraction and X-ray fluorescence methods. The low-temperature heat capacity, S r °, was measured using adiabatic calorimetry from T = (6 to 335) K. Based on these data, the third law entropy at T = 298.15 K, S°, is (345 ± 1) J · K −1 · mol −1 for Li 2 [(UO 2 )(MoO 4 ) 2 ], (373 ± 1) J · K −1 · mol −1 for Na 2 [(UO 2 )(MoO 4 ) 2 ], (390 ± 1) J · K −1 · mol −1 for K 2 [(UO 2 )(MoO 4 ) 2 ], (377 ± 1) J · K −1 · mol −1 for Rb 2 [(UO 2 )(MoO 4 ) 2 ] and (394 ± 1) J · K −1 · mol −1 for Cs 2 [(UO 2 )(MoO 4 ) 2 ]. The enthalpy of formation of Li 2 [(UO 2 )(MoO 4 ) 2 ] was determined using HF solution calorimetry giving Δ f H°(T = 298 K, Li 2 [(UO 2 )(MoO 4 ) 2 ], cr) = −(3456 ± 9) kJ · mol −1 . Using these new experimental results, together with literature data, the Gibbs free energy of formation of each compound was calculated, giving: Δ f G°(T = 298 K, Li 2 [(UO 2 )(MoO 4 ) 2 ], cr) = −(3204 ± 9) kJ · mol −1 , Δ f G°(T = 298 K, Na 2 [(UO 2 )(MoO 4 ) 2 ], cr) = −(3243 ± 2) kJ · mol −1 , Δ f G°(T = 298 K, K 2 [(UO 2 )(MoO 4 ) 2 ], cr) = −(3269 ± 3) kJ · mol −1 , Δ f G°(T = 298 K, Rb 2 [(UO 2 )(MoO 4 ) 2 ], cr) = −(3262 ± 3) kJ · mol −1 , and Δ f G°(T = 298 K, Cs 2 [(UO 2 )(MoO 4 ) 2 ], cr) = −(3259 ± 3) kJ · mol −1 . Smoothed S r °(T) values

  14. Effect of water α radiolysis on the spent nuclear fuel UO2 matrix alteration

    International Nuclear Information System (INIS)

    Lucchini, J.F.

    2001-01-01

    In the option of long term storage or direct disposal of nuclear spent fuel, it is essential to study the long-term behaviour of the spent fuel matrix (UO 2 ) in water, in presence of ionizing radiations. This work gives some knowledge elements about the impact of aerated water alpha radiolysis on UO 2 alteration. An original experiment method was used in this study. UO 2 /water interfaces were irradiated by an external He 2+ ions beam. The sequential batch dissolution tests on UO 2 samples were performed in aerated deionized water, before, during and after a-irradiation under high fluxes. A corrosion product, identified as hydrated uranium peroxide, was formed on the UO 2 surface. The uranium release was 3 to 4 orders of magnitude higher under irradiation than out of irradiation. The concentrations of the radiolysis products H 2 O 2 and H 3 O + were affected by the uranium oxide surface. They could not only explain the whole uranium release reached during irradiation in water. Leaching experiments on UO X spent fuel samples (with or without the Zircaloy clad) were also performed, in hot cells. The uranium release was relatively small, and H 2 O 2 was not detected in solution. The rates of uranium release in aerated water during one hour were calculated. They were about mg -1 .m -2 .d -1 for spent fuel and for UO 2 , and about g -1 .m -2 .d -1 for UO 2 irradiated by He 2+ ions. The comparison of the results between the two kinds of experiment shows a difference of the behaviour in water between UO 2 irradiated by He 2+ ions and spent fuel. Some hypothesis are given to explain this difference. (author)

  15. Determination of U{sub 3}O{sub 8} in UO{sub 2} by infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Liliane Aparecida; Lameiras, Fernando Soares; Santos, Ana Maria Matildes dos; Ferraz, Wilmar Barbosa; Barbosa, Joao Batista Santos, E-mail: lasfisica@gmail.com, E-mail: sl@cdtn.br, E-mail: amms@cdtn.br, E-mail: ferrazw@cdtn.br, E-mail: jbsb@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), Belo Horizonte, MG (Brazil)

    2017-01-15

    The oxygen-uranium (O-U) system has various oxides, such as UO{sub 2}, U{sub 4}O{sub 9}, U{sub 3}O{sub 8}, and UO{sub 3}. Uranium dioxide is the most important one because it is used as nuclear fuel in nuclear power plants. UO{sub 2} can have a wide stoichiometric variation due to excess or deficiency of oxygen in its crystal lattice, which can cause significant modifications of its proprieties. O/U relation determination by gravimetry cannot differentiate a stoichiometric deviation from contents of other uranium oxides in UO{sub 2}. The presence of other oxides in the manufacturing of UO{sub 2} powder or sintered pellets is a critical factor. Fourier Transform Infrared Spectroscopy (FTIR) was used to identify U{sub 3}O{sub 8} in samples of UO{sub 2} powder. UO{sub 2} can be identified by bands at 340 cm{sup -1} and 470 cm{sup -1}, and U{sub 3}O{sub 8} and UO{sub 3} by bands at 735 cm{sup -1}, 910 cm{sup -1}, respectively. The methodology for sample preparation for FTIR spectra acquisition is presented, as well as the calibration for quantitative measurement of U{sub 3}O{sub 8} in UO{sub 2}. The content of U{sub 3}O{sub 8} in partially calcined samples of UO{sub 2} powder was measured by FTIR with good agreement with X-rays diffractometry (XRD). (author)

  16. Recovery of UO[sub 2]/PuO[sub 2] in IFR electrorefining process

    Science.gov (United States)

    Tomczuk, Z.; Miller, W.E.

    1994-10-18

    A process is described for converting PuO[sub 2] and UO[sub 2] present in an electrorefiner to the chlorides, by contacting the PuO[sub 2] and UO[sub 2] with Li metal in the presence of an alkali metal chloride salt substantially free of rare earth and actinide chlorides for a time and at a temperature sufficient to convert the UO[sub 2] and PuO[sub 2] to metals while converting Li metal to Li[sub 2]O. Li[sub 2]O is removed either by reducing with rare earth metals or by providing an oxygen electrode for transporting O[sub 2] out of the electrorefiner and a cathode, and thereafter applying an emf to the electrorefiner electrodes sufficient to cause the Li[sub 2]O to disassociate to O[sub 2] and Li metal but insufficient to decompose the alkali metal chloride salt. The U and Pu and excess lithium are then converted to chlorides by reaction with CdCl[sub 2].

  17. Neutronics characteristics of micro-heterogeneous ThO2-UO2 PWR cores

    International Nuclear Information System (INIS)

    Zhao, X.; Driscoll, M.J.; Kazimi, S.

    2001-01-01

    A new fuel concept, axially-micro-heterogeneous ThO 2 -UO 2 fuel, where ThO 2 fuel pellets and UO 2 fuel pellets are stacked in separate layers in the fuel rods, is being studied at MIT as an option to reduce plutonium production in LWR fuel. Very interesting neutronic behavior is observed: (1) A reactivity increase of 3% to 4% at EOL for a given 235 U inventory which results in a 20-30% increase in average core discharge burnup; (2) For certain configurations, a ''burnable poison'' effect is observed. Analysis shows that these effects are achieved due to a combination of changes in self-shielding, local fissile worth, and conversion ratio, among which self-shielding is the dominant effect at the end of a reactivity-limited burnup. Other variations of micro-heterogeneous UO 2 -ThO 2 fuel including duplex pellets, checkerboard pin distribution, and checkerboard-axial combinations have also been investigated, and their neutronic performance compared. It is concluded that the axial fuel micro-heterogeneity provides the largest gain in reactivity-limited burnup. (author)

  18. Development of UO2/PuO2 dispersed in uranium matrix CERMET fuel system for fast reactors

    International Nuclear Information System (INIS)

    Sinha, V.P.; Hegde, P.V.; Prasad, G.J.; Pal, S.; Mishra, G.P.

    2012-01-01

    CERMET fuel with either PuO 2 or enriched UO 2 dispersed in uranium metal matrix has a strong potential of becoming a fuel for the liquid metal cooled fast breeder reactors (LMR’s). In fact it may act as a bridge between the advantages and disadvantages associated with the two extremes of fuel systems (i.e. ceramic fuel and metallic fuel) for fast reactors. At Bhabha Atomic Research Centre (BARC), R and D efforts are on to develop this CERMET fuel by powder metallurgy route. This paper describes the development of flow sheet for preparation of UO 2 dispersed in uranium metal matrix pellets for three different compositions i.e. U–20 wt%UO 2 , U–25 wt%UO 2 and U–30 wt%UO 2 . It was found that the sintered pellets were having excellent integrity and their linear mass was higher than that of carbide fuel pellets used in Fast Breeder Test Reactor programme (FBTR) in India. The pellets were characterized by X-ray diffraction (XRD) technique for phase analysis and lattice parameter determination. The optical microstructures were developed and reported for all the three different U–UO 2 compositions.

  19. Development of UO2/PuO2 dispersed in uranium matrix CERMET fuel system for fast reactors

    Science.gov (United States)

    Sinha, V. P.; Hegde, P. V.; Prasad, G. J.; Pal, S.; Mishra, G. P.

    2012-08-01

    CERMET fuel with either PuO2 or enriched UO2 dispersed in uranium metal matrix has a strong potential of becoming a fuel for the liquid metal cooled fast breeder reactors (LMR's). In fact it may act as a bridge between the advantages and disadvantages associated with the two extremes of fuel systems (i.e. ceramic fuel and metallic fuel) for fast reactors. At Bhabha Atomic Research Centre (BARC), R & D efforts are on to develop this CERMET fuel by powder metallurgy route. This paper describes the development of flow sheet for preparation of UO2 dispersed in uranium metal matrix pellets for three different compositions i.e. U-20 wt%UO2, U-25 wt%UO2 and U-30 wt%UO2. It was found that the sintered pellets were having excellent integrity and their linear mass was higher than that of carbide fuel pellets used in Fast Breeder Test Reactor programme (FBTR) in India. The pellets were characterized by X-ray diffraction (XRD) technique for phase analysis and lattice parameter determination. The optical microstructures were developed and reported for all the three different U-UO2 compositions.

  20. Irradiation behaviour of UO2/Mo porous cermets for thermionic converters

    International Nuclear Information System (INIS)

    Stora, J.P.; Kauffmann, Y.

    1975-01-01

    Two types of UO 2 Mo porous cernets have been fabricated and irradiated in a Cythere irradiation device. The first cermet is constituted by little bits of dense fuel in which the two constituants are finely dispersed. The whole open porosity is located between the granules. This type of cermet is called breche (33.4vol%UO 2 , 51vol%Mo, 14.8vol%porosity). At the end of the irradiation the burn up was 19000MWd/t(U) and neither swelling of the cermet nor deformation of the can were noted. On the contrary, a shrinkage of the emitter was observed attributed to a fuel densification under irradiation. The second type of cermet is called macrogranule (36vol%UO 2 , 49vol%Mo 15vol%porosity). UO 2 granules of 0.07cm mean diameter are dispersed in the molybdenum matrix. The porosity is regularly distributed all around the UO 2 kernels. The post irradiation metrology shows that the emitter is fairly stable. Only a slight ovalisation of about 0.5% was noted, but the granules of UO 2 were redistributed inside the molybdenum matrix, overlapping the metallic cavity by a condensation-evaporation process. The matrix has crept into the central void and consequently the volume has grown and the whole porosity has increased from about 15% to about 23%. This creeping is due to the fission gas pressure in the molybdenum cavities after 3000 hours of irradiation. In conclusion two types of cermets have shown good behaviour under irradiation and should allow lifetimes of several thousand hours of operation for thermionic fuel elements [fr

  1. Physical characteristics of Gd2O3-UO2 fuel in LWR

    International Nuclear Information System (INIS)

    Matsuura, Shojiro; Kobayashi, Iwao; Furuta, Toshiro; Toba, Masao; Tsuda, Katsuhiro.

    1981-12-01

    A series of critical experiments in light water lattice were carried out on five kinds of Gadolinia-Uranium dioxide (Gd 2 O 3 -UO 2 ) test fuel rods containing 0.0, 0.05, 0.25, 1.50, 3.00 weight % of Gd 2 O 3 in Gd 2 O 3 -UO 2 . Reactivity effect, power distribution, neutron flux distribution, and temperature coefficient were measured for three types of lattices which were in shapes of annular, rectangular parallele-piped, and JPDR mockup core. The theoretical values corresponding to the measured ones were obtained by means of the design method for the FTA which is the test fuel assembly with Gd 2 O 3 -UO 2 rods for JPDR, and the accuracy was checked. In general, the calculated values were in good agreement with the measured ones. Besides, the following characteristics of Gd 2 O 3 -UO 2 rods are recognized both in measurement and calculation, i.e. (1) the effect due to gadolinia on reactivity, power distribution, and thermal neutron flux distribution are steeply saturating; the gadolinia content of only 1.50 weight % is enough to reach the almost saturated condition, (2) the relative power becomes 20% to that of normal fuel under the saturated condition, (3) the relation between the negative reactivity and the power depression effect due to gadolinia is almost linear, and (4) the interference on power depression between the adjacent gadolinia loaded rods is almost negligible, and that on reactivity effect is 15% at most. (author)

  2. Perovskite phases in the systems Asup(II)O-UO/sub 3/. 1. Tetragonal perovskite Ba/sub 2/Basub(7/8)vacantsub(1/8)UO/sub 5/sub(7/8)

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, A J; Kemmler-Sack, S [Tuebingen Univ. (Germany, F.R.)

    1979-10-01

    The new tetragonal compound Ba/sub 2/Basub(7/8)vacantsub(1/8)UO/sub 5/sub(7/8) (a = 2 x 6.31/sub 2/ A; c = 2 x 8.76/sub 7/ A) has been found besides Ba/sub 3/UO/sub 6/ (triclinic) in the BaO-UO/sub 3/ system. It crystallizes with a superstructure of perovskite type. The differences in properties between Ba/sub 3/UO/sub 6/ and Ba/sub 2/Basub(7/8)vacantsub(1/8) UO/sub 5/sub(7/8) are discussed.

  3. Preliminary study of determination of UO2 grain size using X-ray diffraction method

    International Nuclear Information System (INIS)

    Mulyana, T.; Sambodo, G. D.; Juanda, D.; Fatchatul, B.

    1998-01-01

    The determination of UO 2 grain size has accomplished using x-ray diffraction method. The UO 2 powder is obtained from sol-gel process. A copper target as radiation source in the x-ray diffractometer was used in this experiment with CμKα characteristic wavelength 1.54433 Angstrom. The result indicate that the UO 2 mean grain size on presintered (temperature 800 o C) has the value 456.8500 Angstrom and the UO 2 mean grain size on sintered (temperature 1700 o C) has value 651.4934 Angstrom

  4. Hydrothermal synthesis, structure, and catalytic properties of UO2Sb2O4

    International Nuclear Information System (INIS)

    Sykora, Richard E.; King, Joseph E.; Illies, Andreas J.; Albrecht-Schmitt, Thomas E.

    2004-01-01

    A new uranyl antimonite, UO 2 Sb 2 O 4 (1), has been prepared from the hydrothermal reaction of UO 3 with Sb 2 O 3 and KCl. The structure of 1 consists of neutral two-dimensional ∞ 2 [UO 2 Sb 2 O 4 ] layers. The U(VI) centers are ligated by two trans oxo ligands and four square pyramidal antimonite anions. In addition, the U(VI) also forms long contacts with two additional oxygen atoms that are distorted by 12.7(2) degree sign out of the equatorial plane perpendicular to the uranyl unit. These long interactions are significant owing to evidence supplied by bond valence sum calculations. The two-dimensional layers found in 1 are built from one-dimensional chains formed from edge-sharing UO 6 octahedra that run along the b-axis, and are linked together by [Sb 2 O 4 ] 2- chains. A flow microreactor system has been used to study the catalytic activity of 1, and these results show that it can be used as a catalyst in the conversion of propene and O 2 to acrolein. Crystallographic data: 1, monoclinic, space group C2/m, a=13.490(2) A, b=4.0034(6) A, c=5.1419(8) A, β=104.165(3) deg., Z=2, MoKα, λ=0.71073, R(F)=1.74% for 30 parameters with 365 reflections with I>2σ(I)

  5. Development of UO{sub 2}-Stainless Steel Fuel Plates Containing 30-50 Vol. % Oxide; Fabrication de plaques de combustible en acier inoxydable-UO{sub 2} contenant 30 a 40% d'oxyde (en volume); Razrabotka toplivnykh ehlementov iz nerzhaveyushchej stali i UO{sub 2}, soderzhashchikh 30 - 50 OB.% okisi; Elaboracion de placas de combustible de acero inoxidable UO{sub 2} conteniendo 30 a 40% de oxido (en volumen)

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, H. [Atomic Energy Research Establishment, Harwell (United Kingdom)

    1963-11-15

    This paper describes developments associated with the fabrication of UO{sub 2}-stainless steel plate type fuel elements containing up to 50 vol.% UO{sub 2}. The preparation of high-density spherical UO{sub 2} sintered particles in the 100- to 500-{mu}m size range and the compacting and sintering of cermet plate cores with the particles uniformly distributed in the stainless steel matrix are described together with procedures for hot roll-bonding the fuel plates. Rolling at temperatures up to 1300{sup o}C using total deformations in the 40% to 90% range were studied to establish optimum conditions for the production of high-density cores and to achieve good bonding between the plate components with minimum fragmentation and stringering of the UO{sub 2} particles. The manufacture of large fuel plates utilizing multi-core plates which are bonded together during hot rolling is also described. Data are presented on the mechanical properties of 30, 40 and 50 vol.% UO{sub 2}-stainless steel cermets, prepared as described above, and tested in the as ''rolled'' and annealed condition at various temperatures up to 700{sup o}C, using specimens taken laterally and longitudinally to the direction of rolling. The influence of size and uniformity of distribution of the UO{sub 2} spheres on consistency of mechanical properties are discussed. The strength of bonding between core and cladding for similar cermets in the same temperature range was also assessed. Results are also included of thermal cycling tests between 50 and 800{sup o}C, which was done to study the effects on bond stability and cermet structure after 100, 500 and 1000 cycles. (author) [French] L'auteur expose le processus de fabrication d'elements de combustible UO{sub 2}-Inox en plaques contenant jusqu'a 50% en volume d'UO{sub 2}; il decrit la preparation de particules spheriques de UO{sub 2} frittees de densite elevee (taille dans la gamme de 100 a 500), le pressage et le frittage des plaques de cermet dans

  6. Multi-scale modeling of inter-granular fracture in UO2

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Pritam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tonks, Michael R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Biner, S. Bulent [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    A hierarchical multi-scale approach is pursued in this work to investigate the influence of porosity, pore and grain size on the intergranular brittle fracture in UO2. In this approach, molecular dynamics simulations are performed to obtain the fracture properties for different grain boundary types. A phase-field model is then utilized to perform intergranular fracture simulations of representative microstructures with different porosities, pore and grain sizes. In these simulations the grain boundary fracture properties obtained from molecular dynamics simulations are used. The responses from the phase-field fracture simulations are then fitted with a stress-based brittle fracture model usable at the engineering scale. This approach encapsulates three different length and time scales, and allows the development of microstructurally informed engineering scale model from properties evaluated at the atomistic scale.

  7. Analysis of UO{sub 2}-BeO fuel under transient using fuel performance code

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel S.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia, E-mail: dsgomes@ipen.br, E-mail: alfredo@ctmsp.mar.mil.br, E-mail: rafael.orm@gmail.com, E-mail: claudia.giovedi@ctmsp.mar.mil.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade de São Paulo (USP), São Paulo, SP (Brazil). Departamento de Engenharia Naval e Oceânica

    2017-11-01

    Recent research has appointed the need to replace the classic fuel concept, used in light water reactors. Uranium dioxide has a weak point due to the low thermal conductivity, that produce high temperatures on the fuel. The ceramic composite fuel formed of uranium dioxide (UO{sub 2}), with the addition of beryllium oxide (BeO), presents high thermal conductivity compared with UO{sub 2}. The oxidation of zirconium generates hydrogen gas that can create a detonation condition. One of the preferred options are the ferritic alloys formed of iron-chromium and aluminum (FeCrAl), that should avoid the hydrogen release due to oxidation. In general, the FeCrAl alloys containing 10 - 20Cr, 3 - 5Al, and 0 - 0.12Y in weight percent. The FeCrAl alloys should exhibit a slow oxidation kinetics due to chemical composition. Resistance to oxidation in the presence of steam is improved as a function of the content of chromium and aluminum. In this way, the thermal and mechanical properties of the UO{sub 2}-BeO-10%vol, composite fuel were coupled with FeCrAl alloys and added to the fuel codes. In this work, we examine the fuel rod behavior of UO{sub 2}-10%vol-BeO/FeCrAl, including a simulated transient of reactivity. The fuels behavior shown reduced temperature with UO{sub 2}-BeO/Zr, UO{sub 2}-BeO/FeCrAl also were compared with UO{sub 2}/Zr system. The case reactivity initiated accident analyzed, reproducing the fuel rod called VA-1 using UO{sub 2}/Zr alloys and compared with UO{sub 2}-BeO/FeCrAl. (author)

  8. Measurements of density and of thermal expansion coefficient of sodium tetraborate (borax)-UO2 and of sodium metaborate-UO2 solutions

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.

    1980-12-01

    Measurements have been performed of the density and volumetric thermal expansion coefficient of liquid sodium tetraborate (borax) and of sodium metaborate both pure and with two different amounts of UO 2 dissolved in each. These data are required for the design of core-catchers based on sodium borates. The measurements have been performed with the buoyancy method in the temperature range from 850 0 C to 1325 0 C. The data for the pure borax and for the sodium metaborate agree reasonably well with the data from the literature, giving confidence that the measurements are correct and the new data for the salts with UO 2 are reliable. (orig.) [de

  9. Thermal stability test of UO{sub 2}-doped pellet manufactured at INB

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Diogo R., E-mail: diogoribeiro@inb.gov.br [Indústrias Nucleares do Brasil S.A. (FCN/INB), Resende, RJ (Brazil). Fábrica de Combustível Nuclear; Freitas, Artur C., E-mail: artur.freitas@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    The thermal stability test of UO{sub 2}-doped pellet manufactured at INB was carried out in order to analyze the resintering behavior. This analysis is fundamental for predicting dimensional behavior during irradiation. INB commonly performs resintering test to qualify its production lots, and the same methodology was applied to UO{sub 2}-doped pellets. In this preliminary study, three sets of experiments have been made: 1) without any chemical additive (Z test, the standard UO{sub 2} pellets - undoped); 2) UO{sub 2} pellets doped with 0.1, 0.2 and 0.3 wt% of Al{sub 2}O{sub 3}; and 3) 0.1, 0.2 and 0.3 wt% of Nb{sub 2}O{sub 5}. The preliminary results showed an increase in sintered density in all resintering experiments. So as to obtain the percentage increase, the theoretical densities (g/cm{sup 3} and %TD) were calculated based on the undoped UO{sub 2} pellets. All samples increased in a range of 0.27 to 0.32 %TD the out-pile densification during the resintering process. However, the Z(Nb)3 test showed the lowest value of 0.08 %TD, which is not in agreement with the INB specification limits. The sintered density of this test (0.3 wt% niobia) was 96.15% TD. This fact might be related to the competitive mechanism between Kirkendall effect, forming porosity owing to niobium solubilization on UO{sub 2} matrix, and densification process as a result of uranium diffusivity. Thus, the densification was only 0.08 %TD in Z(Nb)3 sample. All the other samples were in agreement with INB specification. (author)

  10. High temperature interaction between UO2 and Zircaloy-4/silver mixture

    International Nuclear Information System (INIS)

    Uetsuka, Hiroshi; Nagase, Fumihisa; Otomo, Takashi

    1995-12-01

    The reaction between UO 2 and Zircaloy is a main material interaction in the reactor core during a severe accident of LWR. With a view of examining the influence of the core materials having low melting temperatures on the reaction, the effect of silver that is main component of PWR control rod alloy was investigated in the temperature range from 1373 to 1703K. Zircaloy was completely liquefied by the same weight of liquid silver at tested temperatures. The reaction between UO 2 and (Zircaloy+silver) mixture roughly obeyed a parabolic rate law. The determined reaction rate below about 1600K was much lower than that obtained by Hofmann et al. for the reaction between UO 2 and Zircaloy. However, it sharply increased with temperature and became comparable with the rate of UO 2 /Zircaloy reaction at about 1700K. Metallurgical examination including EPMA analysis revealed that Zr(O) layer formed at the reaction interface only for the tests below about 1600K correlated with the discontinuity of the temperature dependence of reaction rate. (author)

  11. Bayesian ensemble approach to error estimation of interatomic potentials

    DEFF Research Database (Denmark)

    Frederiksen, Søren Lund; Jacobsen, Karsten Wedel; Brown, K.S.

    2004-01-01

    Using a Bayesian approach a general method is developed to assess error bars on predictions made by models fitted to data. The error bars are estimated from fluctuations in ensembles of models sampling the model-parameter space with a probability density set by the minimum cost. The method...... is applied to the development of interatomic potentials for molybdenum using various potential forms and databases based on atomic forces. The calculated error bars on elastic constants, gamma-surface energies, structural energies, and dislocation properties are shown to provide realistic estimates...

  12. Effect of the microstructural morphology on UO{sub 2} powders

    Energy Technology Data Exchange (ETDEWEB)

    Ziouane, Y.; Lalleman, S.; Leturcq, G. [CEA, Centre de Marcoule, Nuclear Energy Division, RadioChemistry and Processes Department, SERA, LED, F-30207 Bagnols sur Ceze (France); Arab-Chapelet, B. [CEA, Centre de Marcoule, Nuclear Energy Division, RadioChemistry and Processes Department, SERA, LCAR, F-30207 Bagnols sur Ceze (France)

    2016-07-01

    Several UO{sub 2} powders with different morphologies were synthesized and characterized. Three different morphologies were synthesized thanks to sol-gel process (big heap of about 200 μm wide consisting of sintered crystallites) on the one hand, and to oxalic precipitations (one square platelet morphology and one hexagonal stick morphology) on the other hand. Significant differences in dissolution kinetics were observed. Therefore, the morphology of the powders was found to be a key parameter that has to be considered in the studies of UO{sub 2} dissolution kinetics. The second part of the study consists in dissolving in nitric acid in in the same operating conditions three UO{sub 2} powders having different crystallites sizes. It was shown that dissolution kinetics is dependent on the morphology at the micrometer scale but also on the powder oxygen stoichiometry. (authors)

  13. Corrosion behaviour of the UO2 pellet in corrosive solutions using electrochemical Technique

    International Nuclear Information System (INIS)

    Taftanzani, A.; Sucipto; Lahagu, F.; Irianto, B.

    1996-01-01

    The UO 2 electrodes has been made from the local product of UO 2 pellets. The corrosion behaviour of the UO 2 pellets is affected by solution, by pH value and by concentration of salt solution. Investigation into corrosion behaviour of UO 2 electrodes have been carried out in saturated salt solutions using electrochemical technique. The saturated solutions have been made from salts NaCl, Na 2 CO 3 , Na 2 SO 4 and Na 3 PO 4 . The pH value have been done over range 1 pH 10 and the salt concentration (C) over range 0,001 mol/l C 1,0 mol/l, Na 2 CO 3 solution produced the lowest corrosion rates of UO 2 pellets. Those rates were relative constant in the range of pH = 4 - 8. The results indicate an influence of the Na 2 CO 3 concentrations on the corrosions on the corrosion rate, and the lowest rates occur in 0,10 mol/l Na 2 CO 3 . The lowest corrosion rate was 0.3388 mil/year in 0.10 mol/l Na 2 CO 3 by pH = 4. (author)

  14. Correlations between different methods of UO2 pellet density measurement

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1977-07-01

    Density of UO 2 pellets was measured by three different methods, i.e., geometrical, water-immersed and meta-xylene immersed and treated statistically, to find out the correlations between UO 2 pellets are of six kinds but with same specifications. The correlations are linear 1 : 1 for pellets of 95% theoretical densities and above, but such do not exist below the level and variated statistically due to interaction between open and close pores. (auth.)

  15. Study of physical properties of UO2 quality improvement result

    International Nuclear Information System (INIS)

    Rachmat-Pratomo; Hidayati; Didiek Herhady, R; Busron-Masduki

    1996-01-01

    Activation of uranium dioxide (UO 2 ) by reoxidation to U 3 O 8 and reduction to uranium dioxide (UO 2 ) by temperature reduction variation of 850 o C and 900 o C for 3 hours has been studied. The physical properties before and after treatment are compared. It proved that the oxidation-reduction cycle increased the physical properties. It can be concluded that the reoxidation of UO 2 to U 3 O 8 on fourth cycle and reduction at 900 o C for 3 hours result in a density of 1.32 gram/ml a tap density of 1.60 gram/ml, true density of 9.08 gram/ml and O/U ratio : 2.04. Reduction at 850 o C, for 3 hours result in the bulk density of 1.30 gram/ml, tap density of 1.58 gram/ml, true density of 9.04 gram/ml and O/U ratio 2.09

  16. Fission gas release from the sintered UO{sub 2} fuel; Oslobadjanje fisionih gasova iz goriva od sinterovanog UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sigulinski, F; Stevanovic, M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1966-11-15

    This paper shoes the phenomena which control fission gases release from the sintered UO{sub 2} dependent of the burnup rate: ejection, release, diffusion, increased fission gas accumulation causing structural changes in the fuel. release of fission gases from the fuel for power reactors was studied as well. The influence of factors as temperature, characteristics of fuel, burnup rate and burnup level was analyzed. Prikazani su mehanizmi koji kontrolisu izdvajanje fisionih gasova iz sinterovanog UO{sub 2} pri razlicitim brzinama izgaranja: izletanje, izbijanje, difuzija, povecano izdvajanje fisionih gasova koje prati strukturne promene u gorivu. Razmatrano je proucavanje izdvajanja fisionih gasova iz goriva za reaktore snage. Analiziran je uticaj faktora kao sto su temperatura, karakteristike goriva, brzina i stepen izgaranja (author)

  17. Cs2SeO4-UO2SeO4-H2O system at 25 deg C

    International Nuclear Information System (INIS)

    Serezhkina, L.B.; Serezhkin, V.N.

    1987-01-01

    Using the method of isothermal solubility at 25 deg C the interaction of cesium and uranyl selenates in aqueous solution is studied. Formation of congruently soluble Cs 2 UO 2 (SeO 4 ) 2 x2H 2 O and Cs 2 (UO 2 ) 2 x(SeO 4 ) 3 is ascertained, their crystallographic characteristics being determined

  18. Process for uranium separation and preparation of UO4.2NH3.2HF

    International Nuclear Information System (INIS)

    Dokuzoguz, H.Z.

    1976-01-01

    A process for treating the aqueous effluents that are produced in converting gaseous UF 6 (uranium hexafluoride) into solid UO 2 (uranium dioxide) by way of an intermediate (NH 4 ) 4 UO 2 (CO 3 ) 3 (''AUC'' Compound) is disclosed. These effluents, which contain large amounts of NH 4 + , CO 3 2- , F - , and a small amount of U are mixed with H 2 SO 4 (sulfuric acid) in order to expel CO 2 (carbon dioxide) and thereby reduce the carbonate concentration. The uranium is precipitated through treatment with H 2 O 2 (hydrogen peroxide) and the fluoride is easily recovered in the form of CaF 2 (calcium fluoride) by contacting the process liquid with CaO (calcium oxide). The presence of SO 4 2- (sulfate) in the process liquid during CaO contacting seems to prevent the development of a difficult-to-filter colloid. The process also provides for NH 3 recovery and recycling. Liquids discharged from the process, moreover, are essentially free of environmental pollutants. The waste treatment products, i.e., CO 2 , NH 3 , and U are economically recovered and recycled back into the UF 6 → UO 2 conversion process. The process, moreover, recovers the uranium as a precipitate in the second stage. This precipitate is a new inorganic chemical compound UO 4 .2NH 3 .2HF [uranyl peroxide-2-ammonia-2-(hydrogen fluoride)

  19. Irradiation effects in UO2 and CeO2

    International Nuclear Information System (INIS)

    Ye, Bei; Oaks, Aaron; Kirk, Mark; Yun, Di; Chen, Wei-Ying; Holtzman, Benjamin; Stubbins, James F.

    2013-01-01

    Single crystal CeO 2 , as a surrogate material to UO 2 , was irradiated with 500 keV xenon ions at 800 °C while being observed using in situ transmission electron microscopy (TEM). Experimental results show the formation and growth of defect clusters including dislocation loops and cavities as a function of increasing atomic displacement dose. At high dose, the dislocation loop structure evolves into an extended dislocation line structure, which appears to remain stable to the high dose levels examined in this study. A high concentration of cavities was also present in the microstructure. Despite high atomic displacement doses, the specimen remained crystalline to a cumulated dose of 5 × 10 15 ions/cm 2 , which is consistent with the known stability of the fluorite structure under high dose irradiation. Kinetic Monte Carlo calculations show that oxygen mobility is substantially higher in hypo-stoichiometric UO 2 /CeO 2 than hyper-stoichiometric systems. This result is consistent with the ability of irradiation damage to recover even at intermediate irradiation temperatures

  20. Mechanism of UO2 selfdisintegration by oxidation

    International Nuclear Information System (INIS)

    Ohai, D.; Furtuna, I.; Dumitrescu, I.

    2008-01-01

    Full text: The paper present the results of the study of UO 2 sintered pellets oxidation, part of FIPRED (Fission Product Release from Debris Bed) Project. The FIPRED Project is dedicated to the study the fission products release from irradiated pellets existing in debris bed. The product release is produced by oxidative self disintegration of sintered pellets at air ingress and it depends on temperature. The experimental program covered experiments of 300-1000 deg. C in air diluted with nitrogen at different oxygen concentrations. The experiments were performed using the SETARAM thermo gravimetric equipment and the FIPRED EQ equipment designed and manufactured especially for this type of experiment. The powders (fragments), resulted from UO 2 pellets self disintegration, were characterized by sieving and SEM. The self disintegration mechanism was demonstrated using the experimental results obtained and thermodynamical data of uranium oxides. (authors)

  1. Consistency in thermophysical properties: enthalpy, heat capacity, thermal conductivity and thermal diffusivity of solid UO2

    International Nuclear Information System (INIS)

    Fink, J.K.; Chasanov, M.G.; Leibowitz, L.

    Equations have been derived for the enthalpy, heat capacity, thermal conductivity, and thermal diffusivity of UO 2 . In selection of these equations, we considered the traditional criterion of lowest relative standard deviation between experimental data and the function chosen to fit these data as well as consistency between the thermophysical properties. In the latter case, we considered consistency in (1) thermodynamic relations among properties, (2) the choice of physical phenomena on which to base the theoretical formulation of the equations, and (3) the existence and temperature of phase transitions

  2. Determination of UO2F2, UO2 and UF4 in tetrafluoride of uranium samples

    International Nuclear Information System (INIS)

    Contreras Guzman, Ariel; Arlegui Hormazabal, Oscar

    2003-01-01

    The combustible elements for investigation reactors that at the present are manufacturing by the Chilean Nuclear Energy Commission (CCHEN) they are based on aluminum and silicide uranium powdered which is obtained from metallic uranium. At the present the Conversion Units, is developing the technology of transformation UF 6 in metallic Uranium, reason for which is necessary that the Chemical Analysis Laboratory have a methodology that allows to quantify the presence of UO 2 F 2 , UO 2 and UF 4 in the samples obtained in this transformation process. For this reason we are implements the methodology of sequential analysis that had been developed previously, for the Institute of Energy and Nuclear Investigations, IPEN Brasil, and to adapt it to the present conditions in the Laboratory of Chemical Analysis of the CCHEN. This method is based on the different solubilities that present those sample in front of solvents as ethanol and solutions of ammonium oxalate, what allows the separation of these compounds for a later analysis by means of the method of Davies and Gray. This method is based on the reduction of the uranium (VI) to uranium (IV) with ferrous ion amid phosphoric acid, quantifying the present uranium in the samples by means of titration with potassium dicromate. With the purpose of checking the efficiency of the method, the sum of all values of uranium coming from each compound and compares it with the total uranium of the sample (author)

  3. Milestone report: The simulation of radiation driven gas diffusion in UO2 at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Michael William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kuganathan, Navaratnarajah [Imperial College, London (United Kingdom); Burr, Patrick A [Univ. of New South Wales (Australia); Rushton, Michael J. [Imperial College, London (United Kingdom); Grimes, Robin W [Imperial College, London (United Kingdom); Turbull, James Anthony [Independent Consultant (United Kingdom); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-24

    Below 1000 K it is thought that fission gas diffusion in nuclear fuel during irradiation occurs through atomic mixing due to radiation damage. This is an important process for nuclear reactor performance as it affects fission gas release, particularly from the periphery of the pellet where such temperatures are normal. Here we present a molecular dynamics study of Xe and Kr diffusion due to irradiation. Thermal spikes and cascades have been used to study the electronic stopping and ballistic phases of damage, respectively. Our results predict that O and Kr exhibit the greatest diffusivity and U the least, while Xe lies in between. It is concluded that the ballistic phase does not sufficiently account for the experimentally observed diffusion. Preliminary thermal spike calculations indicate that the electronic stopping phase generates greater fission gas displacement than the ballistic phase, although further calculation must be carried out to confirm this. A good description of the system by the empirical potentials is important over the very wide temperatures induced during thermal spike and damage cascade simulations. This has motivated the development of a parameter set for gas-actinide and gas-oxygen interactions that is complementary for use with a recent many-body potential set. A comprehensive set of density functional theory (DFT) calculations were used to study Xe and Kr incorporation at a number of sites in CeO2, ThO2, UO2 and PuO2. These structures were used to fit a potential, which was used to generate molecular dynamics (MD) configurations incorporating Xe and Kr at 300 K, 1500 K, 3000 K and 5000 K. Subsequent matching to the forces predicted by DFT for these MD configurations was used to refine the potential set. This fitting approach ensured weighted fitting to configurations that are thermodynamically significant over a broad temperature range, while avoiding computationally expensive DFT-MD calculations

  4. Fabrication of metallic channel-containing UO2 fuels

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Song, Kun Woo; Kim, Keon Sik; Jung, Youn Ho

    2004-01-01

    The uranium dioxide is widely used as a fuel material in the nuclear industry, owing to many advantages. But it has a disadvantage of having the lowest thermal conductivity of all kinds of nuclear fuels; metal, carbide, nitride. It is well known that the thermal conductivity of UO 2 fuel is enhanced by making, so called, the CERMET (ceramic-metal) composite which consists of both continuous body of highly thermal-conducting metal and UO 2 islands. The CERMET fuel fabrication technique needs metal phase of at least 30%, mostly more than 50%, of the volume of the pellet in order to keep the metal phase interconnected. This high volume fraction of metal requires such a high enrichment of U that the parasitic effect of metal should be compensated. Therefore, it is attractive to develop an innovative composite fuel that can form continuous metal phase with a small amount of metal. In this investigation, a feasibility study was made on how to make such an innovative fuel. Candidate metals (W, Mo, Cr) were selected, and fabrication process was conceptually designed from thermodynamic calculations. We have experimentally found that a metal phase envelops perfectly UO 2 grains, forming continuous channel throughout the pellet, and improving the thermal conductivity of pellet

  5. Technological aspects concerning the production procedures of UO2-Gd2O3 nuclear fuel

    International Nuclear Information System (INIS)

    Durazzo, Michelangelo; Riella, Humberto Gracher

    2007-01-01

    The direct incorporation of Gd 2 O 3 powder into UO 2 powder by dry mechanical blending is the most attractive process for producing UO 2 -Gd 2 O 3 nuclear fuel. However, previous experimental results by our group indicated that pore formation due to the Kirkendall effect delays densification and, consequently, diminishes the final density of this type of nuclear fuel. Considering this mechanism as responsible for the poor sintering behavior of UO 2 -Gd 2 O 3 fuel prepared by the mechanical blending method, it was possible to propose, discuss and, in certain cases, preliminarily test feasible adjustments in fabrication procedures that would minimize, or even totally compensate, the negative effects of pore formation due to the Kirkendall effect. This work presents these considerations. (author)

  6. Adsorption of UO2+2 by polyethylene adsorbents with amidoxime, carboxyl, and amidoxime/carboxyl group

    International Nuclear Information System (INIS)

    Choi, Seong-Ho; Nho, Young Chang

    2000-01-01

    The polyethylene (PE) adsorbents were prepared by a radiation-induced grafting of acrylonitrile (AN), acrylic acid (AA), and the mixture of AN/AA onto PE film, and by subsequent amidoximation of cyano groups of poly-AN graft chains. With an increase of AA composition in AN/AA monomer mixture, the water uptake of the grafted polyethylene film increased. In AN/AA mixture, the maximum adsorption of UO 2+ 2 was observed in the adsorbent with a ratio of AN/AA (50/50, mol%) in copolymer. The amidoxime, carboxyl, and amidoxime/carboxyl groups onto PE acted as a chelating site for the selected UO 2+ 2 . The complex structure of polyethylene with three functional groups and UO 2+ 2 was confirmed by Fourier Transform Infrared (FTIR) spectroscopy. (author)

  7. Transmission electron microscopic study of reduced Ca2UO5

    International Nuclear Information System (INIS)

    Krasevec, V.; Prodan, A.; Holc, J.; Kolar, D.

    1983-01-01

    Structural changes of Ca 2 UO 5 during reduction in hydrogen were studied by transmission electron microscopy. It was shown that monoclinic Ca 2 UO 5 changes into triclinic Ca 4 U 2 O 9 . They are related, respectively, to the fluorite and the bixbyite (C-M 2 O 3 ) structures, so that the product is a superstructure of the latter. Reduction occurs along the (100)/sub t/ planes originating from the (006)/sub m/ planes of the parent structure by diminishing the coordination number of the Ca cation from 7 to 6. 5 figures

  8. Thermal decomposition of (UO{sub 2})O{sub 2}(H{sub 2}O){sub 22H{sub 2}O: Influence on structure, microstructure and hydrofluorination

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R. [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Hall de Recherche de Pierrelatte, AREVA NC, BP 16, 26701 Pierrelatte (France); Rivenet, M., E-mail: murielle.rivenet@ensc-lille.fr [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Berrier, E. [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Waele, I. de [Université de Lille, CNRS, UMR 8516 – LASIR - Laboratoire de Spectrochimie Infrarouge et Raman, F-59000 Lille (France); Arab, M.; Amaraggi, D.; Morel, B. [Hall de Recherche de Pierrelatte, AREVA NC, BP 16, 26701 Pierrelatte (France); Abraham, F. [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille (France)

    2017-01-15

    The thermal decomposition of uranyl peroxide tetrahydrate, (UO{sub 2})O{sub 2}(H{sub 2}O){sub 2}.2H{sub 2}O, was studied by combining high temperature powder X-ray diffraction, scanning electron microscopy, thermal analyses and spectroscopic techniques (Raman, IR and {sup 1}H NMR). In situ analyses reveal that intermediates and final uranium oxides obtained upon heating are different from that obtained after cooling at room temperature and that the uranyl precursor used to synthesize (UO{sub 2})O{sub 2}(H{sub 2}O){sub 22H{sub 2}O, sulfate or nitrate, has a strong influence on the peroxide thermal behavior and morphology. The decomposition of (UO{sub 2})O{sub 2}(H{sub 2}O){sub 22H{sub 2}O ex sulfate is pseudomorphic and leads to needle-like shaped particles of metastudtite, (UO{sub 2})O{sub 2}(H{sub 2}O){sub 2}, and UO{sub 3-x}(OH){sub 2x}·zH{sub 2}O, an amorphous phase found in air in the following of (UO{sub 2})O{sub 2}(H{sub 2}O){sub 2} dehydration. (UO{sub 2})O{sub 2}(H{sub 2}O){sub 22H{sub 2}O and the compounds resulting from its thermal decomposition are very reactive towards hydrofluorination as long as their needle-like morphology is kept.

  9. Out-of-pile UO2/Zircaloy-4 experiments under severe fuel damage conditions

    International Nuclear Information System (INIS)

    Hofmann, P.

    1983-01-01

    Chemical interactions between UO 2 fuel and Zircaloy-4 cladding up to the melting point of zircaloy (Zry) are described. Out-of-pile UO 2 /zircaloy reaction experiments have been performed to investigate the chemical interaction behavior under possible severe fuel damage conditions (very high temperatures and external overpressure). The tests have been conducted in inert gas (1 to 80 bar) with 10-cm-long zircaloy cladding specimens filled with UO 2 pellets. The annealing temperature varied between 1000 and 1700 deg. C and the annealing period between 1 and 150 min. The extent of the chemical reaction depends decisively on whether or not good contact between UO 2 and zircaloy has been established. If solid contact exists, zircaloy reduces the UO 2 to form oxygen-stabilized α-Zr(O) and uranium metal. The uranium reacts with zircaloy to form a (U,Zr) alloy rich in uranium. The (U,Zr) alloy, which is liquid above approx. 1150 deg. C, lies between two α-Zr(O) layers. The UO 2 /zircaloy reaction obeys a parabolic rate law. The degree of chemical interaction is determined by the extent of oxygen diffusion into the cladding, and hence by the time and temperature. The affinity of zirconium for oxygen, which results in an oxygen gradient across the cladding, is the driving force for the reaction. The growth of the reaction layers can be represented in an Arrhenius diagram. The UO 2 /Zry-4 reaction occurs as rapidly as the steam/Zry-4 reaction above about 1100 deg. C. The extent of the interaction is independent of external pressure above about 10 bar at 1400 deg. C and 5 bar at 1700 deg. C. The maximum measured oxygen content of the cladding is approx. 6wt.%. Up to approx. 9 volume % of the UO 2 can be chemically dissolved by the zircaloy. In an actual fuel rod, complete release of the fission products in this region of the fuel must therefore be assumed. (author)

  10. Effect of additives in sintering UO2-7wt%Gd2O3 fuel pellets

    International Nuclear Information System (INIS)

    Santos, L.R.; Riella, H.G.

    2009-01-01

    Gadolinium has been used as burnable poison for reactivity control in modern PWRs. The incorporation of Gd 2 O 3 powder directly into the UO 2 powder enables longer fuel cycles and optimized fuel utilization. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. The process for manufacturing UO 2 - Gd 2 O 3 generates scraps that should be reused. The main scraps are green and sintered pellets, which must be calcined to U 3 O 8 to return to the fabrication process. Also, the incorporation of Gd 2 O 3 in UO 2 requires the use of an additive to improve the sintering process, in order to achieve the physical properties specified for the mixed fuel, mainly density and microstructure. This paper describes the effect of the addition of fabrication scraps on the properties of the UO 2 -Gd 2 O 3 fuel. Aluminum hydroxide Al(OH) 3 was also incorporated to the fuel as a sintering aid. The results shown that the use of 2000 ppm of Al(OH) 3 as additive allow to fabricate good pellets with up to 10 wt% of recycled scraps. (author)

  11. Tellurites of hexavalent uranium: first observation of polymerized (UO{sub 4}){sup 2-} tetraoxido cores

    Energy Technology Data Exchange (ETDEWEB)

    Zadoya, Anastasiya I.; Siidra, Oleg I.; Nazarchuk, Evgeny V.; Bocharov, Sergey N. [Department of Crystallography, St. Petersburg State University (Russian Federation); Bubnova, Rimma S. [Department of Crystallography, St. Petersburg State University (Russian Federation); Institute of Silicate Chemistry, Russian Academy of Sciences, St. Petersburg (Russian Federation)

    2016-09-15

    Two novel Ca{sub 2}(UO{sub 3})(TeO{sub 3}){sub 2} (1) and K{sub 2}(UO{sub 2}){sub 2}O{sub 2}(TeO{sub 3}) (2) uranyl tellurites were obtained from telluric acid, used as a starting reagent for both compounds. In 1, the tetraoxido core is coordinated by TeO{sub 3} groups and UO{sub 4} squares polymerize into [UO{sub 3}] chains. The tetraoxido core coordination modes in compound 1 are unique. New layered {sub ∞}{sup 2}[(UO{sub 2}){sub 2}(TeO{sub 3})O{sub 2}]{sup 2-} topology is observed for 2. Both of the compounds were studied by the means of high-temperature X-ray diffraction. The thermal decomposition of 1 and 2 is different and leads to formation of uranate compounds. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Orientational anharmonicity of interatomic interaction in cubic monocrystals

    International Nuclear Information System (INIS)

    Belomestnykh, Vladimir N.; Tesleva, Elena P.

    2010-01-01

    Anharmonicity of interatomic interaction from a position of physical acoustics under the standard conditions is investigated. It is shown that the measure of anharmonicity of interatomic interaction (Grilneisen parameter) is explicitly expressed through velocities of sound. Calculation results of orientation anharmonicity are shown on the example of 116 cubic monocrystals with different lattice structural type and type of chemical bond. Two types of anharmonicity interatomic interaction anisotropy are determined. Keywords: acoustics, orientational anharmonicity, Gruneisen parameter, velocity of sound

  13. BURNY-SQUID, 2-D Burnup of UO2 and Mix UO2 PuO2 Fuel in X-Y or R-Z Geometry

    International Nuclear Information System (INIS)

    Rosa, I.; Zara, G.; Guidotti, R.

    1974-01-01

    1 - Nature of physical problem solved: - Multigroup neutron diffusion and burnup equations for two- to five- energy groups over a rectangular region of the x-y or r-z plane. - For a given geometry and initial enrichment, it calculates the two- to five- group flux distributions, the nuclides burnt in a time step t, and then the flux distribution again. This process is repeated until the maximum burn-up is reached. - Criticality search by uniform variation of a control isotope. - Solution of problems with fuel having different geometrical parameters, by means of super-compositions. - Recycle and restart options are available. - UO 2 and PUO 2 -UO 2 fuel can be handled. 2 - Method of solution: The zero-dimension burn-up program RIBOT-5 is coupled with the two-dimension program SQUID and alternately executed. The differential equations are solved by the difference method. 3 - Restrictions on the complexity of the problem: 200 maximum number of compositions 10,000 maximum number of mesh points 5 maximum Number of groups. 4 maximum number of super-compositions. Diagonal symmetry allowed

  14. Complexation in the system K2SeO4-UO2SeO4-H2O

    International Nuclear Information System (INIS)

    Serezhkina, L.B.; Kuchumova, N.V.; Serezhkin, V.N.

    1994-01-01

    Complexation in the system K 2 SeO 4 -UO 2 SeO 4 -H 2 O at 25 degrees C is studied by isothermal solubility. Congruently soluble K 2 UO 2 (SeO 4 ) 2 ·4H 2 O (I) and incongruently soluble K 2 (UO 2 ) 2 (SeO 4 ) 3 ·6H 2 O (II) are observed. The unit-cell constants of I and II are determined from an X-ray diffraction investigation. For I, a = 12,969, b = 11.588, c = 8.533 angstrom, Z = 4, space group Pmmb. For II, a = 23.36, b = 6.784, c = 13.699 angstrom, β = 104.42 degrees, Z = 4, space group P2/m, P2, or Pm. Complexes I and II are representatives of the crystal-chemical groups AB 2 2 M 1 and A 2 T 3 3 M 1 , respectively, of uranyl complexes

  15. Ultrasonic analysis of UO{sub 2} pellets

    Energy Technology Data Exchange (ETDEWEB)

    Bittencourt, Marcelo de S.Q.; Baroni, Douglas B.; Martorelli, Daniel S., E-mail: bittenc@ien.gov.br, E-mail: douglasbaroni@ien.gov.br, E-mail: daniel@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Ultrassom; Dias, Fabio C.; Silva, Jose W.S. da, E-mail: fabio@ird.gov.br, E-mail: wanderley@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Salvaguardas

    2013-07-01

    Ceramic materials have been widely used for various purposes in many different industries due to certain characteristics, such as high melting point and high resistance to corrosion. In the nuclear area, ceramics are of great importance due to the process of fabrication of fuel pellets for nuclear reactors. Generally, high accuracy destructive techniques are used to characterize nuclear materials for fuel fabrication. These techniques usually require costly equipment and facilities, as well as experienced personnel. This paper aims at presenting an analysis methodology for UO2 pellets using a non-destructive ultrasonic technique for porosity measurement. This technique differs from traditional ultrasonic techniques in the sense it uses ultrasonic pulses in frequency domain instead of time domain. Therefore, specific characteristics of the analyzed material are associated with the obtained frequency spectrum. In the present work, four fuel grade UO2 pellets were analyzed and the corresponding results evaluated. (author)

  16. Preliminary Results on a Contact between 4 kg of Molten UO2 and Liquid Sodium

    International Nuclear Information System (INIS)

    Amblard, M.

    1976-01-01

    The CORECT II Experiment consists in simulating the penetration of sodium into an assembly when the fuel is molten. In other words, it is a shock-tube type of experiment with dimensions representative of a full-scale assembly. the experiment consists in dropping a 100 litre column of sodium onto partially molten UO 2 . The following measurements are carried out in transient regime: - sodium velocity in the column; - pressure in the interaction chamber; - pressures at the bottom and at the top of a 5 m tube; - pressure in the argon blanket. The experimental parameters are: - the mass of UO 2 involved (about 4 or 7 kg of 80% molten UO 2 ); - the initial temperature of the sodium (up to 700 deg. C); - the pressure of the residual gas in the interaction chamber during the fall of the sodium; - the dimensions of the interaction chamber and the sodium supply tube; - the form of contact between the UO 2 and the sodium (the sodium may fall on partially liquid and settled UO 2 or on UO 2 pre-dispersed by forced trapping of sodium). To date, 6 tests have been performed. These tests have always resulted in fine fragmentation without any violent interaction. Since no knowledge is available on the change of grain size distribution with time, on the temperature of grain formation, and on the grain movement in the sodium, it is very difficult to interpret these UO 2 -Na tests. We intend to carry out more severe interaction tests on this experimental set-up, by eliminating as much as possible the non-condensable gas which cushions the mechanical impact of the sodium on the UO 2 (tests have shown that by strongly de-pressurizing the liquid UO 2 the fuel could be dispersed by boiling, and this effect should also improve the possibilities of a liquid/liquid contact). - by injecting a little sodium into the UO 2 to facilitate its dispersion in the coolant

  17. Interaction and penetration of heated UO2 with limestone concrete

    International Nuclear Information System (INIS)

    Farhadieh, R.; Pedersen, D.R.; Purviance, R.; Carlson, N.

    1982-01-01

    To safeguard the environment against radiological releases, the major question of concern in PAHR safety assessment, following an HCDA, involves confinement and dilution of the molten core-debris. Significant to the study is the directional growth of the core-debris in the concrete foundation of the reactor building or the concrete below the reactor cavity. The real material experiments were carried out in the test apparatus shown. Casts of CRBRP limestone concrete were prepared in graphite cylinders, each having an internal diameter of 8.9 cm and a depth of 30.5 cm. The 17.8-cm-deep concrete samples were allowed to cure for at least 28 days. Experiments were conducted within two months of curing time. The cavity above concrete was packed with 3 kg of pure UO 2 particles (1 to 3 mm). A uranothermic mixture was placed on the top of UO 2 powder. Heating and possible melting of UO 2 was achieved resistively after the ignition of the thermite. Total experimental time was about 60 minutes, during which time a maximum electrical power input of 1.8 watts/gr was applied to the UO 2 . Three gas samples were taken at temperatures of 100, 600, and 950 0 C, measured in the plane of the No. 2 thermocouple. Selection of three temperatures were to study the amount and the type of gases released from different phases of concrete

  18. Sphere-pac versus pellet UO2 fuel in de Dodewaard BWR

    International Nuclear Information System (INIS)

    Linde, A. van der.

    1989-04-01

    Comparative testing of UO 2 sphere-pac and pellet fuel rods under LWR conditions has been jointly performed by the Netherlands Utilities Research Centre (KEMA) in Arnhem, the Netherlands Energy Research Foundation (ECN) at Petten and the Netherlands Joint Nuclear Power Utility (GKN) at Dodewaard. This final report summarizes the highlights of this 1968-1988 program with strong emphasis on the fuel rods irradiated in the Dodewaard BWR. The conclusion reached is that under normal LWR conditions sphere-pac UO 2 in LWR fuel rods offers better resistance against stress corrosion cracking of the cladding, but that under fast, single step, power ramping conditions pellet UO 2 in LWR fuel rods has a better resistance against hoop stress failure of the cladding. 128 figs., 36 refs., 19 tabs

  19. Topologically identical, but geometrically isomeric layers in hydrous α-, β-Rb[UO2(AsO3OH)(AsO2(OH)2)]·H2O and anhydrous Rb[UO2(AsO3OH)(AsO2(OH)2)

    International Nuclear Information System (INIS)

    Yu, Na; Klepov, Vladislav V.; Villa, Eric M.; Bosbach, Dirk; Suleimanov, Evgeny V.; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.; Alekseev, Evgeny V.

    2014-01-01

    The hydrothermal reaction of uranyl nitrate with rubidium nitrate and arsenic (III) oxide results in the formation of polymorphic α- and β-Rb[UO 2 (AsO 3 OH)(AsO 2 (OH) 2 )]·H 2 O (α-, β-RbUAs) and the anhydrous phase Rb[UO 2 (AsO 3 OH)(AsO 2 (OH) 2 )] (RbUAs). These phases were structurally, chemically and spectroscopically characterized. The structures of all three compounds are based upon topologically identical, but geometrically isomeric layers. The layers are linked with each other by means of the Rb cations and hydrogen bonding. Dehydration experiments demonstrate that water deintercalation from hydrous α- and β-RbUAs yields anhydrous RbUAs via topotactic reactions. - Graphical abstract: Three different layer geometries observed in the structures of Rb[UO 2 (AsO 3 OH)(AsO 2 (OH) 2 )] and α- and β- Rb[UO 2 (AsO 3 OH)(AsO 2 (OH) 2 )]·H 2 O. Two different coordination environments of uranium polyhedra (types I and II) are shown schematically on the top of the figure. - Highlights: • Three new uranyl arsenates were synthesized from the hydrothermal reactions. • The phases consist of the topologically identical but geometrically different layers. • Topotactic transitions were observed in the processes of mono-hyrates dehydration

  20. Densification behaviour of UO2 in six different atmospheres

    International Nuclear Information System (INIS)

    Kutty, T.R.G.; Hegde, P.V.; Khan, K.B.; Basak, U.; Pillai, S.N.; Sengupta, A.K.; Jain, G.C.; Majumdar, S.; Kamath, H.S.; Purushotham, D.S.C.

    2002-01-01

    The shrinkage behaviour of UO 2 has been studied using a dilatometer in various atmospheres of Ar, Ar-8%H 2 , vacuum, CO 2 , commercial N 2 and N 2 +1000 ppm of O 2 . The onset of shrinkage occurs at around 300-400 deg. C lower in oxidizing atmospheres such as CO 2 , commercial N 2 and N 2 +1000 ppm O 2 compared to that in reducing or inert atmospheres. Shrinkage behaviour of UO 2 is almost identical in Ar, Ar-8%H 2 and vacuum. The shrinkage in N 2 +1000 ppm O 2 begins at a lower temperature than that in the commercial N 2 . The mechanism of sintering in the reducing, inert and vacuum atmospheres is explained by diffusion of uranium vacancies and that in the oxidizing atmospheres by cluster formation

  1. Synthesis and investigation of uranyl molybdate UO2MoO4

    International Nuclear Information System (INIS)

    Nagai, Takayuki; Sato, Nobuaki; Kitawaki, Shin-ichi; Uehara, Akihiro; Fujii, Toshiyuki; Yamana, Hajimu; Myochin, Munetaka

    2013-01-01

    In order to examine easily synthetic conditions of uranyl molybdate, UO 2 MoO 4 , used for the reprocessing process study of spent nuclear oxide fuels in alkaline molybdate melts, the uranium molybdate compounds were produced from U 3 O 8 powder and anhydrous MoO 3 reagent. The results of having investigated them in solid state by using X-ray diffractometry and Raman spectrometry, it was confirmed that UO 2 MoO 4 could be synthesized by heating mixed powder of U 3 O 8 and MoO 3 with stoichiometric mole ratio at 770 °C for 4 h under air atmosphere. Moreover, adding this UO 2 MoO 4 into Li 2 MoO 4 -Na 2 MoO 4 eutectic melt, most of the dissolved uranium species in the melt were observed as hexa–valent uranyl ions by absorption spectrophotometry

  2. Fission gas release from ThO2 and ThO2--UO2 fuels (LWBR development program)

    International Nuclear Information System (INIS)

    Goldberg, I.; Spahr, G.L.; White, L.S.; Waldman, L.A.; Giovengo, J.F.; Pfennigwerth, P.L.; Sherman, J.

    1978-08-01

    Fission gas release data are presented from 51 fuel rods irradiated as part of the LWBR irradiations test program. The fuel rods were Zircaloy-4 clad and contained ThO 2 or ThO 2 -UO 2 fuel pellets, with UO 2 compositions ranging from 2.0 to 24.7 weight percent and fuel densities ranging from 77.8 to 98.7 percent of theoretical. Rod diameters ranged from 0.25 to 0.71 inches and fuel active lengths ranged from 3 to 84 inches. Peak linear power outputs ranged from 2 to 22 kw/ft for peak fuel burnups up to 56,000 MWD/MTM. Measured fission gas release was quite low, ranging from 0.1 to 5.2 percent. Fission gas release was higher at higher temperature and burnup and was lower at higher initial fuel density. No sensitivity to UO 2 composition was evidenced

  3. Role of nitrous acid during the dissolution of UO2 in nitric acid

    International Nuclear Information System (INIS)

    Deigan, N.; Pandey, N.K.; Kamachi Mudali, U.; Joshi, J.B.

    2016-01-01

    Understanding the dissolution behaviour of sintered UO 2 pellet in nitric acid is very important in designing an industrial scale dissolution system for the plutonium rich fast reactor MOX fuel. In the current article we have established the role of nitrous acid on the dissolution kinetics of UO 2 pellets in nitric acid. Under the chemical conditions that prevail in a typical Purex process, NO and NO 2 gases gets generated in the process streams. These gases produce nitrous acid in nitric acid medium. In addition, during the dissolution of UO 2 in nitric acid medium, nitrous acid is further produced in-situ at the pellet solution interface. As uranium dissolves oxidatively in nitric acid medium wherein it goes from U(IV) in solid to U(VI) in liquid, presence of nitrous acid (a good oxidizing agent) accelerates the reaction rate. Hence for determining the reaction mechanism of UO 2 dissolution in nitric acid medium, knowing the nitrous acid concentration profile during the course of dissolution is important. The current work involves the measurement of nitrous acid concentration during the course of dissolution of sintered UO 2 pellets in 8M starting nitric acid concentration as a function of mixing intensity from unstirred condition to 1500 RPM

  4. In-pile vapor pressure measurements on UO2 and (U,Pu)O2

    International Nuclear Information System (INIS)

    Breitung, W.; Reil, K.O.

    1985-08-01

    The Effective-Equation-of-State (EEOS) experiments investigated the saturation vapor pressures of ultra pure UO 2 , reactor grade UO 2 , and reactor grade (Usub(.77)Pusub(.23))O2 using newly developed in-pile heating techniques. For enthalpies between 2150 and 3700 kJ/kg (about 4700 to 8500 K) vapor pressures from 1.3 to 54 MPa were measured. The p-h curves of all three fuel types were identical within the experimental uncertainties. An assessment of all published p-h measurements showed that the p-h saturation curve of UO 2 appears now well established by the EEOS and the CEA in-pile data. Using an estimate for the heat capacity of liquid UO 2 , the in-pile results were also compared to earlier p-T measurements. The assessments lead to proposal of two equations. Equation I, which includes a factor-of-2 uncertainty band, covers all p-T equilibrium evaporation measurements. Equation I yields 3817 K for the normal boiling point, 415.4 kJ/mol for the corresponding heat of vaporization, and 1.90 MPa for the vapor pressure at 5000 K. Equations I and II, which represent a parametric form of the p-h curve (T=parameter), also give a good description of the EEOS and CEA in-pile data. Thus the proposed equations allow a consistent representation of both p-T and p-h measurements, they are sufficiently precise for CDA analyses and cover the whole range of interest (3120-8500 K, 1400-3700 kJ/kg). (orig./HP) [de

  5. Oxidation of UO2 at 150 to 3500C

    International Nuclear Information System (INIS)

    Gilbert, E.R.; White, G.D.; Knox, C.A.

    1985-02-01

    Tests were performed on nonirradiated UO 2 pellets from 150 to 350 0 C in atmospheric air and controlled environments and on spent light-water reactor (LWR) fuel fragments at 200 and 230 0 C in atmospheric air to determine the variables that affect oxidation behavior under dry storage conditions. The weight of spent fragments increased 50 to 100 times faster than the weight of nonirradiated UO 2 pellets at 230 0 C. Non-irradiated pellet fragments gained weight 5 to 7 times faster than nonirradiated pellets. The fragments simulated fuel fragmented by thermal gradients during reactor power changes. Low-density powder (U 3 O 8 ) formed at 0.05 and 0.3% weight gain for nonirradiated pellets and fragments, respectively, but had not formed at 3% weight gain for spent fuel fragments with a burnup of 29,000 MWd/MTU. Canadian investigators had found that powder formed at intermediate levels of weight gain in CANDU spent fuel fragments with an approximate burnup of 8000 MWd/MTU. The combined effects of the high rate of weight gain in spent fuel and the burnup dependence of weight gain at powder formation resulted in a minimum in a plot of the time for the onset of powder formation versus burnup. The minimum in powder induction time occurs at or below burnup levels typical of CANDU spent fuel and spent fuel at the ends of some LWR rods. The results are described in terms of thermal and neutron irradiation-induced changes in UO 2 pellet structure and chemical composition. Other tests were performed at up to 275 0 C with spent fuel fragments and nonirradiated UO 2 pellets in moist nitrogen to determine the suitability of nitrogen as a cover gas. No measurable weight gain or visible physical changes occurred during the first 2 months of testing. 22 figures, 7 tables

  6. Synthesis of nc-UO{sub 2} by controlled precipitation in aqueous phase

    Energy Technology Data Exchange (ETDEWEB)

    Jovani-Abril, R., E-mail: raqueljovaniabril@gmail.com [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O.Box 2340, D-76125 Karlsruhe (Germany); Gibilaro, M. [Laboratoire de Génie Chimique (LGC), Université de Toulouse, UMR CNRS 5503, 31062 Toulouse cedex 9 (France); Janßen, A.; Eloirdi, R.; Somers, J.; Spino, J.; Malmbeck, R. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O.Box 2340, D-76125 Karlsruhe (Germany)

    2016-08-15

    Nanocrystalline UO{sub 2} has been produced through controlled precipitation from an electrolytically reduced U(IV) solution. The reduction process of U(VI) to U(IV) was investigated by cyclic voltammetry in combination with absorption spectrophotometry. Precipitation was achieved by controlled alkalinisation following closely the solubility line of U(IV) in aqueous media. The highest starting concentration used was 0.5 M uranylnitrate which yielded, with the equipment used, around 10 g material pro batch. The produced nc-UO{sub 2} was characterised by transmission electron microscopy (TEM) and x-ray diffraction (XRD) and exhibited the typical UO{sub 2+x} fcc fluorite structure with an average crystallite size of 3.9 nm.

  7. High-temperature irradiation of niobium-1 w/o zirconium-clad UO/sub 2/. [Compatibility with lithium

    Energy Technology Data Exchange (ETDEWEB)

    Kangilaski, M.; Fromm, E.O.; Lozier, D.H.; Storhok, V.W.; Gates, J.E.

    1965-06-28

    Twenty-four 0.225-in.-diameter and six 0.290-in.-diameter UO/sub 2/ specimens clad with 80 mils of niobium-1 w/o zirconium were irradiated to burnups of 1.4 to 6.0 at. % of uranium at surface temperatures of 900 to 1400/sup 0/C. UO/sub 2/ and lithium were found to be incompatible at these temperatures, and the thick cladding was used primarily to minimize the chances of contact of UO/sub 2/ and the lithium coolant. The thickly clad specimens did not undergo any dimensional changes as a result of irradiation, although it was found that movement of UO/sub 2/ took place in the axial direction by a vaporization-redeposition mechanism. It was found that 32 to 87% of the fission gases was released from the fuel, depending on the temperature of the specimen. Metallographic examination of longitudinal and transverse sections of the specimens indicated the usual UO/sub 2/ microstructure with columnar grains. Grain-boundary thickening was observed in the UO/sub 2/ at higher burnups. The oxygen/uranium ratio of UO/sub 2/ increased with increasing burnup.

  8. Irradiation of UO2 specimens with molten cores in a pressurized water loop. Test X-2-x

    International Nuclear Information System (INIS)

    Bain, A.S.

    1961-08-01

    Two Zircaloy-2 clad specimens containing stoichiometric UO 2 pellets were irradiated in a pressurized water loop for 379 hours at heat ratings sufficient to cause central melting of the UO 2 . There was no appearance of localized overheating or accelerated corrosion of the sheath, but the diametral increases were considerably larger than those observed in loop specimens irradiated at lower heat ratings. The length increases, however, were approximately the same as those measured for specimens at lower ratings. There was a clearly visible demarcation between UO 2 that had been molten and that which had not. The value of ∫ 500 o C Tm kdθ = 74 ± W/cm was essentially the same as that obtained from the short-duration tests in the Hydraulic Rabbit, indicating there is no marked decrease in thermal conductivity of the UO 2 fuel in irradiations up to 379 hours. (author)

  9. Interactions with Small and Large Sodium to UO2 Mass Ratios

    International Nuclear Information System (INIS)

    Clerici, G.; Holtbecker, H.; Schins, H.; Schlittenbardt, P.

    1976-01-01

    This paper is divided into the following three parts: - Presentation of final results of the Ispra dropping experiments; - Discussion of preliminary Na entrapment tests; - Presentation of the Press I and II codes. The experiments for which the Ispra UO 2 dropping facility was originally designed were completed in 1975. The experimental facility which initially had had difficulties in reaching the predefined working conditions gave in the last year a series of results. For this reason Ispra decided to built a similar plant for dropping experiments into water which started working in 1975. Concerning the entrapment tests it was originally foreseen to built in collaboration with GfK Karlsruhe a test section having subassembly geometry and in which the UO 2 would have been violently dispersed into the surrounding Na by the expansion of a small quantity of superheated sodium. Preliminary tests and the design work for the facility could be completed. The Press I + II codes were developed to support the above mentioned experiment - al activity. A 1-D analysis is made to investigate phenomena like UO 2 crust formation and calculate delay times between the time of the Na injection into UO 2 and the violent expansion of superheated Na. An estimate was also made of the available mechanical work in such a process which should allow to get an idea of possible energy release in a reactor core. First conclusions can be drawn from this estimate concerning the mechanical energy release in a WCA due to SPI. The result is that considerably lower energies are calculated from Na entrapment in a reactor core due to the limited amount of molten UO 2 present in the core

  10. In-Situ Observation of Sintering Shrinkage of UO2 Compacts Derived from Different Powder Routes

    International Nuclear Information System (INIS)

    Rhee, Young Woo; Oh, Jang Soo; Kim, Dong Joo; Kim, Keon Sik; Kim, Jong Hun; Yang, Jae Ho; Koo, Yang Hyun

    2015-01-01

    In-situ observations on the shrinkage of green pellets with precisely controlled dimensions were carefully conducted by using TOM during H2 atmosphere sintering. The shrinkage retardation in IDR-UO 2 might be attributed to the larger primary particle size of IDRUO 2 than those of ADU- and AUC- UO 2 powders. It would be important to understand the different sintering characteristics of UO 2 powders according to the powder routes, when it comes to designing a new sintering process or choosing a sintering additive for new fuel pellet like PCI (Pellet Cladding Interaction) remedy pellet. In this paper, we have investigated the initial and intermediate sintering shrinkage of UO 2 from different powder routes by in-situ observation of green samples during H2 atmosphere sintering. Effect of powder characteristics of three different UO 2 powders on the initial and intermediate sintering were closely reviewed including crystal structure, powder size, specific surface area, primary crystal size, and O/U ratio

  11. Growth of Gd{sub 2}O{sub 3} coherent layers on UO{sub 2} microsphere surface via sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Luciana S.; Silva, Edilaine F.; Oliveira, Felipe W.F.; Pereira, Yara S.; Brandão, Alisson F.C.; Santos, Ana Maria M.; Lameiras, Fernando S.; Reis, Sergio C.; Pedrosa, Tércio A.; Santos, Armindo, E-mail: santosa@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    In this work, we synthesized and characterized UO{sub 2}-Gd{sub 2}O{sub 3} nuclear fuel via three routes, aiming to solve the problems arising from the addition of Gd{sub 2}O{sub 3} in UO{sub 2} matrix. By the industrial route, the mixture of powders (UO{sub 2}, <90 μ and 6 wt% Gd{sub 2}O{sub 3} <10 μm) results in pellets with 91% TD at 1677 °C/H{sub 2}/4 h. By the mixed route, the formation of Gd{sub 2}O{sub 3} coherent layers on UO{sub 2} powder (particles <90 μ) and microsphere (225 μm) surface produced UO{sub 2} - 6 wt% Gd{sub 2}O{sub 3} pellets with 95% (powder; 1625 °C/H{sub 2}/4 hr) and 83% (microsphere; 1677°C/H{sub 2}/4 hr) TD. By the sol-gel route, we obtained UO{sub 2} - 6 wt% Gd{sub 2}O{sub 3} in a deagglomerated (powder; <70 μm) or agglomerated microsphere 232 μm) form whose pellets reached > 97% (powder) and >98% (microsphere) TI) at 1677 °C/H{sub 2}/4h. According to XRD, OM, and SEM/EDS analysis, the referred three routes do not form a complete solid solution of UO{sub 2}-Gd{sub 2}O{sub 3} at the temperatures and time of sintering used; Gd{sub 2}O{sub 3} granule islands are present in the pellets originating from these routes. The obtained results suggest that the topological arrangement and the deficient nanostructuring of UO{sub 2} and Gd{sub 2}O{sub 3} phases, either in the raw material (powder and microsphere) as in their compacts, are the cause of low densification and irregular distribution of Gd{sub 2}O{sub 3} in UO{sub 2} matrix; mixing of U and Gd at the molecular level does not form a solid solution; and the mixed route is a good alternative to the industrial route. (author)

  12. An improved UO2 thermal conductivity model in the ELESTRES computer code

    International Nuclear Information System (INIS)

    Chassie, G.G.; Tochaie, M.; Xu, Z.

    2010-01-01

    This paper describes the improved UO 2 thermal conductivity model for use in the ELESTRES (ELEment Simulation and sTRESses) computer code. The ELESTRES computer code models the thermal, mechanical and microstructural behaviour of a CANDU® fuel element under normal operating conditions. The main purpose of the code is to calculate fuel temperatures, fission gas release, internal gas pressure, fuel pellet deformation, and fuel sheath strains for fuel element design and assessment. It is also used to provide initial conditions for evaluating fuel behaviour during high temperature transients. The thermal conductivity of UO 2 fuel is one of the key parameters that affect ELESTRES calculations. The existing ELESTRES thermal conductivity model has been assessed and improved based on a large amount of thermal conductivity data from measurements of irradiated and un-irradiated UO 2 fuel with different densities. The UO 2 thermal conductivity data cover 90% to 99% theoretical density of UO 2 , temperature up to 3027 K, and burnup up to 1224 MW·h/kg U. The improved thermal conductivity model, which is recommended for a full implementation in the ELESTRES computer code, has reduced the ELESTRES code prediction biases of temperature, fission gas release, and fuel sheath strains when compared with the available experimental data. This improved thermal conductivity model has also been checked with a test version of ELESTRES over the full ranges of fuel temperature, fuel burnup, and fuel density expected in CANDU fuel. (author)

  13. Effects of MnO-Al2O3 on the grain growth and high-temperature deformation strain of UO2 fuel pellets

    International Nuclear Information System (INIS)

    Kang, Ki Won; Yang, Jae Ho; Kim, Jong Hun; Rhee, Young Woo; Kim, Dong Joo; Kim, Keon Sik; Song, Kun Woo

    2010-01-01

    The fabrication and high-temperature deformation strain of MnO-Al 2 O 3 -doped UO 2 pellets were studied. The effects of additive composition and amount on the microstructure evolution of a UO 2 pellet were investigated. The compressive creep behaviors of MnO-Al 2 O 3 -doped UO 2 pellets were examined. The results indicated that a MnO-Al 2 O 3 binary additive can effectively promote the grain growth of UO 2 pellets. In addition, the high-temperature deformation strain of the UO 2 pellet can be improved significantly with 1,000 ppm 95MnO-5Al 2 O 3 (mol%). The developed MnO-Al 2 O 3 -additive-containing UO 2 pellets can be a potential candidate for a high-burn-up fuel and a pellet-cladding interaction (PCI) remedy. (author)

  14. Modeling conversion of ammonium diuranate (ADU) into uranium dioxide (UO{sub 2}) powder

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Nguyen Trong; Thuan, Le Ba [Institute for Technology of Radioactive and Rare Elements (ITRRE), 48 Lang Ha, Dong Da, Ha Noi (Viet Nam); Khoai, Do Van [Institute for Technology of Radioactive and Rare Elements (ITRRE), 48 Lang Ha, Dong Da, Ha Noi (Viet Nam); Current Postdoctoral Fellow at Tokai Reprocessing Technology Development Center, Japan Atomic Energy Agency (JAEA), 4-33 Tokaimura, Nakagun, Ibaraki, 319-1194 (Japan); Lee, Jin-Young, E-mail: jylee@kigam.re.kr [Convergence Research Center for Development of Mineral Resources (DMR), Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon, 34132 (Korea, Republic of); Jyothi, Rajesh Kumar, E-mail: rkumarphd@kigam.re.kr [Convergence Research Center for Development of Mineral Resources (DMR), Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon, 34132 (Korea, Republic of)

    2016-10-15

    In the paper, Brandon mathematical model that describes the relationship between the essential fabrication parameters [reduction temperature (T{sub R}), calcination temperature (T{sub C}), calcination time (t{sub C}) and reduction time (t{sub R})] and specific surface area of ammonium diuranate (ADU)-derived UO{sub 2} powder products was established. The proposed models can be used to predict and control the specific surface area of UO{sub 2} powders prepared through ADU route. Suitable temperatures for conversion of ADU and ammonium uranyl carbonate (AUC) was examined with the proposed model through assessment of the sinterability of UO{sub 2} powders.

  15. On the Role of the Electrical Field in Spark Plasma Sintering of UO2+x

    Science.gov (United States)

    Tyrpekl, Vaclav; Naji, Mohamed; Holzhäuser, Michael; Freis, Daniel; Prieur, Damien; Martin, Philippe; Cremer, Bert; Murray-Farthing, Mairead; Cologna, Marco

    2017-01-01

    The electric field has a large effect on the stoichiometry and grain growth of UO2+x during Spark Plasma Sintering. UO2+x is gradually reduced to UO2.00 as a function of sintering temperature and time. A gradient in the oxidation state within the pellets is observed in intermediate conditions. The shape of the gradient depends unequivocally on the direction of the electrical field. The positive surface of the pellet shows a higher oxidation state compared to the negative one. An area with larger grain size is found close to the positive electrode, but not in contact with it. We interpret these findings with the redistribution of defects under an electric field, which affect the stoichiometry of UO2+x and thus the cation diffusivity. The results bear implications for understanding the electric field assisted sintering of UO2 and non-stoichiometric oxides in general. PMID:28422164

  16. Reduction behavior of UO{sub 2}{sup 2+} in molten LiCl–RbCl and LiCl–KCl eutectics by using tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Takayuki, E-mail: nagai.takayuki00@jaea.go.jp [Nuclear Fuel Cycle Engineering Lab., Japan Atomic Energy Agency, Muramatsu, Tokai, Naka, Ibaraki 319-1194 (Japan); Uehara, Akihiro; Fujii, Toshiyuki; Yamana, Hajimu [Research Reactor Institute, Kyoto University, Asashironishi, Kumatori, Sen-nan, Osaka 590-0494 (Japan)

    2013-08-15

    The reduction of uranium from UO{sub 2}{sup 2+} to UO{sub 2}{sup +} or U{sup 4+} in molten LiCl–RbCl and LiCl–KCl eutectics was examined by using tungsten and chlorine gas. Spectrophotometric technique was adopted to determine the concentration of uranium species. When tungsten was immersed into the LiCl–RbCl eutectic melt at 400 °C without supplying chlorine gas, 36% of the total weight of the hexavalent of UO{sub 2}{sup 2+} was reduced to the pentavalent of UO{sub 2}{sup +}. Under purging chlorine gas into the melt, 96% of UO{sub 2}{sup 2+} was reduced to the tetravalent of U{sup 4+}. Tungsten oxy-chloride of WOCl{sub 4} was produced via the reductions of UO{sub 2}{sup 2+}, which was volatized from the melt and adsorbed on the upper part of experimental cell. On the other hand, 84% of UO{sub 2}{sup 2+} in the LiCl–KCl eutectic melt at 500 °C was reduced to U{sup 4+} by using tungsten and chlorine gas.

  17. Hydrothermal synthesis and crystal structures of new uranyl oxalate hydroxides: α- and β-[(UO2)2(C2O4)(OH)2(H2O)2] and [(UO2)2(C2O4)(OH)2(H2O)2].H2O

    International Nuclear Information System (INIS)

    Duvieubourg, Laurence; Nowogrocki, Guy; Abraham, Francis; Grandjean, Stephane

    2005-01-01

    Two modifications of the new uranyl oxalate hydroxide dihydrate [UO 2 ) 2 (C 2 O 4 )(OH) 2 (H 2 O) 2 ] (1 and 2) and one form of the new uranyl oxalate hydroxide trihydrate [(UO 2 ) 2 (C 2 O 4 )(OH) 2 (H 2 O) 2 ].H 2 O (3) were synthesized by hydrothermal methods and their structures determined from single-crystal X-ray diffraction data. The crystal structures were refined by full-matrix least-squares methods to agreement indices R(wR)=0.0372(0.0842) and 0.0267(0.0671) calculated for 1096 and 1167 unique observed reflections (I>2σ(I)), for α (1) and β (2) forms, respectively and to R(wR)=0.0301(0.0737) calculated for 2471 unique observed reflections (I>2σ(I)), for 3. The α-form of the dihydrate is triclinic, space group P1-bar , Z=1, a=6.097(2), b=5.548(2), c=7.806(3)A, α=89.353(5), β=94.387(5), γ=97.646(5) o , V=260.88(15)A 3 , β-form is monoclinic, space group C2/c, Z=4, a=12.180(3), b=8.223(2), c=10.777(3)A, β=95.817(4), V=1073.8(5)A 3 . The trihydrate is monoclinic, space group P2 1 /c, Z=4, a=5.5095(12), b=15.195(3), c=13.398(3)A, β=93.927(3), V=1119.0(4)A 3 . In the three structures, the coordination of uranium atom is a pentagonal bipyramid composed of dioxo UO 2 2+ cation perpendicular to five equatorial oxygen atoms belonging to one bidentate oxalate ion, one water molecule and two hydroxyl ions in trans configuration in 2 and in cis configuration in 1 and 3. The UO 7 polyhedra are linked through hydroxyl oxygen atoms to form different structural building units, dimers [U 2 O 10 ] obtained by edge-sharing in 1, chains [UO 6 ] ∼ and tetramers [U 4 O 26 ] built by corner-sharing in 2 and 3, respectively. These units are further connected by oxalate entities that act as bis-bidentate to form one-dimensional chains in 1 and bi-dimensional network in 2 and 3. These chains or layers are connected in frameworks by hydrogen-bond arrays

  18. Thermal conductivity of sintered UO2 under in-pile conditions

    International Nuclear Information System (INIS)

    Stora, J.P.; Bernardy De Sigoyer, B.; Delmas, R.; Deschamps, P.; Lavaud, B.; Ringot, C.

    1964-01-01

    The temperature distribution in a stack of sintered UO 2 cylinders has been studied both in the laboratory where the heat energy is produced by an axial heating element, and in-pile, where the heating is due solely to nuclear effects. Under a high thermal gradient the UO 2 cracks both along radial planes and along pseudo-cylindrical surfaces: these latter act as thermal barriers to the heat flow, It is therefore an apparent thermal conductivity k a (T), lower than the intrinsic value k(T) of this parameter which is measured. The efficiency of these barriers decreases when the gap decreases and when the external pressure acting on the cracked stack increases: in the limiting case, for high values of the binding strain, k a (T) ≅ k(T). In the domain of phonon conduction (T ≤ 1350 deg C), the expression kw.cm -1 .C -1 =1/(11+0.024*T) accounts for the real thermal conductivity. Above 1350 deg C the thermal conductivity increases. Two in-pile measurements up to 1250 deg C carried out using cartridges fitted with thermocouples confirm, within the limits of experimental error, the above expression and the qualitative effects of the binding strains. Similar tests have been carried out-of-pile and in-pile on the real shape of the EL-4 fuel 'pencils'. Out-of-pile, the influence of the initial free gap, of the nature of the gas filing the 'pencil' and of the external pressure have been studied; the results are compatible with the above interpretation; It appears that an external pressure of 60 kg/cm 2 is insufficient to restore completely the thermal conductivity of the fuel. (authors) [fr

  19. Crystal field levels of tetravalent actinide ions in actinide dioxides UO2, NpO2 and PuO2

    International Nuclear Information System (INIS)

    Krupa, J.C.; Gajek, Z.

    1991-01-01

    Crystal-field parameters resulting from analysis of optical spectroscopy and neutron diffraction data recorded on UO 2 and NpO 2 as well as ab-initio calculated parameters were used to calculate the crystal-field eigenfunctions and eigenvalues for the J ground-state manifold of U 4+ , Np 4+ and Pu 4+ in UO 2 , NpO 2 and PuO 2

  20. An interatomic potential for studying CuZr bulk metallic glasses

    International Nuclear Information System (INIS)

    Paduraru, A.; Kenoufi, A.; Bailey, N.P.; Schioetz, J.

    2007-01-01

    Glass forming ability has been found in only a small number of binary alloys, one being CuZr. In order to simulate this glass, we fitted an interatomic potential within Effective Medium Theory (EMT). For this purpose we use basic properties of the B2 crystal structure as calculated from Density Functional Theory (DFT) or obtained from experiments. We then performed Molecular Dynamics (MD) simulations of the cooling process and studied the thermodynamics and structure of CuZr glass. We find that the potential gives a good description of the CuZr glass, with a glass transition temperature and elastic constants close to the experimental values. The local atomic order, as witnessed by the radial distribution function, is also consistent with similar experimental data. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  1. Densities and apparent molar volumes for aqueous solutions of HNO3-UO2(NO3)2 at 298.15 K

    International Nuclear Information System (INIS)

    Yang-Xin Yu; Tie-Zhu Bao; Guang-Hua Gao; Yi-Gui Li

    1999-01-01

    In order to obtain the exact information of atomic number density in the ternary system of HNO 3 -UO 2 (NO 3 ) 2 -H 2 O, the densities were measured with an Anton-Paar DMA60/602 digital density meter thermostated at 298.15±0.01 K. The apparent molal volumes for the systems were calculated from the experimental data. The present measured apparent molar volumes have been fitted to the Pitzer ion-interaction model, which provides an adequate representation of the experimental data for mixed aqueous electrolyte solutions up to 6.2 mol/kg ionic strength. This fit yields θ V , and Ψ V , which are the first derivatives with respect to pressure of the mixing interaction parameters for the excess free energy. With the mixing parameters θ V , and ψ V , the densities and apparent molar volumes of the ternary system studied in this work can be calculated with good accuracy, as shown by the standard deviations. (author)

  2. Acoustic emission from thermal-gradient cracks in UO2

    International Nuclear Information System (INIS)

    Kennedy, C.R.; Kupperman, D.S.; Wrona, B.J.

    1975-01-01

    A feasibility study has been conducted to evaluate the potential use of acoustic emission to monitor thermal-shock damage in direct electrical heating of UO 2 pellets. In the apparatus used for the present tests, two acoustic-emission sensors were placed on extensions of the upper and lower electrical feedthroughs. Commercially available equipment was used to accumulate acoustic-emission data. The accumulation of events displayed on a cathode-ray-tube screen indicates the total number of acoustic-emission events at a particular location within the pellet stack. These tests have indicated that acoustic emission can be used to monitor thermal-shock damage in UO 2 pellets subjected to direct-electrical heating. 8 references

  3. Automation system for production of UO2 granules

    International Nuclear Information System (INIS)

    Swaminathan, N.; Setty, C.R.P.; Banerjee, P.K.; Husnain, G.; Rao, K.C.M.; Satyanarayana, A.

    1990-01-01

    Precompaction of UO 2 powder into slugs and granulation of the slugs were used to be carried out in two different work centres involving manual loading/handling of powder and compacts which resulted in a very high level of air-borne activity. This has been simplified by integrating both the operations into one work centre on both the precompaction presses. In the present system, UO 2 powder is transferred to feed hopper through the use of high vac. feeder. The powder in metered quantities is fed into the shoe by deploying screw feeder driven by a compact hydraulic motor. The die cavity is filled with just the right quantity of powder to prevent spillage. The compacts are pushed on to the granulator through a set of guides mounted on the die platform. The granulated powder is made to pass through Vibro screen for separating the fines before collecting in a replaceable S.S. Container. This container is mounted on the final compacting press by using job crane installed on the press. The replaceable container handling facility drastically cuts down the manual handling of UO 2 granules and also eliminates spillage, air borne activity. The development and fabrication of hydraulically operated screw feeder, feed shoe, replaceable container and the job crane structure etc., were completely carried out at Nuclear Fuel Complex, Hyderabad. Paper deals in detail the design of the system developed, present operational experiences and further improvements planned. (author). 6 figs

  4. Interatomic inelastic current

    DEFF Research Database (Denmark)

    Hansen, Tim; Solomon, Gemma C.; Hansen, Thorsten

    2017-01-01

    In order to identify the location of an inelastic event and to distinguish between situations that are before or after this event, we derive equations for the interatomic inelastic transmission as a perturbation series in the electron-phonon interaction. This series contains both even and odd...... to second order and the 1st order correction represents the lowest order term of this new family of terms. We apply this to three model systems and are able to distinguish between situations before and after the inelastic event as steps in the 2nd order transmission. We also see that when the transmission...

  5. Temperature dependence in interatomic potentials and an improved potential for Ti

    International Nuclear Information System (INIS)

    Ackland, G J

    2012-01-01

    The process of deriving an interatomic potentials represents an attempt to integrate out the electronic degrees of freedom from the full quantum description of a condensed matter system. In practice it is the derivatives of the interatomic potentials which are used in molecular dynamics, as a model for the forces on a system. These forces should be the derivative of the free energy of the electronic system, which includes contributions from the entropy of the electronic states. This free energy is weakly temperature dependent, and although this can be safely neglected in many cases there are some systems where the electronic entropy plays a significant role. Here a method is proposed to incorporate electronic entropy in the Sommerfeld approximation into empirical potentials. The method is applied as a correction to an existing potential for titanium. Thermal properties of the new model are calculated, and a simple method for fixing the melting point and solid-solid phase transition temperature for existing models fitted to zero temperature data is presented.

  6. Retrieval of interatomic separations of molecules from laser-induced high-order harmonic spectra

    International Nuclear Information System (INIS)

    Le, Van-Hoang; Nguyen, Ngoc-Ty; Jin, C; Le, Anh-Thu; Lin, C D

    2008-01-01

    We illustrate an iterative method for retrieving the internuclear separations of N 2 , O 2 and CO 2 molecules using the high-order harmonics generated from these molecules by intense infrared laser pulses. We show that accurate results can be retrieved with a small set of harmonics and with one or few alignment angles of the molecules. For linear molecules the internuclear separations can also be retrieved from harmonics generated using isotropically distributed molecules. By extracting the transition dipole moment from the high-order harmonic spectra, we further demonstrated that it is preferable to retrieve the interatomic separation iteratively by fitting the extracted dipole moment. Our results show that time-resolved chemical imaging of molecules using infrared laser pulses with femtosecond temporal resolutions is possible

  7. Behaviour of high purity UO2/H2O interfaces under helium beam irradiation in deaerated conditions

    International Nuclear Information System (INIS)

    Mendes, E.

    2005-11-01

    A question put within the framework of the nuclear fuel storage worn in geological site is what become to them in the presence of water. The aim of a fundamental program, of PRECCI project (ECA), is to highlight the behaviour of interfaces which can be used as models for the interfaces nuclear spent fuel/water if the fuel is uranium UO 2 dioxide. This doctorate is interested in the effect of the alpha activity which is the only one that exist in the spent fuel after long periods. The aim is to identify the mechanisms of alteration and of leaching of surfaces under alpha irradiation. A method is developed to irradiate UO 2 /H 2 O interfaces in deaerated conditions with the beam of He 2+ produced by a cyclotron. The He 2+ ions cross an UO 2 disc and emerge in water with an energy of 5 MeV. Leachings under irradiation are carried with a large range of particles flux. The post-irradiation characterization of the surface of the discs realised by micro-Raman spectroscopy allowed to identify the alteration layer. It is made up of studtite UO 2 (O 2 ),4H 2 O, and of schoepite UO 3 ,xH 2 O. The analysis of the solutions shows that the uranium release strongly increases. The electrochemical properties of the interfaces under irradiation strongly differ from those before irradiation. This work allows to propose that the radiolytic species seen by the interface are it during the heterogeneous phase of evolution of the traces and are species of short lives. Modeling show that the radiolytic radicals species can migrate toward the interface and react with the UO 2 surface. (author)

  8. UO2 production process with methanol washing

    International Nuclear Information System (INIS)

    Sondermann, T.

    1978-01-01

    The invention refers to a process for the recovery of methanol used for washing the ammonium uranyl carbonate obtained during UO 2 production. The methanol contains about 50% H 2 O, about 10% (NH 4 ) 2 CO 3 , and is radioactive. According to the invention the methanol is purified at reduced pressure in a distillation unit and then led back to the washing unit. (UWI) 891 HP/UWI 892 MBE [de

  9. Development of Innovative Accident Tolerant High Thermal Conductivity UO2-Diamond Composite Fuel Pellets

    Energy Technology Data Exchange (ETDEWEB)

    Tulenko, James [Univ. of Florida, Gainesville, FL (United States); Subhash, Ghatu [Univ. of Florida, Gainesville, FL (United States)

    2016-01-01

    The University of Florida (UF) evaluated a composite fuel consisting of UO2 powder mixed with diamond micro particles as a candidate as an accident-tolerant fuel (ATF). The research group had previous extensive experience researching with diamond micro particles as an addition to reactor coolant for improved plant thermal performance. The purpose of this research work was to utilize diamond micro particles to develop UO2-Diamond composite fuel pellets with significantly enhanced thermal properties, beyond that already being measured in the previous UF research projects of UO2 – SiC and UO2 – Carbon Nanotube fuel pins. UF is proving with the current research results that the addition of diamond micro particles to UO2 may greatly enhanced the thermal conductivity of the UO2 pellets producing an accident-tolerant fuel. The Beginning of life benefits have been proven and fuel samples are being irradiated in the ATR reactor to confirm that the thermal conductivity improvements are still present under irradiation.

  10. Determination of the cationic self-diffusion coefficient in ThO2-5%UO2 nuclear fuel

    International Nuclear Information System (INIS)

    Sabioni, A.C.S.

    1984-01-01

    The cation self-diffusion coefficient for the ThO 2 -5%UO 2 by means of the densification model developed by Assmann and Stehle was determined. The experimental data of the fuel densification, used in the calculations, were obtained from thermal resinter tests. Our result is comparable to previously published values for U and Th diffusion in polycrystalline ThO 2 and (Th, U)O 2 . (Author) [pt

  11. Sensitivity and uncertainty analysis for UO2 and MOX fueled PWR cells

    International Nuclear Information System (INIS)

    Foad, Basma; Takeda, Toshikazu

    2015-01-01

    Highlights: • A method for calculating sensitivity coefficients has been improved. • The IR approximation was used in order to get accurate results. • Sensitivities and uncertainties are calculated using the improved method. • The method is applied for UO 2 and MOX fueled PWR cells. • The verification was performed by comparing our results with MCNP6 and TSUNAMI-1D. - Abstract: This paper discusses the improvement of a method for calculating sensitivity coefficients of neutronics parameters relative to infinite dilution cross-sections because the conventional method neglects resonance self-shielding effect. In this study, the self-shielding effect is taken into account by using the intermediate resonance approximation in order to get accurate results in both high and low energy groups. The improved method is applied to calculate sensitivity coefficients and uncertainties of eigenvalue responses for UO 2 and MOX (ThO 2UO 2 and PuO 2UO 2 ) fueled pressurized water reactor cells. The verification of the improved method was performed by comparing the sensitivities with MCNP6 and TSUNAMI-1D. For uncertainty, calculation comparisons were done with TSUNAMI-1D, and we demonstrate that the differences are caused by the use of different covariance matrices

  12. Complexing in the system Rb2SeO4-UO2SeO4-H2O

    International Nuclear Information System (INIS)

    Kuchumova, N.V.; Shtokova, I.P.; Serezhkina, L.B.; Serezhkin, V.N.

    1989-01-01

    Method of isothermal solubility at 25 deg C is used to study interaction of rubidium and uranyl selenates in aqueous solution. Formation of congruently soluble Rb 2 UO 2 (SeO 4 ) 2 x2H 2 O and Rb 2 (UO 2 ) 2 x(SeO 4 ) 3 x6H 2 O is stated. For the last compound crystallographic characteristics (a=10.668; b=14.935(9); c=13.891(7) A; β=104.94(1); Z=4, sp.gr. P2 1 /c) are determined. Thermal decomposition of a compound results in formation of Rb 2 U 2 O 7

  13. Behaviour of high purity UO{sub 2}/H{sub 2}O interfaces under helium beam irradiation in deaerated conditions; Comportement des interfaces UO{sub 2}/H{sub 2}O de haute purete sous faisceau d'ions He{sup 2+} en milieu desaere

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, E

    2005-11-15

    A question put within the framework of the nuclear fuel storage worn in geological site is what become to them in the presence of water. The aim of a fundamental program, of PRECCI project (ECA), is to highlight the behaviour of interfaces which can be used as models for the interfaces nuclear spent fuel/water if the fuel is uranium UO{sub 2} dioxide. This doctorate is interested in the effect of the alpha activity which is the only one that exist in the spent fuel after long periods. The aim is to identify the mechanisms of alteration and of leaching of surfaces under alpha irradiation. A method is developed to irradiate UO{sub 2}/H{sub 2}O interfaces in deaerated conditions with the beam of He{sup 2+} produced by a cyclotron. The He{sup 2+} ions cross an UO{sub 2} disc and emerge in water with an energy of 5 MeV. Leachings under irradiation are carried with a large range of particles flux. The post-irradiation characterization of the surface of the discs realised by micro-Raman spectroscopy allowed to identify the alteration layer. It is made up of studtite UO{sub 2}(O{sub 2}),4H{sub 2}O, and of schoepite UO{sub 3},xH{sub 2}O. The analysis of the solutions shows that the uranium release strongly increases. The electrochemical properties of the interfaces under irradiation strongly differ from those before irradiation. This work allows to propose that the radiolytic species seen by the interface are it during the heterogeneous phase of evolution of the traces and are species of short lives. Modeling show that the radiolytic radicals species can migrate toward the interface and react with the UO{sub 2} surface. (author)

  14. Review of the effects of burnup on the thermal conductivity of UO2

    International Nuclear Information System (INIS)

    Lokken, R.O.; Courtright, E.L.

    1976-01-01

    The general trends which relate changes in thermal conductivity of UO 2 fuel as a function of temperature and burnup can be summarized as follows: (1) At temperatures below 500 0 C, reductions in UO 2 thermal conductivity relative to the unirradiated values can be expected up to a saturation level of approximately 10 19 fissions/cc. (2) At temperatures above 500 0 C, the thermal conductivity will undergo little change at low burnups, (less than 10 19 fissions/cc) but at higher exposures some decrease can be expected which should, in turn, diminish with increasing temperature. (3) A review of the data reported by Berman on the ThO 2 --UO 2 fuel indicates that the basic behavior is the same as for UO 2 in the temperature range of major interest. The applicability of this data to LWR UO 2 fuel is somewhat questionable because of basic physical property differences, and limited data on irradiation effects, and would not seem to support concerns that the effects of burnup on thermal conductivity for LWR fuel may be of more significance than currently believed. (4) A mathematical expression of the type proposed by Daniel and Cohen seems to provide a reasonable approximation for the behavioral trends reported in the literature which relate changes in thermal conductivity to increasing burnup in certain temperature regimes. Calculations indicate that only small incremental increases in the fuel centerline temperature might be expected if burnup effects are taken into account

  15. Effect of the UO{sub 2} powder type and mixing method on microstructure of Mn-Al doped pellet

    Energy Technology Data Exchange (ETDEWEB)

    Na, Yeon Soo; Lim, Kwang Young; Choi, Min young; Jung, Tae Sik; Lee, Seung Jae; Yoo, Jong Sung [KEPCO, Daejeon (Korea, Republic of)

    2016-05-15

    Recently, the commercial LWRs are focused on the extending the burn-up and fuel cycle length in order to increase nuclear power plant economy as a maintenance and fuel cycle cost. Increasing the burn-up may lead to a faster and higher power variation such as a peak local linear power and normal operating transient (Load following operation). In such operating conditions, the risk of a fuel failure is considerably related to a pellet clad-interaction (PCI). So, recent development of advanced UO{sub 2} pellet for the LWRs is mainly focused on the large grain and soft pellet as they can reduce corrosive fission gas release and pellet-clad-interaction. In terms of the UO{sub 2} pellet, the prevention of PCI induced fuel failure can be achieved by enlarging the UO{sub 2} pellet grain size and enhancing the pellets deformation at an elevated temperature. In Korea, in order to increase the grain size and deformation of UO{sub 2} pellet on the high temperature, Mn-Al doped pellet with ADU (Ammonium Diuranate)-UO{sub 2} powder are developed in lab scale. But, the UO{sub 2} pellets for the commercial nuclear power plants in Korea are fabricated using the DC (Dry Conversion)-UO{sub 2} powder. So, it is necessary to understand the effect of microstructure on UO{sub 2} powder type for Mn-Al doped pellets. In this work, to investigate the effect of UO{sub 2} powder type and mixing method on the microstructure of the Mn-Al doped UO{sub 2} pellets, we fabricated the Mn-Al doped pellets using the DC-UO{sub 2} powder. The measurement of sintered density and mean grain size for fabricated pellets was performed, and then the results of test was evaluated in comparison with a Reference 2.

  16. On the correlation between fuel structure and mechanical properties of UO2

    International Nuclear Information System (INIS)

    Blank, H.; Mandler, R.; Matzke, H.; Routbort, J.; Werner, P.

    1983-01-01

    The relation between the structure of a UO 2 fuel and its mechanical properties are discussed and illustrated for particular types of UO 2 by measurements of fracture surface energy, hardness, fracture stress and compressive deformation at 1870 and 1970 K. This gives the background for treating the question whether it is possible to find a simple experimental method for correlating the mechanical properties of UO 2 before irradiation with those after various irradiation histories. Hardness measurements might be such a method if combined with a detailed structural analysis and sufficient knowledge about the irradiation history. However, for a meaningful interpretation of the data the presently available 'classical' methods of fracture mechanics are inadequate and, furthermore, sufficient additional (not yet available) information on the relations between mechanical properties and structural details are required. (author)

  17. Reducing the stoichiometric excess of HF in the hydrofluorination of UO2

    International Nuclear Information System (INIS)

    Zhao Jun; Qiu Lufu; Zhong Xing; Xu Heqing

    1989-11-01

    In a fluidized bed, UO 2 obtained from the decomposition-reduction of AUC (Ammonium Uranyl Carbonate) was fed to absorb HF remaining in the exhaust gas of UF 4 production process. In the case of 60% conversion of UO 2 and the reaction temperature in the region of 300 deg C, HF remaining in the exhaust gas in absorbing fluidized bed was less than 7 ∼ 8% (w/w), i.e. apparent stoichiometric excess of HF had reduced to 0% more or less. Hence, with the high hydrofluorination reactivity of UO 2 obtained from the decomposition-reduction of AUC, it is possible to reduce evidently the stoichiometric excess of HF in the hydrofluorination process by two fluidized beds in series in which solids move against the gas flow

  18. Density, thermal expansion coefficient and viscosity of sodium tetraborate (borax)-UO2 and of sodium metaborate-UO2 solutions at high temperatures

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Roth, A.

    1983-01-01

    Measurements have been performed of the density, of the volumetric thermal expansion coefficient and of the viscosity of liquid sodium tetraborate (borax) and of sodium metaborate both pure and with two different amounts of UO 2 dissolved in each. The viscosity measurements have been performed for the solution of sodium tetraborate with UO 2 and CeO 2 , and with CeO 2 only as well. These data are required for the design of core-catchers based on sodium borates. The density measurements have been performed with the buoyancy method in the temperature range from 825 0 C to 1300 0 C, the viscosity measurements in the temperature range 700-1250 0 C with a modified Haake viscosity balance. The balance was previously calibrated at ambient temperature with a standard calibration liquid and at high temperatures, with data for pure borax available from the literature. (orig.)

  19. Thermal Shock Tests on UO{sub 2} Small Spheres; Essais de choc thermique sur des elements spheriques de UO{sub 2}; Ispytaniya nebol'shikh sharikov iz UO{sub 2} teplovykh udarom; Ensayo de pequenas esferas de UO{sub 2} por choque.termico

    Energy Technology Data Exchange (ETDEWEB)

    Perona, G.; Brutto, E.; Galbusera, U.; Palladino, G.; Sesini, R. [Centro Informazioni Studi Esperienze, Milan (Italy)

    1963-11-15

    If UO{sub 2} small spheres are used as fuel in a reactor in contact with the cooler, it is necessary to know the maximum value of the thermal stress, due to the work conditions in the reactor, which the small spheres are able to withstand without breaking. These conditions can be calculated if the physical properties of the material are known. Owing to the considerable number of properties involved, and in consideration of the uncertainty which always exists in each of them, it is preferable to test directly the spheres, submitting them to the same kind of stresses that they undergo in thereactor. In this work a thermal shock method for the small spheres has been studied, while conditions are indicated in which this method can reproduce stress conditions directly comparable with those existing in the reactor. As for small spheres, the difficulty consists in producing coolings with very high values of the coefficient of surface heat transfer. The experimental methods are described and the results obtained are indicated. The application of this method seems to be very interesting particularly in the field of the technological research for improving the characteristics of the UO{sub 2} small spheres by means of additives. In fact it allows the control of the total interesting effect with a single measurement. (author) [French] Si l'on veut utiliser comme combustible dans un reacteur des elements spheriques de UO{sub 2} en contact avec le refroidisseur, il faut au prealable determiner la valeur maximum de la contrainte thermique - due aux conditions regnant dans le reacteura laquelle les elements sont capables de resister sans se fissurer. Il est possible de calculer ces conditions si l'on connait les proprietes physiques du materiau utilise. En raison du nombre important des proprietes a prendre en consideration, et compte tenu de l'incertitude qui existe toujours pour chacune d'elles, il est preferable de faire des essais thermiques en soumettant directement les

  20. In-Situ Observation of Sintering Shrinkage of UO{sub 2} Compacts Derived from Different Powder Routes

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Young Woo; Oh, Jang Soo; Kim, Dong Joo; Kim, Keon Sik; Kim, Jong Hun; Yang, Jae Ho; Koo, Yang Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In-situ observations on the shrinkage of green pellets with precisely controlled dimensions were carefully conducted by using TOM during H2 atmosphere sintering. The shrinkage retardation in IDR-UO{sub 2} might be attributed to the larger primary particle size of IDRUO{sub 2} than those of ADU- and AUC- UO{sub 2} powders. It would be important to understand the different sintering characteristics of UO{sub 2} powders according to the powder routes, when it comes to designing a new sintering process or choosing a sintering additive for new fuel pellet like PCI (Pellet Cladding Interaction) remedy pellet. In this paper, we have investigated the initial and intermediate sintering shrinkage of UO{sub 2} from different powder routes by in-situ observation of green samples during H2 atmosphere sintering. Effect of powder characteristics of three different UO{sub 2} powders on the initial and intermediate sintering were closely reviewed including crystal structure, powder size, specific surface area, primary crystal size, and O/U ratio.

  1. Complexation of Cu2+, Ni2+ and UO22+ by radiolytic degradation products of bitumen

    International Nuclear Information System (INIS)

    Loon, L.R. Van; Kopajtic, Z.

    1990-05-01

    The radiolytic degradation of bitumen was studied under conditions which reflect those which will exist in the near field of a cementitious radioactive waste repository. The potential complexation capacity of the degradation products was studied and complexation experiments with Cu 2+ , Ni 2+ and UO 2 2+ were performed. In general 1:1 complexes with Cu 2+ , Ni 2+ and UO 2 2+ , with log K values of between 5.7 and 6.0 for Cu 2+ , 4.2 for Ni 2+ and 6.1 for UO 2 2+ , were produced at an ionic strength of 0.1 M. The composition of the bitumen water was analysed by GC-MS and IC. The major proportion of the bitumen degradation products in solution were monocarboxylic acids (acetic acid, formic acid, myric acid, stearic acid ...), dicarboxylic acids (oxalic acid, phthalic acid) and carbonates. The experimentally derived log K data are in good agreement with the literature and suggest that oxalate determines the speciation of Cu 2+ , Ni 2+ and UO 2 2+ in the bitumen water below pH=7. However, under the high pH conditions typical of the near field of a cementitious repository, competition with OH-ligands will be large and oxalate, therefore, will not play a significant role in the speciation of radionuclides. The main conclusion of the study is that the radiolytic degradation products of bitumen will have no influence on radionuclide speciation in a cementitious near field and, as such, need not to be considered in the appropriate safety assessment models. (author) 12 figs., 11 tabs., 31 refs

  2. Mechanical properties and structure of Zircaloy attached by UO2+x and fission products

    International Nuclear Information System (INIS)

    Holub, F.

    1987-08-01

    The aim of this project was to determine the combined long-term effect of simulated fission products and hyperstoichiometric uranium dioxide on the mechanical properties and structure of Zircaloy. Three groups of fission product elements or compounds were defined: The rare earth oxides CeO 2 , La 2 O 3 , Nd 2 O 3 , Y 2 O 3 ; The metals No, Ru, Ag; The low melting elements Te, Sb and Cd. Each of these groups of fission products was mixed with UO 2+x in proportion related for burnups of 5, 10 and 30%. The simulated fuel mixtures were filled into tubular Zircaloy casings, plugged and welded. These specimens were annealed at 350, 500 and 700 deg. C up to 17,500 hours. The test results indicate different kinds of action of the simulated fuel constituents. Mixtures of rare earth oxides and UO 2+x embrittle Zircaloy drastically at higher temperatures. There exists a mutual intensifying effect of rare earth oxides and UO 2+x . UO 2+x and (Mo + Ru + Ag) and their mixtures act very similar on Zircaloy. The low melting fission products (Te + Sb + Cd) influence the ductility of Zircaloy in an advantageous manner, compared to pure UO 2+x fuel. The layer of zirconium tellurides seems to protect the Zircaloy metal against the embrittling attack of oxygen from UO 2+x . The most important events of tensile tests at 400 deg. C are the high values of the elongation of specimens which are brittled at room temperature. It should guarantee the integrity of fuel elements, which have been attacked chemically by fission products at temperatures of 400 deg. C and higher

  3. Numerical characterization of micro-cell UO{sub 2}−Mo pellet for enhanced thermal performance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Heung Soo [School of Mechanical Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Kim, Dong-Joo [LWR Fuel Technology Division, Korea Atomic Energy Research Institute, Daejeon, 305-353 (Korea, Republic of); Kim, Sun Woo [School of Mechanical Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Yang, Jae Ho; Koo, Yang-Hyun [LWR Fuel Technology Division, Korea Atomic Energy Research Institute, Daejeon, 305-353 (Korea, Republic of); Kim, Dong Rip, E-mail: dongrip@hanyang.ac.kr [School of Mechanical Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2016-08-15

    Metallic micro-cell UO{sub 2} pellet with high thermal conductivity has received attention as a promising accident-tolerant fuel. Although experimental demonstrations have been successful, studies on the potency of current metallic micro-cell UO{sub 2} fuels for further enhancement of thermal performance are lacking. Here, we numerically investigated the thermal conductivities of micro-cell UO{sub 2}−Mo pellets in terms of the amount of Mo content, the unit cell size, and the aspect ratio of the micro-cells. The results showed good agreement with experimental measurements, and more importantly, indicated the importance of optimizing the unit cell geometries of the micro-cell pellets for greater increases in thermal conductivity. Consequently, the micro-cell UO{sub 2}−Mo pellets (5 vol% Mo) with modified geometries increased the thermal conductivity of the current UO{sub 2} pellets by about 2.5 times, and lowered the temperature gradient within the pellets by 62.9% under a linear heat generation rate of 200 W/cm. - Highlights: • Thermal conductivities of micro-cell UO{sub 2}−Mo pellets were numerically studied in terms of their unit cell geometries. • Numerical calculations qualitatively well agreed with experimental measurements. • Optimizing the unit cell geometries of the micro-cell pellets could greatly enhance their thermal conductivities.

  4. Anodic dissolution of UO2 in slightly alkaline sodium perchlorate solutions

    International Nuclear Information System (INIS)

    Sunder, S.; Strandlund, L.K.; Shoesmith, D.W.

    1996-04-01

    The anodic dissolution of UO 2 has been studied in aqueous sodium perchlorate solutions at pH ∼ 9.5. Under potentiostatic conditions two distinct regions of oxidation/dissolution behaviour were observed. In the potential (E) range 0.100 V A , Q C respectively) obtained by integration of the anodic current-time plots (Q A ) and cathodic potential scans to reduce accumulated oxidized surface films (Q C ), it was shown that > ∼ 90% of the anodic oxidation current went to produce these films. For E > ∼ 0.350 V, steady-state currents were obtained and measurements of Q A and Q C showed the majority of the current went to produce soluble species. The film blocking anodic dissolution appeared to be either UO 2.27 or, more probably, UO 3 .2H 2 O located primarily at grain boundaries. It is proposed that, at the higher potentials, rapid oxidation and dissolution followed by the hydrolysis of dissolved uranyl species leads to the development of acidic conditions in the grain boundaries. At these lower pH values the UO 3 .2H 2 O is soluble and therefore does not accumulate. Alternatively, if this oxide has been formed by prior oxidation at a lower potential, the formation of protons on oxidizing at E > ∼ 0.350V causes its redissolution, allowing the current to rise to a steady-state value. On the basis of Tafel slopes, an attempt was made to demonstrate that the observed behaviour was consistent with dissolution under acidic conditions. This analysis was only partially successful. (author) 34 refs. 11 figs

  5. Effect of titania addition on the thermal conductivity of UO2 fuel [Paper IIIB-C

    International Nuclear Information System (INIS)

    Sengupta, A.K.; Kumar, A.; Arora, K.B.S.; Pandey, V.D.; Nair, M.R.; Kamath, H.S.

    1986-01-01

    Pellet clad interaction in nuclear reactor fuel elements can be reduced by the use of higher grain size UO 2 fuel. This is achieved by the addition of dopant like titania, niobia etc. However, these dopants are considered as impurities which may affect the thermophysical and thermomechanical properties of the fuel. Thermal Conductivity which is one of the important properties controlling the inpile performance of the fuel has been measured for pure UO 2 and UO 2 containing 0.05wt per cent and 0.1wt per cent TiO 2 in the temperature range 900K to 1900K in vacuum. Thermal conductivity was obtained from thermal diffusivity data measured by laser flash method. The paper highlights the experimental results and discusses the effect of TiO 2 on the thermal conductivity of UO 2 fuel. (author)

  6. Effect of titania addition on the thermal conductivity of UO2 fuel (Paper IIIB-C)

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, A K; Kumar, A; Arora, K B.S.; Pandey, V D; Nair, M R; Kamath, H S

    1986-01-01

    Pellet clad interaction in nuclear reactor fuel elements can be reduced by the use of higher grain size UO2 fuel. This is achieved by the addition of dopant like titania, niobia etc. However, these dopants are considered as impurities which may affect the thermophysical and thermomechanical properties of the fuel. Thermal Conductivity which is one of the important properties controlling the inpile performance of the fuel has been measured for pure UO2 and UO2 containing 0.05wt per cent and 0.1wt per cent TiO2 in the temperature range 900K to 1900K in vacuum. Thermal conductivity was obtained from thermal diffusivity data measured by laser flash method. The paper highlights the experimental results and discusses the effect of TiO2 on the thermal conductivity of UO2 fuel. 5 figures.

  7. A prediction of the inert gas solubilities in stoichiometric molten UO2

    International Nuclear Information System (INIS)

    Gunnerson, F.S.; Cronenberg, A.W.

    1975-01-01

    To analyze the effect of fission gas behaviour on fast reactor fuels during a hypothetical overpower transient, the solubility characteristics of the noble gases in molten UO 2 have been assessed. To accomplish this, a theoretical estimation of such solubilities is made by determining the reversible work required to introduce a hard sphere, the size of the gas atom, into the liquid solvent. Results indicate that the solubility of the noble gases in molten UO 2 is quite low, the molar fraction of gas-to-liquid being approximately 10 -6 . Such a low solubility of fission gases suggests that for preirradiated fuels, added swelling or formation may occur upon melting. In addition, such low solubility potential indicates that the fission gases do not play an appreciable role in the fragmentation of molten UO 2 upon quenching in sodium coolant. (Auth.)

  8. Identification of secondary phases formed during unsaturated reaction of UO2 with EJ-13 water

    International Nuclear Information System (INIS)

    Bates, J.K.; Tani, B.S.; Veleckis, E.

    1989-01-01

    A set of experiments, wherein UO 2 has been contacted by dripping water, has been conducted over a period of 182.5 weeks. The experiments are being conducted to develop procedures to study spent fuel reaction under unsaturated conditions that are expected to exist over the lifetime of the proposed Yucca Mountain repository site. One half of the experiments have been terminated, while one half are ongoing. Analyses of solutions that have dripped from the reacted UO 2 have been performed for all experiments, while the reacted UO 2 surfaces have been examined for the terminated experiments. A pulse of uranium release from the UO 2 solid, combined with the formation of schoepite on the surface of the UO 2 , was observed between 39 and 96 weeks of reaction. Thereafter, the uranium release decreased and a second set of secondary phases was observed. The latter phases incorporated cations from the EJ-13 water and included boltwoodite, uranophane, sklodowskite, compreignacite, and schoepite. The experiments are continuing to monitor whether additional changes in solution chemistry or secondary phase formation occurs. 6 refs., 2 figs., 2 tabs

  9. X-ray photoelectron investigation of UO2(ClO4)2 interaction with diabase

    International Nuclear Information System (INIS)

    Teterin, Yu.A.; Nefedov, V.I.; Ivanov, K.E.; Baev, A.S.; Gajpel', G.; Rajkh, T.; Niche, Kh.

    1996-01-01

    X-ray diffraction study was made on interaction of soluble uranyl perchlorate with diabase, composing rocks in regions of Chelyabinsk and Chernobyl accidents and in places of radioactive waste burials. Absence of ClO 4 - anion in analyzed products of UO 2 (ClO 4 ) 2 interaction with diabase testifies to the absence of physio- or chemosorbed UO 2 (ClO 4 ) 2 layer on its surface. Formation of uranyl compounds (uranyl hydroxides) on diabase surface was confirmed, and bond lengths for these compounds were determined. Reaction of substitution of uranium ions for calcium ions proceeds more actively in the surface layers of diabase grains. 4 refs.; 3 tabs

  10. Interatomic spacing distribution in multicomponent alloys

    International Nuclear Information System (INIS)

    Toda-Caraballo, I.; Wróbel, J.S.; Dudarev, S.L.; Nguyen-Manh, D.; Rivera-Díaz-del-Castillo, P.E.J.

    2015-01-01

    A methodology to compute the distribution of interatomic distances in highly concentrated multicomponent alloys is proposed. By using the unit cell parameter and bulk modulus of the elements involved, the method accurately describes the distortion in the lattice produced by the interaction of the different atomic species. To prove this, density functional theory calculations have been used to provide the description of the lattice in a monophasic BCC MoNbTaVW high entropy alloy and its five sub-quaternary systems at different temperatures. Short-range order is also well described by the new methodology, where the mean error in the predicted atomic coordinates in comparison with the atomistic simulations is in the order of 1–2 pm over all the compositions and temperatures considered. The new method can be applied to tailor solid solution hardening, highly dependent on the distribution of interatomic distances, and guide the design of new high entropy alloys with enhanced properties

  11. A study on improvement of UO2 powder production process for high sintered density

    International Nuclear Information System (INIS)

    Park, Jin Hoh; Hwang, Sung Tae; Jun, Kwan Sik; Choi, Yoon Dong; Choi, Jong Hyun; Lee, Kyoo Il; Kim, Tae Joon; Jung, Kyung Chae; Kim, Kwang Lak; Kwon, Sang Woon; Kim, Byung Hoh; Hong, Soon Bok

    1995-01-01

    Various conversion processes were reviewed from the viewpoint of manufacturing cost, product quality and liquid waste. The MDD process was selected a suitable target process for the good quality of UO 2 powder and the recycling availability of nitric acid. The MDD process consists of two steps, double salt preparation [(NH 4 ) 2 UO 2 (NO 3 ) 4 ] from uranyl nitrate solution and thermal decomposition/reduction to UO 2 powder. The reaction mechanism and properties for the intermediates were analyzed to define the proposed operational conditions of the process. The conceptual process was proposed and experimental facility was designed and installed. 12 figs, 7 tabs, 7 refs. (Author)

  12. Leaching of irradiated CANDU UO2 fuel

    International Nuclear Information System (INIS)

    Vandergraaf, T.T.; Johnson, L.H.; Lau, D.W.P.

    1980-01-01

    Irradiated fuel, leached at room temperature with distilled water and with slightly chlorinated river water, releases approx. 4% of its cesium inventory over a comparatively sort period of a few days but releases its actinides and rare earths more slowly. The matrix itself dissolves at a rate conservatively calculated to be less than approx. 2 x 10 -6 g UO 2 /cm 2 day and, with time, the leach rates of the various nuclides approach this value

  13. BURNY-SQUID, 2-D Burnup of UO{sub 2} and Mix UO{sub 2} PuO{sub 2} Fuel in X-Y or R-Z Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, I; Zara, G; Guidotti, R [ENEL-DCO, Via G.B. Martini, 3, 00198 Rome (Italy)

    1974-08-01

    1 - Nature of physical problem solved: - Multigroup neutron diffusion and burnup equations for two- to five- energy groups over a rectangular region of the x-y or r-z plane. - For a given geometry and initial enrichment, it calculates the two- to five- group flux distributions, the nuclides burnt in a time step t, and then the flux distribution again. This process is repeated until the maximum burn-up is reached. - Criticality search by uniform variation of a control isotope. - Solution of problems with fuel having different geometrical parameters, by means of super-compositions. - Recycle and restart options are available. - UO{sub 2} and PUO{sub 2}-UO{sub 2} fuel can be handled. 2 - Method of solution: The zero-dimension burn-up program RIBOT-5 is coupled with the two-dimension program SQUID and alternately executed. The differential equations are solved by the difference method. 3 - Restrictions on the complexity of the problem: 200 maximum number of compositions 10,000 maximum number of mesh points 5 maximum Number of groups. 4 maximum number of super-compositions. Diagonal symmetry allowed.

  14. Estimated Critical Conditions for UO(Sub 2)F(Sub 2)-H(Sub 2)O Systems in Fully Water-Reflected Spherical Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, W.C.

    1992-01-01

    The purpose of this report is to document reference calculations performed using the SCALE-4.0 code system to determine the critical parameters of UO{sub 2}F{sub 2}-H{sub 2}O spheres. The calculations are an extension of those documented in ORNL/CSD/TM-284. Specifically, the data for low-enriched UO{sub 2}F{sub 2}-H{sub 2}O spheres have been extended to highly enriched uranium. These calculations, together with those reported in ORNL/CSD/TM-284, provide a consistent set of critical parameters (k{sub {infinity}}, volume, mass, mass of water) for UO{sub 2}F{sub 2} and water over the full range of enrichment and moderation ratio.

  15. Estimated critical conditions for UO{sub 2}F{sub 2}--H{sub 2}O systems in fully water-reflected spherical geometry

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, W.C.; Turner, J.C.

    1992-12-01

    The purpose of this report is to document reference calculations performed using the SCALE-4.0 code system to determine the critical parameters of UO{sub 2}F{sub 2}-H{sub 2}O spheres. The calculations are an extension of those documented in ORNL/CSD/TM-284. Specifically, the data for low-enriched UO{sub 2}F{sub 2}-H{sub 2}O spheres have been extended to highly enriched uranium. These calculations, together with those reported in ORNL/CSD/TM-284, provide a consistent set of critical parameters (k{sub {infinity}}, volume, mass, mass of water) for UO{sub 2}F{sub 2} and water over the full range of enrichment and moderation ratio.

  16. Dissolution of unirradiated UO2 fuel in synthetic groundwater. Final report (1996-1998)

    International Nuclear Information System (INIS)

    Ollila, K.

    1999-05-01

    This study was a part of the EU R and D programme 1994-1998: Nuclear Fission Safety, entitled 'Source term for performance assessment of spent fuel as a waste form'. The research carried out at VTT Chemical Technology was focused on the effects of granitic groundwater composition and redox conditions on UO 2 solubility and dissolution mechanisms. The synthetic groundwater compositions simulated deep granitic fresh and saline groundwaters, and the effects of the near-field material, bentonite, on very saline groundwater. Additionally, the Spanish granite/bentonite water was used. The redox conditions (Eh), which are obviously the most important factors that influence on UO 2 solubility under the disposal conditions of spent fuel, varied from strongly oxidising (air-saturated), anaerobic (N 2 , O 2 2 , low Eh). The objective of the air-saturated dissolution experiments was to yield the maximum solution concentrations of U, and information on the formation of secondary phases that control the concentrations, with different groundwater compositions. The static batch solubility experiments of long duration (up to 1-2 years) were performed using unirradiated UO 2 pellets and powder. Under anaerobic and reducing conditions, the solubilities were also approached from oversaturation. The results of the oxic, air-saturated dissolution experiments with UO 2 powder showed that the increase in the salinity ( -5 M, were at the level of the theoretical solubility of schoepite or another uranyl oxide hydrate, e.g. becquerelite (possibly Na-polyuranate). The higher alkalinity of the fresh (Allard) composition increased the aqueous U concentration. Only some kind of oxidised U-phase (U 3 O 8 -UO 3 ) was identified with XRD when studying possible secondary phases after the contact time of one year with all groundwater compositions. Longer contact times are needed to identify secondary phases predicted by modelling (EQ3/6). In the anoxic dissolution experiments with UO 2 pellets, the

  17. UO2 fuel pellets fabrication via Spark Plasma Sintering using non-standard molybdenum die

    Science.gov (United States)

    Papynov, E. K.; Shichalin, O. O.; Mironenko, A. Yu; Tananaev, I. G.; Avramenko, V. A.; Sergienko, V. I.

    2018-02-01

    The article investigates spark plasma sintering (SPS) of commercial uranium dioxide (UO2) powder of ceramic origin into highly dense fuel pellets using non-standard die instead of usual graphite die. An alternative and formerly unknown method has been suggested to fabricate UO2 fuel pellets by SPS for excluding of typical problems related to undesirable carbon diffusion. Influence of SPS parameters on chemical composition and quality of UO2 pellets has been studied. Also main advantages and drawbacks have been revealed for SPS consolidation of UO2 in non-standard molybdenum die. The method is very promising due to high quality of the final product (density 97.5-98.4% from theoretical, absence of carbon traces, mean grain size below 3 μm) and mild sintering conditions (temperature 1100 ºC, pressure 141.5 MPa, sintering time 25 min). The results are interesting for development and probable application of SPS in large-scale production of nuclear ceramic fuel.

  18. Effect of sintering condition on the grain growth of Cr{sub 2}O{sub 3} doped UO{sub 2} pellets

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jang Soo; Kim, Keon Sik; Kim, Dong Joo; Kim, Jong Hun; Yang, Jae Ho [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this paper, Cr{sub 2}O{sub 3} doped UO{sub 2} pellets were fabricated by two-step sintering process. The grain growth of pellet is related to dwell time in a hydrogen atmosphere during sintering process. A large grain pellet can minimize fission gas release and deform easily at an elevated temperature. So, the recent development of nuclear fuel pellet materials is mainly focused on the large grain pellets. The various methods of fabrication processes for large grain UO{sub 2} pellets have been investigated extensively. Those parameters include the additives, sintering temperature, sintering time, sintering atmosphere, and so on. Cr-doped UO{sub 2} pellet is one of the promising candidates for PCI remedy. It was shown that the grain size and softness of UO{sub 2} pellets could be enhanced by doping Cr or Cr compound in UO{sub 2}. Various in-pile test results revealed that the PCI properties were enhanced considerably [4]. In the sintering process of Cr-doped UO{sub 2} pellet, it was known that tight adjusting of sintering atmosphere is most important to achieve large grain pellet. The relevant research revealed that the doped Cr{sub 2}O{sub 3} became liquid phase in optimized oxygen potential and that liquid phase promoted the grain growth. Recently, KAERI has shown that grain size of Cr-doped UO{sub 2} pellet could be more enlarged by adjusting process parameters. In this paper, we introduced a sintering process which can form a liquid phase for a large grain growth in Cr{sub 2}O{sub 3} doped UO{sub 2} pellet. The study on the effect of dwell time in H{sub 2} atmosphere during sintering process on the grain structure of sintered pellet is also a part of this work. In order to obtain large grain in pellet, it is important to increase amount of Cr that can form a liquid phase for grain growth by increasing dwell time in a hydrogen atmosphere during sintering process.

  19. Retrieval of interatomic separations of molecules from laser-induced high-order harmonic spectra

    Energy Technology Data Exchange (ETDEWEB)

    Le, Van-Hoang; Nguyen, Ngoc-Ty [Department of Physics, University of Pedagogy, 280 An Duong Vuong, Ward 5, Ho Chi Minh City (Viet Nam); Jin, C; Le, Anh-Thu; Lin, C D [J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506 (United States)

    2008-04-28

    We illustrate an iterative method for retrieving the internuclear separations of N{sub 2}, O{sub 2} and CO{sub 2} molecules using the high-order harmonics generated from these molecules by intense infrared laser pulses. We show that accurate results can be retrieved with a small set of harmonics and with one or few alignment angles of the molecules. For linear molecules the internuclear separations can also be retrieved from harmonics generated using isotropically distributed molecules. By extracting the transition dipole moment from the high-order harmonic spectra, we further demonstrated that it is preferable to retrieve the interatomic separation iteratively by fitting the extracted dipole moment. Our results show that time-resolved chemical imaging of molecules using infrared laser pulses with femtosecond temporal resolutions is possible.

  20. Effect of titania addition on hot hardness of UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, A.K. E-mail: arghya@apsara.barc.ernet.in; Basak, C.B.; Jarvis, T.; Bhagat, R.K.; Pandey, V.D.; Majumdar, S

    2004-02-15

    Large grain UO{sub 2} is a potential fuel for LWR's for achieving extended burn up. Large grains are obtained by addition of dopants like Nb{sub 2}O{sub 5}, TiO{sub 2}, Cr{sub 2}O{sub 3}, V{sub 2}O{sub 5} etc. However, presence of such dopants might affect the thermophysical and thermomechanical properties of the fuel. In the present investigation the effect of TiO{sub 2} addition on the hot hardness (H) of sintered UO{sub 2} fuel has been studied from ambient to 1573 K in vacuum. TiO{sub 2} content was varied from 0.01 to 0.15 w/o resulting in a grain size (G) variation of 9 to 94 {mu}m. With increase in grain size (or TiO{sub 2} content) H first decreases, attains a minima and then increases further. The increase is more prominent at lower temperature (<773 K) than that at higher temperatures. H vs. G{sup -1/2} plots indicates the same type of variation like other oxide ceramics with H minima at an intermediate grain size at low temperature. The intrinsic hardness and softening coefficient of UO{sub 2} indicate cubic dependence on TiO{sub 2} content.

  1. Crystal-field effect in UO2

    International Nuclear Information System (INIS)

    Gajek, Z.; Lahalle, M.P.; Krupa, J.C.; Mulak, J.

    1988-01-01

    Simple ab initio model perturbation calculations of the crystal-field parameters for the U 4+ ion in UO 2 crystals are reported. The crystal-field parameters obtained, B 0 4 = -7130 cm -1 and B 0 6 = 2890 cm -1 , turn out to be much lower in value, particularly the first one, than those usually assumed for this compound. They are found, however, to agree with new spectroscopic data and recent inelastic neutron scattering measurements. (orig.)

  2. Unirradiated UO2 in irradiated zirconium alloy sheathing

    International Nuclear Information System (INIS)

    MacDonald, R.D.; Hardy, D.G.; Hunt, C.E.L.; Scoberg, J.A.

    1979-07-01

    Zircaloy-clad UO 2 fuel elements have defected in power reactors when element power outputs were raised significantly after a long irradiation at low power. We have irradiated fuel elements fabricated from fresh UO 2 pellets and zirconium alloy sheaths previously irradiated without fuel. This gave a fuel element with radiation-damaged low-ductility sheathing but with no fission products in the fuel. The elements were power boosted in-reactor to linear power outputs up to 84 kW/m for two five-day periods. No elements defected despite sheath strains of 0.82 percent at circumferential ridge postions. Half of these elements were subsequently soaked at low power to build up the fission product inventory in the fuel and then power boosted to 63 kW/m for a third time. Two elements defected on this final boost. We conclude that these defects were caused by fission product induced stress-corrosion cracking and that this mechanism plays an importent role in power reactor fuel defects. (auth)

  3. Thermal properties of UO2 from density functional theory: role of strong correlations

    International Nuclear Information System (INIS)

    Panigrahi, Puspamitra; Kaur Gurpreet; Valsakumar, M.C.

    2011-01-01

    We report a study of ground state magnetic structure of Uranium-dioxide (UO 2 ) using ab initio calculations employing PAW pseudopotentials and Dudarev's version of GGA+U formalism as implemented in VASP to take into account the strong on-site Coulomb correlation among the localized Uranium-5f electrons. By choosing the value of the Hubbard parameter U eff to be 4.0 eV, we have confirmed the experimental observation that the ground state of UO 2 is an insulator with an anti-ferromagnetic (AFM) ordering. We study systematically the ground state structural, electronic, and magnetic properties of UO 2 and focus on the structure sensitive thermal properties such as specific heat, thermal expansion and comment on the calculation of thermal conductivity. (author)

  4. Kinetics of UO2(s) dissolution under reducing conditions: Numerical modelling

    International Nuclear Information System (INIS)

    Puigdomenech, I.; Casas, I.; Bruno, J.

    1990-05-01

    A numerical model is presented that describes the dissolution and precipitation of UO 2 (s) under reducing conditions. For aqueous solutions with pH>4, main reaction is: UO 2 (s)+2H 2 O↔U(OH) 4 (aq). The rate constant for the precipitation reaction is found to be log(k p )=-1.2±0.2 h -1 m -2 , while the value for the rate constant of the dissolution reaction is log(k d )=-9.0±0.2 mol/(1 h m 2 ). Most of the experiments reported in the literature show a fast initial dissolution of a surface film of hexavalent uranium oxide. Making the assumption that the chemical composition of the surface coating is U 3 O 7 (s), we have derived a mechanism for this process, and its rate constants have been obtained. The influence of HCO 3 - and CO 3 2- on the mechanism of dissolution and precipitation of UO 2 (s) is still unclear. From the solubility measurements reported, one may conclude that the identity of the aqueous complexes in solution is not well known. Therefore it is not possible to make a mechanistic interpretation of the kinetic data in carbonate medium. (orig.)

  5. Application of pulsed electron beam vaporization to studies of UO2

    International Nuclear Information System (INIS)

    Benson, D.A.

    1977-06-01

    A method for determining the pressure versus internal energy coordinates of the liquid-vapor saturation curve is applied to the study of UO 2 . The experimental details and results of an initial series of tests are described. A comparison of the measurement results to models of the UO 2 equation of state illustrates the role of the heat capacity in describing the P--E characteristics of the state surface. A discussion of the available heat capacity information suggests that additional modeling and measurements of the heat capacity may be needed to give a complete temperature and energy dependent state surface description. Because of these modeling uncertainties, a method of thermodynamically describing the P(V, E) state surface entirely through the use of dynamic vapor measurements is given. Such a model satisfies transient thermomechanical analysis requirements. Next the effect of the state surface on one type of core disruptive reactor analysis is examined. And finally, the property determinations and models for UO 2 are reviewed with requirements for future work being outlined

  6. Innovative microstructures in ThO2-UO2 system

    International Nuclear Information System (INIS)

    Kutty, T.R.G.; Sengupta, A.K.; Majumdar, S.; Sah, D.N.; Kamath, H.S.

    2005-01-01

    The basic properties that really matter to the nuclear scientists are those that have greatest influence on microstructure: crystal structure, defects concentration and phase stability. The role of microstructure and crystal defects in determining the engineering properties are always acknowledged. Microstructure of nuclear fuels controls the in-pile fuel behavior like fission gas release, plasticity, in-pile creep and swelling. Conventional nuclear ceramic fabrication process consists of a number of stages, including calcination, milling, incorporating additives, pressing, drying and densification. Since each of these steps affects the microstructure of fuel pellets they must all be understood and a more holistic approach is required when processing nuclear ceramics compared to metals and polymers. It is possible to obtain a wide range of microstructures for ThO 2 -UO 2 system if a proper fabrication route is chosen. It is possible to tailor microstructure as per our requirement so that an improved behaviour during irradiation is expected. The improvement in plasticity and fission gas release can be attained by modifying the microstructure during fabrication. This paper deals with fabrication of ThO 2 -UO 2 pellets of varying U content and its characterization with the help of optical microscopy, XRD, SEM and EPMA. The microstructures are characterized in terms grain size, pore size and its distribution and homogeneity of uranium. (author)

  7. Thermodynamic mixing properties of the UO{sub 2}–HfO{sub 2} solid solution: Density functional theory and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Ke, E-mail: keyuan@umich.edu [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Ewing, Rodney C. [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Becker, Udo [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2015-03-15

    HfO{sub 2} is a neutron absorber and has been mechanically mixed with UO{sub 2} in nuclear fuel in order to control the core power distribution. During nuclear fission, the temperature at the center of the fuel pellet can reach above 1300 K, where hafnium may substitute uranium and form the binary solid solution of UO{sub 2}–HfO{sub 2}. UO{sub 2} adopts the cubic fluorite structure, but HfO{sub 2} can occur in monoclinic, tetragonal, and cubic structures. The distribution of Hf and U ions in the UO{sub 2}–HfO{sub 2} binary and its atomic structure influence the thermal conductivity and melting point of the fuel. However, experimental data on the UO{sub 2}–HfO{sub 2} binary are limited. Therefore, the enthalpies of mixing of the UO{sub 2}–HfO{sub 2} binary with three different structures were calculated in this study using density functional theory and subsequent Monte Carlo simulations. The free energy of mixing was obtained from thermodynamic integration of the enthalpy of mixing over temperature. From the ΔG of mixing, a phase diagram of the binary was obtained. The calculated UO{sub 2}–HfO{sub 2} binary forms extensive solid solution across the entire compositional range, but there are a variety of possible exsolution phenomena associated with the different HfO{sub 2} polymorphs. As the structure of the HfO{sub 2} end member adopts lower symmetry and becomes less similar to cubic UO{sub 2}, the miscibility gap of the phase diagram expands, accompanied by an increase in cell volume by 7–10% as the structure transforms from cubic to monoclinic. Close to the UO{sub 2} end member, which is relevant to the nuclear fuel, the isometric uranium-rich solid solutions exsolve as the fuel cools, and there is a tendency to form the monoclinic hafnium-rich phase in the matrix of the isometric, uranium-rich solid solution phase.

  8. Vapour pressure studies of uranium dioxide UO{sub 2} by the effusion method; Mesure de la tension de vapeur du bioxyde d'uranium UO{sub 2} par la methode d'effusion

    Energy Technology Data Exchange (ETDEWEB)

    Ohse, R W [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-07-01

    A high temperature apparatus for vapour pressure measurements by Knudsen effusion method is described. Sample is heated in a tungsten cell in an electronic bombardment furnace. Several critical factors affecting the accuracy of measurements such as: - temperature distribution and measurement in the effusion cell, - CLAUSING factor and molecular flow, - compatibility between cell material and sample heated, are discussed with careful attention. Vapour pressure of UO{sub 2} has been studied between 2200 and 2800 K. Experimental points fit a curve expressed by: logP{sub mm} = 12.4264 - (3.3184/T * 10{sup 4}/T) which is in good agreement with previous results of literature. (author) [French] On decrit un appareil destine a la mesure des tensions de vapeur par la methode d'effusion de KNUDSEN. L'echantillon contenu dans une cellule en tungstene est chauffe par bombardement electronique. Apres examen critique des divers facteurs affectant l'exactitude des mesures, a savoir: - homogeneite et mesure de la temperature dans la cellule d'effusion, - facteur de 'CLAUSING' et loi de distribution en cosinus des molecules effusees, - compatibilite a chaud entre le materiau de la cellule et le materiau etudie. On a procede a la mesure de la tension de vapeur de UO{sub 2} qui est relativement bien connue. Entre 2200 et 2800 K les points experimentaux se placent sur une courbe: logP{sub mm} = 12.4264 - (3.3184/T * 10{sup 4}/T) en bon accord avec les valeurs citees dans la litterature. (auteur)

  9. Preparation of Fluidization Feed of UO2 Pellets by Oxidation

    International Nuclear Information System (INIS)

    Rachmat-Pratomo; H, Didiek; Suwondo, B; Sigit

    2000-01-01

    The investigation of oxidation of uranium dioxide (UO 2 ) pellets to thetri uranium octoxide (U 3 O 8 ) powder had been carried. Several factor suchtemperature, time of oxidation and the concentration of air are important.The oxidation of UO 2 pellet are carried out on electric furnace atatmosphere as media. The oxidation temperature started at 300 o C, 400 o C,500 o C, and 600 o C along 1 hour. The time oxidation removed to 2 hours and3 hours. The efficiency of oxidation are the ratio of the weight of thepowder product are the uranium content, true density, and specific surfacearea. Result the optimum temperature are 500 o C along 3 hours, uraniumcontent : 84.78%, true density: 8.8293 g/cm 3 and specific surface area :0.389071 m 2 /g. (author)

  10. Development of AUC-based process at BARC for production of free-flowing and sinterable UO2 powder

    International Nuclear Information System (INIS)

    Keni, V.S.; Ghosh, S.K.; Ganguly, C.; Majumdar, S.

    1994-01-01

    Ammonium uranium carbonate (AUC) process has been developed and industrially used in Germany for preparation of free-flowing and sinterable UO 2 powder for fabrication of UO 2 fuel pellets for light water reactors (LWR). Efforts are underway at Bhabha Atomic Research Centre (BARC) for developing AUC-based process which would yield free-flowing UO 2 powder suitable for direct pelletisation and sintering to very high density (> 96% T.D.) UO 2 fuel pellets for pressurised heavy water reactors (PHWRs) in India. The first phase of this work has been completed jointly by Chemical Engineering Division (ChED) and Radiometallurgy Division (RMD) in batches of 1.5 kg. It was possible to fabricate UO 2 pellets of density 93-95% T.D. on a reproducible basis. At ChED, process parameters have been optimised for fabrication of AUC with suitable physical properties in batches of 1.5 kg (U), starting with nuclear pure uranyl nitrate solution. At RMD calcination parameters of AUC was optimised in batches of 500 g for obtaining free-flowing UO 2 powder, suitable for direct pelletisation and sintering. The pelletisation and sintering have been carried out at Radiometallurgy Division in batches of 1-1.5 kg. The maximum achievable density of UO 2 pellets has been in the range of 95.5-96% T.D. (author). 11 refs

  11. Topologically identical, but geometrically isomeric layers in hydrous α-, β-Rb[UO2(AsO3OH)(AsO2(OH)2)]·H2O and anhydrous Rb[UO2(AsO3OH)(AsO2(OH)2)

    Science.gov (United States)

    Yu, Na; Klepov, Vladislav V.; Villa, Eric M.; Bosbach, Dirk; Suleimanov, Evgeny V.; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.; Alekseev, Evgeny V.

    2014-07-01

    The hydrothermal reaction of uranyl nitrate with rubidium nitrate and arsenic (III) oxide results in the formation of polymorphic α- and β-Rb[UO2(AsO3OH)(AsO2(OH)2)]·H2O (α-, β-RbUAs) and the anhydrous phase Rb[UO2(AsO3OH)(AsO2(OH)2)] (RbUAs). These phases were structurally, chemically and spectroscopically characterized. The structures of all three compounds are based upon topologically identical, but geometrically isomeric layers. The layers are linked with each other by means of the Rb cations and hydrogen bonding. Dehydration experiments demonstrate that water deintercalation from hydrous α- and β-RbUAs yields anhydrous RbUAs via topotactic reactions.

  12. Microscopic appearance analysis of raw material used for the production of sintered UO2 by scanning electron microscope

    International Nuclear Information System (INIS)

    Liu feiming

    1992-01-01

    The paper describes the microscopic appearance of UO 2 , U 3 O 8 , ADU and AUC powders used for the production of sintered UO 2 slug of nuclear fuel component of PWR. The characteristic analysis of the microscopic appearance observed by scanning electron microscope shows that the quality and finished product rate of sintered UO 2 depend on the appearance characteristic of the active Uo 2 powder, such as grade size and its distribution, spherulitized extent, surface condition and heap model etc.. The addition of U 3 O 8 to the UO 2 powder improves significantly the quality and the finished product rate. The mechanism of this effect is discussed on the basis of the microscopic appearance characteristic for two kinds of powder

  13. The influence of porosity on the thermal conductivity of irradiated UO2 fuel

    International Nuclear Information System (INIS)

    Bakker, K.; Kwast, H.; Cordfunke, E.H.P.

    1994-12-01

    The influence of porosity on the thermal conductivity of irradiated UO 2 fuel has been determined with the Finite Element Method (FEM). Light-microscopy photographs were made of the fuel. The pore shape and the pore distribution are entered in the FEM program from these photographs. The two dimensional (2D) thermal conductivity in the plane of the photograph is obtained from the FEM calculations. The 2D thermal conductivity, that has no physical meaning itself, is the lower limit of the three dimensional (3D) thermal conductivity. For three well defined pore shapes the relation is determined between the 2D thermal conductivity and the 3D thermal conductivity. From these computations a simple relation is obtained that transfers the 2D thermal conductivity into the 3D thermal conductivity, independent of the pore shape. The influence of porosity on the 3D thermal conductivity of irradiated UO 2 fuel and UO 2 fuel doped with Nb 2 O 5 was computed with the FEM. (orig.)

  14. Spent-fuel special-studies progress report: probable mechanisms for oxidation and dissolution of single-crystal UO2 surfaces

    International Nuclear Information System (INIS)

    Wang, R.

    1981-03-01

    Due to the complexity of the structural, microstructural and compositional characteristics of spent fuel, basic leaching and dissolution mechanisms were studied with UO 2 matrix material, specifically with single-crystal UO 2 , to isolate individual contributory factors. The effects of oxidation and oxidation-dissolution were investigated in different oxidation conditions, such as in air, oxygenated solutions and deionized water containing H 2 O 2 . In addition, the effects of temperature on dissolution of UO 2 were studied in autoclaves at 75 and 150 0 C. Also, oxidation and dissolution measurements were investigated via electrochemical methods to determine if those techniques could be applied to the characterization of leaching and dissolution of spent fuel in a hot cell. Finally, the effects of radiation were explored since the radiolysis of water may create a localized oxidizing condition at or near the spent fuel-solution interface, even in neutral or reducing conditions as commonly found in deep geological environments. The oxidation and oxidation-dissolution mechanisms for UO 2 are proposed as follows: The UO 2 surface is first oxidized in solution to form a UO/sub 2+x/ surface layer several angstroms thick. This oxidized surface has a high dissolution rate since the UO/sub 2+x/ reacts with the dissolved O 2 , or H 2 O 2 , to form uranyl complex ions in a U(VI) state. As the uranyl ions exceed the solubility limits in solution, they become hydrolyzed to form solid deposits and suspended particles of UO 3 hydrates. The thickness and porosity of the deposited UO 3 hydrate surface-film is dependent on temperature, pH and deposition time. A long-term dissolution rate is then determined by the nature of the surface film, such as porosity, solubility and mechanical properties

  15. Qualification of power determination and in-pile measurements in the UO{sub 2} Gd{sub 2} 0{sub 2} fuel irradiation test IFA 636

    Energy Technology Data Exchange (ETDEWEB)

    Tverberg, T.; Volkov, B.; Kim, J-C.

    2004-04-15

    IFA-S36 is irradiated with the main objective of extending the database on the performance of UO{sub 2}Gd{sub 2}O{sub 2} fuel (with 8% absorbing gadolinia isotopes) compared with commercial UO{sub 2}. The rig carries 6 rods in the lower cluster (including three Gd-doped fuel rods) and 3 rods in the upper cluster (one rod with Gd-doped fuel). The rods are instrumented with expansion thermometers (ETs), fuel and cladding elongation detectors (EFs and ECs) and pressure transducers (PFs). Repeated calorimetric power measurements, physics calculations by the HELIOS code and gamma scans of selected rods in both clusters enabled the power and burnup determination to be qualified and corrected. The data suggest that as of May 2004 the power ratings in both fuels are much alike and burnups are about 30 and 34 MW/kgUO{sub 2} in the Gd-doped and ordinary UO{sub 2} rods respectively. Analysis of in-pile measurements compared with calculations shows that neutron absorption affects fuel temperature, power and burnup radial distributions in Gd-doped fuel at BOL compared with UO{sub 2} fuel. Sensitivity analyses performed with the HELIOS and FTEMP3 codes show that fuel centreline temperature in Gd-doped fuel is influenced by radial power depression, depletion of fissile materials and absorbing Gd isotopes as well as thermal conductivity of the fuel matrix and its degradation during irradiation. Analysis of the fuel dimension changes revealed densification only in the UO{sub 2} fuel whereas fuel elongation measurements in the Gd-doped fuel rods indicated essentially constant swelling with burnup. At burnups above 5 MWd/kgUO{sub 2} the swelling rate was about 0.5-O.fi % DELTAV/V per 10 MWd/kgUO{sub 2} for both fuel types. Internal pressure measured in the Gd-doped rod at BOL showed slight fuel densification and possibly He gas absorption, whereas derived swelling rate was somewhat Iarger than values obtained from the fuel elongation measurements. Cladding elongation measurements

  16. Criticality experiments with low enriched UO2 fuel rods in water containing dissolved gadolinium

    International Nuclear Information System (INIS)

    Bierman, S.R.; Murphy, E.S.; Clayton, E.D.; Keay, R.T.

    1984-02-01

    The results obtained in a criticality experiments program performed for British Nuclear Fuels, Ltd. (BNFL) under contract with the United States Department of Energy (USDOE) are presented in this report along with a complete description of the experiments. The experiments involved low enriched UO 2 and PuO 2 -UO 2 fuel rods in water containing dissolved gadolinium, and are in direct support of BNFL plans to use soluble compounds of the neutron poison gadolinium as a primary criticality safeguard in the reprocessing of low enriched nuclear fuels. The experiments were designed primarily to provide data for validating a calculation method being developed for BNFL design and safety assessments, and to obtain data for the use of gadolinium as a neutron poison in nuclear chemical plant operations - particularly fuel dissolution. The experiments program covers a wide range of neutron moderation (near optimum to very under-moderated) and a wide range of gadolinium concentration (zero to about 2.5 g Gd/l). The measurements provide critical and subcritical k/sub eff/ data (1 greater than or equal to k/sub eff/ greater than or equal to 0.87) on fuel-water assemblies of UO 2 rods at two enrichments (2.35 wt % and 4.31 wt % 235 U) and on mixed fuel-water assemblies of UO 2 and PuO 2 -UO 2 rods containing 4.31 wt % 235 U and 2 wt % PuO 2 in natural UO 2 respectively. Critical size of the lattices was determined with water containing no gadolinium and with water containing dissolved gadolinium nitrate. Pulsed neutron source measurements were performed to determine subcritical k/sub eff/ values as additional amounts of gadolinium were successively dissolved in the water of each critical assembly. Fission rate measurements in 235 U using solid state track recorders were made in each of the three unpoisoned critical assemblies, and in the near-optimum moderated and the close-packed poisoned assemblies of this fuel

  17. Surface modelling on heavy atom crystalline compounds: HfO2 and UO2 fluorite structures

    International Nuclear Information System (INIS)

    Evarestov, Robert; Bandura, Andrei; Blokhin, Eugeny

    2009-01-01

    The study of the bulk and surface properties of cubic (fluorite structure) HfO 2 and UO 2 was performed using the hybrid Hartree-Fock density functional theory linear combination of atomic orbitals simulations via the CRYSTAL06 computer code. The Stuttgart small-core pseudopotentials and corresponding basis sets were used for the core-valence interactions. The influence of relativistic effects on the structure and properties of the systems was studied. It was found that surface properties of Mott-Hubbard dielectric UO 2 differ from those found for other metal oxides with the closed-shell configuration of d-electrons

  18. Obtainment of UO{sub 2} ex AUC (ammonium uranyl carbonate) from uranyl fluoride; Obtencion de UO{sub 2} ex AUC (carbonato de uranil amonio) partiendo de fluoruro de uranilo

    Energy Technology Data Exchange (ETDEWEB)

    Fuente, M de la; Gonzalez, A G; Gonzalez Scardaone, S; Perez de Perel, L; Marajofsky, A [Comision Nacional de Energia Atomica, San Martin (Argentina). Unidad de Actividad Combustibles Nucleares

    1997-12-31

    It is proposed the production of enriched UO{sub 2} powder starting from UF6 with the desired isotopic concentration in order to avoid the possible segregation inconveniences that take place in the mixture of enriched and natural UO{sub 2} powders. In this work is shown the feasibility of obtaining powders with direct sinterability, through the precipitation of uranyl fluoride solutions (UF{sub 6} hydrolysis). The AUC is a crystalline forerunner used in the powder production line. A simulated hydrolyzed UF{sub 6} solution was obtained by means of the dissolution of UO{sub 3} with FH acid. The precipitation operation was carried out in a discontinuous operation device, with simultaneous pumping. The precipitating media is achieved by adding simultaneously NH{sub 3} (g) and CO{sub 2} (g), using ejector nozzles during precipitation. Mother waters pH during precipitation stay between 8.5 and 9.2 and the temperature of operation is around 323 K. The AUC calcination, reduction and passivation took place during the same operation. The reduction was carried out at three different temperatures, 823 K, 933 K and 1003 K in H{sub 2} reducing atmosphere. The passivation was carried out at 343 K. The main problem of this process is free fluorine that could remain in the powder. It would inhibit its use as nuclear fuel, since the international specifications do not tolerate more than 20 mg/kg. However, the determinations carried out in all the cases, showed that it was completely eliminated during calcination. The ex AUC UO{sub 2} powders obtained from solution of F{sub 2} (UO{sub 2}) were fluoride free, showed specific areas within specification and good sinterability. Therefore it is possible to fabricate enriched powders using a humid process from F{sub 6}U, to be used without problems of segregation due to the origin of the powder mix in PWR fuels type (CAREM). (author). 3 figs.

  19. Atomic transport properties in UO2 and mixed oxides (U,Pu)O2

    International Nuclear Information System (INIS)

    Matzke, H.

    1987-01-01

    Atomic diffusion processes in UO 2 and in the fast-breeder reactor fuel, (U,Pu)O 2 are reviewed. Emphasis is given to the slower-moving species, i.e. U and Pu. Self-diffusion, chemical diffusion, diffusion in a thermal gradient, enhancement of diffusion by radiation and fission and the operative diffusion mechanisms are discussed. The main parameter, besides the temperature, is the oxygen-to-metal ratio (O/M ratio) of the oxide. The experimental results are compared with recent calculations reported elsewhere in this volume. Also treated are effects of the possible lambda-transition at ca.2600 K in UO 2 on high-temperature kinetic processes. The present knowledge on the diffusion and mobility of fission products with emphasis on volatile and gaseous elements, and of other actinides with emphasis on their valence states are treated. Gaps in our knowledge are pointed out and the relevance of the available results for oxide fuel during reactor operation is discussed. Whereas much is known for the as-produced 'virgin' fuel, more results are urgently needed for oxides with higher burn-ups containing a few per cent fission products. Finally, technological applications of the diffusion results are treated. As an example, important savings in cost, energy and time in fuel sintering were recently achieved based on basic studies of diffusion properties of UO 2 . (author)

  20. Creep behavior of UO2 above 20000C

    International Nuclear Information System (INIS)

    Slagle, O.D.

    1978-01-01

    A series of high temperature creep measurements were made for UO 2 in the temperature range from 2000 0 C to the melting temperature. The effects of temperature, stress and accrued strain on the creep rate have been measured. The results indicate that additional creep mechanisms are being activated at the higher temperatures

  1. The MgSeO4-UO2SeO4-H2O system at 25 deg C

    International Nuclear Information System (INIS)

    Serezhkina, L.B.; Serezhkin, V.N.

    1984-01-01

    The method of isothermal solubility at 25 deg C has been used to study MgSeO 4 -UO 2 SeO 4 -H 2 O system. Formation of the new compound Mg 2 (UO 2 ) 3 (SeO 4 ) 5 X32H 2 O, congruently soluble in water is stated. Thermographic and X-ray diffraction investigations of the prepared magnesium selenato-uranylate and products of its dehydration are conducted

  2. Microspheres of UO2, ThO2 and PuO2 for the high temperature reactor

    International Nuclear Information System (INIS)

    Brandau, T.; Brandau, E.

    2010-01-01

    Up to the end of the eighties of last century, the so called ''Kernels'', microspheres with a diameter of about 300 μm as sintered out of ThO 2 and UO 2 have been produced by a special vibrational dropping process. After coating and embedding in carbon the pebble fuel balls with a diameter of 60 mm included 40.000 UO 2 - or ThO 2 -microspheres in the core. Since the early nineties BRACE is developing the processing of microspheres with a broad range of materials for applications in chemical, pharmaceutical, electronic, cosmetic and food industries. One of the developing areas is the production of microspheres out of metal oxides, where different processes as sol-gel-, suspension- or mixed processes are used. (orig.)

  3. Determination of uranium content and its impurities in the AUC and UO2 powders

    International Nuclear Information System (INIS)

    Boybul; Arif Nugroho

    2012-01-01

    The analysis of uranium (U) content and its impurities in the ammonium uranyl carbonate (AUC) and uranium dioxide (UO 2 ) produced from research reactor fuel element production installation, PT. BATAN Teknologi have been carried out. Uranium content in the powders was analyzed by potentiometric titration methods and impurity contents was analyzed by atomic absorption spectrophotometer (AAS) and by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The purpose of this study was to determine of impurity elements in the AUC and UO 2 powder resulting from the production process if it meets the required specifications. It is reported that U content in the AUC is 48.62 wt% and that in the UO 2 is 88.08 wt%. The precision and accuracy analysis of the U content is 0,235% and 0,151%. In case of impurities in the AUC powders, it is reported that the analytical results of Zn, Ni, Cd, Co, Mn, Mg, Fe, Cu and Cr at 10.15 ppm, 1.12 ppm, not detection, not detection, not detection, 0.30 ppm, 216.07 ppm, not detection, and 31.36 ppm, respectively, while that UO 2 are 11.31 ppm, 72.14 ppm, not detection, not detection, 6.25 ppm, 8.65 ppm, 298.24 ppm, 12.75 ppm and 32, 23 ppm. The U and impurity contents in both the AUC and UO 2 fulfill the specification of nuclear fuel for RSG-GAS research reactor. (author)

  4. Thermal conductivity of sintered UO{sub 2} under in-pile conditions; Conductibilite thermique de l'UO{sub 2} fritte dans les conditions d'utilisation en pile

    Energy Technology Data Exchange (ETDEWEB)

    Stora, J P; Bernardy De Sigoyer, B; Delmas, R; Deschamps, P; Lavaud, B; Ringot, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The temperature distribution in a stack of sintered UO{sub 2} cylinders has been studied both in the laboratory where the heat energy is produced by an axial heating element, and in-pile, where the heating is due solely to nuclear effects. Under a high thermal gradient the UO{sub 2} cracks both along radial planes and along pseudo-cylindrical surfaces: these latter act as thermal barriers to the heat flow, It is therefore an apparent thermal conductivity k{sub a}(T), lower than the intrinsic value k(T) of this parameter which is measured. The efficiency of these barriers decreases when the gap decreases and when the external pressure acting on the cracked stack increases: in the limiting case, for high values of the binding strain, k{sub a}(T) {approx_equal} k(T). In the domain of phonon conduction (T {<=} 1350 deg C), the expression kw.cm{sup -1}.C{sup -1}=1/(11+0.024*T) accounts for the real thermal conductivity. Above 1350 deg C the thermal conductivity increases. Two in-pile measurements up to 1250 deg C carried out using cartridges fitted with thermocouples confirm, within the limits of experimental error, the above expression and the qualitative effects of the binding strains. Similar tests have been carried out-of-pile and in-pile on the real shape of the EL-4 fuel 'pencils'. Out-of-pile, the influence of the initial free gap, of the nature of the gas filing the 'pencil' and of the external pressure have been studied; the results are compatible with the above interpretation; It appears that an external pressure of 60 kg/cm{sup 2} is insufficient to restore completely the thermal conductivity of the fuel. (authors) [French] La distribution de temperature dans un empilement de cylindres d'UO{sub 2} fritte est etudiee a la fois au laboratoire, ou l'energie calorifique est produite par un element chauffant axial, et en pile, ou l'echauffement est uniquement nucleaire. Sous gradient thermique eleve, l'UO{sub 2} se fracture a la fois suivant des plans radiaux et

  5. Effects of UO2 fuel microstructure and density on fuel in-reactor performance

    International Nuclear Information System (INIS)

    Hansson, L.

    1988-02-01

    The volume changes of UO 2 fuel pellets, produced by neutron irradiation, can be characterized by two processes: fission spike induced densification through pore skrinkage and later fission produced induced swelling of UO 2 matrix. In-pile densification is controlled by the initial density and microstructure of the fuel, particularly by the pore size distribution. The extent of swelling depends mainly on the amount of fission products produced, but the fission gas release as well as the swelling may be reduced by increasing the grain size of UO 2 . Fabrication of fuel pellets having certain in-reactor properties requires detailed knowledge of the effects of individual fabrication parameters. The irradiation experience of fuels fabricated by using different conversion and pelletizing methods is extensive. Based on this experience, some general characteristics of stable/well-performing fuel microstructures have been summarized

  6. Behavior of fission gases in nuclear fuel: XAS characterization of Kr in UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Martin, P.M., E-mail: Philippe-m.martin@cea.fr [CEA, DEN, Cadarache DEC/SESC, F-13108 St-Paul-Lez-Durance Cedex (France); Vathonne, E.; Carlot, G.; Delorme, R.; Sabathier, C.; Freyss, M.; Garcia, P.; Bertolus, M. [CEA, DEN, Cadarache DEC/SESC, F-13108 St-Paul-Lez-Durance Cedex (France); Glatzel, P. [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France); Proux, O. [OSUG, Observatoire des Sciences de l’Univers de Grenoble, CNRS and Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9 (France)

    2015-11-15

    X-ray Absorption Spectroscopy (XAS) was used to study the behavior of krypton as a function of its concentration in UO{sub 2} samples implanted with Kr ions. For a 0.5 at.% krypton local concentration, by combining XAS results and DFT + U calculations, we show that without any thermal treatment Kr atoms are mainly incorporated in the UO{sub 2} lattice as single atoms inside a neutral bound Schottky defect with O vacancies aligned along the (100) direction (BSD1). A thermal treatment at 1273 K induces the precipitation of dense Kr nano-aggregates, most probably solid at room temperature. In addition, 26 ± 2% of the Kr atoms remain inside BSD1 showing that Kr-BSD1 complex is stable up to this temperature. Consequently, the (in-)solubility of krypton in UO{sub 2} has to be re-evaluated. For high Kr concentration (8 at.%), XAS signals show that Kr atoms have precipitated in nanometer-sized aggregates with internal densities ranging between 4.15(7) g cm{sup −3} and 3.98(5) g cm{sup −3} even after annealing at 873 K. By neglecting the effect due to the UO{sub 2} matrix, the corresponding krypton pressures at 300 K were equal to 2.6(3) GPa and 2.0(2) GPa, respectively. After annealing at 1673 K, regardless of the initial Kr concentration, a bi-modal distribution is observed with solid nano-aggregates even at room temperature and larger cavities only partially filled with Kr. These results are very close to those observed in UO{sub 2} fuel irradiated in reactor. In this study we show that a rare gas can be used as a probe to investigate the defect creation and their stability in UO{sub 2}.

  7. Investigation of UO2 as an accelerator for quantitative extraction of F- and Cl- in ThO2 and sintered ThO2

    International Nuclear Information System (INIS)

    Pandey, Ashish; Fulzele, Ajit; Das, D.K.; Prakash, Amrit; Behere, P.G.; Afzal, Mohd

    2013-01-01

    This paper presents UO 2 as an effective accelerator for the quantitative extraction of F - and Cl - from ThO 2 and sintered ThO 2 . Thoria requires higher temperature to loose its structural integrity to release halides. Sample composed of UO 2 and ThO 2 or UO 2 and sintered ThO 2 gives quantitative yield of F - and Cl - even at lower temperature. Accelerator amount and pyrohydrolysis conditions were optimized. The pyrohydrolyzate was analyzed for F - and Cl - by ISE. The limit of detection was 1 μg/g in the samples with good recovery (95%) and relative standard deviation less than 5%. (author)

  8. Fabrication of Cr-doped UO2 Fuel Pellet using Liquid Phase Sintering

    International Nuclear Information System (INIS)

    Kim, Dong Joo; Yang, Jae Ho; Kim, Keon Sik; Rhee, Young Woo; Kim, Jong Hun; Oh, Jang Soo; Koo, Yang Hyun

    2013-01-01

    An enhancement of the thermal conductivity of a pellet can be obtained by the addition of a higher thermal conductive material in the pellet. In addition, the resistance to the PCI can be increased through a plasticity increase of the pellet. Thermal conductivity of ceramic materials is generally lower than that of metallic materials. The thermal conductivity of uranium oxide which is a typical ceramic material is low as well. The steep temperature gradient in the fuel pellet results from the low thermal conductivity. Therefore, the thermal conductivity improvement of a nuclear fuel pellet can enhance the fuel performance in various aspects. The lower centerline temperature of a fuel pellet affects the enhancement of fuel safety as well as fuel pellet integrity during nuclear reactor operation. Besides, the nuclear reactor power can be uprated due to the higher safety margin. So, many researches to enhance the thermal conductivity of nuclear fuel pellet have been performed in various ways. To improve the thermal conductivity of UO 2 pellet, an appropriate arrangement of the high thermal conductive material in UO 2 matrix is one of the various methods. We intended to control a placement of chromium as the high thermal conductive material. The metallic chromium and chromium oxide were arranged in a grain boundary of UO 2 using a liquid phase sintering method. The liquid phase sintering of Cr-doped UO 2 pellet could be adjusted using a control of an oxygen potential in sintering atmosphere

  9. The dissolution rate of UO2 in the alkaline regime under oxidizing conditions using a simplified ground water analog

    International Nuclear Information System (INIS)

    Leider, H.R.; Nguyen, S.N.; Weed, H.C.; Steward, S.A.

    1992-01-01

    The major factor controlling the long term release of radionuclides from spent fuel in a geologic repository is the leaching/dissolution by groundwater of the UO 2 matrix, since more than 90% of the radionuclide waste is contained in the fuel matrix. The objective of this investigation is to provide experimental dissolution rates for UO 2 samples which can be used to develop a mechanistic release model (or models) for UO 2+x (x≥0) under repository conditions. Several types of data will be obtained from this study: (1) the dissolution rates of UO 2 as a function of pI-L temperature, carbonate and oxygen fugacity; (2) the comparison of the steady state dissolution rates of ''not-reduced'' versus ''reduced'' UO 2 samples and of single crystal versus polycrystalline UO 2 under identical experimental conditions; (3) the pre- and post-test surface analyses of the samples to provide information on the surface phases that may be formed under experimental conditions

  10. Determination of Gd concentration profile in UO{sub 2}–Gd{sub 2}O{sub 3} fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Tobia, D., E-mail: dina.tobia@cab.cnea.gov.ar [Laboratorio de Resonancias Magnéticas, Centro Atómico Bariloche – CNEA and CONICET, 8400 S.C. de Bariloche (Argentina); Winkler, E.L.; Milano, J.; Butera, A. [Laboratorio de Resonancias Magnéticas, Centro Atómico Bariloche – CNEA and CONICET, 8400 S.C. de Bariloche (Argentina); Kempf, R. [División Caracterización de Combustibles Avanzados, Gerencia Ciclo Combustible Nuclear, Centro Atómico Constituyentes – CNEA, 1650 San Martín, Pcia. de Buenos Aires (Argentina); Bianchi, L.; Kaufmann, F. [Departamento de Combustibles Avanzados, Gerencia Ciclo Combustible Nuclear, Centro Atómico Constituyentes – CNEA, 1650 San Martín, Pcia. de Buenos Aires (Argentina)

    2014-08-01

    A transversal mapping of the Gd concentration was measured in UO{sub 2}–Gd{sub 2}O{sub 3} nuclear fuel pellets by electron paramagnetic resonance spectroscopy (EPR). The quantification was made from the comparison with a Gd{sub 2}O{sub 3} reference sample. The nominal concentration in the pellets is UO{sub 2}: 7.5% Gd{sub 2}O{sub 3}. A concentration gradient was found, which indicates that the Gd{sub 2}O{sub 3} amount diminishes towards the edges of the pellets. The concentration varies from (9.3 ± 0.5)% in the center to (5.8 ± 0.3)% in one of the edges. The method was found to be particularly suitable for the precise mapping of the distribution of Gd{sup 3+} ions in the UO{sub 2} matrix.

  11. Recycling of nuclear fuel swarf at the fabrication of UO sub(2)-pellets and its influence on the irradiation behavior

    International Nuclear Information System (INIS)

    Dias, M.S.; Lameiras, F.S.; Santos, A.M.M. dos

    1991-01-01

    From the fabrication of UO sub(2) pellets for light water reactor fuel rods, nuclear fuel scraps results in form of UO sub(2) grinding swarf and UO sub(2) sinter scraps oxidized to U sub(3)O sub(8) powder. Detailed investigations on five types of UO sub(2) pellets fabricated with different portions of this scrap kinds added to the UO sub(2) press powder showed that there is only a small influence of such scrap additions on the irradiation behavior, especially for the fission gas release. This allows to recycle the fabrication scrap in a simple and economic way. (author)

  12. Analysis of a MOX-UO2 interface by the method of characteristics

    International Nuclear Information System (INIS)

    Chetaine, A.; Erradi, L.; Sanchez, R.; Zmijarevic, I.; Aniel-Buchheit, S.

    2005-01-01

    In the last few years many studies have been done to improve the ability of core reactors (PWR and BWR) to burn Plutonium fuel, either in mixed UO 2 /MOX pattern or full MOX pattern. The analysis of a MOX-UO 2 interface with the method of characteristics has been carried out. Comparisons with Monte Carlo and collision-probability calculations show that our results are in good agreement with those obtained by reference methods and qualify the method of characteristic as a reliable technique for such calculations. (authors)

  13. Luminescence of UO2+sub(2(aq)) + FU+sub(2(aq)) and evidence for the formation of a new inorganic radiative exciplex in aqueous solution

    International Nuclear Information System (INIS)

    Deschaux, M.; Marcantonatos, M.D.

    1981-01-01

    Steady-state and time-resolved luminescence measurements, as well as decays of excited UO 2 2+ + FUO 2 + in aqueous solution, show the formation of a radiative exciplex, resulting from the interaction of *FUO 2 H + with UO 2 2+ , similarly to the *U 2 O 4 H 4+ exciplex already reported. Lifetimes and evaluations of the luminescence yields of the *UO 2 2+ , *FUO 2 + and of the exciplex of probable *(O(F)UOHOUO) 3+ composition, are given. The overall heat of the exciplex formation is estimated. (author)

  14. Leaching patterns and secondary phase formation during unsaturated leaching of UO2 at 90 degrees C

    International Nuclear Information System (INIS)

    Wronkiewicz, D.J.; Bates, J.K.; Gerding, T.J.; Veleckis, E.; Tani, B.S.

    1991-11-01

    Experiments are being conducted that examine the reaction of UO 2 with dripping oxygenated ground water at 90 degrees C. The experiments are designed to identify secondary phases formed during UO 2 alteration, evaluate parameters controlling U release, and act as scoping tests for studies with spent fuel. This study is the first of its kind that examines the alteration of UO 2 under unsaturated conditions expected to exist at the proposed Yucca Mountain repository site. Results suggest the UO 2 matrix will readily react within a few months after being exposed to simulated Yucca Mountain conditions. A pulse of rapid U release, combined with the formation of dehydrated schoepite on the UO 2 surface, characterizes the reaction between one to two years. Rapid dissolution of intergrain boundaries and spallation of UO 2 granules appears to be responsible for much of the U released. Differential release of the UO 2 granules may be responsible for much of the variation observed between duplicate experiments. Less than 5 wt % of the released U remains in solution or in a suspended form, while the remaining settles out of solution as fine particles or is reprecipitated as secondary phases. Subsequent to the pulse period, U release rates decline and a more stable assemblage of uranyl silicate phases are formed by incorporating cations from the ground water leachant. Uranophane, boltwoodite, and sklodowskite appear as the final solubility limiting phases that form in these tests. This observed paragenetic sequence (from uraninite to schoepite-type phases to uranyl silicates) is identical to those observed in weathered zones of natural uraninite occurrences. The combined results indicate that the release of radionuclides from spent fuel may not be limited by U solubility constraints, but that spallation of particulate matter may be an important, if not the dominant release mechanism affecting release

  15. Optimization of Additive-Powder Characteristics for Metallic Micro-Cell UO{sub 2} Fuel Pellet Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Joo; Kim, Keon Sik; Rhee, Young Woo; Kim, Jong Hun; Oh, Jang Soo; Yang, Jae Ho; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The improvement in the thermal conductivity of the UO{sub 2} fuel pellet can enhance the fuel performance in various aspects. The mobility of the fission gases is reduced by the lower temperature gradient in the UO{sub 2} fuel pellet. That is to say, the capability of the fission gas retention of the fuel pellet can increase. In addition, the lower centerline temperature of the fuel pellet affects the accident tolerance for nuclear fuel as well as the enhancement of fuel safety and fuel pellet integrity under normal operation conditions. The nuclear reactor power can be uprated owing to the higher safety margin. Thus, many researches on enhancing the thermal conductivity of a nuclear fuel pellet for LWRs have been performed. Typically, an enhancement of the thermal conductivity of the UO{sub 2} fuel pellet can be obtained by the addition of a higher thermal conductive material in the fuel pellet. To maximize the effect of the thermal conductivity enhancement, a continuous and uniform channel of the thermal conductive material in the UO{sub 2} matrix must be formed. To enhance the thermal conductivity of a UO{sub 2} fuel pellet, the development of fabrication process of a Cr metallic micro-cell UO{sub 2} pellet with a continuous and uniform channel of the Cr metallic phase was carried out. The formation of the Cr-oxide phases was prevented and the uniformity of the Cr-metal phase distribution was enhanced simultaneously, through the optimization of the additive-powder characteristics. In the results, the Cr metallic micro-cell pellet with continuous and uniform Cr metallic channel could be obtained.

  16. Spectral shift controlled reactor, UO2 once-through cycle optimized

    International Nuclear Information System (INIS)

    1978-05-01

    This paper presents technical and economic data on the SSCR which may be of use in the International Fuel Cycle Evaluation Program to intercompare alternative nuclear systems. Included in this data is information on the optimized UO 2 once-through fuel cycle. The ''optimized'' cycle refers to a UO 2 once-through cycle which has better fuel resource utilization than the conventional UO 2 cycle employed in current design PWRs. This fuel cycle uses more in-core batches and a higher discharge exposure than current PWR fuel management schemes. The proposed cycle is not optimal in a mathematical sense, however, since additional resource savings can be obtained if the discharge exposure is extended to even higher values and the number of in-core fuel batches is increased further. The present cycle was selected as ''optimal'' based on the assumption that it can be achieved with only an extension of fuel design technology and can therefore be deployed in a relatively short time frame. In the longer term, modification to reactor geometry as well as further extensions of discharge burnup might be considered to realize additional reduction in uranium resource requirements. The data contained in this paper has been developed by an ongoing program which at the present time is only 50% complete. The data presented here should therefore be considered preliminary and will be updated in the future as required

  17. A proposal for a unified fuel thermal conductivity model available for UO{sub 2}, (U-Pu)O{sub 2} and UO{sub 2}-GD{sub 2}O{sub 3} PWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Baron, D [Electrice de France, Moret-sur-Loing (France); Couty, J C [Electricite de France (EDF), 69 - Villeurbanne (France)

    1997-08-01

    In order to cope with the current fuel management targets which are focussed on higher discharge burnups, initial {sup 235}U fuel enrichments have been increased from 3.25% to 4%. To avoid an increase in boron concentration in the primary circuit, Gadolinium is used as a burnable poison, spread in the uranium oxide matrix of selected rods, in order to absorb the initial reactivity excess. Obviously, fuel thermal conductivity is affected when introducing any stranger element. Previously, the EDF thermomechanical code provided two different models to simulate the fuel thermal conductivity: one available for UO{sub 2} and (U-Pu)O{sub 2} fuels, the other for Gadolinia fuels, depending on the calculations to be done. No effect of the initial fuel stoichiometry was taken into account in the second model. That situation suggested the development of a unified model available for any fuels presently loaded in the EDF PWR reactors. This paper deals with the choice of the formulation, the data base used and the methodology applied for parameter fitting. Results in terms of measured versus predicted evaluation are then discussed. (author). 11 refs, 5 figs.

  18. The determination of UO2 and UF4 in fused fluoride salts

    International Nuclear Information System (INIS)

    Batiste, D.J.; Lee, D.A.

    1989-01-01

    The determination of uranium oxide solubilities in fused fluoride salts is important in the electrolytic preparation of uranium metal. This project was initiated to develop a method for the determination of UO 2 separately from UF 4 in UF 4 -CaF 2 -LiF fused salts. Previous methods used for the determination of UO 2 in fused fluoride salts involved inert gas fusions where oxygen was liberated as CO 2 , and hydrofluorination where oxygen was released as H 2 O; but the special equipment used for these procedures was no longer available. These methods assumed that all of the oxygen liberated was due to UO 2 and does not consider impurities from reagents and other oxygen sources that amount to a bias of approximately 0.3 wt %. This titrimetric method eliminates the bias by selectively extracting the UF 4 with a Na 2 EDTA-H 3 BO 3 solution. The remaining uranium oxide residue is treated and titrated gravimetrically to a potentiometric endpoint with NBS standard K 2 Cr 2 O 7 . An aliquot of the Na 2 EDTA-H 3 BO 3 extract is also titrated gravimetrically to a potentiometric endpoint, this uranium component is determined and calculated as UF 4 . 4 refs., 2 figs., 2 tabs

  19. Interplay of intra-atomic and interatomic effects: An investigation of the 2p core level spectra of atomic Fe and molecular FeCl2

    International Nuclear Information System (INIS)

    Richter, T.; Wolff, T.; Zimmermann, P.; Godehusen, K.; Martins, M.

    2004-01-01

    The 2p photoabsorption and photoelectron spectra of atomic Fe and molecular FeCl 2 were studied by photoion and photoelectron spectroscopy using monochromatized synchrotron radiation and atomic or molecular beam technique. The atomic spectra were analyzed with configuration interaction calculations yielding excellent agreement between experiment and theory. For the analysis of the molecular photoelectron spectrum which shows pronounced interatomic effects, a charge transfer model was used, introducing an additional 3d 7 configuration. The resulting good agreement between the experimental and theoretical spectrum and the remarkable similarity of the molecular with the corresponding spectrum in the solid phase opens a way to a better understanding of the interplay of the interatomic and intra-atomic interactions in the 2p core level spectra of the 3d metal compounds

  20. An interatomic potential model for molecular dynamics simulation of silicon etching by Br+-containing plasmas

    International Nuclear Information System (INIS)

    Ohta, H.; Iwakawa, A.; Eriguchi, K.; Ono, K.

    2008-01-01

    An interatomic potential model for Si-Br systems has been developed for performing classical molecular dynamics (MD) simulations. This model enables us to simulate atomic-scale reaction dynamics during Si etching processes by Br + -containing plasmas such as HBr and Br 2 plasmas, which are frequently utilized in state-of-the-art techniques for the fabrication of semiconductor devices. Our potential form is based on the well-known Stillinger-Weber potential function, and the model parameters were systematically determined from a database of potential energies obtained from ab initio quantum-chemical calculations using GAUSSIAN03. For parameter fitting, we propose an improved linear scheme that does not require any complicated nonlinear fitting as that in previous studies [H. Ohta and S. Hamaguchi, J. Chem. Phys. 115, 6679 (2001)]. In this paper, we present the potential derivation and simulation results of bombardment of a Si(100) surface using a monoenergetic Br + beam

  1. A study on improvement of UO{sub 2} powder production process for high sintered density

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Hoh; Hwang, Sung Tae; Jun, Kwan Sik; Choi, Yoon Dong; Choi, Jong Hyun; Lee, Kyoo Il; Kim, Tae Joon; Jung, Kyung Chae; Kim, Kwang Lak; Kwon, Sang Woon; Kim, Byung Hoh; Hong, Soon Bok [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-01-01

    Various conversion processes were reviewed from the viewpoint of manufacturing cost, product quality and liquid waste. The MDD process was selected a suitable target process for the good quality of UO{sub 2} powder and the recycling availability of nitric acid. The MDD process consists of two steps, double salt preparation [(NH{sub 4}){sub 2}UO{sub 2}(NO{sub 3}){sub 4}] from uranyl nitrate solution and thermal decomposition/reduction to UO{sub 2} powder. The reaction mechanism and properties for the intermediates were analyzed to define the proposed operational conditions of the process. The conceptual process was proposed and experimental facility was designed and installed. 12 figs, 7 tabs, 7 refs. (Author).

  2. Simulated UO{sub 2} fuel containing CsI by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Wangle, T. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, Praha 1, 115 19 (Czech Republic); Tyrpekl, V. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Cologna, M., E-mail: marco.cologna@ec.europa.eu [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Somers, J. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany)

    2015-11-15

    Herein, an innovative preparation procedure has been deployed enabling, for the first time, the incorporation of volatile fission product simulant into highly dense nuclear fuel pellets. Highly volatile fission products were embedded in a dense UO{sub 2} matrix in the form of CsI by simply mixing starting materials and consolidation in a Spark Plasma Sintering step at 1000 °C with a 5 min dwell time. CsI particles were evenly distributed throughout the pellet and were located at the grain boundaries. The sintering rate is dependent on the O/U ratio of the powder. Addition of CsI also acts as a sintering aid, reducing the temperature of maximum densification. - Highlights: • A new method was developed to incorporation of volatile fission products simulants into dense nuclear fuel pellets. • CsI doped UO{sub 2} pellets were synthetized for the first time, by Spark Plasma Sintering. • The sintering rate in Spark Plasma Sintering is dependent on the O/U ratio of UO{sub 2+x}.

  3. Theoretical comparative study of the industrial fabrication routes for UO2 powder

    International Nuclear Information System (INIS)

    Gonzaga, Reinaldo; Goncalves, Joao da Silva

    2008-01-01

    UO 2 powder is produced in an industrial scale by different fabrication routes, divided into dry and wet routes, or a combination of both. The wet processes most often used industrially are the ADU and AUC processes, whose names originate in the intermediate precipitate obtained during powder fabrication, Ammonium Diuranate and Ammonium Uranil Carbonate. Considering the dry processes, the most widely used ones are the DC (Dry Conversion) and IDR (Integrate Dry Route) process. As to the differences and peculiarities among the fabrication routes, each has marked advantages and disadvantages that are of extreme importance when it comes to selecting and establishing a UO 2 powder production plant based on a particular fabrication route. Among the important factors of comparison to be considered are the product quality characteristics, production capability, quantity of waste, operating costs of each process with raw material, labor, etc. This paper is intended to make a theoretical comparison between wet and dry processes for UO 2 powder fabrication, taking as the basis the previously mentioned factors of comparison. (author)

  4. Dissolution of unirradiated UO{sub 2} fuel in synthetic groundwater. Final report (1996-1998)

    Energy Technology Data Exchange (ETDEWEB)

    Ollila, K. [VTT Chemical Technology, Espoo (Finland)

    1999-05-01

    This study was a part of the EU R and D programme 1994-1998: Nuclear Fission Safety, entitled `Source term for performance assessment of spent fuel as a waste form`. The research carried out at VTT Chemical Technology was focused on the effects of granitic groundwater composition and redox conditions on UO{sub 2} solubility and dissolution mechanisms. The synthetic groundwater compositions simulated deep granitic fresh and saline groundwaters, and the effects of the near-field material, bentonite, on very saline groundwater. Additionally, the Spanish granite/bentonite water was used. The redox conditions (Eh), which are obviously the most important factors that influence on UO{sub 2} solubility under the disposal conditions of spent fuel, varied from strongly oxidising (air-saturated), anaerobic (N{sub 2}, O{sub 2} < l ppm) to reducing (N{sub 2}, low Eh). The objective of the air-saturated dissolution experiments was to yield the maximum solution concentrations of U, and information on the formation of secondary phases that control the concentrations, with different groundwater compositions. The static batch solubility experiments of long duration (up to 1-2 years) were performed using unirradiated UO{sub 2} pellets and powder. Under anaerobic and reducing conditions, the solubilities were also approached from oversaturation. The results of the oxic, air-saturated dissolution experiments with UO{sub 2} powder showed that the increase in the salinity (< 1.7 M) had a minor effect on the measured steady-state concentrations of U. The concentrations, (1.2 ...2.5) x 10{sup -5} M, were at the level of the theoretical solubility of schoepite or another uranyl oxide hydrate, e.g. becquerelite (possibly Na-polyuranate). The higher alkalinity of the fresh (Allard) composition increased the aqueous U concentration. Only some kind of oxidised U-phase (U{sub 3}O{sub 8}-UO{sub 3}) was identified with XRD when studying possible secondary phases after the contact time of one year

  5. A tungsten-rhenium interatomic potential for point defect studies

    Science.gov (United States)

    Setyawan, Wahyu; Gao, Ning; Kurtz, Richard J.

    2018-05-01

    A tungsten-rhenium (W-Re) classical interatomic potential is developed within the embedded atom method interaction framework. A force-matching method is employed to fit the potential to ab initio forces, energies, and stresses. Simulated annealing is combined with the conjugate gradient technique to search for an optimum potential from over 1000 initial trial sets. The potential is designed for studying point defects in W-Re systems. It gives good predictions of the formation energies of Re defects in W and the binding energies of W self-interstitial clusters with Re. The potential is further evaluated for describing the formation energy of structures in the σ and χ intermetallic phases. The predicted convex-hulls of formation energy are in excellent agreement with ab initio data. In pure Re, the potential can reproduce the formation energies of vacancies and self-interstitial defects sufficiently accurately and gives the correct ground state self-interstitial configuration. Furthermore, by including liquid structures in the fit, the potential yields a Re melting temperature (3130 K) that is close to the experimental value (3459 K).

  6. Behavior of UO2 and FISSIUM in sodium vapor atmosphere at temperatures up to 28000C

    International Nuclear Information System (INIS)

    Feuerstein, H.; Oschinski, J.

    1986-11-01

    In case of a HCDA a rubble bed of fuel debris may form under a sodium pool and reach high temperatures. An experimental technique was developed to study the behavior of fuel and fission products in out-of-pile tests in a sodium vapor atmosphere. Evaporation rates of UO 2 were measured up to 2800 0 C. The evaporation was found to be a complex process, depending on temperature and the 'active' surface. Evaporation restructures the surface of the samples, however no new 'active' surface is formed. UO 2 forms sometimes well shaped crystals and curious erosion products. The efficiency of the used condenser/filter lines was higher than 99.99%. In case of a HCDA all the evaporated substances will condense in the soidum pool. Thermal reduction of the UO 2 reduces the oxygen potential of the system. The final composition at 2500 0 C was found to be UO 1.95 . The only influence of the sodium vapor was found for the diffusion of UO 2 into the thoria of the crucible. Compared with experiments in an atmosphere of pure argon, the diffusion rate was reduced. (orig.) [de

  7. A detailed study of the dehydration process in synthetic strelkinite, Na[(UO2)(VO4)] . nH2O (n = 0, 1, 2)

    International Nuclear Information System (INIS)

    Suleimanov, Evgeny V.; Somov, Nikolay V.; Chuprunov, Evgeny V.; Mayatskikh, Ekaterina F.; Depmeier, Wulf

    2012-01-01

    Synthetic strelkinite Na[(UO 2 )(VO 4 )] . nH 2 O (n = 0, 1, 2) was systematically investigated by single crystal X-ray diffraction and thermoanalytical methods. The anhydrous form and two hydrates were isolated as single crystals and the structures of these phases solved: Na[(UO 2 )(VO 4 )], monoclinic, P2 1 /c, a = 6.0205(1) Aa, b = 8.3365(1) Aa, c = 10.4164(2) Aa, β = 100.466(2) , V = 514.10(1) Aa 3 , R 1 = 0.0337; Na[(UO 2 )(VO 4 )] . H 2 O, monoclinic, P2 1 /c, a = 7.722(2) Aa, b = 8.512(1) Aa, c = 10.480(4) Aa, β = 113.18(3) , V = 633.3(3) Aa 3 , R 1 = 0.1658; Na[(UO 2 )(VO 4 )] . 2 H 2 O, monoclinic, P2 1 /n, a = 16.2399(5) Aa, b = 8.2844(2) Aa, c = 10.5011(2) Aa, β = 97.644(2) , V = 1400.24(6) Aa 3 , R 1 = 0.0776. A possible mechanism of the structural transformation processes during dehydration is proposed based on the structures of the anhydrous phase and the hydrates. (orig.)

  8. Nitrate conversion and supercritical fluid extraction of UO2-CeO2 solid solution prepared by an electrolytic reduction-coprecipitation method

    International Nuclear Information System (INIS)

    Zhu, L.Y.; Duan, W.H.; Wen, M.F.; Xu, J.M.; Zhu, Y.J.

    2014-01-01

    A low-waste technology for the reprocessing of spent nuclear fuel (SNF) has been developed recently, which involves the conversion of actinide and lanthanide oxides with liquid N 2 O 4 into their nitrates followed by supercritical fluid extraction of the nitrates. The possibility of the reprocessing of SNF from high-temperature gas-cooled reactors (HTGRs) with nitrate conversion and supercritical fluid extraction is a current area of research in China. Here, a UO 2 -CeO 2 solid solution was prepared as a surrogate for a UO 2 -PuO 2 solid solution, and the recovery of U and Ce from the UO 2 -CeO 2 solid solution with liquid N 2 O 4 and supercritical CO 2 containing tri-n-butyl phosphate (TBP) was investigated. The UO 2 -CeO 2 solid solution prepared by electrolytic reduction-coprecipitation method had square plate microstructures. The solid solution after heat treatment was completely converted into nitrates with liquid N 2 O 4 . The XRD pattern of the nitrates was similar to that of UO 2 (NO 3 ) 2 . 3H 2 O. After 120 min of online extraction at 25 MPa and 50 , 99.98% of the U and 98.74% of the Ce were recovered from the nitrates with supercritical CO 2 containing TBP. The results suggest a promising potential technology for the reprocessing of SNF from HTGRs. (orig.)

  9. Binding energy and formation heat of UO2

    International Nuclear Information System (INIS)

    Almeida, M.R. de; Veado, J.T.; Siqueira, M.L. de

    The Born-Haber cycle is utilized for the calculation of the heat of formation of UO 2 , on the assumption that the binding energy is predominantly ionic in character. The ionization potentials of U and the repulsion energy are two critical values that influence calculations. Calculations of the ionization potentials with non-relativistic Hartree-Fock-Gaspar-Kohn-Sham approximation are presented [pt

  10. Electronic structure analysis of UO2 by X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Ozkendir, O.M.

    2009-01-01

    Full text: Due to the essential role of Actinides in nuclear science and technology, electronic and structural investigations of actinide compounds attract major interest in science. Electronic structure of actinide compounds have important properties due to narrow 5f states which play key role in bonding with anions. The properties of Uranium has been a subject of enduring interest due to its being a major importance as a nuclear fuel and is the highest numbered element which can be found naturally on earth. UO 2 forms as a secondary uranyl group occurred during metamictization of uranium oxide compounds [1].Uranium oxide thin films have been investigated by X-ray Absorption Fine Structure spectroscopy (XAFS) [2]. The full multiple scattering approach has been applied to the calculation of U L3 edge spectra of UO 2 . The calculations are based on different choices of one electron potentials according to Uranium coordinations by using the real space multiple scattering method FEFF 8.2 code [3,4]. U L3-edge absorption spectrum in UO 2 is compared with U L3-edges in USiO 4 and UTe which are chosen due to their different electronic and chemical structures.We have found prominent changes in the XANES spectra of Uranium oxide thin films due to valency properties. Such observed changes are explained by considering the structural, electronic and spectroscopic properties. (author)

  11. Preparation of UO2 dense spherical particles by sol-gel technique

    International Nuclear Information System (INIS)

    Urbanek, V.; Dolezal, J.

    1977-01-01

    The results of the basic research and development of processes of preparation of dense UO 2 spherical particles by sol-gel technique are presented. Attention was paid to the study of chemistry of internal gelation step in the uranylnitrate-urea-hexamethylentetramine system. The existence regions of several stable gels with different properties were established in connection with variable ratio of basic gel's components and the appropriate ''Phase diagrams'' were drawn. From these diagrams, two of the most interesting types of uranyl gels were chosen for the subsequent thermal processing which included drying, reduction and sintering. The detailed studies of each step of the whole process enabled preparation of UO 2 dense spheres with well defined microstructure

  12. New insight on the high radiation resistance of UO{sub 2} against fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Szenes, G., E-mail: szenesgyorgy@caesar.elte.hu

    2016-12-15

    Track radii are derived for semiconductors from a temperature distribution Θ(r) in which the width of the distribution is the only materials parameter. Analysis of track data for GeS, InP, GaAs and GaN show that the projectile velocity has no effect on track radii in semiconductors. Due to the missing velocity effect, the threshold for track formation, S{sub et} = 20 keV/nm is high in semiconducting UO{sub 2} in the whole range of projectile velocities. This is the origin of the high radiation resistance for fission fragments. Consequences for the simulation experiments with insulating CeO{sub 2} are discussed. It is verified that sputtering is described accurately by the Arrhenius equation for various materials including UO{sub 2}. The ion-induced surface potential has a strong effect on the activation energy. - Highlights: • Uniform features of track formation are demonstrated. • Semiconductors are more stable than insulators against fission fragments. • Melting point and width of the thermal spike control the track size. • High threshold for tracks S{sub et} = 20 keV/nm for fission fragments in semiconducting UO{sub 2}. • An Arrhenius equation describes the inelastic sputtering in UO{sub 2} and other solids.

  13. Crystal field levels of tetravalent actinide ions in actinide dioxides UO sub 2 , NpO sub 2 and PuO sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Krupa, J.C. (Paris-11 Univ., 91 - Orsay (FR). Inst. de Physique Nucleaire); Gajek, Z. (Polska Akademia Nauk, Wroclaw (PL). Inst. Niskich Temperatur i Badan Strukturalnych)

    1991-01-01

    Crystal-field parameters resulting from analysis of optical spectroscopy and neutron diffraction data recorded on UO{sub 2} and NpO{sub 2} as well as ab-initio calculated parameters were used to calculate the crystal-field eigenfunctions and eigenvalues for the J ground-state manifold of U{sup 4+}, Np{sup 4+} and Pu{sup 4+} in UO{sub 2}, NpO{sub 2} and PuO{sub 2}.

  14. Structure changes of irradiated UO2

    International Nuclear Information System (INIS)

    Komatsu, Junji; Yokouchi, Yoji; Kajiyama, Takashi; Terunuma, Toshihiro; Koizumi, Masumichi

    1973-01-01

    The structural change of UO 2 irradiated in GETR reactor was analyzed on void distribution, fuel cracking, and gap conductance between fuel and cladding. Metallographic analysis was carried out on 21 sections of irradiated fuel pins. Radial void distribution was measured by the linear analysis technique based on the equivalence between the volume fraction of voids and the intercepted length of lines between void boundaries. Fuel cracks were classified into two types, namely radial cracks and circumferential cracks. The radial position, length, angle and number of each fuel clad were measured on metallographic section and autoradiography. The gap conductance between fuel and cladding was calculated from the equation h = q/(T sub(s) - T sub(i)) where h is gap conductance, T sub(i) is inside clad temperature and T sub(s) is outside clad temperature. In void distribution, as the result of studying the effect of linear heat rating on the radial void fraction of UO 2 fuel irradiated with the similar level of burnup, one specimen showed that the void fraction of columnar grain growth region was comparable to that of fabricated region, and two specimens showed higher void fraction at fabricated region than the calculated one. In fuel cladding, no significant effect of burnup on fuel cracking was observed, and the number of fuel cracking increased with shutdown or scram numbers, but the radial position of circumferential cracks was not much changed. In gap conductance, it was influenced by the estimation of temperature of columnar grain growth. (Iwakiri, K.)

  15. Topologically identical, but geometrically isomeric layers in hydrous α-, β-Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})]·H{sub 2}O and anhydrous Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Na; Klepov, Vladislav V. [Forschungszentrum Jülich GmbH, Institute for Energy and Climate Research (IEK-6), 52428 Jülich (Germany); Villa, Eric M. [Department of Chemistry, Creighton University, 2500 California Plaza, Omaha NE 68178 (United States); Bosbach, Dirk [Forschungszentrum Jülich GmbH, Institute for Energy and Climate Research (IEK-6), 52428 Jülich (Germany); Suleimanov, Evgeny V. [Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod (Russian Federation); Depmeier, Wulf [Institut für Geowissenschaften, Universität zu Kiel, 24118 Kiel (Germany); Albrecht-Schmitt, Thomas E., E-mail: albrecht-schmitt@chem.fsu.edu [Department of Chemistry and Biochemistry, Florida State University, 102 Varsity Way, Tallahassee, FL 32306-4390 (United States); Alekseev, Evgeny V., E-mail: e.alekseev@fz-juelich.de [Forschungszentrum Jülich GmbH, Institute for Energy and Climate Research (IEK-6), 52428 Jülich (Germany); Institut für Kristallographie, RWTH Aachen University, 52066 Aachen (Germany)

    2014-07-01

    The hydrothermal reaction of uranyl nitrate with rubidium nitrate and arsenic (III) oxide results in the formation of polymorphic α- and β-Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})]·H{sub 2}O (α-, β-RbUAs) and the anhydrous phase Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})] (RbUAs). These phases were structurally, chemically and spectroscopically characterized. The structures of all three compounds are based upon topologically identical, but geometrically isomeric layers. The layers are linked with each other by means of the Rb cations and hydrogen bonding. Dehydration experiments demonstrate that water deintercalation from hydrous α- and β-RbUAs yields anhydrous RbUAs via topotactic reactions. - Graphical abstract: Three different layer geometries observed in the structures of Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})] and α- and β- Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})]·H{sub 2}O. Two different coordination environments of uranium polyhedra (types I and II) are shown schematically on the top of the figure. - Highlights: • Three new uranyl arsenates were synthesized from the hydrothermal reactions. • The phases consist of the topologically identical but geometrically different layers. • Topotactic transitions were observed in the processes of mono-hyrates dehydration.

  16. Influence of environment on the alteration of the UO2 matrix of spent fuel in storage condition

    International Nuclear Information System (INIS)

    Gaulard, C.

    2012-01-01

    Within the framework of the geological disposal of spent nuclear fuel, research on the long term behavior of spent fuel is undertaken and in particular the study of mechanisms of UO 2 oxidation and dissolution in water-saturated host rock. Under the law program on the sustainable management of radioactive materials and waste of June 28, 2006, France was chose as the reference solution the retreatment of spent fuel and disposal in deep geological repository of vitrified final waste. Nevertheless, studies on a direct disposal of spent fuel will continue for safety. The disposal concept provides for conditioning spent fuel in a steel container whose seal is guaranteed for a period specified in the order of 10,000 years. It is also reasonable to assume that the groundwater comes into contact with the fuel after the deterioration of container and lead to the UO 2 matrix degradation and the release of radionuclides. The oxidation/dissolution of UO 2 has been studied by means electrochemical methods coupled to XPS and ICP-MS measurements.A thermodynamic and bibliographic study of U(VI)/UO 2 (s) system allowed to show the effect of the physical and chemical conditions of the solution on the system, and to show the different mechanisms proposed to describe the oxidation and the dissolution of the uranium dioxide in different media (non-complexing, carbonate and clay). The study of the oxidation/dissolution of UO 2 in acidic and non-complexing media (0.1 mol/L NaCF 3 SO 3 , pH = 3), where UO 2 2+ /UO 2 (s) predominates and the formation of precipitates is limited or even avoided, showed a mechanism with two electrochemical steps and a model characteristic of UO 2 oxidation in acidic non-complexing media. Then, the study in neutral non-complexing media (0.05 mol/L NaCl, pH = 7.5) showed a mechanism with two electrochemical steps and one chemical step (EEC) in which both electrochemical steps are similar to those proposed in acidic media. Finally, a first approach of the UO 2

  17. Behaviour of short-lived fission products within operating UO2 fuel elements

    International Nuclear Information System (INIS)

    Hastings, I.J.; Hunt, C.E.L.; Lipsett, J.J.

    1983-01-01

    We have carried out experiments using a ''sweep gas'' technique to determine the behaviour of short-lived fission products within operating, intact UO 2 fuel elements. The Zircaloy-4-clad elements were 500 mm long and contained fuel of density 10.65-10.71 Mg/m 3 . A He-2% H 2 carrier gas swept gaseous or volatile fission products out of the operating fuel element past a gamma spectrometer for measurement. In tests at linear powers of 45 and 60 kW/m to maximum burnups of 70 MW.h/kg U, the species measured directly at the spectrometer were generally the short-lived xenons and kryptons. We did not observe iodine or bromine during normal operation. However, we have deduced the behaviour of I-133 and I-135 from the decay of Xe-133 and Xe-135 during reactor shutdowns. Plots of R/B (released/born) against lambda (decay constant) or effective lambda for all isotopes observed at 45 and 60 kW/m show that a line of slope -0.5, corresponding with diffusion kinetics, is a good fit to the measured xenon and krypton data. Our inferred release of iodine fits the same line. From this we can extrapolate to an R/B for I-131 of about 5x10 -3 . The ANS 5.4 release correlation gives calculated results in good agreement with our measurements. (author)

  18. Scattering of thermal He beams by crossed atomic and molecular beams. I. Sensitivity of the elastic differential cross section to the interatomic potential

    International Nuclear Information System (INIS)

    Keil, M.; Kuppermann, A.

    1978-01-01

    The ability of diffraction oscillations in atomic beam scattering experiments to uniquely determine interatomic potentials for highly quantal systems is examined. Assumed but realistic potentials are used to generate, by scattering calculations and incorporation of random errors, differential cross sections which are then treated as if they were ''experimental'' data. From these, attempts are made to recover the initial potential by varying the parameters of assumed mathematical forms different from the original one, until a best fit to the ''experimental'' results is obtained. It is found that the region of the interaction potential around the van der Waals minimum is accurately determined by the ''measured'' differential cross sections over a range of interatomic separations significantly wider than would be expected classically. It is also found, for collision energies at which the weakly repulsive wall is appreciably sampled, that the SPF--Dunham and double Morse--van der Waals types of potentials lead to accurate determinations of the interatomic potential, whereas many other mathematical forms do not. Analytical parameterizations most appropriate for obtaining accurate interatomic potentials from thermal DCS experiments, for a given highly quantal system, may depend on the collision energy used

  19. Study of UO2-10WT%Gd2O3 fuel pellets obtained by seeding method using AUC co-precipitation and mechanical mixing processes

    International Nuclear Information System (INIS)

    Lima, M.M.F.; Ferraz, W.B.A.; Santos, M.M. dos; Pinto, L.C.M.; Santos, A.

    2008-01-01

    The use of gadolinium and uranium mixed oxide as a nuclear fuel aims to obtain a fuel with a performance better than that of UO 2 fuel. In this work, seeding method was used to improve ionic diffusivity during sintering to produce high density pellets containing coarse grains by co-precipitation and mechanical mixing processes. Sintered UO 2 -10 wt% Gd 2 O 3 pellets were obtained using the reference processes with 2 wt% and 5 wt% UO 2 seeds with two granulometries, less than 20 μm and between 20 and 38 μm. Characterisation was carried out by chemical analysis, surface area, X-ray diffraction, SEM, WDS, image analysis, and densitometry. The seeding method using mechanical mixing process was more effective than the co-precipitation method. Furthermore, mechanical mixing process resulted in an increase in density of UO 2 -10wt% Gd 2 O 3 with seeds in relation to that of UO 2 -10wt% Gd 2 O 3 without seeds. (author)

  20. Pressure-induced weak ferromagnetism in uranium dioxide, UO2

    International Nuclear Information System (INIS)

    Sakai, H; Kato, H; Tokunaga, Y; Kambe, S; Walstedt, R E; Nakamura, A; Tateiwa, N; Kobayashi, T C

    2003-01-01

    The dc magnetization of insulating UO 2 under high pressure up to ∼1 GPa has been measured using a piston-cylinder cell. Pressure-induced weak ferromagnetism appeared at low pressure (∼0.2 GPa). Both the remanent magnetization and the coercive force increase as pressure increases. This weak ferromagnetism may come from spin canting or from uncompensated moments around grain boundaries

  1. A method of eliminating the surface defect in low-temperature oxidation powder added UO2 pellet

    International Nuclear Information System (INIS)

    Yoo, H. S.; Lee, S. J.; Kim, J. I.; Jeon, K. R.; Kim, J. W.

    2002-01-01

    A study on methods to eliminate surface defect shown in low-temperature oxidation powder added UO 2 pellet has been performed. Powders oxidized at 350 .deg. C for 4 hrs were prepared and mixed with UO 2 powder after crushing them. After being sintered, surfaces of the pellet were inspected both visually and optically. A large number of defects were observed on the surface of the specimens in which low-temperature oxidation powders were directly mixed or master mixed with UO 2 powder while both specimens produced from mixed powders including milled oxidation powders and powders that were milled totally after mixing had clean surfaces. However, optical examination showed considerably large defected pores in the milled oxidation powder added pellet and it was confirmed that the inner defects can be eliminated completely only when milling the entire mixture on UO 2 and low-temperature oxidation powder, but not by crushing only oxidation powder

  2. Influence of radiolysis on UO2 fuel matrix dissolution under disposal conditions. Literature Study

    International Nuclear Information System (INIS)

    Ollila, K.

    2011-05-01

    The objective of this study was to examine the recent published literature on the influence of water radiolysis on UO 2 fuel matrix dissolution under the disposal conditions. The α radiation is considered to be dominating over the other types of radiations at times longer than 1000 years. The presence of the anaerobic corrosion products of iron, especially of hydrogen, has been observed to play an important role under radiolysis conditions. It is not possible to exclude gamma/beta radiolysis effects in the experiments with spent fuel, since there is not available a fuel over 100 years old. More direct measurements of α radiolysis effects have been conducted with α doped UO 2 materials. On the basis of the results of these experiments, a specific activity threshold to observe α radiolysis effects has been presented. The threshold is 1.8 x 10 7 to 3.3 x 10 7 Bq/g in anoxic 10 -3 M carbonate solution. It is dependent on the environmental conditions, such as the reducing buffer capacity of the conditions. The results of dissolution rate measurements at VTT with 233 U-doped UO 2 samples in 0.01 to 0.1 M NaCl solutions under anoxic conditions did not show any effect of α radiolysis with doping levels of 5 and 10% 233 U (3.2 x 10 7 and 6.3 x 10 7 Bq/g). Both Fe 2+ and hydrogen can act as reducing species and could react with oxidizing radiolytic species. Fe 2+ concentrations of the order of 10 -5 M can decrease the rate of H 2 O 2 production. Low dissolution rates, 2 x 10 -8 to 2 x 10 -7 /yr, have been measured in the presence of metallic Fe with 5 and 10% 233 U-doped UO 2 in 0.01 to 1 M NaCl solutions. The tests with isotope dilution method showed precipitation phenomena of U to occur during dissolution process. The concentrations of dissolved U were extremely low (≤ 8.4 x 10 -11 M). No effects of -radiolysis could be seen. It is difficult to distinguish the effects of metallic Fe, Fe 2+ or hydrogen in these tests. Hydrogen could also act as a reducing agent

  3. Metallurgical structure modification of UO{sub 2} pellet during sintering - experience at NFC, Hyderabad, India

    Energy Technology Data Exchange (ETDEWEB)

    Santra, N.; Sinha, T.K.; Singh, A.K.; Sairam, S.; Sheela, S.; Saibaba, N., E-mail: santra@nfc.gov.in [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderabad (India)

    2013-07-01

    Nuclear Fuel Complex (NFC), Department of Atomic Energy (DAE) produces UO{sub 2} fuel pellets by powder compaction, high temperature sintering followed by centreless wet grinding method from the stabilized UO{sub 2} powder generated through ADU-route. Enhancement of fuel burn up of the Indian PHWRs becomes very important in order to effectively utilize the fuel to the maximum extent inside the reactor. Burn up is mainly limited by increased fission gas release from the fuel during reactor operation. Without introducing much change in the design, rate of release of fission gas can be reduced through enlargement of UO{sub 2} grain size. In Powder Metallurgical (PM) route of fuel fabrication, trials were taken by doping various oxide powder additives like TiO{sub 2}, Al{sub 2}O{sub 3}, SiO{sub 2}, Nb{sub 2}O{sub 5} and Cr{sub 2}O{sub 3}. The dopant normally goes into the solid solution of parent matrix during sintering at 1700 {sup o}C and thus enhance the rate of diffusion. Aliovalant dopant can alter the defect chemistry of the parent material either by creating vacancy or interstitial. It is apparently understood that the combination of above mechanisms are responsible for structural modification of UO{sub 2}. Hence selection of dopant remains largely empirical. It has been observed at NFC Hyderabad that the Cr{sub 2}O{sub 3} is the most suitable for achieving average UO{sub 2} grain size of about 70 micron and 98%TD of the sintered pellet. The paper discusses about the various experimental trials, sintered densities, metallographic examination, effect of different quantities, analysis and result obtained thereof. (author)

  4. Kinetic Monte Carlo model of defect transport and irradiation effects in La-doped CeO2

    International Nuclear Information System (INIS)

    Oaks, Aaron; Yun Di; Ye Bei; Chen Weiying; Stubbins, James F.

    2011-01-01

    A generalized Kinetic Monte Carlo code was developed to study oxygen mobility in UO 2 type nuclear fuels, using lanthanum doped CeO 2 as a surrogate material. Molecular Statics simulations were performed using interatomic potentials for CeO 2 developed by Gotte, Minervini, and Sayle to calculate local configuration-dependent oxygen vacancy migration energies. Kinetic Monte Carlo simulations of oxygen vacancy diffusion were performed at varying lanthanum dopant concentrations using the developed generalized Kinetic Monte Carlo code and the calculated configuration-dependent migration energies. All three interatomic potentials were found to confirm the lanthanum trapping effect. The results of these simulations were compared with experimental data and the Gotte potential was concluded to yield the most realistic diffusivity curve.

  5. TRU transmutation using ThO2-UO2 and fully ceramic micro-encapsulated fuels in LWR fuel assemblies

    International Nuclear Information System (INIS)

    Bae, Gonghoon; Hong, Sergi

    2012-01-01

    The objective of this work is to design new LWR fuel assemblies which are able to efficiently destroy TRU (transuranics) nuclide without degradation of safety aspects by using ThO 2 -UO 2 fuel pins and FCM (Fully Ceramic Micro-encapsulated) fuel pins containing TRU fuel particles. Thorium was mixed to UO 2 in order to reduce the generation of plutonium nuclides and to save the uranium resources in the UO 2 pins. Additionally, the use of thorium contributes to the extension of the fuel cycle length. All calculations were performed by using DeCART (Deterministic Core Analysis based on Ray Tracing) code. The results show that the new concept of fuel assembly has the TRU destruction rates of ∼40% and ∼25% per 1200 EFPD (Effective Full Power Day) over the TRU FCM pins and the overall fuel assembly, respectively, without degradation of FTC and MTC

  6. The grinding of uranium dioxide from fluidized beds; Estudio del m icronizado del UO{sub 2} procedente de lechos Fluidizados

    Energy Technology Data Exchange (ETDEWEB)

    Alonso Folgueras, J A

    1974-07-01

    This work deals with the UO{sub 2} vibratory grinding, the UO{sub 2} obtained from fluidized beds. In this study the grinding time has been correlated with surface area, stoichiometry, granulometry and grinded product contamination. The efficiency losses in the grinding of moisten UO{sub 2} are outlined. Finally it is made a brief study of the granulate obtained from the grinded UO{sub 2} as well as the green pellets resulting from it, taking into consideration the dispersion of its density and height. (Author)

  7. UO2 leaching and radionuclide release modelling under high and low ionic strength solution and oxidation conditions

    International Nuclear Information System (INIS)

    1995-01-01

    In this work, the UO 2 dissolution under oxidizing conditions has been studied in order to compare these results to those obtained with spent fuel. Two different leaching solutions have been used, one with a high ionic strength trying to simulate the conditions expected in a saline repository and the other at low ionic strength much appropriate to granitic environments. In both cases, the dissolution has been studied studied as a function of pH, redox potential, oxidants, complexing agents, particle size as well as the experimental methodology. Results can be summarized as follows: a) The UO 2 dissolution is rather independent on ionic strength. b) Dissolution rates can be explained in general independent on the oxidant as: Log R=3DK [oxidant] Surface solid evolution is very important to understand the dissolution/oxidation mechanism of UO 2 . d) Under oxidizing conditions, the dissolution is H+ and HCO 3 promoted. e) In carbonate medium, both UO 2 and spent fuel dissolution rates are very similar, while in a non-complexing medium, spent fuel dissolution rate is much higher than the UO 2 one. This fact seems to indicate that radiolysis is much important non-complexing media. (Author)

  8. Microprobe analysis of PuO2--UO2 nuclear fuel

    International Nuclear Information System (INIS)

    Clark, W.I.; Rasmussen, D.E.; Carlson, R.L.; Highley, D.M.

    1977-01-01

    For the preirradiation characterization of FFTF UO 2 --PuO 2 fuel, a program was developed to determine the preirradiation porosity, grain structure, and microcomposition of the fuel. Two computer programs, MITRAN and MERIT, were developed to evaluate the homogeneity of the fuel. These programs use elemental composition data generated by the electron microprobe. MITRAN determines information on the size and frequency of individual regions, whereas MERIT provides an index of the thermal performance of the fuel and calculated statistical data for comparison to other fuel batches

  9. The effect of U3O-8 addition on the UO2 pellet

    International Nuclear Information System (INIS)

    Indrati, Y.T.; Syarif, D. G.; Handayani, A.

    1998-01-01

    The purpose of varied U 3 O 8 addition on the UO 2 pellet fabrication is to from 1-3 mu pores. The green pellets, compacted with 3 ton/cm 2 , are a mixture powder of UO 2 , TiO 2 (0.1% weight) and varied U 3 O 8 (0-12.5% weight). The green pellets were presintered by H2 atmosphere. The presintered pellets were put on the ceramic crucibles and than those were put on the SS 316 tube with argon atmosphere. The 1400 o C sintering was hold with the soaking time 3 hr and the same rate of heating and cooling 150 o C/hr. The UO 2 pellet with 5% (weight) U 3 O 8 addition has 95.17% of theoretic density and 548.4 ±6.57 VH. Based on the identification of microstructure of pellet, it is not acceptable for nuclear fuel although pellet has 10.02 mu on grain size and 1.3 mu on closed pore size. By the diffractometer X-ray, crystal structure of pellet is face centered cubic (FCC) with the O/U ratio is 2.08

  10. Effects of two types of dryer on ADU and UO2 pellet manufacture

    International Nuclear Information System (INIS)

    Wu Zhiming; He Zhengjie

    1995-05-01

    The concepts of spray drying process and pebble-bed fluidized drying process for ADU slurry is presented. And the effects of ADU powder and UO 2 powder/pellet by these processes using the statistic results from series production are discussed. It is believed that these drying methods have no influence on structure and shape of ADU particle, and thereby no difference will be made to the properties of UO 2 powder and pellet. Thus, spray drying process can really be replaced by pebble-bed fluidized drying process. (10 figs., 6 tabs.)

  11. Modelling of UO2 oxidation in steam

    International Nuclear Information System (INIS)

    Brito, A.C.; Iglesias, F.C.; Liu, Y.

    1996-01-01

    A computer model has been developed for calculating oxidation of UO 2 at high temperatures in steam oxidising conditions. Several methods to calculate the partial pressure of oxygen in the fuel and in the environment surrounding the fuel are available. The various methodologies have been compared and the best models have been compiled into a computer model which will be implemented into fuel thermal/mechanical behaviour codes such as FACTAR 2.0 (LOECI) and ELESIM/ELOCA. Calculations from the computer model have been compared to experimental results. The calculated oxidation reaction kinetics are in good agreement with the experimental data. (author)

  12. Synthesis and crystal structure of Na6[(UO2)3O(OH)3(SeO4)2]2·10H2O

    International Nuclear Information System (INIS)

    Baeva, E.Eh.; Serezhkina, L.B.; Virovets, A.V.; Peresypkina, E.V.

    2006-01-01

    The complex Na 6 [(UO 2 ) 3 O(OH) 3 (SeO 4 ) 2 ] 2 ·10H 2 O (I) is synthesized and studied by monocrystal X-ray diffraction. The compound crystallizes in the orthorhombic crystal system with the unit cell parameters: a=14.2225(7) A, b=18.3601(7) A, c=16.5406(6) A, V=4319.2(3) A 3, Z=4, space group Cmcm, R 1 =0.0406. Compound I is found to be a representative of the crystal-chemical group A 3 M 3 M 3 2 T 2 3 (A=UO 2 2+ , M 3 =O 2- , M 2 =OH - , T 3 =SeO 4 2- ) of the uranyl complexes; it contains layer uranium-containing groups [(UO 2 ) 3 O(OH) 3 (SeO 4 ) 2 ] 3- . These layers are linked to form a three-dimensional cage through bonds formed by the sodium atoms with the oxygen atoms of the uranyl ions and SeO 4 groups that belong to different layers [ru

  13. Estimated critical conditions for UO[sub 2]F[sub 2]--H[sub 2]O systems in fully water-reflected spherical geometry

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, W.C.; Turner, J.C.

    1992-12-01

    The purpose of this report is to document reference calculations performed using the SCALE-4.0 code system to determine the critical parameters of UO[sub 2]F[sub 2]-H[sub 2]O spheres. The calculations are an extension of those documented in ORNL/CSD/TM-284. Specifically, the data for low-enriched UO[sub 2]F[sub 2]-H[sub 2]O spheres have been extended to highly enriched uranium. These calculations, together with those reported in ORNL/CSD/TM-284, provide a consistent set of critical parameters (k[sub [infinity

  14. Training of secondary phases on UO{sub 2}. Uranyl phosphates and uranium peroxide; Formacion de fases secundarias sobre UO{sub 2}. Fosfatos de uranilo y peroxido de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez, J.; Rey, A.; Pablo, J. de; Casas, I.

    2008-07-01

    One of the main processes that can control radionuclides migration is mineral phase precipitation, known as secondary phases. The formation of one of these phases more stable than UO{sub 2} at repository conditions, could act as a barrier between nuclear waste and groundwater. This modifies the radiation that arrives to the dissolution, blocking dissolution of UO{sub 2} matrix and affecting to radionuclide release. So, is important to know the possible secondary phases to precipitate during SNF (spent nuclear fuel) alteration and its stability at repository conditions. Several experiments of SNF dissolution in groundwater have observed the formation of uranium secondary phases. Nevertheless, these experiments have been developed in specific conditions and they haven't arrived to study the effect of several parameters, such as complexions as phosphate. The rol of phosphate on to dissolution of UO{sub 2} and uranium-phosphate phase formation is necessary to know repository assessment. Uranyl peroxides have been found also in several studies about lixiviation in presence of hydrogen peroxide, which is the expected oxidant for med from the water radiolysis. In this work we performed a study about the stability of these phases. The phases obtained have been characterized with X ray diffraction (XRD). The particle size, shape and chemical composition have been studied by scanning electron microscopy (SEM). A topographic analysis of UO{sub 2} surface in contact with ground water and phosphate media have been performed by means of atomic force microscopy (AFM). The uranium concentration evolution in solution have been followed with ICP-MS. Stability in relation to radiation of uranyl peroxide have been developed with electron transmission microscopy (TEM), and thermal stability with a thermo gravimetry device (TG) and Differential scanning calorimetry (DSC). (Author)

  15. Facile reductive silylation of UO{sub 2}{sup 2+} to uranium(IV) chloride

    Energy Technology Data Exchange (ETDEWEB)

    Kiernicki, John J.; Bart, Suzanne C. [H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, IN (United States); Zeller, Matthias [H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, IN (United States); Department of Chemistry, Youngstown State University, Youngstown, OH (United States)

    2017-01-19

    General reductive silylation of the UO{sub 2}{sup 2+} cation occurs readily in a one-pot, two-step stoichiometric reaction at room temperature to form uranium(IV) siloxides. Addition of two equivalents of an alkylating reagent to UO{sub 2}X{sub 2}(L){sub 2} (X=Cl, Br, I, OTf; L=triphenylphosphine oxide, 2,2'-bipyridyl) followed by two equivalents of a silyl (pseudo)halide, R{sub 3}Si-X (R=aryl, alkyl, H; X=Cl, Br, I, OTf, SPh), cleanly affords (R{sub 3}SiO){sub 2}UX{sub 2}(L){sub 2} in high yields. Support is included for the key step in the process, reduction of U{sup VI} to U{sup V}. This procedure is applicable to a wide range of commercially available uranyl salts, silyl halides, and alkylating reagents. Under this protocol, one equivalent of SiCl{sub 4} or two equivalents of Me{sub 2}SiCl{sub 2} results in direct conversion of the uranyl to uranium(IV) tetrachloride. Full spectroscopic and structural characterization of the siloxide products is reported. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Microstructural change and its influence on fission gas release in high burnup UO 2 fuel

    Science.gov (United States)

    Une, K.; Nogita, K.; Kashibe, S.; Imamura, M.

    1992-06-01

    The microstructural change of UO 2 fuel pellets (burnup: 6-83 GWd/t), base irradiated under LWR conditions, has been studied by detailed postirradiation examinations. The lattice parameter near the fuel rim in the irradiated UO 2 increased with burnup and appeared to become constant beyond about 50 GWd/t. This lattice dilation was mainly due to the accumulation of radiation induced point defects. Moreover, the dislocation density in the UO 2 matrix developed progressively with burnup, and eventually the tangled dislocations organized many sub-grain boundaries in the highest burnup fuel of 83 GWd/t. This sub-grain structure induced by accumulated radiation damage was compatible in appearance with SEM fractography results which revealed sub-divided grains of sub-micron size in as-fabricated grains. The influence of burnup on 85Kr release from the UO 2 fuels has been examined by means of a postirradiation annealing technique. The higher fractional release of high burnup fuels was mainly due to the burnup dependence of the fractional burst release evolved on temperature ramp. The fractional burst release was represented in terms of the square root of burnup from 6 to 83 GWd/t.

  17. [UO2(NH3)5]Br2·NH3: synthesis, crystal structure, and speciation in liquid ammonia solution by first-principles molecular dynamics simulations.

    Science.gov (United States)

    Woidy, Patrick; Bühl, Michael; Kraus, Florian

    2015-04-28

    Pentaammine dioxido uranium(VI) dibromide ammonia (1/1), [UO2(NH3)5]Br2·NH3, was synthesized in the form of yellow crystals by the reaction of uranyl bromide, UO2Br2, with dry liquid ammonia. The compound crystallizes orthorhombic in space group Cmcm and is isotypic to [UO2(NH3)5]Cl2·NH3 with a = 13.2499(2), b = 10.5536(1), c = 8.9126(1) Å, V = 1246.29(3) Å(3) and Z = 4 at 123 K. The UO2(2+) cation is coordinated by five ammine ligands and the coordination polyhedron can be best described as pentagonal bipyramid. Car-Parrinello molecular dynamics simulations are reported for [UO2(NH3)5](2+) in the gas phase and in liquid NH3 solution (using the BLYP density functional). According to free-energy simulations, solvation by ammonia has only a small effect on the uranyl-NH3 bond strength.

  18. Monte Carlo analysis of Pu-H2O and UO2-PuO2-H2O critical assemblies with ENDF/B-IV data

    International Nuclear Information System (INIS)

    Hardy, J. Jr.; Ullo, J.J.

    1981-04-01

    A set of critical experiments, comprising thirteen homogeneous Pu-H 2 O assemblies and twelve UO 2 -PuO 2 lattices, was analyzed with ENDF/B-IV data and the RCPO1 Monte Carlo program, which modeled the experiments explicitly. Some major data sensitivities were also evaluated. For the Pu-H 2 O assemblies, calculated K/sub eff/ averaged 1.011. The large (2.7%) scatter of K/sub eff/ values for these assemblies was attributed mostly to uncertainties in physical specifications since no clear trends of K/sub eff/ were evident and data sensitivities were insignificant. The UO 2 -PuO 2 lattices showed just one trend of K/sub eff/, which indicated an overprediction of U238 capture consistent with that observed for uranium-H 2 O experiments. There was however a approx. 1% discrepancy in calculated K/sub eff/ between the two sets of UO 2 -PuO 2 lattices studied

  19. Effect of point defects on the thermal conductivity of UO2: molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-07-21

    The thermal conductivity of uranium dioxide (UO2) fuel is an important materials property that affects fuel performance since it is a key parameter determining the temperature distribution in the fuel, thus governing, e.g., dimensional changes due to thermal expansion, fission gas release rates, etc. [1] The thermal conductivity of UO2 nuclear fuel is also affected by fission gas, fission products, defects, and microstructural features such as grain boundaries. Here, molecular dynamics (MD) simulations are carried out to determine quantitatively, the effect of irradiation induced point defects on the thermal conductivity of UO2, as a function of defect concentrations, for a range of temperatures, 300 – 1500 K. The results will be used to develop enhanced continuum thermal conductivity models for MARMOT and BISON by INL. These models express the thermal conductivity as a function of microstructure state-variables, thus enabling thermal conductivity models with closer connection to the physical state of the fuel [2].

  20. Comparative density functional study of the complexes [UO2(CO3)3]4- and [(UO2)3(CO3)6]6- in aqueous solution.

    Science.gov (United States)

    Schlosser, Florian; Moskaleva, Lyudmila V; Kremleva, Alena; Krüger, Sven; Rösch, Notker

    2010-06-28

    With a relativistic all-electron density functional method, we studied two anionic uranium(VI) carbonate complexes that are important for uranium speciation and transport in aqueous medium, the mononuclear tris(carbonato) complex [UO(2)(CO(3))(3)](4-) and the trinuclear hexa(carbonato) complex [(UO(2))(3)(CO(3))(6)](6-). Focusing on the structures in solution, we applied for the first time a full solvation treatment to these complexes. We approximated short-range effects by explicit aqua ligands and described long-range electrostatic interactions via a polarizable continuum model. Structures and vibrational frequencies of "gas-phase" models with explicit aqua ligands agree best with experiment. This is accidental because the continuum model of the solvent to some extent overestimates the electrostatic interactions of these highly anionic systems with the bulk solvent. The calculated free energy change when three mono-nuclear complexes associate to the trinuclear complex, agrees well with experiment and supports the formation of the latter species upon acidification of a uranyl carbonate solution.

  1. Method for fluoride ion depletion of UO2 powders

    International Nuclear Information System (INIS)

    Beutner, R.; Ploeger, F.

    1978-01-01

    The method described consists in removing the hydrogen still present from the reduction during the preparation of UO 2 as completely as possible and in performing a pyrohydrolysis at temperatures above 650 0 C for at least 45 minutes. The removal of fluorine is necessary in order to avoid cladding tube damaging. (UA) [de

  2. Thermodynamic state, specific heat, and enthalpy function of saturated UO2 vapor between 3,000 K and 5,000 K

    International Nuclear Information System (INIS)

    Karow, H.U.

    1977-02-01

    The properties have been determined by means of statistical mechanics. The discussion of the thermodynamic state includes the evaluation of the plasma state and its contribution to the caloric variables-of-state of saturated oxide fuel vapor. Because of the extremely high ion and electron density due to thermal ionization, the ionized component of the fuel vapor does no more represent a perfect kinetic plasma. At temperatures around 5,000 K, UO 2 vapor reaches the collective plasma state and becomes increasingly 'metallic'. - Moreover, the nonuniform molecular equilibrium composition of UO 2 vapor has been taken into account in calculating its caloric functions-of-state. The contribution to specific heat and enthalpy of thermally excited electronic states of the vapor molecules has been derived by means of a Rydberg orbital model of the UO 2 molecule. The resulting enthalpy functions and specific heats for saturated UO 2 vapor of equilibrium composition and that for pure UO 2 gas are compared with the enthalpy and specific heat data of gaseous UO 2 at lower temperatures known from literature. (orig./HP) [de

  3. Surface modelling on heavy atom crystalline compounds: HfO{sub 2} and UO{sub 2} fluorite structures

    Energy Technology Data Exchange (ETDEWEB)

    Evarestov, Robert [Department of Quantum Chemistry, St. Petersburg State University, 26 Universitetsky Prospect, Peterhof, St. Petersburg 198504 (Russian Federation)], E-mail: re1973@re1973.spb.edu; Bandura, Andrei; Blokhin, Eugeny [Department of Quantum Chemistry, St. Petersburg State University, 26 Universitetsky Prospect, Peterhof, St. Petersburg 198504 (Russian Federation)

    2009-01-15

    The study of the bulk and surface properties of cubic (fluorite structure) HfO{sub 2} and UO{sub 2} was performed using the hybrid Hartree-Fock density functional theory linear combination of atomic orbitals simulations via the CRYSTAL06 computer code. The Stuttgart small-core pseudopotentials and corresponding basis sets were used for the core-valence interactions. The influence of relativistic effects on the structure and properties of the systems was studied. It was found that surface properties of Mott-Hubbard dielectric UO{sub 2} differ from those found for other metal oxides with the closed-shell configuration of d-electrons.

  4. UO{sub 2}{sup 2+}/protein complexation sites screening

    Energy Technology Data Exchange (ETDEWEB)

    Guilbaud, P.; Pible, O

    2004-07-01

    Uranium(VI) is likely to make strong coordination with some proteins in the plasma and in targeted cells. In the frame of a nuclear toxicology program, a biochemical strategy has been developed to identify these targets in complex biological media. The present work focuses on an approach based on the screening of 3D protein structures in order to identify proteins able to bind UO{sub 2}{sup 2+} and the corresponding complexation sites in these proteins. Our preliminary results show that indeed a few proteins display a high affinity to uranyl salt. The site of interaction may be mapped using molecular modeling, providing coherent results with the biochemical data. (authors)

  5. Investigations of the trend followed in heat capacity of Re_6UO_1_2 (s) along lanthanide series

    International Nuclear Information System (INIS)

    Sahu, Manjulata; Saxena, M.K.; Rawat, Deepak; Dash, Smruti

    2017-01-01

    The compound RE_6UO_1_2 (s) (RE = Ho, Er, Tm, Yb and Lu) was synthesized by complex polymerisation method and characterised using X-ray diffraction (XRD). Heat capacity measurements of RE_6UO_1_2 (s) were performed with heat flux-type differential scanning calorimeter in the temperature range of 300-870 K. The trend in heat capacity along the rare earth series was proposed for RE_6UO_1_2 (s) and thermodynamic functions were generated. (author)

  6. Perovskite phases in the systems AO-SE/sub 2/O/sub 3/-UOsub(2,x) with A = alkaline earth metal and SE = rare earths, La and Y. 10. The systems Ba/sub 2/CaUO/sub 6/-Ba/sub 2/Lusub(0. 67)UO/sub 6/ and Ba/sub 2/SrUO/sub 6/-Ba/sub 2/Lusub(0. 67)UO/sub 6/

    Energy Technology Data Exchange (ETDEWEB)

    Kemmler-Sack, S; Jooss, I [Tuebingen Univ. (Germany, F.R.). Inst. fuer Chemie

    1977-06-01

    In the systems Ba/sub 2/Bsub(1-x)Lusub(0.67x)UO/sub 6/ with Bsup(II) = Ca, Sr at the B-rich side rhombic and at the Lu-rich side monoclinic perovskites are formed. The transition is discontinuous and accompanied by order-disorder phenomena.

  7. Thermophysical properties of liquid UO2, ZrO2 and corium by molecular dynamics and predictive models

    International Nuclear Information System (INIS)

    Kim, Woong Kee; Shim, Ji Hoon; Kaviany Massoud

    2016-01-01

    The analysis of such accidents (fate of the melt), requires accurate corium thermophysical properties data up to 5000 K. In addition, the initial corium melt superheat melt, determined from such properties, are key in predicting the fuel-coolant interactions (FCIs) and convection and retention of corium in accident scenarios, e.g., core-melt down corium discharge from reactor pressure vessels and spreading in external core-catcher. Due to the high temperatures, data on molten corium and its constituents are limited, so there are much data scatters and mostly extrapolations (even from solid state) have been used. Here we predict the thermophysical properties of molten UO 2 and ZrO 2 using classical molecular dynamics (MD) simulations (properties of corium are predicted using the mixture theories and UO 2 and ZrO 2 properties). The thermophysical properties (density, compressibility, heat capacity, viscosity and surface tension) of liquid UO 2 and ZrO 2 are predicted using classical molecular dynamics simulations, up to 5000 K. For atomic interactions, the CRG and the Teter potential models are found most appropriate. The liquid behavior is verified with the random motion of the constituent atoms and the pair-distribution functions, starting with the solid phase and raising the temperature to realize liquid phase. The viscosity and thermal conductivity are calculated with the Green-Kubo autocorrelation decay formulae and compared with the predictive models of Andrade and Bridgman. For liquid UO 2 , the CRG model gives satisfactory MD predictions. For ZrO 2 , the density is reliably predicted with the CRG potential model, while the compressibility and viscosity are more accurately predicted by the Teter model

  8. Formation of Aqueous MgUO2(CO3)32- Complex and Uranium Anion Exchange Mechanism onto an Exchange Resin

    International Nuclear Information System (INIS)

    Dong, Wenming; Brooks, Scott C

    2008-01-01

    The formation of and stability constants for aqueous Mg-UO2-CO3 complexes were determined using an anion exchange method. Magnesium concentration was varied (up to 20 mmol/L) at constant ionic strength (I = 0.101, 0.202, 0.304, 0.406, and 0.509 mol/kg NaNO3), pH = 8.1, total [U(VI)] = 10.4 mol/L under equilibrium with atmospheric CO2. The results indicate that only the MgUO2(CO3)32- complex is formed. The cumulative formation constant extrapolated to zero ionic strength is similar regardless of the activity correction convention used: log = 25.8 b 0.5 using Davies equation and = 25.02 b 0.08 using specific ion interaction theory (SIT). Uranium sorption onto the exchange resin decreased in the presence of Mg putatively due to the formation of MgUO2(CO3)32- that had a lower affinity for the resin than UO2(CO3)34-. Uranium sorption results are consistent with an equivalent anion exchange reaction between NO3- and UO2(CO3)34- species to retain charge neutrality regardless of Mg concentration. No Mg was associated with the anion exchange resin indicating that the MgUO2(CO3)32- complex did not sorb

  9. Finite element analysis of local overheating within plutonium enriched UO2 fuel rods caused by PuO2 islands

    International Nuclear Information System (INIS)

    Sarmiento, G.S.

    1980-01-01

    Within natural UO 2 fuel elements enriched with plutonium, this last material should form PuO 2 solid solutions inside the UO 2 pellets, in a wide range of concentrations. If the solutions are obtained by mechanical mixing of the oxides, PuO 2 islands are formed in the UO 2 matrix. These islands may be the source of several problems in the fuel behaviour, the most important being the overheating of the matrix in the neighbourhood of the particles. It is caused by the large fission cross section of plutonium compared with that of uranium. A detailed study of the thermal effects produced by PuO 2 particles in the UO 2 matrix and the cladding is then important for the specification of their permissible size. A portion of the fuel rods with spherical particles in the most significant places was studied. In order to obtain the dimensionless overheating of the fuel and cladding produced by the presence of those particles, the spatial distribution of temperature was calculated, solving the stationary and linear bidimensional equation of heat conducting using a finite element code. Several geometrical variables and material properties have been taken as dimensionless parameters. A satisfactory convergence of the numerical results to an asymptotic limit with a well-known exact solution, has been obtained. (orig.)

  10. Evaluation of sintering effects on SiC-incorporated UO2 kernels under Ar and Ar–4%H2 environments

    International Nuclear Information System (INIS)

    Silva, Chinthaka M.; Lindemer, Terrence B.; Hunt, Rodney D.; Collins, Jack L.; Terrani, Kurt A.; Snead, Lance L.

    2013-01-01

    Silicon carbide (SiC) is suggested as an oxygen getter in UO 2 kernels used for tristructural isotropic (TRISO) particle fuels and to prevent kernel migration during irradiation. Scanning electron microscopy and X-ray diffractometry analyses performed on sintered kernels verified that an internal gelation process can be used to incorporate SiC in UO 2 fuel kernels. Even though the presence of UC in either argon (Ar) or Ar–4%H 2 sintered samples suggested a lowering of the SiC up to 3.5–1.4 mol%, respectively, the presence of other silicon-related chemical phases indicates the preservation of silicon in the kernels during sintering process. UC formation was presumed to occur by two reactions. The first was by the reaction of SiC with its protective SiO 2 oxide layer on SiC grains to produce volatile SiO and free carbon that subsequently reacted with UO 2 to form UC. The second process was direct UO 2 reaction with SiC grains to form SiO, CO, and UC. A slightly higher density and UC content were observed in the sample sintered in Ar–4%H 2 , but both atmospheres produced kernels with ∼95% of theoretical density. It is suggested that incorporating CO in the sintering gas could prevent UC formation and preserve the initial SiC content

  11. The preparation of UO2 powder: effect of ammonium uranate properties

    International Nuclear Information System (INIS)

    Woolfrey, J.L.

    1978-01-01

    Ammonium uranate (AU) powders were precipitated from a uranyl nitrate solution with gaseous ammonia. The decomposition of the powders in hydrogen was studied to determine those properties of AU which affect the decomposition reactions and influence the properties of the final UO 2 powder. The thermal decomposition was affected by the initial composition (ammonia and nitrate content) and the morphology of the AU powders. The amount of self-reduction increased with increasing combined ammonia content and decreased with increasing nitrate content. The specific surface area of the decomposed powder increased with increasing total ammonia content and initial surface area of the precursor AU powder. Thermal treatment of the decomposed powder can be used to modify such effects and, in commercial powder production, is used to control the properties of the final UO 2 powder. (Auth.)

  12. Adsorption of UO{sub 2}{sup 2+} in surfaces of SrTiO{sub 3}; Adsorcion de UO{sub 2}{sup 2+} en superficies de SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz O, H.B.; Ordonez R, E.; Fernandez V, S.M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: huemantzin@prodigy.net.mx

    2005-07-01

    The internationally accepted solution in the administration of the high level radioactive residuals is the multi barrier deep geologic storage which should guarantee that do not exist flights neither transfer of residuals to the atmosphere in time periods of at least 10,000 years. In this confinement type exists the interest to study materials that can be used as engineering barriers as well as the diverse interaction phenomena between these and the radionuclides. In this work it is presented the physicochemical characterization and evaluation of the surface properties and of adsorption of U(VI) in form of UO{sub 2}(NO{sub 3}){sub 2} on the SrTiO{sub 3} like possible candidate for contention barrier in the deep geologic confinement. The made studies showed that the SrTiO{sub 3} is stable to temperatures between 0 and 800 C. At the same time it could settle down that the maximum sorption percentages are reached to near pH to the isoelectric point, where chemical species prevail in solution of the type UO{sub 2}(X){sup -}. (Author)

  13. Synthesis and study of NH4[HSiUO6]·0.5H2O

    International Nuclear Information System (INIS)

    Chernorukov, N.G.; Kortikov, V.E.

    2000-01-01

    Previously unknown ammonium uranosilicate of NH 4 [HSiUO 6 ]·0.5H 2 O composition is synthesised by precipitation from aqueous solution containing ammonium chloride, uranyl nitrate and quartz glass with the size of granules ≤ 2. On evidence of X-ray diffraction ammonium uranosilicate is a full crystallographic analog of proper lithium and potassium derivatives with approaching parameters of crystal lattices: a= 7.01(2), b=7.03(8), c=6.65(9) A, β=105.6(0) Deg. Functional composition and peculiarity of ammonium uranosilicate structure are detected by IR spectroscopic study. Scheme of thermal decomposition of ammonium uranosilicate is demonstrated based on thermal gravimetric and X-ray diffraction measurements. NH 4 [HSiUO 6 ]·0.5H 2 O is among of morphotropic raw of A 1/k k HSiUO 6 ·nH 2 O [ru

  14. Oxidation and dissolution of UO{sub 2} in bicarbonate media: Implications for the spent nuclear fuel oxidative dissolution mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez, J. [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain)]. E-mail: francisco.javier.gimenez@upc.edu; Clarens, F. [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Casas, I. [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Rovira, M. [CTM Centre Tecnologic, Avda. Bases de Manresa 1. 08240 Manresa (Spain); Pablo, J. de [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Bruno, J. [Enresa-Enviros Environmental Science and Waste Management Chair, UPC, Jordi Girona 1-3 B2, 08034 Barcelona (Spain)

    2005-10-15

    The objective of this work is to study the UO{sub 2} oxidation by O{sub 2} and dissolution in bicarbonate media and to extrapolate the results obtained to improve the knowledge of the oxidative dissolution of spent nuclear fuel. The results obtained show that in the studied range the oxygen consumption rate is independent on the bicarbonate concentration while the UO{sub 2} dissolution rate does depend on. Besides, at 10{sup -4} mol dm{sup -3} bicarbonate concentration, the oxygen consumption rate is almost two orders of magnitude higher than the UO{sub 2} dissolution rate. These results suggest that at low bicarbonate concentration (<10{sup -2} mol dm{sup -3}) the alteration of the spent nuclear fuel cannot be directly derived from the measured uranium concentrations in solution. On the other hand, the study at low bicarbonate concentrations of the evolution of the UO{sub 2} surface at nanometric scale by means of the SFM technique shows that the difference between oxidation and dissolution rates is not due to the precipitation of a secondary solid phase on UO{sub 2}.

  15. Physics of the fuel cycle. Evaluation of methods, uncertainties and estimation of the material balance for fuels UO2 and UO2-PuO2

    International Nuclear Information System (INIS)

    Monier, C.

    1997-09-01

    The research works of this thesis are aimed to evaluate the methods and the associated uncertainties for the material balances estimation of the burn-up UO 2 and MOX fuels which intervene in the fuel cycle physics. The studies carried out are used to qualify the cycle 'package' DARWIN for the PWRs material balances estimation. The elaboration and optimisation of the calculation routes are carried out following a very specific methodology, aimed at estimating the bias introduced by the modelizations simplification by a comparison with almost exact reference modelizations. Depending on the precision goals and the informations, the permissible approximation will be determined. Two calculation routes have been developed and the qualified by applying them to the used fuels isotopic analysis interpretation: one 'industry-oriented' calculation route which can calculate full UO 2 assemblies material balances with a 2 % precision on the main actinides, respecting the industrial specifications. This route must run with a reasonable calculation time and stay user-friendly; one reference calculation route for the precise interpretation of fuel samples made of pieces of burn-up MOX rods. Aiming to provide material balances with the best possible precision, this route does not have the same specifications concerning its use and its calculation time performance. (author)

  16. High density, uniformly distributed W/UO2 for use in Nuclear Thermal Propulsion

    Science.gov (United States)

    Tucker, Dennis S.; Barnes, Marvin W.; Hone, Lance; Cook, Steven

    2017-04-01

    An inexpensive, quick method has been developed to obtain uniform distributions of UO2 particles in a tungsten matrix utilizing 0.5 wt percent low density polyethylene. Powders were sintered in a Spark Plasma Sintering (SPS) furnace at 1600 °C, 1700 °C, 1750 °C, 1800 °C and 1850 °C using a modified sintering profile. This resulted in a uniform distribution of UO2 particles in a tungsten matrix with high densities, reaching 99.46% of theoretical for the sample sintered at 1850 °C. The powder process is described and the results of this study are given below.

  17. Vapor pressure determination of liquid UO/sub 2/ using a boiling point technique

    International Nuclear Information System (INIS)

    Bober, M.; Singer, J.

    1987-01-01

    By analogy with the classic boiling point method, a quasi-stationary millisecond laser-heating technique was applied to measure the saturated vapor pressure curve of liquid UO/sub 2/ in the temperature range of 3500 to 4500 K. The results are represented by log rho (MPa)=5.049 - 23 042/T (K), which gives an average heat of vaporization of 441 kJ/mol and a normal boiling point of 3808 K. In addition, spectral emissivities of liquid UO/sub 2/ were determined as a function of the temperature at the pyrometer wavelengths of 752 and 1064 nm

  18. Sorption of Np by UO2 under repository conditions

    Science.gov (United States)

    Kazakovskaya, T. V.; Zakharova, E. V.; Haire, M. J.

    2010-03-01

    This work is a part of the joint Russian - American Program on Beneficial Use of Depleted Uranium. The production of nuclear fuels results in the accumulation of large quantities of depleted uranium (DU) in the form of uranium hexafluoride (UF6), which is converted to uranium oxides. Depleted uranium dioxide (DUO2) can be used as a component of radiation shielding and as an absorbent for migrating radionuclides that may emerge from casks containing spent nuclear fuel (SNF) that are stored for hundreds of thousands of years in high-level wastes (HLW) and SNF repositories (e.g. Yucca Mountain Project). In this case DU oxides serve as an additional engineered chemical barrier. It is known that the primary radioisotope contributor to the calculated long-term radiation dose to the public at the Yucca Mountain SNF repository site boundary is neptunium-237 (237Np). This paper describes the sorption of 237Np in various media (deionized water and J-13 solution) by DUO2. Samples of DUO2 used in this work originated from the treatment of UF6 in a reducing media to form UO2(DUO2-1 at 600°C, DUO2-2 at 700°C, and DUO2-3 at 800°C). All species of DUO2 sorb Np(V) and Np(IV) from aqueous media. Equilibrium was achieved in 24 hours for Np(V) and in 2 hours for Np(IV). Np(V) sorption is accompanied with partial reduction of Np(V) to Np(IV) and vice versa. The sorption of Np(V) onto DUO2 surfaces is irreversible. The investigations on DUO2 transformations were performed under dynamic and static conditions. Under static conditions the solubility of the DUO2 samples in J-13 solution is considerably higher than in DW. When the pre-treatment temperature is decreased, the solubility of DUO2 samples raises regardless of the media. The experiments on interaction between DUO2 and aqueous media (DW and J-13 solution) under dynamic conditions demonstrated that during 30-40 days the penetration/filtration rate of DW and J-13 solution through a thin DUO2 layer decreased dramatically, and then

  19. Evidence of interatomic Coulombic decay in ArKr after Ar 2p Auger decay

    International Nuclear Information System (INIS)

    Morishita, Y; Saito, N; Suzuki, I H; Fukuzawa, H; Liu, X-J; Sakai, K; Pruemper, G; Ueda, K; Iwayama, H; Nagaya, K; Yao, M; Kreidi, K; Schoeffler, M; Jahnke, T; Schoessler, S; Doerner, R; Weber, T; Harries, J; Tamenori, Y

    2008-01-01

    We have identified interatomic Coulombic decay (ICD) processes in the ArKr dimer following Ar 2p Auger decay, using momentum-resolved electron-ion-ion coincidence spectroscopy and simultaneously determining the kinetic energy of the ICD electron and the KER between Ar 2+ and Kr + . We find that the spin-conserved ICD processes in which Ar 2+ (3p -3 3d) 1 P and 3 P decay to Ar 2+ (3p -2 ) 1 D and 3 P, respectively, ionizing the Kr atom, are significantly stronger than the spin-flip ICD processes in which Ar 2+ (3p -3 3d) 1 P and 3 P decay to Ar 2+ (3p -2 ) 3 P and 1 D, respectively

  20. Fracture properties of ThO2-UO2 pellets by Hertzian indentation technique

    International Nuclear Information System (INIS)

    Kutty, T.R.G.; Rath, B.N.; Balakrishnan, K.S.

    2005-01-01

    Fracture toughness (K Ic ) and fracture surface energy (γ s ) of ThO 2 -UO 2 pellets with varying UO 2 contents were measured using Hertzian indentation technique. The knowledge of fracture toughness (K Ic ) and fracture surface energy values are important for fuel designers since these values are used in fuel modeling. Cracks in nuclear fuel act as a path for fission gas release and enhances fuel cladding mechanical interaction. Microstructural features like grain size and presence of second phase play a significant role in controlling the fracture behavior. Since the fracture properties of nuclear materials are of primary design consideration, it is important that these properties should be evaluated with good precision. There have been several attempts to use Hertzian indentation for evaluating the fracture toughness of brittle materials. The main principle of this method depends on the interaction of the elastic stress field with a pre-existing surface flaw of the sample. One significant advantage of Hertzian indentation over that of Vickers is that the substrate's deformation is entirely elastic until fracture occurs. This avoids the complications arising from the ill-defined residual stress that is normally associated with indentations brought about by pointed indenters like that of Vickers. The material properties that may be determined by this test include (a) fracture toughness and fracture surface energy of the near surface material, (b) the densities and sizes of surface cracks, and (c) residual stresses in the near surface material. This paper deals with experimental procedure for the evaluation of fracture properties of ThO 2 -UO 2 of varying U content and results thus obtained are also presented. The K Ic values thus obtained are explained in terms of their microstructures and the U content. (author)

  1. Improving the Thermal Conductivity of UO2 Fuel with the Addition of Graphene

    International Nuclear Information System (INIS)

    Cho, Byoung Jin; Kim, Young Jin; Sohn, Dong Seong

    2012-01-01

    Improvement of fuel performances by increasing the fuel thermal conductivity using the BeO or W were reported elsewhere. In this paper, some major fuel performances of improved thermal conductivity oxide (ICO) nuclear fuel with the addition of 10 v/o graphene have been compared to those of standard UO 2 fuel. The fuel thermal conductivity affects many performance parameters and thus is an important parameter to determine the fuel performance. Furthermore, it also affects the performance of the fuel during reactor accidents. The improved thermal conductivity of the fuel would reduce the fuel temperature at the same power condition and would improve the fission gas release, rod internal pressure and fuel stored energy. Graphene is well known for its excellent electrical conductivity, strength and thermal conductivity. The addition of graphene to the UO 2 fuel could increase the thermal conductivity of the ICO fuel. Although the graphene material is extensively studied recently, the characteristics of the graphene material, especially the thermal properties, are not well-known yet. In this study, we used the Light Water Reactor fuel performance analysis code FRAPCON-3.2 to analyze the performance of standard UO 2 and ICO fuel

  2. Development Status of a CVD System to Deposit Tungsten onto UO2 Powder via the WCI6 Process

    Science.gov (United States)

    Mireles, O. R.; Kimberlin, A.; Broadway, J.; Hickman, R.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) is under development for deep space exploration. NTP's high specific impulse (> 850 second) enables a large range of destinations, shorter trip durations, and improved reliability. W-60vol%UO2 CERMET fuel development efforts emphasize fabrication, performance testing and process optimization to meet service life requirements. Fuel elements must be able to survive operation in excess of 2850 K, exposure to flowing hydrogen (H2), vibration, acoustic, and radiation conditions. CTE mismatch between W and UO2 result in high thermal stresses and lead to mechanical failure as a result UO2 reduction by hot hydrogen (H2) [1]. Improved powder metallurgy fabrication process control and mitigated fuel loss can be attained by coating UO2 starting powders within a layer of high density tungsten [2]. This paper discusses the advances of a fluidized bed chemical vapor deposition (CVD) system that utilizes the H2-WCl6 reduction process.

  3. The preparation of UO2 ceramic microspheres with an advanced process (TGU)

    International Nuclear Information System (INIS)

    Xu Zhichang; Tang Yaping; Zhang Fuhong

    1994-04-01

    The UO 2 ceramic microspheres are the most important materials in the spherical fuel elements for high temperature reactor (HTR). An advanced process for preparation of UO 2 ceramic microspheres has been developed at Institute of Nuclear Energy Technology, Tsinghua University. This process known as total gelation process of uranium (TGU), is based on the traditional sol-gel process, external gelation process and internal gelation process of uranium (EGU and IGU), and has been selected as the production process. The result of batch test is described. Accordance with the requirements of quality control (QC) and quality assurance (QA), the stabilization of operating parameters and product quality is tested., The results on batch test have shown that as well as all of the operated parameters are fixed, then the product quality can be stable as well as the product specification can be met. When the colloidal flow rate and the vibration frequency of nozzle are fixed, the kernel's size is also fixed. When the sintering temperature and time are fixed, the product density is also fixed. When the hydrogen atmosphere is used, the O/U ratio is very near to stoichiometry. The performance and structure of UO 2 ceramic microspheres are also given

  4. Adsorption of Pb2+, UO22+ onto bentonite polyacrylamidoxime composite

    International Nuclear Information System (INIS)

    Simsek, S.; Ulusoy, U.

    2009-01-01

    Polyacrylonitryl (PAN) and bentonite (B)-PAN composites were prepared by direct polymerization of pure AN and AN saturated suspensions of B. PAN and the composite were subjected to amidoximation procedure to obtain PAO and B-PAO. FT-IR, XRD and SEM were employed to characterize their structures. The sorption dependency of the materials on ion concentration, temperature and kinetics were then investigated for Pb 2 + and UO 2 2 +. All isotherms were L and H type of the Giles classification. For both ions, the adsorption capacities of B-PAO composite were higher than that of pure PAO, when the PAO contents of composites were normalized to pure PAO. The introduction of B in to PAO significantly increased the Langmuir equilibrium constants (L mol - 1), so as 353 and 2180 for Pb 2 + 1980 and 25900 for UO 2 2 + adsorption onto PAO and B-PAO respectively. The adsorption was enthalpy controlled. The studied features of the composites suggest that these materials should be considered amongst the new adsorbents. It is envisaged that the use of B-PAO composite will provide practicality and effectiveness for separation and removal procedures involving di/trivalent cations.

  5. Estimation of optimum experimental parameters in chlorination of UO2 with Cl2 gas and carbon for UCl4

    International Nuclear Information System (INIS)

    Yang, Y.S.; Kang, Y.H.; Lee, H.K.

    1997-01-01

    For the preparation of uranium tetrachloride, the chlorination of UO 2 was carried out and an appropriate reaction system was confirmed. The effects of reaction temperature, time, injection ratio of N 2 gas and appropriate amount of carbon using a reductant on the conversion ratio and volatilization were evaluated. The optimum reaction time and temperature in chlorination of UO 2 for the preparation of UCl 4 were 2 h and 500-700 C, respectively. Also 50% of N 2 gas in chlorine gas proved to be the appropriate injection ratio. (orig.)

  6. Grain boundary corrosion and alteration phase formation during the oxidative dissolution of UO2 pellets

    International Nuclear Information System (INIS)

    Wronkiewicz, D.J.; Buck, E.C.; Bates, J.K.

    1996-01-01

    Alteration behavior of UO 2 pellets following reaction under unsaturated drip-test conditions at 90 C for up to 10 years was examined by solid phase and leachate analyses. Sample reactions were characterized by preferential dissolution of grain boundaries between the original press-sintered UO 2 granules comprising the samples, development of a polygonal network of open channels along the intergrain boundaries, and spallation of surface granules that had undergone severe grain boundary corrosion. The development of a dense mat of alteration phases after 2 years of reaction trapped loose granules, resulting in reduced rates of particulate U release. The paragenetic sequence of alteration phases that formed on the present samples was similar to that observed in surficial weathering zones of natural uraninite (UO 2 ) deposits, with alkali and alkaline earth uranyl silicates representing the long-term solubility-limiting phases for U in both systems

  7. Achieving higher productivity of UO2 fuel at NUOFP through improved in-plant quality surveillance

    International Nuclear Information System (INIS)

    Meena, R.; Pramanik, D.; Sairam, S.; Rajkumar, J.V.; Rao, R.V.R.L.V.; Sinha, T.K.; Santra, N.; Rao, G.V.S.H.; Jayaraj, R.N.

    2009-01-01

    At Nuclear Fuel Complex (NFC), in the production of UO 2 fuel for PHWRs, a standard set of process parameters are monitored regularly for every lot of powder and pellet. Quality of intermediate products in the production process like UNP, ADU(dry), U 3 O 8 , UO 2+x , UO 2 granules, green pellets, sintered pellets are also regularly analysed/monitored apart from the final finished pellet and ensured to be within specified range. This range is decided by final product specifications and sometimes also based on the feed requirement in the next process in the downstream of the flow sheet. Vast experience gained over the years, behavior of various equipment under given set of conditions, feed back from the customer plants etc; have been primary criteria hither to, for defining the process conditions and chemical/physical properties of intermediate products

  8. Method of manufacturing UO2 pellet

    International Nuclear Information System (INIS)

    Harada, Yuhei; Asami, Yasuji.

    1989-01-01

    The present invention concerns a method of manufacturing UO 2 pellets with less FP gas release and having fine structure for moderating PCMI. At first, oxide nuclear fuel pellets are placed in a sintering furnance and preliminarily sintered in a H 2 gas atmosphere at 1400 - 1600 degC. In this step, sintering is progressed to about 90 % TD, by which closed cells are formed substantially completely. Then, when sintering is further advanced at an identical temperature in a CO 2 gas atmosphere, growth of the crystal grains is advanced at the central portion of the pellets. Then, reductive heat treatment is applied at the identical temperature in a H 2 gas atmosphere. As a result, pellets having a fine double structure with the larger grain size region being in the central portion and smaller grain size region in the outer periphery can be obtained. (I.J.)

  9. Oxidation of 1-butene over uranium oxide (UO3)-antimony oxide (Sb2O3) catalysts

    NARCIS (Netherlands)

    Simons, T.; Houtman, P.N.; Schuit, G.C.A.

    1971-01-01

    The oxidative dehydrogenation of butene to butadiene over U-Sb catalysts was investigated. The presence of two compds., (UO2)Sb3O7 and Sb3U3O14, reported by Grasselli and Callahan (1969), was confirmed with (UO2)Sb3O7 being the actual catalyst. The reaction is first order in butene and zero order in

  10. Technological aspects of UO2 sintering at low temperature

    International Nuclear Information System (INIS)

    Thern, Gerardo G.; Dominguez, Carlos A.; Benitez, Ana M.; Marajofsky, Adolfo

    1999-01-01

    Within the Fuel Cycle Program of CNEA, the knowledge that plant personnel has on sintering at low temperature was evaluated, because this process could decrease costs for UO 2 and (U,Gd)O 2 pellets production, simplify the furnace maintenance and facilitate the automation of the production process, specially convenient for uranium recovery. By applying this technology, some companies have achieved production at pilot-scale and irradiated a significant number of pellets. (author)

  11. Sintering densification of CaO–UO{sub 2}–Gd{sub 2}O{sub 3} nuclear fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yun [Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China Institute of Technology, Nanchang, 330013, Jiangxi (China); Sun, Huidong [China Nucle Power Engineering Co., Ltd (China); Wang, Hui, E-mail: yinchanggeng5525@163.com [National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power Institute of China, Chengdu, 610041 (China); Pan, Xiaoqiang; Li, Tongye; Liu, Jinhong; Zhang, Yong; Wang, Xinjie [National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power Institute of China, Chengdu, 610041 (China)

    2015-10-15

    CaO-doped UO{sub 2}-10 wt% Gd{sub 2}O{sub 3} burnable poison fuel was prepared by co-precipitation reaction method. It was found that 0.3 wt% CaO-doping significantly improved the sintered density, grain sizes and crushing strength of UO{sub 2}–Gd{sub 2}O{sub 3} fuel pellets at the sintering temperature of 1650 °C in the sintering atmosphere of hydrogen for 3.5 h. In addition, homogeneous solid solution without precipitation of free phases of CaO and Gd{sub 2}O{sub 3} was successfully achieved. CaO doping in UO{sub 2}–Gd{sub 2}O{sub 3} fuel pellet system accelerated the thermally activated material transport, so the onset temperature of densification as well as the temperature of the maximum densification rate shifted to a lower temperature region. - Highlights: • A small amount of 0.3% doped CaO{sub 2} can significantly improve the sintered density. • Homogeneous solid solution forms without precipitation of free phases. • The pellet has good density, high strength and increasing grain sizes with homogeneity. • The pellet accelerates a thermally activated material transport.

  12. Microspheres of UO2, ThO2 and PuO2 for the high temperature reactor

    International Nuclear Information System (INIS)

    Brandau, E.

    2002-01-01

    The production of high temperature reactor fuel, so called pebble fuel, was done in the eighties by a special vibrational dropping process to obtain as sintered UO 2 - or ThO 2 -microspheres, so called 'Kernels', with a diameter size of about 300 μm. These microspheres have been coated and embedded in carbon balls to get the pebble fuel. Since the early nineties BRACE is developing the processings of microspheres starting with sols and suspensions to produce Al 2 O 3 , ZrO 2 , HfO 2 and Actinide oxide microspheres. Two main developments have been made: 1) the preparation of the feed solution (sol, suspension) and the solidification processing, and 2) the equipment, design, and electronic control have been completely changed. A newly developed suspension process for actinide oxides and for metal oxides e.g. Al 2 O 3 , TiO 2 , SiO 2 , ZrO 2 , HfO 2 , CeO 2 , ThO 2 , UO 2 , PuO 2 leads to cheaper production of as sintered microspheres. The processing and the installations will be described and the experience of production will be shown. (author)

  13. Electrochemical characterisation of CaCl2 deficient LiCl–KCl–CaCl2 eutectic melt and electro-deoxidation of solid UO2

    International Nuclear Information System (INIS)

    Sri Maha Vishnu, D.; Sanil, N.; Mohandas, K.S.; Nagarajan, K.

    2016-01-01

    The CaCl 2 deficient ternary eutectic melt LiCl–KCl–CaCl 2 (50.5: 44.2: 5.3 mol %) was electrochemically characterised by cyclic voltammetry and polarization techniques in the context of its probable use as the electrolyte in the electrochemical reduction of solid UO 2 to uranium metal. Tungsten (cathodic polarization) and graphite (anodic polarization) working electrodes were used in these studies carried out in the temperature range 623 K–923 K. The cathodic limit of the melt was observed to be set by the deposition of Ca 2+ ions followed by Li + ions on the tungsten electrode and the anodic limit by oxidation of chloride ions on the graphite electrode (chlorine evolution). The difference between the onset potential of deposition of Ca 2+ and Li + was found to be 0.241 V at a scan rate of 20 mV/s at 623 K and the difference decreased with increase in temperature and vanished at 923 K. Polarization measurements with stainless steel (SS) cathode and graphite anode at 673 K showed the possibility of low–energy reactions occurring on the UO 2 electrode in the melt. UO 2 pellets were cathodically polarized at 3.9 V for 25 h to test the feasibility of electro-reduction to uranium in the melt. The surface of the pellets was found reduced to U metal. - Highlights: • Electrochemically characterized LiCl–KCl–CaCl 2 (50.5: 44.2: 5.3 mol %) melt by CV, LSV and polarization techniques. • Ca 2+ deposits first on tungsten working electrode followed by Li + . Cl − discharges on graphite to liberate chlorine gas. • Surface of UO 2 pellet reduced to U in the melt with low carbon contamination of melt. • Slow reduction of UO 2 due to slow kinetics and low solubility of oxide ions in the low temperature melt.

  14. Prediction of minimum UO2 particle size based on thermal stress initiated fracture model

    International Nuclear Information System (INIS)

    Corradini, M.

    1976-08-01

    An analytic study was employed to determine the minimum UO 2 particle size that could survive fragmentation induced by thermal stresses in a UO 2 -Na Fuel Coolant Interaction (FCI). A brittle fracture mechanics approach was the basis of the study whereby stress intensity factors K/sub I/ were compared to the fracture toughness K/sub IC/ to determine if the particle could fracture. Solid and liquid UO 2 droplets were considered each with two possible interface contact conditions; perfect wetting by the sodium or a finite heat transfer coefficient. The analysis indicated that particles below the range of 50 microns in radius could survive a UO 2 -Na fuel coolant interaction under the most severe temperature conditions without thermal stress fragmentation. Environmental conditions of the fuel-coolant interaction were varied to determine the effects upon K/sub I/ and possible fragmentation. The underlying assumptions of the analysis were investigated in light of the analytic results. It was concluded that the analytic study seemed to verify the experimental observations as to the range of the minimum particle size due to thermal stress fragmentation by FCI. However the method used when the results are viewed in light of the basic assumptions indicates that the analysis is crude at best, and can be viewed as only a rough order of magnitude analysis. The basic complexities in fracture mechanics make further investigation in this area interesting but not necessarily fruitful for the immediate future

  15. Sintering diagrams of UO2

    International Nuclear Information System (INIS)

    Mohan, A.; Soni, N.C.; Moorthy, V.K.

    1979-01-01

    Ashby's method (see Acta Met., vol. 22, p. 275, 1974) of constructing sintering diagrams has been modified to obtain contribution diagrams directly from the computer. The interplay of sintering variables and mechanisms are studied and the factors that affect the participation of mechanisms in UO 2 are determined. By studying the physical properties, it emerges that the order of inaccuracies is small in most cases and do not affect the diagrams. On the other hand, even a 10% error in activation energies, which is quite plausible, would make a significant difference to the diagram. The main criticism of Ashby's approach is that the numerous properties and equations used, communicate their inaccuracies to the diagrams and make them unreliable. The present study has considerably reduced the number of factors that need to be refined to make the sintering diagrams more meaningful. (Auth.)

  16. Physics of the fuel cycle. Evaluation of methods, uncertainties and estimation of the material balance for fuels UO{sub 2} and UO{sub 2}-PuO{sub 2}; Physique du cycle du combustible evaluation des methodes, incertitudes et estimation du bilan matiere pour les combustibles UO{sub 2} et UO{sub 2}-PuO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Monier, C

    1997-09-01

    The research works of this thesis are aimed to evaluate the methods and the associated uncertainties for the material balances estimation of the burn-up UO{sub 2} and MOX fuels which intervene in the fuel cycle physics. The studies carried out are used to qualify the cycle `package` DARWIN for the PWRs material balances estimation. The elaboration and optimisation of the calculation routes are carried out following a very specific methodology, aimed at estimating the bias introduced by the modelizations simplification by a comparison with almost exact reference modelizations. Depending on the precision goals and the informations, the permissible approximation will be determined. Two calculation routes have been developed and the qualified by applying them to the used fuels isotopic analysis interpretation: one `industry-oriented` calculation route which can calculate full UO{sub 2} assemblies material balances with a 2 % precision on the main actinides, respecting the industrial specifications. This route must run with a reasonable calculation time and stay user-friendly; one reference calculation route for the precise interpretation of fuel samples made of pieces of burn-up MOX rods. Aiming to provide material balances with the best possible precision, this route does not have the same specifications concerning its use and its calculation time performance. (author)

  17. Experimental Observation of Densification Behavior of UO2 Annular Pellet

    International Nuclear Information System (INIS)

    Kim, Dong-Joo; Rhee, Young-Woo; Kim, Jong-Hun; Yang, Jae-Ho; Kang, Ki-Won; Kim, Keon-Sik

    2007-01-01

    Recently, in the nuclear industry, one of the major issues is the improvement of a fuel economy. And many efforts have been made to develop a nuclear fuel for a high burnup and extended cycle. In the development of a high performance fuel, in-reactor fuel behavior (fission gas release, pellet-clad interaction, stress corrosion cracking, cladding corrosion, etc.) must be seriously reconsidered. Also, fuel fabrication (high enriched UO 2 powder handling, fuel rod and assembly manufacturing, fabricated fuel rod and assembly storage and transport, etc.) and an enrichment process (5 w/o criticality limit, etc.) must be discussed. A modification and an improvement of the nuclear fuel system will be also required. The typical fuel geometry of a PWR (Pressurized Water Reactor) is composed of a cylindrical pellet with a tubular cladding. And the outer surface of the cladding is cooled with water. However, to allow a substantial increase in the power density, an additional cooling is needed. One of the best ways is the application of the new fuel geometry that is of annular shape and has both internal and external cooling. From this point of view, the double cooled fuel is being developed by KAERI (Korea Atomic Energy Research Institute), and as a part of the project, the development of a fabrication process of a UO 2 annular pellet is now in progress. The dimensional behavior of UO 2 fuel is an important parameter in an irradiation performance. Various investigations (resintering test, model calculation, in-pile dimensional change measuring, etc.) had been performed. In designing a double cooled fuel, the importance of the dimensional behavior of a fuel pellet is higher, because the gap distance between a pellet and cladding can considerably affect on the in reactor fuel performance (gap conductance). And the dimensional behavior of an inner/outer gap is different with a cylindrical pellet, when the pellet shrinks (densification), the inner gap distance decreases and the

  18. Behaviour of the UO2/clayey water. A spectroscopic approach

    International Nuclear Information System (INIS)

    Guilbert, S.

    2000-05-01

    This work deals with the disposal of spent nuclear fuels in deep geological layers. After three years of irradiation, these fuels are constituted of 95 % UO 2 . It is then indispensable to know the leaching behaviour of this solid because ground waters are the main agents of dispersion to biosphere of the radioelements contained in these fuels. This work includes alteration tests carried out with a device allowing to synthesize a clayey water equilibrated with a partial pressure in CO 2 in oxidizing or reducing conditions. After the tests, the solid and the solution have been characterized in order to establish a balance of the alteration. The UO 2 matrix has been characterized by XPS. The uranium in solution has been titrated by ICP-MS. In oxidizing conditions, after some weeks, the dissolution velocity of UO 2 has stabilized around 3*10 11 mol/m 2 .s. This velocity is of 4*10 12 mol/m 2 .s in a reducing medium. The uranium concentrations in the oxidized water are of about 2*10 4 mol/l after two years of leaching. After 33 days of alteration in a reducing medium, the uranium amount is of 3*10 6 mol/l. The XPS technique has revealed a superficial and progressive oxidation of the uranium(IV) and the formation of U-OH bonds in the oxidizing medium. A U(VI)/U(IV) ratio has been determined by this technique. It has stabilized around 2 in some weeks. In reducing conditions, this ratio is stable and is of about 0.5. Modeling tools have allowed to propose a class of solids potentially able to control the uranium solubility. In oxidizing conditions, the uranyl hydrates (schoepite) evolve towards uranyl silicates which are thermodynamically more stable. In reducing conditions, a control of the uranium concentration in solution by U 4 O 9 is probable. (O.M.)

  19. Fission gas release and grain growth in THO2-UO2 fuel irradiated at high temperature

    International Nuclear Information System (INIS)

    Goldberg, I.; Waldman, L.A.; Giovengo, J.F.; Campbell, W.R.

    1979-01-01

    Data are presented on fission gas release and grain growth in ThO 2 -UO 2 fuels irradiated as part of the LWBR fuel element development program. These data for rods that experienced peak linear power outputs ranging from 15 to 22 KW/ft supplement fission gas release data previously reported for 51 rods containing ThO 2 and ThO 2 -UO 2 fuel irradiated at peak linear powers predominantly below 14 KW/ft. Fission gas release was relatively high (up to 15.0 percent) for the rods operated at high power in contrast to the relatively low fission gas release (0.1 to 5.2 percent) measured for the rods operated at lower power. Metallographic examination revealed extensive equiaxed grain growth in the fuel at the high power axial locations of the three rods

  20. Brandon mathematical model describing the effect of calcination and reduction parameters on specific surface area of UO{sub 2} powders

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Nguyen Trong; Thuan, Le Ba [Institute for Technology of Radioactive and Rare Elements (ITRRE), 48 Lang Ha, Dong Da, Ha Noi (Viet Nam); Van Khoai, Do [Micro-Emission Ltd., 1-1 Asahidai, Nomi, Ishikawa, 923-1211 (Japan); Lee, Jin-Young, E-mail: jinlee@kigam.re.kr [Convergence Research Center for Development of Mineral Resources (DMR), Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon, 305-350 (Korea, Republic of); Jyothi, Rajesh Kumar, E-mail: rkumarphd@kigam.re.kr [Convergence Research Center for Development of Mineral Resources (DMR), Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon, 305-350 (Korea, Republic of)

    2016-06-15

    Uranium dioxide (UO{sub 2}) powder has been widely used to prepare fuel pellets for commercial light water nuclear reactors. Among typical characteristics of the powder, specific surface area (SSA) is one of the most important parameter that determines the sintering ability of UO{sub 2} powder. This paper built up a mathematical model describing the effect of the fabrication parameters on SSA of UO{sub 2} powders. To the best of our knowledge, the Brandon model is used for the first time to describe the relationship between the essential fabrication parameters [reduction temperature (T{sub R}), calcination temperature (T{sub C}), calcination time (t{sub C}) and reduction time (t{sub R})] and SSA of the obtained UO{sub 2} powder product. The proposed model was tested with Wilcoxon's rank sum test, showing a good agreement with the experimental parameters. The proposed model can be used to predict and control the SSA of UO{sub 2} powder.

  1. Optimization of process parameters in precipitation for consistent quality UO2 powder production

    International Nuclear Information System (INIS)

    Tiwari, S.K.; Reddy, A.L.V.; Venkataswamy, J.; Misra, M.; Setty, D.S.; Sheela, S.; Saibaba, N.

    2013-01-01

    Nuclear reactor grade natural uranium dioxide powder is being produced through precipitation route, which is further processed before converting into sintered pellets used in the fabrication of PHWR fuel assemblies of 220 and 540 MWe type reactors. The process of precipitating Uranyl Nitrate Pure Solution (UNPS) is an important step in the UO 2 powder production line, where in soluble uranium is transformed into solid form of Ammonium Uranate (AU), which in turn reflects and decides the powder characteristics. Precipitation of UNPS with vapour ammonia is being carried out in semi batch process and process parameters like ammonia flow rate, temperature, concentration of UNPS and free acidity of UNPS are very critical and decides the UO 2 powder quality. Variation in these critical parameters influences powder characteristics, which in turn influences the sinterability of UO 2 powder. In order to get consistent powder quality and sinterability the critical parameter like ammonia flow rate during precipitation is studied, optimized and validated. The critical process parameters are controlled through PLC based automated on-line data acquisition systems for achieving consistent powder quality with increased recovery and production. The present paper covers optimization of process parameters and powder characteristics. (author)

  2. Irradiation and study of irradiated full elements and sintered UO{sub 2} fuel; Ozracivanje i ispitivanje ozracenih gorivnih elemenata i goriva na bazi sinterovanog UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Stevanovic, M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1966-11-15

    This review contains the activities related to the development of UO{sub 2} fuel elements, based on study of the processes in the fuel. This work was done during development, irradiation and testing of certain type of fuel rods and fuel assemblies. A feasibility study for irradiation of fuel elements in our country or abroad was done by analysing the defined problem and our capabilities in this field. Izlozen je pregled potrebnih radova na ozracivanju vezanih za razvoj gorivnih elemenata sa UO{sub 2} gorivom, prikazan kroz rad na osnovnim usmerenim istrazivanjima procesa i pojave u gorivu, kroz razvoj odredjenog tipa gorivnih elemenata ozracivanjem i ispitivanjem ozracenih gorivnih sipki i sklopova gorivnih elemenata. Na osnovu tako postavljenog problema i nasih mogucnosti za rad na ovom polju izvrsena je analiza celishodnosti ozracivanja gorivnih elemenata (goriva) kod nas, odnosno u inostranstvu (author)

  3. A study on entrapment: splashing of liquid UO2 over small sodium volumes

    International Nuclear Information System (INIS)

    Schins, H.; Klein, K.; Jorzik, E.

    1978-01-01

    Three experiments were done in which each time more than 1 kg of liqid UO 2 was splashed over a plate in which different stainless steel cups full of sodium were contained. No whatsoever indication of entrapment of sodium could be found. The pressure tests indicate up to 1,8 atm and they relax in some second time. These pressure diagrams have been satisfactorily analysed as indicating a sodium vapor formation. In the third experiment e.g. the quenching of 800 g UO 2 in 720 g of sodium in a closed volume of argon of 225 l will provide the requested maximum pressure

  4. The effect of UO2 density on fission product gas release and sheath expansion

    International Nuclear Information System (INIS)

    Notley, M.J.F.; MacEwan, J.R.

    1965-03-01

    The effect of UO 2 density on fission product gas release and sheath expansion has been determined in an irradiation experiment in which the performance of fuel elements with densities between 10.42 and 10.74 g/cm 3 was compared at ∫λdθ values of 39 and 42 W/cm. The elements were irradiated as clusters of four in a pressurized water loop, hence their irradiation histories were identical. Fission product gas release and the extend of grain growth were greater for the lower density elements. Both effects can be attributed solely to the variation of the thermal conductivity of the fuel with the fractional porosity p, if λ p λ [1 - (2.6 ± 0.8) p] where λ is the thermal conductivity of fully dense UO 2 and λ p is that of the porous UO 2 . This expression is in agreement with laboratory findings. A correlation between the extent of grain growth in the UO 2 and the fractional gas release was found to exist in this test and was shown to apply in a large number of other fuel irradiations. Diametral sheath strain was lower for the low density fuel elements than for those of high density, although the former were deduced to have operated with higher central temperatures. It is supposed that the thermal expansion of the fuel can be partially accommodated by elimination of some of the original porosity. The data are consistent with the assumption that approximately half the porosity in the region of the fuel undergoing grain growth is eliminated. (author)

  5. Safety and licensing of MOX versus UO2 for BWRs and PWRs: Aspects applicable for civilian and weapons grade Pu

    International Nuclear Information System (INIS)

    Goldstein, L.; Malone, J.

    2000-01-01

    This paper reviews the safety and licensing differences between MOX and UO 2 BWR and PWR cores. MOX produced from the normal recycle route and from weapons grade material are considered. Reload quantities of recycle MOX assemblies have been licensed and continue to operate safely in European LWRs. In general, the European MOX assemblies in a reload are 2 . These studies indicated that no important technical or safety related issues have evolved from these studies. The general specifications used by fuel vendors for recycled MOX fuel and core designs are as follows: MOX assemblies should be designed to minimize or eliminate local power peaking mismatches with co-resident and adjacently loaded UO 2 assemblies. Power peaking at the interfaces arises from different neutronic behavior between UO 2 and MOX assemblies. A MOX core (MOX and UO 2 or all-MOX assemblies) should provide cycle energy equivalent to that of an all-UO 2 core. This applies, in particular, to recycle MOX applications. An important consideration when burning weapons grade material is rapid disposition which may not necessarily allow for cycle energy equivalence. The reactivity coefficients, kinetics data, power peaking, and the worth of shutdown systems with MOX fuel and cores must be such to meet the design criteria and fulfill requirements for safe reactor operation. Both recycle and weapons grade plutonium are considered, and positive and negative impacts are given. The paper contrasts MOX versus UO 2 with respect to safety evaluations. The consequences of some transients/accidents are compared for both types of MOX and UO 2 fuel. (author)

  6. Thermal performance prediction of UO2 pellet partly containing 9%w tungsten network

    International Nuclear Information System (INIS)

    Suwardi

    2008-01-01

    Sintered UO 2 exhibits very stable in reactor core compared to UC, UN, U metal and its alloys. However, its thermal conductivity is very low (2.about.5 W/m K), that limits its performance. UO 2 pellet containing Tungsten network invented by Song improves considerably its conductivity. The paper reports an analysis of thermal performance for UO 2 pellet that contains partly or wholly with 9% b. of Tungsten. The tungsten network having a high melting point and excellent thermal conductivity is continuously formed around UO 2 grains. Since the presence of network decreases the amount of fissile material and the burn up of fissile material is higher in the near surface zone of pellet but high temperature zone that releases low conductivity fission gas to the gap located in inner part of pellet, the analysis has been done for different outer radial-portion of tungsten-free pellet. The analysis takes into account the correction factor for pellet conductivity related to both pore and temperature distribution and high burn up effect. The gap conductance has been considered invariable since decrease caused by wider gap size related to lower pellet expansion is compensated by increase caused by fewer of refractory fission gas released. The results (47 kw/m, 40% burnup) show temperature decrease in all of pellet position containing W network. Pellet containing 9%b. tungsten network lower consecutively its center line temperature from 1578 to 1406, 1292, 1231, 1192, 1111, and 1038 deg C for 0, 50, 67, 75, 80, 90, and 100 % portion of network. An 80 to 90 % portion of inner pellet containing tungsten network can be considered a best fuel design. This preliminary analysis is prospective and more realistic one is recommended. (author)

  7. Experimental studies of the refined structure within oxide UO{sub 2} clusters (1983); Etudes experimentales de structure fine a l'interieur de grappes d'oxyde UO{sub 2} (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Palmedo, P F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    General measurements of neutron fine structure in various UO{sub 2} clusters are described. The experimental techniques that were found useful are presented, as well as the methods of experimental analysis. The results are given in detail. A semi-empirical relation for the fine structure in clusters is suggested and is compared with the various results. (author) [French] Plusieurs experiences de structure fine de la densite neutronique dans diverses grappes de UO{sub 2} sont decrites. On presente les techniques qui ont ete jugees les plus appropriees pour ce genre de mesure, les methodes d'analyae des experiences, et les resultats detailles. Une expression semi-empirique de la structure fine dans de telles grappes est donnee et elle est comparee avec les divers reaultats obtenue. (auteur)

  8. Size-dependent disproportionation (in 2-20 nm regime) and hybrid Bond Valence derived interatomic potentials for BaTaO2N

    Science.gov (United States)

    Anbalagan, Kousika; Thomas, Tiju

    2018-05-01

    Interatomic potentials for complex materials (like ceramic systems) are important for realistic molecular dynamics (MD) simulations. Such simulations are relevant for understanding equilibrium, transport and dynamical properties of materials, especially in the nanoregime. Here we derive a hybrid interatomic potential (based on bond valence (BV) derived Morse and Coulomb terms), for modeling a complex ceramic, barium tantalum oxynitride (BaTaO2N). This material has been chosen due to its relevance for capacitive and photoactive applications. However, the material presents processing challenges such as the emergence of non-stoichiometric phases during processing, demonstrating complex processing-property correlations. This makes MD investigations of this material both scientifically and technologically relevant. The BV based hybrid potential presented here has been used for simulating sintering of BaTaO2N nanoparticles ( 2-20 nm) under different conditions (using the relevant canonical ensemble). Notably, we show that sintering of particles of diameter 10 nm in size results in the formation of a cluster of tantalum and oxygen atoms at the interface of the BaTaO2N particles. This is in agreement with the experimental reports. The results presented here suggest that the potential proposed can be used to explore dynamical properties of BaTaO2N and related systems. This work will also open avenues for development of nanoscience-enabled aid-free sintering approaches to this and related materials.

  9. Effect of uranyl nitrate and free acid concentration in feed solution of gelation on UO2 kernel quality

    International Nuclear Information System (INIS)

    Masduki, B.; Wardaya; Widarmoko, A.

    1996-01-01

    An investigation on the effect of uranium and free nitric acid concentration of uranyl nitrate as feed of gelation process on quality of UO 2 kernel was done.The investigation is to look for some concentration of uranyl nitrate solutions those are optimum as feed for preparation of gelled UO 3 . Uranyl nitrate solution of various concentration of uranium (450; 500; 550; 600; 650; 700 g/l) and free nitric acid of (0.9; 1.0; 1.1 N) was made into feed solutions by adding urea and HMTA with mole ratio of urea/uranium and HMTA/uranium 2.1 and 2.0. The feed solutions were changed into spherical gelled UO 3 by dropping was done to get the optimum concentrations of uranyl nitrate solutions. The gelled UO 3 was soaked and washed with 2.5% ammonia solution for 17 hours, dried at 70 o C, calcined at 350 o C for 3 hours then reduced at 850 o C for 3 hours. At every step of the steps process the colour and percentage of well product of gelled UO 3 were noticed. The density and O/U ratio of end product (UO 2 kernel) was determined, the percentage of well product of all steps process was also determined. The three factor were used to chose the optimum concentration of uranyl nitrate solution. From this investigation it was concluded that the optimum concentration of uranyl nitrate was 600 g/l uranium with free nitric acid 0,9 - 1,0 N, the percentage of well product was 97% density of 6.12 - 4.8 g/cc and O/U ratio of 2.15 - 2.06. (author)

  10. Preparation of UO{sub 2}, ThO{sub 2} and (Th,U)O{sub 2} pellets from photochemically-prepared nano-powders

    Energy Technology Data Exchange (ETDEWEB)

    Pavelková, Tereza [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 115 19 Praha 1 (Czech Republic); Čuba, Václav, E-mail: vaclav.cuba@fjfi.cvut.cz [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 115 19 Praha 1 (Czech Republic); Visser-Týnová, Eva de [Nuclear Research and Consultancy Group (NRG), Research & Innovation, Westerduinweg 3, 1755 LE Petten (Netherlands); Ekberg, Christian [Nuclear Chemistry/Industrial Materials Recycling, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Persson, Ingmar [Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala (Sweden)

    2016-02-15

    Photochemically-induced preparation of nano-powders of crystalline uranium and/or thorium oxides and their subsequent pelletizing has been investigated. The preparative method was based on the photochemically induced formation of amorphous solid precursors in aqueous solution containing uranyl and/or thorium nitrate and ammonium formate. The EXAFS analyses of the precursors shown that photon irradiation of thorium containing solutions yields a compound with little long-range order but likely “ThO{sub 2} like” and the irradiation of uranium containing solutions yields the mixture of U(IV) and U(VI) compounds. The U-containing precursors were carbon free, thus allowing direct heat treatment in reducing atmosphere without pre-treatment in the air. Subsequent heat treatment of amorphous solid precursors at 300–550 °C yielded nano-crystalline UO{sub 2}, ThO{sub 2} or solid (Th,U)O{sub 2} solutions with high purity, well-developed crystals with linear crystallite size <15 nm. The prepared nano-powders of crystalline oxides were pelletized without any binder (pressure 500 MPa), the green pellets were subsequently sintered at 1300 °C under an Ar:H{sub 2} (20:1) mixture (UO{sub 2} and (Th,U)O{sub 2} pellets) or at 1600 °C in ambient air (ThO{sub 2} pellets). The theoretical density of the sintered pellets varied from 91 to 97%. - Highlights: • Photochemically prepared UO{sub 2}/ThO{sub 2} nano-powders were pelletized. • The nano-powders of crystalline oxides were pelletized without any binder. • Pellets were sintered at 1300 °C (UO{sub 2} and (Th,U)O{sub 2}) or 1600 °C (ThO{sub 2} pellets). • The theoretical density of the sintered pellets varies from 91 to 97%.

  11. UO2 corrosion in high surface-area-to-volume batch experiments

    International Nuclear Information System (INIS)

    Bates, J. K.; Finch, R. J.; Hanchar, J. M.; Wolf, S. F.

    1997-01-01

    Unsaturated drip tests have been used to investigate the alteration of unirradiated UO 2 and spent UO 2 fuel in an unsaturated environment such as may be expected in the proposed repository at Yucca Mountain. In these tests, simulated groundwater is periodically injected onto a sample at 90 C in a steel vessel. The solids react with the dripping groundwater and water condensed on surfaces to form a suite of U(VI) alteration phases. Solution chemistry is determined from leachate at the bottom of each vessel after the leachate stops interacting with the solids. A more detailed knowledge of the compositional evolution of the leachate is desirable. By providing just enough water to maintain a thin film of water on a small quantity of fuel in batch experiments, we can more closely monitor the compositional changes to the water as it reacts to form alteration phases

  12. Study on the effect of UO2 composition on dissolution of sintered (Th-U)O2 MOX by microwave heating

    International Nuclear Information System (INIS)

    Singh, G.; Malav, R.K.; Fulzele, A.K.; Prakash, A.; Afzal, Md.; Panakkal, J.P.

    2010-01-01

    Full text: Complete dissolution of sample is a prerequisite for any chemical analysis in liquid form. Dissolution of ThO 2 based mixed oxide sample like (Th-U)O 2 , (Th-Pu)O 2 is a challenging job due to single oxidation state of thorium (IV). The present paper describes a study carried out on effect of UO 2 composition on dissolution of sintered (Th-U)O 2 mixed oxide pellets, in 0.05M HF prepared in 16 M HNO 3 . The experiments were performed in PTFE pressure vessels which could stand up to ∼ 250 deg C and safely operated up to 120 psi in an indigenous 700 watts microwave digestion system. ThO 2 , ThO 2 -3.75%UO 2 and ThO 2 -5%UO 2 pellets (∼ 6 g each) were dissolved in 60 mL of 16M HNO 3 /HF mixtures (0.05M HF in 16 M HNO 3 ) in PTFE (teflon) made pressure vessels (each experiment triplicate) at a pressure of ∼ 120 psi. Samples (two at an instant) were withdrawn after each hour and Th in the solution was determined by EDTA complexometric titration where end point was detected visually. Table 1 shows the results of percent dissolution of Th (mean of three experiments) for the sintered pellet after each interval of time until 100% dissolution. The plot for percent dissolution of Th (mean Th %) against time taken for sintered pellets is shown. Application of microwave heating has been applied for the dissolution of uncrushed sintered ThO 2 and (Th-U)O 2 pellets. It is quite evident from Th% dissolved versus time curves that the dissolution is faster as percentage of UO 2 in (Th-U)O 2 MOX solid solution increases. This is attributed to UO 2 as it can easily absorb microwave energy, leading to high temperature

  13. Feasibility to convert an advanced PWR from UO2 to a mixed U/ThO2 core – Part I: Parametric studies

    International Nuclear Information System (INIS)

    Maiorino, Jose R.; Stefani, Giovanni Laranjo; Moreira, João M.L.; Rossi, Pedro C.R.; Santos, Thiago A.

    2017-01-01

    Highlights: • Neutronics calculation using SERPENT code. • Conversion of an advanced PWR from a UO 2 to (U-Th)O 2 core. • AP 1000-advanced PWR. • Parametric studies to define a converted core. • Demonstration of the feasibility to convert the AP 1000 by using mixed uranium thorium oxide fuel with advantages. - Abstract: This work presents the neutronics and thermal hydraulics feasibility to convert the UO 2 core of the Westinghouse AP1000 in a (U-Th)O 2 core by performing a parametric study varying the type of geometry of the pins in fuel elements, using the heterogeneous seed blanket concept and the homogeneous concept. In the parametric study, all geometry and materials for the burnable poison were kept the same as the AP 1000, and the only variable was the fuel pin material, in which we use several mass proportion of uranium and thorium but keeping the enrichment in 235 U, as LEU (20 w/o). The neutronics calculations were made by SERPENT code, and to validate the thermal limits we used a homemade code. The optimization criteria were to maximize the 233 U, and conversion factor, and minimize the plutonium production. The results obtained showed that the homogeneous concept with three different mass proportion zones, the first containing (32% UO 2 -68%ThO 2 ); the second with (24% UO 2 -76% ThO 2 ), and the third with (20% UO 2 -80% ThO 2 ), using 235 U LEU (20 w/o), and corresponding with the 3 enrichment zones of the AP 1000 (4.45 w/o; 3.40 w/o; 2.35 w/o), satisfies the optimization criteria as well as attending all thermal constrain. The concept showed advantages compared with the original UO 2 core, such a lower power density, and keeping the same 18 months of cycle a reduction of B-10 concentration at the soluble poison as well as eliminating in the integral boron poison coated (IFBA).

  14. The creep of UO2 fuel doped with Nb2O5

    International Nuclear Information System (INIS)

    Sawbridge, P.T.; Reynolds, G.L.; Burton, B.

    1981-01-01

    The creep of UO 2 containing small additions of Nb 2 O 5 has been investigated in the stress range 0.5-90 MN/m 2 at temperatures between 1422 and 1573 K. The functional dependence of the creep rate of five dopant concentrations up to 0.8 mol% Nb 2 O 5 has been examined and it was established that in all the materials the secondary creep rate could be represented by the equation epsilonkT = Asigmasup(n) exp(-Q/RT), where epsilon is the steady state creep rate per hour, Q the activation energy and A and n are constants for each material. It was observed that Nb 2 O 5 additions can cause a dramatic increase in the steady state creep rate as long as the niobium ion is maintainde in the Nb 5+ valence state. Material containing 0.4 mol% Nb 2 O 5 creeps three orders of magnitude faster than the pure material. Analysis of the results in terms of grain size compensated viscosity suggest that, like pure UO 2 , the creep rate of Nb 2 O 5 doped fuel is diffusion-controlled and proportional to the reciprocal square of the grain size. A model is developed which suggests that the increase in creep rate results from suppression of the U 5+ ion concentration by the addition of Nb 5+ ions, which modifies the crystal defect structure and hence the uranium ion diffusion coefficient. (orig.)

  15. Evidence of sequential interatomic decay in argon trimers obtained by electron-triple-ion coincidence spectroscopy

    International Nuclear Information System (INIS)

    Liu, X-J; Saito, N; Fukuzawa, H; Morishita, Y; Stoychev, S; Kuleff, A; Suzuki, I H; Tamenori, Y; Richter, R; Pruemper, G; Ueda, K

    2007-01-01

    Sequential interatomic decay, where the first step is an Auger decay with interatomic character and the second step is a pure interatomic Coulombic decay (ICD), is identified in Ar trimers Ar 3 . The 2p hole state in Ar 3 decays via the L 2,3 M 1 M 2,3 Auger to the one-site two-hole states Ar ++ (3s -1 3p -1 )-Ar-Ar that couples to the two-site satellite states Ar + (3p -2 nl)-Ar + (3p -1 )-Ar. These states are subject to ICD to the states Ar + (3p -1 )-Ar + (3p -1 )-Ar + (3p -1 ), in which the nl electron fills the 3p hole in the same Ar site and one of the 3p electrons in the third Ar site is emitted as a slow ICD electron. This ICD process is identified unambiguously by electron-ion-ion-ion coincidence spectroscopy in which the kinetic energy of the slow ICD electron and the kinetic energy release among the three Ar + ions are measured in coincidence. (fast track communication)

  16. Modelling the high burnup UO2 structure in LWR fuel

    International Nuclear Information System (INIS)

    Lassmann, K.; Walker, C.T.; Laar, J. van de; Lindstroem, F.

    1995-01-01

    The concept of a burnup threshold for the formation of the high burnup UO 2 structure (HBS) is supported by experimental data, which also reveal that a transition zone exists between the normal UO 2 structure and the fully developed HBS. From the analysis of radial xenon profiles measured by EPMA a threshold burnup is obtained in the range 60-75 GW d/t U. The lower value is considered to be the threshold for the onset of the HBS and the higher value the threshold for the fully developed HBS. Xenon depletion in the transition zone and the fully developed HBS can be described by a simple model. At local burnups above 120 GW d/t U the xenon generated is in equilibrium with the xenon lost to the fission gas pores and the concentration does not fall below 0.25 wt%. The TRANSURANUS burnup model TUBRNP predicts reasonably well the penetration of the HBS and the associated xenon depletion up to a cross section average burnup of approximately 70 GW d/t U. (orig.)

  17. A molecular dynamics study of solid and liquid UO2

    International Nuclear Information System (INIS)

    Sindzingre, P.; Gillan, M.J.

    1988-01-01

    We present an extensive series of molecular dynamics simulations of UO 2 in the solid and liquid states, in which we calculate the ionic diffusion coefficients and some of the important thermodynamic quantities. The simulations are based on a rigid-ion model derived from the new shell model potentials of Jackson and co-workers and make use of recently developed constant-pressure and constant-temperature techniques. The simulations confirm that UO 2 is an oxygen superionic conductor, as suggested by recent neutron scattering experiments. The temperature of the diffuse transition to the superionic regime is in satisfactory agreement with experiment, as is the melting point of the model system. The thermal expansion coefficient, specific heat and bulk modulus for the solid agree well with experiment below about 2500 K but are less satisfactory near the melting point; we suggest that the differences may be due to the effect of electronic excitations. The volume increase on melting and thermodynamic quantities of the liquid are sensitive to details of the inter-ionic potentials and are in only fair agreement with experiment. (author)

  18. Radiolytic modelling of spent fuel oxidative dissolution mechanism. Calibration against UO2 dynamic leaching experiments

    International Nuclear Information System (INIS)

    Merino, J.; Cera, E.; Bruno, J.; Quinones, J.; Casas, I.; Clarens, F.; Gimenez, J.; Pablo, J. de; Rovira, M.; Martinez-Esparza, A.

    2005-01-01

    Calibration and testing are inherent aspects of any modelling exercise and consequently they are key issues in developing a model for the oxidative dissolution of spent fuel. In the present work we present the outcome of the calibration process for the kinetic constants of a UO 2 oxidative dissolution mechanism developed for using in a radiolytic model. Experimental data obtained in dynamic leaching experiments of unirradiated UO 2 has been used for this purpose. The iterative calibration process has provided some insight into the detailed mechanism taking place in the alteration of UO 2 , particularly the role of · OH radicals and their interaction with the carbonate system. The results show that, although more simulations are needed for testing in different experimental systems, the calibrated oxidative dissolution mechanism could be included in radiolytic models to gain confidence in the prediction of the long-term alteration rate of the spent fuel under repository conditions

  19. Grain growth behavior of Cr dispersed UO{sub 2} pellets according to change of oxygen potential during the isothermal sintering

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jang Soo; Yang, Jae Ho; Kim, Dong Joo; Kim, Jong Hun; Nam, Ik Hui; Rhee, Young Woo; Kim, Keon Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    Recent development of advanced UO{sub 2} pellet materials for commercial reactors is mainly focused on the large grain pellet which can deform easily at an elevated temperature. Cr{sub 2}O{sub 3}-doped UO{sub 2} pellet is one of the promising candidates. To increase the grain size effectively, it is important to control the additive content and sintering atmosphere. Relevant research on the Cr{sub 2}O{sub 3} doped UO{sub 2} system revealed that the doped Cr{sub 2}O{sub 3} formed a liquid phase under optimized oxygen potential, and those liquid phases promoted the grain growth. Recent work also showed that step-wise variation of sintering atmosphere during the isothermal annealing step significantly increased the grain size of Cr{sub 2}O{sub 3} doped UO{sub 2} pellet. In this paper, we investigated effect of oxygen potential change at the beginning of isothermal sintering stage on the grain growth in metallic Cr dispersed UO{sub 2} pellets. The study on the milling effect of powder mixture on the grain growth is also a part of this work.

  20. Determination of the extent of reduction of dense UO{sub 2} cathodes from direct electrochemical reduction studies in molten chloride medium

    Energy Technology Data Exchange (ETDEWEB)

    Sri Maha Vishnu, D.; Sanil, N. [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Murugesan, N. [Materials Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Shakila, L. [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Ramesh, C. [Materials Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Mohandas, K.S., E-mail: ksmd@igcar.gov.in [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Nagarajan, K. [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2012-08-15

    Electro-reduction of solid UO{sub 2} to U has been studied with molten CaCl{sub 2} or LiCl as the electrolyte medium. Electro-reduction of thick (>3 mm), powder compacted and sintered pellets of UO{sub 2} showed incomplete reduction resulting in a mixture of uranium metal and UO{sub 2}. The extent of reduction of UO{sub 2} to U was determined by employing a novel method called 'metal estimation by hydrogen sensor (MEHS)', in which the hydrogen evolved during the reaction of U metal in the reduced product with con. HBr was measured using an in-house developed polymer electrolyte based amperometric hydrogen sensor. The results of our investigations on incompletely reduced UO{sub 2} pellets in both CaCl{sub 2} and LiCl melts showed that the extent of reduction of different regions of the oxide pellet was different. It varied from 88.3% on the surface of the pellet as against 3.7% towards the centre bulk during electro-reduction in CaCl{sub 2} (at 1173 K). The metallisation was found restricted to the surface of the pellets reduced in LiCl melt (at 923 K). Electro-reduction of small chunks of UO{sub 2} pellet in CaCl{sub 2} melt resulted in products with lower extent of reduction. Based on the measurements, a probable mechanism on the propagation of reduction through the solid UO{sub 2} matrix during the electrochemical reduction process has been proposed.

  1. Leaching action of EJ-13 water on unirradiated UO2 surfaces under unsaturated conditions at 90 degree C: Interim report

    International Nuclear Information System (INIS)

    Wronkiewicz, D.J.; Bates, J.K.; Gerding, T.J.; Veleckis, E.; Tani, B.S.

    1991-07-01

    A set of experiments, based on the application of the Unsaturated Test method to the reaction of UO 2 with EJ-13 water, has been conducted over a period of 182.5 weeks. One half of the experiments have been terminated, while one half are still ongoing. Solutions that have dripped from UO 2 specimens have been analyzed for all experiments, while the reacted UO 2 surfaces have been examined for only the terminated experiments. A pulse of uranium release from the UO 2 solid, in conjunction with the formation of dehydrated schoepite on the surface of the UO 2 , was observed during the 39- to 96-week period. Thereafter, the uranium release decreased and a second set of secondary phases was observed. The latter phases incorporate cations from the EJ-13 water and include boltwoodite, uranophane, sklodowskite, compreignacite, and schoepite. The experiments are being continued to monitor for additional changes in solution composition and secondary phase formation, and have now reached the 319-week period. 9 refs., 17 figs., 25 tabs

  2. Magnetic structure and lattice deformation in UO/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Aksenov, V L; Frauenheim, T; Sikora, V [Joint Inst. for Nuclear Research, Dubna (USSR)

    1981-12-21

    The magnetic phase transition in UO/sub 2/ is studied by means of a group theoretical analysis and the admitted symmetry groups in the low temperature phase are determined. With the help of the neutron diffraction data of Faber and Lander a three-arm magnetic and crystallographic structure with two types of translational domains is found and a new interpretation of the experiment of Faber and Lander is given.

  3. Nitrate conversion and supercritical fluid extraction of UO{sub 2}-CeO{sub 2} solid solution prepared by an electrolytic reduction-coprecipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, L.Y. [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology; China Institute of Atomic Energy, Beijing (China); Duan, W.H.; Wen, M.F.; Xu, J.M.; Zhu, Y.J. [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology

    2014-04-01

    A low-waste technology for the reprocessing of spent nuclear fuel (SNF) has been developed recently, which involves the conversion of actinide and lanthanide oxides with liquid N{sub 2}O{sub 4} into their nitrates followed by supercritical fluid extraction of the nitrates. The possibility of the reprocessing of SNF from high-temperature gas-cooled reactors (HTGRs) with nitrate conversion and supercritical fluid extraction is a current area of research in China. Here, a UO{sub 2}-CeO{sub 2} solid solution was prepared as a surrogate for a UO{sub 2}-PuO{sub 2} solid solution, and the recovery of U and Ce from the UO{sub 2}-CeO{sub 2} solid solution with liquid N{sub 2}O{sub 4} and supercritical CO{sub 2} containing tri-n-butyl phosphate (TBP) was investigated. The UO{sub 2}-CeO{sub 2} solid solution prepared by electrolytic reduction-coprecipitation method had square plate microstructures. The solid solution after heat treatment was completely converted into nitrates with liquid N{sub 2}O{sub 4}. The XRD pattern of the nitrates was similar to that of UO{sub 2}(NO{sub 3}){sub 2} . 3H{sub 2}O. After 120 min of online extraction at 25 MPa and 50 , 99.98% of the U and 98.74% of the Ce were recovered from the nitrates with supercritical CO{sub 2} containing TBP. The results suggest a promising potential technology for the reprocessing of SNF from HTGRs. (orig.)

  4. Grain boundary corrosion and alteration phase formation during the oxidative dissolution of UO{sub 2} pellets

    Energy Technology Data Exchange (ETDEWEB)

    Wronkiewicz, D.J.; Buck, E.C.; Bates, J.K.

    1996-12-31

    Alteration behavior of UO{sub 2} pellets following reaction under unsaturated drip-test conditions at 90 C for up to 10 years was examined by solid phase and leachate analyses. Sample reactions were characterized by preferential dissolution of grain boundaries between the original press-sintered UO{sub 2} granules comprising the samples, development of a polygonal network of open channels along the intergrain boundaries, and spallation of surface granules that had undergone severe grain boundary corrosion. The development of a dense mat of alteration phases after 2 years of reaction trapped loose granules, resulting in reduced rates of particulate U release. The paragenetic sequence of alteration phases that formed on the present samples was similar to that observed in surficial weathering zones of natural uraninite (UO{sub 2}) deposits, with alkali and alkaline earth uranyl silicates representing the long-term solubility-limiting phases for U in both systems.

  5. Thermal stress in UO2 during sintering as a possible cause of cracking

    International Nuclear Information System (INIS)

    Aragones, M.A.; Tobias, E.; Tulli, I.; Naquid, C.

    1980-01-01

    Thermal stresses arising during sintering of UO 2 pellets are evaluated numerically by the solution of coupled equations for heat transfer through the sample. Results are compared with those of a semiempirical approach reported in the literature. Better insight into the heat transfer process is obtained from the solution of the coupled equations rather than from the empirical approach. The two approaches give different results for the thermal stresses arising during sintering. The use of heating and cooling rates of approximately 0.5 0 Cs -1 is found to prevent the possibility of cracking in UO 2 pellets of radii varying from 0.6 cm to 1 cm during sintering in hydrogen or argon-hydrogen atmospheres. (author)

  6. Interatomic Coulombic electron capture

    International Nuclear Information System (INIS)

    Gokhberg, K.; Cederbaum, L. S.

    2010-01-01

    In a previous publication [K. Gokhberg and L. S. Cederbaum, J. Phys. B 42, 231001 (2009)] we presented the interatomic Coulombic electron capture process--an efficient electron capture mechanism by atoms and ions in the presence of an environment. In the present work we derive and discuss the mechanism in detail. We demonstrate thereby that this mechanism belongs to a family of interatomic electron capture processes driven by electron correlation. In these processes the excess energy released in the capture event is transferred to the environment and used to ionize (or to excite) it. This family includes the processes where the capture is into the lowest or into an excited unoccupied orbital of an atom or ion and proceeds in step with the ionization (or excitation) of the environment, as well as the process where an intermediate autoionizing excited resonance state is formed in the capturing center which subsequently deexcites to a stable state transferring its excess energy to the environment. Detailed derivation of the asymptotic cross sections of these processes is presented. The derived expressions make clear that the environment assisted capture processes can be important for many systems. Illustrative examples are presented for a number of model systems for which the data needed to construct the various capture cross sections are available in the literature.

  7. A uranium-based UO_2"+-Mn"2"+ single-chain magnet assembled trough cation-cation interactions

    International Nuclear Information System (INIS)

    Mougel, Victor; Chatelain, Lucile; Hermle, Johannes; Pecaut, Jacques; Mazzanti, Marinella; Caciuffo, Roberto; Colineau, Eric; Tuna, Floriana; Magnani, Nicola; Geyer, Arnaud de

    2014-01-01

    Single-chain magnets (SCMs) are materials composed of magnetically isolated one-dimensional (1D) units exhibiting slow relaxation of magnetization. The occurrence of SCM behavior requires the fulfillment of stringent conditions for exchange and anisotropy interactions. Herein, we report the synthesis, the structure, and the magnetic characterization of the first actinide-containing SCM. The 5f-3d heterometallic 1D chains [{[UO_2(salen)(py)][M(py)_4](NO_3)}]_n, (M=Cd (1) and M=Mn (2); py=pyridine) are assembled trough cation-cation interaction from the reaction of the uranyl(V) complex [UO_2(salen)py][Cp"*_2Co] (Cp"*=pentamethylcyclopentadienyl) with Cd(NO_3)_2 or Mn(NO_3)_2 in pyridine. The infinite UMn chain displays a high relaxation barrier of 134±0.8 K (93±0.5 cm"-"1), probably as a result of strong intra-chain magnetic interactions combined with the high Ising anisotropy of the uranyl(V) dioxo group. It also exhibits an open magnetic hysteresis loop at T<6 K, with an impressive coercive field of 3.4 T at 2 K.

  8. Determination of organic phosphorus in UO2C2O4·TRPO complex

    International Nuclear Information System (INIS)

    Guo Yifei; Yuan Jianhua; Liang Junfu; Jiao Rongzhou; Liu Xiuqin

    2001-01-01

    Organic phosphorus in UO 2 C 2 O 4 ·TRPO complex is converted to inorganic phosphorous with H 2 SO 4 -HNO 3 -H 2 O 2 wet cinefaction method. In 0.14 mol/L H 2 SO 4 solution containing water soluble poly vinylalcohol as stabilizing agent, the highly sensitive ion-associates are formed by the reaction of basic dye ethyl violet with heteropoly molybdophosphoric blue. Spectrophotometric method is used for determination of phosphorus with these ion-associates. The absorbance maximum is at 620 nm. Determination of phosphorus is not affected with mass ratios R(UO 2 2+ /P) ≤ 1.4 x 10 3 , R(C 2 O 4 2- /P) ≤ 8.8 x 10 2 and R(C 2 O 4 2- /P ≤ 3.6 x 10 4 (one time wet cinefaction must be carried out). In aqueous phase, phosphorus can be directly developed and determined. This method is contrasted with poly vinylalcohol-Rodamine B-heteropoly molybdophosphoric blue, analytical results are in good coincidence. Conversion ratio of phosphorus is 99.8% - 101.1%. The minimum detection limit is 0.02 mg/L. The relative standard deviation is 3%. The recovery ratio is 97% - 103%

  9. The oxidative dissolution of unirradiated UO2 by hydrogen peroxide as a function of pH

    International Nuclear Information System (INIS)

    Clarens, F.; Pablo, J. de; Casas, I.; Gimenez, J.; Rovira, M.; Merino, J.; Cera, E.; Bruno, J.; Quinones, J.; Martinez-Esparza, A.

    2005-01-01

    The dissolution of non-irradiated UO 2 was studied as a function of both pH and hydrogen peroxide concentration (simulating radiolytic generated product). At acidic pH and a relatively low hydrogen peroxide concentration (10 -5 mol dm -3 ), the UO 2 dissolution rate decreases linearly with pH while at alkaline pH the dissolution rate increases linearly with pH. At higher H 2 O 2 concentrations (10 -3 mol dm -3 ) the dissolution rates are lower than the ones at 10 -5 mol dm -3 H 2 O 2 , which has been attributed to the precipitation at these conditions of studtite (UO 4 . 4H 2 O, which was identified by X-ray diffraction), together with the possibility of hydrogen peroxide decomposition. In the literature, spent fuel dissolution rates determined in the absence of carbonate fall in the H 2 O 2 concentration range 5 x 10 -7 - 5 x 10 -5 mol dm -3 according to our results, which is in agreement with H 2 O 2 concentrations determined in spent fuel leaching experiments

  10. In-situ TEM observation of nano-void formation in UO2 under irradiation

    Science.gov (United States)

    Sabathier, C.; Martin, G.; Michel, A.; Carlot, G.; Maillard, S.; Bachelet, C.; Fortuna, F.; Kaitasov, O.; Oliviero, E.; Garcia, P.

    2014-05-01

    Transmission electron microscopy (TEM) observations of UO2 polycrystals irradiated in situ with 4 MeV Au ions were performed at room temperature (RT) to better understand the mechanisms of cavity and ultimately fission products nucleation in UO2. Experiments were carried out at the JANNuS Orsay facility that enables in situ ion irradiations inside the microscope to be carried out. The majority of 4 MeV gold ions were transmitted through the thin foil, and the induced radiation defects were investigated by TEM. Observations showed that nano-void formation occurs at ambient temperature in UO2 thin foils irradiated with energetic heavy ions under an essentially nuclear energy loss regime. The diameter and density of nano-objects were measured as a function of the gold irradiation dose at RT. A previous paper has also revealed a similar nano-object population after a Xe implantation performed at 390 keV at 870 K. The nano-object density was modelled using simple concepts derived from Classical Molecular Dynamics simulations. The results are in good agreement, which suggests a mechanism of heterogeneous nucleation induced by energetic cascade overlaps. This indicates that nano-void formation mechanism is controlled by radiation damage. Such nanovoids are likely to act as sinks for mobile fission products during reactor operation.

  11. CLUMPED LIGHT WATER MODERATED UO$sub 2$ SUPERHEAT CRITICALS. PART II. ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G. T.

    1963-11-15

    Critical and subcritical reactivity measurements on an EVESR-type core, using EVESR UO/sub 2/ superheat fuel elements, are analyzed in order to obtain a physics design model for use in the EVESR. (T.F.H.)

  12. Comparative study of the different industrial manufacturing routes for UO2 pellet specifications through the wet process

    International Nuclear Information System (INIS)

    Palheiros, Franklin; Gonzaga, Reinaldo; Soares, Alexandre

    2009-01-01

    In the fuel cycle, converting UF 6 to UO 2 powder is an intermediate step for fabrication of pellets for fuel assemblies to be used in nuclear power plants. The basic proposal common to the different powder fabrication processes is to provide raw material capable of being processed into the form of pellets. The wet processes is the most often used industrially and are divided in two categories: the ADU (Ammonium Diuranate) and AUC (Ammonium Uranyl Carbonate) processes, whose names originate in the precipitate obtained in aqueous solution during the intermediate steps of UO 2 powder fabrication. It has known that the powder characteristics have a considerable influence in the UO 2 pellet manufacturing and quality characteristics. INB has used the AUC process to produce UO 2 pellets and supply fuel to Angra 1 and 2 Nuclear Power Plants. Despite of this process is characterized by the precipitation of a different intermediate precipitate compared to the ADU route (i.e., (NH 4 ) 4 UO 2 (CO 3 ) 3 , in the AUC process, and (NH 4 ) 2 U 2 O 7 in ADU process) leading to some slight differences in the final pellet microstructure, it has been considered that the models that predict the pellet behavior during irradiation in a nuclear reactor are basically the same compared to those used to predict the pellets form the ADU process. In order to evaluate how different the pellets originated from these two industrial routes are, this paper aims to compare the INB production historical data (Angra 1, Cycles 14 and 15) with the key parameters of a common product specification from the ADU process. (author)

  13. Application of boron and gadolinium burnable poison particles in UO2 and PUO2 fuels in HTRs

    International Nuclear Information System (INIS)

    Kloosterman, J.L.

    2003-01-01

    Burnup calculations have been performed on a standard HTR fuel pebble (fuel zone with radius of 2.5 cm surrounded with a 0.5 cm thick graphite layer) and burnable poison particles (BPPs) containing B 4 C made of pure 10 B or containing Gd 2 O 3 made of natural Gd. Two types of fuel were considered: UO 2 fuel made of 8% enriched uranium and PuO 2 fuel made of plutonium from LWR spent fuel. The radius of the BPP and the number of particles per fuel pebble were varied to find the flattest reactivity-to-time curve. For the UO 2 fuel, the reactivity swing is lowest (around 2%) for BPPs made of B 4 C with radius of 75 μm. In this case around 1070 BPPs per fuel pebble are needed. For the PuO 2 fuel to get a reactivity swing below 4%, the optimal radius of the BPP is the same, but the number of particles per fuel pebble should be around 1600. The optimal radius of the Gd 2 O 3 particles in the UO 2 fuel is about 10 times that of the B 4 C particles. The reactivity swing is around 3% when each fuel pebble contains only 9 BPPs with radius of 840 μm. The results of the Gd particles illustrate nicely the usage of black burnable poison particles introduced by Van Dam [Ann. Nuclear Energy 27 (2000) 733

  14. Contribution to the identification and the evaluation of a doped UO2 fuel with controlled oxygen potential

    International Nuclear Information System (INIS)

    Pennisi, Vanessa

    2015-01-01

    Temperature and oxygen partial pressure (PO 2 ) of nuclear oxide fuels are the main parameters governing both their thermochemical evolution in reactor and the speciation of volatile fission products such as Cs, I or Te. An innovative way to limit the risk of cladding rupture by corrosion under irradiation consists in buffering the oxygen partial pressure of the fuel under operation in a PO 2 domain where the fission gas are harmless towards Zr clad, by using solid redox buffers as additives. Niobium, with its NbO 2 /NbO and Nb 2 O 5 /NbO 2 redox couples has been found to be a promising candidate to this end. A manufacturing process of a buffered UO 2 fuel, doped with niobium has been optimized, in order to fulfill usual specifications (density, microstructure). The experimental study of the UO 2 -NbO x system has shown the existence of a liquid phase between UO 2 and NbO x at 810 C, which was not reported in the literature. The characterization of Nb containing phases present in UO 2 both in solid solution and as precipitates has lead us to propose a solubility thermodynamic model of niobium in UO 2 at 1700 C. An extensive study of the niobium precipitates shows the co-existence in the fuel of NbO 2 and NbO as major phases, together with small amounts of metallic Nb. The coexistence of niobium under two oxidation states inside the fuel is a key element of demonstration of a possible in-situ buffering effect, which is likely to impact some properties of the material that are dependent upon PO 2 , such as densification. These results confirm the promising potential of oxygen buffered fuels as regard to their performance in reactor. (author) [fr

  15. Thermophysical properties of liquid UO{sub 2}, ZrO{sub 2} and corium by molecular dynamics and predictive models

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woong Kee; Shim, Ji Hoon [Pohang University of Science and Technology, Pohang (Korea, Republic of); Kaviany Massoud [University of Michigan, Ann Arbor (United States)

    2016-10-15

    The analysis of such accidents (fate of the melt), requires accurate corium thermophysical properties data up to 5000 K. In addition, the initial corium melt superheat melt, determined from such properties, are key in predicting the fuel-coolant interactions (FCIs) and convection and retention of corium in accident scenarios, e.g., core-melt down corium discharge from reactor pressure vessels and spreading in external core-catcher. Due to the high temperatures, data on molten corium and its constituents are limited, so there are much data scatters and mostly extrapolations (even from solid state) have been used. Here we predict the thermophysical properties of molten UO{sub 2} and ZrO{sub 2} using classical molecular dynamics (MD) simulations (properties of corium are predicted using the mixture theories and UO{sub 2} and ZrO{sub 2} properties). The thermophysical properties (density, compressibility, heat capacity, viscosity and surface tension) of liquid UO{sub 2} and ZrO{sub 2} are predicted using classical molecular dynamics simulations, up to 5000 K. For atomic interactions, the CRG and the Teter potential models are found most appropriate. The liquid behavior is verified with the random motion of the constituent atoms and the pair-distribution functions, starting with the solid phase and raising the temperature to realize liquid phase. The viscosity and thermal conductivity are calculated with the Green-Kubo autocorrelation decay formulae and compared with the predictive models of Andrade and Bridgman. For liquid UO{sub 2}, the CRG model gives satisfactory MD predictions. For ZrO{sub 2}, the density is reliably predicted with the CRG potential model, while the compressibility and viscosity are more accurately predicted by the Teter model.

  16. Structural studies of the rhombohedral and orthorhombic monouranates: CaUO{sub 4}, α-SrUO{sub 4}, β-SrUO{sub 4} and BaUO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Gabriel [School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia); Kennedy, Brendan J., E-mail: kennedyb@chem.usyd.edu.au [School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia); Johannessen, Bernt; Kimpton, Justin A. [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia); Avdeev, Maxim; Griffith, Christopher S.; Thorogood, Gordon J.; Zhang, Zhaoming [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234 (Australia)

    2016-05-15

    The structures of some AUO{sub 4} (A=Ca, Sr, or Ba) oxides have been determined using a combination of neutron and synchrotron X-ray diffraction, supported by X-ray absorption spectroscopic measurements at the U L{sub 3}-edge. The smaller Ca cation favours a rhombohedral AUO{sub 4} structure with 8-coordinate UO{sub 8} moieties whilst an orthorhombic structure based on UO{sub 6} groups is found for BaUO{sub 4}. Both the rhombohedral and orthorhombic structures can be stabilised for SrUO{sub 4}. The structural studies suggest that the bonding requirements of the A site cation play a significant role in determining which structure is favoured. In the rhombohedral structure, Bond Valence Sums demonstrate the A site is invariably overbonded, which, in the case of rhombohedral α-SrUO{sub 4}, is compensated for by the formation of vacancies in the oxygen sub-lattice. The uranium cation, with its flexible oxidation state, is able to accommodate this by inducing vacancies along its equatorial coordination site as demonstrated by neutron powder diffraction. - Graphical abstract: Diffraction studies of AUO{sub 4} (A = Ca, Sr, or Ba) oxides reveal the importance of the bonding requirements of the A site cation in determining whether the structure is rhombohedral or orthorhombic. - Highlights: • Structures of AUO{sub 4} ( A = Ca Sr, Ba) refined against X-ray and Neutron diffraction. • The alkali cations size has a dramatic effect on the crystal structure. • Smaller cations favouring a rhombohedral structure. • Oxygen vacancies to stabilise the rhombohedral structure in SrUO{sub 4}.

  17. Production of Depleted UO2Kernels for the Advanced Gas-Cooled Reactor Program for Use in TRISO Coating Development

    International Nuclear Information System (INIS)

    Collins, J.L.

    2004-01-01

    The main objective of the Depleted UO 2 Kernels Production Task at Oak Ridge National Laboratory (ORNL) was to conduct two small-scale production campaigns to produce 2 kg of UO 2 kernels with diameters of 500 ± 20 (micro)m and 3.5 kg of UO 2 kernels with diameters of 350 ± 10 (micro)m for the U.S. Department of Energy Advanced Fuel Cycle Initiative Program. The final acceptance requirements for the UO 2 kernels are provided in the first section of this report. The kernels were prepared for use by the ORNL Metals and Ceramics Division in a development study to perfect the triisotropic (TRISO) coating process. It was important that the kernels be strong and near theoretical density, with excellent sphericity, minimal surface roughness, and no cracking. This report gives a detailed description of the production efforts and results as well as an in-depth description of the internal gelation process and its chemistry. It describes the laboratory-scale gel-forming apparatus, optimum broth formulation and operating conditions, preparation of the acid-deficient uranyl nitrate stock solution, the system used to provide uniform broth droplet formation and control, and the process of calcining and sintering UO 3 · 2H 2 O microspheres to form dense UO 2 kernels. The report also describes improvements and best past practices for uranium kernel formation via the internal gelation process, which utilizes hexamethylenetetramine and urea. Improvements were made in broth formulation and broth droplet formation and control that made it possible in many of the runs in the campaign to produce the desired 350 ± 10-(micro)m-diameter kernels, and to obtain very high yields

  18. High temperature investigation of the solid/liquid transition in the PuO2-UO2-ZrO2 system

    Science.gov (United States)

    Quaini, A.; Guéneau, C.; Gossé, S.; Sundman, B.; Manara, D.; Smith, A. L.; Bottomley, D.; Lajarge, P.; Ernstberger, M.; Hodaj, F.

    2015-12-01

    The solid/liquid transitions in the quaternary U-Pu-Zr-O system are of great interest for the analysis of core meltdown accidents in Pressurised Water Reactors (PWR) fuelled with uranium-dioxide and MOX. During a severe accident the Zr-based cladding can become completely oxidised due to the interaction with the oxide fuel and the water coolant. In this framework, the present analysis is focused on the pseudo-ternary system UO2-PuO2-ZrO2. The melting/solidification behaviour of five pseudo-ternary and one pseudo-binary ((PuO2)0.50(ZrO2)0.50) compositions have been investigated experimentally by a laser heating method under pre-set atmospheres. The effects of an oxidising or reducing atmosphere on the observed melting/freezing temperatures, as well as the amount of UO2 in the sample, have been clearly identified for the different compositions. The oxygen-to-metal ratio is a key parameter affecting the melting/freezing temperature because of incongruent vaporisation effects. In parallel, a detailed thermodynamic model for the UO2-PuO2-ZrO2 system has been developed using the CALPHAD method, and thermodynamic calculations have been performed to interpret the present laser heating results, as well as the high temperature behaviour of the cubic (Pu,U,Zr)O2±x-c mixed oxide phase. A good agreement was obtained between the calculated and experimental data points. This work enables an improved understanding of the major factors relevant to severe accident in nuclear reactors.

  19. Thermal diffusivity measurements between 0 0C and 2000 0C: application to UO2

    International Nuclear Information System (INIS)

    Van Craeynest, J.C.; Weilbacher, J.C.; Lallement, R.

    1969-01-01

    We have built two types of apparatus to measure the thermal diffusivity of ceramic fuels. The first apparatus, based on Angstrom's method, operates between 0 deg. C and 1000 deg. C. Satisfactory results have been obtained for iron, nickel and molybdenum. The other apparatus, based on Cowan's method, operates between 1000 deg. C and 2000 deg. C on thin slabs. The thermal conductivity of UO 2 has been measured from 0 deg. C to 2000 deg. C. There is a good agreement between our results and the well known values for UO 2 . (authors) [fr

  20. Description and crystal structure of albrechtschraufite, MgCa{sub 4}F{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}]{sub 2}.17-18H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Mereiter, K. [Vienna Univ. of Technology (Austria). Inst. of Chemical Technologies and Analytics

    2013-04-15

    Albrechtschraufite, MgCa{sub 4}F{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}]{sub 2}.17-18H{sub 2}O, triclinic, space group P anti 1, a = 13.569(2), b = 13.419(2), c = 11.622(2) Aa, α = 115.82(1), β = 107.61(1), γ = 92.84(1) (structural unit cell, not reduced), V = 1774.6(5) Aa{sup 3}, Z = 2, Dc = 2.69 g/cm{sup 3} (for 17.5 H{sub 2}O), is a mineral that was found in small amounts with schroeckingerite, NaCa{sub 3}F[UO{sub 2}(CO{sub 3}){sub 3}](SO{sub 4}).10H{sub 2}O, on a museum specimen of uranium ore from Joachimsthal (Jachymov), Czech Republic. The mineral forms small grain-like subhedral crystals (= 0.2 mm) that resemble in appearance liebigite, Ca{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}]. ∝ 11H{sub 2}O. Colour pale yellow-green, luster vitreous, transparent, pale bluish green fluorescence under ultraviolet light. Optical data: Biaxial negative, nX = 1.511(2), nY = 1.550(2), nZ = 1.566(2), 2V = 65(1) (λ = 589 nm), r < v weak. After qualitative tests had shown the presence of Ca, U, Mg, CO{sub 2} and H{sub 2}O, the chemical formula was determined by a crystal structure analysis based on X-ray four-circle diffractometer data. The structure was later on refined with data from a CCD diffractometer to R1 = 0.0206 and wR2 = 0.0429 for 9,236 independent observed reflections. The crystal structure contains two independent [UO{sub 2}(CO{sub 3}){sub 3}]{sup 4-} anions of which one is bonded to two Mg and six Ca while the second is bonded to only one Mg and three Ca. Magnesium forms a MgF{sub 2}(O{sub carbonate}){sub 3}(H{sub 2}O) octahedron that is linked via the F atoms with three Ca atoms so as to provide each F atom with a flat pyramidal coordination by one Mg and two Ca. Calcium is 7- and 8-coordinate forming CaFO{sub 6}, CaF{sub 2}O{sub 2}(H{sub 2}O){sub 4}, CaFO{sub 3}(H{sub 2}O){sub 4} and CaO{sub 2}(H{sub 2}O){sub 6} coordination polyhedra. The crystal structure is built up from MgCa{sub 3}F{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}].8H{sub 2}O layers parallel to (001) which

  1. High temperature drop calorimetric studies on La6UO12 and Nd6UO12

    International Nuclear Information System (INIS)

    Babu, R.; Senapati, A.; Rao, G.J.; Venkata Krishnan, R.; Ananthasivan, K.; Nagarajan, K.

    2014-01-01

    Rare earth elements produced in the reactor during irradiation can interact with the fuel. Under transient conditions, compounds of formula, RE 6 UO 12 with rhombohedral crystal structure are expected to be formed. Hence, thermodynamic properties of these compounds are useful in interpreting the behaviour of fuels during irradiation. Thermal expansion and heat capacities by DSC have been reported for La 6 UO 12 and Nd 6 UO 12 . There are no experimentally measured values of enthalpy. Hence, measurements on enthalpy increments of La 6 UO 12 and Nd 6 UO 12 were carried out for the first time by inverse drop calorimetry in the temperature range 534-1738 K and computed the thermodynamic functions

  2. Structural effects in UO{sub 2} thin films irradiated with fission-energy Xe ions

    Energy Technology Data Exchange (ETDEWEB)

    Popel, A.J., E-mail: apopel@cantab.net [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ (United Kingdom); Lebedev, V.A. [Lomonosov Moscow State University, Moscow, 119991 (Russian Federation); Martin, P.G. [Interface Analysis Centre, School of Physics, University of Bristol, Bristol, BS8 1TL (United Kingdom); Shiryaev, A.A. [Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Moscow (Russian Federation); Lomonosov Moscow State University, Moscow, 119991 (Russian Federation); Lampronti, G.I. [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ (United Kingdom); Springell, R. [Interface Analysis Centre, School of Physics, University of Bristol, Bristol, BS8 1TL (United Kingdom); Kalmykov, S.N. [Lomonosov Moscow State University, Moscow, 119991 (Russian Federation); National Research Centre “Kurchatov Institute”, 123098, Moscow (Russian Federation); Scott, T.B. [Interface Analysis Centre, School of Physics, University of Bristol, Bristol, BS8 1TL (United Kingdom); Monnet, I.; Grygiel, C. [CIMAP, CEA-CNRS-ENSICAEN-Université de Caen, BP 5133, 14070, Caen, Cedex5 (France); Farnan, I. [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ (United Kingdom)

    2016-12-15

    Uranium dioxide thin films have been successfully grown on LSAT (Al{sub 10}La{sub 3}O{sub 51}Sr{sub 14}Ta{sub 7}) substrates by reactive magnetron sputtering. Irradiation by 92 MeV {sup 129}Xe{sup 23+} ions to simulate fission damage that occurs within nuclear fuels caused microstructural and crystallographic changes. Initially flat and continuous thin films were produced by magnetron sputtering with a root mean square roughness of 0.35 nm determined by AFM. After irradiation, this roughness increased to 60–70 nm, with the films developing discrete microstructural features: small grains (∼3 μm), along with larger circular (up to 40 μm) and linear formations with non-uniform composition according to the SEM, AFM and EDX results. The irradiation caused significant restructuring of the UO{sub 2} films that was manifested in significant film-substrate mixing, observed through EDX analysis. Diffusion of Al from the substrate into the film in unirradiated samples was also observed. - Highlights: • Flat (001) single crystal UO{sub 2} thin films on LSAT (001) substrates produced. • Ion irradiation induced topographical and structural rearrangements in UO{sub 2} films.

  3. High temperature thermal conductivity measurements of UO2 by Direct Electrical Heating. Final report

    International Nuclear Information System (INIS)

    Bassett, B.

    1980-10-01

    High temperature properties of reactor type UO 2 pellets were measured using a Direct Electrical Heating (DEH) Facility. Modifications to the experimental apparatus have been made so that successful and reproducible DEH runs may be carried out while protecting the pellets from oxidation at high temperature. X-ray diffraction measurements on the UO 2 pellets have been made before and after runs to assure that sample oxidation has not occurred. A computer code has been developed that will model the experiment using equations that describe physical properties of the material. This code allows these equations to be checked by comparing the model results to collected data. The thermal conductivity equation for UO 2 proposed by Weilbacher has been used for this analysis. By adjusting the empirical parameters in Weilbacher's equation, experimental data can be matched by the code. From the several runs analyzed, the resulting thermal conductivity equation is lambda = 1/4.79 + 0.0247T/ + 1.06 x 10 -3 exp[-1.62/kT/] - 4410. exp[-3.71/kT/] where lambda is in w/cm K, k is the Boltzman constant, and T is the temperature in Kelvin

  4. The defect chemistry of UO2 ± x from atomistic simulations

    Science.gov (United States)

    Cooper, M. W. D.; Murphy, S. T.; Andersson, D. A.

    2018-06-01

    Control of the defect chemistry in UO2 ± x is important for manipulating nuclear fuel properties and fuel performance. For example, the uranium vacancy concentration is critical for fission gas release and sintering, while all oxygen and uranium defects are known to strongly influence thermal conductivity. Here the point defect concentrations in thermal equilibrium are predicted using defect energies from density functional theory (DFT) and vibrational entropies calculated using empirical potentials. Electrons and holes have been treated in a similar fashion to other charged defects allowing for structural relaxation around the localized electronic defects. Predictions are made for the defect concentrations and non-stoichiometry of UO2 ± x as a function of oxygen partial pressure and temperature. If vibrational entropy is omitted, oxygen interstitials are predicted to be the dominant mechanism of excess oxygen accommodation over only a small temperature range (1265 K-1350 K), in contrast to experimental observation. Conversely, if vibrational entropy is included oxygen interstitials dominate from 1165 K to 1680 K (Busker potential) or from 1275 K to 1630 K (CRG potential). Below these temperature ranges, excess oxygen is predicted to be accommodated by uranium vacancies, while above them the system is hypo-stoichiometric with oxygen deficiency accommodated by oxygen vacancies. Our results are discussed in the context of oxygen clustering, formation of U4O9, and issues for fuel behavior. In particular, the variation of the uranium vacancy concentrations as a function of temperature and oxygen partial pressure will underpin future studies into fission gas diffusivity and broaden the understanding of UO2 ± x sintering.

  5. Effect of continuous change of sintering atmosphere on the grain growth of Cr-doped UO2 pellets

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Nam, Ik Hui; Kim, Jong Hun; Rhee, Young Woo; Kim, Dong Joo; Kim, Keon Sik; Song, Kun Woo

    2010-01-01

    Cr-doped UO 2 pellet is one of the promising candidates for the high burn-up fuel in commercial LWRs. Major nuclear fuel vendors of such as AREVA or Westinghouse initiated the development of Cr-doped or Cr-containing additives doped UO 2 pellets since at the mid of 90's. Now, qualification programs are on-going to provide these pellets commercially. The main characteristics of the Cr-doped pellets are large-grain and visco-plasticity. Large grain pellet can reduce the corrosive fission gas release at high burn up. Viscoplastic soft pellets can lower the pressure to a cladding caused by a thermal expansion of a pellet at an elevated temperature during transient operations. Those advantages can provide room for additional power uprates and high burnup limits. Especially, PCI resistance improvement can be achieved by enlarging the pellet grain size and enhancing the fuel deformation at an elevated temperature. In this paper, to study the effect of oxygen partial pressure on grain growth in Cr-doped UO 2 pellets, Cr- doped UO 2 samples have been sintered with and without a step-wise change of sintering atmospheres. An introduction of a step-wise variation of oxygen partial pressure during the sintering enhances the grain growth of UO 2 pellets greatly. This step-wise sintering effect has been explained in terms of a continuous increase of Cr concentration along the grain boundary. The observed grain growth behavior under step-wisely changed sintering atmospheres demonstrates the possibility of reducing the amount of Cr 2 O 3 to minimum via control of oxygen partial pressure while keeping the large grain size

  6. Material correlations and models for the irradiation behavior of fissile and fertile material in SNR-300, Mark-II and KNK II, third core

    International Nuclear Information System (INIS)

    Fenneker; Steinmetz; Toebbe

    1986-07-01

    The report contains the material correlations and models used in the fuel pin design code IAMBUS for the irradiation behavior of PuO 2 -UO 2 fissile materials and UO 2 fertile materials of the SNR-300 Mark-II reload and the KNK II third core. They are applicable for pellet densities of more than 90 % of the theoretical density. The presented models of the fuel behavior and the applied material correlations have been derived either from single experiments or from the comparison of theoretically predicted integral fuel behavior with the results of fuel pin irradiation experiments. The material correlations have been examined and extended in the frame of the collaborations INTERATOM/KWU and INTERATOM/KfK. French and British results were included, when available from the European fast reactor knowledge exchange [de

  7. Thoria-fuel irradiation. Program to irradiate 80% ThO2/20% UO2 ceramic pellets at the Savannah River Plant

    International Nuclear Information System (INIS)

    Pickett, J.B.

    1982-02-01

    This report describes the fabrication of proliferation-resistant thorium oxide/uranium oxide ceramic fuel pellets and preparations at the Savannah River Laboratory (SRL) to irradiate those materials. The materials were fabricated in order to study head end process steps (decladding, tritium removal, and dissolution) which would be required for an irradiated proliferation-resistant thorium based fuel. The thorium based materials were also to be studied to determine their ability to withstand average commercial light water reactor (LWR) irradiation conditions. This program was a portion of the Thorium Fuel Cycle Technology (TFCT) Program, and was coordinated by the Oak Ridge National Laboratory (ORNL) under the Consolidated Fuel Reprocessing Program (CFRP). The fuel materials were to be irradiated in a Savannah River Plant (SRP) reactor at conditions simulating the heat ratings and burnup of a commercial LWR. The program was terminated due to a de-emphasis of the TFCT Program, following completion of the fabrication of the fuel and the modified assemblies which were to be used in the SRP reactor. The reactor grade ceramic pellets were fabricated for SRL by Battelle, Pacific Northwest Laboratories. Five fuel types were prepared: 100% UO 2 pellets (control); 80% ThO 2 /20% UO 2 pellets; approximately 80% ThO 2 /20% UO 2 + 0.25 CaO (dissolution aid) pellets; 100% UO 2 hybrid pellets (prepared from sol-gel microspheres); and 100% ThO 2 pellets (control). All of the fuel materials were transferred to SRL from PNL and were stored pending a subsequent reactivation of the TFCT Programs

  8. Experimental studies of Micro- and Nano-grained UO2: Grain Growth Behavior, Sufrace Morphology, and Fracture Toughness

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States); Mo, Kun [Argonne National Lab. (ANL), Argonne, IL (United States); Jamison, Laura M. [Argonne National Lab. (ANL), Argonne, IL (United States); Lian, Jie [Rensselaer Polytechnic Inst., Troy, NY (United States); Yao, Tiankai [Rensselaer Polytechnic Inst., Troy, NY (United States); Bhattacharya, Sumit [Argonne National Lab. (ANL), Argonne, IL (United States); Northwestern Univ., Evanston, IL (United States)

    2016-01-01

    This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL) and aims at providing experimental data for the validation of the mesoscale simulation code MARMOT. MARMOT is a mesoscale multiphysics code that predicts the coevolution of microstructure and properties within reactor fuel during its lifetime in the reactor. It is an important component of the Moose-Bison-Marmot (MBM) code suite that has been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. In order to ensure the accuracy of the microstructure-based materials models being developed within the MARMOT code, extensive validation efforts must be carried out. In this report, we summarize the experimental efforts in FY16 including the following important experiments: (1) in-situ grain growth measurement of nano-grained UO2; (2) investigation of surface morphology in micrograined UO2; (3) Nano-indentation experiments on nano- and micro-grained UO2. The highlight of this year is: we have successfully demonstrated our capability to in-situ measure grain size development while maintaining the stoichiometry of nano-grained UO2 materials; the experiment is, for the first time, using synchrotron X-ray diffraction to in-situ measure grain growth behavior of UO2.

  9. A microstructure-dependent model for fission product gas release and swelling in UO2 fuel

    International Nuclear Information System (INIS)

    Notley, M.J.F.; Hastings, I.J.

    1979-06-01

    A model for the release of fission gas from irradiated UO2 fuel is presented. It incorporates fission gas diffusion bubble and grain boundary movement,intergranular bubble formation and interlinkage. In addition, the model allows estimates of the extent of structural change and fuel swelling. In the latter, contributions of thermal expansion, densification, solid fission products, and gas bubbles are considered. When included in the ELESIM fuel performance code, the model yields predictions which are in good agreement with data from UO2 fuel elements irradiated over a range of water-cooled reactor conditions: linear power outputs between 40 and 120 kW/m, burnups between 10 and 300 MW.h/kg U and power histories including constant, high-to-low and low-to-high power periods. The predictions of the model are shown to be most sensitive to fuel power (temperature), the selection of diffusion coefficient for fission gas in UO2 and burnup. The predictions are less sensitive to variables such as fuel restraint, initial grain size and the rate of grain growth. (author)

  10. Effects of hyperstoichiometry and fission products on the electrochemical reactivity of UO2 nuclear fuel

    International Nuclear Information System (INIS)

    Betteridge, J.S.; Scott, N.A.M.; Shoesmith, D.W.; Bahen, L.E.; Hocking, W.H.; Lucuta, P.G.

    1997-03-01

    The effects of hyperstoichiometry and fission products on the electrochemical reactivity Of UO 2 nuclear fuel have been systematically investigated using cyclic voltammetry and the O 2 reduction reaction. Significant constraints are placed on the active-site model for O 2 reduction by the modest impact of bulk hyperstoichiometry. Formation of the U 4 O 9 derivative phase was associated with a marked increase in transient surface oxidation/reduction processes, which probably involve localized attack and might be fostered by tensile stresses induced during oxidation. Electrocatalytic reduction Of O 2 on simulated nuclear fuel (SIMFUEL) has been determined to increase progressively with nominal burnup and pronounced enhancement of H 2 O reduction has been observed as well. Substitution of uranium by lower-valence (simulated) fission products, which was formerly considered the probable cause for this behaviour, has now been shown to merely provide good electrical conductivity. Instead, the enhanced reduction kinetics for O 2 and H 2 O on SIMFUEL can be fully accounted for by noble metals, which segregate to the UO 2 grain boundaries as micron-sized particles, despite their low effective surface area. Apparent convergence of the electrochemical properties Of UO 2 and SIMFUEL through natural corrosion likely reflects evolution toward a common active surface. (author)

  11. Study of an alternative method for inspection of rods with UO{sub 2} pellets early manufactured

    Energy Technology Data Exchange (ETDEWEB)

    Carnaval, João Paulo R.; Oliveira, Carlos A.; Beltran, Dalton J.M.C., E-mail: joaocarnaval@inb.gov.br, E-mail: carlossilva@inb.gov.br, E-mail: daltonbeltran@inb.gov.br [Indústrias Nucleares do Brasil S.A. (INB), Resende, RJ (Brazil). Gerência de Engenharia do Produto e Gerência de Análise do Combustível

    2017-07-01

    The inspection of the fuel rods manufactured at INB, for production of fuel assemblies, is based on a group of scintillators detectors in series scanning the products. These detectors capture the gamma rays emitted on the decay of uranium isotopes (passive measurement) and determine the enrichment level ({sup 235}U weight percent) of the UO{sub 2} pellets inside the fuel rods. During the inspection of fuel rods for Angra-1 21{sup st} Reload, it was found that the 2.6% {sup 235}U and 4.15% {sup 235}U pellets stacks behave as 2.6% {sup 235}U only. The investigation of this event allowed to conclude that the measurement of enrichment may be affected by the loss of the secular equilibrium among uranium isotopes and their decay products caused by the AUC precipitation during the UO{sub 2} powder and pellet fabrication. Therefore, the spectrum background created by Compton scattering, inside Rod Scanner detectors, from high energies of {sup 238}U products decay affect the {sup 235}U% measurement. After continuous measurements, the 2.6% {sup 235}U and 4.15% {sup 235}U pellets stacks became distinguished and the results were used to calculate an 'equilibrium factor'. It was concluded that after 35 days the UO{sub 2} powder should reach approximately 60% of secular equilibrium reinstatement and the rods assembled with the pellets produced from this powder would be adequate for inspection on Rod Scanner. It was concluded that would be possible to achieve the equilibrium factor by blending a lot of UO{sub 2} powder manufactured a long time ago (old powder) with another lot early manufactured (young powder) resulting in a lot which would provide pellets and, consequently, rods adequate for inspection by Rod Scanner. This work presents a study of an alternative method to perform the inspection of fuel rods with UO{sub 2} pellets early manufactured aiming to provide quality assurance for the product. (author)

  12. Analysis of UO2 fuel structure for low and high burn-up and its impact on fission gas release

    International Nuclear Information System (INIS)

    Szuta, M.; El-Koliel, M.S.

    1999-01-01

    During irradiation, uranium dioxide (UO 2 ) fuel undergo important restructuring mainly represented by densification and swelling, void migration, equiaxed grain growth, grain subdivision, and the formation of columnar grains. The purpose of this study is to obtain a comprehensive picture of the phenomenon of equiaxed grain growth in UO 2 ceramic material. The change of the grain size in high-density uranium dioxide as a function of temperature, initial grain size, time, and burnup is calculated. Algorithm of fission gas release from UO 2 fuel during high temperature irradiation at high burnup taking into account grain growth effect is presented. Theoretical results are compared with experimental data. (author)

  13. Evaluation of sintering effects on SiC-incorporated UO{sub 2} kernels under Ar and Ar–4%H{sub 2} environments

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Chinthaka M., E-mail: silvagw@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee TN 37831-6223 (United States); Materials Science and Engineering, The University of Tennessee Knoxville, TN 37996-2100, United States. (United States); Lindemer, Terrence B.; Hunt, Rodney D.; Collins, Jack L.; Terrani, Kurt A.; Snead, Lance L. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee TN 37831-6223 (United States)

    2013-11-15

    Silicon carbide (SiC) is suggested as an oxygen getter in UO{sub 2} kernels used for tristructural isotropic (TRISO) particle fuels and to prevent kernel migration during irradiation. Scanning electron microscopy and X-ray diffractometry analyses performed on sintered kernels verified that an internal gelation process can be used to incorporate SiC in UO{sub 2} fuel kernels. Even though the presence of UC in either argon (Ar) or Ar–4%H{sub 2} sintered samples suggested a lowering of the SiC up to 3.5–1.4 mol%, respectively, the presence of other silicon-related chemical phases indicates the preservation of silicon in the kernels during sintering process. UC formation was presumed to occur by two reactions. The first was by the reaction of SiC with its protective SiO{sub 2} oxide layer on SiC grains to produce volatile SiO and free carbon that subsequently reacted with UO{sub 2} to form UC. The second process was direct UO{sub 2} reaction with SiC grains to form SiO, CO, and UC. A slightly higher density and UC content were observed in the sample sintered in Ar–4%H{sub 2}, but both atmospheres produced kernels with ∼95% of theoretical density. It is suggested that incorporating CO in the sintering gas could prevent UC formation and preserve the initial SiC content.

  14. Studies on the Sintering Behaviour of UO2-Gd2O3 Nuclear Fuel

    International Nuclear Information System (INIS)

    Durazzo, Michelangelo; Gracher Riella, Humberto

    2008-01-01

    The incorporation of gadolinium directly into nuclear power reactor fuel is important from the point of reactivity compensation and adjustment of power distribution enabling thus longer fuel cycles and optimized fuel utilization. The incorporation of Gd 2 O 3 powder directly into the UO 2 powder by dry mechanical blending is the most attractive process because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. This is due to blockages during the sintering process. There is little information in published literature about the possible mechanism for this blockage and this is restricted to the hypothesis based on formation of a low diffusivity Gd rich (U,Gd)O 2 phase. Experimental evidences indicated the existence of phases in the (U,Gd)O 2 system with structure different from the fluorite type structure of UO 2 . The apparition of these new phases coincides with the lowering of the density after sintering and with the lowering of the interdiffusion coefficient. However, it has been shown experimentally that the sintering blockage phenomena cannot be explained on the basis of the formation of low diffusivity Gd rich (U,Gd)O 2 phases. The work was continued to investigate other possible blocking mechanism. (authors)

  15. Phonon optimized interatomic potential for aluminum

    Directory of Open Access Journals (Sweden)

    Murali Gopal Muraleedharan

    2017-12-01

    Full Text Available We address the problem of generating a phonon optimized interatomic potential (POP for aluminum. The POP methodology, which has already been shown to work for semiconductors such as silicon and germanium, uses an evolutionary strategy based on a genetic algorithm (GA to optimize the free parameters in an empirical interatomic potential (EIP. For aluminum, we used the Vashishta functional form. The training data set was generated ab initio, consisting of forces, energy vs. volume, stresses, and harmonic and cubic force constants obtained from density functional theory (DFT calculations. Existing potentials for aluminum, such as the embedded atom method (EAM and charge-optimized many-body (COMB3 potential, show larger errors when the EIP forces are compared with those predicted by DFT, and thus they are not particularly well suited for reproducing phonon properties. Using a comprehensive Vashishta functional form, which involves short and long-ranged interactions, as well as three-body terms, we were able to better capture interactions that reproduce phonon properties accurately. Furthermore, the Vashishta potential is flexible enough to be extended to Al2O3 and the interface between Al-Al2O3, which is technologically important for combustion of solid Al nano powders. The POP developed here is tested for accuracy by comparing phonon thermal conductivity accumulation plots, density of states, and dispersion relations with DFT results. It is shown to perform well in molecular dynamics (MD simulations as well, where the phonon thermal conductivity is calculated via the Green-Kubo relation. The results are within 10% of the values obtained by solving the Boltzmann transport equation (BTE, employing Fermi’s Golden Rule to predict the phonon-phonon relaxation times.

  16. Phonon optimized interatomic potential for aluminum

    Science.gov (United States)

    Muraleedharan, Murali Gopal; Rohskopf, Andrew; Yang, Vigor; Henry, Asegun

    2017-12-01

    We address the problem of generating a phonon optimized interatomic potential (POP) for aluminum. The POP methodology, which has already been shown to work for semiconductors such as silicon and germanium, uses an evolutionary strategy based on a genetic algorithm (GA) to optimize the free parameters in an empirical interatomic potential (EIP). For aluminum, we used the Vashishta functional form. The training data set was generated ab initio, consisting of forces, energy vs. volume, stresses, and harmonic and cubic force constants obtained from density functional theory (DFT) calculations. Existing potentials for aluminum, such as the embedded atom method (EAM) and charge-optimized many-body (COMB3) potential, show larger errors when the EIP forces are compared with those predicted by DFT, and thus they are not particularly well suited for reproducing phonon properties. Using a comprehensive Vashishta functional form, which involves short and long-ranged interactions, as well as three-body terms, we were able to better capture interactions that reproduce phonon properties accurately. Furthermore, the Vashishta potential is flexible enough to be extended to Al2O3 and the interface between Al-Al2O3, which is technologically important for combustion of solid Al nano powders. The POP developed here is tested for accuracy by comparing phonon thermal conductivity accumulation plots, density of states, and dispersion relations with DFT results. It is shown to perform well in molecular dynamics (MD) simulations as well, where the phonon thermal conductivity is calculated via the Green-Kubo relation. The results are within 10% of the values obtained by solving the Boltzmann transport equation (BTE), employing Fermi's Golden Rule to predict the phonon-phonon relaxation times.

  17. Homogeneity and microstructure study of Gd2O3-UO2 pellets

    International Nuclear Information System (INIS)

    Pan Ying; Gao Dihua; Guo Yibai; Zhu Shuming

    1994-10-01

    The microstructure of Gd 2 O 3 -UO 2 pellets (0∼10 wt%) prepared in different conditions, the homogeneity distribution of Gd 2 O 3 in the pellets and the lattice parameter of solid solution are studied by metalloscope, WDS, EDAX, SEM-image processing system, XRD and image analyzer. The theoretical density has been calculated. The effect of size and content of Gd 2 O 3 particles, the blend process, the sintering temperature and time, and the sintering atmosphere on the microstructure of Gd 2 O 3 pellets and the homogeneity of Gd 2 O 3 in the pellets are studied. (16 refs., 10 figs., 8 tabs.)

  18. UO{sub 2} surface oxidation by mixtures of water vapor and hydrogen as a function of temperature

    Energy Technology Data Exchange (ETDEWEB)

    Espriu-Gascon, A., E-mail: alexandra.espriu@upc.edu [Department of Chemical Engineering, Universitat Politècnica Catalunya-Barcelona Tech, Diagonal 647, E-08028 Barcelona (Spain); Llorca, J.; Domínguez, M. [Institut de Tècniques Energètiques (INTE), Universitat Politècnica Catalunya-Barcelona Tech, Diagonal 647, E-08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE), Universitat Politècnica Catalunya-Barcelona Tech, Diagonal 647, E-08028 Barcelona (Spain); Giménez, J.; Casas, I. [Department of Chemical Engineering, Universitat Politècnica Catalunya-Barcelona Tech, Diagonal 647, E-08028 Barcelona (Spain); Pablo, J. de [Department of Chemical Engineering, Universitat Politècnica Catalunya-Barcelona Tech, Diagonal 647, E-08028 Barcelona (Spain); Fundació CTM Centre Tecnològic, Plaça de la Ciència 2, E-08243 Manresa (Spain)

    2015-12-15

    In the present work, X-Ray Photoelectron Spectroscopy (XPS) was used to study the effect of water vapor on the UO{sub 2} surface as a function of temperature. The experiments were performed in situ inside a high pressure chamber attached to the XPS instrument. UO{sub 2} samples were put in contact with either hydrogen or argon streams, saturated with water at room temperature, and the sample surface evolution was analyzed by XPS. In the case of the water vapor/argon experiments, one experiment at 350 °C was performed and, in the case of the water vapor/hydrogen experiments, the temperatures used inside the reactor were 60, 120, 200 and 350 °C. On one hand, in presence of argon, the results obtained showed that the water vapor in the argon stream oxidized 93% of the U(IV) in the sample surface. On the other hand, the degree of UO{sub 2} surface oxidation showed a different dependence on the temperature in the experiments performed in the presence of hydrogen: the maximum surface oxidation occurred at 120 °C, where 65.4% of U(IV) in the sample surface was oxidized, while at higher temperatures, the surface oxidation decreased. This observation is attributed to the increase of hydrogen reducing effect when temperature increases which prevents part of the oxidation of the UO{sub 2} surface by the water vapor. - Highlights: • UO{sub 2} surface has been oxidized by water vapor in an argon stream at 350 °C. • H{sub 2} reduced more uranium oxidation produced by water at 350 °C when compared to Ar. • In H{sub 2} presence, the uranium oxidation produced by water depends on the temperature.

  19. A uranium-based UO_2"+-Mn"2"+ single-chain magnet assembled trough cation-cation interactions

    International Nuclear Information System (INIS)

    Mougel, Victor; Chatelain, Lucile; Hermle, Johannes; Pecaut, Jacques; Mazzanti, Marinella; Caciuffo, Roberto; Colineau, Eric; Tuna, Floriana; Magnani, Nicola; Geyer, Arnaud de

    2014-01-01

    Single-chain magnets (SCMs) are materials composed of magnetically isolated one-dimensional (1D) units exhibiting slow relaxation of magnetization. The occurrence of SCM behavior requires the fulfillment of stringent conditions for exchange and anisotropy interactions. Herein, we report the synthesis, the structure, and the magnetic characterization of the first actinide-containing SCM. The 5f-3d heterometallic 1D chains [{[UO_2(salen)(py)][M(py)_4](NO_3)}]_n, (M=Cd (1) and M=Mn (2); py=pyridine) are assembled trough cation-cation interaction from the reaction of the uranyl(V) complex [UO_2(salen)py][Cp*_2Co] (Cp*=pentamethylcyclopentadienyl) with Cd(NO_3)_2 or Mn(NO_3)_2 in pyridine. The infinite UMn chain displays a high relaxation barrier of 134 ±0.8 K (93 ±0.5 cm"-"1), probably as a result of strong intra-chain magnetic interactions combined with the high Ising anisotropy of the uranyl(V) dioxo group. It also exhibits an open magnetic hysteresis loop at T <6 K, with an impressive coercive field of 3.4 T at 2 K. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Non-instrumented capsule design of HANARO irradiation test for the high burn-up large grain UO2 pellets

    International Nuclear Information System (INIS)

    Kim, D. H.; Lee, C. B.; Oh, D. S.

    2001-01-01

    Non-instrumented capsule was designed to irradiate the large grain UO 2 pellet developed for the high burn-up LWR fuel in the HANARO in-pile capsule. UO 2 pelletes will be irradiated up to the burn-up higher than 70 MWD/kgU in HANARO. To irradiate the UO 2 pellets up to the burn-up 70 MWD/kgU, need the time about 60 months and ensure the integrity of non-instrumented capsule for 30 months until replace the new capsule. In addition, to satisfy the safety criteria of HANARO such as prevention of ONB(Onset of Nucleate Boiling), fuel melting and wear damage of the capsule during the long term irradiation, design of the non-instrumented capsule was optimized

  1. Interatomic Potential to Simulate Radiation Damage in Fe-Cr Alloys

    International Nuclear Information System (INIS)

    Bonny, G.; Pasianot, R.; Terentyev, D.; Malerba, L.

    2011-01-01

    The report presents an Fe-Cr interatomic potential to model high-Cr ferritic alloys. The potential is fitted to thermodynamic and point-defect properties obtained from density functional theory (DFT) calculations and experiments. The developed potential is also benchmarked against other potentials available in literature. It shows particularly good agreement with the DFT obtained mixing enthalpy of the random alloy, the formation energy of intermetallics and experimental excess vibrational entropy and phase diagram. In addition, DFT calculated point-defect properties, both interstitial and substitutional, are well reproduced, as is the screw dislocation core structure. As a first validation of the potential, we study the precipitation hardening of Fe-Cr alloys via static simulations of the interaction between Cr precipitates and screw dislocations. It is concluded that the description of the dislocation core modification near a precipitate might have a significant influence on the interaction mechanisms observed in dynamic simulations.

  2. Interatomic Potential to Simulate Radiation Damage in Fe-Cr Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bonny, G.; Pasianot, R.; Terentyev, D.; Malerba, L.

    2011-03-15

    The report presents an Fe-Cr interatomic potential to model high-Cr ferritic alloys. The potential is fitted to thermodynamic and point-defect properties obtained from density functional theory (DFT) calculations and experiments. The developed potential is also benchmarked against other potentials available in literature. It shows particularly good agreement with the DFT obtained mixing enthalpy of the random alloy, the formation energy of intermetallics and experimental excess vibrational entropy and phase diagram. In addition, DFT calculated point-defect properties, both interstitial and substitutional, are well reproduced, as is the screw dislocation core structure. As a first validation of the potential, we study the precipitation hardening of Fe-Cr alloys via static simulations of the interaction between Cr precipitates and screw dislocations. It is concluded that the description of the dislocation core modification near a precipitate might have a significant influence on the interaction mechanisms observed in dynamic simulations.

  3. Measurement of the in-pile core temperature of an EL-4 pencil element, first charge (can of type-347 stainless steel, 0.4 mm thick, UO{sub 2} fuel, 11 mm diameter). Determination of the apparent thermal conductivity integral of in-pile UO{sub 2}; Mesure de la temperature a coeur en pile d'un crayon EL-4 1er jeu (gaine acier inoxydable, nuance 347 - epaisseur 0,4 mm - combustible UO{sub 2} - diametre 11 mm). Determination de l'integrale de conductibilite thermique apparente de l'UO{sub 2} en pile

    Energy Technology Data Exchange (ETDEWEB)

    Lavaud, B; Ringot, C; Vignesoult, N [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-11-01

    The core temperature of a pencil fuel element depends on the thermal conductivity of the UO{sub 2}, and on the UO{sub 2}-can contact. This temperature may be known accurately only if in-pile tests using the actual geometry are carried out. The test described concerns the measurement of the core- temperature of an EL-4 fuel element, first charge, having a stainless steel can. This temperature is measured at the center of the in-pile pencil element using a high-temperature thermocouple (W-Re with Ta sheath). The element is subjected to operating conditions similar to those of EL-4, both for the specific power and the can temperature and for the pressure acting on the can. The specific power is obtained in the EL-3 reactor using a slightly higher enrichment for the UO{sub 2} than that planned for EL-4. The required can temperature and pressure are obtained using a Zircaloy-2 irradiation container filled with NaK, adapted for use in the EL-3 reactor. The core temperatures of the UO{sub 2}, and that of the can surface are measured. The power is calculated from the heat exchanges in the container calibrated in the laboratory. The temperature drop at the UO{sub 2}-can interface is deduced from laboratory measurements carried out under comparable heat flux conditions, and in a gas atmosphere corresponding to the beginning of the life-time of the fuel element. It is possible to draw an integral conductivity curve. It is also possible to check the temperature distribution in the oxide, as deduced from the thermal conductivity integral, by micro-graphic examination of the oxide structure. (authors) [French] La temperature a coeur d'un crayon combustible est fonction de la conductibilite thermique de l'UO{sub 2}, mais aussi du contact UO{sub 2}-gaine. Les essais de mesure en geometrie reelle en pile sont les seuls qui permettent d'avoir une connaissance exacte de cette valeur. L'essai dont il est question dans ce rapport a trait a la mesure de la temperature a coeur d

  4. Characterization of UO22+ exchanged Y zeolite

    International Nuclear Information System (INIS)

    Olguin, M.T.; Bosch, P.; Bulbulian, S.; Duque, J.; Pomes, R.; Villafuerte-Castrejon, M.E.; Sansores, L.E.; Bosch, P.

    1997-01-01

    The present study discusses the incorporation of uranyl ion into Y-zeolite framework. The UO 2 2+ sorption was measured by neutron activation analyses. The Y-zeolite framework distorts in response to the cations present in the structure. Hence, depending on the amount and the location of the exchanged cations, the features of the X-ray diffraction pattern may vary. From the Rietveld analysis of these patterns, the positions occupied by the UO 2 2 + cations in the zeolite network were determined. (author)

  5. A comparison of processes for the conversion of uranyl nitrate into ceramic-grade UO/sub 2/

    International Nuclear Information System (INIS)

    Haas, P.A.

    1988-01-01

    The preferred processes for converting uranyl nitrate solutions into UO/sub 2/ for the fabrication of nuclear fuel pellets all involve the thermal decomposition of solid compounds into UO/sub 3/ without melting. Criteria for comparisons are given and used to compare eight conversion processes. Costs for the conversion processes are estimated to be 60 to 108% of the costs for the most commonly used ammonium diuranate precipitation/calcination process

  6. Thermal conductivity thermal diffusivity of UO{sub 2}-BeO nuclear fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, Fábio A.; Camarano, Denise M.; Santos, Ana M. M.; Ferraz, Wilmar B.; Silva, Mayra A.; Ferreira, Ricardo A.N., E-mail: fam@cdtn.br, E-mail: dmc@cdtn.br, E-mail: amms@cdtn.br, E-mail: ferrazw@cdtn.br, E-mail: mayra.silva@cdtn.br, E-mail: ricardoanf@yahoo.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The temperature distribution in nuclear fuel pellets is of vital importance for the performance of the reactor, as it affects the heat transfer, the mechanical behavior and the release of fission gas during irradiation, reducing safety margins in possible accident scenarios. One of the main limitation for the current uranium dioxide nuclear fuel (UO{sub 2}) is its low thermal conductivity, responsible for the higher temperature of the pellet center and, consequently, for a higher radial temperature gradient. Thus, the addition of another material to increase the UO{sub 2} fuel thermal conductivity has been considered. Among the additives that are being investigated, beryllium oxide (BeO) has been chosen due to its high thermal conductivity, with potential to optimize power generation in pressurized light water reactors (PWR). In this work, UO{sub 2}-BeO pellets were obtained by the physical mixing of the powders with additions of 2wt% and 3wt% of BeO. The thermal diffusivity and conductivity of the pellets were determined from room temperature up to 500 °C. The results were normalized to 95% of the theoretical density (TD) of the pellets and varied according to the BeO content. The range of the values of thermal diffusivity and conductivity were 1.22 mm{sup 2}∙s{sup -1} to 3.69 mm{sup 2}∙s{sup -1} and 3.80 W∙m{sup -}'1∙K{sup -1} to 9.36 W∙m{sup -1}∙K{sup -1}, respectively. (author)

  7. Low Temperature Two-Steps Sintering (LTTSS) - an innovative method for consolidating porous UO2 pellets

    International Nuclear Information System (INIS)

    Sanjay Kumar, D.; Ananthasivan, K.; Senapati, Abhiram; Venkata Krishnan, R.

    2015-01-01

    Metallic uranium and its alloys are an important fuel for fast reactors. Presently, metallic uranium is being prepared using expensive fluoro-metallothermic process. Recent reports suggest that metal oxide could be reduced to metal using a novel electrochemical de-oxidation method and this could serve as attractive alternate for expensive metallothermic process. In view of which, a research program is being pursued in our Centre to develop an optimum process parameter for the scaled up preparation of metallic uranium efficiently. One of the important process parameter is the size, nature and distribution of porosity in the urania pellet. Essentially the ceramic form of the urania should encompass interconnected porosity that would allow percolation of melts into the UO 2 . However, the matrix density of the pellet should be high to ensure that it possesses good handling strength and is electrically conducting. Hence preparation of high dense porous UO 2 pellets was required. In this study, we report the preparation of porous UO 2 pellets possessing a very high matrix density by using the citrate gel-combustion method. The 'as-prepared' powders were consolidated at various compaction pressures as such and these pellets were sintered in 8 mol %Ar+H 2 gas with a flow rate of 250 mL/min at 1073 K for 30 min followed by soaking at 1473 K for 4 h with heating rate of 5 K min -1 in a molybdenum furnace. X-ray diffraction studies revealed that these pellets contained UO 2 . The morphological analysis sintered pellets was carried out by using Scanning Electron Microscope (M/s. Philips model XL 30, Netherlands). All these pellets were gold coated

  8. New interpretation on formation of UO2 Post-Accident Heat Removal particulate in sodium

    International Nuclear Information System (INIS)

    Schins, H.

    1986-01-01

    A comparative experimental study on quenching in sodium of four molten fuel materials, UO 2 Al 2 P 3 , Cu and stainless steel, is presented. Experimental results like temperatures, pressures, particle shapes, particle size distributions, crack patterns and crystal grain sizes are given and interpreted. These fuel-coolant interactions (FCI) can be understood as all being characterized by transition boiling of sodium. The fuel is first fragmented by the sodium vapor bubble growth and collapse process. These particulates have smooth surfaces. The two materials, UO 2 and Al 2 O 3 , are fragmented further by a delayed mechanism which is thermal stress shrinkage cracking. Delayed particles are fragments of larger ones. Furthermore, attention is drawn to the theoretical results which show that pure FCI-particulate is significantly finer

  9. High density, uniformly distributed W/UO{sub 2} for use in Nuclear Thermal Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Dennis S., E-mail: dr.dennis.tucker@nasa.gov [EM32, MSFC, Al 35812 (United States); Barnes, Marvin W. [EM32, MSFC, Al 35812 (United States); Hone, Lance; Cook, Steven [Center for Space Nuclear Research, Idaho Falls, ID 83401 (United States)

    2017-04-01

    An inexpensive, quick method has been developed to obtain uniform distributions of UO{sub 2} particles in a tungsten matrix utilizing 0.5 wt percent low density polyethylene. Powders were sintered in a Spark Plasma Sintering (SPS) furnace at 1600 °C, 1700 °C, 1750 °C, 1800 °C and 1850 °C using a modified sintering profile. This resulted in a uniform distribution of UO{sub 2} particles in a tungsten matrix with high densities, reaching 99.46% of theoretical for the sample sintered at 1850 °C. The powder process is described and the results of this study are given below.

  10. Fully coupled multiphysics modeling of enhanced thermal conductivity UO{sub 2}–BeO fuel performance in a light water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, R. [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Zhou, W., E-mail: wenzzhou@cityu.edu.hk [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Shen, P. [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Prudil, A. [Fuel and Fuel Channel Safety Branch, Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Chan, P.K. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario (Canada)

    2015-12-15

    Highlights: • LWR fuel performance modeling capability developed. • Fully coupled multiphysics studies for enhanced thermal conductivity UO{sub 2}–BeO fuel. • UO{sub 2}–BeO fuel decreases fuel temperature and lessens thermal stresses. • UO{sub 2}–BeO fuel facilitates a reduction in PCMI. • Reactor safety can be improved for UO{sub 2}–BeO fuel. - Abstract: Commercial light water reactor fuel UO{sub 2} has a low thermal conductivity that leads to the development of a large temperature gradient across the fuel pellet, limiting the reactor operational performance due to the effects that include thermal stresses causing pellet cladding interaction and the release of fission product gases. This study presents the development of a modeling and simulation for enhanced thermal conductivity UO{sub 2}–BeO fuel behavior in a light water reactor, using self-defined multiple physics models fully coupled based on the framework of COMSOL Multiphysics. Almost all the related physical models are considered, including heat generation and conduction, species diffusion, thermomechanics (thermal expansion, elastic strain, densification, and fission product swelling strain), grain growth, fission gas production and release, gap heat transfer, mechanical contact, gap/plenum pressure with plenum volume, cladding thermal and irradiation creep and oxidation. All the phenomenal models and materials properties are implemented into COMSOL Multiphysics finite-element platform with a 2D axisymmetric geometry of a fuel pellet and cladding. UO{sub 2}–BeO enhanced thermal conductivity nuclear fuel would decrease fuel temperatures and facilitate a reduction in pellet cladding interaction from our simulation results through lessening thermal stresses that result in fuel cracking, relocation, and swelling, so that the safety of the reactor would be improved.

  11. Post-irradiation examinations and high-temperature tests on undoped large-grain UO{sub 2} discs

    Energy Technology Data Exchange (ETDEWEB)

    Noirot, J., E-mail: jean.noirot@cea.fr [CEA, DEN, DEC, Cadarache, F-13108 St. Paul Lez Durance (France); Pontillon, Y. [CEA, DEN, DEC, Cadarache, F-13108 St. Paul Lez Durance (France); Yagnik, S. [EPRI, P.O. Box 10412, Palo Alto, CA 94303-0813 (United States); Turnbull, J.A. [Independent Consultant (United Kingdom)

    2015-07-15

    Within the Nuclear Fuel Industry Research (NFIR) programme, several fuel variants –in the form of thin circular discs – were irradiated in the Halden Boiling Water Reactor (HBWR) at burn-ups up to ∼100 GWd/t{sub HM}. The design of the fuel assembly was similar to that used in other HBWR programmes: the assembly contained several rods with fuel discs sandwiched between Mo discs, which limited temperature differences within each fuel disc. One such variant was made of large-grain UO{sub 2} discs (3D grain size = ∼45 μm) which were subjected to three burn-ups: 42, 72 and 96 GWd/t{sub HM}. Detailed characterizations of some of these irradiated large-grain UO{sub 2} discs were performed in the CEA Cadarache LECA-STAR hot laboratory. The techniques used included electron probe microanalysis (EPMA), scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). Comparisons were then carried out with more standard grain size UO{sub 2} discs irradiated under the same conditions. Examination of the high burn-up large-grain UO{sub 2} discs revealed the limited formation of a high burn-up structure (HBS) when compared with the standard-grain UO{sub 2} discs at similar burn-up. High burn-up discs were submitted to temperature transients up to 1200 °C in the heating test device called Merarg at a relatively low temperature ramp rate (0.2 °C/s). In addition to the total gas release during these tests, the release peaks throughout the temperature ramp were monitored. Tests at 1600 °C were also conducted on the 42 GWd/t{sub HM} discs. The fuels were then characterized with the same microanalysis techniques as those used before the tests, to investigate the effects of these tests on the fuel’s microstructure and on the fission gas behaviour. This paper outlines the high resistance of this fuel to gas precipitation at high temperature and to HBS formation at high burn-up. It also shows the similarity of the positions, within the grains, where HBS forms

  12. UO{sub 2} and PuO{sub 2} utilization in high temperature engineering test reactor with helium coolant

    Energy Technology Data Exchange (ETDEWEB)

    Waris, Abdul, E-mail: awaris@fi.itb.ac.id; Novitrian,; Pramuditya, Syeilendra; Su’ud, Zaki [Nuclear Physics and Biophysics Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (Indonesia); Aji, Indarta K. [Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (Indonesia)

    2016-03-11

    High temperature engineering test reactor (HTTR) is one of high temperature gas cooled reactor (HTGR) types which has been developed by Japanese Atomic Energy Research Institute (JAERI). The HTTR is a graphite moderator, helium gas coolant, 30 MW thermal output and 950 °C outlet coolant temperature for high temperature test operation. Original HTTR uses UO{sub 2} fuel. In this study, we have evaluated the use of UO{sub 2} and PuO{sub 2} in form of mixed oxide (MOX) fuel in HTTR. The reactor cell calculation was performed by using SRAC 2002 code, with nuclear data library was derived from JENDL3.2. The result shows that HTTR can obtain its criticality condition if the enrichment of {sup 235}U in loaded fuel is 18.0% or above.

  13. Electrochemical characterisation of CaCl{sub 2} deficient LiCl–KCl–CaCl{sub 2} eutectic melt and electro-deoxidation of solid UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sri Maha Vishnu, D., E-mail: smvd2@cam.ac.uk; Sanil, N.; Mohandas, K.S.; Nagarajan, K.

    2016-03-15

    The CaCl{sub 2} deficient ternary eutectic melt LiCl–KCl–CaCl{sub 2} (50.5: 44.2: 5.3 mol %) was electrochemically characterised by cyclic voltammetry and polarization techniques in the context of its probable use as the electrolyte in the electrochemical reduction of solid UO{sub 2} to uranium metal. Tungsten (cathodic polarization) and graphite (anodic polarization) working electrodes were used in these studies carried out in the temperature range 623 K–923 K. The cathodic limit of the melt was observed to be set by the deposition of Ca{sup 2+} ions followed by Li{sup +} ions on the tungsten electrode and the anodic limit by oxidation of chloride ions on the graphite electrode (chlorine evolution). The difference between the onset potential of deposition of Ca{sup 2+} and Li{sup +} was found to be 0.241 V at a scan rate of 20 mV/s at 623 K and the difference decreased with increase in temperature and vanished at 923 K. Polarization measurements with stainless steel (SS) cathode and graphite anode at 673 K showed the possibility of low–energy reactions occurring on the UO{sub 2} electrode in the melt. UO{sub 2} pellets were cathodically polarized at 3.9 V for 25 h to test the feasibility of electro-reduction to uranium in the melt. The surface of the pellets was found reduced to U metal. - Highlights: • Electrochemically characterized LiCl–KCl–CaCl{sub 2} (50.5: 44.2: 5.3 mol %) melt by CV, LSV and polarization techniques. • Ca{sup 2+} deposits first on tungsten working electrode followed by Li{sup +}. Cl{sup −} discharges on graphite to liberate chlorine gas. • Surface of UO{sub 2} pellet reduced to U in the melt with low carbon contamination of melt. • Slow reduction of UO{sub 2} due to slow kinetics and low solubility of oxide ions in the low temperature melt.

  14. Optimization of process parameters in precipitation for consistent quality UO{sub 2} powder production

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, S.K.; Reddy, A.L.V.; Venkataswamy, J.; Misra, M.; Setty, D.S.; Sheela, S.; Saibaba, N., E-mail: misra@nfc.gov.in [Nuclear Fuel Complex, Hyderabad (India)

    2013-07-01

    Nuclear reactor grade natural uranium dioxide powder is being produced through precipitation route, which is further processed before converting into sintered pellets used in the fabrication of PHWR fuel assemblies of 220 and 540 MWe type reactors. The process of precipitating Uranyl Nitrate Pure Solution (UNPS) is an important step in the UO{sub 2} powder production line, where in soluble uranium is transformed into solid form of Ammonium Uranate (AU), which in turn reflects and decides the powder characteristics. Precipitation of UNPS with vapour ammonia is being carried out in semi batch process and process parameters like ammonia flow rate, temperature, concentration of UNPS and free acidity of UNPS are very critical and decides the UO{sub 2} powder quality. Variation in these critical parameters influences powder characteristics, which in turn influences the sinterability of UO{sub 2} powder. In order to get consistent powder quality and sinterability the critical parameter like ammonia flow rate during precipitation is studied, optimized and validated. The critical process parameters are controlled through PLC based automated on-line data acquisition systems for achieving consistent powder quality with increased recovery and production. The present paper covers optimization of process parameters and powder characteristics. (author)

  15. A Comparative Physics Study of Commercial PWR Cores using Metallic Micro-cell UO{sub 2}-Cr (or Mo) Pellets with Cr-based Cladding Coating

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae Hee; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of); In, Wang Kee [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this work, a comparative neutronic analysis of the cores using ATFs which include metallic micro-cell UO{sub 2}-Cr, UO{sub 2}-Mo pellets and Cr-based alloy coating on cladding was performed to show the effects of the ATF fuels on the core performance. In this study, the cores having different ATFs use the same initial uranium enrichments. The ATF concepts studied in this work are the metallic microcell UO{sub 2} pellets containing Cr or Mo with cladding outer coating composed of Cr-based alloy which have been suggested as the ATF concepts in KAERI (Korea Atomic Energy Research Institute). The metallic micro-cell pellets and Cr-based alloy coating can enhance thermal conductivity of fuel and reduce the production of hydrogen from the reaction of cladding with coolant, respectively. The objective of this work is to compare neutronic characteristics of commercial PWR equilibrium cores utilizing the different variations of metallic micro-cell UO{sub 2} pellets with cladding coating composed of Cr-based alloy. The results showed that the cores using UO{sub 2}-Cr and UO{sub 2}-Mo pellets with Cr-based alloy coating on cladding have reduced cycle lengths by 60 and 106 EFPDs, respectively, in comparison with the reference UO{sub 2} fueled core due to the reduced heavy metal inventories and large thermal absorption cross section but they do not have any significant differences in the core performances parameters. However, it is notable that the core fueled the micro-cell UO{sub 2}-Mo pellet and Cr-based alloy coating has considerably more negative MTC and slightly more negative FTC than the other cases. These characteristics of the core using micro-cell UO{sub 2}-Mo pellet and Cr-based alloy coating is due to the hard neutron spectrum and large capture resonance cross section of Mo isotopes.

  16. Thermal property change of MOX and UO{sub 2} irradiated up to high burnup of 74 GWd/t

    Energy Technology Data Exchange (ETDEWEB)

    Nakae, Nobuo, E-mail: nakae-nobuo@jnes.go.jp [Japan Nuclear Energy Safety Organization (JNES), Toranomon Towers Office, 4-1-28, Toranomon, Minato-ku, Tokyo 105-0001 (Japan); Akiyama, Hidetoshi; Miura, Hiromichi; Baba, Toshikazu; Kamimura, Katsuichiro [Japan Nuclear Energy Safety Organization (JNES), Toranomon Towers Office, 4-1-28, Toranomon, Minato-ku, Tokyo 105-0001 (Japan); Kurematsu, Shigeru; Kosaka, Yuji [Nuclear Development Corporation (NDC), 622-12, Funaishikawa, Tokai-mura, Ibaraki 319-1111 (Japan); Yoshino, Aya; Kitagawa, Takaaki [Mitsubishi Nuclear Fuel Co., LTD. (MNF), 12-1, Yurakucho 1-Chome, Chiyoda-ku, Tokyo 100-0006 (Japan)

    2013-09-15

    Thermal property is important because it controls fuel behavior under irradiation. The thermal property change at high burnup of more than 70 GWd/t is examined. Two kinds of MOX fuel rods, which were fabricated by MIMAS and SBR methods, and one referenced UO{sub 2} fuel rod were used in the experiment. These rods were taken from the pre-irradiated rods (IFA 609/626, of which irradiation test were carried out by Japanese PWR group) and re-fabricated and re-irradiated in HBWR as IFA 702 by JNES. The specification of fuel corresponds to that of 17 × 17 PWR type fuel and the axially averaged linear heat rates (LHR) of MOX rods are 25 kW/m (BOL of IFA 702) and 20 kW/m (EOL of IFA 702). The axial peak burnups achieved are about 74 GWd/t for both of MOX and UO{sub 2}. Centerline temperature and plenum gas pressure were measured in situ during irradiation. The measured centerline temperature is plotted against LHR at the position where thermocouples are fixed. The slopes of MOX are corresponded to each other, but that of UO{sub 2} is higher than those of MOX. This implies that the thermal conductivity of MOX is higher than that of UO{sub 2} at high burnup under the condition that the pellet–cladding gap is closed during irradiation. Gap closure is confirmed by the metallography of the postirradiation examinations. It is understood that thermal conductivity of MOX is lower than that of UO{sub 2} before irradiation since phonon scattering with plutonium in MOX becomes remarkable. A phonon scattering with plutonium decreases in MOX when burnup proceeds. Thus, thermal conductivity of MOX becomes close to that of UO{sub 2}. A reverse phenomenon is observed at high burnup region. The phonon scattering with fission products such as Nd and Zr causes a degradation of thermal conductivity of burnt fuel. It might be speculated that this scattering effect causes the phenomenon and the mechanism is discussed here.

  17. Performance evaluation of UO2-Zr fuel in power ramp tests

    International Nuclear Information System (INIS)

    Knudsen, P.; Bagger, C.

    1977-01-01

    In power reactors using UO 2 -Zr fuel, rapid power increases may lead to failures in fuel pins that have been irradiated at steady or decreasing heat loads. This paper presents results which extend the experience with power ramp performance of high burn-up fuel pins. A test fuel element containing both pellet and vipac UO 2 -Zr fuel pins was irradiated in the HBWR at Halden for effectively 2 1/2 years to an average burn-up of 21,000 MWD/te UO 2 at gradually decreasing power levels. The subsequent non-destructive characterization revealed formation of transverse cracks in the vipac fuel columns. After the HBWR irradiation, five of the fuel pins were power ramp tested individually in the DR 3 Reactor at Riso. The ramp rates in this test series were in the range 3-60 W/cm min. The maximum local heat loads seen in the ramp tests were 20-120% above the highest levels experienced at the same axial positions during the HBWR irradiation. Three pellets and one vipac fuel pin failed, whereas another vipac pin gave no indication of clad penetration. Profilometry after the ramp testing indicated the formation of small ridges for both types of fuel pins. For vipac fuel, the ridges were less regularly distributed along the pin length than for pellet fuel. Neutron radiography revealed the formation of additional transverse and longitudinal fuel cracks during the power ramps for both types of fuel pins. The observed failures seemed to be marginal since little or no indication as to the locations of the clad penetrations could be derived from the non-destructive post-irradiation examinations. The cases have been analyzed by means of the Danish fuel performance codes. The calculations, which are in general agreement with the observations, are discussed. The results of the investigations indicate qualitative similarities in over power performance of the two fuel types

  18. Optimization of a Wcl6 CVD System to Coat UO2 Powder with Tungsten

    Science.gov (United States)

    Belancik, Grace A.; Barnes, Marvin W.; Mireles, Omar; Hickman, Robert

    2015-01-01

    In order to achieve deep space exploration via Nuclear Thermal Propulsion (NTP), Marshall Space Flight Center (MSFC) is developing W-UO2 CERMET fuel elements, with focus on fabrication, testing, and process optimization. A risk of fuel loss is present due to the CTE mismatch between tungsten and UO2 in the W-60vol%UO2 fuel element, leading to high thermal stresses. This fuel loss can be reduced by coating the spherical UO2 particles with tungsten via H2/WCl6 reduction in a fluidized bed CVD system. Since the latest incarnation of the inverted reactor was completed, various minor modifications to the system design were completed, including an inverted frit sublimer. In order to optimize the parameters to achieve the desired tungsten coating thickness, a number of trials using surrogate HfO2 powder were performed. The furnace temperature was varied between 930 C and 1000degC, and the sublimer temperature was varied between 140 C and 200 C. Each trial lasted 73-82 minutes, with one lasting 205 minutes. A total of 13 trials were performed over the course of three months, two of which were re-coatings of previous trials. The powder samples were weighed before and after coating to roughly determine mass gain, and Scanning Electron Microscope (SEM) data was also obtained. Initial mass results indicated that the rate of layer deposition was lower than desired in all of the trials. SEM confirmed that while a uniform coating was obtained, the average coating thickness was 9.1% of the goal. The two re-coating trials did increase the thickness of the tungsten layer, but only to an average 14.3% of the goal. Therefore, the number of CVD runs required to fully coat one batch of material with the current configuration is not feasible for high production rates. Therefore, the system will be modified to operate with a negative pressure environment. This will allow for better gas mixing and more efficient heating of the substrate material, yielding greater tungsten coating per trial.

  19. Contribution to the thermodynamic study of the non-stoichiometric oxides UO{sub 2+x} et FeO{sub 1+x}; Contribution a l'etude thermodynamique des oxydes non stoechiometriques UO{sub 2+x} et FeO{sub 1+x}

    Energy Technology Data Exchange (ETDEWEB)

    Gerdanian, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-04-15

    This thermodynamic study has provided new results concerning the oxide UO{sub 2+X} and FeO{sub 1+x}. For the oxides UO{sub 2+X} correct values have been obtained for {mu}{sub O{sub 2}}{sup M} at 900, 1000 and 1100 deg. C using an improved method based on physico-chemical equilibria. For the oxides FeO{sub 1+x} the use of an E. Calvet high temperature calorimeter has made it possible to measure for the first time the values of h{sub O{sub 2}}{sup M} at 800 deg. C over the whole iron monoxide range. The method of oxygen transfer between oxides, usually used to determine the phase limits, has been improved by using a thermo-balance; this has made it possible to draw up simple rules which have to be respected in order to detect the phenomena under study. The theory due to J.S. Anderson has been applied to the oxides UO{sub 2+X} and a new method is given for improving the representation of non-stoichiometric oxides by models. (author) [French] Cette etude thermodynamique presente des resultats nouveaux en ce qui concerne les oxydes UO{sub 2+X} et FeO{sub 1+x}. Pour les oxydes UO{sub 2+X} les valeurs correctes de {mu}{sub O{sub 2}}{sup M} a 900, 1000 et 1100 deg. C ont pu etre obtenues, grace a la methode des equilibres physico-chimiques qui a ete amelioree. Pour les oxydes FeO{sub 1+x} l'emploi du microcalorimetre a haute temperature de Ed. CALVET a permis de mesurer pour la premiere fois les valeurs de h{sub O{sub 2}}{sup M} a 800 deg. C dans toute l'etendue du domaine du protoxyde de fer. La metode de transfert d'oxygene entre oxydes, habituellement utilisee pour determiner les limites de phase a ete perfectionnee par l'emploi d'une thermo-balance ce qui a permis d'enoncer les regles simples auxquelles il est indispensable de se conformer pour obtenir les limites cherchees. La theorie de J.S. Anderson a ete appliquee aux oxydes UO{sub 2+X} et une nouvelle voie est indiquee qui peut permettre de perfectionner la representation des oxydes non-stoechiometriques par des

  20. A Review of Fragmentation Models Relative to Molten UO2 Breakup when Quenched in Sodium Coolant

    International Nuclear Information System (INIS)

    Cronenberg, A.W.; Grolmes, M.A.

    1976-01-01

    An important aspect of the fuel-coolant interaction problem relative to liquid metal fast breeder reactor (LMFBR) safety analysis is the fragmentation of molten oxide fuel during contact with liquid sodium coolant. A proper description of the kinetics of such an event requires an understanding of the breakup process and an estimate of the size and dispersion of such finely divided fuel in coolant. In recent years, considerable interest has centered on the problem of determining the nature of such fragmentation. In this paper, both analytic and experimental studies pertaining to such breakup are reviewed in light of recent developments in the understanding of heat transfer and solidification phenomena during quenching of UO 2 in sodium. A more extensive review of this subject can be found in Ref. 1. In conclusion: As discussed, a number of models have been proposed in an attempt to understand the nature of the UO 2 fragmentation process. The four principle mechanisms considered likely to cause such fragmentation (impact forces, boiling, violent gas release, and shell solidification) have been developed to the point where comparative analysis is possible. In addition, recent developments in the understanding of the physics of oxide fuel behavior in sodium coolant (boiling regime criteria, vapor nucleation theories, and prediction of solidification kinetics enable us to asses whether or not the various model assumptions are realistic. In view of this knowledge the following conclusions are made. For the case of hydrodynamic influence on fragmentation, it can be said that although the disruptive forces of impact and viscous drag may contribute to breakup, their effects are not controlling with respect to high temperature materials, including UO 2 -sodium. With respect to the vapor bubble growth and collapse mechanism it was shown that for sodium quenching, where coolant contact may, be expected (as opposed to water), the thermodynamic work potential of the bubble is

  1. Post-irradiation studies on knock-out and pseudo-recoil releases of fission products from fissioning UO2

    International Nuclear Information System (INIS)

    Yamagishi, S.; Tanifuji, T.

    1976-01-01

    By using post-irradiation techniques, in-pile releases of 133 Xe, sup(85m)Kr, 88 Kr, 87 Kr and 138 Xe from UO 2 fissioning at low temperatures below about 200 0 C are studied: these are analyzed into a time-dependent knock-out and time-independent pseudo-recoil releases. For the latter, a 'self knock-out' mechanism is proposed: when a fission fragment loses thoroughly its energy near the UO 2 surface and stops there, it will knock out the surface substances and accordingly the fragment (i.e. the fission product) will be released. The effective thickness of the layer where the self knock-out occurs is found to be approximately 7A. As for the knock-out release, the following is estimated from its dependence on various factors: the knock-out release of fission products occurs from the surface layer with the effective thickness of approximately 20A: the shape of UO 2 matrix knocked out by one fission fragment passing through the surface is equivalent to a cylinder approximately 32A diameter by approximately 27A thick, (i.e. the knock-out coefficient for UO 2 is approximately 660 uranium atoms per knock-out event). On the basis of the above estimations, the conclusions derived from the past in-pile studies of fission gas releases are evaluated. (Auth.)

  2. Electrochemical characterisation of CaCl2 deficient LiCl-KCl-CaCl2 eutectic melt and electro-deoxidation of solid UO2

    Science.gov (United States)

    Sri Maha Vishnu, D.; Sanil, N.; Mohandas, K. S.; Nagarajan, K.

    2016-03-01

    The CaCl2 deficient ternary eutectic melt LiCl-KCl-CaCl2 (50.5: 44.2: 5.3 mol %) was electrochemically characterised by cyclic voltammetry and polarization techniques in the context of its probable use as the electrolyte in the electrochemical reduction of solid UO2 to uranium metal. Tungsten (cathodic polarization) and graphite (anodic polarization) working electrodes were used in these studies carried out in the temperature range 623 K-923 K. The cathodic limit of the melt was observed to be set by the deposition of Ca2+ ions followed by Li+ ions on the tungsten electrode and the anodic limit by oxidation of chloride ions on the graphite electrode (chlorine evolution). The difference between the onset potential of deposition of Ca2+ and Li+ was found to be 0.241 V at a scan rate of 20 mV/s at 623 K and the difference decreased with increase in temperature and vanished at 923 K. Polarization measurements with stainless steel (SS) cathode and graphite anode at 673 K showed the possibility of low-energy reactions occurring on the UO2 electrode in the melt. UO2 pellets were cathodically polarized at 3.9 V for 25 h to test the feasibility of electro-reduction to uranium in the melt. The surface of the pellets was found reduced to U metal.

  3. Modifier free supercritical fluid extraction of uranium from sintered UO2, soil and ore samples

    International Nuclear Information System (INIS)

    Kanekar, A.S.; Pathak, P.N.; Acharya, R.; Mohapatra, P.K.; Manchanda, V.K.

    2011-01-01

    Direct extraction of uranium from different samples viz. sintered UO 2 , soil and ores was carried out by modifier free supercritical fluid using tri-n-butyl phosphate-nitric acid (TBP-HNO 3 ) adduct as extractant. These studies showed that pre-equilibration with more concentrated nitric acid helps in better dissolution and extraction of uranium from sintered UO 2 samples. Modifier free supercritical fluid extraction appears attractive with respect to minimization of secondary wastes. This method resulted 80-100% extraction of uranium from different soil/ore samples. The results were confirmed by performing neutron activation analysis of original (before extraction) and residue (after extraction) samples. (author)

  4. Micrography of UO2 power of PPNY and France using JSM T-20

    International Nuclear Information System (INIS)

    Kasilani, N.S.; Hidayati; Hartati, P.

    1996-01-01

    As a quality control of processing to produce a fuel element using UO 2 powder, its necessary to be known the physical characteristic of the shape, size and surface condition of particle. This physical character influence the flow ability of powder particles and density of pellet. To create photomicrograph used a electron microscope, influenced by the condition of tools, specimen, and the skilled of the processing of pictures. The current of JSM T-20 is about 5 until 20 Kv, used 11 and 8 camera diaphragm with black and white films, specimen must be dried with electrical conductor property. The processing resulted an optimal photomicrograph. Micrograph of UO 2 powder of PPNY and France was investigated, yield a same grain form, surface structure are different, and range of size particle is 0.5 - 1.0 um. (author)

  5. [Non-empirical interatomic potentials for transition metals

    International Nuclear Information System (INIS)

    1993-01-01

    The report is divided into the following sections: potential-energy functions for d-band metals, potential-energy functions for aluminides and quasicrystals, electronic structure of complex structures and quasicrystals, potential-energy functions in transition-metal oxides, applications to defect structure and mechanical properties, and basic theory of interatomic potentials

  6. HELIOS calculations for UO2 lattice benchmarks

    International Nuclear Information System (INIS)

    Mosteller, R.D.

    1998-01-01

    Calculations for the ANS UO 2 lattice benchmark have been performed with the HELIOS lattice-physics code and six of its cross-section libraries. The results obtained from the different libraries permit conclusions to be drawn regarding the adequacy of the energy group structures and of the ENDF/B-VI evaluation for 238 U. Scandpower A/S, the developer of HELIOS, provided Los Alamos National Laboratory with six different cross section libraries. Three of the libraries were derived directly from Release 3 of ENDF/B-VI (ENDF/B-VI.3) and differ only in the number of groups (34, 89 or 190). The other three libraries are identical to the first three except for a modification to the cross sections for 238 U in the resonance range

  7. Handbook of interatomic potentials

    International Nuclear Information System (INIS)

    Stoneham, A.M.; Taylor, R.

    1981-08-01

    This Handbook collects together interatomic potentials for a large number of metals. Most of the potentials describe the interactions of host metal atoms with each other, and these, in some cases, may be applied to solid and liquid metals. In addition, there are potentials (a) for a metallic impurity alloyed with the host, (b) for a small number of chemical impurities in the metal (eg H, O), and (c) for rare-gas impurities, notably He. The Handbook is intended to be a convenient source of potentials for bulk, surface and defect calculations, both static and dynamic. (author)

  8. Luminescent properties of [UO{sub 2}(TFA){sub 2}(DMSO){sub 3}], a promising material for sensing and monitoring the uranyl ion

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Ramos, Pablo; Silva, Manuela Ramos; Silva, Pedro S. Pereira da [Centro de Fisica da Universidade de Coimbra (CFisUC), Department of Physics, Universidade de Coimbra (Portugal); Costa, Ana L.; Melo, J. Sergio Seixas de [Centro de Quimica de Coimbra, Department of Chemistry, Universidade de Coimbra (Portugal); Pereira, Laura C.J. [Centro de Ciencias e Tecnologias Nucleares, Instituto Superior Tecnico, Universidade de Lisboa, Bobadela LRS (Portugal); Martin-Gil, Jesus, E-mail: pmr@unizar.es [Advanced Materials Laboratory, Escuela Tecnica Superior de Ingenierias Agrarias, University of Valladolid, Palencia (Spain)

    2016-03-15

    An uranyl complex [UO{sub 2}(TFA){sub 2}(DMSO){sub 3}] (TFA=deprotonated trifluoroacetic acid; DMSO=dimethyl sulfoxide) has been successfully synthesized by reacting UO{sub 2}(CH{sub 3}COO){sub 2} ·H{sub 2} O with one equivalent of (CF{sub 3} CO){sub 2} O and DMSO. The complex has been characterized by single-crystal X-ray diffraction, X-ray powder diffraction, elemental analysis, FTIR spectroscopy, thermal analysis and absorption and emission spectroscopies. The spectroscopic properties of the material make it suitable for its application in the sensing and monitoring of uranyl in the PUREX process. (author)

  9. Attractive short-range interatomic potential in the lattice dynamics of niobium and tantalum

    International Nuclear Information System (INIS)

    Onwuagba, B.N.; Pal, S.

    1987-01-01

    It is shown in the framework of the pseudopotential approach that there is a sizable attractive short-range component of the interatomic potential due to the s-d interaction which has the same functional form in real space as the Born-Mayer repulsion due to the overlap of core electron wave functions centred on neighbouring ions. The magnitude of this attractive component is such as to completely cancel the conventional Born-Mayer repulsion, making the resultant short-range interatomic potential attractive rather than repulsive. Numerical calculations show that the attractive interatomics potential, which represents the local-field correction, leads to a better understanding of the occurrence of the soft modes in the phonon dispersion curves of niobium and tantalum

  10. Evaluation of Large Grained UO{sub 2} Pellet's Manufacturability in a Commercial Plant and Development of its Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jae; Lee, J. N.; Lee, S. J. [Korea Nuclear Fuel Co. Ltd., Daejeon (Korea, Republic of)] (and others)

    2007-02-15

    To apply the various methods for grain growth of the fuel pellet to the commercial manufacturing process, which have been developed through the 'Advanced Fuel Pellet Development Program' in KAERI, it is necessary to conduct the performance test on the mass product line of UO{sub 2} pellets. For this purpose there are two main areas to be evaluated: The first area is the manufacturability of the lab-developed methods on large volume equipment (kg-batch) and commercial manufacturing scale. As a second part the material characteristics should satisfy the specification requirements for the UO{sub 2} pellet design. Above all, the applicability tests for the 'Seed' and 'Micro-doping' technology respectively were performed in the KNFC UO{sub 2} pellet commercial product line. These tests focused on the manufacturability on mass production and acceptable properties of the developed samples on demands of UO{sub 2} pellet design criteria. The tests showed very positive results. Judging from all the test results, the Al micro-doping method is likely to be the best way to enhance the grain size of UO{sub 2} pellet in the KNFC commercial product line without installation of any additional equipment. Through a series of additional reproducibility tests and process optimization, the micro-doping technology will be good applied for X-gen fuel pellet in the near future.

  11. Radiolytic oxidation of UO{sub 2} pellets doped with alpha-emitters ({sup 238/239}Pu)

    Energy Technology Data Exchange (ETDEWEB)

    Muzeau, B. [Commissariat a l' Energie Atomique, Rhone Valley Research Center DTCD/SECM/LMPA, BP 17 171, 30207 Bagnols-sur-Ceze Cedex (France); Jegou, C. [Commissariat a l' Energie Atomique, Rhone Valley Research Center DTCD/SECM/LMPA, BP 17 171, 30207 Bagnols-sur-Ceze Cedex (France)], E-mail: christophe.jegou@cea.fr; Delaunay, F. [Commissariat a l' Energie Atomique, Valduc Research Center, 21120 Is-sur-Tille (France); Broudic, V. [Commissariat a l' Energie Atomique, Rhone Valley Research Center DTCD/SECM/LMPA, BP 17 171, 30207 Bagnols-sur-Ceze Cedex (France); Brevet, A. [Commissariat a l' Energie Atomique, Valduc Research Center, 21120 Is-sur-Tille (France); Catalette, H. [Electricite de France, Les Renardieres Research Center, Route de Sens Ecuelles, 77250 Moret-sur-Loing (France); Simoni, E. [Institut de Physique Nucleaire, Bat. 100, 91406 Orsay Cedex (France); Corbel, C. [Laboratoire des Solides Irradies, UMR 7642-CNRS-CEA-Ecole Polytechnique, Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2009-01-07

    To assess the impact of alpha radiolysis of water on the oxidative dissolution of UO{sub 2} under anoxic conditions, two series of plutonium-doped samples (specific alpha activity 385 and 18 MBqg{sub UO{sub 2}}{sup -1}) were fabricated, characterized and leached in water of varying complexity (pure water, carbonated water, dissolved hydrogen). Given the very high reactivity of these samples in the presence of air and in order to minimize any prior surface oxidation, a strict experimental protocol was developed based on high-temperature annealing in Ar + 4% H{sub 2} with preleaching cycles. Failure to follow this protocol prevents absolute quantification of oxidation of the UO{sub 2} surface by water radiolysis in solutions. Preoxidation of the pellet surface can lead to uranium release in solution that is dependent on the alpha particle flux, revealing initial oxidation by radiolysis in air including potential traces of water. This makes difficult the accurate quantification of the radiolytic oxidation in water solutions. Controlling the initial surface condition of the samples finally allowed us to demonstrate that radiolytic oxidation in water-saturated media is governed by several threshold effects for which the main parameters are the sample alpha activity and the hydrogen concentration.

  12. FAST TRACK COMMUNICATION: A Be-W interatomic potential

    Science.gov (United States)

    Björkas, C.; Henriksson, K. O. E.; Probst, M.; Nordlund, K.

    2010-09-01

    In this work, an interatomic potential for the beryllium-tungsten system is derived. It is the final piece of a potential puzzle, now containing all possible interactions between the fusion reactor materials beryllium, tungsten and carbon as well as the plasma hydrogen isotopes. The potential is suitable for plasma-wall interaction simulations and can describe the intermetallic Be2W and Be12W phases. The interaction energy between a Be surface and a W atom, and vice versa, agrees qualitatively with ab initio calculations. The potential can also reasonably describe BexWy molecules with x, y = 1, 2, 3, 4.

  13. An X-ray photoelectron spectroscopy study of the products of the interaction of gaseous IrF6 with fine UO2F2

    Directory of Open Access Journals (Sweden)

    Prusakov Vladimir N.

    2007-01-01

    Full Text Available Nuclear fuel reprocessing by fluorination, a dry method of regeneration of spent nuclear fuel, uses UO2F2 for the separation of plutonium from gaseous mixtures. Since plutonium requires special treatment, IrF6 was used as a thermodynamic model of PuF6. The model reaction of the interaction of gaseous IrF6 with fine UO2F2 in the sorption column revealed a change of color of the sorption column contents from pale-yellow to gray and black, indicating the formation of products of such an interaction. The X-ray photoelectron spectroscopy study showed that the interaction of gaseous IrF6 with fine UO2F2 at 125 °C results in the formation of stable iridium compounds where the iridium oxidation state is close to Ir3+. The dependence of the elemental compositions of the layers in the sorption column on the penetration depth of IrF6 was established.

  14. Data report on leach tests of Pu-doped UO2 in PBB1 brine: Salt Repository Project

    International Nuclear Information System (INIS)

    Gray, W.J.

    1987-10-01

    This report provides results from a series of leach tests conducted using nonirradiated uranium dioxide (UO 2 ) doped with plutonium (Pu) to simulate the alpha activity of spent fuel specimens used in recent spent fuel leach tests. The purpose was to determine whether alpha radiation from the spent fuel could be responsible for uranium release values in spent fuel leach tests in salt brine that were at least 100 times greater than from similar tests with nonirradiated UO 2 pellets. The data in this data report are preliminary; they have been neither analyzed nor evaluated. 2 refs., 2 figs., 8 tabs

  15. Influence of the Previous History of the Raw Material on Sintering of UO{sub 2}; Influence des antecedents de la matiere premiere sur le frittage de UO{sub 2}; Vliyanie obrabotki iskhodnogo veshchestva na spekanie UO{sub 2}; Influencia de la historia previa de la materia prima sobre la sinterizacion del UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Aparicio, E.; Alonso, J. A.; Pedregal, J. D. [Junta de Energia Nuclear Madrid (Spain)

    1963-11-15

    An account is given of the experimental principles underlying the production process of a UO{sub 2} pellet plant. In this process, advance determination of the particle-size distribution characteristics of the raw material is secured not by means of controlled precipitation but by the crushing and grading of powders. The uranium oxides tested in this work are conventional materials, representing types of fabrication which differ by origin and method used. A study of the pellets obtained shows the potentialities and limitations of each type of oxide in the process adopted. A description is given of the characteristics of the powders as regards specific area, particlesize distribution, differential and thermogravimetric thermal analyses, and stoichiometry, and of the density, contraction, structure and stoichiometry of the pellets. (author) [French] Les auteurs decrivent les experiences qui ont servi de base aux operations d'une installation de fabrication de pastilles d'UO{sub 2}. Selon la methode employee, pour fixer a l'avance les caracteristiques granulometriques de la matiere premiere, on ne procede pas a une precipitation controlee, mais a un broyage et a un criblage des poudres. Les uranes qui ont fait l'objet de ce travail sont des produits classiques provenant de fabrications qui different par l'origine et le procede de transformation. De l'etude des pastilles obtenues, on deduit les possibilites et les limites de chaque type d'urane par rapport au procede adopte. On controle les caracteristiques suivantes: pour les poudres, la surface specifique, la granulometrie; les proprietes thermiques differentielles et thermogravimetrique et la stoechiometrie; pour les pastilles, la densite, la contraction, la structure et la stoechiometrie des pastilles. (author) [Spanish] Se exponen los fundamentos experimentales sobre los que se basa el proceso de una planta de fabricacion de pastillas de UO{sub 2} . En este proceso no se emplea la precipitacion controlada como

  16. Preparation and infrared spectra of the Schiff base solid complexes [UO2(sal-O-phdn)(H2O)] and [UO2(sal-O-phdn) (Et3N)] (sal-O-phdn=n, n'-o-phenylenebissalicylideniminato)

    International Nuclear Information System (INIS)

    Sadeek, S.A.; Teleb, S.M.; Al-Kority, A.M.

    1993-01-01

    In the present communication, we report the preparation of the related two new complexes, [UO 2 (sal-o-phdn)(H 2 O)] and LUO 2 (sal-o-phdn)(Et 3 N)], where sal-o-phdn=N, N'-o-phenylenebis (salicylideneiminato); here U VI is seven-coordinate. The infrared spectra of these two complexes are recorded and assigned. (author). 10 refs., 1 tab

  17. UO2 microspheres obtainment through the internal gelation methods

    International Nuclear Information System (INIS)

    Sterba, M.E.; Gomez Constenla, A.

    1987-01-01

    UO 2 microspheres obtainment process through the internal gelation method which allows the spheres' obtainment of uniform size is detailed herein, varying the same among 0.3 and 1.7 mm of diameter. The sintered density reaches 10.78 g/cm 3 , permitting the fuels fabrication dispersed and vibro-compacted fuels. The trichloroethylene use implementation as gelation agent is described, thus reducing the number of stages in the microspheres fabrication. At the same time, the uranium sun composition has been modified so as to be compatible with the use solvent. (Author)

  18. An Overview of Current and Past W-UO[2] CERMET Fuel Fabrication Technology

    International Nuclear Information System (INIS)

    Douglas E. Burkes; Daniel M. Wachs; James E. Werner; Steven D. Howe

    2007-01-01

    Studies dating back to the late 1940s performed by a number of different organizations and laboratories have established the major advantages of Nuclear Thermal Propulsion (NTP) systems, particularly for manned missions. A number of NTP projects have been initiated since this time; none have had any sustained fuel development work that appreciably contributed to fuel fabrication or performance data from this era. As interest in these missions returns and previous space nuclear power researchers begin to retire, fuel fabrication technologies must be revisited, so that established technologies can be transferred to young researchers seamlessly and updated, more advanced processes can be employed to develop successful NTP fuels. CERMET fuels, specifically W-UO2, are of particular interest to the next generation NTP plans since these fuels have shown significant advantages over other fuel types, such as relatively high burnup, no significant failures under severe transient conditions, capability of accommodating a large fission product inventory during irradiation and compatibility with flowing hot hydrogen. Examples of previous fabrication routes involved with CERMET fuels include hot isostatic pressing (HIPing) and press and sinter, whereas newer technologies, such as spark plasma sintering, combustion synthesis and microsphere fabrication might be well suited to produce high quality, effective fuel elements. These advanced technologies may address common issues with CERMET fuels, such as grain growth, ductile to brittle transition temperature and UO2 stoichiometry, more effectively than the commonly accepted 'traditional' fabrication routes. Bonding of fuel elements, especially if the fabrication process demands production of smaller element segments, must be investigated. Advanced brazing techniques and compounds are now available that could produce a higher quality bond segment with increased ease in joining. This paper will briefly address the history of CERMET

  19. Manufacture of a UO2-Based Nuclear Fuel with Improved Thermal Conductivity with the Addition of BeO

    Science.gov (United States)

    Garcia, Chad B.; Brito, Ryan A.; Ortega, Luis H.; Malone, James P.; McDeavitt, Sean M.

    2017-12-01

    The low thermal conductivity of oxide nuclear fuels is a performance-limiting parameter. Enhancing this property may provide a contribution toward establishing accident-tolerant fuel forms. In this study, the thermal conductivity of UO2 was increased through the fabrication of ceramic-ceramic composite forms with UO2 containing a continuous BeO matrix. Fuel with a higher thermal conductivity will have reduced thermal gradients and lower centerline temperatures in the fuel pin. Lower operational temperatures will reduce fission gas release and reduce fuel restructuring. Additions of BeO were made to UO2 fuel pellets in 2.5, 5, 7.5, and 10 vol pct concentrations with the goals of establishing reliable lab-scale processing procedures, minimizing porosity, and maximizing thermal conductivity. The microstructure was characterized with electron probe microanalysis, and the thermal properties were assessed by light flash analysis and differential scanning calorimetry. Reliable, high-density samples were prepared using compaction pressure between 200 and 225 MPa and sintering times between 4 and 6 hours. It was found that the thermal conductivity of UO2 improved approximately 10 pct for each 1 vol pct BeO added over the measured temperature range 298.15 K to 523.15 K (25 °C to 250 °C) with the maximum observed improvement being ˜ 100 pct, or doubled, at 10 vol pct BeO.

  20. Studies of the role of molten materials in interactions with UO2 and graphite

    International Nuclear Information System (INIS)

    Fink, J.K.; Heiberger, J.J.; Leibowitz, L.

    1979-01-01

    Graphite, which is being considered as a lower reactor shield in gas-cooled fast reactors, would be contacted by core debris during a core disruptive accident. Information on the interaction of graphite, UO 2 , and stainless steel is needed in assessing the safety of the GCFR. In an ongoing study of the interaction of graphite, UO 2 , and stainless steel, the effects of the steel components have been investigated by electron microprobe scans, x-ray diffraction, and reaction-rate measurements. Experiments to study the role of the reaction product, FeUC 2 , in the interaction suggested that FeUC 2 promotes the interaction by acting as a carrier to bring graphite to the reaction site. Additional experiments using pyrolytic graphite show that while the reaction rate is decreased at 2400 K, at higher temperatures the rate is similar to that using other grades of graphite