WorldWideScience

Sample records for fissionable materials management

  1. On the fissionable materials management system in the process of nuclear disarmament

    International Nuclear Information System (INIS)

    Vikharev, S.S.; Mikijchuk, N.B.; Pinaev, V.S.; Sudarushkin, I.S.; Yuferev, V.I.

    1994-01-01

    Various scenarios of nuclear weapons proliferation and goals of fissionable material accounting and control system (FMACS) are considered. Ways of improving FMACS in Russia under a complicated social situation are discussed. This improvement should follow two directions: introduction of non-destructive control methods and accounting and control process automation

  2. International handling of fissionable material

    International Nuclear Information System (INIS)

    1975-01-01

    The opinion of the ministry for foreign affairs on international handling of fissionable materials is given. As an introduction a survey is given of the possibilities to produce nuclear weapons from materials used in or produced by power reactors. Principles for international control of fissionable materials are given. International agreements against proliferation of nuclear weapons are surveyed and methods to improve them are proposed. (K.K.)

  3. Material synergism fusion-fission

    International Nuclear Information System (INIS)

    Sankara Rao, K.B.; Raj, B.; Cook, I.; Kohyama, A.; Dudarev, S.

    2007-01-01

    In fission and fusion reactors the common features such as operating temperatures and neutron exposures will have the greatest impact on materials performance and component lifetimes. Developing fast neutron irradiation resisting materials is a common issue for both fission and fusion reactors. The high neutron flux levels in both these systems lead to unique materials problems like void swelling, irradiation creep and helium embitterment. Both fission and fusion rely on ferritic-martensitic steels based on 9%Cr compositions for achieving the highest swelling resistance but their creep strength sharply decreases above ∝ 823K. The use of oxide dispersion strengthened (ODS) alloys is envisaged to increase the operating temperature of blanket systems in the fusion reactors and fuel clad tubes in fast breeder reactors. In view of high operating temperatures, cyclic and steady load conditions and the long service life, properties like creep, low cycle fatigue,fracture toughness and creepfatigue interaction are major considerations in the selection of structural materials and design of components for fission and fusion reactors. Currently, materials selection for fusion systems has to be based upon incomplete experimental database on mechanical properties. The usage of fairly well developed databases, in fission programmes on similar materials, is of great help in the initial design of fusion reactor components. Significant opportunities exist for sharing information on technology of irradiation testing, specimen miniaturization, advanced methods of property measurement, safe windows for metal forming, and development of common materials property data base system. Both fusion and fission programs are being directed to development of clean steels with very low trace and tramp elements, characterization of microstructure and phase stability under irradiation, assessment of irradiation creep and swelling behaviour, studies on compatibility with helium and developing

  4. Fission reactors and materials

    International Nuclear Information System (INIS)

    Frost, B.R.T.

    1981-12-01

    The American-designed boiling water reactor and pressurized water reactor dominate the designs currently in use and under construction worldwide. As in all energy systems, materials problems have appeared during service; these include stress-corrosion of stainless steel pipes and heat exchangers and questions regarding crack behavior in pressure vessels. To obtain the maximum potential energy from our limited uranium supplies is is essential to develop the fast breeder reactor. The materials in these reactors are subjected to higher temperatures and neutron fluxes but lower pressures than in the water reactors. The performance required of the fuel elements is more arduous in the breeder than in water reactors. Extensive materials programs are in progress in test reactors and in large test rigs to ensure that materials will be available to meet these conditions

  5. Induced-Fission Imaging of Nuclear Material

    International Nuclear Information System (INIS)

    Hausladen, Paul; Blackston, Matthew A.; Mullens, James Allen; McConchie, Seth M.; Mihalczo, John T.; Bingham, Philip R.; Ericson, Milton Nance; Fabris, Lorenzo

    2010-01-01

    This paper presents initial results from development of the induced-fission imaging technique, which can be used for the purpose of measuring or verifying the distribution of fissionable material in an unopened container. The technique is based on stimulating fissions in nuclear material with 14 MeV neutrons from an associated-particle deuterium-tritium (D-T) generator and counting the subsequent induced fast fission neutrons with an array of fast organic scintillation detectors. For each source neutron incident on the container, the neutron creation time and initial trajectory are known from detection of the associated alpha particle of the d + t → α + n reaction. Many induced fissions will lie along (or near) the interrogating neutron path, allowing an image of the spatial distribution of prompt induced fissions, and thereby fissionable material, to be constructed. A variety of induced-fission imaging measurements have been performed at Oak Ridge National Laboratory with a portable, low-dose D-T generator, including single-view radiographic measurements and three-dimensional tomographic measurements. Results from these measurements will be presented along with the neutron transmission images that have been performed simultaneously. This new capability may have applications to a number of areas in which there may be a need to confirm the presence or configuration of nuclear materials, such as nuclear material control and accountability, quality assurance, treaty confirmation, or homeland security applications.

  6. Aqueous cutting fluid for machining fissionable materials

    Science.gov (United States)

    Duerksen, Walter K.; Googin, John M.; Napier, Jr., Bradley

    1984-01-01

    The present invention is directed to a cutting fluid for machining fissionable material. The cutting fluid is formed of glycol, water and boron compound in an adequate concentration for effective neutron attenuation so as to inhibit criticality incidents during machining.

  7. Activation analysis and waste management for blanket materials of multi-functional experimental fusion–fission hybrid reactor (FDS-MFX)

    International Nuclear Information System (INIS)

    Jiang, Jieqiong; Yuan, Baoxin; Zou, Jun; Wu, Yican

    2014-01-01

    The preliminary studies of the activation analysis and waste management for blanket materials of the multi-functional experimental fusion–fission hybrid reactor, i.e. Multi-Functional eXperimental Fusion Driven Subcritical system named FDS-MFX, were performed. The neutron flux of the FDS-MFX blanket was calculated using VisualBUS code and Hybrid Evaluated Nuclear Data Library (HENDL) developed by FDS Team. Based on these calculated neutron fluxes, the activation properties of blanket materials were analyzed by the induced radioactivity, the decay heat and the contact dose rate for different regions of the FDS-MFX blanket. The safety and environment assessment of fusion power (SEAFP) strategy, which was developed in Europe, was applied to FDS-MFX blanket for the management of activated materials. Accordingly, the classification and management strategy of activated materials after different cooling time were proposed for FDS-MFX blanket

  8. Nuclear materials for fission reactors

    International Nuclear Information System (INIS)

    Matzke, H.; Schumacher, G.

    1992-01-01

    This volume brings together 47 papers from scientists involved in the fabrication of new nuclear fuels, in basic research of nuclear materials, their application and technology as well as in computer codes and modelling of fuel behaviour. The main emphasis is on progress in the development of non -oxide fuels besides reporting advances in the more conventional oxide fuels. The two currently performed large reactor safety programmes CORA and PHEBUS-FP are described in invited lectures. The contributions review basic property measurements, as well as the present state of fuel performance modelling. The performance of today's nuclear fuel, hence UO 2 , at high burnup is also reviewed with particular emphasis on the recently observed phenomenon of grain subdivision in the cold part of the oxide fuel at high burnup, the so-called 'rim' effect. Similar phenomena can be simulated by ion implantation in order to better elucidate the underlying mechanism and reviews on high resolution electron microscopy provide further information. The papers will provide a useful treatise of views, ideas and new results for all those scientists and engineers involved in the specific questions of current nuclear waste management

  9. METHOD OF JACKETING FISSIONABLE MATERIALS

    Science.gov (United States)

    Foster, L.M.

    1959-02-01

    An improvement is presented in the jacketing of a metal body accomplished by electroplating upon that portion of the metal container to be protected from the bonding material a niatcrial such as Cr which is impermeable to the bonding material. After the bonding operation the electroplate is removed and the metal container surfuce, unimpaired, may be welded to a cap which effects a closure. Generally in such an operation the metal body is U, the metal container is Al and the bonding material is a Zn alloy.

  10. International safeguards of fissionable material

    International Nuclear Information System (INIS)

    Tempus, P.

    1991-01-01

    From the very beginning nuclear fissile materials have been subject to state and - outside nuclear weapon states - also to international monitoring. The latter was a principal task of the International Atomic Energy Agency, a UN affiliated organisation formed in 1957 based in Vienna. The legal, technical and political aspects of its monitoring activity are explained

  11. Thermal Energetic Reactor with High Reproduction of Fission Materials

    Directory of Open Access Journals (Sweden)

    Vladimir M. Kotov

    2012-01-01

    On the base of thermal reactors with high fission materials reproduction world atomic power engineering development supplying higher power and requiring smaller speed of raw uranium mining, than in the variant with fast reactors, is possible.

  12. Nuclear data for structural materials of fission and fusion reactors

    International Nuclear Information System (INIS)

    Goulo, V.

    1989-06-01

    The document presents the status of nuclear reaction theory concerning optical model development, level density models and pre-equilibrium and direct processes used in calculation of neutron nuclear data for structural materials of fission and fusion reactors. 6 refs

  13. Identification of Fissionable Materials Using the Tagged Neutron Technique

    International Nuclear Information System (INIS)

    Keegan, R.P.; Hurley, J.P.; Tinsley, J.R.; Trainham, R.

    2009-01-01

    This summary describes experiments to detect and identify fissionable materials using the tagged neutron technique. The objective of this work is to enhance homeland security capability to find fissionable material that may be smuggled inside shipping boxes, containers, or vehicles. The technique distinguishes depleted uranium from lead, steel, and tungsten. Future work involves optimizing the technique to increase the count rate by many orders of magnitude and to build in the additional capability to image hidden fissionable materials. The tagged neutron approach is very different to other techniques based on neutron die-away or photo-fission. This work builds on the development of the Associated Particle Imaging (API) technique at the Special Technologies Laboratory (STL). Similar investigations have been performed by teams at the Oak Ridge National Laboratory (ORNL), the Khlopin Radium Institute in Russia, and by the EURITRACK collaboration in the European Union

  14. Space Fission Reactor Structural Materials: Choices Past, Present and Future

    International Nuclear Information System (INIS)

    Busby, Jeremy T.; Leonard, Keith J.

    2007-01-01

    Nuclear powered spacecraft will enable missions well beyond the capabilities of current chemical, radioisotope thermal generator and solar technologies. The use of fission reactors for space applications has been considered for over 50 years, although, structural material performance has often limited the potential performance of space reactors. Space fission reactors are an extremely harsh environment for structural materials with high temperatures, high neutron fields, potential contact with liquid metals, and the need for up to 15-20 year reliability with no inspection or preventative maintenance. Many different materials have been proposed as structural materials. While all materials meet many of the requirements for space reactor service, none satisfy all of them. However, continued development and testing may resolve these issues and provide qualified materials for space fission reactors.

  15. Professional Nuclear Materials Management

    International Nuclear Information System (INIS)

    Forcella, A.A.; O'Leary, W.J.

    1966-01-01

    This paper describes the scope of nuclear materials management for a typical power reactor in the United States of America. Since this power reactor is financed by private capital, one of the principal obligations of the reactor operator is to ensure that the investment is protected and will furnish an adequate financial return. Because of the high intrinsic value of nuclear materials, appropriate security and accountability must be continually exercised to minimize losses beyond security and accountability for the nuclear materials. Intelligent forethought and planning must be employed to ensure that additional capital is not lost as avoidable additional costs or loss of revenue in a number of areas. The nuclear materials manager must therefore provide in advance against the following contingencies and maintain constant control or liaison against deviations from planning during (a) pre-reactor acquisition of fuel and fuel elements, (b) in-reactor utilization of the fuel elements, and (c) post-reactor recovery of fuel values. During pre-reactor planning and operations, it is important that the fuel element be designed for economy in manufacture, handling, shipping, and replaceability. The time schedule for manufacturing operations must minimize losses of revenue from unproductive dead storage of high cost materials. For in-reactor operations, the maximum achievable burn-up of the fissionable material must be obtained by means of appropriate fuel rearrangement schemes. Concurrently the unproductive down-time of the reactor for fuel rearrangement, inspections, and the like must be minimized. In the post-reactor period, when the fuel has reached a predetermined depletion of fissionable material, the nuclear materials manager must provide for the most economical reprocessing and recovery of fissionable values and by-products. Nuclear materials management is consequently an essential factor in achieving competitive fuel cycle and unit energy costs with power reactors

  16. Thermal Energetic Reactor with High Reproduction of Fission Materials

    International Nuclear Information System (INIS)

    Kotov, V.M.

    2012-01-01

    Existing thermal reactors are energy production scale limited because of low portion of raw uranium usage. Fast reactors are limited by reprocessing need of huge mass of raw uranium at the initial stage of development. The possibility of development of thermal reactors with high fission materials reproduction, which solves the problem, is discussed here. Neutron losses are decreased, uranium-thorium fuel with artificial fission materials equilibrium regime is used, additional in-core and out-core neutron sources are used for supplying of high fission materials reproduction. Liquid salt reactors can use dynamic loading regime for this purpose. Preferable construction is channel type reactor with heavy water moderator. Good materials for fuel element shells and channel walls are zirconium alloys enriched by 90Zr. Water cooled reactors with usage 12% of raw uranium and liquid metal cooled reactors with usage 25% of raw uranium are discussed. Reactors with additional neutron sources obtain full usage of raw uranium with small additional energy expenses. On the base of thermal reactors with high fission materials reproduction world atomic power engineering development supplying higher power and requiring smaller speed of raw uranium mining, than in the variant with fast reactors, is possible.

  17. Radiation effects in fuel materials for fission reactors

    International Nuclear Information System (INIS)

    Matzke, H.

    1983-01-01

    Physical and chemical changes that occur in fuel materials during fission are described. Emphasis is placed on the fuels used today, or those foreseen for the future, hence oxides and carbides of uranium and plutonium. Examples are given to illustrate the most interesting neutron effects. (author)

  18. Early results utilizing high-energy fission product gamma rays to detect fissionable material in cargo

    International Nuclear Information System (INIS)

    Slaughter, D.R.; Accatino, M.R.; Alford, O.J.; Bernstein, A.; Descalle, M.; Gosnell, T.B.; Hall, J.M.; Loshak, A.; Manatt, D.R.; McDowell, M.R.; Moore, T.L.; Petersen, D.C.; Pohl, B.A.; Pruet, J.A.; Prussin, S.G.

    2004-01-01

    Full text: A concept for detecting the presence of special nuclear material ( 235 U or 239 Pu) concealed in inter modal cargo containers is described. It is based on interrogation with a pulsed beam of 6-8 MeV neutrons and fission events are identified between beam pulses by their β-delayed neutron emission or β -delayed high-energy γ-radiation. The high-energy γ-ray signature is being employed for the first time. Fission product γ-rays above 3 MeV are distinct from natural radioactivity and from nearly all of the induced activity in a normal cargo. High-energy γ-radiation is nearly 10X more abundant than the delayed neutrons and penetrates even thick cargo's readily. The concept employs two large (8x20 ft) arrays of liquid scintillation detectors that have high efficiency for the detection of both delayed neutrons and delayed γ-radiation. Detector backgrounds and potential interferences with the fission signature radiation have been identified and quantified. This information, together with predicted signature strength, has been applied to the estimation of detection probability for the nuclear material and estimation of false alarm rates. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48

  19. Continuous fluid bed reactor for fissionable material

    International Nuclear Information System (INIS)

    Ziegler, D.L.

    1975-01-01

    Plutonium (Pu) purification and plutonium hexafluoride (PuF 6 ) formation are achieved on a continuous basis by feeding particulate material into one end of an elongated and horizontally disposed vessel having an upper section with generally converging side walls and a lower section with generally vertical side walls, compartmented throughout its length by transversely disposed baffles, so that particulate material flows through the vessel in vertical generally zigzag fashion, being fluidized by dispersing gas that enters the compartment from a lower narrow compartment and discharges through an upper widened compartment. Vaporous PuF 6 formed from a reaction between the dispersing gas and the particulate material discharges through the upper widened compartment and solid impurities discharge for collection through a port at a far or distal end of the elongated vessel. (U.S.)

  20. Overview of standards subcommittee 8, fissionable materials outside reactors

    International Nuclear Information System (INIS)

    McLaughlin, T.P.

    1996-01-01

    The American Nuclear Society's Standards Subcommittee 8, titled open-quotes Fissionable Materials Outside Reactors,close quotes has worked for the past 35 yr to prepare and promote standards on nuclear criticality safety for the handling, processing, storing, and transportation of fissionable materials outside reactors. The reader is referred to the Transactions of the American Nuclear Society, Vols. 39 (1981) and 64 (1991), for previous papers associated with ANS-8 poster sessions. In addition to discussions on the then-current standards, the reader will find articles on working group efforts that never materialized into standards, such as proposed 8.13, open-quotes Use of the Solid-Angle Method in Nuclear Criticality Safety,close quotes and on applications and critiques of current standards. The paper by McLendon in Vol. 39 is particularly interesting as an overview of the early history of ANS-8 and its standards

  1. Neutron irradiation facilities for fission and fusion reactor materials studies

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.

    1985-01-01

    The successful development of energy-conversion machines based upon nuclear fission or fusion reactors is critically dependent upon the behavior of the engineering materials used to construct the full containment and primary heat extraction systems. The development of radiation damage-resistant materials requires irradiation testing facilities which reproduce, as closely as possible, the thermal and neutronic environment expected in a power-producing reactor. The Oak Ridge National Laboratory (ORNL) reference core design for the Center for Neutron Research (CNR) reactor provides for instrumented facilities in regions of both hard and mixed neutron spectra, with substantially higher fluxes than are currently available. The benefits of these new facilities to the development of radiation damage resistant materials are discussed in terms of the major US fission and fusion reactor programs

  2. Materials degradation in fission reactors: Lessons learned of relevance to fusion reactor systems

    International Nuclear Information System (INIS)

    Was, Gary S.

    2007-01-01

    The management of materials in power reactor systems has become a critically important activity in assuring the safe, reliable and economical operation of these facilities. Over the years, the commercial nuclear power reactor industry has faced numerous 'surprises' and unexpected occurrences in materials. Mitigation strategies have sometimes solved one problem at the expense of creating another. Other problems have been solved successfully and have motivated the development of techniques to foresee problems before they occur. This paper focuses on three aspects of fission reactor experience that may benefit future fusion systems. The first is identification of parameters and processes that have had a large impact on the behavior of materials in fission systems such as temperature, dose rate, surface condition, gradients, metallurgical variability and effects of the environment. The second is the development of materials performance and failure models to provide a basis for assuring component integrity. Last is the development of proactive materials management programs that identify and pre-empt degradation processes before they can become problems. These aspects of LWR experience along with the growing experience with materials in the more demanding advanced fission reactor systems form the basis for a set of 'lessons learned' to aid in the successful management of materials in fusion reactor systems

  3. Fundamentals of passive nondestructive assay of fissionable material: laboratory workbook

    International Nuclear Information System (INIS)

    Reilly, T.D.; Augustson, R.H.; Parker, J.L.; Walton, R.B.; Atwell, T.L.; Umbarger, C.J.; Burns, C.E.

    1975-02-01

    This workbook is a supplement to LA-5651-M, ''Fundamentals of Passive Nondestructive Assay of Fissionable Material'' which is the text used during the Nondestructive Assay Training Session given by Group A-1 of the Los Alamos Scientific Laboratory. It contains the writeups used during the six laboratory sessions covering basic gamma-ray principles, quantitative gamma-ray measurements, uranium enrichment measurements, equipment holdup measurements, basic neutron principles, and quantitative neutron assay

  4. Fundamentals of passive nondestructive assay of fissionable material: laboratory workbook

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, T.D.; Augustson, R.H.; Parker, J.L. Walton, R.B.; Atwell, T.L.; Umbarger, C.J.; Burns, C.E.

    1975-02-01

    This workbook is a supplement to LA-5651-M, ''Fundamentals of Passive Nondestructive Assay of Fissionable Material'' which is the text used during the Nondestructive Assay Training Session given by Group A-1 of the Los Alamos Scientific Laboratory. It contains the writeups used during the six laboratory sessions covering basic gamma-ray principles, quantitative gamma-ray measurements, uranium enrichment measurements, equipment holdup measurements, basic neutron principles, and quantitative neutron assay.

  5. Material challenges for the next generation of fission reactor systems

    International Nuclear Information System (INIS)

    Buckthorpe, Derek

    2010-01-01

    The new generation of fission reactor systems wil require the deployment and construction of a series of advanced water cooled reactors as part of a package of measures to meet UK and European energy needs and to provide a near term non-fossil fuel power solution that addresses CO 2 emission limits. In addition new longer term Generation IV reactor tye systems are being developed and evaluated to enhance safety, reliability, sustainability economics and proliferation resistance requirements and to meet alternative energy applications (outside of electricity generation) such as process heat and large scale hydrogen generation. New fission systems will impose significant challenges on materials supply and development. In the near term, because of the need to 'gear up' to large scale construction after decades of industrial hibernation/contraction and, in the longer term, because of the need for materials to operate under more challenging environments requiring the deployment and development of new alternative materials not yet established to an industrial stage. This paper investigates the materials challenges imposed by the new Generation III+ and Generation IV systems. These include supply and fabrication issues, development of new high temperature alloys and non-metallic materials, the use of new methods of manufacture and the best use of currently available resources and minerals. Recommendations are made as to how these materials challenges might be met and how governments, industry, manufacturers and researchers can all play their part. (orig.)

  6. Material challenges for the next generation of fission reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Buckthorpe, Derek [AMEC, Knutsford, Cheshire (United Kingdom)

    2010-07-01

    The new generation of fission reactor systems wil require the deployment and construction of a series of advanced water cooled reactors as part of a package of measures to meet UK and European energy needs and to provide a near term non-fossil fuel power solution that addresses CO{sub 2} emission limits. In addition new longer term Generation IV reactor tye systems are being developed and evaluated to enhance safety, reliability, sustainability economics and proliferation resistance requirements and to meet alternative energy applications (outside of electricity generation) such as process heat and large scale hydrogen generation. New fission systems will impose significant challenges on materials supply and development. In the near term, because of the need to 'gear up' to large scale construction after decades of industrial hibernation/contraction and, in the longer term, because of the need for materials to operate under more challenging environments requiring the deployment and development of new alternative materials not yet established to an industrial stage. This paper investigates the materials challenges imposed by the new Generation III+ and Generation IV systems. These include supply and fabrication issues, development of new high temperature alloys and non-metallic materials, the use of new methods of manufacture and the best use of currently available resources and minerals. Recommendations are made as to how these materials challenges might be met and how governments, industry, manufacturers and researchers can all play their part. (orig.)

  7. Structural materials issues for the next generation fission reactors

    Science.gov (United States)

    Chant, I.; Murty, K. L.

    2010-09-01

    Generation-IV reactor design concepts envisioned thus far cater to a common goal of providing safer, longer lasting, proliferation-resistant, and economically viable nuclear power plants. The foremost consideration in the successful development and deployment of Gen-W reactor systems is the performance and reliability issues involving structural materials for both in-core and out-of-core applications. The structural materials need to endure much higher temperatures, higher neutron doses, and extremely corrosive environments, which are beyond the experience of the current nuclear power plants. Materials under active consideration for use in different reactor components include various ferritic/martensitic steels, austenitic stainless steels, nickel-base superalloys, ceramics, composites, etc. This article addresses the material requirements for these advanced fission reactor types, specifically addressing structural materials issues depending on the specific application areas.

  8. Criticality safety margins for mixtures of fissionable materials

    International Nuclear Information System (INIS)

    Williamson, T.G.; Mincey, J.F.

    1992-01-01

    In the determination of criticality safety margins, approximations for combinations of fissile and fissionable isotopes are sometimes used that go by names such as the rule of fractions or equivalency relations. Use of the rule of fractions to ensure criticality safety margins was discussed in an earlier paper. The purpose of this paper is to correct errors and to clarify some of the implications. Deviations of safety margins from those calculated by the rule of fractions are still noted; however, the deviations are less severe. Caution in applying such rules is still urged. In general, these approximations are based on American National Standard ANSI/ANS-8.15, Sec. 5.2. This section allows that ratios of material masses to their limits may be summed for fissile nuclides in aqueous solutions. It also allows the addition of nonfissile nuclides if an aqueous moderator is present and addresses the effects of infinite water or equivalent reflector. Water-reflected binary combinations of aqueous solutions of fissile materials, as well as binary combinations of fissile and fissionable metals, were considered. Some combinations were shown to significantly decrease the margin of subcriticality compared to the single-unit margins. In this study, it is confirmed that some combinations of metal units in an optimum geometry may significantly decrease the margin of subcriticality. For some combinations of aqueous solutions of fissile materials, the margin of subcriticality may also be reduced by very small amounts. The conclusion of Ref. 1 that analysts should be careful in applying equivalency relations for combining materials remains valid and sound advice. The ANSI/ANS standard, which allows the use of ratios of masses to their limits, applies to aqueous, fully water-reflected, single-unit solutions. Extensions to other situations should be considered with extreme care

  9. The mass transfer mechanism of fissile material due to fission

    International Nuclear Information System (INIS)

    Shafrir, N.H.

    1975-01-01

    A thin 252 Cf source of a mean thickness of an approXimately mono-atomic layer was used as an experimental model for the study of the basic mechanism of the knock-on process taking place in fissile material. Because of the thinness of the source it can be assumed that mainly primary knock-ons are formed. The ejection rate of knock-ons created by direct collisions between fission fragments and source atoms was measured as follows: the ejected atoms were collected in high vacuum on a catcher foil and 252 Cf determined by alpha spectroscopy using a silicon surface barrier detector. The number of 252 Cf ejected from the source in unit time could thus be determined while considering the anisotropy of ejection, geometry and counting efficiency. Taking into account the chemical composition of the source, eta(theor.) = 252 Cf atoms/fission was obtained. This result can be considered in reasonable agreement with experiment confirming that under the experimental conditions described, practically no knock-on cascade is formed. (B.G.)

  10. Disposal of fissionable material from dismantled nuclear weapons

    International Nuclear Information System (INIS)

    Taylor, J.J.

    1991-01-01

    The reduction in tensions between the United States and the Soviet Union has improved the prospects for nuclear disarmament, making it more likely that significant numbers of nuclear warheads will be dismantled by the United States and USSR in the foreseeable future. Thus, the question becomes more urgent as to the disposition of the weapons materials, highly enriched uranium and plutonium. It is timely, therefore, to develop specific plans for such disposal. The overall process for disposal of weapons materials by the burnup option involves the following steps: (1) removing the weapons material from the warheads, (2) converting the material to a fuel form suitable for power reactors, (3) burning it up as a power reactor fuel, and (4) removing the spent fuel and placing it in a permanent repository. This paper examines these four steps with the purpose of answering the following questions. What facilities would be appropriate for the disposal process? Do they need to be dedicated facilities, or could industrial facilities be used? What is the present projection of the economics of the burnup process, both the capital investment and the operating costs? How does one assure that fissionable materials will not be diverted to military use during the disposal process? Is the spent fuel remaining from the burnup process proliferation resistant? Would the disposal of spent fuel add an additional burden to the spent fuel permanent repository? The suggested answers are those of the author and do not represent a position by the Electric Power Research Institute

  11. Preliminary results utilizing high-energy fission product γ-rays to detect fissionable material in cargo

    Science.gov (United States)

    Slaughter, D. R.; Accatino, M. R.; Bernstein, A.; Church, J. A.; Descalle, M. A.; Gosnell, T. B.; Hall, J. M.; Loshak, A.; Manatt, D. R.; Mauger, G. J.; Moore, T. L.; Norman, E. B.; Pohl, B. A.; Pruet, J. A.; Petersen, D. C.; Walling, R. S.; Weirup, D. L.; Prussin, S. G.; McDowell, M.

    2005-12-01

    A concept for detecting the presence of special nuclear material (235U or 239Pu) concealed in intermodal cargo containers is described. It is based on interrogation with a pulsed beam of 7 MeV neutrons that produce fission events and their β-delayed neutron emission or β-delayed high-energy γ radiation between beam pulses provide the detection signature. Fission product β-delayed γ-rays above 3 MeV are nearly 10 times more abundant than β-delayed neutrons and are distinct from natural radioactivity and from nearly all of the induced activity in a normal cargo. Detector backgrounds and potential interferences with the fission signature radiation have been identified and quantified.

  12. Management-retrieval code system of fission barrier parameter sub-library

    International Nuclear Information System (INIS)

    Zhang Limin; Su Zongdi; Ge Zhigang

    1995-01-01

    The fission barrier parameter (FBP) library, which is a sub-library of Chinese Evaluated Nuclear Parameter library (CENPL), stores various popular used fission barrier parameters from different historical period, and could retrieve the required fission barrier parameters by using the management retrieval code system of the FBP sub-library. The function, feature and operation instruction of the code system are described briefly

  13. Organization of customs control of fissionable and other radioactive materials

    International Nuclear Information System (INIS)

    Ukhlinov, L.; Bojko, V.

    2001-01-01

    Among the routine inspection tasks of the Sheremetyevo customs office are tasks stemming from international commitments of Russia to prevent proliferation of nuclear weapons and material that can be used for making these weapons. These tasks are: radiation monitoring of all vehicles, passengers, their luggage and goods crossing the state border; inspection of fissionable and radioactive materials (FRM) legally transported by participants in the foreign trade activities with a view to checking that the declared data fully correspond to the actual radioactive cargo. Organizational measures and technical measures at the Sheremetyevo customs office are described in detail. The efficiency of the scheme is illustrated by the following figures. In 1997, when appropriate technical means and trained personnel were lacking, there were only 2 events of detecting items with a rather high radioactivity level in the luggage. In 1999, after the entire radiation monitoring system was fully deployed (i.e. the flight checkpoint was equipped with technical means of radiation monitoring, personnel was trained, special technologies and algorithms were developed), there were 61 events of radiation detection, and in 2000 there have been 90 events, including breaches of legal FRM traffic regulations through disagreement of declared and actual parameters. We believe that the above-considered organization of radiation monitoring allows effective and quite reliable control of and adequate response to possible illicit transport of FRM through the airport Sheremetyevo to other countries, including CIS. In the near future we plan to increase the efficiency of the radiation monitoring by integrating the currently operational customs-used stationary FRM detection systems into a single information network capable of providing simultaneous video-aided continuous nuclear monitoring at three terminals (Sheremetyevo-1, Sheremetyevo-2, Sheremetyevo-Cargo) with display of information at the workstation

  14. Local system for control by console-mobile crane for russian depository of fissionable materials

    International Nuclear Information System (INIS)

    Troshchenko, V.G.; Kapustin, V.N.; Zinina, N.V.; Derbyshev, S.A.

    2005-01-01

    Description of crane of console-mobile type used for transportation of fissionable materials in depository with local control system is represented. Local control system realizes program control in real time [ru

  15. Sustainable Materials Management

    Science.gov (United States)

    To introduce businesses, NGOs, and government officials to the concept of Sustainable Materials Management (SMM). To provide tools to allow stakeholders to take a lifecycle approach managing their materials, & to encourage them to join a SMM challenge.

  16. Thermochemical data for reactor materials and fission products

    International Nuclear Information System (INIS)

    Cordfunke, E.H.P.; Konings, R.J.M.

    1990-01-01

    This volume presents a collection of critically assessed data on inorganic compounds which are of special interest in nuclear reactor safety studies. Thermodynamic equilibrium calculations are an important and widely used instrument in the understanding of the chemical behavior and release of fission products in the course of nuclear reactor accidents. The reliability of such calculations is, nevertheless, limited by the availability of accurate input data for relevant compounds

  17. Materials compatibility considerations for a fusion-fission hybrid reactor design

    International Nuclear Information System (INIS)

    DeVan, J.H.; Tortorelli, P.F.

    1983-01-01

    The Tandem Mirror Hybrid Reactor is a fusion reactor concept that incorporates a fission-suppressed breeding blanket for the production of 233 U to be used in conventional fission power reactors. The present paper reports on compatibility considerations related to the blanket design. These considerations include solid-solid interactions and liquid metal corrosion. Potential problems are discussed relative to the reference blanket operating temperature (490 0 C) and the recycling time of breeding materials (<1 year)

  18. Studies on fission tracks and distributions of uranium and rare earths in granite materials

    International Nuclear Information System (INIS)

    Matsuda, Hiroshi; Sakanoue, Masanobu

    1987-01-01

    Many materials contain fossil records of the slow spontaneous fission of uranium they contain as an impurity. Fission fragments, heavy charged particles released in each fission event, produce microscopic trails of radiation damage that may persist over geological times and may be developed to a size observable under an optical microscope by a suitable etching treatment. Such tracks are also produced by fissions induced by thermal neutron irradiation of the uranium. When the material is heated sufficiently, it anneals and the the microscopic trails become shorter and narrower. The track density decreases, because the chemical etchant will not reach some of the shortened tracks. Measurements of track densities before and after annealing can be used, along with laboratory studies of annealing rates, to determine the annealing temperature. Also, the track density of induced fissions is related to the concentration of uranium and the fluence of neutrons to which it was exposed. If the track density due to induced fissions can be distinguished from that due to fossil tracks, estimates of either the concentration or the fluence can be made if the other is known. Two such materials (one a fragment of a granite paving stone, the other a piece of stained glass from a cathedral window) that had been exposed to the atomic bomb at Nagasaki were used in the present work. The fossil record in zircons in the granite was used to estimate the temperature to which it had been exposed in the bombing. Induced fissions were used to estimate the concentration of uranium in the zircons. Nonuniform heating and cooling and nearly uniform exposure to the neutrons make the granite sample unsuitable for determining the neutron fluence from the bomb. Induced fissions in the stained glass were used to estimate the concentration of uranium and the thermal neutron fluence from the A-bomb. Annealing of tracks in glass was also studied

  19. Exploiting Fission Chain Reaction Dynamics to Image Fissile Materials

    Science.gov (United States)

    Chapman, Peter Henry

    Radiation imaging is one potential method to verify nuclear weapons dismantlement. The neutron coded aperture imager (NCAI), jointly developed by Oak Ridge National Laboratory (ORNL) and Sandia National Laboratories (SNL), is capable of imaging sources of fast (e.g., fission spectrum) neutrons using an array of organic scintillators. This work presents a method developed to discriminate between non-multiplying (i.e., non-fissile) neutron sources and multiplying (i.e., fissile) neutron sources using the NCAI. This method exploits the dynamics of fission chain-reactions; it applies time-correlated pulse-height (TCPH) analysis to identify neutrons in fission chain reactions. TCPH analyzes the neutron energy deposited in the organic scintillator vs. the apparent neutron time-of-flight. Energy deposition is estimated from light output, and time-of-flight is estimated from the time between the neutron interaction and the immediately preceding gamma interaction. Neutrons that deposit more energy than can be accounted for by their apparent time-of-flight are identified as fission chain-reaction neutrons, and the image is reconstructed using only these neutron detection events. This analysis was applied to measurements of weapons-grade plutonium (WGPu) metal and 252Cf performed at the Nevada National Security Site (NNSS) Device Assembly Facility (DAF) in July 2015. The results demonstrate it is possible to eliminate the non-fissile 252Cf source from the image while preserving the fissileWGPu source. TCPH analysis was also applied to additional scenes in which theWGPu and 252Cf sources were measured individually. The results of these separate measurements further demonstrate the ability to remove the non-fissile 252Cf source and retain the fissileWGPu source. Simulations performed using MCNPX-PoliMi indicate that in a one hour measurement, solid spheres ofWGPu are retained at a 1sigma level for neutron multiplications M -˜ 3.0 and above, while hollowWGPu spheres are

  20. Thorium determination in water and biological materials by fission track

    International Nuclear Information System (INIS)

    Melo Ferreira, A.C. de.

    1989-01-01

    As a segment of a research programme on the study of bioaccumulation of radionuclides, in animals and vegetables from Morro do Ferro, Pocos de Caldas, MG, a fission track method for the determination of low levels of thorium in environmental samples was developed as an alternative for alpha spectroscopy. The study was carried out in early alpha spectroscopy samples, containing high levels of 228 Th activity, which makes difficult the 232 Th determination. A dry way method for thorium evaluation was developed. Pieces of membrane filters, containing La F 3 (Th), coupled to Makrofol detectors, were irradiated in the core of a research reactor, IEA-R1 (IPEN). (author)

  1. First wall material damage induced by fusion-fission neutron environment

    Energy Technology Data Exchange (ETDEWEB)

    Khripunov, Vladimir, E-mail: Khripunov_VI@nrcki.ru

    2016-11-01

    Highlights: • The highest damage and gas production rates are experienced within the first wall materials of a hybrid fusion-fission system. • About ∼2 times higher dpa and 4–5 higher He appm are expected compared to the values distinctive for a pure fusion system at the same DT-neutron wall loading. • The specific nuclear heating may be increased by a factor of ∼8–9 due to fusion and fission neutrons radiation capture in metal components of the first wall. - Abstract: Neutronic performance and inventory analyses were conducted to quantify the damage and gas production rates in candidate materials when used in a fusion-fission hybrid system first wall (FW). The structural materials considered are austenitic SS, Cu-alloy and V- alloys. Plasma facing materials included Be, and CFC composite and W. It is shown that the highest damage rates and gas particles production in materials are experienced within the FW region of a hybrid similar to a pure fusion system. They are greatly influenced by a combined neutron energy spectrum formed by the two-component fusion-fission neutron source in front of the FW and in a subcritical fission blanket behind. These characteristics are non-linear functions of the fission neutron source intensity. Atomic displacement damage production rate in the FW materials of a subcritical system (at the safe subcriticality limit of ∼0.95 and the neutron multiplication factor of ∼20) is almost ∼2 times higher compared to the values distinctive for a pure fusion system at the same 14 MeV neutron FW loading. Both hydrogen (H) and helium (He) gas production rates are practically on the same level except of about ∼4–5 times higher He-production in austenitic and reduced activation ferritic martensitic steels. A proper simulation of the damage environment in hybrid systems is required to evaluate the expected material performance and the structural component residence times.

  2. Heat and fission product transport in molten core material pool with crust

    International Nuclear Information System (INIS)

    Yun, J.I.; Suh, K.Y.; Kang, C.S.

    2005-01-01

    Heat transfer and fluid flow in a molten pool are influenced by internal volumetric heat generated from the radioactive decay of fission product species retained in the reactor vessel during a severe accident. The pool superheat is determined based on the overall energy balance that equates the heat production rate to the heat loss rate. Decay heat of fission products in the pool is estimated by product of the mass concentration and energy conversion factor of each fission product. Twenty-nine elements are chosen and classified by their chemical properties to calculate heat generation rate in the pool. The mass concentration of a fission product is obtained from released fraction and the tabular output of the ORIGEN 2 code. The initial core and pool inventories at each time can also be estimated using ORIGEN 2. The released fraction of each fission product is calculated based on the bubble dynamics and mass transport. Numerical analysis is performed for heat and fission product transport in a molten core material pool during the Three Mile Island Unit 2 (TMI-2) accident. The pool is assumed to be a partially filled hemisphere, whose change in geometry is neglected during the numerical calculation. Calculated results indicate that the peak temperature in the molten pool is significantly lowered, since a substantial amount of the volatile fission products is released from the molten pool during progression of the accident. The results may directly be applied to the existing severe accident analysis codes to more mechanistically determine the thermal load to the reactor vessel lower head during the in-vessel retention

  3. Thermochemical data for reactor materials and fission products: The ECN database

    International Nuclear Information System (INIS)

    Cordfunke, E.H.P.; Konings, R.J.M.

    1993-02-01

    The activities of the authors regarding the compilation of a database of thermochemical properties for reactor materials and fission products is reviewed. The evaluation procedures and techniques are outlined and examples are given. In addition, examples of the use of thermochemical data for the application in the field of Nuclear Technology are given. (orig.)

  4. A method of surface area measurement of fuel materials by fission gas release at low temperature

    International Nuclear Information System (INIS)

    Kaimal, K.N.G.; Naik, M.C.; Paul, A.R.; Venkateswarlu, K.S.

    1989-01-01

    The present report deals with the development of a method for surface area measurement of nuclear fuel as well as fissile doped materials by fission gas release study at low temperature. The method is based on the evaluation of knock-out release rate of fission 133 Xe from irradiated fuel after sufficient cooling to decay the short lived activity. The report also describes the fabrication of an ampoule breaker unit for such study. Knock-out release rate of 133 Xe has been studied from UO 2 powders having varying surface area 'S' ranging from 270 cm 2 /gm to 4100 cm 2 /gm at two fissioning rates 10 12 f/cm 3 . sec. and 3.2x10 10 f/cm.sec. A relation between K and A has been established and discussed in this report. (author). 6 refs

  5. Advanced thermal management materials

    CERN Document Server

    Jiang, Guosheng; Kuang, Ken

    2012-01-01

    ""Advanced Thermal Management Materials"" provides a comprehensive and hands-on treatise on the importance of thermal packaging in high performance systems. These systems, ranging from active electronically-scanned radar arrays to web servers, require components that can dissipate heat efficiently. This requires materials capable of dissipating heat and maintaining compatibility with the packaging and dye. Its coverage includes all aspects of thermal management materials, both traditional and non-traditional, with an emphasis on metal based materials. An in-depth discussion of properties and m

  6. Comparison of material irradiation conditions for fusion, spallation, stripping and fission neutron sources

    International Nuclear Information System (INIS)

    Vladimirov, P.; Moeslang, A.

    2004-01-01

    Selection and development of materials capable of sustaining irradiation conditions expected for a future fusion power reactor remain a big challenge for material scientists. Design of other nuclear facilities either in support of the fusion materials testing program or for other scientific purposes presents a similar problem of irradiation resistant material development. The present study is devoted to an evaluation of the irradiation conditions for IFMIF, ESS, XADS, DEMO and typical fission reactors to provide a basis for comparison of the data obtained for different material investigation programs. The results obtained confirm that no facility, except IFMIF, could fit all user requirements imposed for a facility for simulation of the fusion irradiation conditions

  7. LASL analytical chemistry program for fissionable materials safeguards

    International Nuclear Information System (INIS)

    Jackson, D.D.; Marsh, S.F.

    1979-01-01

    Gas-solid reactions at elevated temperature, used previously to convert uranium in refractory forms to species readily soluble in acid, are being applied to thorium materials. A microgram-sensitive spectrophotometric method was developed for determining uranium and the LASL Automated Spectrophotometer has been modified to use it. The instrument now is functional for determining milligram amounts of plutonium, and milligram and microgram amounts of uranium. Construction of an automated controlled-potential-coulometric analyzer has been completed. It is giving design performance of 0.1% relative standard deviation for the determination of plutonium using a method developed especially for the instrument. A method has been developed for the microcomplexometric titration of uranium in its stable (VI) oxidation state. A color probe analyzer assembled for this titration also has been used for microcomplexometric titration of thorium. The present status of reference materials prepared for NBS and for the SALE program, as well as examples of working reference materials prepared for use with nondestructive analyzers, is given. The interlaboratory measured value of the 239 Pu half-life is 24,119 y. Just completed measurement of the half life of 241 Pu is 14.38 y. Measurement of the 240 Pu half life is in progress

  8. Multiplicity Analysis during Photon Interrogation of Fissionable Material

    International Nuclear Information System (INIS)

    Clarke, Shaun D.; Pozzi, Sara A.; Padovani, Enrico; Downar, Thomas J.

    2007-01-01

    Simulation of multiplicity distributions with the Monte Carlo method is difficult because each history is treated individually. In order to accurately model the multiplicity distribution, the intensity and time width of the interrogation pulse must be incorporated into the calculation. This behavior dictates how many photons arrive at the target essentially simultaneously. In order to model the pulse width correctly, a Monte Carlo code system consisting of modified versions of the codes MCNPX and MCNP-PoliMi has been developed in conjunction with a post-processing algorithm to operate on the MCNP-PoliMi output file. The purpose of this subroutine is to assemble the interactions into groups corresponding to the number of interactions which would occur during a given pulse. The resulting multiplicity distributions appear more realistic and capture the higher-order multiplets which are a product of multiple reactions occurring during a single accelerator pulse. Plans are underway to gather relevant experimental data to verify and validate the methodology developed and presented here. This capability will enable the simulation of a large number of materials and detector geometries. Analysis of this information will determine the feasibility of using multiplicity distributions as an identification tool for special nuclear material.

  9. Development and optimization of neutron measurement methods by fission chamber on experimental reactors - management, treatment and reduction of uncertainties

    International Nuclear Information System (INIS)

    Blanc-De-Lanaute, N.

    2012-01-01

    The main objectives of this research thesis are the management and reduction of uncertainties associated with measurements performed by means of a fission-chamber type sensor. The author first recalls the role of experimental reactors in nuclear research, presents the various sensors used in nuclear detection (photographic film, scintillation sensor, gas ionization sensor, semiconducting sensor, other types of radiation sensors), and more particularly addresses neutron detection (activation sensor, gas filling sensor). In a second part, the author gives an overview of the state of the art of neutron measurement by fission chamber in a mock-up reactor (signal formation, processing and post-processing, associated measurements and uncertainties, return on experience of measurements by fission chamber on Masurca and Minerve research reactors). In a third part, he reports the optimization of two intrinsic parameters of this sensor: the thickness of fissile material deposit, and the pressure and nature of the filler gas. The fourth part addresses the improvement of measurement electronics and of post-processing methods which are used for result analysis. The fifth part deals with the optimization of spectrum index measurements by means of a fission chamber. The impact of each parameter is quantified. Results explain some inconsistencies noticed in measurements performed on the Minerve reactor in 2004, and allow the improvement of biases with computed values [fr

  10. Induced fission track distribution from highly radioactive particles in fallout materials

    International Nuclear Information System (INIS)

    Hashimoto, Tetsuo; Okada, Tatemichi

    1987-01-01

    Some highly radioactive fallout particles (GPs) from the 19th Chinese nuclear detonation were followed to the neutron irradiation in a reactor after sandwiched with mica detectors. The interesting star-like fission track patterns were revealed on the etched surface of the mica detectors. The simple chemical separation procedure for the GPs was applied for the separation of U and Pu as fissile elements and the both resultant fractions were examined with the similar high sensitive fission tracking detection. Subsequently, a representative track pattern from a black spherical particle was subjected to the determination of fissile nuclide content; comparing the total fission events evaluated on the basis of the numerical calculation of track densities with the total thermal neutron fluence. The results implied that the uranium is responsible for the main fissile nuclide remaining within a particle as unfissioned fractions and should be certainly enriched with respect to U-235 within such small fallout particles. This sophisticated method was also applied to determine the dead GPs, which have been highly radioactive particles just after the detonations, in the rain and snow-residual materials. Many induced star-like fission tracks verified certainly that there remains a lot of dead particles in the atmosheric environment till nowadays. (author)

  11. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    Science.gov (United States)

    Norman, Eric B [Oakland, CA; Prussin, Stanley G [Kensington, CA

    2009-01-27

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  12. Detection of fissionable materials in cargoes using monochromatic photon radiography

    Science.gov (United States)

    Danagoulian, Areg; Lanza, Richard; O'Day, Buckley; LNSP Team

    2015-04-01

    The detection of Special Nuclear Materials (e.g. Pu and U) and nuclear devices in the commercial cargo traffic is one of the challenges posed by the threat of nuclear terrorism. Radiography and active interrogation of heavily loaded cargoes require ~ 1 - 10MeV photons for penetration. In a proof-of-concept system under development at MIT, the interrogating monochromatic photon beam is produced via a 11B(d , nγ) 12C reaction. To achieve this, a boron target is used along with the 3 MeV d+ RFQ accelerator at MIT-Bates. The reactions results in the emission of very narrow 4.4 MeV and 15.1 MeV gammas lines. The photons, after traversing the cargo, are detected by an array of NaI(Tl) detectors. A spectral analysis of the transmitted gammas allows to independently determine the areal density and the atomic number (Z) of the cargo. The proposed approach could revolutionize cargo inspection, which, in its current fielded form has to rely on simple but high dose bremsstrahlung sources. Use of monochromatic sources would significantly reduce the necessary dose and allow for better determination of the cargo's atomic number. The general methodology will be described and the preliminary results from the proof-of-concept system will be presented and discussed. Supported by NSF/DNDO Collaborative Research ARI-LA Award ECCS-1348328.

  13. Nuclear materials management procedures

    International Nuclear Information System (INIS)

    Veevers, K.; Silver, J.M.; Quealy, K.J.; Steege, E. van der.

    1987-10-01

    This manual describes the procedures for the management of nuclear materials and associated materials at the Lucas Heights Research Laboratories. The procedures are designed to comply with Australia's nuclear non-proliferation obligations to the International Atomic Energy Agency (IAEA), bilateral agreements with other countries and ANSTO's responsibilities under the Nuclear Non-Proliferation (Safeguards) Act, 1987. The manual replaces those issued by the Australian Atomic Energy Commission in 1959, 1960 and 1969

  14. Materials management information systems.

    Science.gov (United States)

    1996-01-01

    The hospital materials management function--ensuring that goods and services get from a source to an end user--encompasses many areas of the hospital and can significantly affect hospital costs. Performing this function in a manner that will keep costs down and ensure adequate cash flow requires effective management of a large amount of information from a variety of sources. To effectively coordinate such information, most hospitals have implemented some form of materials management information system (MMIS). These systems can be used to automate or facilitate functions such as purchasing, accounting, inventory management, and patient supply charges. In this study, we evaluated seven MMISs from seven vendors, focusing on the functional capabilities of each system and the quality of the service and support provided by the vendor. This Evaluation is intended to (1) assist hospitals purchasing an MMIS by educating materials managers about the capabilities, benefits, and limitations of MMISs and (2) educate clinical engineers and information system managers about the scope of materials management within a healthcare facility. Because software products cannot be evaluated in the same manner as most devices typically included in Health Devices Evaluations, our standard Evaluation protocol was not applicable for this technology. Instead, we based our ratings on our observations (e.g., during site visits), interviews we conducted with current users of each system, and information provided by the vendor (e.g., in response to a request for information [RFI]). We divided the Evaluation into the following sections: Section 1. Responsibilities and Information Requirements of Materials Management: Provides an overview of typical materials management functions and describes the capabilities, benefits, and limitations of MMISs. Also includes the supplementary article, "Inventory Cost and Reimbursement Issues" and the glossary, "Materials Management Terminology." Section 2. The

  15. Impact of material thicknesses on fission observables obtained with the FALSTAFF experimental setup

    Directory of Open Access Journals (Sweden)

    Thulliez L.

    2017-01-01

    Full Text Available In the past years, the fission studies have been mainly focused on thermal fission because most of the current nuclear reactors work in this energy domain. With the development of GEN-IV reactor concepts, mainly working in the fast energy domain, new nuclear data are needed. The FALSTAFF spectrometer under development at CEA-Saclay, France, is a two-arm spectrometer which will provide mass yields before (2V method and after (EV method neutron evaporation and consequently will have access to the neutron multiplicity as a function of mass. The axial ionization chamber, in addition to the kinetic energy value, will measure the energy loss profile of the fragment along its track. This energy loss profile will give information about the fragment nuclear charge. This paper will focus on recent developments on the FALSTAFF design. A special attention will be paid to the impact of the detector material thickness on the uncertainty of different observables.

  16. Fissionable material

    International Nuclear Information System (INIS)

    Schuuring, C.; Tuininga, E.-J.; Turkenburg, W.

    1983-01-01

    This book is a presentation of controversies surrounding nuclear energy discussions in the Netherlands and aims to show that there are serious arguments against nuclear energy. Chapters on the following topics are included: the various dimensions of the energy discussion, the background to the existence of controversies in the nuclear energy discussion, the relation between nuclear energy and prosperity, different opinions concerning the cost of producing electricity from nuclear energy, radioactive waste, the consequences of a large scale accident, the relation between the peaceful use of nuclear energy and the proliferation of nuclear weapons, the effects of low radiation doses, the relation between nuclear energy and developments in the Third World, the effect of nuclear energy on democracy. The authors of these chapters, themselves critical of nuclear energy, have described the particular controversy and have given the viewpoints of both advocates and adversaries, followed by their own opinion. The conclusions from each chapter are recapitulated in a summary and the various components of the nuclear energy cycle are presented in an appendix. (C.F.)

  17. Thermally and Chemically responsive nanoporous materials for efficient capture of fission product gases.

    Energy Technology Data Exchange (ETDEWEB)

    Stroeve, Pieter; Faller, Roland

    2018-04-24

    The objective of this project was to develop robust, high-efficiency materials for capture of fission product gases such as He, Xe and Kr in scenarios relevant for both reactor fuels and reprocessing operations. The relevant environments are extremely harsh, encompassing temperatures up to 1500 °C, high levels of radiation, as well as potential exposures to highly-reactive chemicals such as nitric acid and organic solvents such as kerosene. The requirement for nanostructured capture materials is driven in part by the very short (few micron) diffusion distances for product gases in nuclear fuel.1-2 We achieved synthesis, characterization and detailed modeling of the materials. Although not all materials reviewed in this report will be feasible for the ultimate goal of integration in nuclear fuel, nevertheless each material studied has particular properties which will enable an optimized material to be efficiently developed and characterized.

  18. The opportunity to limit and reduce inventories of fissionable weapon materials

    International Nuclear Information System (INIS)

    Hebel, L.C.

    1991-01-01

    As the United States and the Soviet government agree on major reductions in nuclear weapon delivery systems, they need to address the disposal of the nuclear warheads and bombs for those systems. Such measures could be strongly reinforced if the two nations also institute restraints and reductions in the total amount of fissionable materials available for weapons. Many metric tonnes of such materials would be made surplus by the reductions in strategic nuclear weapons due to the Strategic Arms Reduction Treaty (START-I). Equally large reductions in short-range (theater) nuclear weapons are expected in the wake of the recent Treaty on Conventional Forces in Europe (CFE)

  19. Technology for Fissionable Materials Detection by Use of 100 MeV Variable Linac

    CERN Document Server

    Karasyov, Sergey P; Dovbnja, Anatoliy N; Eran, L; Kiryukhin, Nikolay M; Melnik, Yu M; Ran'iuk, Yu; Shlyakhov, Il'ya N; Trubnikov, Sergiy V

    2005-01-01

    A new concept for a two-step facility to increase the accuracy/reliability of detecting heavily shielded fissionable materials (FM) in marine containers is presented. The facility will detect FM in two steps. An existing dual-view; dual-energy X-ray scanner, which is based on 7 MeV electron accelerator, will select the suspicious places inside container. The linac with variable energy (up to 100 MeV) will be used for the second step. The technology will detect fissionable nuclei by gamma induced fission reactions and delayed neutron registration. A little-known Ukrainian experimental data obtained in Chernobil' clean-up program will be presented to ground proposed concept. The theoretical calculations of neutron fluxes scale these results to marine container size. Modified GEANT code for electron/gamma penetration and authors' own software for neutron yield/penetration are used for these calculations. Available facilities (X-ray scanners; linac; detectors), which will be used for concept proof, are described....

  20. Advanced Computational Materials Science: Application to Fusion and Generation IV Fission Reactors (Workshop Report)

    Energy Technology Data Exchange (ETDEWEB)

    Stoller, RE

    2004-07-15

    The ''Workshop on Advanced Computational Materials Science: Application to Fusion and Generation IV Fission Reactors'' was convened to determine the degree to which an increased effort in modeling and simulation could help bridge the gap between the data that is needed to support the implementation of these advanced nuclear technologies and the data that can be obtained in available experimental facilities. The need to develop materials capable of performing in the severe operating environments expected in fusion and fission (Generation IV) reactors represents a significant challenge in materials science. There is a range of potential Gen-IV fission reactor design concepts and each concept has its own unique demands. Improved economic performance is a major goal of the Gen-IV designs. As a result, most designs call for significantly higher operating temperatures than the current generation of LWRs to obtain higher thermal efficiency. In many cases, the desired operating temperatures rule out the use of the structural alloys employed today. The very high operating temperature (up to 1000 C) associated with the NGNP is a prime example of an attractive new system that will require the development of new structural materials. Fusion power plants represent an even greater challenge to structural materials development and application. The operating temperatures, neutron exposure levels and thermo-mechanical stresses are comparable to or greater than those for proposed Gen-IV fission reactors. In addition, the transmutation products created in the structural materials by the high energy neutrons produced in the DT plasma can profoundly influence the microstructural evolution and mechanical behavior of these materials. Although the workshop addressed issues relevant to both Gen-IV and fusion reactor materials, much of the discussion focused on fusion; the same focus is reflected in this report. Most of the physical models and computational methods

  1. Simple and effective method of determining multiplicity distribution law of neutrons emitted by fissionable material with significant self -multiplication effect

    International Nuclear Information System (INIS)

    Yanjushkin, V.A.

    1991-01-01

    At developing new methods of non-destructive determination of plutonium full mass in nuclear materials and products being involved in uranium -plutonium fuel cycle by its intrinsic neutron radiation, it may be useful to know not only separate moments but the multiplicity distribution law itself of neutron leaving this material surface using the following as parameters - firstly, unconditional multiplicity distribution laws of neutrons formed in spontaneous and induced fission acts of the given fissionable material corresponding nuclei and unconditional multiplicity distribution law of neutrons caused by (α,n) reactions at light nuclei of some elements which compose this material chemical structure; -secondly, probability of induced fission of this material nuclei by an incident neutron of any nature formed during the previous fissions or(α,n) reactions. An attempt to develop similar theory has been undertaken. Here the author proposes his approach to this problem. The main advantage of this approach, to our mind, consists in its mathematical simplicity and easy realization at the computer. In principle, the given model guarantees any good accuracy at any real value of induced fission probability without limitations dealing with physico-chemical composition of nuclear material

  2. CSER 00-008 use of PFP Glovebox HC-18BS for Storage and Transport of Fissionable Material

    International Nuclear Information System (INIS)

    ERICKSON, D.G.

    2000-01-01

    This CSER addresses the feasibility of increasing the allowed number of open containers and permitting the transfer and storage of fissionable material in Glovebox HC-18BS without regard to form or density (metal, oxide having an H/X (le) 20, material having unrestricted moderation and plutonium hydroxide having a plutonium density of 0.2 g/cm 3 )

  3. Decree of 8 October 1969, Stb. 471, concerning the implementation of Sections 13 and 14 of the Nuclear Energy Act (Fissionable Materials and Ores (Registration))

    International Nuclear Information System (INIS)

    1969-01-01

    This Decree lays down the system for registration and notification of fissionable materials and ores in accordance with the Nuclear Energy Act. The register must list the quantities of fissionable materials and ores available in the Netherlands and their location. This procedure applies only to materials and ores subject to licensing. (NEA) [fr

  4. Joint ICFRM-14 (14. international conference on fusion reactor materials) and IAEA satellite meeting on cross-cutting issues of structural materials for fusion and fission applications. PowerPoint presentations

    International Nuclear Information System (INIS)

    2009-01-01

    The Conference was devoted to the challenges in the development of new materials for advanced fission, fusion and hybrid reactors. The topics discussed include fuels and materials research under the high neutron fluence; post-irradiation examination; development of radiation resistant structural materials utilizing fission research reactors; core materials development for the advanced fuel cycle initiative; qualification of structural materials for fission and fusion reactor systems; application of charged particle accelerators for radiation resistance investigations of fission and fusion structural materials; microstructure evolution in structural materials under irradiation; ion beams and ion accelerators

  5. An integrated circuit/microsystem/nano-enhanced four species radiation sensor for inexpensive fissionable material detection

    Science.gov (United States)

    Waguespack, Randy Paul

    2011-12-01

    Small scale radiation detectors sensitive to alpha, beta, electromagnetic, neutron radiation are needed to combat the threat of nuclear terrorism and maintain national security. There are many types of radiation detectors on the market, and the type of detector chosen is usually determined by the type of particle to be detected. In the case of fissionable material, an ideal detector needs to detect all four types of radiation, which is not the focus of many detectors. For fissionable materials, the two main types of radiation that must be detected are gamma rays and neutrons. Our detector uses a glass or quartz scintillator doped with 10B nanoparticles to detect all four types of radiation particles. Boron-10 has a thermal neutron cross section of 3,840 barns. The interaction between the neutron and boron results in a secondary charge particle in the form of an alpha particle to be emitted, which is detectable by the scintillator. Radiation impinging on the scintillator matrix produces varying optical pulses dependent on the energy of the particles. The optical pulses are then detected by a photomultiplier (PM) tube, creating a current proportional to the energy of the particle. Current pulses from the PM tube are differentiated by on-chip pulse height spectroscopy, allowing for source discrimination. The pulse height circuitry has been fabricated with discrete circuits and designed into an integrated circuit package. The ability to replace traditional PM tubes with a smaller, less expensive photomultiplier will further reduce the size of the device and enhance the cost effectiveness and portability of the detector.

  6. Materials-of-Construction Radiation Sensitivity for a Fission Surface Power Convertor

    Science.gov (United States)

    Bowman, Cheryl L.; Geng, Steven M.; Niedra, Janis M.; Sayir, Ali; Shin, Eugene E.; Sutter, James K.; Thieme, Lanny G.

    2007-01-01

    A fission reactor combined with a free-piston Stirling convertor is one of many credible approaches for producing electrical power in space applications. This study assumes dual-opposed free-piston Stirling engines/linear alternators that will operate nominally at 825 K hot-end and 425 K cold-end temperatures. The baseline design options, temperature profiles, and materials of construction discussed here are based on historical designs as well as modern convertors operating at lower power levels. This notional design indicates convertors primarily made of metallic components that experience minimal change in mechanical properties for fast neutron fluences less than 10(sup 20) neutrons per square centimeter. However, these radiation effects can impact the magnetic and electrical properties of metals at much lower fluences than are crucial for mechanical property integrity. Moreover, a variety of polymeric materials are also used in common free-piston Stirling designs for bonding, seals, lubrication, insulation and others. Polymers can be affected adversely by radiation doses as low as 10(sup 5) - 10(sup 10) rad. Additionally, the absorbing dose rate, radiation hardness, and the resulting effect (either hardening or softening) varies depending on the nature of the particular polymer. The classes of polymers currently used in convertor fabrication are discussed along possible substitution options. Thus, the materials of construction of prototypic Stirling convertor engines have been considered and the component materials susceptible to damage at the lowest neutron fluences have been identified.

  7. Sustainable Materials Management Challenge Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Sustainable Materials Management (SMM) is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change...

  8. Survey of Materials for Fusion Fission Hybrid Reactors Vol 1 Rev. 0

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph Collin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Chemistry Materials and Life Sciences Directorate

    2007-07-03

    Materials for fusion-fission hybrid reactors fall into several broad categories, including fuels, blanket and coolant materials, cladding, structural materials, shielding, and in the specific case of inertial-confinement fusion systems, laser and optical materials. This report surveys materials in all categories of materials except for those required for lasers and optics. Preferred collants include two molten salt mixtures known as FLIBE (Li2BeF4) and FLINABE (LiNaBeF4). In the case of homogenous liquid fuels, UF4 can be dissolved in these molten salt mixtures. The transmutation of lithium in this coolant produces very corrosive hydrofluoric acid species (HF and TF), which can rapidly degrade structural materials. Broad ranges of high-melting radiation-tolerant structural material have been proposed for fusion-fission reactor structures. These include a wide variety of steels and refractory alloys. Ferritic steels with oxide-dispersion strengthening and graphite have been given particular attention. Refractory metals are found in Groups IVB and VB of the periodic table, and include Nb, Ta, Cr, Mo, and W, as serve as the basis of refractory alloys. Stable high-melting composites and amorphous metals may also be useful. Since amorphous metals have no lattice structure, neutron bombardment cannot dislodge atoms from lattice sites, and the materials would be immune from this specific mode of degradation. The free energy of formation of fluorides of the alloying elements found in steels and refractory alloys can be used to determine the relative stability of these materials in molten salts. The reduction of lithium transmutation products (H+ and T+) drives the electrochemical corrosion process, and liberates aggressive fluoride ions that pair with ions formed from dissolved structural materials. Corrosion can be suppressed through the use of metallic Be and Li, though the molten salt becomes laden with colloidal suspensions of Be and Li corrosion

  9. The experience of Russian Federation in organization of customs control of fissionable and other radioactive materials

    International Nuclear Information System (INIS)

    Podchishaev, A.

    2001-01-01

    Among the routine inspection tasks of customs offices are tasks stemming from international commitments of Russia to prevent proliferation of nuclear weapons and material that can be used for making these weapons. These tasks are: radiation monitoring of all vehicles, passengers, their luggage and goods crossing the state border; inspection of fissionable and radioactive materials (FRM) legally transported by participants in the foreign trade activities with a view to checking that the declared data fully correspond to the actual radioactive cargo. Organizational measures involve the Sheremetyevo customs office has a department whose personnel is specially trained in radiation monitoring and can operate radiometric and spectrometric instruments. These specialists are included in shifts on duty responsible for customs clearing and inspection and carry out continuous radiation monitoring of passengers and their luggage, vehicles and goods crossing the border. They work on the 24-hour basis, which allows quickly and skillfully localizing the detected radiation source and avoiding direct contact of customs, officers, airport personnel, and passengers with the radioactive item. Technical measures include provision and everyday use of radiation monitoring instrumentation, classified as: stationary equipment of primary radiation monitoring (SEPRM); hand-held instruments for additional radiation monitoring (RM); spectrometric equipment for control of legal FRM transport. The customs procedure for monitoring of fissionable and radioactive materials is divided into three stages. Stage I, primary RM is carried out by stationary FRM detection systems Yantar for customs applications installed on the customs inspection line next to the X-ray inspection equipment (XIE). Stage II, additional RM is carried out by officer who uses hand-held instruments to check the passenger's luggage for surface contamination; to perform primary identification of the detected radioactive source

  10. Fission meter

    Science.gov (United States)

    Rowland, Mark S [Alamo, CA; Snyderman, Neal J [Berkeley, CA

    2012-04-10

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source.

  11. Influence of transmutation and high neutron exposure on materials used in fission-fusion correlation experiments

    International Nuclear Information System (INIS)

    Garner, F.A.

    1990-07-01

    This paper explores the response of three different materials to high fluence irradiation as observed in recent fusion-related experiments. While helium at fusion-relevant levels influences the details of the microstructure of Fe--Cr--Ni alloys somewhat, the resultant changes in swelling and tensile behavior are relatively small. Under conditions where substantially greater-than-fusion levels of helium are generated, however, an extensive refinement of microstructure can occur, leading to depression of swelling at lower temperatures and increased strengthening at all temperatures studied. The behavior of these alloys is dominated by their tendency to converge to saturation microstructures which encourage swelling. Irradiations of nickel are dominated by its tendency to develop a different type of saturation microstructure that discourages further void growth. Swelling approaches saturation levels that are remarkably insensitive to starting microstructure and irradiation temperature. The rate of approach to saturation is very sensitive to variables such as helium, impurities, dislocation density and displacement rate, however. Copper exhibits a rather divergent response depending on the property measured. Transmutation of copper to nickel and zinc plays a large role in determining electrical conductivity but almost no role in void swelling. Each of these three materials offers different challenges in the interpretation of fission-fusion correlation experiments

  12. Insights into the control of the release of iodine, cesium, strontium and other fission products in the containment by severe accident management

    International Nuclear Information System (INIS)

    2000-03-01

    This document is intended to provide a management-level overview of the technical bases for accident management activities to attenuate releases of radioactive materials in the very unlikely event of a severe nuclear power reactor accident - activities known commonly as management of severe accident source terms. Such activities are natural complements to accident management activities directed at arresting or slowing accident progression. Abbreviated, qualitative discussions are presented in the document on the more important severe nuclear reactor accidents, the nature of radioactive material releases during accidents, natural processes that act to attenuate the amount of radioactive material that can escape a power plant, and the physical and chemical principles used in engineered systems to further attenuate radioactive releases during accidents. At the end of each section of the report, an annotated bibliography is provided. These bibliographies are intended to serve as introductions to the vast literature pertinent to all aspects of accident management including the management of radioactive source terms. Finally, it must be noted that much of the presentation has been made from the perspective of conventional pressurized water reactors and boiling water reactors. Many important details will be different for other types of reactors or for reactors with special features. Readers are asked to do the mental manipulations necessary to apply the ideas discussed here to the particular circumstances and features of their own reactors. The report is based on the following outline: - a brief discussion of fission product sources; fission product characteristics; chemical compounds; - transport and deposition of fission products; brief description of different deposition and agglomeration processes; - retention of fission products; re-evaporation, resuspension, etc.; - discussion of various possibilities to enhance the removal of fission products from the containment

  13. Material management performance indicators for upper management

    International Nuclear Information System (INIS)

    O'Loughlin, R.C.

    1987-01-01

    The purpose of this paper is to develop a case for the use of performance indicators by upper management to monitor the effectiveness of material management operations at nuclear power plants. The paper establishes that the use of performance indicators is not a pro forma matter. There are specific standards and conditions to which the material management operation must conform for the performance measures to be meaningful. The paper concludes with discussion of the application and use of specific performance indicators. Proper use of selected performance indicators can remove the mystery and uncertainty for management about an aspect of nuclear plant operations that has significant budget implications

  14. Strategic raw materials. Risk management

    International Nuclear Information System (INIS)

    Bertau, Martin; Matschullat, Joerg; Kausch, Peter

    2014-01-01

    This volume is divided into four chapters: (1) Raw material management, (2) Primary raw materials, (3) Secondary raw materials and recycling, (4). Processing and products. The topics for the chapter ''Raw material management'' are: Substitution of raw materials - framework conditions and implementation; Thales: Strategic raw materials; Time for cooperation between the EU and China in raw materials policy; Availability of elements for the semiconductor industry; Market price risks of raw material-intensive companies - identification and management. The topics on the second item ''Primary raw materials'' are: The supply of economic-critical raw materials - A search and analysis for causes; Lithium extraction from primary raw materials - state and perspectives; The global market of rare earths - A balancing act; Rare earth deposits in Namibia; New technologies in exploration and discovery - Focus on activities in Europe. The third chapter, ''Secondary Raw Materials and Recycling'', covered the topics: Technology metals - Systemic Requirements along the recycling chain; Integrated re-use of high-tech and greentech wastes; From the sewage sludge ash to the phosphorus fertilizer RecoPhos P38 in the stress field of waste, fertilizer and soil protection. In chapter 4. ''Processing and products'' are the topics: Treatment and processing of rare earth metals; Processing of mineral resources - opportunities and challenges; Consequences of modern germanium chemistry; Strategic resources - Risk management. A review and outlook with a pinch of fantasy.. [de

  15. Nuclear materials management storage study

    International Nuclear Information System (INIS)

    Becker, G.W. Jr.

    1994-02-01

    The Office of Weapons and Materials Planning (DP-27) requested the Planning Support Group (PSG) at the Savannah River Site to help coordinate a Departmental complex-wide nuclear materials storage study. This study will support the development of management strategies and plans until Defense Programs' Complex 21 is operational by DOE organizations that have direct interest/concerns about or responsibilities for nuclear material storage. They include the Materials Planning Division (DP-273) of DP-27, the Office of the Deputy Assistant Secretary for Facilities (DP-60), the Office of Weapons Complex Reconfiguration (DP-40), and other program areas, including Environmental Restoration and Waste Management (EM). To facilitate data collection, a questionnaire was developed and issued to nuclear materials custodian sites soliciting information on nuclear materials characteristics, storage plans, issues, etc. Sites were asked to functionally group materials identified in DOE Order 5660.1A (Management of Nuclear Materials) based on common physical and chemical characteristics and common material management strategies and to relate these groupings to Nuclear Materials Management Safeguards and Security (NMMSS) records. A database was constructed using 843 storage records from 70 responding sites. The database and an initial report summarizing storage issues were issued to participating Field Offices and DP-27 for comment. This report presents the background for the Storage Study and an initial, unclassified summary of storage issues and concerns identified by the sites

  16. Synthesis of Actinide Materials for the Study of Basic Actinide Science and Rapid Separation of Fission Products

    Energy Technology Data Exchange (ETDEWEB)

    Dorhout, Jacquelyn Marie [Univ. of Nevada, Las Vegas, NV (United States)

    2017-11-28

    This dissertation covers several distinct projects relating to the fields of nuclear forensics and basic actinide science. Post-detonation nuclear forensics, in particular, the study of fission products resulting from a nuclear device to determine device attributes and information, often depends on the comparison of fission products to a library of known ratios. The expansion of this library is imperative as technology advances. Rapid separation of fission products from a target material, without the need to dissolve the target, is an important technique to develop to improve the library and provide a means to develop samples and standards for testing separations. Several materials were studied as a proof-of-concept that fission products can be extracted from a solid target, including microparticulate (< 10 μm diameter) dUO2, porous metal organic frameworks (MOFs) synthesized from depleted uranium (dU), and other organicbased frameworks containing dU. The targets were irradiated with fast neutrons from one of two different neutron sources, contacted with dilute acids to facilitate the separation of fission products, and analyzed via gamma spectroscopy for separation yields. The results indicate that smaller particle sizes of dUO2 in contact with the secondary matrix KBr yield higher separation yields than particles without a secondary matrix. It was also discovered that using 0.1 M HNO3 as a contact acid leads to the dissolution of the target material. Lower concentrations of acid were used for future experiments. In the case of the MOFs, a larger pore size in the framework leads to higher separation yields when contacted with 0.01 M HNO3. Different types of frameworks also yield different results.

  17. Managing Chemical & Material Risks

    Science.gov (United States)

    2011-12-01

    Certification Program Acquisition, Technology and Logistics 9 DoD Hexavalent Chromium Risk Reduction Non- Chrome Primer II EXAVAJ ENT CHROM lrUMI...Royal Demolition eXplosive (RDX) • Cyclotrimethylenetrinitramine  Hexavalent Chromium (Cr6+) Naphthalene …pending downgrade to watch list Beryllium...T1me (secondo) 700 Acquisition, Technology and Logistics 10 Hexavalent Chromium Risk Management Actions • DoD minimization policy signed April

  18. Materials and Waste Management Research

    Science.gov (United States)

    EPA is developing data and tools to reduce waste, manage risks, reuse and conserve natural materials, and optimize energy recovery. Collaboration with states facilitates assessment and utilization of technologies developed by the private sector.

  19. Sustainable Materials Management Web Academy

    Science.gov (United States)

    The Sustainable Materials Management (SMM) Web Academy series is a free resource for SMM challenge participants, stakeholders, and anyone else interested in learning more about SMM principles from experts in the field.

  20. Feynman variance for neutrons emitted from photo-fission initiated fission chains - a systematic simulation for selected speacal nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Soltz, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Danagoulian, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sheets, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Korbly, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hartouni, E. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-05-22

    Theoretical calculations indicate that the value of the Feynman variance, Y2F for the emitted distribution of neutrons from ssionable exhibits a strong monotonic de- pendence on a the multiplication, M, of a quantity of special nuclear material. In 2012 we performed a series of measurements at the Passport Inc. facility using a 9- MeV bremsstrahlung CW beam of photons incident on small quantities of uranium with liquid scintillator detectors. For the set of objects studies we observed deviations in the expected monotonic dependence, and these deviations were later con rmed by MCNP simulations. In this report, we modify the theory to account for the contri- bution from the initial photo- ssion and benchmark the new theory with a series of MCNP simulations on DU, LEU, and HEU objects spanning a wide range of masses and multiplication values.

  1. Consultancy to review and finalize the IAEA publication 'Compendium on the use of fusion/fission hybrids for the utilization and transmutation of actinides and long-lived fission products'. Working material

    International Nuclear Information System (INIS)

    2004-01-01

    In addition to the traditional fission reactor research, fusion R and D activities are becoming of interest also to nuclear fission power development. There is renewed interest in utilizing fusion neutrons, Heavy Liquid Metals, and molten salts for innovative systems (energy production and transmutation). Indeed, for nuclear power development to become sustainable as a long-term energy option, innovative fuel cycle and reactor technologies will have to be developed to solve the problems of resource utilization and long-lived radioactive waste management. In this context Member States clearly expressed the need for comparative assessments of various transmutation reactors. Both the fusion and fission communities are currently investigating the potential of innovative reactor and fuel cycle strategies that include a fusion/fission system. The attention is mainly focused on substantiating the potential advantages of such systems: utilization and transmutation of actinides and long-lived fission products, intrinsic safety features, enhanced proliferation resistance, and fuel breeding capabilities. An important aspect of the ongoing activities is the comparison with the accelerator driven subcritical system (spallation neutron source), which is the other main option for producing excess neutrons. Apart from comparative assessments, knowledge preservation is another subject of interest to the Member States: the goal, applied to fusion/fission systems, is to review the status of, and to produce a 'compendium' of past and present achievements in this area

  2. Accident management to prevent containment failure and reduce fission product release

    International Nuclear Information System (INIS)

    Lehner, J.R.; Lin, C.C.; Luckas, W.J.; Pratt, W.T.

    1991-01-01

    Brookhaven National Laboratory, under the auspices of the US Nuclear Regulatory Commission, is investigating accident management strategies which could help preserve containment integrity or minimize releases during a severe accident. The strategies considered make use of existing plant systems and equipment in innovative ways to reduce the likelihood of containment failure or to mitigate the release of fission products to the environment if failure cannot be prevented. Many of these strategies would be implemented during the later stages of a severe accident, i.e. after vessel breach, and sizable uncertainties exist regarding some of the phenomena involved. The identification and assessment process for containment and release strategies is described, and some insights derived from its application to specific containment types are presented. 2 refs., 5 figs., 2 tabs

  3. Decree of 4 September 1969, Stb. 405, concerning the implementation of Sections 16, 19, paragraph 1, 21, 29, 30, paragraph 2 and 32 of the Nuclear Energy Act (Fissionable Materials, Ores and Radioactive Materials (Transport))

    International Nuclear Information System (INIS)

    1969-01-01

    The regulations governing the transport of fissionable materials, ores and radioactive materials are embodied in this Decree, together with the regulations concerning operations involving their movements into and out of the Netherlands and their storage incidental to transport. (NEA) [fr

  4. Information system revives materials management

    International Nuclear Information System (INIS)

    Hansen, T.

    1995-01-01

    Through a change in philosophy and the development of a new, more efficient information management system, Arizona Public Service Co. (APSW) has, in less than two years, reduced material and service costs by 10 percent. The utility plans to cut these costs form 1993 figures by 25 percent before 2000. The utility is breaking new ground with ongoing implementation of new business processes and the new Materials Logistics Information System (MLIS), which has been co-developed with Texas Instruments Software Division (TISD)

  5. Study of the prompt gamma ray signal from fissions in special nuclear materials induced using an associated particle neutron generator

    International Nuclear Information System (INIS)

    Koltick, D. S.; Kane, S. Z.

    2009-01-01

    More than 42 million cargo containers entered the United States in 2005. To search for a few kilograms of special nuclear material (SNM) within this vast stream of cargo, an inspection system based on neutron-induced fission followed by the coincident detection of multiple prompt fission gamma rays is investigated using MCNP-Polimi code. The system utilizes two deuterium-tritium (DT) associated particle neutron generators, each capable of 10 9 neutrons/s at 14.1 MeV, with sub-nanosecond timing resolution ZnO:Ga alpha detectors internal to the generator. Because prompt fission signals are approximately 100 times stronger than the delayed signals, the neutron flux is greatly reduced compared to 10 11-12 neutrons/s required for systems based on delayed signals such as the 'nuclear car wash' [4]. In addition the system utilizes 30 cm deep liquid krypton (LKr) noble gas detectors having 94% detection efficiency for 1 MeV gamma rays, high solid angle coverage (∼ 50% of the total solid angle), and sub-nanosecond timing resolution (∼ 600 ps). An algorithm for distinguishing U-235 from U-238 is presented. (authors)

  6. Delayed fission

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukawa, Yuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-07-01

    Delayed fission is a nuclear decay process that couples {beta} decay and fission. In the delayed fission process, a parent nucleus undergoes {beta} decay and thereby populates excited states in the daughter. If these states are of energies comparable to or greater than the fission barrier of the daughter, then fission may compete with other decay modes of the excited states in the daughter. In this paper, mechanism and some experiments of the delayed fission will be discussed. (author)

  7. Reengineering health care materials management.

    Science.gov (United States)

    Connor, L R

    1998-01-01

    Health care executives across the country, faced with intense competition, are being forced to consider drastic cost cutting measures as a matter of survival. The entire health care industry is under siege from boards of directors, management and others who encourage health care systems to take actions ranging from strategic acquisitions and mergers to simple "downsizing" or "rightsizing," to improve their perceived competitive positions in terms of costs, revenues and market share. In some cases, management is poorly prepared to work within this new competitive paradigm and turns to consultants who promise that following their methodologies can result in competitive advantage. One favored methodology is reengineering. Frequently, cost cutting attention is focused on the materials management budget because it is relatively large and is viewed as being comprised mostly of controllable expenses. Also, materials management is seldom considered a core competency for the health care system and the organization performing these activities does not occupy a strongly defensible position. This paper focuses on the application of a reengineering methodology to healthcare materials management.

  8. Management of radioactive waste from 99Mo production by nuclear fission

    International Nuclear Information System (INIS)

    Rego, Maria Eugenia de Melo

    2013-01-01

    Brazil intends to build a facility for the 99 Mo production through 235 U fission, once this radioisotope is largely used in nuclear medicine. This study aimed at estimating the physical, chemical and radiological characteristics of radioactive waste expected to be generated in that facility, and to provide theoretical subsides that can be used on the definition of a proper waste management system. Two production scenarios were established and the radioisotope inventories of the wastes were calculated by Scale®. From the chemical processing of the uranium targets the wastes were characterized on their chemical and radiological features. MicroShield® was used to determine the activity concentrations up to three months of 99 Mo production. In addition, this work presents dose rate calculation for several sizes of shielding and different amount of wastes, collected in a proper package for in-site transportation. Radionuclides responsible for higher doses were identified in order to facilitate choosing the most appropriate method for managing the wastes after their chemical separation and before their storage. These results are part of what is expected on radioactive wastes at a 99 Mo production facility and might help on the development of the waste management planning for that facility. (author)

  9. HEU and LEU MTR fuel elements as target materials for the production of fission molybdenum

    International Nuclear Information System (INIS)

    Sameh, A.A.; Bertram-Berg, A.

    1993-01-01

    The processing of irradiated MTR-fuels for the production of fission nuclides for nuclear medicine presents a significantly increasing task in the field of chemical separation technology of high activity levels. By far the most required product is MO-99, the mother nuclide of Tc-99m which is used in over 90% of the organ function tests in nuclear medicine. Because of the short half life of Mo-99 (66 h) the separation has to be carried out from shortly cooled neutron irradiated U-targets. The needed product purity, the extremely high radiation level, the presence of fission gases like xenon-133 and of volatile toxic isotopes such as iodine-131 and its compounds in kCi-scale require a sophisticated process technology

  10. Neutron Diffusion in a Space Lattice of Fissionable and Absorbing Materials

    Science.gov (United States)

    Feynman, R. P.; Welton, T. A.

    1946-08-27

    Methods are developed for estimating the effect on a critical assembly of fabricating it as a lattice rather than in the more simply interpreted homogeneous manner. An idealized case is discussed supposing an infinite medium in which fission, elastic scattering and absorption can occur, neutrons of only one velocity present, and the neutron m.f.p. independent of position and equal to unity with the unit of length used.

  11. Fuel elements and fuel element materials. Experimental facilities for fission products lift-off tests

    International Nuclear Information System (INIS)

    Blanchard, R.J.; Veyrat, J.F.

    1978-01-01

    One of the hypothetical accidents on the HTGR primary cooling circuits is the failure of a circuit resulting in a depressurization in the primary loops of the reactor. There is a risk of release of fission products in relation to the size of the failure. Experimental facilities for HTGR tests were developed: an in pile helium loop Comedie and an out of pile helium loop

  12. Modelling Hospital Materials Management Processes

    Directory of Open Access Journals (Sweden)

    Raffaele Iannone

    2013-06-01

    integrated and detailed analysis and description model for hospital materials management data and tasks, which is able to tackle information from patient requirements to usage, from replenishment requests to supplying and handling activities. The model takes account of medical risk reduction, traceability and streamlined processes perspectives. Second, the paper translates this information into a business process model and mathematical formalization.The study provides a useful guide to the various relevant technology‐related, management and business issues, laying the foundations of an efficient reengineering of the supply chain to reduce healthcare costs and improve the quality of care.

  13. Topical Session on Materials Management

    International Nuclear Information System (INIS)

    2002-01-01

    At its second meeting, in Paris, 5-7 December 2001, the WPDD held two topical sessions on the D and D Safety Case and on the Management of Materials from D and D, respectively. This report documents the topical session on the management of materials. Presentations during the topical session covered key aspects of the management of materials and meant to provide an exchange of information and experience, including: Experience and lessons learnt from VLLW and non-radioactive material management in Spain and Germany with special attention to recycling (How specific solutions came about? Are there 'generic' examples for wider adoption?); Risk assessment of recycling and non-recycling: a CPD study; Waste acceptance issues within different national contexts (What constraints are there on the waste receiving body and what flexibility can the latter have? What constraints does this impose on D and D implementers? What about wastes are without current solution? What needs to be done? What about large items and 'difficult' waste in general?); Radiological characterisation of materials during decommissioning, particularly difficult situations - large volumes, large items,.. wastes, heterogeneous streams (What examples of established practice? What are the approaches or aspects that set the regulatory requirements? How can the flow rates be large but the answers acceptable? How much is needed to be known for later action, e. g., disposal, release, protection of worker, etc.); Radiological characterisation of buildings as they stand, in order to allow conventional demolition (What are strategies for optimisation of characterisation? How much needs to be known to take action later? e.g. for storage, disposal, release, cost estimation and ALARA? What needs to be done in advance and after decommissioning/dismantling?). At the end of each presentation time was allotted for discussion of the paper. Integral to the Topical Session was a facilitated plenary discussion on the topical

  14. Activation and Radiation Damage Behaviour of Russian Structural Materials for Fusion Reactors in the Fission and Fusion Reactors

    International Nuclear Information System (INIS)

    Blokhin, A.; Demin, N.; Chernov, V.; Leonteva-Smirnova, M.; Potapenko, M.

    2006-01-01

    Various structural low (reduced) activated materials have been proposed as a candidate for the first walls-blankets of fusion reactors. One of the main problems connected with using these materials - to minimise the production of long-lived radionuclides from nuclear transmutations and to provide with good technological and functional properties. The selection of materials and their metallurgical and fabrication technologies for fusion reactor components is influenced by this factor. Accurate prediction of induced radioactivity is necessary for the development of the fusion reactor materials. Low activated V-Ti-Cr alloys and reduced activated ferritic-martensitic steels are a leading candidate material for fusion first wall and blanket applications. At the present time a range of compositions and an impurity level are still being investigated to better understand the sensitive of various functional and activation properties to small compositional variations and impurity level. For the two types of materials mentioned above (V-Ti-Cr alloys and 9-12 % Cr f/m steels) and manufactured in Russia (Russia technologies) the analysis of induced activity, hydrogen and helium-production as well as the accumulation of such elements as C, N, O, P, S, Zn and Sn as a function of irradiation time was performed. Materials '' were irradiated '' by fission (BN-600, BOR-60) and fusion (Russian DEMO-C Reactor Project) typical neutron spectra with neutron fluency up to 10 22 n/cm 2 and the cooling time up to 1000 years. The calculations of the transmutation of elements and the induced radioactivity were carried out using the FISPACT inventory code, and the different activation cross-section libraries like the ACDAM, FENDL-2/A and the decay data library FENDL-2/D. It was shown that the level of impurities controls a long-term behaviour of induced activity and contact dose rate for materials. From this analysis the concentration limits of impurities were obtained. The generation of gas

  15. Multiscale Simulation of Thermo-mechanical Processes in Irradiated Fission-reactor Materials

    International Nuclear Information System (INIS)

    Phillpot, Simon R.

    2012-01-01

    The work funded from this project has been published in six papers, with two more in draft form, with submission planned for the near future. The papers are: (1) Kinetically-Evolving Irradiation-Induced Point-Defect Clusters in UO 2 by Molecular-Dynamics Simulation; (2) Kinetically driven point-defect clustering in irradiated MgO by molecular-dynamics simulation; (3) Grain-Boundary Source/Sink Behavior for Point Defect: An Atomistic Simulation Study; (4) Energetics of intrinsic point defects in uranium dioxide from electronic structure calculations; (5) Thermodynamics of fission products in UO 2±x ; and (6) Atomistic study of grain boundary sink strength under prolonged electron irradiation. The other two pieces of work that are currently being written-up for publication are: (1) Effect of Pores and He Bubbles on the Thermal Transport Properties of UO2 by Molecular Dynamics Simulation; and (2) Segregation of Ruthenium to Edge Dislocations in Uranium Dioxide.

  16. Goals, challenges, and successes of managing fusion activated materials

    International Nuclear Information System (INIS)

    El-Guebaly, L.; Massaut, V.; Zucchetti, M.; Tobita, K.; Cadwallader, L.

    2007-01-01

    After decades of designing magnetic and inertial fusion power plants, it is timely to develop a new framework for managing the activated materials generated during plant operation and after decommissioning - a framework that takes into account the lessons learned from numerous international fusion and fission studies and the environmental, political, and present reality in the U.S., EU, and Japan. Since the inception of the fusion projects in the early 1970s, the majority of power plant designs have focused on the disposal of active materials in geological repositories as the main option for handling the replaceable and life-of-plant components, adopting the preferred fission waste management approach. It is becoming evident that future regulations for geological burial will be upgraded to assure tighter environmental controls. Along with the political difficulty of constructing new repositories worldwide, the current reality suggests reshaping all aspects of handling the continual stream of fusion active materials. There is a growing international effort in support of this new trend. Beginning in the mid 1990s and continuing to the present, fusion designs developed in Europe, U.S., and Japan have examined replacing the disposal option with more environmentally attractive approaches, redirecting their attention to recycling and clearance while continuing the development of materials with low activation potential. These options became more technically feasible in recent years with the development of radiation-hardened remote handling (RH) tools and the introduction of the clearance category for slightly radioactive materials by national and international nuclear agencies. We applied all scenarios to selected fusion studies. While recycling and clearance appeared technically attractive and judged, in some cases, a must requirement to control the radwaste stream, the disposal scheme emerged as the preferred option for specific components for several reasons, including

  17. Nuclear fission

    International Nuclear Information System (INIS)

    Kodama, T.

    1981-01-01

    The nuclear fission process is pedagogically reviewed from a macroscopic-microscopic point of view. The Droplet model is considered. The fission dynamics is discussed utilizing path integrals and semiclassical methods. (L.C.) [pt

  18. Isotopic Determination of Nuclear Materials Using Nuclear Fission Track Registration Technique and Thermal Ionization Mass Spectrometric Technique

    International Nuclear Information System (INIS)

    Jeon, Young Sin; Pyo, Hyeong Yeol; Park, Yong Joon; Song, Kyu Seok; Kim, Won Ho; Jee, Kwang Yong

    2007-05-01

    It is very important to develope the technology for the determination of isotopic ratios of hot particles( 234 U, 235 U, 236 U etc.) detected from swipe samples of various nuclear facilities. This technology is highly competitive internationally and has to be established independently as long as our government maintains atomic energy and treats nuclear materials. In this text, sample pretreatment procedure, gamma-ray counting, alpha or fission track techniques, isotopic analysis of U and Pu, background problems and detection limits for mass determination, and their application to the real swipe sample were described with detailed procedure. This technology would contribute to the Korean economy's high growth rate as well as to superiority of government's leading research and development programs if successfully established

  19. Imprints left by natural radioactivity in geological materials: uranium fission tracks and thermoluminescence applications in earth sciences

    International Nuclear Information System (INIS)

    Broquet, P.; Chambaudet, A.; Rebetez, M.; Charlet, J.M.

    1994-01-01

    In a rock, all minerals which contain uranium are host to a number of spontaneous fission phenomena forming a single damaged area called a ''latent track'', observations of which may lead to dating, uranium mapping and finding paleo-geo-thermometers (thermal history, used in oil exploration). The radioactive elements during the decay process release energy which is trapped as electrons into the physical or chemical defects of the crystalline lattice; this energy can be later released by heating the mineral (thermic stimulated luminescence); the thermoluminescence is characterized by a glow which spectrum constitutes a typical feature of the mineral, its crystallization conditions and the subsequent evolution of the material. Natural and induced glow curve may be produced. 6 figs., 52 refs

  20. Statistical methods for nuclear material management

    Energy Technology Data Exchange (ETDEWEB)

    Bowen W.M.; Bennett, C.A. (eds.)

    1988-12-01

    This book is intended as a reference manual of statistical methodology for nuclear material management practitioners. It describes statistical methods currently or potentially important in nuclear material management, explains the choice of methods for specific applications, and provides examples of practical applications to nuclear material management problems. Together with the accompanying training manual, which contains fully worked out problems keyed to each chapter, this book can also be used as a textbook for courses in statistical methods for nuclear material management. It should provide increased understanding and guidance to help improve the application of statistical methods to nuclear material management problems.

  1. Statistical methods for nuclear material management

    International Nuclear Information System (INIS)

    Bowen, W.M.; Bennett, C.A.

    1988-12-01

    This book is intended as a reference manual of statistical methodology for nuclear material management practitioners. It describes statistical methods currently or potentially important in nuclear material management, explains the choice of methods for specific applications, and provides examples of practical applications to nuclear material management problems. Together with the accompanying training manual, which contains fully worked out problems keyed to each chapter, this book can also be used as a textbook for courses in statistical methods for nuclear material management. It should provide increased understanding and guidance to help improve the application of statistical methods to nuclear material management problems

  2. Multiscale Simulation of Thermo-mechancial Processes in Irradiated Fission-reactor Materials.

    Energy Technology Data Exchange (ETDEWEB)

    Simon R. Phillpot

    2012-06-08

    The work funded from this project has been published in six papers, with two more in draft form, with submission planned for the near future. The papers are: (1) Kinetically-Evolving Irradiation-Induced Point-Defect Clusters in UO{sub 2} by Molecular-Dynamics Simulation; (2) Kinetically driven point-defect clustering in irradiated MgO by molecular-dynamics simulation; (3) Grain-Boundary Source/Sink Behavior for Point Defect: An Atomistic Simulation Study; (4) Energetics of intrinsic point defects in uranium dioxide from electronic structure calculations; (5) Thermodynamics of fission products in UO{sub 2{+-}x}; and (6) Atomistic study of grain boundary sink strength under prolonged electron irradiation. The other two pieces of work that are currently being written-up for publication are: (1) Effect of Pores and He Bubbles on the Thermal Transport Properties of UO2 by Molecular Dynamics Simulation; and (2) Segregation of Ruthenium to Edge Dislocations in Uranium Dioxide.

  3. Efficiency analysis system of material management

    Directory of Open Access Journals (Sweden)

    Bogusław Śliwczyński

    2012-12-01

    Full Text Available Background: Significant scope of enterprise's efficiency management is improving of material management process both the strategic and operational level. The complexity of material flow processes can lead to a threat such as distraction and disintegration of analysis focusing on many different factors influenced on effective sourcing and procurement management, transport and warehousing processes, inventory management, working capital and cash flow management. Material and methods: The presented article focuses on multidimensional and multi-criteria analysis of material management efficiency that is considered as decision support system. Authors have presented results of the research regarding ineffective material management confirm insufficient analytical supporting in various decisions of procurement operations. Results and conclusions: Based on research results authors presented in the article model of efficiency analysis system of material management.

  4. Development of a fission product transport module predicting the behavior of radiological materials during sever accidents in a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyung Seok; Rhee, Bo Wook; Kim, Dong Ha [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-09-15

    Korea Atomic Energy Research Institute is developing a fission product transport module for predicting the behavior of radioactive materials in the primary cooling system of a nuclear power plant as a separate module, which will be connected to a severe accident analysis code, Core Meltdown Progression Accident Simulation Software (COMPASS). This fission product transport (COMPASS-FP) module consists of a fission product release model, an aerosol generation model, and an aerosol transport model. In the fission product release model there are three submodels based on empirical correlations, and they are used to simulate the fission product gases release from the reactor core. In the aerosol generation model, the mass conservation law and Raoult's law are applied to the mixture of vapors and droplets of the fission products in a specified control volume to find the generation of the aerosol droplet. In the aerosol transport model, empirical correlations available from the open literature are used to simulate the aerosol removal processes owing to the gravitational settling, inertia impaction, diffusiophoresis, and thermophoresis. The COMPASS-FP module was validated against Aerosol Behavior Code Validation and Evaluation (ABCOVE-5) test performed by Hanford Engineering Development Laboratory for comparing the prediction and test data. The comparison results assuming a non-spherical aerosol shape for the suspended aerosol mass concentration showed a good agreement with an error range of about ±6%. It was found that the COMPASS-FP module produced the reasonable results of the fission product gases release, the aerosol generation, and the gravitational settling in the aerosol removal processes for ABCOVE-5. However, more validation for other aerosol removal models needs to be performed.

  5. Sustainable Materials Management: Non-Hazardous Materials and Waste Management Hierarchy

    Science.gov (United States)

    EPA developed the non-hazardous materials and waste management hierarchy in recognition that no single waste management approach is suitable for managing all materials and waste streams in all circumstances.

  6. Analytical methods for fissionable materials in the nuclear fuel cycle. Covering June 1974--June 1975

    International Nuclear Information System (INIS)

    Waterbury, G.R.

    1975-10-01

    Research progress is reported on method development for the dissolution of difficult-to-dissolve materials, the automated analysis of plutonium and uranium, the preparation of plutonium materials for the Safeguard Analytical Laboratory Evaluation (SALE) Program, and the analysis of HTGR fuel and SALE uranium materials. The previously developed Teflon-container, metal-shell apparatus was applied to the dissolution of various nuclear materials. Gas--solid reactions, mainly using chlorine at elevated temperatures, are promising for separating uranium from refractory compounds. An automated spectrophotometer designed for determining plutonium and uranium was tested successfully. Procedures were developed for this instrument to analyze uranium--plutonium mixtures and the effects of diverse ions upon the analysis of plutonium and uranium were further established. A versatile apparatus was assembled to develop electrotitrimetric methods that will serve as the basis for precise automated determinations of plutonium. Plutonium materials prepared for the Safeguard Analytical Laboratory Evaluation (SALE) Program were plutonium oxide, uranium--plutonium mixed oxide, and plutonium metal. Improvements were made in the methods used for determining uranium in HTGR fuel materials and SALE uranium materials. Plutonium metal samples were prepared, characterized, and distributed, and half-life measurements were in progress as part of an inter-ERDA-laboratory program to measure accurately the half-lives of long-lived plutonium isotopes

  7. Automated inventory and material science scoping calculations under fission and fusion conditions

    Directory of Open Access Journals (Sweden)

    Mark R. Gilbert

    2017-09-01

    Full Text Available The FISPACT-II inventory simulation platform is a modern computational tool with advanced and unique capabilities. It is sufficiently flexible and efficient to make it an ideal basis around which to perform extensive simulation studies to scope a variety of responses of many materials (elements to several different neutron irradiation scenarios. This paper briefly presents the typical outputs from these scoping studies, which have been used to compile a suite of nuclear physics materials handbooks, providing a useful and vital resource for material selection and design studies. Several different global responses are extracted from these reports, allowing for comparisons between materials and between different irradiation conditions. A new graphical output format has been developed for the FISPACT-II platform to display these “global summaries”; results for different elements are shown in a periodic table layout, allowing side-by-side comparisons. Several examples of such plots are presented and discussed.

  8. Dredged Material Management in Long Island Sound

    Science.gov (United States)

    Information on Western and Central Long Island Sound Dredged Material Disposal Sites including the Dredged Material Management Plan and Regional Dredging Team. Information regarding the Eastern Long Island Sound Selected Site including public meetings.

  9. Hazardous Materials Management and Emergency Response (HAMMER)

    Data.gov (United States)

    Federal Laboratory Consortium — The Volpentest Hazardous Materials Management and Emergency Response (HAMMER) Federal Training Center is a safety and emergency response training center that offers...

  10. Goals, challenges, and successes of managing fusion activated materials

    International Nuclear Information System (INIS)

    El-Guebaly, L.; Massaut, V.; Tobita, K.; Cadwallader, L.

    2008-01-01

    After decades of designing magnetic and inertial fusion power plants, it is timely to develop a new framework for managing the activated (and contaminated) materials that will be generated during plant operation and after decommissioning-a framework that takes into account the lessons learned from numerous international fusion and fission studies and the environmental, political, and present reality in the U.S., Europe, and Japan. This will clearly demonstrate that designers developing fusion facilities will be dealing with the back end of this type of energy production from the beginning of the conceptual design of power plants. It is becoming evident that future regulations for geological burial will be upgraded to assure tighter environmental controls. Along with the political difficulty of constructing new repositories worldwide, the current reality suggests reshaping all aspects of handling the continual stream of fusion active materials. Beginning in the mid 1980s and continuing to the present, numerous fusion designs examined replacing the disposal option with more environmentally attractive approaches, redirecting their attention to recycling and clearance while continuing the development of materials with low activation potential. There is a growing international effort in support of this new trend. In this paper, recent history is analyzed, a new fusion waste management scheme is covered, and possibilities for how its prospects can be improved are examined

  11. Neutron data error estimate of criticality calculations for lattice in shielding containers with metal fissionable materials

    International Nuclear Information System (INIS)

    Vasil'ev, A.P.; Krepkij, A.S.; Lukin, A.V.; Mikhal'kova, A.G.; Orlov, A.I.; Perezhogin, V.D.; Samojlova, L.Yu.; Sokolov, Yu.A.; Terekhin, V.A.; Chernukhin, Yu.I.

    1991-01-01

    Critical mass experiments were performed using assemblies which simulated one-dimensional lattice consisting of shielding containers with metal fissile materials. Calculations of the criticality of the above assemblies were carried out using the KLAN program with the BAS neutron constants. Errors in the calculations of the criticality for one-, two-, and three-dimensional lattices are estimated. 3 refs.; 1 tab

  12. Accelerator-based approach experiments for remote identification of fissionable and other materials

    International Nuclear Information System (INIS)

    Chuvilo, I.V.; Danilov, M.M.; Katarzhnov, Yu.D.; Kushin, V.V.; Nedopekin, V.G.; Plotnikov, S.V.; Rogov, V.I.

    1998-01-01

    Recently there has been a great deal of interest in studying possible methods for remote non-destructive material composition testing, for example, for cargo identification at transportation, neutron logging etc., by means of nuclear detection (D.R. Brown, T. Gozani (1995)). Of current concern are the applications of pulsed fast neutron analysis in determining the composition of fissile objects (I.I. Zaliubovskiy et al. (1993)). In this paper the observed experimental results are discussed indicating the possibility of practical realization of the method for remote material identification. The approach is based on measuring gamma ray spectra from an object to be examined after its irradiation with short neutron pulses produced by an accelerator. The obtained time and energy gamma spectra are used for material inspection. The information is obtained by using time-of-flight (TOF) analysis between the accelerator pulse and the arrival of gamma rays in NaI detectors located far enough from an object to be examined. The method seems to be the most effective for fissile materials identification. (orig.)

  13. Development of radiation resistant structural materials utilizing fission research reactors in Japan (Role of research reactors)

    International Nuclear Information System (INIS)

    Shikama, T.; Tanigawa, H.; Nozawa, T.; Muroga, T.; Aoyama, T.; Kawamura, H.; Ishihara, M.; Ito, C.; Kaneda, S.; Mimura, S.

    2009-01-01

    Structural materials for next-generation nuclear power systems should have a good radiation resistance, where the expected accumulation dose will largely exceed 10 dpa. Among several candidate materials, materials of five categories, 1. Austenitic steels, including high nickel alloys, 2. Low activation ferritic martensitic steels, 3. ODS steels (austenitic and ferritic), 4. Vanadium based alloys, 5. Silicon carbide composites (SiC/SiCf). All have been most extensively studied in Japan, in collaboration among industries, national institutes such as Japan Atomic Energy Agency (JAEA), National Institute for Fusion Science (NIFS) and National Institute for Materials Science (NIMS), and universities. The high nickel base alloys were studied for their low swelling behaviors mainly by the NIMS and the austenitic steels are studied for their reliable engineering data base and their reliable performance in irradiation environments mainly by the JAEA, mainly for their application in the near-term projects such as the ITER and the Sodium Cooled Fast Reactors. The most extensive studies are now concentrated on the Low Activation Ferritic Marsensitic steels and ODS steels, for their application in a demonstration fusion reactor and prototype sodium cooled fast reactors. Fundamental studies on radiation effects are carried out, mainly utilizing Japan Materials Testing Rector (JMTR) with its flexible irradiation ability, up to a few dpa. For higher dpa irradiation, a fast test reactor, JOYO is utilized up to several 10s dpa. Some international collaborations such as Japan/USA and Japan/France are effective to utilize reactors abroad, such as High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory, and sodium cooled high flux fast reactors in France. Silicon carbide based composites are extensively studied by university groups led by Kyoto University and the JAEA. For their performance in heavy irradiation environments, the Japan/USA collaboration plays an important role

  14. Properties of container and backfill materials for the final disposal of highly radioactive fission products

    International Nuclear Information System (INIS)

    Mirschinka, V.

    1983-11-01

    The qualifications of six metallic alloys to serve as canister materials for an in-can glass smelting process were studied. These alloys are: N 6 1.4864 (X 12NiCrSi3616, Thermax 16/36), No. 2.4816 (NiCr15Fe, Inconel 600), No. 2.4610 (Hastelloy C4), No. 2.4778 (UMCO50), No. 1.5415 (15MO3), No. 1.1005 (ZSH-Spezial). The mechanical properties of any of the six materials at high temperatures were found to be sufficient. The chemical interactions between glass and metal were investigated by glass smelting tests and electron microprobe analyses, showing that chromium as an alloying element of the crucible material may affect the quality of the glass product by causing inhomogeneities and a violent blistering in the glass matrix. The resistance against corrosion by concentrated salt solutions under elevated pressure and temperature similar to final depository conditions was tested showing that the presence of a bentonite suspension in the salt solution reduces the corrosion attack of the metal significantly. Diffusion experiments of salt solutions doted with radioactive isotopes Na-22 and Cl-36 as tracer substances were made to show the retardation behaviour of salt ions in compacted bentonite. However, a long-term barrier effect of the bentonite against salt ion diffusion could not be verified. (orig./HOE)

  15. RCRA Sustainable Materials Management Information

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset includes a broad variety of documents, descriptive data, technical analyses and guidance materials relative to voluntary improvements in resource...

  16. Materials management: stretching the "household" budget.

    Science.gov (United States)

    Carpe, R H; Carroll, P E

    1987-11-01

    As CFOs assume responsibility for the materials management function because of the potential to maximize cash flow, achieve economies of scale, decrease costs, and streamline operations, they look for guidelines to evaluate performance. Conducting a systems operations audit can aid in assessing that performance. CFOs can determine whether materials management processes are working "smarter, nor harder."

  17. Y-12 Integrated Materials Management System

    Energy Technology Data Exchange (ETDEWEB)

    Alspaugh, D. H.; Hickerson, T. W.

    2002-06-03

    The Integrated Materials Management System, when fully implemented, will provide the Y-12 National Security Complex with advanced inventory information and analysis capabilities and enable effective assessment, forecasting and management of nuclear materials, critical non-nuclear materials, and certified supplies. These capabilities will facilitate future Y-12 stockpile management work, enhance interfaces to existing National Nuclear Security Administration (NNSA) corporate-level information systems, and enable interfaces to planned NNSA systems. In the current national nuclear defense environment where, for example, weapons testing is not permitted, material managers need better, faster, more complete information about material properties and characteristics. They now must manage non-special nuclear material at the same high-level they have managed SNM, and information capabilities about both must be improved. The full automation and integration of business activities related to nuclear and non-nuclear materials that will be put into effect by the Integrated Materials Management System (IMMS) will significantly improve and streamline the process of providing vital information to Y-12 and NNSA managers. This overview looks at the kinds of information improvements targeted by the IMMS project, related issues, the proposed information architecture, and the progress to date in implementing the system.

  18. Y-12 Integrated Materials Management System

    International Nuclear Information System (INIS)

    Alspaugh, D. H.; Hickerson, T. W.

    2002-01-01

    The Integrated Materials Management System, when fully implemented, will provide the Y-12 National Security Complex with advanced inventory information and analysis capabilities and enable effective assessment, forecasting and management of nuclear materials, critical non-nuclear materials, and certified supplies. These capabilities will facilitate future Y-12 stockpile management work, enhance interfaces to existing National Nuclear Security Administration (NNSA) corporate-level information systems, and enable interfaces to planned NNSA systems. In the current national nuclear defense environment where, for example, weapons testing is not permitted, material managers need better, faster, more complete information about material properties and characteristics. They now must manage non-special nuclear material at the same high-level they have managed SNM, and information capabilities about both must be improved. The full automation and integration of business activities related to nuclear and non-nuclear materials that will be put into effect by the Integrated Materials Management System (IMMS) will significantly improve and streamline the process of providing vital information to Y-12 and NNSA managers. This overview looks at the kinds of information improvements targeted by the IMMS project, related issues, the proposed information architecture, and the progress to date in implementing the system

  19. Material stabilization characterization management plan

    International Nuclear Information System (INIS)

    GIBSON, M.W.

    1999-01-01

    This document presents overall direction for characterization needs during stabilization of SNM at the Plutonium Finishing Plant (PFP). Technical issues for needed data and equipment are identified. Information on material categories and links to vulnerabilities are given. Comparison data on the material categories is discussed to assist in assessing the relative risks and desired processing priority

  20. Qualification of SiC materials for fusion and fission reactors

    International Nuclear Information System (INIS)

    Ryazanov, Alexander

    2009-01-01

    Ceramic materials such as silicon carbide (SiC) and SiC/SiC composites are both considered, due to their high-temperature strength, pseudo-ductile fracture behavior and low-induced radioactivity, as candidate materials for fusion reactor (test blanket module for ITER) and high temperature gas-cooled reactors (HTGR). The radiation swelling and creep of SiC are very important physical phenomena that determine the radiation resistance of them in these reactors. Other important problem which exists especially in fusion reactor is an effect of accumulation of high concentrations of helium atoms in SiC (up to 15000-20000 at.ppm) due to (n,α) nuclear reaction on physical mechanical properties. An understanding of the physical mechanism of this phenomenon is very important for the investigations of helium atom effect on radiation swelling in SiC. In this report a compilation of non-irradiated and irradiated properties of SiC are provided and analyzed in terms of their application to fusion and high temperature gas cooled reactors. Special topic of this report is oriented on the micro structural changes in chemically vapor-deposited (CVD) high-purity beta-SiC during neutron and ion irradiations at elevated temperatures. The evolutions of various radiation induced defects including dislocation loops, network dislocations and cavities are presented here as a function of irradiation temperature and fluencies. These observations are discussed in relation with such irradiation phenomena in SiC as low temperature swelling and cavity swelling. One of the main difficulties in the radiation damage studies of SiC materials lies in the absence of theoretical models and interpretation of many physical mechanisms of radiation phenomena including the radiation swelling and creep. The point defects in ceramic materials are characterized by the charge states and they can have an effective charge. The internal effective electrical field is formed due to the accumulation of charged point

  1. Materials management - no more business as usual

    International Nuclear Information System (INIS)

    Suther, S.

    1991-01-01

    This paper describes events leading up to and details of on-going changes in the way Duke Power Company manages its materials and equipment used in nuclear and fossil power plants. It describes in some detail how its management came to recognize the benefit to the company's financial performance of improved techniques and summarizes the changes being implemented to the materials management business function

  2. Waste Material Management: Energy and materials for industry

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This booklet describes DOE`s Waste Material Management (WMM) programs, which are designed to help tap the potential of waste materials. Four programs are described in general terms: Industrial Waste Reduction, Waste Utilization and Conversion, Energy from Municipal Waste, and Solar Industrial Applications.

  3. A spallation-based irradiation test facility for fusion and future fission materials

    International Nuclear Information System (INIS)

    Samec, K.; Fusco, Y.; Kadi, Y.; Luis, R.; Romanets, Y.; Behzad, M.; Aleksan, R.; Bousson, S.

    2014-01-01

    The EU's FP7 TIARA program for developing accelerator-based facilities has recently demonstrated the unique capabilities of a compact and powerful spallation source for irradiating advanced nuclear materials. The spectrum and intensity of the neutron flux produced in the proposed facility fulfils the requirements of the proposed DEMO fusion reactor, ADS reactors and also Gen III / IV reactors. Test conditions can be modulated, covering temperature from 400 to 550 deg. C, liquid metal corrosion, cyclical or static stress up to 500 MPa and neutron/proton irradiation damage of up to 25 DPA per annum over a volume occupying one litre. The entire 'TMIF' facility fits inside a cube 2 metres on a side, and is dimensioned for an accelerator beam power of 100 kW, thus reducing costs and offering great versatility and flexibility. (authors)

  4. A spallation-based irradiation test facility for fusion and future fission materials

    CERN Document Server

    Samec, K; Kadi, Y; Luis, R; Romanets, Y; Behzad, M; Aleksan, R; Bousson, S

    2014-01-01

    The EU’s FP7 TIARA program for developing accelerator-based facilities has recently demonstrated the unique capabilities of a compact and powerful spallation source for irradiating advanced nuclear materials. The spectrum and intensity of the neutron flux produced in the proposed facility fulfils the requirements of the DEMO fusion reactor for ITER, ADS reactors and also Gen III / IV reactors. Test conditions can be modulated, covering temperature from 400 to 550°C, liquid metal corrosion, cyclical or static stress up to 500 MPa and neutron/proton irradiation damage of up to 25 DPA per annum. The entire “TMIF” facility fits inside a cube 2 metres on a side, and is dimensioned for an accelerator beam power of 100 kW, thus reducing costs and offering great versatility and flexibility.

  5. Method to separate fission noble gases from gaseous wastes of a reprocessing plant for nuclear fuel material

    International Nuclear Information System (INIS)

    Schnez, H.

    1977-01-01

    In order to avoid the high cost expenditure in the separation of fission noble gases from waste gas of the head end, the following economical method is suggested: The fission noble gases released in the solvent - after grinding and burn-up of the nuclear fuel elements and dissolving in HNO 3 - are purified in a known method and collected in an equalizing tank. From here, the fission noble gas quantity necessary as washing gas is recycled into the solvent, so that a part of the fission noble gas quantity flows in a circuit. The quantity of fission noble gas not required for the above is separated from the circuit, compressed and put into a storage container from where it can be put into gas flashs or be recycled in the gas circuit where necessary. Furthermore, the method involves that to separate krypton, the filtered fission noble gas is compressed, cooled and rectified, whereby the krypton mixture taken from the rectification column is stored under high pressure and the gas part containing xenon, occuring as liquid, is at least partly fed back to the solvent. (HPH) [de

  6. Safeguards and Nuclear Material Management

    International Nuclear Information System (INIS)

    Stanchi, L.

    1991-01-01

    The book contains contributed papers from various authors on the following subjects: Safeguards systems and implementation, Measurement techniques: general, Measurement techniques: destructive analysis, Measurement techniques: non-destructive assay, Containment and surveillance, Spent fuel strategies, Material accounting and data evaluation

  7. A small flat fission chamber

    International Nuclear Information System (INIS)

    Li Yijun; Wang Dalun; Chen Suhe

    1999-01-01

    With fission materials of depleted uranium, natural uranium, enriched uranium, 239 Pu, and 237 Np, the authors have designed and made a series of small flat fission chamber. The authors narrated the construction of the fission chamber and its technological process of manufacture, and furthermore, the authors have measured and discussed the follow correct factor, self-absorption, boundary effect, threshold loss factor, bottom scatter and or so

  8. Reactor physics and reactor strategy investigations into the fissionable material economy of the thorium and uranium cycle in fast breeder reactors and high temperature reactors

    International Nuclear Information System (INIS)

    Schikorr, W.M.

    In this work the properties governing the fissionable material economy of the uranium and thorium cycles are investigated for the advanced reactor types currently under development - the fast breeder reactor (FBR) and the high temperature reactor (HTR) - from the point of view of the optimum utilization of the available nuclear fuel reserves and the continuance of supply of these reserves. For this purpose, the two reactor types are first of all considered individually and are subsequently discussed as a complementary overall system

  9. A study of potential high band-gap photovoltaic materials for a two step photon intermediate technique in fission energy conversion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Prelas, M.A.

    1996-01-24

    This report describes progress made to develop a high bandgap photovoltaic materials for direct conversion to electricity of excimer radiation produced by fission energy pumped laser. This report summarizes the major achievements in sections. The first section covers n-type diamond. The second section covers forced diffusion. The third section covers radiation effects. The fourth section covers progress in Schottky barrier and heterojunction photovoltaic cells. The fifth section covers cell and reactor development.

  10. Progress report on research and development work 1991 of the Institute of Genetics and Toxicology of Fissionable Materials, Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    1991-03-01

    The present annual report describes the results of research work done by the Institute of Genetics and Toxicology of Fissionable Materials (IGT) in 1991. The following eight subjects were dealt with: genetic repair; genetic regulation; biological carcinogenesis; molecular genetics of eukaryontic genes; genetic mouse models for human illnesses; radiation toxicology of actinides; molecular and cellular environmental toxicology, and in vivo fractionation and speciation of actinides. (MG) [de

  11. Ternary fission

    International Nuclear Information System (INIS)

    Wagemans, C.

    1991-01-01

    Since its discovery in 1946, light (charged) particle accompanied fission (ternary fission) has been extensively studied, for spontaneous as well as for induced fission reactions. The reason for this interest was twofold: the ternary particles being emitted in space and time close to the scission point were expected to supply information on the scission point configuration and the ternary fission process was an important source of helium, tritium, and hydrogen production in nuclear reactors, for which data were requested by the nuclear industry. Significant experimental progress has been realized with the advent of high-resolution detectors, powerful multiparameter data acquisition systems, and intense neutron and photon beams. As far as theory is concerned, the trajectory calculations (in which scission point parameters are deduced from the experimental observations) have been very much improved. An attempt was made to explain ternary particle emission in terms of a Plateau-Rayleigh hydrodynamical instability of a relatively long cylindrical neck or cylindrical nucleus. New results have also been obtained on the so-called open-quotes trueclose quotes ternary fission (fission in three about-equal fragments). The spontaneous emission of charged particles has also clearly been demonstrated in recent years. This chapter discusses the main characteristics of ternary fission, theoretical models, light particle emission probabilities, the dependence of the emission probabilities on experimental variables, light particle energy distributions, light particle angular distributions, correlations between light particle accompanied fission observables, open-quotes trueclose quotes ternary fission, and spontaneous emission of heavy ions. 143 refs., 18 figs., 8 tabs

  12. Uranium ores of Kazakhstan as the most technologic source of a fissionable material

    International Nuclear Information System (INIS)

    Berikbolov, B.R.

    1999-01-01

    Kazakhstan as is known has unique deposits of uranium. Its resources composed a third part of the world resources. The most important part of resources having a practical value, is related with depression in southern regions of the Republic. By now more than 15 deposits are discovered and partially explored. These deposits from three uranium provinces - Shu-Sarysu, Syr-Darya and Ili. The ores occur in friable water-bearing sandy horizons of Cretaceous and Paleogene age between waterproof agrillaceous sediments at depth from 100 up to 600 m. Ore bodies thickness changes from 5 to 10 m at uranian average-grade 0.03-0.1 %. Width of band shaped ore bodies changes from tens meters to the one kilometers and extent changes from one kilometer up to many tens kilometers. The important feature of deposits is their suitability for development by progressive in situ leaching (ISL) method. It was demonstrated, that uranium ores are comprehensive and, that is important, a lot of commercially important elements, containing in ores, gives in to extraction at development by the ISL method. The preliminary calculation of expenditures for the extraction of useful byproducts from ordinary sulphate solution have demonstrated rather high profitableness for rhenium, scandium, selenium, rare earth even at the very low contents in solution. It was pointed out, that whole technological chain applied now at industrial scale is oriented to mono-metallic uranium ores, therefore present technology of leaching and recovery of industrial solution does not allow ti extract all valuable components containing in ores. The development of new improved technological chain. beginning with a composition of leaching out reagent and up to applying of miscellaneous sorbing materials, can create new mineral-raw base of rare and dissipated elements and to lower considerably the price of uranium mining from sandstone deposits

  13. Technical considerations in materials management policy development

    International Nuclear Information System (INIS)

    Avci, H.; Goldberg, M.

    1996-01-01

    Under the Materials-in-Inventory (MIN) initiative, US DOE intends to develop policies to ensure that materials are managed and use efficiently, cost-effectively, and safely throughout DOE. The MIN initiative covers depleted uranium, scrap metals, chemicals, explosives, spent nuclear fuel, lead, alkali metals, etc.; by far the largest component is depleted uranium hexafluoride (DUF6). A technically defensible approach has been developed and is being used to select a long-term management strategy for DOE's DUF6 inventory. The same approach can be adapted to management of other materials in inventory that have the potential to be reutilized

  14. Micro plate fission chamber development

    International Nuclear Information System (INIS)

    Wang Mei; Wen Zhongwei; Lin Jufang; Jiang Li; Liu Rong; Wang Dalun

    2014-01-01

    To conduct the measurement of neutron flux and the fission rate distribution at several position in assemblies, the micro plate fission chamber was designed and fabricated. Since the requirement of smaller volume and less structure material was taken into consideration, it is convinient, commercial and practical to use fission chamber to measure neutron flux in specific condition. In this paper, the structure of fission chamber and process of fabrication were introduced and performance test result was presented. The detection efficiency is 91.7%. (authors)

  15. Sustainable Management of Construction and Demolition Materials

    Science.gov (United States)

    This web page discusses how to sustainably manage construction and demolition materials, Information covers, what they are, and how builders, construction crews, demolition teams,and deign practitioners can divert C&D from landfills.

  16. MDOT Materials Laboratories : Environmental Management Plan

    Science.gov (United States)

    2012-06-01

    The goal of this EMP was to develop and implement a comprehensive Environmental : Management Plan for MDOT Materials Laboratories. This goal was achieved through : perfonnance of environmental audits to identify potential environmental impacts, and b...

  17. Nuclear material management: challenges and prospects

    International Nuclear Information System (INIS)

    Rieu, J.; Besnainou, J.; Leboucher, I.; Chiguer, M.; Capus, G.; Greneche, D.; Durret, L.F.; Carbonnier, J.L.; Delpech, M.; Loaec, Ch.; Devezeaux de Lavergne, J.G.; Granger, S.; Devid, S.; Bidaud, A.; Jalouneix, J.; Toubon, H.; Pochon, E.; Bariteau, J.P.; Bernard, P.; Krellmann, J.; Sicard, B.

    2008-01-01

    The articles in this dossier were derived from the papers of the yearly S.F.E.N. convention, which took place in Paris, 12-13 March 2008. They deal with the new challenges and prospects in the field of nuclear material management, throughout the nuclear whole fuel cycle, namely: the institutional frame of nuclear materials management, the recycling, the uranium market, the enrichment market, the different scenarios for the management of civil nuclear materials, the technical possibilities of spent fuels utilization, the option of thorium, the convention on the physical protection of nuclear materials and installations, the characterisation of nuclear materials by nondestructive nuclear measurements, the proliferation from civil installations, the use of plutonium ( from military origin) and the international agreements. (N.C.)

  18. Potentials of fissioning plasmas

    International Nuclear Information System (INIS)

    Karlheinz, Thom.

    1979-01-01

    Successful experiments with the nuclear pumping of lasers have demonstrated that in gaseous medium the kinetic energy of fission fragments can be converted directly into non-equilibrium optical radiation. This confirms the concept that the fissioning medium in a gas-phase nuclear reactor shows an internal structure such as a plasma in nearly thermal equilibrium varying up to a state of extreme-non-equilibrium. The accompanying variations of temperatures, pressure and radiative spectrum suggest wide ranges of applications. For example, in the gas-phase fission reactor concept enriched uranium hexafluoride or an uranium plasma replaces conventional fuel elements and permits operation above the melting point of solid materials. This potential has been motivation for the US National Aeronautics and Space Administration (NASA) to conduct relevant research for high specific impulse propulsion in space. The need to separate the high temperature gaseous fuel from the surfaces of a containing vessel and to protect them against thermal radiation has led to the concept of an externally moderated reactor in which the fissioning gaseous material is suspended by fluid dynamic means and the flow of opaque buffer gas removes the power. The gaseous nuclear fuel can slowly be circulated through the reactor for continuous on-site reprocessing including the annihilation of transuranium actinides at fission when being fed back into the reactor. An equilibrium of the generation and destruction of such actinides at fission when being fed back into the reactor. An equilibrium of the generation and destruction of such actinides can thus be achieved. These characteristics and the unique radiative properties led to the expectation that the gas-phase fission reactor could feature improved safety, safeguarding and economy, in addition to new technologies such as processing, photochemistry and the transmission of power over large distances in space

  19. Research projects on life management: materials ageing

    International Nuclear Information System (INIS)

    Gomez Briceno, D.

    1997-01-01

    Materials ageing is a time-dependent process, that involves the loss of availability of nuclear plants. Radiation embrittlement, stress corrosion cracking, irradiation assisted stress corrosion cracking, and thermal ageing are the most relevant time-dependent material degradation mechanisms that can be identified in the materials ageing process. The Materials Programme of Nuclear Energy Institute at CIEMAT carries out research projects and metallurgical examinations of failed components to gain some insight into the mechanisms of materials degradation with a direct impact on the life management of nuclear plants. (Author)

  20. Construction for fissionable material

    International Nuclear Information System (INIS)

    Christiansen, D.W.

    1978-01-01

    A nuclear reactor fuel assembly is designed to maintain its structural integrity during all phases of reactor operation. Spacer assemblies, containing a plurality of rectangular slotted plates intersecting and interlocking in egg-crate fashion, laterally maintain the fuel elements and guide tubes in a spaced array. Spacer assembly movement is restrained by collars mechanically fixed to guide tube sleeves at each spacer assembly location. (Auth.)

  1. Construction for fissionable material

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1978-01-01

    This invention is directed toward a nuclear fuel assembly guide tube arrangement which restrains spacer grid movement due to coolant flow and which offers secondary means for supporting a fuel assembly during handling and transfer operations. (Auth.)

  2. Aims and methods of nuclear materials management

    International Nuclear Information System (INIS)

    Leven, D.; Schier, H.

    1979-05-01

    Whilst international safeguarding of fissile materials against abuse has been the subject of extensive debate, little public attention has so far been devoted to the internal security of these materials. All countries using nuclear energy for peaceful purposes have laid down appropriate regulations. In the Federal Republic of Germany safeguards are required, for instance, by the Atomic Energy Act, and are therefore a prerequisite for licensing. The aims and methods of national nuclear materials management are contrasted with viewpoints on international safeguards

  3. [A medical consumable material management information system].

    Science.gov (United States)

    Tang, Guoping; Hu, Liang

    2014-05-01

    Medical consumables material is essential supplies to carry out medical work, which has a wide range of varieties and a large amount of usage. How to manage it feasibly and efficiently that has been a topic of concern to everyone. This article discussed about how to design a medical consumable material management information system that has a set of standardized processes, bring together medical supplies administrator, suppliers and clinical departments. Advanced management mode, enterprise resource planning (ERP) applied to the whole system design process.

  4. A comprehensive approach to managing hazardous materials

    International Nuclear Information System (INIS)

    Donovan, A.

    1990-01-01

    An increased emphasis on the need for environmental protection indicates that engineers must now consider the disposition of unused hazardous materials as waste. Before specifying and ordering materials, the engineer must consider the impact of the Resource Conservation and Recovery Act (RCRA) and the Occupational Safety and Health Administration's (OSHA's) Hazard Communication Standard. Many commonly used materials such as paint, solvents, glues, and sealants fall under the requirements of these regulations. This paper presents a plant to manage hazardous materials at the US Department of Energy's (DOE's) Waste Isolation Pilot Plant (WIPP), which is managed and operated by Westinghouse Electric Corporation. The basic elements of the plan are training, hazard communication, storage and handling, tracking, and disposal. Steps to be taken to develop the plan are outlined, problems and successes are addressed, and interactions among all affected departments are identified. The benefits of an organized and comprehensive approach to managing hazardous materials are decreased worker injuries, reduction of accidental releases, minimization of waste, and compliance with federal, state, and local safety and environmental laws. In summary, the benefits of an organized program for the management of hazardous materials include compliance with the Environmental Protection Agency's (EPA's) requirements, demonstration of Westinghouse's role as a responsible corporate entity, and reduction of waste management costs

  5. Management Model Applicable to Metallic Materials Industry

    Directory of Open Access Journals (Sweden)

    Adrian Ioana

    2013-02-01

    Full Text Available This paper presents an algorithmic analysis of the marketing mix in metallurgy. It also analyzes the main correlations and their optimizing possibilities through an efficient management. Thus, both the effect and the importance of the marketing mix, for components (the four “P-s” areanalyzed in the materials’ industry, but their correlations as well, with the goal to optimize the specific management. There are briefly presented the main correlations between the 4 marketing mix components (the 4 “P-s” for a product within the materials’ industry, including aspects regarding specific management.Keywords: Management Model, Materials Industry, Marketing Mix, Correlations.

  6. Waste management, energy generation, material recycling

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The concept of process pyrolysis according to the system of low-temperature pyrolysis (up to 450 Cel) for the purpose of waste processing is described. This system not only uses the material value (raw materials) but also the processing value (energetic utilization of organic components). Three product groups are mentioned where process pyrolysis can be applied: 1. rubber-metall connecting, coated and non-coated components, 2. Compound materials like pc boards, used electronic devices, films, used cables and batteries, 3. organic waste and residues like foils, insulating material, lubricating, oil and grease, flooring. Importance of waste management is emphasized, economic aspects are illustrated.

  7. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 2: Power from nuclear fission

    Science.gov (United States)

    Clement, J. D.

    1973-01-01

    Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.

  8. Project Management Plan for Material Stabilization

    International Nuclear Information System (INIS)

    SPEER, D.R.

    1999-01-01

    This plan presents the overall objectives, description, justification and planning for the plutonium Finishing Plant (PFP) Materials Stabilization project. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Plutonium Finishing Plant Integrated Project Management Plan (IPMP), HNF-3617/Rev. 0. This is the top-level definitive project management document that specifies the technical (work scope), schedule, and cost baselines to manager the execution of this project. It describes the organizational approach and roles/responsibilities to be implemented to execute the project. This plan is under configuration management and any deviations must be authorized by appropriate change control action. Materials stabilization is designated the responsibility to open and stabilize containers of plutonium metal, oxides, alloys, compounds, and sources. Each of these items is at least 30 weight percent plutonium/uranium. The output of this project will be containers of materials in a safe and stable form suitable for storage pending final packaging and/or transportation offsite. The corrosion products along with oxides and compounds will be stabilized via muffle furnaces to reduce the materials to high fired oxides

  9. Directive of The Minister of Economic Affairs and the State Secretary for Social Affairs and Public Health of 5 December 1969, Stcrt. 240 in implementation of Section 2 and other Sections of the Fissionable Materials, Ores and Radioactive Materials (Transport) Decree (Designation of Countries)

    International Nuclear Information System (INIS)

    1969-01-01

    This Directive designates the countries which are parties to the same international transport agreements as the Netherlands and which may therefore transport fissionable materials, ores and radioactive materials over Netherlands territory and territorial waters. (NEA) [fr

  10. Comparison of fission probabilities with emission of long range particles under the action of slow and fast neutrons on various materials; Probabilites comparees de fission avec emission de particules de long parcours pour divers materiaux sous l'action des neutrons lents et rapides

    Energy Technology Data Exchange (ETDEWEB)

    Netter, F; Faraggi, H; Garin-Bonnet, A; Julien, J; Corge, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Turkiewicz, J [Institut de Recherches Nucleaire de Varsovie (Poland)

    1958-07-01

    The authors describe relative cross-section measurements of fission of the isotopes of uranium and plutonium (more particularly {sup 235}U, {sup 238}U, {sup 239}Pu), with emission of long range particles, under the action of neutrons of various energies: thermal neutrons, pile neutrons, neutrons produced with the Van de Graaff accelerator by reaction of protons on tritium. The measurements are carried out: 1) with the aid of photographic plates, by submitting to the action of the neutrons a layer of fissile material coupled with an Ilford nuclear emulsion of 200 microns; a tin sheet laying between the plate and the layer stops the {alpha} particles and the fission fragments. By an appropriate development the tracks of the long range particles can be distinguished in the emulsion, from the tracks of the recoil protons resulting of fission neutrons, or of the last primary neutrons. For neutrons of energy under 1 MeV, the compared frequency of the tracks of long range particles and of the recoils caused by the fission neutrons gives a measurement of the fission cross-section with emission of long range particles relative to the product of the fission cross-section by the mean number of neutrons emitted by fission. For neutrons of higher energy, one measures only the frequency of the tracks of long range particles, comparatively with the flux of primary neutrons. Some precautions are taken to eliminate the action of thermal neutrons in the measurements with fast neutrons. 2) with the aid of a system of ionization chamber and proportional counter, the rate of coincidence between the impulsions caused by the long range particles and the impulsions provided by one of the fission fragments is measured comparatively with the counting rate of fission fragme (author) [French] Les auteurs decrivent des mesures relatives a la section efficace de fission des isotopes de l'uranium et du plutonium (notamment {sup 235}U, {sup 238}U, {sup 239}Pu) avec emission de particules de long

  11. Fission track analysis of Pu in small specimens of biological material: Technical progress report, August 1, 1987--July 31, 1988

    International Nuclear Information System (INIS)

    Wrenn, M.E.

    1988-01-01

    The objective of this research is to develop a highly specific and ultrasensitive method capable of detecting 100 aCi/liter of 239 Pu in human urine. The method using neutron induced fission track analysis is to be made free of interference from uranium, the only naturally occurring element with an isotope which fissions with thermal neutrons. A simplified flow diagram for the method is shown in Figure 1. Briefly 239 Pu is coprecipitated quantitatively from urine with rhodozonic acid. The precipitate containing the 239 Pu is dissolved in HCl and is sequentially passed through two ion exchange columns and reduced in volume. The element is then deposited in a circular area on a thick polycarbonate detector and a thinner detector is placed over the circular deposit. The plastic detectors are then irradiated to a high thermal neutron fluence in a research reactor. The detectors are etched in a caustic solution for controlled times and temperatures in order to develop the fission tracks. Images of tracks are formed both on the thin and thick plastic detectors. Total tracks in the thinner detector are measured with a locally developed spark counter and in the thick plastic are measured by counting with a microscope. The results will be made quantitative by constructing a calibration curve for 239 Pu. 3 refs., 9 figs., 3 tabs

  12. Ternary fission

    Indian Academy of Sciences (India)

    the energy minimization of all possible ternary breakups of a heavy radioactive nucleus. Further, within the TCM we have analysed the competition between different geometries as well as different positioning of the fragments. Also, an attempt was made to calculate the mass distribution of ternary fission process within the ...

  13. Comparison of nuclear irradiation parameters of fusion breeder materials in high flux fission test reactors and a fusion power demonstration reactor

    International Nuclear Information System (INIS)

    Fischer, U.; Herring, S.; Hogenbirk, A.; Leichtle, D.; Nagao, Y.; Pijlgroms, B.J.; Ying, A.

    2000-01-01

    Nuclear irradiation parameters relevant to displacement damage and burn-up of the breeder materials Li 2 O, Li 4 SiO 4 and Li 2 TiO 3 have been evaluated and compared for a fusion power demonstration reactor and the high flux fission test reactor (HFR), Petten, the advanced test reactor (ATR, INEL) and the Japanese material test reactor (JMTR, JAERI). Based on detailed nuclear reactor calculations with the MCNP Monte Carlo code and binary collision approximation (BCA) computer simulations of the displacement damage in the polyatomic lattices with MARLOWE, it has been investigated how well the considered HFRs can meet the requirements for a fusion power reactor relevant irradiation. It is shown that a breeder material irradiation in these fission test reactors is well suited in this regard when the neutron spectrum is well tailored and the 6 Li-enrichment is properly chosen. Requirements for the relevant nuclear irradiation parameters such as the displacement damage accumulation, the lithium burn-up and the damage production function W(T) can be met when taking into account these prerequisites. Irradiation times in the order of 2-3 full power years are necessary for the HFR to achieve the peak values of the considered fusion power Demo reactor blanket with regard to the burn-up and, at the same time, the dpa accumulation

  14. Integrated Global Nuclear Materials Management Preliminary Concepts

    International Nuclear Information System (INIS)

    Jones, E; Dreicer, M.

    2006-01-01

    The world is at a turning point, moving away from the Cold War nuclear legacy towards a future global nuclear enterprise; and this presents a transformational challenge for nuclear materials management. Achieving safety and security during this transition is complicated by the diversified spectrum of threat 'players' that has greatly impacted nonproliferation, counterterrorism, and homeland security requirements. Rogue states and non-state actors no longer need self-contained national nuclear expertise, materials, and equipment due to availability from various sources in the nuclear market, thereby reducing the time, effort and cost for acquiring a nuclear weapon (i.e., manifestations of latency). The terrorist threat has changed the nature of military and national security requirements to protect these materials. An Integrated Global Nuclear Materials Management (IGNMM) approach would address the existing legacy nuclear materials and the evolution towards a nuclear energy future, while strengthening a regime to prevent nuclear weapon proliferation. In this paper, some preliminary concepts and studies of IGNMM will be presented. A systematic analysis of nuclear materials, activities, and controls can lead to a tractable, integrated global nuclear materials management architecture that can help remediate the past and manage the future. A systems approach is best suited to achieve multi-dimensional and interdependent solutions, including comprehensive, end-to-end capabilities; coordinated diverse elements for enhanced functionality with economy; and translation of goals/objectives or standards into locally optimized solutions. A risk-informed basis is excellent for evaluating system alternatives and performances, and it is especially appropriate for the security arena. Risk management strategies--such as defense-in-depth, diversity, and control quality--help to weave together various technologies and practices into a strong and robust security fabric. Effective

  15. Safeguards Accountability Network accountability and materials management

    International Nuclear Information System (INIS)

    Carnival, G.J.; Meredith, E.M.

    1985-01-01

    The Safeguards Accountability Network (SAN) is an on-line accountability system used by Rocky Flats Plant to provide accountability control of its nuclear material inventory. The system is also used to monitor and evaluate the use of the nuclear material inventory against programmatic objectives for materials management. The SAN system utilizes two Harris 800 Computers as central processing units. Enhancement plans are currently being formulated to provide automated data collection from process operations on the shop floor and from non-destructive analysis safeguards instrumentation. SAN, discussed in this paper, is an excellent system for basic accountability control of nuclear materials inventories and is a quite useful tool in evaluating the efficient use of nuclear materials inventories at Rocky Flats Plant

  16. The management of radioactive materials spills

    International Nuclear Information System (INIS)

    Ryan, M.T.; Ebenhack, D.G.

    1985-01-01

    The management and handling of a radioactive materials spill must be swift and effective to reduce or mitigate any adverse impacts on public health and safety. Spills within nuclear facilities generally pose less of a public health impact than spills in areas of public access. The essential elements of spill management include prior planning by agencies which may be required to respond to a spill. Any plan for the management of radioactive materials spills must be flexible enough to be applied in a variety of situations. The major elements of a radioactive materials spill plan, however, apply in every case. It is essential that communications be clear and effective, that the management of a spill be directed by a responsible party whose authority is recognized by everyone involved and that the actions, according to the principles discussed above, be taken to assure the safety of any injured personnel, containment and stabilization and clean up the spill and to verify through radiological surveys and sample analyses that the clean up is complete. Any spill of radioactive materials, minor or major, should be assessed so that similar spills or accidents can be prevented

  17. Operational and materials aspects of aging management

    International Nuclear Information System (INIS)

    Muscara, J.; Vora, J.P.; Moyer, C.E.

    2005-01-01

    Understanding degradation phenomena and managing the detrimental effects of aging are important aspects of commercial nuclear power plant operations. Potential for materials degradation should be considered early in the design and development stages; during manufacturing, construction, and installation; and during all aspects of plant operation and maintenance. This would lead to increased reliability during plant operations, and would reduce the need for mitigating actions and unplanned maintenance. Thus, it is necessary to instill a culture at the technical, administrative, and management levels that continually asks, 'What happens with time?' The answer to this question is central to the continuous safe and economical operation of nuclear power plants. Based on the past 25 years of aging-related research at the U.S. Nuclear Regulatory Commission (NRC), the authors present an overview of the key elements of understanding and managing aging, and how they should be integrated for safe and economical power plant operation. The focus of this paper is hardware-oriented engineering and aging of materials. The paper discusses previous and ongoing NRC research studies on non-destructive examination and materials degradation that can be applied for proactive management of materials degradation and aging during plant operations. (author)

  18. Applying RFID technology in nuclear materials management

    International Nuclear Information System (INIS)

    Tsai, H.; Chen, K.; Liu, Y.; Norair, J.P.; Bellamy, S.; Shuler, J.

    2008-01-01

    The Packaging Certification Program (PCP) of US Department of Energy (DOE) Environmental Management (EM), Office of Safety Management and Operations (EM-60), has developed a radio frequency identification (RFID) system for the management of nuclear materials. Argonne National Laboratory, a PCP supporting laboratory, and Savi Technology, a Lockheed Martin Company, are collaborating in the development of the RFID system, a process that involves hardware modification (form factor, seal sensor and batteries), software development and irradiation experiments. Savannah River National Laboratory and Argonne will soon field test the active RFID system on Model 9975 drums, which are used for storage and transportation of fissile and radioactive materials. Potential benefits of the RFID system are enhanced safety and security, reduced need for manned surveillance, real time access of status and history data, and overall cost effectiveness

  19. Reasons for change - Today's material management

    International Nuclear Information System (INIS)

    Guilbeault, B.D.; Bargerstock, S.B.

    1992-01-01

    The current generation of nuclear power plants is approaching middle age. The industry continues to stabilize and mature as this occurs, which creates new areas of focus. This evolution is placing a much greater emphases on the business aspects of the operation and maintenance functions. One area that can provide a reasonable return to the operating organizations is materials management. Florida Power and Light Company has experienced these reasons for change. A new department was formed as part of the Nuclear Division in 1990. Performance improvement tasks were established using goals and objectives consistent with plant support and business requirements. Two of the primary processes within the materials management area control the largest portion of costs to operating budgets: the procurement process and inventory management

  20. Advanced BorobondTM Shields for Nuclear Materials Containment and BorobondTM Immobilization of Volatile Fission Products - Final CRADA Report

    International Nuclear Information System (INIS)

    Wagh, Arun S.

    2016-01-01

    Borobond is a company-proprietary material developed by the CRADA partner in collaboration with Argonne, and is based on Argonne's Ceramicrete technology. It is being used by DOE for nuclear materials safe storage, and Boron Products, LLC is the manufacturer and supplier of Borobond. The major objective of this project was to produce a more versatile composition of this material and find new applications. Major target applications were use for nuclear radiation shields, such as in dry storage casks; use in immobilization of most difficult waste streams, such as Hanford K-Basin waste; use for soluble and volatile fission products, such as Cs, Tc, Sr, and I; and use for corrosion and fire protection applications in nuclear facilities.

  1. Consultancy on the potential of fusion/fission sub-critical neutron systems for energy production and transmutation. Working material

    International Nuclear Information System (INIS)

    2005-01-01

    The Workshop on Sub-critical Neutron Production held at the University of Maryland and the Eisenhower Institute on 11-13 October 2004 brought together members of fusion, fission and accelerator technical communities to discuss issues of spent fuel, nonproliferation, reactor safety and the use of neutrons for sub-critical operation of nuclear reactors. The Workshop strongly recommended that the fusion community work closely with other technical communities to ensure that a wider range of technical solutions is available to solve the spent fuel problem and to utilize the current actinide inventories. Participants of the Workshop recommended that a follow-on Workshop, possibly under the aegis of the IAEA, should be held in the first half of the year 2005. The Consultancy Meeting is the response to this recommendation. The objectives of the Consultancy meeting were to hold discussions on the role of fusion/fission systems in sub-critical operations of nuclear reactors. The participants agreed that development of innovative (fourth generation) fission reactors, advanced fuel cycle options, and disposition of existing spent nuclear fuel inventories in various Member Sates can significantly benefit from including sub-critical systems, which are driven by external neutron sources. Spallation neutrons produced by accelerators have been accepted in the past as the means of driving sub-critical reactors. The accelerator community deserves credit in pioneering this novel approach to reactor design. Progress in the design and operation of fusion devices now offers additional innovative means, broadening the range of sub-critical operations of fission reactors. Participants felt that fusion should participate with accelerators in providing a range of technical options in reactor design. Participants discussed concrete steps to set up a small fusion/fission system to demonstrate actinide burning in the laboratory and what advice should be given to the Agency on its role in

  2. Hazardous materials routing - risk management of mismanagement

    International Nuclear Information System (INIS)

    Glickman, T.S.

    1988-01-01

    Along with emergency planning and preparedness, the placement of restrictions on routing has become an increasingly popular device for managing the highway and rail risks of hazardous materials transportation. Federal studies conducted in 1985 indicate that at that time there were 513 different state and local restrictions on the routing of hazardous materials for these two modes of transportation, and that there were 136 state and local notification requirements, that is, restrictions that take the form of a statute or ordinance requiring advance warning or periodic reporting about hazardous materials shipments. Routing restrictions also take the form of prohibiting the use of road, a tunnel, or a bridge for a specified set of hazardous materials

  3. Sustainable Materials Management (SMM) - Materials and Waste Management in the United States Key Facts and Figures

    Data.gov (United States)

    U.S. Environmental Protection Agency — Each year EPA produces a report called Advancing Sustainable Materials Management: Facts and Figures. It includes information on municipal solid waste (MSW)...

  4. Fission product behaviour in severe accidents

    International Nuclear Information System (INIS)

    Jokiniemi, J.; Auvinen, A.; Maekynen, J.; Valmari, T.

    1998-01-01

    The understanding of fission product (FP) behaviour in severe accidents is important for source term assessment and accident mitigation measures. For example in accident management the operator needs to know the effect of different actions on the behaviour and release of fission products. At VTT fission product behaviour have been studied in different national and international projects. In this presentation the results of projects in EU funded 4th framework programme Nuclear Fission Safety 1994-1998 are reported. The projects are: fission product vapour/aerosol chemistry in the primary circuit (FI4SCT960020), aerosol physics in containment (FI4SCT950016), revaporisation of test samples from Phebus fission products (FI4SCT960019) and assessment of models for fission product revaporisation (FI4SCT960044). Also results from the national project 'aerosol experiments in the Victoria facility' funded by IVO PE and VTT Energy are reported

  5. Managing Single-Stranded DNA during Replication Stress in Fission Yeast

    Directory of Open Access Journals (Sweden)

    Sarah A. Sabatinos

    2015-09-01

    Full Text Available Replication fork stalling generates a variety of responses, most of which cause an increase in single-stranded DNA. ssDNA is a primary signal of replication distress that activates cellular checkpoints. It is also a potential source of genome instability and a substrate for mutation and recombination. Therefore, managing ssDNA levels is crucial to chromosome integrity. Limited ssDNA accumulation occurs in wild-type cells under stress. In contrast, cells lacking the replication checkpoint cannot arrest forks properly and accumulate large amounts of ssDNA. This likely occurs when the replication fork polymerase and helicase units are uncoupled. Some cells with mutations in the replication helicase (mcm-ts mimic checkpoint-deficient cells, and accumulate extensive areas of ssDNA to trigger the G2-checkpoint. Another category of helicase mutant (mcm4-degron causes fork stalling in early S-phase due to immediate loss of helicase function. Intriguingly, cells realize that ssDNA is present, but fail to detect that they accumulate ssDNA, and continue to divide. Thus, the cellular response to replication stalling depends on checkpoint activity and the time that replication stress occurs in S-phase. In this review we describe the signs, signals, and symptoms of replication arrest from an ssDNA perspective. We explore the possible mechanisms for these effects. We also advise the need for caution when detecting and interpreting data related to the accumulation of ssDNA.

  6. Enhanced Generic Phase-field Model of Irradiation Materials: Fission Gas Bubble Growth Kinetics in Polycrystalline UO2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert O.; Gao, Fei; Sun, Xin

    2012-05-30

    Experiments show that inter-granular and intra-granular gas bubbles have different growth kinetics which results in heterogeneous gas bubble microstructures in irradiated nuclear fuels. A science-based model predicting the heterogeneous microstructure evolution kinetics is desired, which enables one to study the effect of thermodynamic and kinetic properties of the system on gas bubble microstructure evolution kinetics and morphology, improve the understanding of the formation mechanisms of heterogeneous gas bubble microstructure, and provide the microstructure to macroscale approaches to study their impact on thermo-mechanical properties such as thermo-conductivity, gas release, volume swelling, and cracking. In our previous report 'Mesoscale Benchmark Demonstration, Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing', we developed a phase-field model to simulate the intra-granular gas bubble evolution in a single crystal during post-irradiation thermal annealing. In this work, we enhanced the model by incorporating thermodynamic and kinetic properties at grain boundaries, which can be obtained from atomistic simulations, to simulate fission gas bubble growth kinetics in polycrystalline UO2 fuels. The model takes into account of gas atom and vacancy diffusion, vacancy trapping and emission at defects, gas atom absorption and resolution at gas bubbles, internal pressure in gas bubbles, elastic interaction between defects and gas bubbles, and the difference of thermodynamic and kinetic properties in matrix and grain boundaries. We applied the model to simulate gas atom segregation at grain boundaries and the effect of interfacial energy and gas mobility on gas bubble morphology and growth kinetics in a bi-crystal UO2 during post-irradiation thermal annealing. The preliminary results demonstrate that the model can produce the equilibrium thermodynamic properties and the morphology of gas

  7. Fission energy program of the US Department of Energy, FY 1981

    International Nuclear Information System (INIS)

    1980-03-01

    Information is presented concerning the National Energy Plan and fission energy policy; fission energy program management; converter reactor systems; breeder reactor systems; and special nuclear evaluations and systems

  8. Application of BIM technology in green building material management system

    Science.gov (United States)

    Zhineng, Tong

    2018-06-01

    The current green building materials management system in China's construction industry is not perfect, and there are still many shortcomings. Active construction of green building materials management system based on BIM technology, combined with the characteristics of green building materials and its relationship with BIM technology application, is urgently needed to better realize the scientific management of green building materials.

  9. Ideological Fission

    DEFF Research Database (Denmark)

    Christiansen, Steen Ledet

    ; it is a materialisation of an ideological fission which attempts to excise certain ideological constructions, yet paradoxically casting them in a form that is recognizable and familiar. The monstrous metonomy which is used shows us glimpses of a horrid being, intended to vilify the attack on New York City. However......, it is a being which is reminiscent of earlier monsters - from Godzilla to The Blob. It is evident that the Cloverfield monster is a paradoxical construction which attempts to articulate fear and loathing about terrorism, but ends up trapped in an ideological dead-end maze, unable to do anything other than...

  10. Book of abstracts of the joint EC-IAEA topical meeting on development of new structural materials for advanced fission and fusion reactor systems

    International Nuclear Information System (INIS)

    2009-01-01

    Materials performance and reliability are key issues for the safety and competitiveness of future nuclear installations: Generation IV nuclear systems for increased sustainability, advanced systems for non-electrical uses of nuclear energy, partitioning and transmutation systems, as well as thermo-nuclear fusion systems. These systems will have to feature high thermal efficiency and optimized utilization of fuel combined with minimized nuclear waste. For the sustainability of the nuclear option, there is a renewed interest worldwide in new reactor systems, closed fuel cycle research and technology development, and nuclear process heat applications. This requires the development and qualification of new high temperature structural materials with improved radiation and corrosion resistance. To achieve the challenging materials performance parameters, focused research and targeted testing of new candidate materials are necessary. Recent developments regarding new classes of materials with improved microstructural features, such as fibre-reinforced ceramic composite materials, oxide dispersion strengthened steels or advanced ferritic-martensitic steels are promising since they combine good radiation resistance and corrosion properties with high-temperature strength and toughness. In view of a successful and timely implementation of design parameters, in particular for primary circuits, new structural materials have to be qualified during the next decade. To this end an international R and D effort is being undertaken. Recent progress in materials science, supported by computer modelling and advanced materials characterisation techniques, has the potential to accelerate the process of new structural materials development. The scope of the meeting is information exchange and cross-fertilisation of various disciplines, including an overview of recent status of world-wide R and D activities. A comprehensive review of the designs of fission as well as fusion reactor systems

  11. Hybrid fission-fusion nuclear reactors

    International Nuclear Information System (INIS)

    Zucchetti, Massimo

    2011-01-01

    A fusion-fission hybrid could contribute to all components of nuclear power - fuel supply, electricity production, and waste management. The idea of the fusion-fission hybrid is many decades old. Several ideas, both new and revisited, have been investigated by hybrid proponents. These ideas appear to have attractive features, but they require various levels of advances in plasma science and fusion and nuclear technology. As a first step towards the development of hybrid reactors, fusion neutron sources can be considered as an option. Compact high-field tokamaks can be a candidate for being the neutron source in a fission-fusion hybrid, essentially due to their design characteristics, such as compact dimensions, high magnetic field, flexibility of operation. This study presents the development of a tokamak neutron source for a material testing facility using an Ignitor-based concept. The computed values show the potential of this neutron-rich device for fusion materials testing. Some full-power months of operation are sufficient to obtain relevant radiation damage values in terms of dpa. (Author)

  12. Mica fission detectors

    International Nuclear Information System (INIS)

    Wong, C.; Anderson, J.D.; Hansen, L.; Lehn, A.V.; Williamson, M.A.

    1977-01-01

    The present development status of the mica fission detectors is summarized. It is concluded that the techniques have been refined and developed to a state such that the mica fission counters are a reliable and reproducible detector for fission events

  13. Hot cell works and related irradiation tests in fission reactor for development of new materials for nuclear application

    International Nuclear Information System (INIS)

    Shikama, Tatsuo

    1999-01-01

    Present status of research works in Oarai Branch, Institute for Materials Research, Tohoku University, utilizing Japan Materials Testing Reactor and related hot cells will be described.Topics are mainly related with nuclear materials studies, excluding fissile materials, which is mainly aiming for development of materials for advanced nuclear systems such as a nuclear fusion reactor. Conflict between traditional and routined procedures and new demands will be described and future perspective is discussed. (author)

  14. Sustainable Approaches for Materials Management in Remote ...

    Science.gov (United States)

    Remote, economically challenged areas in the Commonwealth of the Northern Marianas Islands (CNMI) and American Samoa in the US Pacific island territories face unique challenges with respect to solid waste management. These islands are remote and isolated, with some islands supporting only small populations, thus limiting options for pooling resources among communities in the form of regional waste management facilities, as is common on the US mainland. This isolation also results in greater costs for waste management compared to those encountered in the mainland US, a consequence of, among other factors, more expensive construction and maintenance costs because of the necessary transport of facility components (e.g., landfill liner materials) and the decreased attractiveness of waste recovery for recycling because of lower commodity prices after off-island transportation. Adding to these economic limitations, the gross domestic product and per capita income of the Pacific territories is less than half what it is in parts of the US. The first section of this report outlines a snapshot of the current state of solid waste management overall in the US Pacific island territories, primarily based on site visits.. Steps involved in this work included a review of selected existing published information related to the subject; site visits to Guam, Saipan, Tinian, Rota, Tutuila, and Apia; an assessment of the technical and economic feasibility of different solid waste

  15. Chemical immobilization of fission products reactive with nuclear reactor components

    International Nuclear Information System (INIS)

    Grossman, L.N.; Kaznoff, A.I.; Clukey, H.V.

    1975-01-01

    This invention teaches a method of immobilizing deleterious fission products produced in nuclear fuel materials during nuclear fission chain reactions through the use of additives. The additives are disposed with the nuclear fuel materials in controlled quantities to form new compositions preventing attack of reactor components, especially nuclear fuel cld, by the deleterious fission products. (Patent Office Record)

  16. Feed Materials Production Center Waste Management Plan

    International Nuclear Information System (INIS)

    Watts, R.E.; Allen, T.; Castle, S.A.; Hopper, J.P.; Oelrich, R.L.

    1986-01-01

    In the process of producing uranium metal products used in Department of Energy (DOE) defense programs at other DOE facilities, various types of wastes are generated at the Feed Materials Production Center (FMPC). Process wastes, both generated and stored, are discussed in the Waste Management Plan and include low-level radioactive waste (LLW), mixed hazardous/radioactive waste, and sanitary/industrial waste. Scrap metal waste and wastes requiring special remediation are also addressed in the Plan. The Waste Management Plan identifies the comprehensive programs developed to address safe storage and disposition of all wastes from past, present, and future operations at the FMPC. Waste streams discussed in this Plan are representative of the waste generated and waste types that concern worker and public health and safety. Budgets and schedules for implementation of waste disposition are also addressed. The waste streams receiving the largest amount of funding include LLW approved for shipment by DOE/ORO to the Nevada Test Site (NTS) (MgF 2 , slag leach filter cake, and neutralized raffinate); remedial action wastes (waste pits, K-65 silo waste); thorium; scrap metal (contaminated and noncontaminated ferrous and copper scrap); construction rubble and soil generated from decontamination and decommissioning of outdated facilities; and low-level wastes that will be handled through the Low-Level Waste Processing and Shipping System (LLWPSS). Waste Management milestones are also provided. The Waste Management Plan is divided into eight major sections: Introduction; Site Waste and Waste Generating Process; Strategy; Projects and Operations; Waste Stream Budgets; Milestones; Quality Assurance for Waste Management; and Environmental Monitoring Program

  17. Passive thermal management using phase change materials

    Science.gov (United States)

    Ganatra, Yash Yogesh

    The trend of enhanced functionality and reducing thickness of mobile devices has. led to a rapid increase in power density and a potential thermal bottleneck since. thermal limits of components remain unchanged. Active cooling mechanisms are not. feasible due to size, weight and cost constraints. This work explores the feasibility. of a passive cooling system based on Phase Change Materials (PCMs) for thermal. management of mobile devices. PCMs stabilize temperatures due to the latent heat. of phase change thus increasing the operating time of the device before threshold. temperatures are exceeded. The primary contribution of this work is the identification. of key parameters which influence the design of a PCM based thermal management. system from both the experiments and the numerical models. This work first identifies strategies for integrating PCMs in an electronic device. A. detailed review of past research, including experimental techniques and computational. models, yields key material properties and metrics to evaluate the performance of. PCMs. Subsequently, a miniaturized version of a conventional thermal conductivity. measurement technique is developed to characterize thermal resistance of PCMs. Further, latent heat and transition temperatures are also characterized for a wide. range of PCMs. In-situ measurements with PCMs placed on the processor indicate that some. PCMs can extend the operating time of the device by as much as a factor of 2.48. relative to baseline tests (with no PCMs). This increase in operating time is investigated. by computational thermal models that explore various integration locations, both at the package and device level.

  18. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 5. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-01

    Volume V of the five-volume report consists of appendices, which provide supplementary information, with emphasis on characteristics of geologic formations that might be used for final storage or disposal. Appendix titles are: selected glossary; conversion factors; geologic isolation, including, (a) site selection factors for repositories of wastes in geologic media, (b) rock types--geologic occurrence, (c) glossary of geohydrologic terms, and (d) 217 references; the ocean floor; and, government regulations pertaining to the management of radioactive materials. (JGB)

  19. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 5. Appendices

    International Nuclear Information System (INIS)

    1976-05-01

    Volume V of the five-volume report consists of appendices, which provide supplementary information, with emphasis on characteristics of geologic formations that might be used for final storage or disposal. Appendix titles are: selected glossary; conversion factors; geologic isolation, including, (a) site selection factors for repositories of wastes in geologic media, (b) rock types--geologic occurrence, (c) glossary of geohydrologic terms, and (d) 217 references; the ocean floor; and, government regulations pertaining to the management of radioactive materials

  20. Gold nanostructure materials in diabetes management

    International Nuclear Information System (INIS)

    Si, Satyabrata; Mohanta, Jagdeep; Satapathy, Smith Sagar; Pal, Arttatrana

    2017-01-01

    Diabetes mellitus is a group of metabolic diseases characterized by hyperglycemia, and is now one of the most non-communicable diseases globally and can be lethal if not properly controlled. Prolonged exposure to chronic hyperglycemia, without proper management, can lead to various vascular complications and represents the main cause of morbidity and mortality in diabetes patients. Studies have indicated that major long-term complications of diabetes arise from persistent oxidative-nitrosative stress and dysregulation in multiple metabolic pathways. Presently, the main focus for diabetes management is to optimize the available techniques to ensure adequate blood sugar level, blood pressure and lipid profile, thereby minimizing the diabetes complications. In this regard, nanomedicine utilizing gold nanostructures has great potential and seems to be a promising option. The present review highlights the basic concepts and up-to-date literature survey of gold nanostructure materials in management of diabetes in several ways, which include sensing, imaging, drug delivery and therapy. The work can be of interest to various researchers working on basic and applied sciences including nanosciences. (paper)

  1. 37. annual meeting of the Institute of Nuclear Materials Management

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The following subjects were covered in this meeting: waste management; nuclear materials management -- safety and health; international safeguards; measurement control and statistics for nuclear materials management; material control and accountability; packaging and transportation; nonproliferation and arms control; and physical protection. Separate papers were prepared for 74 items of this meeting

  2. Nuclear materials management for safety and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1965-12-15

    The use of nuclear materials in industrial processes presents management with some special problems which are peculiar to the atomic energy industry. If reactor fuel costs are to be kept low, too, each fuel element must yield the maximum economic 'bum-up' before it is withdrawn from service, and this calls for reliable non-destructive methods of measurement of 'burn-up' and appropriate records and fuel-changing schedules. The special hazards of radioactive materials call for special precautions and appropriate systems of handling and storage. A further danger unique to atomic energy is that of criticality - the possibility that an excessive concentration of fissile material may result in a chain reaction. Every part of the processing plant must be surveyed and checked to ensure that there is no build-up of fissile residues; in storage or transit there must be no aggregation of small lots. In the nuclear energy industry, too, the standards of purity required are much higher than in most other large-scale operation, so that stringent quality checks are needed

  3. Fission theory and actinide fission data

    Energy Technology Data Exchange (ETDEWEB)

    Michaudon, A.

    1975-06-01

    The understanding of the fission process has made great progress recently, as a result of the calculation of fission barriers, using the Strutinsky prescription. Double-humped shapes were obtained for nuclei in the actinide region. Such shapes could explain, in a coherent manner, many different phenomena: fission isomers, structure in near-threshold fission cross sections, intermediate structure in subthreshold fission cross sections and anisotropy in the emission of the fission fragments. A brief review of fission barrier calculations and relevant experimental data is presented. Calculations of fission cross sections, using double-humped barrier shapes and fission channel properties, as obtained from the data discussed previously, are given for some U and Pu isotopes. The fission channel theory of A. Bohr has greatly influenced the study of low-energy fission. However, recent investigation of the yields of prompt neutrons and γ rays emitted in the resonances of {sup 235}U and {sup 239}Pu, together with the spin determination for many resonances of these two nuclei cannot be explained purely in terms of the Bohr theory. Variation in the prompt neutron and γ-ray yields from resonance to resonance does not seem to be due to such fission channels, as was thought previously, but to the effect of the (n,γf) reaction. The number of prompt fission neutrons and the kinetic energy of the fission fragments are affected by the energy balance and damping or viscosity effects in the last stage of the fission process, from saddle point to scission. These effects are discussed for some nuclei, especially for {sup 240}Pu.

  4. Nanocrystalline SiC and Ti3SiC2 Alloys for Reactor Materials: Diffusion of Fission Product Surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jiang, Weilin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-11-01

    MAX phases, such as titanium silicon carbide (Ti3SiC2), have a unique combination of both metallic and ceramic properties, which make them attractive for potential nuclear applications. Ti3SiC2 has been suggested in the literature as a possible fuel cladding material. Prior to the application, it is necessary to investigate diffusivities of fission products in the ternary compound at elevated temperatures. This study attempts to obtain relevant data and make an initial assessment for Ti3SiC2. Ion implantation was used to introduce fission product surrogates (Ag and Cs) and a noble metal (Au) in Ti3SiC2, SiC, and a dual-phase nanocomposite of Ti3SiC2/SiC synthesized at PNNL. Thermal annealing and in-situ Rutherford backscattering spectrometry (RBS) were employed to study the diffusivity of the various implanted species in the materials. In-situ RBS study of Ti3SiC2 implanted with Au ions at various temperatures was also performed. The experimental results indicate that the implanted Ag in SiC is immobile up to the highest temperature (1273 K) applied in this study; in contrast, significant out-diffusion of both Ag and Au in MAX phase Ti3SiC2 occurs during ion implantation at 873 K. Cs in Ti3SiC2 is found to diffuse during post-irradiation annealing at 973 K, and noticeable Cs release from the sample is observed. This study may suggest caution in using Ti3SiC2 as a fuel cladding material for advanced nuclear reactors operating at very high temperatures. Further studies of the related materials are recommended.

  5. Nuclear fission and reactions

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The nuclear fission research programs are designed to elucidate basic features of the fission process. Specifically, (1) factors determining how nucleons of a fissioning nucleus are distributed between two fission fragments, (2) factors determining kinetic energy and excitation energies of fragments, and (3) factors controlling fission lifetimes. To these ends, fission studies are reported for several heavy elements and include investigations of spontaneous and neutron-induced fission, heavy ion reactions, and high energy proton reactions. The status of theoretical research is also discussed. (U.S.)

  6. Security robots for nuclear materials management

    International Nuclear Information System (INIS)

    Deming, R.

    1986-01-01

    Robots have successfully invaded industry where they have replaced costly personnel performing their tasks cheaper and better in most cases. There may be a place for a unique class of robots, security robots, in nuclear materials management. Robots could be employed in the functions of general response, patrol and neutralizing dangerous situations. The last is perhaps most important. Ion Track Instruments of Burlington, Massachusetts has designed an excellent unit to protect life in hazardous situations. The unit can detect, disrupt or remove explosives. It can enter dangerous areas to reconnoiter the extent of danger. It can communicate with those in a dangerous area. It can fight fires or clean an area using a 2 1/2 inch, two man hose. If necessary, it can engage an adversary in a fire fight using a twelve gauge shot gun

  7. Sustainable Materials Management (SMM) Electronics Challenge Data

    Science.gov (United States)

    On September 22, 2012, EPA launched the SMM Electronics Challenge. The Challenge encourages electronics manufacturers, brand owners and retailers to strive to send 100 percent of the used electronics they collect from the public, businesses and within their own organizations to third-party certified electronics refurbishers and recyclers. The Challenge??s goals are to: 1). Ensure responsible recycling through the use of third-party certified recyclers, 2). Increase transparency and accountability through public posting of electronics collection and recycling data, and 3). Encourage outstanding performance through awards and recognition. By striving to send 100 percent of used electronics collected to certified recyclers and refurbishers, Challenge participants are ensuring that the used electronics they collect will be responsibly managed by recyclers that maximize reuse and recycling, minimize exposure to human health and the environment, ensure the safe management of materials by downstream handlers, and require destruction of all data on used electronics. Electronics Challenge participants are publicly recognized on EPA's website as a registrant, new participant, or active participant. Awards are offered in two categories - tier and champion. Tier awards are given in recognition of achieving all the requirements under a gold, silver or bronze tier. Champion awards are given in two categories - product and non-product. For champion awards, a product is an it

  8. Measurements of fission yields

    International Nuclear Information System (INIS)

    Denschlag, H.O.

    2000-01-01

    After some historical introductory remarks on the discovery of nuclear fission and early fission yield determinations, the present status of knowledge on fission yields is briefly reviewed. Practical and fundamental reasons motivating the pursuit of fission yield measurements in the coming century are pointed out. Recent results and novel techniques are described that promise to provide new interesting insights into the fission process during the next century. (author)

  9. Radiochemical studies on fission

    Energy Technology Data Exchange (ETDEWEB)

    None

    1973-07-01

    Research progress is reported on nuclear chemistry; topics considered include: recoil range and kinetic energy distribution in the thermal neutron ftssion of /sup 245/Cm; mass distribution and recoil range measurements in the reactor neutron-induced fission of /sup 232/U; fission yields in the thermal neutron fission of /sup 241/PU highly asymmetric binary fission of uranium induced by reactor neutrons; and nuclear charge distribution in low energy fission. ( DHM)

  10. Analytical methods for fissionable material determinations in the nuclear fuel cycle. Progress report, October 1, 1978-September 30, 1979

    International Nuclear Information System (INIS)

    Waterbury, G.R.

    1980-03-01

    Work continues on the development of dissolution techniques for difficult-to-dissolve nuclear materials, the development of methods and automated instruments for plutonium, uranium, and thorium determinations, and the preparation of plutonium materials for the Safeguards Analytical Laboratory Evaluation (SALE) program and distribution by the National Bureau of Standards (NBS) as standard reference materials (SRMs). We are measuring the loner plutonium isotope half-lives, evaluating the isotope correlation techniques and the chemistry involved in the mass-spectrometric ion-bead techniques, and analyzing the SALE uranium materials. Completed subtasks include evaluations of various Teflon materials to recommend those acceptable for the dissolution apparatus developed at LASL, investigations of laser-enhanced dissolution of refractory materials, determinations of diverse ion effects on the microgram-sensitive method for determining uranium, fabrication of the first automated controlled-potential coulometric analyzer for determining plutonium, preparation of a 244 Pu material for distribution by NBS as a SRM, and determination of the half-life of 239 Pu. Work has been started on a spectrophotometric method for determining microgram quantities of plutonium, a microcomplexometric titration method for determining uranium, the use of new reagents for separations of plutonium, the preparation and packaging of a new lot of high-purity plutonium metal for distribution by NBS as a plutonium chemical SRM, and determination of half-lives of other plutonium isotopes

  11. Analytical methods for fissionable material determinations in the nuclear fuel cycle. Progress report, October 1, 1978-September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Waterbury, G.R. (comp.)

    1980-03-01

    Work continues on the development of dissolution techniques for difficult-to-dissolve nuclear materials, the development of methods and automated instruments for plutonium, uranium, and thorium determinations, and the preparation of plutonium materials for the Safeguards Analytical Laboratory Evaluation (SALE) program and distribution by the National Bureau of Standards (NBS) as standard reference materials (SRMs). We are measuring the loner plutonium isotope half-lives, evaluating the isotope correlation techniques and the chemistry involved in the mass-spectrometric ion-bead techniques, and analyzing the SALE uranium materials. Completed subtasks include evaluations of various Teflon materials to recommend those acceptable for the dissolution apparatus developed at LASL, investigations of laser-enhanced dissolution of refractory materials, determinations of diverse ion effects on the microgram-sensitive method for determining uranium, fabrication of the first automated controlled-potential coulometric analyzer for determining plutonium, preparation of a /sup 244/Pu material for distribution by NBS as a SRM, and determination of the half-life of /sup 239/Pu. Work has been started on a spectrophotometric method for determining microgram quantities of plutonium, a microcomplexometric titration method for determining uranium, the use of new reagents for separations of plutonium, the preparation and packaging of a new lot of high-purity plutonium metal for distribution by NBS as a plutonium chemical SRM, and determination of half-lives of other plutonium isotopes.

  12. Stb 342 - Decree of 4 June 1987 amending the Decree on the transport of fissionable materials, ores and radioactive substances

    International Nuclear Information System (INIS)

    1987-01-01

    The 1969 transport Decree governs all modes of transport of fissile and radioactive materials as well as ores in and to and from the Netherlands. The 1987 Decree amends it, in particular, for modernization purposes. (NEA) [fr

  13. Analytical methods for fissionable materials in the nuclear fuel cycle. Progress report, July 1, 1975--September 30, 1976

    International Nuclear Information System (INIS)

    Waterbury, G.R.

    1976-12-01

    Progress continued on development of dissolution techniques for difficult-to-dissolve nuclear materials, development of methods and automated instruments for determinations of plutonium and uranium, preparation of plutonium-containing materials for the Safeguards Analytical Laboratory Evaluation (SALE) program, analysis of SALE uranium materials, and measurement of plutonium isotope half-lives. Gas-solid reactions at elevated temperatures using reactive gases such as chlorine continue to show promise for separating uranium from refractory materials. An extensive study of nonaqueous solvents for the dissolution of refractory materials is in progress. An extraction-separation procedure, highly specific for microgram amounts of uranium, has been developed, and its adaptation to the Los Alamos Scientific Laboratory (LASL) automated spectrophotometer is being evaluated. Development of an electrometric analysis method for plutonium is nearing completion, and design of an automated instrument using the method has been started. Batches of plutonium oxide and mixed uranium--plutonium, intended for issue as Secondary Reference and Calibration Test Materials, are being recharacterized for assay and isotopic contents. The half-life of 239 Pu has been determined by isotope-dilution mass-spectrometric measurement of 235 U grow-in as a function of time

  14. Analytical methods for fissionable materials in the nuclear fuel cycle. Progress report, July 1, 1975--September 30, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Waterbury, G.R. (comp.)

    1976-12-01

    Progress continued on development of dissolution techniques for difficult-to-dissolve nuclear materials, development of methods and automated instruments for determinations of plutonium and uranium, preparation of plutonium-containing materials for the Safeguards Analytical Laboratory Evaluation (SALE) program, analysis of SALE uranium materials, and measurement of plutonium isotope half-lives. Gas-solid reactions at elevated temperatures using reactive gases such as chlorine continue to show promise for separating uranium from refractory materials. An extensive study of nonaqueous solvents for the dissolution of refractory materials is in progress. An extraction-separation procedure, highly specific for microgram amounts of uranium, has been developed, and its adaptation to the Los Alamos Scientific Laboratory (LASL) automated spectrophotometer is being evaluated. Development of an electrometric analysis method for plutonium is nearing completion, and design of an automated instrument using the method has been started. Batches of plutonium oxide and mixed uranium--plutonium, intended for issue as Secondary Reference and Calibration Test Materials, are being recharacterized for assay and isotopic contents. The half-life of /sup 239/Pu has been determined by isotope-dilution mass-spectrometric measurement of /sup 235/U grow-in as a function of time.

  15. Analytical methods for fissionable material determinations in the nuclear fuel cycle. Progress report, October 1, 1976--September 30, 1977

    International Nuclear Information System (INIS)

    Waterbury, G.R.

    1978-01-01

    Development of dissolution techniques for difficult-to-dissolve nuclear materials, development of methods and automated instruments for plutonium and uranium determinations, preparation of plutonium-containing materials for the Safeguards Analytical Laboratory Evaluation (SALE) program, analysis of SALE uranium materials, preparation of certified reference material plutonium metal, measurement of longer plutonium isotope half-lives, and study of ion exchange behavior of elements in various media continued. Gas-solid reaction of carbonyl chloride with uranium-bearing materials at elevated temperature is superior to reaction with chlorine for uranium volatilization and separation. Neither reaction with a variety of nonaqueous solvents nor reaction with molten selenium oxide provides practical dissolution of refractory materials characteristic of nuclear fuel cycle materials. The LASL automated spectrophotometer has been used to determine 0.1-mg amounts without instrumental or procedural changes. A microgram-sensitive spectrophotometric method for uranium has been developed, and the automated spectrophotometer is being modified to its use. A controlled-potential coulometric method has been developed for selective determination of plutonium. An automated analyzer to use this method is being built. Uranium-plutonium mixed oxide powder, for SALE samples, has not remained stable during storage, but high-density pellets have. In a DOE interlaboratory program, the half-life of 239 Pu has been measured, experiments on 241 Pu half-life measurement are in progress, and 240 Pu half-life measurement is planned. Ion exchange distributions for over 50 elements have been measured to determine cation exchange in nitric acid and anion exchange in both hydrobromic and hydriodic acids

  16. Analytical methods for fissionable material determinations in the nuclear fuel cycle. Progress report, October 1, 1976--September 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Waterbury, G.R. (comp.)

    1978-01-01

    Development of dissolution techniques for difficult-to-dissolve nuclear materials, development of methods and automated instruments for plutonium and uranium determinations, preparation of plutonium-containing materials for the Safeguards Analytical Laboratory Evaluation (SALE) program, analysis of SALE uranium materials, preparation of certified reference material plutonium metal, measurement of longer plutonium isotope half-lives, and study of ion exchange behavior of elements in various media continued. Gas-solid reaction of carbonyl chloride with uranium-bearing materials at elevated temperature is superior to reaction with chlorine for uranium volatilization and separation. Neither reaction with a variety of nonaqueous solvents nor reaction with molten selenium oxide provides practical dissolution of refractory materials characteristic of nuclear fuel cycle materials. The LASL automated spectrophotometer has been used to determine 0.1-mg amounts without instrumental or procedural changes. A microgram-sensitive spectrophotometric method for uranium has been developed, and the automated spectrophotometer is being modified to its use. A controlled-potential coulometric method has been developed for selective determination of plutonium. An automated analyzer to use this method is being built. Uranium-plutonium mixed oxide powder, for SALE samples, has not remained stable during storage, but high-density pellets have. In a DOE interlaboratory program, the half-life of /sup 239/Pu has been measured, experiments on /sup 241/Pu half-life measurement are in progress, and /sup 240/Pu half-life measurement is planned. Ion exchange distributions for over 50 elements have been measured to determine cation exchange in nitric acid and anion exchange in both hydrobromic and hydriodic acids.

  17. Analytical methods for fissionable material determinations in the nuclear fuel cycle. Progress report, October 1, 1977--September 30, 1978

    International Nuclear Information System (INIS)

    Waterbury, G.R.

    1979-01-01

    Work has continued on the development of dissolution techniques for difficult-to-dissolve nuclear materials, development of methods and automated instruments for plutonium and uranium determinations, preparation of plutonium-containing materials for the Safeguards Analytical Laboratory Evaluation (SALE) program, preparation of plutonium materials for distribution by the National Bureau of Standards (NBS) as standard reference materials (SRMs), measurement of longer plutonium isotope half-lives, and analysis of SALE uranium materials. New tasks include the development of methods and automated instruments for the determination of thorium and uranium, and an evaluation of the ion-exchange-bead technique for the mass spectrometric measurement of uranium and plutonium isotope distributions. Completed tasks include the measurements of ion exchange distributions of over 50 elements on cation exchange resins from nitric acid media and anion exchange resins from hydrobromic and hydriodic acid media. Using a newly developed procedure, the LASL automated spectrophotometer was modified to determine microgram levels of uranium and to determine milligram levels of uranium and plutonium. Construction of an automated controlled-potential analyzer for the determination of plutonium is nearing completion. Apparatus and procedures for the separation and complexometric titration of thorium and uranium are being developed

  18. Fission products collecting devices

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshi

    1979-01-01

    Purpose: To enable fission products trap with no contamination to coolants and cover gas by the provision of a fission products trap above the upper part of a nuclear power plant. Constitution: Upon fuel failures in a reactor core, nuclear fission products leak into coolants and move along the flow of the coolants to the coolants above the reactor core. The fission products are collected in a trap container and guided along a pipeline into fission products detector. The fission products detector monitors the concentration of the fission products and opens the downstream valve of the detector when a predetermined concentration of the fission products is detected to introduce the fission products into a waste gas processing device and release them through the exhaust pipe. (Seki, T.)

  19. Energy released in fission

    International Nuclear Information System (INIS)

    James, M.F.

    1969-05-01

    The effective energy released in and following the fission of U-235, Pu-239 and Pu-241 by thermal neutrons, and of U-238 by fission spectrum neutrons, is discussed. The recommended values are: U-235 ... 192.9 ± 0.5 MeV/fission; U-238 ... 193.9 ± 0.8 MeV/fission; Pu-239 ... 198.5 ± 0.8 MeV/fission; Pu-241 ... 200.3 ± 0.8 MeV/fission. These values include all contributions except from antineutrinos and very long-lived fission products. The detailed contributions are discussed, and inconsistencies in the experimental data are pointed out. In Appendix A, the contribution to the total useful energy release in a reactor from reactions other than fission are discussed briefly, and in Appendix B there is a discussion of the variations in effective energy from fission with incident neutron energy. (author)

  20. Apparatus for storing and processing fissionable substances

    International Nuclear Information System (INIS)

    Dubovsky, B.G.; Bogatyrev, V.K.; Vladykov, G.M.; Sviridenko, V.Y.

    1974-01-01

    An apparatus is described for storing and processing fissionable substances in which there is provided a protective shield in the form of a layer of neutron absorbing material located in direct proximity to a vessel with a fissionable substance contained therein. The layer of neutron retarding material according to the present invention has alternating projections and depressions facing the layer of neutron-absorbing material. (author)

  1. Stakeholder engagement in dredged material management decisions.

    Science.gov (United States)

    Collier, Zachary A; Bates, Matthew E; Wood, Matthew D; Linkov, Igor

    2014-10-15

    Dredging and disposal issues often become controversial with local stakeholders because of their competing interests. These interests tend to manifest themselves in stakeholders holding onto entrenched positions, and deadlock can result without a methodology to move the stakeholder group past the status quo. However, these situations can be represented as multi-stakeholder, multi-criteria decision problems. In this paper, we describe a case study in which multi-criteria decision analysis was implemented in a multi-stakeholder setting in order to generate recommendations on dredged material placement for Long Island Sound's Dredged Material Management Plan. A working-group of representatives from various stakeholder organizations was formed and consulted to help prioritize sediment placement sites for each dredging center in the region by collaboratively building a multi-criteria decision model. The resulting model framed the problem as several alternatives, criteria, sub-criteria, and metrics relevant to stakeholder interests in the Long Island Sound region. An elicitation of values, represented as criteria weights, was then conducted. Results show that in general, stakeholders tended to agree that all criteria were at least somewhat important, and on average there was strong agreement on the order of preferences among the diverse groups of stakeholders. By developing the decision model iteratively with stakeholders as a group and soliciting their preferences, the process sought to increase stakeholder involvement at the front-end of the prioritization process and lead to increased knowledge and consensus regarding the importance of site-specific criteria. Published by Elsevier B.V.

  2. Muon induced fission and fission track dating of minerals

    International Nuclear Information System (INIS)

    Marques, A.

    1988-01-01

    The effects of muon induced fission on geological dating of samples by the fission track method are evaluated for the case of muscovite minerals. It is found a small but significant effect, greater for the longer ages. Since calculations are developped under the hypothesis of constant atmosphere and primary cosmic ray flux it is suggested that any discrepancy found in ages of very old material that cannot be accounted for by well known environmental influences, be taken as an indication of variation on either the atmospheric stopping power or the intensity of cosmic radiation along the ages. (author) [pt

  3. Stb No. 404 - Decree of 12 July 1983 amending the fissionable materials, ores and radioactive substances (Transport) Decree

    International Nuclear Information System (INIS)

    1983-01-01

    For the Netherlands, international carriage by air of radioactive materials is governed by the regulations of the internationl Air Transport Association (IATA) which are partly based on the IAEA's recommendations in this respect. These were revised in 1973, and the present Decree amends the Transport Decree of 1969 to align it with the 1973 revision followed by IATA. (NEA) [fr

  4. Integration mockup and process material management system

    Science.gov (United States)

    Verble, Adas James, Jr.

    1992-01-01

    Work to define and develop a full scale Space Station Freedom (SSF) mockup with the flexibility to evolve into future designs, to validate techniques for maintenance and logistics and verify human task allocations and support trade studies is described. This work began in early 1985 and ended in August, 1991. The mockups are presently being used at MSFC in Building 4755 as a technology and design testbed, as well as for public display. Micro Craft also began work on the Process Material Management System (PMMS) under this contract. The PMMS simulator was a sealed enclosure for testing to identify liquids, gaseous, particulate samples, and specimen including, urine, waste water, condensate, hazardous gases, surrogate gasses, liquids, and solids. The SSF would require many trade studies to validate techniques for maintenance and logistics and verify system task allocations; it was necessary to develop a full scale mockup which would be representative of current SSF design with the ease of changing those designs as the SSF design evolved and changed. The tasks defined for Micro Craft were to provide the personnel, services, tools, and materials for the SSF mockup which would consist of four modules, nodes, interior components, and part task mockups of MSFC responsible engineering systems. This included the Engineering Control and Life Support Systems (ECLSS) testbed. For the initial study, the mockups were low fidelity, soft mockups of graphics art bottle, and other low cost materials, which evolved into higher fidelity mockups as the R&D design evolved, by modifying or rebuilding, an important cost saving factor in the design process. We designed, fabricated, and maintained the full size mockup shells and support stands. The shells consisted of cylinders, end cones, rings, longerons, docking ports, crew airlocks, and windows. The ECLSS required a heavier cylinder to support the ECLSS systems test program. Details of this activity will be covered. Support stands were

  5. Cementitions materials in nuclear waste management

    International Nuclear Information System (INIS)

    Roy, D.M.

    1990-01-01

    Cementitious materials have been investigated extensively to establish their role, and enable a prediction of their performance, when used for radioactive waste isolation. A number of applications have been addressed, ranging from those in high-level waste management, where their prime roles would be physical such as in sealing an underground waste repository, mechanical to serve as a protective cask for transport, or under certain conditions, both chemical and physical in the solidification of high-level waste. Cements also have been explored for their use in forming primary casks for containment of spent fuel assemblies. For the disposal of low-level (and in some countries, intermediate-level) waste, a cementitious matrix may be used to encapsulate the waste, thereby generating an integral waste form. In addition, concretes will be required to perform special structural roles, used to construct trenches, vaults, and other disposal units. Also, there are numerous applications where grouts are used for sealing purposes. This paper addresses each of these areas

  6. HAC and fission reactors

    International Nuclear Information System (INIS)

    Fujiwara, I.; Moriyama, H.; Tachikawa, E.

    1984-01-01

    In the fission process, newly formed fission products undergo hot atom reactions due to their energetic recoil and abnormal positive charge. The hot atom reactions of the fission products are usually accompanied by secondary effects such as radiation damage, especially in condensed phase. For reactor safety it is valuable to know the chemical behaviour and the release behaviour of these radioactive fission products. Here, the authors study the chemical behaviour and the release behaviour of the fission products from the viewpoint of hot atom chemistry (HAC). They analyze the experimental results concerning fission product behaviour with the help of the theories in HAC and other neighboring fields such as radiation chemistry. (Auth.)

  7. Advances on fission chamber modelling

    International Nuclear Information System (INIS)

    Filliatre, Philippe; Jammes, Christian; Geslot, Benoit; Veenhof, Rob

    2013-06-01

    In-vessel, online neutron flux measurements are routinely performed in mock-up and material testing reactors by fission chambers. Those measurements have a wide range of applications, including characterization of experimental conditions, reactor monitoring and safety. Depending on the application, detectors may experience a wide range of constraints, of several magnitudes, in term of neutron flux, gamma-ray flux, temperature. Hence, designing a specific fission chamber and measuring chain for a given application is a demanding task. It can be achieved by a combination of experimental feedback and simulating tools, the latter being based on a comprehensive understanding of the underlying physics. A computation route that simulates fission chambers, named CHESTER, is presented. The retrieved quantities of interest are the neutron-induced charge spectrum, the electronic and ionic pulses, the mean current and variance, the power spectrum. It relies on the GARFIELD suite, originally developed for drift chambers, and makes use of the MAGBOLTZ code to assess the drift parameters of electrons within the filling gas, and the SRIM code to evaluate the stopping range of fission products. The effect of the gamma flux is also estimated. Computations made with several fission chambers exemplify the possibilities of the route. A good qualitative agreement is obtained when comparing the results with the experimental data available to date. In a near future, a comprehensive experimental programme will be undertaken to qualify the route using the known neutron sources, mock-up reactors and wide choice of fission chambers, with a stress on the predictiveness of the Campbelling mode. Depending on the results, a refinement of the modelling and an effort on the accuracy of input data are also to be considered. CHESTER will then make it possible to predict the overall sensitivity of a chamber, and to optimize the design for a given application. Another benefit will be to increase the

  8. Nuclear fission with inertial confinement

    CERN Document Server

    Koshkarev, D G

    2002-01-01

    The possibility of initiating the explosive fission reaction in a small quantity of fissile material through the heavy ions beam from the powerful accelerator-driver, developed for realization of the thermonuclear synthesis in the deuterium-tritium cylindrical targets with the direct ignition, is considered. The consequences of applying this method in the nuclear engineering are discussed

  9. The wastes of nuclear fission

    International Nuclear Information System (INIS)

    Doubre, H.

    2005-01-01

    In this paper the author presents the problems of the radioactive wastes generated by the nuclear fission. The first part devoted to the fission phenomenon explains the incident neutron energy and the target nuclei role. The second part devoted to the nuclear wastes sources presents the production of wastes upstream of the reactors, in the reactors and why these wastes are dangerous. The third part discusses the radioactive wastes management in France (classification, laws). The last part details the associated research programs: the radionuclides separation, the disposal, the underground storage, the transmutation and the thorium cycle. (A.L.B.)

  10. Nuclear Materials Management. Proceedings of the Symposium on Nuclear Materials Management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-02-15

    An increasing number of countries are using nuclear materials which, because of their high value and the potential hazards involved, require special methods of handling. To discuss these and to provide a forum at which different systems for achieving the necessary economy and safety could be compared, the International Atomic Energy Agency held a Symposium at Vienna on Nuclear Materials Management from 30 August to 3 September, 1965. It was attended by 115 participants from 19 Member States and two international organizations. Nuclear materials are already being used on an industrial scale and their high cost demands close and continuous control to ensure that they are delivered precisely on time and that they are used to the fullest possible extent before they are withdrawn from service. Routine industrial methods of material control and verification are widely used to ensure safe and economical operation and handling in nuclear power stations, in fuel-element fabrication and reprocessing plants, and in storage facilities. In addition special refinements are needed to take account of the value and the degree of purity required of nuclear materials. Quality as well as quantity has to be checked thoroughly and the utmost economy in processing is necessary. The radioactivity of the material poses special problems of handling and storage and creates a potential hazard to health. A further problem is that of criticality. These dangers and the means of averting them are well understood, as is evidenced by the outstandingly good safety record of the atomic energy industry. But besides accommodating all these special problems, day-to-day procedures must be simple enough to fit in with industrial conditions. Many of the 58 papers presented at the Symposium emphasized that records, checks, measurements and handling precautions, if suitably devised, provide the control vital to efficient operation, serve as checks against loss or waste of valuable materials and help meet the

  11. Quality management in the regulation of radioactive material transport

    International Nuclear Information System (INIS)

    Barenghi, Leonardo; Capadona, Nancy M.; Lopez Vietri, Jorge R.; Panzino, Marina; Ceballos, Jorge

    2006-01-01

    The paper describes the quality management procedure used by the Argentine Nuclear Regulatory Authority to establish the regulations concerning the safe transport of radioactive materials. The quality management system is based on the family of the ISO 9000 norms [es

  12. Networked inventory management systems: materializing supply chain management

    NARCIS (Netherlands)

    Verwijmeren, M.A.A.P.; Vlist, van der P.; Donselaar, van K.H.

    1996-01-01

    Aims to explain the driving forces for networked inventory management. Discusses major developments with respect to customer requirements, networked organizations and networked inventory management. Presents high level specifications of networked inventory management information systems (NIMISs).

  13. Sandia National Laboratories, California Hazardous Materials Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2011-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  14. Fission Research at IRMM

    Directory of Open Access Journals (Sweden)

    Al-Adili A.

    2010-03-01

    Full Text Available Fission Research at JRC-IRMM has a longstanding tradition. The present paper is discussing recent investigations of fission fragment properties of 238 U(n,f, 234 U(n,f, prompt neutron emission in fission of 252 Cf(SF as well as the prompt fission neutron spectrum of 235 U(n,f and is presenting the most important results.

  15. Management of Excess Material in the Navys Real Time Reutilization Asset Management Facilities Needs Improvement

    Science.gov (United States)

    2017-01-23

    Commands, that originally purchased the material from the command’s operational and maintenance fund. A flowchart of the RRAM material management process...streamlines business operations for financial and supply chain management . 22 SECNAVINST 4440.33A. The Navy retained excess material stored in 10 of...No. DODIG-2017-043 J A N U A R Y 2 3 , 2 0 1 7 Management of Excess Material in the Navy’s Real-Time Reutilization Asset Management Facilities

  16. Equilibrium fission model calculations

    International Nuclear Information System (INIS)

    Beckerman, M.; Blann, M.

    1976-01-01

    In order to aid in understanding the systematics of heavy ion fission and fission-like reactions in terms of the target-projectile system, bombarding energy and angular momentum, fission widths are calculated using an angular momentum dependent extension of the Bohr-Wheeler theory and particle emission widths using angular momentum coupling

  17. Study of the sorption of nuclear fuel fission products using non-ion exchange polymeric and inorganic materials

    International Nuclear Information System (INIS)

    Manorik, P.

    1997-01-01

    New tetrazamacrocycle and crown-ether poly-styrene and divinylbenzenepolystyrene derivatives (P-TAM and P-CE respectively) have been synthesized and studied as chemisorbents for Cs, Sr (P-CE) and Ru, Co (P-TAM) radioisotopes. It has been found that the tetraazamacro cycle modifier concentration in such material is about 5 x 10 -4 M/g material. Model solutions, containing Ru and other platinoid salts, and also Co salts, were used in experiments at concentrations of 5 x 10 -3 - 5 x 10 -6 M/L. It was shown that P-TAM quantitatively removes Ru and other platinoids from the water solution at pH = 0-1 during 1-2 days and practically all modifying groups participate in the sorption process. It was established that in alkaline solutions this sorbent also adsorbs Co, Cr and other 3d-metal ions. P-TAM also demonstrates a very high platinoid sorption selectivity (close to 100%) from solutions containing, for example, platinoids in the presence of a large excess of 3d-metal ions. 137 Cs sorption by some types of P-CE and IN-CE from Ringer-Locka model waste solution was also studied and it was found that K d (Bq/g) strongly depends not only on the crown-ether ring size but also on the form in which crown-ethers exist on the surface, for example when the modifier was in the form of the complex such as P-CE-L(L=K 3 Fe(CN) 6 or L=K 4 Fe(CN) 6 ) there was an increase in K' d value (Bq/mole of CE). The results of a study of 85 Sr removal by P-CE and IN-CE show that the chemisorption capacity strongly depends not only on the ''hole'' size of crown-ethers but also on the nature of encapsulated complexes, including ferrocyanides of different types. 32 refs, 5 figs, 5 tabs

  18. Neutron multicounter detector for investigation of content and spatial distribution of fission materials in large volume samples

    International Nuclear Information System (INIS)

    Swiderska-Kowalczyk, M.; Starosta, W.; Zoltowski, T.

    1998-01-01

    The experimental device is a neutron coincidence well counter. It can be applied for passive assay of fissile - especially for plutonium bearing - materials. It consist of a set of 3 He tubes placed inside a polyethylene moderator; outputs from the tubes, first processed by preamplifier/amplifier/discriminator circuits, are then analysed using neutron correlator connected with a PC, and correlation techniques implemented in software. Such a neutron counter allows for determination of plutonium mass ( 240 Pu effective mass) in nonmultiplying samples having fairly big volume (up to 0.14 m 3 ). For determination of neutron sources distribution inside the sample, the heuristic methods based on hierarchical cluster analysis are applied. As an input parameters, amplitudes and phases of two-dimensional Fourier transformation of the count profiles matrices for known point sources distributions and for the examined samples, are taken. Such matrices are collected by means of sample scanning by detection head. During clustering process, counts profiles for unknown samples fitted into dendrograms using the 'proximity' criterion of the examined sample profile to standard samples profiles. Distribution of neutron sources in an examined sample is then evaluated on the basis of comparison with standard sources distributions. (author)

  19. Decree of 4 September 1969, Stb. 403, concerning the implementation of Sections 16, 17, 19, paragraph 1 and 21 of the Nuclear Energy Act (Nuclear Installations, Fissionable Materials and Ores)

    International Nuclear Information System (INIS)

    1969-01-01

    This Decree lays down the licensing system for fissionable materials and ores except during transport or storage incidental to transport. It also provides for a procedure for objections by third parties against the granting of a licence. Such licences are granted jointly by the Minister for Economic Affairs and the Minister for Social Affairs and Public Health, where necessary in agreement with the other Ministers concerned. (NEA) [fr

  20. 1980 Annual status report: fissile materials control and management

    International Nuclear Information System (INIS)

    1981-01-01

    The R and D activities of the JRC in the field of Fissile Material Control and Management are oriented to the development of safeguards systems in the European Community nuclear fuel cycle and to provide means for a more efficient nuclear material management within the nuclear industry

  1. The urgent requirement for new radioanalytical certified reference materials for nuclear safeguards, forensics, and consequence management

    International Nuclear Information System (INIS)

    Inn, K.G.W.; Martin Johnson, Jr.C.; Warren Oldham; Lav Tandon; Simon Jerome; Thomas Schaaff; Robert Jones; Daniel Mackney; Pam MacKill; Brett Palmer

    2013-01-01

    A multi-agency workshop was held from 25 to 27 August 2009, at the National Institute of Standards and Technology (NIST), to identify and prioritize the development of radioanalytical Certified Reference Materials (CRMs, generally provided by National Metrology Institutes; Standard Reference Materials, a CRM issued by NIST) for field and laboratory nuclear measurement methods to be used to assess the consequences of a domestic or international nuclear event. Without these CRMs, policy makers concerned with detecting proliferation and trafficking of nuclear materials, attribution and retribution following a nuclear event, and public health consequences of a nuclear event would have difficulty making decisions based on analytical data that would stand up to scientific, public, and judicial scrutiny. The workshop concentrated on three areas: post-incident Improvised Nuclear Device (IND) nuclear forensics, safeguard materials characterization, and consequence management for an IND or a Radiological Dispersion Device detonation scenario. The workshop identified specific CRM requirements to fulfill the needs for these three measurement communities. Of highest priority are: (1) isotope dilution mass spectrometry standards, specifically 233 U, 236 gNp, 244 Pu, and 243 Am, used for quantitative analysis of the respective elements that are in critically short supply and in urgent need of replenishment and certification; (2) CRMs that are urgently needed for post-detonation debris analysis of actinides and fission fragments, and (3) CRMs used for destructive and nondestructive analyses for safeguards measurements, and radioisotopes of interest in environmental matrices. (author)

  2. JEFF-3T. Decay data and fission yield libraries

    International Nuclear Information System (INIS)

    Bersillon, O.; Blachot, J.; Dean, C.J.; Mills, R.W.; Nichols, A.L.; Nouri, A.

    2002-01-01

    Comprehensive decay-data and fission-yield libraries provide important input to a wide range of nuclear physics codes for nuclear applications. A new initiative has begun under the auspices of the NEA/OECD to generate improved data sets that will constitute the JEFF-3 libraries in ENDF-6 format, primarily for nuclear power, fuel reprocessing and waste management needs. Various sources of decay data have been accessed in order to assemble these files: NUBASE, ENSDF, UKPADD-6 and UKHEDD-2. Efforts have also focused on the evaluation of decay data for a number of important short-lived fission products, so that artificial adjustments to some of the relevant decay data and fission yields are not required to accommodate a previous lack of such data. Fission yields were adopted from UK evaluations recently undertaken to create the UKFY3 library. Decay-data files for 3 755 nuclides have been prepared, including sets of data for the stable nuclides (i.e. mass, natural abundance, spin and parity). Problems in the assignment of ENDF material numbers were addressed, while format and consistency tests were made using CHECKR and FIZCON, respectively. The assembly processes are discussed and reviewed, and the contents of the JEFF-3T starter libraries are described. (author)

  3. Considering Materials Management in Construction: An Exploratory Study

    Directory of Open Access Journals (Sweden)

    Zakaria Dakhli

    2018-03-01

    Full Text Available While materials count for a considerable amount of construction costs, the way materials are managed seems to be improvised rather than approached methodically. This study investigates the practice of novel techniques used to manage materials in the construction industry. Techniques that have already proven themselves to be efficient ways to manage the production pace within the industry include the pull system, Just-In-Time, Kitting and off-site fabrication. These are explained and assessed in the context of the French construction industry through an exploratory study, supported by a questionnaire completed by contractors. The results reveal that a clear plan to manage materials on-site is lacking among the respondents, creating common inventory problems. This research provides evidence to support the central role played by an efficient management of material flow on-site. It also highlights the obstacles that hinder the adoption of innovative techniques, such as sub-contractor coordination.

  4. Information systems for material flow management in construction processes

    Science.gov (United States)

    Mesároš, P.; Mandičák, T.

    2015-01-01

    The article describes the options for the management of material flows in the construction process. Management and resource planning is one of the key factors influencing the effectiveness of construction project. It is very difficult to set these flows correctly. The current period offers several options and tools to do this. Information systems and their modules can be used just for the management of materials in the construction process.

  5. Logistic management materials-technical support railway enterprises

    OpenAIRE

    Dykan, V.; Borozenetc, T.

    2014-01-01

    The essence of logistics management. Determine the feasibility of applying the principles of logistics management in organizing the logistics of railway transport. Discussed measures to develop suppliers in the implementation of logistics management logistics. Identified the need to develop and implement regulatory and methodical system to improve materials-technical support through the introduction of modern logistics principles. Applied systemic campaign to organize the materials-technical ...

  6. Influential Factors Affecting Materials Management in Construction Projects

    Directory of Open Access Journals (Sweden)

    Jusoh Zairra Mat

    2017-12-01

    Full Text Available Construction projects are more often than not plagued by poor performances such as delays, cost overrun, low productivity, construction wastes and compromised quality. Amongst the critical contributory factors of poor project performances, is the ineffectiveness of materials management occurring in the construction sites. Indeed, materials management is a very important component for construction projects. However, there are only limited numbers of research available regarding this topic. Thus, this research focuses its study on materials management, specifically in identifying the influential factors that affect materials management in the construction project activities. Literatures from books, journal articles and conference papers related to poor project performances and materials management have been reviewed. Consequently, this study sorted the salient influential factors and categorized them based on their specific group. Out of 47 factors identified, they are classified into 8 groups. They are (1 site condition; (2 planning and handling on site; (3 management; (4 materials; (5 supplier and manufacturer default; (6 transportation; (7 contractual; and (8 governmental interferences. In conclusion, this study contends that by identifying the influential factors affecting materials management, it will help construction players to avoid the occurrence of those factors and will minimize the negative impacts on the overall performance of construction projects. Hence, the handling-over of project will be according to schedule and not delayed by materials mismanagement.

  7. Intelligent Materials Tracking System for Construction Projects Management

    Directory of Open Access Journals (Sweden)

    Narimah Kasim

    2015-05-01

    Full Text Available An essential factor adversely affecting the performance of construction projects is the improper handling of materials during site activities. In addition, paper-based reports are mostly used to record and exchange information related to the material components within the supply chain, which is problematic and inefficient. Generally, technologies (such as wireless systems and RFID are not being adequately used to overcome human errors and are not well integrated with project management systems to make tracking and management of materials easier and faster. Findings from a literature review and surveys showed that there is a lack of positive examples of such tools having been used effectively. Therefore, this research focused on the development of a materials tracking system that integrates RFID-based materials management with resources modelling to improve on-site materials tracking. Rapid prototyping was used to develop the system and testing of the system was carried out to examine the functionality and working appropriately. The proposed system is intended to promote the employment of RFID for automatic materials tracking with integration of resource modelling (Microsoft (R Office Project in the project management system in order to establish which of the tagged components are required resources for certain project tasks. In conclusion, the system provides an automatic and easy tracking method for managing materials during materials delivery and inventory management processes in construction projects.

  8. The use of modern databases in managing nuclear material inventories

    International Nuclear Information System (INIS)

    Behrens, R.G.

    1994-01-01

    The need for a useful nuclear materials database to assist in the management of nuclear materials within the Department of Energy (DOE) Weapons Complex is becoming significantly more important as the mission of the DOE Complex changes and both international safeguards and storage issues become drivers in determining how these materials are managed. A well designed nuclear material inventory database can provide the Nuclear Materials Manager with an essential cost effective tool for timely analysis and reporting of inventories. This paper discusses the use of databases as a management tool to meet increasing requirements for accurate and timely information on nuclear material inventories and related information. From the end user perspective, this paper discusses the rationale, philosophy, and technical requirements for an integrated database to meet the needs for a variety of users such as those working in the areas of Safeguards, Materials Control and Accountability (MC ampersand A), Nuclear Materials Management, Waste Management, materials processing, packaging and inspection, and interim/long term storage

  9. [Research on the Application of Lean Management in Medical Consumables Material Logistics Management].

    Science.gov (United States)

    Yang, Chai; Zhang, Wei; Gu, Wei; Shen, Aizong

    2016-11-01

    Solve the problems of high cost, low utilization rate of resources, low medical care quality problem in medical consumables material logistics management for scientific of medical consumables management. Analysis of the problems existing in the domestic medical consumables material logistics management in hospital, based on lean management method, SPD(Supply, Processing, Distribution) for specific applications, combined HBOS(Hospital Business Operation System), HIS (Hospital Information System) system for medical consumables material management. Achieve the lean management in medical consumables material purchase, warehouse construction, push, clinical use and retrospect. Lean management in medical consumables material can effectively control the cost in logistics management, optimize the alocation of resources, liberate unnecessary time of medical staff, improve the quality of medical care. It is a scientific management method.

  10. Chemistry of materials relevant to aqueous reprocessing and waste management

    International Nuclear Information System (INIS)

    Srinivasan, T.G.

    2012-01-01

    Nuclear energy option will be an inevitable one with the fossil fuels depleting fast and present coal and oil based thermal power generation resulting in unwanted green house gas emission. The utilisation of the fissile resources will be more effective with closed fuel cycle option wherein the spent reactor fuel is reprocessed and the unused uranium and plutonium formed during the reactor operation is recovered and re-used. Of the aqueous and non-aqueous routes available to reprocess the spent nuclear fuels, aqueous reprocessing method of recovering the valuable uranium and plutonium by the PUREX process is in vogue for the past six decades. The process involves chopping the fuel into small lengths, leaching uranium and plutonium with concentrated nitric acid under reflux, conditioning the dissolver solution with respect to acidity and valency of U and Pu, solvent extraction with 30%TBP/n-DD to selectively extract U(VI) and Pu(IV) leaving most of the fission products into the raffinate, partitioning plutonium from uranium and reconversion of U and Pu into oxide forms after further purification. Many reagents are used to achieve near quantitative recovery of both uranium and plutonium (>99.9%) and with high decontamination factors (>10 7 ) from highly radioactive fission products. Nevertheless, the chemistry of several reagents used and the chemical processes that take place during the entire course of reprocessing and waste management operations are yet to be fully understood and gives a lot of scope for further improvements. Some examples where research requires concerted efforts are, 1) development of new extractants conforming to CHON principle, with acceptable physical properties, high stability, selectivity and resistance to third phase formation, 2) new partitioning reagents and processes which offer good efficiency and kinetics for uranium/plutonium reduction, 3) understanding the chemistry of troublesome fission products such as Tc, Ru and Zr, 4

  11. Management of radioactive waste from {sup 99}Mo production by nuclear fission; Gestao dos rejeitos radioativos gerados na producao do {sup 99}Mo por fissao nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Rego, Maria Eugenia de Melo

    2013-07-01

    Brazil intends to build a facility for the {sup 99}Mo production through {sup 235}U fission, once this radioisotope is largely used in nuclear medicine. This study aimed at estimating the physical, chemical and radiological characteristics of radioactive waste expected to be generated in that facility, and to provide theoretical subsides that can be used on the definition of a proper waste management system. Two production scenarios were established and the radioisotope inventories of the wastes were calculated by Scale®. From the chemical processing of the uranium targets the wastes were characterized on their chemical and radiological features. MicroShield® was used to determine the activity concentrations up to three months of {sup 99}Mo production. In addition, this work presents dose rate calculation for several sizes of shielding and different amount of wastes, collected in a proper package for in-site transportation. Radionuclides responsible for higher doses were identified in order to facilitate choosing the most appropriate method for managing the wastes after their chemical separation and before their storage. These results are part of what is expected on radioactive wastes at a {sup 99}Mo production facility and might help on the development of the waste management planning for that facility. (author)

  12. Characterization of a facility for the measurement of fission fragment transport effects: experimental determination of the fission rates for fissile and fissionable isotopes

    International Nuclear Information System (INIS)

    Benetti, P.; Raselli, G.L.; Tigliole, A. Borio di; Cagnazzo, M.; Cesana, A.; Mongelli, S.; Terrani, M.

    2002-01-01

    The transfer facility of the LENA laboratory allows the direct neutron irradiation of fissionable material in the D channel of the TRIGA reactor. A test measurement carried out with a ionization chamber and a 239 Pu sample shows the possibility to use this tool for the study of the transport effects of the fission fragment emerging from thin layers of fissile materials. (author)

  13. Development of total medical material distribution management system.

    Science.gov (United States)

    Uto, Y; Kumamoto, I

    1994-07-01

    Since September 1992, attempts have been made at Kagoshima University Hospital to develop the Medical Material Distribution Management System which helps to realize optimal hospital management as a subsystem of the Total Hospital Information System of Kagoshima University (THINK). As this system has been established, it has become possible for us to have an accurate grasp of the flow and stock of medical materials at our hospital. Furthermore, since September 1993, the Medical Material Distribution Management System has been improved and the Total Medical Material Distribution Management System has been smoothly introduced into the site of clinical practice. This system enables automatic demands for fees for treatment with specific instruments and materials covered by health insurance. It was difficult to predict the effect of this system, because no similar system had been developed in Japan. However, more satisfactory results than expected have been obtained since its introduction.

  14. Safeguards Accountability Network accountability and materials management

    International Nuclear Information System (INIS)

    Carnival, G.J.; Meredith, E.M.

    1985-01-01

    The Safeguards Accountability Network (SAN) is a computerized on-line accountability system for the safeguards accountability control of nuclear materials inventories at Rocky Flats Plant. SAN is a dedicated accountability system utilizing source documents filled out on the shop floor as its base. The system incorporates double entry accounting and is developed around the Material Balance Area (MBA) concept. MBA custodians enter transaction information from source documents prepared by personnel in the process areas directly into the SAN system. This provides a somewhat near-real time perpetual inventory system which has limited interaction with MBA custodians. MBA custodians are permitted to inquire into the system and status items on inventory. They are also responsible for the accuracy of the accountability information used as input to the system for their MBA. Monthly audits by the Nuclear Materials Control group assure the timeliness and accuracy of SAN accountability information

  15. Fission level densities

    International Nuclear Information System (INIS)

    Maslov, V.M.

    1998-01-01

    Fission level densities (or fissioning nucleus level densities at fission saddle deformations) are required for statistical model calculations of actinide fission cross sections. Back-shifted Fermi-Gas Model, Constant Temperature Model and Generalized Superfluid Model (GSM) are widely used for the description of level densities at stable deformations. These models provide approximately identical level density description at excitations close to the neutron binding energy. It is at low excitation energies that they are discrepant, while this energy region is crucial for fission cross section calculations. A drawback of back-shifted Fermi gas model and traditional constant temperature model approaches is that it is difficult to include in a consistent way pair correlations, collective effects and shell effects. Pair, shell and collective properties of nucleus do not reduce just to the renormalization of level density parameter a, but influence the energy dependence of level densities. These effects turn out to be important because they seem to depend upon deformation of either equilibrium or saddle-point. These effects are easily introduced within GSM approach. Fission barriers are another key ingredients involved in the fission cross section calculations. Fission level density and barrier parameters are strongly interdependent. This is the reason for including fission barrier parameters along with the fission level densities in the Starter File. The recommended file is maslov.dat - fission barrier parameters. Recent version of actinide fission barrier data obtained in Obninsk (obninsk.dat) should only be considered as a guide for selection of initial parameters. These data are included in the Starter File, together with the fission barrier parameters recommended by CNDC (beijing.dat), for completeness. (author)

  16. Improving IC process efficiency with critical materials management

    Science.gov (United States)

    Hanson, Kathy L.; Andrews, Robert E.

    2003-06-01

    The management of critical materials in a high technology manufacturing facility is crucial to obtaining consistently high production yield. This is especially true in an industry like semiconductors where the success of the product is so dependent on the integrity of the critical production materials. Bar code systems, the traditional management tools, are voluntary, defeatable, and do not continuously monitor materials when in use. The significant costs associated with mis-management of chemicals can be captured with a customized model resulting in highly favorable ROI"s for the NOWTrak RFID chemical management system. This system transmits reliable chemical data about each individual container and generates information that can be used to increase wafer production efficiency and yield. The future of the RFID system will expand beyond the benefits of chemical management and into dynamic IC process management

  17. Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS).

    Energy Technology Data Exchange (ETDEWEB)

    Aas, Christopher A.; Lenhart, James E.; Bray, Olin H.; Witcher, Christina Jenkin

    2004-11-01

    Sandia National Laboratories was tasked with developing the Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS) with the sponsorship of NA-125.3 and the concurrence of DOE/NNSA field and area offices. The purpose of IIIMS was to modernize nuclear materials management information systems at the enterprise level. Projects over the course of several years attempted to spearhead this modernization. The scope of IIIMS was broken into broad enterprise-oriented materials management and materials forecasting. The IIIMS prototype was developed to allow multiple participating user groups to explore nuclear material requirements and needs in detail. The purpose of material forecasting was to determine nuclear material availability over a 10 to 15 year period in light of the dynamic nature of nuclear materials management. Formal DOE Directives (requirements) were needed to direct IIIMS efforts but were never issued and the project has been halted. When restarted, duplicating or re-engineering the activities from 1999 to 2003 is unnecessary, and in fact future initiatives can build on previous work. IIIMS requirements should be structured to provide high confidence that discrepancies are detected, and classified information is not divulged. Enterprise-wide materials management systems maintained by the military can be used as overall models to base IIIMS implementation concepts upon.

  18. Municipal Solid Waste - Sustainable Materials Management

    Science.gov (United States)

    The MSW DST was initially developed in the 1990s and has evolved over the years to better account for changes in waste management practices, waste composition, and improvements in decision support tool design and functionality. The most recent version of the tool is publicly ava...

  19. Sustainable energy development material management team report. Fossil business unit

    International Nuclear Information System (INIS)

    Bird, P.; Keller, P.; Manning, P.; Nolan, M.; Ricci, A.; Turnbull, F.; Varadinek, H.

    1995-01-01

    Report of the Material Management Sustainable Energy Development (SED) Team was presented, outlining strategic directions and initiative for embedding SED principles in the materials management function. Six principles underlying SED were prescribed, accompanied by a framework for analysis. Excerpts from position papers used in the formulation of SED recommendations and initiatives were provided. The general theme of the recommendations was: (1) materials management activities should be review to ensure consistency with SED, (2) strategic alliances should be developed where appropriate and (3) staff in the Fossil Business Unit should promote SED among industry suppliers

  20. Software development for managing nuclear material database

    International Nuclear Information System (INIS)

    Tondin, Julio Benedito Marin

    2011-01-01

    In nuclear facilities, the nuclear material control is one of the most important activities. The Brazilian National Commission of Nuclear Energy (CNEN) and the International Atomic Energy Agency (IAEA), when inspecting routinely, regards the data provided as a major safety factor. Having a control system of nuclear material that allows the amount and location of the various items to be inspected, at any time, is a key factor today. The objective of this work was to enhance the existing system using a more friendly platform of development, through the VisualBasic programming language (Microsoft Corporation), to facilitate the operation team of the reactor IEA-R1 Reactor tasks, providing data that enable a better and prompter control of the IEA-R1 nuclear material. These data have allowed the development of papers presented at national and international conferences and the development of master's dissertations and doctorate theses. The software object of this study was designed to meet the requirements of the CNEN and the IAEA safeguard rules, but its functions may be expanded in accordance with future needs. The program developed can be used in other reactors to be built in the country, since it is very practical and allows an effective control of the nuclear material in the facilities. (author)

  1. Fission-product release during accidents

    International Nuclear Information System (INIS)

    Hunt, C.E.L.; Cox, D.S.

    1991-09-01

    One of the aims when managing a reactor accident is to minimize the release of radioactive fission products. Release is dependent not only on the temperature, but also on the partial pressure of oxygen. Strongly oxidizing atmospheres, such as those that occurred during the Chernobyl accident, released semi-volatile elements like ruthenium, which has volatile oxides. At low temperatures, UO 2 oxidization to U 3 O 8 can result in extensive breakup of the fuel, resulting in the release of non-volatile fission products as aerosols. Under less oxidizing conditions, when hydrogen accumulates from the zirconium-water reaction, the resulting low oxygen partial pressure can significantly reduce these reactions. At TMI-2, only the noble gases and volatile fission products were released in significant quantities. A knowledge of the effect of atmosphere as well as temperature on the release of fission products from damaged reactor cores is therefore a useful, if not necessary, component of information required for accident management

  2. How Do I Manage? An Introduction to Management. Supplementary Material and Workbook.

    Science.gov (United States)

    North West Regional Management Centre, Chorley (England).

    This book contains supplementary material for a British self-study course in management designed as an introduction to the course for the Certificate in Management Studies. The materials in this book are learning activities referenced to various topics in the course materials. The nine activities include a case study of a production supervision…

  3. R and D in Ciemat Nuclear Fission Department

    International Nuclear Information System (INIS)

    Diaz, J. L.; Diaz Arocas, P.; Gomez Briceno, D.; Gonzalez de la Huebra Gordo, A.; Gonzalez Romero, E.; Herranz Puebla, L. E.; Sola Farre, R.

    2000-01-01

    The technologically developed countries count on nuclear fission as a durable energy resource to produce electricity, facing the future by establishing research programmes to enhance the safety and extend the lifetime of the current power plants and to achieve the adequate management of radioactive waste. At the same time, the progress in the development of a new generation of reactors based in innovative safety concepts. The Nuclear fission Department has the ultimate objective of providing technical support to the Spanish nuclear reactors through applied research and development focused on improving the safety and performance of the operating power plants, and cooperating in the activities related to radioactive waste. In this context, the Departament has been organised in four R and D project covering the areas of Safety, Materials, Radioactive. (Author)

  4. Fast fission phenomena

    International Nuclear Information System (INIS)

    Gregoire, Christian.

    1982-03-01

    Experimental studies of fast fission phenomena are presented. The paper is divided into three parts. In the first part, problems associated with fast fission processes are examined in terms of interaction potentials and a dynamic model is presented in which highly elastic collisions, the formation of compound nuclei and fast fission appear naturally. In the second part, a description is given of the experimental methods employed, the observations made and the preliminary interpretation of measurements suggesting the occurence of fast fission processes. In the third part, our dynamic model is incorporated in a general theory of the dissipative processes studied. This theory enables fluctuations associated with collective variables to be calculated. It is applied to highly inelastic collisions, to fast fission and to the fission dynamics of compound nuclei (for which a schematic representation is given). It is with these calculations that the main results of the second part can be interpreted [fr

  5. Polymers Advance Heat Management Materials for Vehicles

    Science.gov (United States)

    2013-01-01

    For 6 years prior to the retirement of the Space Shuttle Program, the shuttles carried an onboard repair kit with a tool for emergency use: two tubes of NOAX, or "good goo," as some people called it. NOAX flew on all 22 flights following the Columbia accident, and was designed to repair damage that occurred on the exterior of the shuttle. Bill McMahon, a structural materials engineer at Marshall Space Flight Center says NASA needed a solution for the widest range of possible damage to the shuttle s exterior thermal protection system. "NASA looked at several options in early 2004 and decided on a sealant. Ultimately, NOAX performed the best and was selected," he says. To prove NOAX would work effectively required hundreds of samples manufactured at Marshall and Johnson, and a concerted effort from various NASA field centers. Johnson Space Center provided programmatic leadership, testing, tools, and crew training; Glenn Research Center provided materials analysis; Langley Research Center provided test support and led an effort to perform large patch repairs; Ames Research Center provided additional testing; and Marshall provided further testing and the site of NOAX manufacturing. Although the sealant never had to be used in an emergency situation, it was tested by astronauts on samples of reinforced carbon-carbon (RCC) during two shuttle missions. (RCC is the thermal material on areas of the shuttle that experience the most heat, such as the nose cone and wing leading edges.) The material handled well on orbit, and tests showed the NOAX patch held up well on RCC.

  6. Theories of fission gas behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Dias, J W.C. [Companhia Brasileira de Tecnologia Nuclear, Rio de Janeiro (Brazil). Diretoria de Tecnologia e Desenvolvimento; Merckx, K R

    1976-01-01

    A review is presented of the theoretical developments and experimental evidence that have helped to evolve current models used to describe the behavior of inert fission gases created during the irradiation of reactor fuel materials. The phenomena which are stressed relate primarily to steady state behavior of fuel elements but are also relevant to an understanding of transient behavior. The processes considered include gas atom solubility; gas atom diffusivity; bubble nucleation; and bubble growth by bubble coalescence.

  7. Advancing Sustainable Materials Management: Facts and Figures Report

    Science.gov (United States)

    Each year EPA releases the Advancing Sustainable Materials Management: Facts and Figures report, formerly called Municipal Solid Waste in the United States: Facts and Figures. It includes information on Municipal Solid Waste generation, recycling, an

  8. Sustainable Materials Management (SMM) Federal Green Challenge (FGC) Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Federal Green Challenge (FGC) is a national effort under EPA's Sustainable Materials Management (SMM) Program, challenging EPA and other federal agencies...

  9. Improved materials management through client/server computing

    International Nuclear Information System (INIS)

    Brooks, D.; Neilsen, E.; Reagan, R.; Simmons, D.

    1992-01-01

    This paper reports that materials management and procurement impacts every organization within an electric utility from power generation to customer service. An efficient material management and procurement system can help improve productivity and minimize operating costs. It is no longer sufficient to simply automate materials management using inventory control systems. Smart companies are building centralized data warehouses and use the client/server style of computing to provide real time data access. This paper describes how Alabama Power Company, Southern Company Services and Digital Equipment Corporation transformed two existing applications, a purchase order application within DEC's ALL-IN-1 environment and a materials management application within an IBM CICS environment, into a data warehouse - client/server application. An application server is used to overcome incompatibilities between computing environments and provide easy, real-time access to information residing in multi-vendor environments

  10. Data base concepts for managing the DOE nuclear material inventory

    International Nuclear Information System (INIS)

    Beams, J.D.

    1996-01-01

    Information required by nuclear materials managers in the Department of Energy (DOE) is accessible with varying levels of difficulty. Currently, the most readily available information is provided by the Nuclear Materials Management and Safeguards System (NMMSS). Information not provided by NMMSS must be obtained either from field site data bases or collected through physical inventory inspections, both very costly and time-consuming alternatives. This paper discusses the possibility of providing more detailed information at DOE headquarters on nuclear material inventories than is provided by NMMSS. In particular, this paper considers some of the issues associated with managing materials at the lowest-level--the item-level--and uses a hypothetical item-level data base to describe some of the advantages and disadvantages of managing information at the item-level

  11. Fission product yields

    International Nuclear Information System (INIS)

    Valenta, V.; Hep, J.

    1978-01-01

    Data are summed up necessary for determining the yields of individual fission products from different fissionable nuclides. Fractional independent yields, cumulative and isobaric yields are presented here for the thermal fission of 235 U, 239 Pu, 241 Pu and for fast fission (approximately 1 MeV) of 235 U, 238 U, 239 Pu, 241 Pu; these values are included into the 5th version of the YIELDS library, supplementing the BIBFP library. A comparison is made of experimental data and possible improvements of calculational methods are suggested. (author)

  12. Fission neutron multiplicity calculations

    International Nuclear Information System (INIS)

    Maerten, H.; Ruben, A.; Seeliger, D.

    1991-01-01

    A model for calculating neutron multiplicities in nuclear fission is presented. It is based on the solution of the energy partition problem as function of mass asymmetry within a phenomenological approach including temperature-dependent microscopic energies. Nuclear structure effects on fragment de-excitation, which influence neutron multiplicities, are discussed. Temperature effects on microscopic energy play an important role in induced fission reactions. Calculated results are presented for various fission reactions induced by neutrons. Data cover the incident energy range 0-20 MeV, i.e. multiple chance fission is considered. (author). 28 refs, 13 figs

  13. Intermediate energy nuclear fission

    International Nuclear Information System (INIS)

    Hylten, G.

    1982-01-01

    Nuclear fission has been investigated with the double-kinetic-energy method using silicon surface barrier detectors. Fragment energy correlation measurements have been made for U, Th and Bi with bremsstrahlung of 600 MeV maximum energy. Distributions of kinetic energy as a function of fragment mass are presented. The results are compared with earlier photofission data and in the case of bismuth, with calculations based on the liquid drop model. The binary fission process in U, Yb, Tb, Ce, La, Sb, Ag and Y induced by 600 MeV protons has been investigated yielding fission cross sections, fragment kinetic energies, angular correlations and mass distributions. Fission-spallation competition calculations are used to deduce values of macroscopic fission barrier heights and nuclear level density parameter values at deformations corresponding to the saddle point shapes. We find macroscopic fission barriers lower than those predicted by macroscopic theories. No indication is found of the Businaro Gallone limit expected to occur somewhere in the mass range A = 100 to A = 140. For Ce and La asymmetric mass distributions similar to those in the actinide region are found. A method is described for the analysis of angular correlations between complementary fission products. The description is mainly concerned with fission induced by medium-energy protons but is applicable also to other projectiles and energies. It is shown that the momentum and excitation energy distributions of cascade residuals leading to fission can be extracted. (Author)

  14. Approach on origin management of nuclear materials at KAERI

    International Nuclear Information System (INIS)

    Kim, Hyun-Jo; Lee, Sung-Ho; Lee, Byung-Doo; Kim, In-Chul; Kim, Hyun-Sook; Jung, Juang

    2017-01-01

    This paper describes the current origin management approach and reviews the requirement to be reflected to meet the bilateral agreements. KAERI developed the origin management system to efficiently and effectively manage the origin information. The system is connected with KASIS to share the information on the inventory changes of nuclear material. After development of the system, however, the new concept of obligated nuclear material is introduced according to the amended ROK-US agreement. Also, the origin management system based on IAEA accounting reports needs to revise to include the nuclear material exempted from safeguards. Therefore KAERI will improve the origin management system to meet the requirement of bilateral agreements and NSSC notice to be revised.

  15. Computerized nuclear material database management system for power reactors

    International Nuclear Information System (INIS)

    Cheng Binghao; Zhu Rongbao; Liu Daming; Cao Bin; Liu Ling; Tan Yajun; Jiang Jincai

    1994-01-01

    The software packages for nuclear material database management for power reactors are described. The database structure, data flow and model for management of the database are analysed. Also mentioned are the main functions and characterizations of the software packages, which are successfully installed and used at both the Daya Bay Nuclear Power Plant and the Qinshan Nuclear Power Plant for the purposed of handling nuclear material database automatically

  16. Fission rate measurements in fuel plate type assembly reactor cores

    International Nuclear Information System (INIS)

    Rogers, J.W.

    1988-01-01

    The methods, materials and equipment have been developed to allow extensive and precise measurement of fission rate distributions in water moderated, U-Al fuel plate assembly type reactor cores. Fission rate monitors are accurately positioned in the reactor core, the reactor is operated at a low power for a short time, the fission rate monitors are counted with detectors incorporating automated sample changers and the measurements are converted to fission rate distributions. These measured fission rate distributions have been successfully used as baseline information related to the operation of test and experimental reactors with respect to fission power and distribution, fuel loading and fission experiments for approximately twenty years at the Idaho National Engineering Laboratory (INEL). 7 refs., 8 figs

  17. Nuclear Materials Stewardship Within the DOE Environmental Management Program

    International Nuclear Information System (INIS)

    Bilyeu, J. D.; Kiess, T. E.; Gates, M. L.

    2002-01-01

    The Department of Energy (DOE) Environmental Management (EM) Program has made significant progress in planning disposition of its excess nuclear materials and has recently completed several noteworthy studies. Since establishment in 1997, the EM Nuclear Material Stewardship Program has developed disposition plans for excess nuclear materials to support facility deactivation. All nuclear materials have been removed from the Miamisburg Environmental Management Project (Mound), and disposition planning is nearing completion for the Fernald Environmental Management Project and the Rocky Flats Environmental Technology Site. Only a few issues remain for materials at the Hanford and Idaho sites. Recent trade studies include the Savannah River Site Canyons Nuclear Materials Identification Study, a Cesium/Strontium Management Alternatives Trade Study, a Liquid Technical Standards Trade Study, an Irradiated Beryllium Reflectors with Tritium study, a Special Performance Assessment Required Trade Study, a Neutron Source Trade Study, and development of discard criteria for uranium. A Small Sites Workshop was also held. Potential and planned future activities include updating the Plutonium-239 storage study, developing additional packaging standards, developing a Nuclear Material Disposition Handbook, determining how to recover or dispose of Pu-244 and U-233, and working with additional sites to define disposition plans for their nuclear materials

  18. Photon management with index-near-zero materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhu; Yu, Zongfu [Department of Electrical and Computer Engineering, University of Wisconsin Madison, Madison, Wisconsin 53706 (United States); Wang, Ziyu [Department of Foundation, Southeast University, Chengxian College, 210018 Nanjing (China)

    2016-08-01

    Index-near-zero materials can be used for effective photon management. They help to restrict the angle of acceptance, resulting in greatly enhanced light trapping limit. In addition, these materials also decrease the radiative recombination, leading to enhanced open circuit voltage and energy efficiency in direct bandgap solar cells.

  19. Management review of nuclear material control and accounting systems

    International Nuclear Information System (INIS)

    1975-06-01

    Section 70.58, ''Fundamental Nuclear Material Controls,'' of 10 CFR Part 70, ''Special Nuclear Materials,'' requires, in paragraph 70.58(c), that certain licensees authorized to possess more than one effective kilogram of special nuclear material establish a management system to provide for the development, revision, implementation, and enforcement of nuclear material control and accounting procedures. Such a system must provide for a review of the nuclear material control system at least every 12 months. This guide describes the purpose and scope, personnel qualifications, depth of detail, and procedures that are acceptable to the NRC staff for the management review of nuclear material control systems required under paragraph 70.58(c) of 10 CFR Part 70. (U.S.)

  20. Critical masses of miniexplosion in fission-fusion hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Kaliski, S [Polska Akademia Nauk, Warsaw. Inst. Podstawowych Problemow Techniki

    1976-01-01

    The critical mass of the fissionable material subjected to the explosive compression and the action of the neutron stream originating from the process of D-T fusion in the spherical cavity was estimated. High energy recovery from the fissionable material was obtained and the energy of the laser pulse was minimized.

  1. Potential applications of nanostructured materials in nuclear waste management.

    Energy Technology Data Exchange (ETDEWEB)

    Braterman, Paul S. (The University of North Texas, Denton, TX); Phol, Phillip Isabio; Xu, Zhi-Ping (The University of North Texas, Denton, TX); Brinker, C. Jeffrey; Yang, Yi (University of New Mexico, Albuquerque, NM); Bryan, Charles R.; Yu, Kui; Xu, Huifang (University of New Mexico, Albuquerque, NM); Wang, Yifeng; Gao, Huizhen

    2003-09-01

    This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Investigation of Potential Applications of Self-Assembled Nanostructured Materials in Nuclear Waste Management'. The objectives of this project are to (1) provide a mechanistic understanding of the control of nanometer-scale structures on the ion sorption capability of materials and (2) develop appropriate engineering approaches to improving material properties based on such an understanding.

  2. Power reactors and sub-critical blanket systems with lead and lead-bismuth as coolant and/or target material. Utilization and transmutation of actinides and long lived fission products

    International Nuclear Information System (INIS)

    2003-05-01

    High level radioactive waste disposal is an issue of great importance in the discussion of the sustainability of nuclear power generation. The main contributors to the high radioactivity are the fission products and the minor actinides. The long lived fission products and minor actinides set severe demands on the arrangements for safe waste disposal. Fast reactors and accelerator driven systems (ADS) are under development in Member States to reduce the long term hazard of spent fuel and radioactive waste, taking advantage of their incineration and transmutation capability. Important R and D programmes are being undertaken in many Member States to substantiate this option and advance the basic knowledge in this innovative area of nuclear energy development. The conceptual design of the lead cooled fast reactor concept BREST-OD-300, as well as various other conceptual designs of lead/lead-bismuth cooled fast reactors have been developed to meet enhanced safety and non-proliferation requirements, aiming at both energy production and transmutation of nuclear waste. Some R and D studies indicate that the use of lead and lead-bismuth coolant has some advantages in comparison with existing sodium cooled fast reactor systems, e.g.: simplified design of fast reactor core and BOP, enhanced inherent safety, and easier radwaste management in related fuel cycles. Moreover, various ADS conceptual designs with lead and lead-bismuth as target material and coolant also have been pursued. The results to date are encouraging, indicating that the ADS has the potential to offer an option for meeting the challenges of the back end fuel cycle. During the last decade, there have been substantial advances in several countries with their own R and D programme in the fields of lead/lead-bismuth cooled critical and sub-critical concepts. coolant technology, and experimental validation. In this context, international exchange of information and experience, as well as international

  3. Nuclear technology and materials science

    International Nuclear Information System (INIS)

    Olander, D.R.

    1992-01-01

    Current and expected problems in the materials of nuclear technology are reviewed. In the fuel elements of LWRs, cladding waterside corrosion, secondary hydriding and pellet-cladding interaction may be significant impediments to extended burnup. In the fuel, fission gas release remains a key issue. Materials issues in the structural alloys of the primary system include stress-corrosion cracking of steel, corrosion of steam generator tubing and pressurized thermal shock of the reactor vessel. Prediction of core behavior in severe accidents requires basic data and models for fuel liquefaction, aerosol formation, fission product transport and core-concrete interaction. Materials questions in nuclear waste management and fusion technology are briefly reviewed. (author)

  4. HTGR Fuels and Core Development Program. Quarterly progress report for the period ending August 31, 1977. [Graphite and fuel irradiation; fission product release

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-01

    The work reported includes studies of reactions between core materials and coolant impurities, basic fission product transport mechanisms, core graphite development and testing, the development and testing of recyclable fuel systems, and physics and fuel management studies. Materials studies include irradiation capsule tests of both fuel and graphite. Experimental procedures and results are discussed and data are presented.

  5. The nuclear fission

    International Nuclear Information System (INIS)

    Fiorentino, J.

    1983-01-01

    The nuclear fission process considering initially the formation of compound nucleus and finishing with radioactive decay of fission products is studied. The process is divided in three parts which consist of the events associated to the nucleus of intermediate transitional state, the scission configuration, and the phenomenum of post scission. (M.C.K.) [pt

  6. Fission gas detection system

    International Nuclear Information System (INIS)

    Colburn, R.P.

    1984-01-01

    A device for collecting fission gas released by failed fuel rods which device uses a filter adapted to pass coolant but to block passage of fission gas bubbles due to the surface tension of the bubbles. The coolant may be liquid metal. (author)

  7. Muon-induced fission

    International Nuclear Information System (INIS)

    Polikanov, S.

    1980-01-01

    A review of recent experimental results on negative-muon-induced fission, both of 238 U and 232 Th, is given. Some conclusions drawn by the author are concerned with muonic atoms of fission fragments and muonic atoms of the shape isomer of 238 U. (author)

  8. Relativistic Coulomb Fission

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.

  9. [Evidence-based management of medical disposable materials].

    Science.gov (United States)

    Yang, Hai

    2009-03-01

    Evidence-based management of medical disposable materials pays attention to collect evidence comprehensively and systematically, accumulate and create evidence through its own work and also evaluate evidence strictly. This can be used as a function to guide out job. Medical disposable materials evidence system contains product register qualification, product quality certification, supplier's behavior, internal and external communication evidence. Managers can find different ways in creating and using evidence referring to specific inside and outside condition. Evidence-based management can help accelerating the development of management of medical disposable materials from traditional experience pattern to a systematic and scientific pattern. It also has the very important meaning to improve medical quality, control the unreasonable growth of medical expense and make purchase and supply chain be more efficient.

  10. Enhancing materials management programs in nuclear power plants

    International Nuclear Information System (INIS)

    Hassaballa, M.M.; Malak, S.M.

    1992-01-01

    Materials management programs for the nuclear utilities in the United States are continually being affected, concurrent with the gradual disappearance of qualified component and replacement parts vendors by regulatory concerns about procurement and materials management. In addition, current economic and competitive pressures are forcing utilities to seek avenues for reducing procurement costs for safety-related items. In response to these concerns, initiatives have been undertaken and engineering guidelines have been developed by the nuclear power industry-sponsored organizations, such as the Electric Power Research Institute and the Nuclear Management Resources Council. It is our experience that successful materials management programs require a multitude of engineering disciplines and experience and are composed of three major elements: strategic procurement plan, parts classification and procurement data base, and enhancement tools. This paper provides a brief description of each of the three elements

  11. Incentivizing secondary raw material markets for sustainable waste management.

    Science.gov (United States)

    Schreck, Maximilian; Wagner, Jeffrey

    2017-09-01

    Notwithstanding several policy initiatives in many countries over a number of years, there remains a general sense that too much municipal solid waste is generated and that too much of the waste that is generated is landfilled. There is an emerging consensus that a sustainable approach to waste management requires further development of secondary raw material markets. The purpose of this paper is to propose a theoretical economic model that focuses upon this stage of a sustainable waste management program and explores policy options that could motivate efficiency in secondary raw material markets. In particular, we show how firm profit and social welfare optimizing objectives can be reconciled in a two-product market of waste management processes: landfilling and material reclamation. Our results provide theoretical support for building out recent Circular Economy initiatives as well as for the relatively recent emergence of landfill mining as a means for procuring secondary raw materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Energy from nuclear fission an introduction

    CERN Document Server

    De Sanctis, Enzo; Ripani, Marco

    2016-01-01

    This book provides an overview on nuclear physics and energy production from nuclear fission. It serves as a readable and reliable source of information for anyone who wants to have a well-balanced opinion about exploitation of nuclear fission in power plants. The text is divided into two parts; the first covers the basics of nuclear forces and properties of nuclei, nuclear collisions, nuclear stability, radioactivity, and provides a detailed discussion of nuclear fission and relevant topics in its application to energy production. The second part covers the basic technical aspects of nuclear fission reactors, nuclear fuel cycle and resources, safety, safeguards, and radioactive waste management. The book also contains a discussion of the biological effects of nuclear radiation and of radiation protection, and a summary of the ten most relevant nuclear accidents. The book is suitable for undergraduates in physics, nuclear engineering and other science subjects. However, the mathematics is kept at a level that...

  13. Hazardous materials management and compliance training

    International Nuclear Information System (INIS)

    Dalton, T.F.

    1991-01-01

    OSHA training for hazardous waste site workers is required by the Superfund Amendments and Reauthorization Act of 1986 (SARA). In December 1986, a series of regulations was promulgated by OSHA on an interim basis calling for the training of workers engaged in hazardous waste operations. Subsequent to these interim regulations, final rules were promulgated and these final rules on hazardous waste operations and emergency response became effective on March 6, 1990. OSHA has conducted hearings on the accreditation of training programs. OSHA would like to follow the accreditation process under the AHERA regulations for asbestos, in which the model plan for accreditation of asbestos abatement training was included in Section 206 of Title 11 of the Toxic Substance Control Act (TSCA). OSHA proposed on January 26, 1990, to perform the accreditation of training programs for hazardous waste operations and that proposal suggested that they follow the model plan similar to the one used for AHERA. They did not propose to accredited training programs for workers engaged in emergency response. These new regulations pose a significant problem to the various contractors and emergency responders who deal with hazardous materials spill response, cleanup and site remediation since these programs have expanded so quickly that many people are not familiar with what particular segment of the training they are required to have and whether or not programs that have yet to be accredited are satisfactory for this type of training. Title III of SARA stipulates a training program for first responders which includes local emergency response organizations such as firemen and policemen. The purpose of this paper is to discuss the needs of workers at hazardous waste site remediation projects and workers who are dealing with hazardous substances, spill response and cleanup

  14. Study of hypernuclei fission

    International Nuclear Information System (INIS)

    Malek, F.

    1990-01-01

    This work is about PS177 experience made on LEAR machine at CERN in 1988. The annihilation reaction of anti protons on a target of Bismuth or Uranium is studied. Lambda particles are produced by this reaction, in the nucleus in 2% of cases 7.1 10 -3 hypernuclei by stopped antiproton in the target are produced. The prompt hypernucleus fission probability of uranium is 75% and that of Bismuth 10%. The mass distribution of fission fragments is symmetrical ((≡ the excitation energy of the nucleus is very high). If the nucleus hasn't fissioned, the non-mesonic lambda decay, gives it an energy of 100 MeV, what allows to fission later. This fission is delayed because the hypernucleus lifetime is 1.3 +0.25 -0.21 10 -10 sec for Bismuth [fr

  15. The nuclear fission process

    International Nuclear Information System (INIS)

    Wagemans, C.

    1991-01-01

    Fifty years after its discovery, the nuclear fission phenomenon is of recurring interest. When its fundamental physics aspects are considered, fission is viewed in a very positive way, which is reflected in the great interest generated by the meetings and large conferences organized for the 50th anniversary of its discovery. From a purely scientific and practical point of view, a new book devoted to the (low energy) nuclear fission phenomenon was highly desirable considering the tremendous amount of new results obtained since the publication of the book Nuclear Fission by Vandenbosch and Huizenga in 1973 (Academic Press). These new results could be obtained thanks to the growth of technology, which enabled the construction of powerful new neutron sources, particle and heavy ion accelerators, and very performant data-acquisition and computer systems. The re-invention of the ionization chamber, the development of large fission fragment spectrometers and sophisticated multiparameter devices, and the production of exotic isotopes also contributed significantly to an improved understanding of nuclear fission. This book is written at a level to introduce graduate students to the exciting subject of nuclear fission. The very complete list of references following each chapter also makes the book very useful for scientists, especially nuclear physicists. The book has 12 chapters covering the fission barrier and the various processes leading to fission as well as the characteristics of the various fission reaction products. In order to guarantee adequate treatment of the very specialized research fields covered, several distinguished scientists actively involved in some of these fields were invited to contribute their expertise as authors or co-authors of the different chapters

  16. A Uniform Framework of Global Nuclear Materials Management

    International Nuclear Information System (INIS)

    Dupree, S.A.; Mangan, D.L.; Sanders, T.L; Sellers, T.A.

    1999-01-01

    Global Nuclear Materials Management (GNMM) anticipates and supports a growing international recognition of the importance of uniform, effective management of civilian, excess defense, and nuclear weapons materials. We expect thereto be a continuing increase in both the number of international agreements and conventions on safety, security, and transparency of nuclear materials, and the number of U.S.-Russian agreements for the safety, protection, and transparency of weapons and excess defense materials. This inventory of agreements and conventions may soon expand into broad, mandatory, international programs that will include provisions for inspection, verification, and transparency, To meet such demand the community must build on the resources we have, including State agencies, the IAEA and regional organizations. By these measures we will meet the future expectations for monitoring and inspection of materials, maintenance of safety and security, and implementation of transparency measures

  17. A Uniform Framework of Global Nuclear Materials Management

    Energy Technology Data Exchange (ETDEWEB)

    Dupree, S.A.; Mangan, D.L.; Sanders, T.L; Sellers, T.A.

    1999-04-20

    Global Nuclear Materials Management (GNMM) anticipates and supports a growing international recognition of the importance of uniform, effective management of civilian, excess defense, and nuclear weapons materials. We expect thereto be a continuing increase in both the number of international agreements and conventions on safety, security, and transparency of nuclear materials, and the number of U.S.-Russian agreements for the safety, protection, and transparency of weapons and excess defense materials. This inventory of agreements and conventions may soon expand into broad, mandatory, international programs that will include provisions for inspection, verification, and transparency, To meet such demand the community must build on the resources we have, including State agencies, the IAEA and regional organizations. By these measures we will meet the future expectations for monitoring and inspection of materials, maintenance of safety and security, and implementation of transparency measures.

  18. Nuclear Materials Management for the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    Jesse C. Schreiber

    2007-01-01

    The Nevada Test Site (NTS) has transitioned from its historical role of weapons testing to a broader role that is focused on being a solution to multiple National Nuclear Security Administration (NNSA) challenges and opportunities with nuclear materials for the nation. NTS is supporting other NNSA sites challenged with safe nuclear materials storage and disposition. NNSA, with site involvement, is currently transforming the nuclear stockpile and supporting infrastructure to meet the 2030 vision. Efforts are under way to make the production complex smaller, more consolidated, and more modern. With respect to the nuclear material stockpile, the NNSA sites are currently reducing the complex nuclear material inventory through dispositioning and consolidating nuclear material. This includes moving material from other sites to NTS. State-of-the-art nuclear material management and control practices at NTS are essential for NTS to ensure that these new activities are accomplished in a safe, secure, efficient, and environmentally responsible manner. NTS is aggressively addressing this challenge

  19. Fission 2009 4. International Workshop on Nuclear Fission and Fission Product Spectroscopy - Compilation of slides

    International Nuclear Information System (INIS)

    2009-01-01

    This conference is dedicated to the last achievements in experimental and theoretical aspects of the nuclear fission process. The topics include: mass, charge and energy distribution, dynamical aspect of the fission process, nuclear data evaluation, quasi-fission and fission lifetime in super heavy elements, fission fragment spectroscopy, cross-section and fission barrier, and neutron and gamma emission. This document gathers the program of the conference and the slides of the presentations

  20. Innovative IT system for material management in warehouses

    Science.gov (United States)

    Papoutsidakis, Michael; Sigala, Maria; Simeonaki, Eleni; Tseles, Dimitrios

    2017-09-01

    Nowadays through the rapid development of technology in all areas there is a constant effort to introduce technological solutions in everyday life with emphasis on materials management information systems (Enterprise Resource Planning). During the last few years the variety of these systems has been increased for small business or for SMEs as well as for larger companies and industries. In the field of material management and main management operations with automated processes, ERP applications have only recently begun to make their appearance. In this paper will be presented the development of a system for automated material storage process in a system built through specific roles that will manage materials using an integrated barcode scanner. In addition we will analyse and describe the operation and modules of other systems that have been created for the same usage. The aim of this project is to create a prototype application that will be innovative with a flexible nature that will give solutions, with low cost and it will be user friendly. This application will allow quick and proper materials management for storage. The expected result is that the application can be used by smart devices in android environment and computers without an external barcode scanner, making the application accessible to the buyer at low cost.

  1. Effective Materials Property Information Management for the 21st Century

    Science.gov (United States)

    Ren, Weiju; Cebon, David; Arnold, Steve

    2009-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in various organizations. In part these are fueled by the demands for higher efficiency in material testing, product design and engineering analysis. But equally important, organizations are being driven by the need for consistency, quality and traceability of data, as well as control of access to sensitive information such as proprietary data. Further, the use of increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analyses requires both processing of large volumes of test data for development of constitutive models and complex materials data input for Computer-Aided Engineering (CAE) software. And finally, the globalization of economy often generates great needs for sharing a single "gold source" of materials information between members of global engineering teams in extended supply chains. Fortunately, material property management systems have kept pace with the growing user demands and evolved to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access, version, and quality controls; (ii) a wide range of data import, export and analysis capabilities; (iii) data "pedigree" traceability mechanisms; (iv) data searching, reporting and viewing tools; and (v) access to the information via a wide range of interfaces. In this paper the important requirements for advanced material data management systems, future challenges and opportunities such as automated error checking, data quality characterization, identification of gaps in datasets, as well as functionalities and business models to fuel database growth and maintenance are discussed.

  2. Westinghouse Hanford Company FY 1995 Materials Management Plan (MMP)

    International Nuclear Information System (INIS)

    Higginson, M.C.

    1994-10-01

    The safe and sound operation of facilities and storage of nuclear material are top priorities within Hanford's environmental management, site restoration mission. The projected materials estimates, based on the Materials Management Plan (MMP) assumptions outlined below, were prepared for Department of Energy (DOE) use in long-range planning. The Hanford MMP covers the period FY 1995 through FY 2005, as directed by DOE. All DOE Richland Operations (RL) Office facilities are essentially funded by the Office of Transition and Facilities Management, Environmental Restoration and Waste Management (EM). These facilities include PUREX, the UO 3 plant, N-Reactor, T-Plant, K-Basins, FFTF, PFP and the 300 Area Fuel Fabrication facilities. Currently DP provides partial funding for the latter two facilities. Beginning in FY 1996 (in accordance with DOE-HQ MMP assumptions), EM will fund expenses related to the storage, monitoring, and safeguarding of all Special Nuclear Material (SNM) in the PFP. Ownership and costs related to movement and/or stabilization of that material will belong to EM programs (excluding NE material). It is also assumed that IAEA will take over inventory validation and surveillance of EM owned SNM at this time (FY 1996)

  3. Perspectives on nuclear material safety management methods at DOE sites

    International Nuclear Information System (INIS)

    Hyder, M.L.

    1997-01-01

    The management of nuclear materials, and fissile materials in particular, at the USDOE facilities is undergoing significant changes. These result in large part from decreasing requirements for these materials in the US weapons program. Not only is new production no longer required, but returns must be handled and safely stored. Eventually surplus fissile material will be used for power production, or else put into a form suitable for long term disposition. In the meanwhile concentrates must be stored with protection against releases of radioactive material to the environment, and also against theft or deliberate dispersion. In addition, cleaning up large volumes of materials contaminated with fissile isotopes will be a major activity, and there will also be some quantity of spent fuel containing enriched uranium that cannot readily be processed. All these activities pose safety problems, some of which are addressed here

  4. A Study of Sustainable Material Management Approach in Taiwan

    International Nuclear Information System (INIS)

    Su Mingchien; Chou Chenpei; Chen Yizih

    2009-01-01

    Sustainable material management (SMM) has been initiated by the Organization for Economic Cooperation and Development (OECD) in 2005. SMM is an approach to promote resource conservation, reducing negative environmental impacts and preserving the natural capital of material and the balance of economic efficiency and social equity. Life cycle assessment and material flow analysis have been widely used to estimate the environmental impacts for resource consumption, but economic development has not been taken into account. Before 1984, improper garbage disposal was not an important issue in Taiwan. But over the past three decades, the Taiwan Government has accomplished not only waste disposal but also resource recycling, which are conducive to the essence of SMM. This study is the first research project to develop a SMM conceptual model for policy and strategy in Taiwan. SMM is the suitable waste management concept for the next era. This study reviewed the policy and strategy that has been applied in Taiwan's waste management, and compares the efficiency of waste management policy in Taiwan with the concept of SMM. A case study of the waste flow will be used to prove that the sustainable material policy can be a suitable management system to achieve sustainable development. This study will open a new chapter of research on global SMM for Taiwan.

  5. Management of radioactive wastes produced by users of radioactive materials

    International Nuclear Information System (INIS)

    1985-01-01

    This report is intended as a document to provide guidance for regulatory, administrative and technical authorities who are responsible for, or are involved in, planning, approving, executing and reviewing national waste management programmes related to the safe use of radioactive materials in hospitals, research laboratories, industrial and agricultural premises and the subsequent disposal of the radioactive wastes produced. It provides information and guidance for waste management including treatment techniques that may be available to establishments and individual users

  6. Implications for the management of R A materials transport

    International Nuclear Information System (INIS)

    Devine, I.R.

    1997-01-01

    This paper attempts to describe some Exclusions and Exemptions from the current and proposed transport regulations and describes those requirements applicable to low active material. It concludes that Clearance is the dominant issue and that within the UK nuclear sector, the current (1985 as amended 1990) transport regulations have no significant impact on the management of low active materials. Nor will the proposed (1996) Regulations. (author)

  7. Advanced materials for thermal management of electronic packaging

    CERN Document Server

    Tong, Xingcun Colin

    2011-01-01

    The need for advanced thermal management materials in electronic packaging has been widely recognized as thermal challenges become barriers to the electronic industry's ability to provide continued improvements in device and system performance. With increased performance requirements for smaller, more capable, and more efficient electronic power devices, systems ranging from active electronically scanned radar arrays to web servers all require components that can dissipate heat efficiently. This requires that the materials have high capability of dissipating heat and maintaining compatibility

  8. The VERDI fission fragment spectrometer

    Directory of Open Access Journals (Sweden)

    Frégeau M.O.

    2013-12-01

    Full Text Available The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution.

  9. Management system for regulating transport of radioactive material

    International Nuclear Information System (INIS)

    Lopez Vietri, Jorge; Capadona, Nancy; Barenghi, Leonardo

    2008-01-01

    Full text: The objective of this paper is to describe the main characteristics and fundamentals of the Nuclear regulatory Authority's (Autoridad Regulatoria Nuclear, ARN) management system applied to the regulation of transport of radioactive material, in Argentina. In the frame of ARN's quality policy, 'Protection against ionizing radiation on transport of radioactive materials' was selected as one of the regulatory processes, named TRM process from now on. ARN's quality management system is integrally based on ISO 9000 system addressed to help organizations in designing and implementing their quality management systems. TRM process was split into five sub processes in order to facilitate the implementation of quality system. Such sub processes were defined taking account of the main functions developed by ARN in the branch of safe transport of radioactive materials and are listed below: 1) Development and updating of standards and regulatory guides; 2) Licensing of packages, special radioactive materials and consignments of radioactive materials; 3) Compliance assurance during the transport of radioactive materials, and 4) Training, advising and communications. For each of these sub processes were specified their objectives, inputs, activities and outputs, the clients and stakeholders, responsibilities, supporting documents, control of documents and records, control of non-conformances, monitoring and measurements, audits, feedback and improvement. It was decided to develop a quality plan to organize and manage activities to meet quality requirements, to optimize the use of limited resources of the organization and to be used as a basis for monitoring and assessing compliance with the requirements, both internal and external. Supporting documents for sub processes were issued, validated, reviewed and improved as an essential point to implement continuous improving. Simultaneously, some indexes were defined to monitor and measure the sub processes as a way to show

  10. Fission in a Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Younes, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-26

    A three-year theory project was undertaken to study the fission process in extreme astrophysical environments, such as the crust of neutron stars. In the first part of the project, the effect of electron screening on the fission process was explored using a microscopic approach. For the first time, these calculations were carried out to the breaking point of the nucleus. In the second part of the project, the population of the fissioning nucleus was calculated within the same microscopic framework. These types of calculations are extremely computer-intensive and have seldom been applied to heavy deformed nuclei, such as fissioning actinides. The results, tools and methodologies produced in this work will be of interest to both the basic-science and nuclear-data communities.

  11. Sustainable Materials Management (SMM) Web Academy Webinar: Advancing Sustainable Materials Management: Facts and Figures 2013 - Assessing Trends in Materials Generation, Recycling and Disposal in the United States

    Science.gov (United States)

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

  12. Microscopic Theory of Fission

    International Nuclear Information System (INIS)

    Younes, W; Gogny, D

    2008-01-01

    In recent years, the microscopic method has been applied to the notoriously difficult problem of nuclear fission with unprecedented success. In this paper, we discuss some of the achievements and promise of the microscopic method, as embodied in the Hartree-Fock method using the Gogny finite-range effective interaction, and beyond-mean-field extensions to the theory. The nascent program to describe induced fission observables using this approach at the Lawrence Livermore National Laboratory is presented

  13. Fusion-fission dynamics

    International Nuclear Information System (INIS)

    Blocki, J.; Planeta, R.; Brzychczyk, J.; Grotowski, K.

    1992-01-01

    Classical dynamical calculations of the heavy ion induced fission processes have been performed for the reactions 40 Ar+ 141 Pr, 20 Ne+ 165 Ho and 12 C+ 175 Lu leading to the iridium like nucleus. As a result prescission lifetimes were obtained and compared with the experimental values. The comparison between the calculated and experimental lifetimes indicates that the one-body dissipation picture is much more relevant in describing the fusion-fission dynamics than the two-body one. (orig.)

  14. Study on fission blanket fuel cycling of a fusion-fission hybrid energy generation system

    International Nuclear Information System (INIS)

    Zhou, Z.; Yang, Y.; Xu, H.

    2011-01-01

    This paper presents a preliminary study on neutron physics characteristics of a light water cooled fission blanket for a new type subcritical fusion-fission hybrid reactor aiming at electric power generation with low technical limits of fission fuel. The major objective is to study the fission fuel cycling performance in the blanket, which may possess significant impacts on the feasibility of the new concept of fusion-fission hybrid reactor with a high energy gain (M) and tritium breeding ratio (TBR). The COUPLE2 code developed by the Institute of Nuclear and New Energy Technology of Tsinghua University is employed to simulate the neutronic behaviour in the blanket. COUPLE2 combines the particle transport code MCNPX with the fuel depletion code ORIGEN2. The code calculation results show that soft neutron spectrum can yield M > 20 while maintaining TBR >1.15 and the conversion ratio of fissile materials CR > 1 in a reasonably long refuelling cycle (>five years). The preliminary results also indicate that it is rather promising to design a high-performance light water cooled fission blanket of fusion-fission hybrid reactor for electric power generation by directly loading natural or depleted uranium if an ITER-scale tokamak fusion neutron source is achievable.

  15. Fission product source term research at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Malinauskas, A.P.

    1985-01-01

    The purpose of this work is to describe some of the research being performed at ORNL in support of the effort to describe, as realistically as possible, fission product source terms for nuclear reactor accidents. In order to make this presentation manageable, only those studies directly concerned with fission product behavior, as opposed to thermal hydraulics, accident sequence progression, etc., will be discussed

  16. Roundtable discussion: Materials management issues supporting licensing renewal

    International Nuclear Information System (INIS)

    1991-01-01

    The purpose of this technical session is to discussion the relationships between nuclear materials management/procurement engineering and plant license renewal. The basis for the discussion is DG-1009 'Standard format and content of technical information for applications to renew nuclear power plant operating licenses', dated 12/90

  17. The management of radioactive materials and its control

    International Nuclear Information System (INIS)

    Flory, D.; Charles, T.

    1998-01-01

    The present work is destined to present the arrangements taken by users of radioactive materials to follow them and to manage them efficiency; it takes stock of the different control systems that work towards checking the efficiency of these arrangements. Some particular cases are evoked relative to nuclear facilities. (N.C.)

  18. Lessons learned from material management at Vandellos-I

    International Nuclear Information System (INIS)

    Albarran, J.L. Santiago

    2003-01-01

    One of the essential points of Vandellos-I decommissioning project is the material strategy based on the exhaustive control of all the materials arising at the site in order to segregate those considered clean from those others that have radiological implications. The estimate amount of materials removed during stage 2 will be around 300,000 tons, including 1200 t of low and intermediate level radioactive waste which are sent to the Waste Disposal Facility at El Cabril (Cordoba). Around 2,000 t of concrete and 9,000 t of scraps both from active areas have been declassified for conventional management and recycled for other industrial uses. Under this point of view, characterisation and clearance appear as critical points in the process carried out with candidate material for management as conventional materials with or without restrictions. The Vandellos-I decommissioning project has already three authorised basic possibilities for the application of clearance of residual materials: the unconditional clearance, the generic conditional clearance and the specific conditional clearance. Different sets of radionuclide specific figures for unconditional clearance levels and for generic conditional clearance levels have already been established for some generic materials, building and concrete demolition debris among them. In order to guarantee the process a rigorous segregation and decontamination plan had put into place. The site has five controls to guarantee the complete efficiency throughout the process, which is applied to all materials. With these exhaustive controls it can be ensured that all the materials removed from the plant do not exceed the levels of activity imposed by the Spanish regulatory body. The main part the process control consists of performing integrated measurement of the containers using a sophisticated device known as the Box Counter, which analyses the radiological charge of the material contained in the as called 'Measurement and

  19. Chemical factors affecting fission product transport in severe LMFBR accidents

    International Nuclear Information System (INIS)

    Wichner, R.P.; Jolley, R.L.; Gat, U.; Rodgers, B.R.

    1984-10-01

    This study was performed as a part of a larger evaluation effort on LMFBR accident, source-term estimation. Purpose was to provide basic chemical information regarding fission product, sodium coolant, and structural material interactions required to perform estimation of fission product transport under LMFBR accident conditions. Emphasis was placed on conditions within the reactor vessel; containment vessel conditions are discussed only briefly

  20. Sustainable Materials Management (SMM) WasteWise Data

    Science.gov (United States)

    EPA??s WasteWise encourages organizations and businesses to achieve sustainability in their practices and reduce select industrial wastes. WasteWise is part of EPA??s sustainable materials management efforts, which promote the use and reuse of materials more productively over their entire lifecycles. All U.S. businesses, governments and nonprofit organizations can join WasteWise as a partner, endorser or both. Current participants range from small local governments and nonprofit organizations to large multinational corporations. Partners demonstrate how they reduce waste, practice environmental stewardship and incorporate sustainable materials management into their waste-handling processes. Endorsers promote enrollment in WasteWise as part of a comprehensive approach to help their stakeholders realize the economic benefits to reducing waste. WasteWise helps organizations reduce their impact on global climate change through waste reduction. Every stage of a product's life cycle??extraction, manufacturing, distribution, use and disposal??indirectly or directly contributes to the concentration of greenhouse gases (GHGs) in the atmosphere and affects the global climate. WasteWise is part of EPA's larger SMM program (https://www.epa.gov/smm). Sustainable Materials Management (SMM) is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change in how our society thinks about the use of natural resources

  1. Managing the materials of tomorrow through nomenclature standardization

    International Nuclear Information System (INIS)

    Garstka, R.M.; Kowalchick, D.P.

    1993-01-01

    Virginia Power's nuclear materials management organization has developed a new system to improve material visibility, accessibility, and useability in order to optimize inventory utilization. At a previous American Nuclear Society conference, the completion of the Material Nomenclature Standardization Project and the benefits realized through this effort were reported. This paper reports on new avenues that have been taken and the trials and successes experienced as a by-product of nomenclature standardization. New programs have been established to overcome problems of the past, gain control of inventory growth, and promote stock material utilization. At Virginia Power, the materials management organization is continually challenged to take the next step, strive to set and attain higher goals, and look beyond the status quo for now approaches to improved efficiency. As the standards program came to an end, we saw that our open-quotes first stepclose quotes was a big one. Standardization and computerized sorting solved the inability to retrieve parts without manufacturer's part numbers but also opened up new challenges. Building new systems and processes to make management of the inventory more effective was envisioned as an opportunity

  2. Accounting Systems for Heavy Water and Fissionable Materials; Comptabilite de l'Eau Lourde et des Matieres Fissiles; Sistema ucheta tyazheloj vody i delyashchikhsya materialov; Sistemas de Contabilidad para el Agua Pesada y los Materiales Fisionables

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, G. W.; Reid, H. B.; Jenkinson, W. G. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1966-02-15

    Detailed accounting and reporting procedures used by Atomic Energy of Canada Limited (AECL) for maintaining adequate records and control of heavy water supplies and stocks of fissionable materials are described, along with the duties and responsibilities of those administering the system. An appraisal is made of these procedures with respect to their adaptability for use in rapidly expanding research and power programmes. In particular the use of electronic data processing equipment is evaluated. A senior management committee is responsible for ensuring that there is a proper system for recording, reporting and controlling fissionable materials. The Production Planning and Control Branch (Pp and C B) of the Operations Division at the Chalk River Nuclear Laboratories (CRNL) is responsible to the committee for keeping the over-all records and for the general administration of the system. The duties involved are detailed in the report. The system for fissionable materials is segregated into several accountability units 15 of which are allocated to AECL departments and the others to Canadian industries and research organizations. A control ledger is kept by PP and CB for each of the units; however, the units are responsible for preparing detailed accounts of all material under their jurisdiction. The basic recording procedures covering the movement Of materials between units, the changing of forms within units, the handling of gains and losses, and disposals, are outlined in the report. The transfer of this data to IBM cards, the ultimate processing through an IBM 1401 computer and the preparation of reports for management approval are described. The heavy-water accounting system based on the same principles as used for the fissionable materials is explained. In this case the control ledger lists the pounds of D{sub 2}O allocated to each of the 15 accountability units. Again the basic recording methods and the use of a computer system are outlined. (author) [French

  3. Measurements of Short-Lived Fission Isomers

    Science.gov (United States)

    Finch, Sean; Bhike, Megha; Howell, Calvin; Krishichayan, Fnu; Tornow, Werner

    2016-09-01

    Fission yields of the short lived isomers 134mTe (T1 / 2 = 162 ns) and 136mXe (T1 / 2 = 2 . 95 μs) were measured for 235U and 238U. The isomers were detected by the γ rays associated with the decay of the isomeric states using high-purity germanium detectors. Fission was induced using both monoenergetic γ rays and neutrons. At TUNL's High-Intensity Gamma-ray Source (HI γS), γ rays of 9 and 11 MeV were produced . Monoenergetic 8 MeV neutrons were produced at TUNL's tandem accelerator laboratory. Both beams were pulsed to allow for precise time-gated spectroscopy of both prompt and delayed γ rays following fission. This technique offers a non-destructive probe of special nuclear materials that is sensitive to the isotopic identity of the fissile material.

  4. Project network-oriented materials management policy for complex projects

    DEFF Research Database (Denmark)

    Dixit, Vijaya; Srivastava, Rajiv K; Chaudhuri, Atanu

    2015-01-01

    This work devises a materials management policy integrated with project network characteristics of complex projects. It proposes a relative quantitative measure, overall criticality (OC), for prioritisation of items based on penalty incurred due to their non-availability. In complex projects...... managerial tacit knowledge which provides them enough flexibility to provide information in real form. Computed OC values can be used for items prioritisation and as shortage cost coefficient in inventory models. The revised materials management policy was applied to a shipbuilding project. OC values were......, practicing managers find it difficult to measure OC of items because of the subjective factors and intractable nature of penalties involved. However, using their experience, they can linguistically identify the antecedents and relate them to consequent OC. This work adopts Fuzzy Set Theory to capture...

  5. Environmentally sound management of hazardous waste and hazardous recyclable materials

    International Nuclear Information System (INIS)

    Smyth, T.

    2002-01-01

    Environmentally sound management or ESM has been defined under the Basel Convention as 'taking all practicable steps to ensure that hazardous wastes and other wastes are managed in a manner which will protect human health and the environment against the adverse effects which may result from such wastes'. An initiative is underway to develop and implement a Canadian Environmentally Sound Management (ESM) regime for both hazardous wastes and hazardous recyclable materials. This ESM regime aims to assure equivalent minimum environmental protection across Canada while respecting regional differences. Cooperation and coordination between the federal government, provinces and territories is essential to the development and implementation of ESM systems since waste management is a shared jurisdiction in Canada. Federally, CEPA 1999 provides an opportunity to improve Environment Canada's ability to ensure that all exports and imports are managed in an environmentally sound manner. CEPA 1999 enabled Environment Canada to establish criteria for environmentally sound management (ESM) that can be applied by importers and exporters in seeking to ensure that wastes and recyclable materials they import or export will be treated in an environmentally sound manner. The ESM regime would include the development of ESM principles, criteria and guidelines relevant to Canada and a procedure for evaluating ESM. It would be developed in full consultation with stakeholders. The timeline for the development and implementation of the ESM regime is anticipated by about 2006. (author)

  6. Sustainable Materials Management (SMM) Web Academy Webinar: Managing Wasted Food with Anaerobic Digestion: Incentives and Innovations

    Science.gov (United States)

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

  7. Detection of fission fragments by secondary emission; Detection des fragments de fission par emission secondaire

    Energy Technology Data Exchange (ETDEWEB)

    Audias, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    This fission fragment detecting apparatus is based on the principle that fragments traversing a thin foil will cause emission of secondary electrons. These electrons are then accelerated (10 kV) and directly detected by means of a plastic scintillator and associated photomultiplier. Some of the advantages of such a detector are, its rapidity, its discriminating power between alpha particles and fission fragments, its small energy loss in detecting the fragments and the relatively great amount of fissionable material which it can contain. This paper is subdivided as follows: a) theoretical considerations b) constructional details of apparatus and some experimental details and c) a study of the secondary emission effect itself. (author) [French] Le detecteur de fragments de fission que nous avons realise est base sur le principe de l'emission secondaire produite par les fragments de fission traversant une feuille mince: les electrons secondaires emis sont acceleres a des tensions telles (de l'ordre de 10 kV), qu'ils soient directement detectables par un scintillateur plastique associe a un photomultiplicateur. L'interet d'un tel detecteur reside: dans sa rapidite, sa tres bonne discrimination alpha, fission, la possibilite de detecter les fragments de fission avec une perte d'energie pouvant rester relativement faible, et la possibilite d'introduire des quantites de matiere fissile plus importantes que dans les autres types de detecteurs. Ce travail comporte: -) un apercu bibliographique de la theorie du phenomene, -) realisation et mise au point du detecteur avec etude experimentale de quelques parametres intervenant dans l'emission secondaire, -) etude de l'emission secondaire (sur la face d'emergence des fragments de fission) en fonction de l'energie du fragment et en fonction de l'epaisseur de matiere traversee avant emission secondaire, et -) une etude comparative de l'emission secondaire sur la face d'incidence et sur la face d'emergence des fragments de

  8. Joint EC-IAEA topical meeting on development of new structural materials for advanced fission and fusion reactor systems. PowerPoint presentations

    International Nuclear Information System (INIS)

    2009-01-01

    The key topics of the meeting are the following: Radiation damage phenomena and modelling of material properties under irradiation; On-going challenges in radiation materials science; Key material parameters and operational conditions of selected reactor designs; Microstructures and mechanical properties of nuclear structural materials; Pathways to development of new structural materials; Qualification of new structural materials; Advanced microstructure probing methods; Special emphasis is given to the application of nuclear techniques in the development and qualification of new structural materials.

  9. Welcome from INMM (Institute of Nuclear Materials Management)

    International Nuclear Information System (INIS)

    Satkowiak, L.

    2015-01-01

    The Institute of Nuclear Materials Management (INMM) is the premier professional society focused on safe and secure use of Nuclear Materials and the related nuclear scientific technology and knowledge. Its international membership includes government, academia, non-governmental organizations and industry, spanning the full spectrum all the way from policy to technology. The Institute's primary role include the promotion of research, the establishment of standards and the development of best practices, all centered around nuclear materials. It then disseminates this information through meetings, professional contacts, reports, papers, discussions, and publications. The formal structure of the INMM includes six technical divisions: Facility Operation; Materials Control and Accountability; Nonproliferation and Arms Control; Nuclear Security and Physical Protection; Packaging, Transportation and Disposition

  10. Management System for Regulating Transport of Radioactive Material

    International Nuclear Information System (INIS)

    Lopez Vietri, J.R.; Capadona, N.M.; Barenghi, L.G.

    2011-01-01

    The objective of this paper is to describe the main characteristics of the Nuclear Regulatory Authority (Autoridad Regulatoria Nuclear - ARN) management system applied to the transport of radioactive material, in Argentina. In the frame of ARN's quality policy, 'Protection against ionizing radiation on transport of radioactive materials' was selected as one of the regulatory processes, named TMR from now on. ARN's management system is integrally based on ISO 9000 system addressed to help organizations in designing and implementing their quality management systems. TMR process was split into five sub processes in order to facilitate the implementation of the system. Such sub processes were defined taking into account of the main functions developed by ARN in the branch of safe transport of radioactive materials. For each of this processes were specified their objectives, inputs, activities and outputs, clients and stakeholders, responsibilities, supporting documents, control of documents and records, control of non-conformances, monitoring and measurements, audits, feedback and improvement. Supporting documents for sub processes were issued, validated, reviewed and improved as an essential point to achieve continuous improving. Simultaneously, some indexes were defined to monitor and measures sub processes as a way to show objective evidence of conformity with objectives. Finally, as conclusions of this paper, they will be showed the main obstacles and troubleshooting found in the design and implementation of management system as well as their solutions and state of advance. (authors)

  11. Bulk material engineering and procurement management of NPS

    International Nuclear Information System (INIS)

    Fu Sanhong; Fan Kai

    2005-01-01

    In a nuclear power project, bulk material is often not in an outstanding position, compared to equipment, yet bulk material is one of most difficult part in engineering and procurement management. If the schedule is not in good control, it will seriously hamper the progress of the whole project. The article explores bulk material engineering and procurement management of NPS, illustrated with tables and graphs. First, major difficult aspects of bulk material procurement are described. On one hand, bulk material is really bulky in kind. We must have detail information of manufacturers, manufacture duration, and take good control of bidding schedule. On the other hand, when an order is placed, we need to make clear everything in the procurement package, such as material types, delivery batches, quantity of each batch and delivery schedule, which is a tremendous work. Then, a schedule conflict is analyzed: when an order is placed, the detail type and quantity cannot be defined (since the construction design is not finished yet). To settle this conflict, the concept 'Requirement Schedule Curve' is brought forward, along with the calculation method. To get this curve, we need to make use of the technical data of the reference power station, along with the site construction schedule, to produce a site quantity requirement curve varying from time, for each type of material. Last, based on the 'Requirement Schedule Curve', we are able to build a unified database to control the engineering, procurement, manufacturing and delivery schedule, so as to procure precisely, manufacture on time, and optimize the storage. In this way, the accurate control of bulk material engineering and procurement schedule can be achieved. (authors)

  12. Volatilization and reaction of fission products in flowing steam

    International Nuclear Information System (INIS)

    Johnson, I.; Steidl, D.V.; Johnson, C.E.

    1985-01-01

    The principal risk to the public from nuclear power plants derives from the highly radioactive atoms (fission products) generated as energy is produced in the nuclear fuel. The revolatilization of fission products from reactor system surfaces due to self-heating by radioactive decay has become a complicating factor in the source-term redefinition effort. It has had a major impact on calculations of fission product distributions in accident safety analyses. The focus of this research effort was to investigate the volatilization and transport of fission products and control rod materials in a flowing gaseous steam-hydrogen mixture. Fission product and control rod materials in various combinations were studied including CsI, CsOH, TeO 2 , SrO, Ag, In, Cd and Mn. The vaporization behavior of the deposits were characterized with respect to vaporization rates, chemical species and downstream transport behavior

  13. Process material management in the Space Station environment

    Science.gov (United States)

    Perry, J. L.; Humphries, W. R.

    1988-01-01

    The Space Station will provide a unique facility for conducting material-processing and life-science experiments under microgravity conditions. These conditions place special requirements on the U.S. Laboratory for storing and transporting chemicals and process fluids, reclaiming water from selected experiments, treating and storing experiment wastes, and providing vacuum utilities. To meet these needs and provide a safe laboratory environment, the Process Material Management System (PMMS) is being developed. Preliminary design requirements and concepts related to the PMMS are addressed, and the MSFC PMMS breadboard test facility and a preliminary plan for validating the overall system design are discussed.

  14. Simulation of Fission Product Liftoff Behavior During Depressurization Transients

    International Nuclear Information System (INIS)

    Tak, Nam-il; Yoon, Churl; Lee, Sung Nam

    2016-01-01

    As one of crucial technologies for the NHDD project, the development of the GAMMA-FP code is on-going. The GAMMA-FP code is targeted for fission product transport analysis under accident conditions. A well-known experiment named COMEDIE considered two important phenomena, i.e., fission product plateout and liftoff, for fission product transport within the primary circuit of a prismatic high temperature gas cooled reactor. The accumulated fission products on the structural material via the plateout can be liftoff during a blowdown phase after a pipe break accident. Since the fission product liftoff can increase a radioactivity risk, it is important to predict the amount of fission product liftoff during depressurization accidents. In this work, a model for fission product liftoff is implemented into the GAMMA-FP code and the GAMMA-FP code with the implemented model is validated using the COMEDIE blowdown test data. The results of GAMMA-FP show that the GAMMA-FP code can reliably simulate a pressure transient during blowdown phase after a pipe break accident. In addition, a reasonable amount of fission product liftoff was predicted by the GAMMA-FP code. The maximum difference between the measured and predicted liftoff fraction was less than a factor of 10. More in-depth study is required to increase the accuracy of prediction for a fission product liftoff

  15. Fission Detection Using the Associated Particle Technique

    International Nuclear Information System (INIS)

    R.P. Keegan; J.P. Hurley; J.R. Tinsley; R. Trainham; S.C. Wilde

    2008-01-01

    A beam of tagged 14 MeV neutrons from the deuterium-tritium (DT) reaction is used to induce fission in a target composed of depleted uranium. The generator yield is 10 7 neutrons/second radiated into a 4 x 4 in. NaI detectors are used for gamma-ray detection. The fission process is known to produce multiple gamma-rays and neutrons. Triple coincidences (α-γ-γ) are measured as a function of neutron flight time up to 90 ns after fission, where the α-particle arises from the DT reaction. A sudden increase in the triple coincidence rate at the location of the material is used to localize and detect fission in the interrogated target. Comparisons are made with experiment runs where lead, tungsten, and iron were used as target materials. The triple coincidence response profile from depleted uranium is noted to be different to those observed from the other target materials. The response from interrogation targets composed of fissile material is anticipated to be even more unique than that observed from depleted uranium

  16. Hazardous materials and waste management a guide for the professional hazards manager

    CERN Document Server

    Cheremisinoff, Nicholas P

    1995-01-01

    The management of hazardous materials and industrial wastes is complex, requiring a high degree of knowledge over very broad technical and legal subject areas. Hazardous wastes and materials are diverse, with compositions and properties that not only vary significantly between industries, but within industries, and indeed within the complexity of single facilities. Proper management not only requires an understanding of the numerous and complex regulations governing hazardous materials and waste streams, but an understanding and knowledge of the treatment, post-treatment, and waste minimizatio

  17. Strategic raw materials. Risk management; Strategische Rohstoffe. Risikovorsorge

    Energy Technology Data Exchange (ETDEWEB)

    Bertau, Martin [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Technische Chemie; Gutzmer, Jens [Helmholtz-Institut fuer Ressourcentechnologie Freiberg (Germany); Matschullat, Joerg (ed.) [Technische Univ. Bergakademie Freiberg (Germany). Interdisziplinaeres Oekologisches Zentrum (IOeZ); Kausch, Peter

    2014-07-01

    This volume is divided into four chapters: (1) Raw material management, (2) Primary raw materials, (3) Secondary raw materials and recycling, (4). Processing and products. The topics for the chapter ''Raw material management'' are: Substitution of raw materials - framework conditions and implementation; Thales: Strategic raw materials; Time for cooperation between the EU and China in raw materials policy; Availability of elements for the semiconductor industry; Market price risks of raw material-intensive companies - identification and management. The topics on the second item ''Primary raw materials'' are: The supply of economic-critical raw materials - A search and analysis for causes; Lithium extraction from primary raw materials - state and perspectives; The global market of rare earths - A balancing act; Rare earth deposits in Namibia; New technologies in exploration and discovery - Focus on activities in Europe. The third chapter, ''Secondary Raw Materials and Recycling'', covered the topics: Technology metals - Systemic Requirements along the recycling chain; Integrated re-use of high-tech and greentech wastes; From the sewage sludge ash to the phosphorus fertilizer RecoPhos P38 in the stress field of waste, fertilizer and soil protection. In chapter 4. ''Processing and products'' are the topics: Treatment and processing of rare earth metals; Processing of mineral resources - opportunities and challenges; Consequences of modern germanium chemistry; Strategic resources - Risk management. A review and outlook with a pinch of fantasy.. [German] Dieser Band gliedert sich in vier Kapitel: (1) Rohstoffwirtschaft, (2) Primaere Rohstoffe, (3) Sekundaere Rohstoffe und Recycling,(4). Verarbeitung und Produkte. Die Themen zum Kapitel ''Rohstoffwirtschaft'' sind: Substitution von Rohstoffen - Rahmenbedingungen und Umsetzung; Thales: Strategische Rohstoffe; Zeit fuer

  18. Methods to Collect, Compile, and Analyze Observed Short-lived Fission Product Gamma Data

    Energy Technology Data Exchange (ETDEWEB)

    Finn, Erin C.; Metz, Lori A.; Payne, Rosara F.; Friese, Judah I.; Greenwood, Lawrence R.; Kephart, Jeremy D.; Pierson, Bruce D.; Ellis, Tere A.

    2011-09-29

    A unique set of fission product gamma spectra was collected at short times (4 minutes to 1 week) on various fissionable materials. Gamma spectra were collected from the neutron-induced fission of uranium, neptunium, and plutonium isotopes at thermal, epithermal, fission spectrum, and 14-MeV neutron energies. This report describes the experimental methods used to produce and collect the gamma data, defines the experimental parameters for each method, and demonstrates the consistency of the measurements.

  19. Nuclear fission and neutron-induced fission cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    James, G.D.; Lynn, J.E.; Michaudon, A.; Rowlands, J.; de Saussure, G.

    1981-01-01

    A general presentation of current knowledge of the fission process is given with emphasis on the low energy fission of actinide nuclei and neutron induced fission. The need for and the required accuracy of fission cross section data in nuclear energy programs are discussed. A summary is given of the steps involved in fission cross section measurement and the range of available techniques. Methods of fission detection are described with emphasis on energy dependent changed and detector efficiency. Examples of cross section measurements are given and data reduction is discussed. The calculation of fission cross sections is discussed and relevant nuclear theory including the formation and decay of compound nuclei and energy level density is introduced. A description of a practical computation of fission cross sections is given.

  20. Chemistry of actinides and fission products

    International Nuclear Information System (INIS)

    Pruett, D.J.; Sherrow, S.A.; Toth, L.M.

    1988-01-01

    This task is concerned primarily with the fundamental chemistry of the actinide and fission product elements. Special efforts are made to develop research programs in collaboration with researchers at universities and in industry who have need of national laboratory facilities. Specific areas currently under investigation include: (1) spectroscopy and photochemistry of actinides in low-temperature matrices; (2) small-angle scattering studies of hydrous actinide and fission product polymers in aqueous and nonaqueous solvents; (3) kinetic and thermodynamic studies of complexation reactions in aqueous and nonaqueous solutions; and (4) the development of inorganic ion exchange materials for actinide and lanthanide separations. Recent results from work in these areas are summarized here

  1. Development of the RFID System for nuclear materials management

    International Nuclear Information System (INIS)

    Chen, K.; Tsai, H.; Liu, Y.Y.

    2008-01-01

    Radio frequency identification (RFID) is one of today's most rapidly growing technologies in the automatic data collection industry. Although commercial applications are already widespread, the use of this technology for managing nuclear materials is only in its infancy. Employing an RFID system has the potential to offer an immense payback: enhanced safety and security, reduced need for manned surveillance, real-time access to status and event history data, and overall cost-effectiveness. The Packaging Certification Program (PCP) in the U.S. Department of Energy's (DOE's) Office of Environmental Management (EM), Office of Packaging and Transportation (EM-63), is developing an RFID system for nuclear materials management. The system consists of battery-powered RFID tags with onboard sensors and memories, a reader network, application software, a database server and web pages. The tags monitor and record critical parameters, including the status of seals, movement of objects, and environmental conditions of the nuclear material packages in real time. They also provide instant warnings or alarms when preset thresholds for the sensors are exceeded. The information collected by the readers is transmitted to a dedicated central database server that can be accessed by authorized users across the DOE complex via a secured network. The onboard memory of the tags allows the materials manifest and event history data to reside with the packages throughout their life cycles in storage, transportation, and disposal. Data security is currently based on Advanced Encryption Standard-256. The software provides easy-to-use graphical interfaces that allow access to all vital information once the security and privilege requirements are met. An innovative scheme has been developed for managing batteries in service for more than 10 years without needing to be changed. A miniature onboard dosimeter is being developed for applications that require radiation surveillance. A field

  2. The evaluation for reference fission yield of 238U fission

    International Nuclear Information System (INIS)

    Liang Qichang; Liu Tingjin

    1998-01-01

    In the fission yield data evaluation and measurement, the reference yield is very important, good or poor recommended or measurement values depend upon the reference data to a great extent. According to the CRP's requirement, the evaluation of reference fission yields have been and will be carried out in CNDC, as a part of the whole work (contract No.9504/R 0 /Regular Budget Fund), the evaluation for 29 reference fission yields of 15 product nuclides from 238 U fission have been completed

  3. Risk management of onsite transportation of hazardous materials

    International Nuclear Information System (INIS)

    Wang, O.S.; Field, J.G.

    1992-10-01

    The US Department of Energy's (DOE) Hanford Site has recently undergone a significant change in its mission. The focus of site-wide operations has been shifted from production to environmental restoration. As a result, there is a significant increase in quantities of the radioactive wastes and other hazardous materials to be packaged and transported onsite. In response to the elevated transportation activities, the operations and engineering contractor for the Hanford Site, Westinghouse Hanford Company (Westinghouse Hanford), is proposing an integrated risk assessment methodology and risk management strategy to further enhance the safe operations of the onsite packaging and transportation activities involving radioactive and other hazardous materials. This paper summarizes Westinghouse Hanford's proposed risk assessment and risk management methodology for onsite transportation of hazardous materials. The proposed Westinghouse Hanford risk assessment and management methodology for onsite packaging and transportation has three integral parts: risk assessment, risk acceptance criteria, and risk minimization process. The purposes are to ensure that the risk for each ongoing transportation activity is acceptable, and to further reduce the overall risk for current and future onsite transportation activities

  4. Guidance Tools for Use in Nuclear Material Management Decisions Making

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G. V.; Baker, D. J.; Sorenson, K. B.; Boeke, S. G.

    2002-02-26

    This paper describes the results of Recommendation 14 of the Integrated Nuclear Materials Management Plan (INMMP) which was the product of a management initiative at the highest levels of the Department of Energy responding to a congressional directive to accelerate the work of achieving integration and cutting long-term costs associated with the management of nuclear materials, with the principal focus on excess materials. The INMMP provided direction to ''Develop policy-level decision support tools to support long-term planning and decision making.'' To accomplish this goal a team from the Savannah River Site, Sandia National Laboratories, Idaho National Engineering and Environmental Laboratory (INEEL), and the U.S. Department of Energy experienced in the decision-making process developed a Guidebook to Decision-Making Methods. The goal of the team organized to implement Recommendation 14 was to instill transparency, consistency, rigor, and discipline in the DOE decision process. The guidebook introduces a process and a selection of proven methods for disciplined decision-making so that the results are clearer, more transparent, and easier for reviewers to understand and accept. It was written to set a standard for a consistent decision process.

  5. Radiation effects on ion exchange materials used in waste management

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1982-01-01

    Radiation damage to process materials used in radioactive waste management has been a topic of little interest in the past. In recent years, as a result of the increasing number of accidents reported in the open literature, there has been some desire to examine the radiation decomposition of ion exchange materials and its consequences to the interim and long-term management of radioactive wastes. Extensive literature surveys and some confirmatory laboratory investigations conducted conclusively demonstrate that radiation damage to ion exchangers has the potential to cause problems of corrosion, elution of adsorbed ionic species, generation of flammable and explosive gaseous products and agglomeration of particulates to form rigid monoliths. This paper is an overview of present knowledge and a presentation of the results of our investigations of this phenomenon. The distinct lack of systematic studies to evaluate the problems of radiation damage to process materials used in the consolidation and isolation of high specific activity radionuclides still leaves considerable gaps in our knowledge of the processes and consequences of radiation effects on ion exchangers used in radioactive waste management

  6. Fission fragment angular momentum

    International Nuclear Information System (INIS)

    Frenne, D. De

    1991-01-01

    Most of the energy released in fission is converted into translational kinetic energy of the fragments. The remaining excitation energy will be distributed among neutrons and gammas. An important parameter characterizing the scission configuration is the primary angular momentum of the nascent fragments. Neutron emission is not expected to decrease the spin of the fragments by more than one unit of angular momentum and is as such of less importance in the determination of the initial fragment spins. Gamma emission is a suitable tool in studying initial fragment spins because the emission time, number, energy, and multipolarity of the gammas strongly depend on the value of the primary angular momentum. The main conclusions of experiments on gamma emission were that the initial angular momentum of the fragments is large compared to the ground state spin and oriented perpendicular to the fission axis. Most of the recent information concerning initial fragment spin distributions comes from the measurement of isomeric ratios for isomeric pairs produced in fission. Although in nearly every mass chain isomers are known, only a small number are suitable for initial fission fragment spin studies. Yield and half-life considerations strongly limit the number of candidates. This has the advantage that the behavior of a specific isomeric pair can be investigated for a number of fissioning systems at different excitation energies of the fragments and fissioning nuclei. Because most of the recent information on primary angular momenta comes from measurements of isomeric ratios, the global deexcitation process of the fragments and the calculation of the initial fragment spin distribution from measured isomeric ratios are discussed here. The most important results on primary angular momentum determinations are reviewed and some theoretical approaches are given. 45 refs., 7 figs., 2 tabs

  7. Lunar surface fission power supplies: Radiation issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Lee, S.K.

    1994-01-01

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to these seen in free space. For a well designed shield, the additional mass required to be brought fro earth should be less than 1000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield

  8. Lunar surface fission power supplies: Radiation issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Lee, S.K.

    1994-01-01

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to those seen in free space. For a well designed shield, the additional mass required to be brought from earth should be less than 1,000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield

  9. Fission product detection

    International Nuclear Information System (INIS)

    Liatard, E.; Akrouf, S.; Bruandet, J.F

    1987-01-01

    The response of photovoltaic cells to heavy ions and fission products have been tested on beam. Their main advantages are their extremely low price, their low sensitivity to energetic light ions with respect to fission products, and the possibility to cut and fit them together to any shape without dead zone. The time output signals of a charge sensitive preamplifier connected to these cells allows fast coincidences. A resolution of 12ns (F.W.H.M.) have been measured between two cells [fr

  10. Low energy nuclear fission

    International Nuclear Information System (INIS)

    Nifenecker, H.

    1982-02-01

    In these lectures we present the liquid drop model of fission and compare some of its prediction with experiment. The liquid drop analogy allows to define in a rather simple and intuitive way a number of useful concepts and possible observables. We then discuss, using the example of the oscillator model, the generality of shell effects. We show how a synthesis of the liquid drop model and of the shell model can be made using the Strutinsky shell averaging procedure. Some experimental data related to the existence of shape isomers are presented and discussed. We conclude by discussing some aspects, both experimental and theoretical, of fission dynamics

  11. Fission of heavy hypernuclei

    International Nuclear Information System (INIS)

    Nifenecker, H.

    1993-01-01

    The results on delayed and prompt fission of heavy hypernuclei obtained by the LEAR PS177 collaboration are recalled and discussed. It is shown that the hypernuclei life-times can be explained in term of a weak strangeness violating lambda-nucleon interaction with a cross section close to 6.0 10 -15 barns. The lambda attachment function is shown to be sensitive to the scission configuration, just before fission, and to the neck dynamics. This function provides a new way to study the nuclear scission process. (author)

  12. Fission gas measuring technology

    International Nuclear Information System (INIS)

    Lee, Hyung Kwon; Kim, Eun Ka; Hwang, Yong Hwa; Lee, Eun Pyo; Chun, Yong Bum; Seo, Ki Seog; Park, Dea Gyu; Chu, Yong Sun; Ahn, Sang Bok.

    1998-02-01

    Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs

  13. Fission gas measuring technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyung Kwon; Kim, Eun Ka; Hwang, Yong Hwa; Lee, Eun Pyo; Chun, Yong Bum; Seo, Ki Seog; Park, Dea Gyu; Chu, Yong Sun; Ahn, Sang Bok

    1998-02-01

    Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs.

  14. Fission modelling with FIFRELIN

    International Nuclear Information System (INIS)

    Litaize, Olivier; Serot, Olivier; Berge, Leonie

    2015-01-01

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ, e - ). The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the

  15. Low energy nuclear fission

    International Nuclear Information System (INIS)

    Nifenecker, H.

    1980-08-01

    In these lectures the liquid drop model of fission is presented and some of its predictions compared with experiment. The liquid drop analogy allows to define in a rather simple and intuitive way a number of useful concepts and possible observables. It is shown how a synthesis of the liquid drop model and of the shell model can be made using the Strutinsky shell averaging procedure. Some experimental data related to the existence of shape isomers are presented and discussed. We conclude by discussing some aspects, both experimental and theoretical, of fission dynamics

  16. Investigation of thermal management materials for automotive electronic control units

    International Nuclear Information System (INIS)

    Mallik, Sabuj; Ekere, Ndy; Best, Chris; Bhatti, Raj

    2011-01-01

    Today's electronics packages are smaller and more powerful than ever before. This leads to ever increasing thermal challenges for the systems designer. The automotive electronic control unit (ECU) package faces the same challenge of thermal management as the industry in general. This is coupled with the latest European Union legislation (Euro 6 standard) which forced the ECU manufacturers to completely re-design their ECU platform with improved hardware and software capability. This will result in increased power densities and therefore, the ability to dissipate heat will be a key factor. A higher thermal conductivity (TC) material for the ECU housing (than the currently used Aluminium) could improve heat dissipation from the ECU. This paper critically reviews the state-of-the-art in thermal management materials which may be applicable to an automotive ECU. This review shows that of the different materials currently available, the Al/SiC composites in particular have very good potential for automotive ECU application. In terms of metal composites processing, the liquid metal infiltration process is recommended as it has a lower processing cost and it also has the ability to produce near net-shape materials.

  17. Introduction to Special Edition (of the Journal of Nuclear Materials Management) on Reducing the Threat from Radioactive Materials

    International Nuclear Information System (INIS)

    Mladineo, Stephen V.

    2007-01-01

    Introductory article for special edition of the JOURNAL OF NUCLEAR MATERIALS MANAGEMENT outlining the Institute of Nuclear Materials Management Nonproliferation and Arms Control Technical Division. In particular the International Nuclear and Radiological Security Standing Committee and its initial focus covering four topical areas--Radiological Threat Reduction, Nuclear Smuggling and Illicit Trafficking, Countering Nuclear Terrorism, and Radiological Terrorism Consequence Management

  18. The Radiological and Thermal Characteristics of Fission Waste from a Deep-Burn Fusion-Fission Hybrid (LIFE) and Implications for Repository Performance

    International Nuclear Information System (INIS)

    Shaw, H.F.; Blink, J.; Farmer, J.; Latkowski, J.; Kramer, K.

    2009-01-01

    We are studying the use of a Laser Inertial-confinement Fusion Engine (LIFE) to drive a hybrid fusion-fission system that can generate electrical power and/or burn nuclear waste. The system uses the neutrons from laser driven ICF to produce tritium and to drive nuclear reactions in a subcritical fission blanket. The fusion neutron source obviates the need for a self-sustaining chain reaction in the fission blanket. Either fissile or fertile could be used as fission fuel, thus eliminating the need for isotopic enrichment. The 'driven' system potentially allows very high levels of burnup to be reached, extracting a large fraction of the available energy in the fission fuel without the need for reprocessing. In this note, we discuss the radionuclide inventory of a depleted uranium (DU) fuel burned to greater than 95% FIMA (Fissions per Initial heavy Metal Atom), the implications for thermal management of the resulting waste, and the implications of this waste for meeting the dose standards for releases from a geological repository for high-level waste. The fission waste discussed here would be that produced by a LIFE hybrid with a 500-MW fusion source. The fusion neutrons are multiplied and moderated by a sequence of concentric shells of materials before encountering the fission fuel, and fission in this region is largely due to thermal neutrons. The fission blanket consists of 40 metric tons (MT) of DU, assumed to be in the form of TRISO-like UOC fuel particles embedded in 2-cm-diameter graphite pebbles. (It is recognized that TRISO-based fuel may not reach the high burnup of the fertile fuel considered here, and other fuel options are being investigated. We postulate the existence of a fuel that can reach >95% FIMA so that the waste disposal implications of high burnup can be assessed.) The engine and plant design considered here would receive one load of fission fuel and produce ∼2 GWt of power (fusion + fission) over its 50- to 70-year lifetime. Neutron and

  19. Behavior of solid fission products in irradiated fuel

    International Nuclear Information System (INIS)

    Song, Ung Sup; Jung, Yang Hong; Kim, Hee Moon; Yoo, Byun Gok; Kim, Do Sik; Choo, Yong Sun; Hong, Kwon Pyo

    2004-01-01

    Many fission products are generated by fission events in UO 2 fuel under irradiation in nuclear reactor. Concentration of each fission product is changed by conditions of neutron energy spectrum, fissile material, critical thermal power, irradiation period and cooling time. Volatile materials such as Cs and I, the fission products, degrade nuclear fuel rod by the decrease of thermal conductivity in pellet and the stress corrosion cracking in cladding. Metal fission products (white inclusion) make pellet be swelled and decrease volume of pellet by densification. It seems that metal fission products are filled in the pore in pellet and placed between UO 2 lattices as interstitial. In addition, metal oxide state may change structural lattice volume. Considering behavior of fission products mentioned above, concentration of them is important. Fission products could be classified as bellows; solid solution in matrix : Sr, Zr, Nb, Y, La, Ce, Pr, Nd, Pm, Sm - metal precipitates : Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sb, Te - oxide precipitates : Ba, Zr, Nb, Mo, (Rb, Cs, Te) - volatile and gases : Kr, Xe, Br, I, (Rb, Cs, Te)

  20. Fission Product Library and Resource

    Energy Technology Data Exchange (ETDEWEB)

    Burke, J. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Padgett, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-29

    Fission product yields can be extracted from an irradiated sample by performing gamma ray spectroscopy on the whole sample post irradiation. There are several pitfalls to avoid when trying to determine a specific isotope's fission product yield.

  1. Spontaneous fission of superheavy nuclei

    Indian Academy of Sciences (India)

    The fission-like configurations are used for the total deformation energy calculations. A ... oscillator potential for the two fission fragment regions reads as ... Beyond this limit, the contribution of more remote levels is negligible. Once the density ...

  2. Mirror fusion--fission hybrids

    International Nuclear Information System (INIS)

    Lee, J.D.

    1978-01-01

    The fusion-fission concept and the mirror fusion-fission hybrid program are outlined. Magnetic mirror fusion drivers and blankets for hybrid reactors are discussed. Results of system analyses are presented and a reference design is described

  3. The Commission's research action programme on the development of nuclear fission energy

    International Nuclear Information System (INIS)

    1984-01-01

    For its 'Framework Programme 1984-1987' the Commission has defined the major goals for a European Scientific and Technical Strategy. One of the means to reduce the energy dependence of the Community, which is an important objective, is to favour the development of nuclear fission energy. As electricity production by nuclear reactors has reached industrial maturity, the Community activities are directed mainly to safety aspects, in order to ensure the protection of workers and the general public, against hazards linked to operations in the nuclear fuel cycle. A description of the main features of the five sub-programmes on nuclear fission energy is given below; these programmes are: reactor safety; nuclear fuels and actinides research; management of radioactive waste; safeguarding and management of fissile materials; decommissioning of nuclear installations. The research and development work is carried out either by the Commission's Joint Research Center or by organizations and companies of the Member Countries, with the Commission's financial support. (author)

  4. Separation Of Uranium From Fission Products Zr And Ru With 30% TBP (Tri Butyl Phosphate) Dodecane In Nitric Acid Medium As An Extract Material

    International Nuclear Information System (INIS)

    Herdady, R. Didiek; Masduki, Busron; Sigit

    2000-01-01

    Separation of uranium from fission products Zr and Ru in batch process with Tbp 30% - dodecane in nitric acid medium has been investigated. The extraction was carried out on various acidity of 1,006 M, 1.990 M, 2,980 M, 4,006 M, and 5,006 M, and uranium concentration in feed of 100.30 g/l; 149.96 g/l, 250.30 g/l and 300.7 g/l. The results showed that equilibrium of extraction was achieved at 25 minutes, enhancement factor of ruthenium increased and of zirconium decreased Utilization of grand concentration of uranium in feed caused decreasing of distribution coefficient, zirconium and ruthenium. The better contribution of experiments was obtained at the acidity of 2 M and uranium concentration in feed of 149.9 g/l with the decontamination factor of zirconium, FD zr-u was 1,65 and of ruthenium, FD ru-u was 1,52

  5. Process for treating fission waste

    International Nuclear Information System (INIS)

    Rohrmann, C.A.; Wick, O.J.

    1983-01-01

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste

  6. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

  7. Fission Surface Power Technology Development Update

    Science.gov (United States)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2011-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and places beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited or environmental conditions are challenging (e.g., extreme cold, dust storms). NASA and the Department of Energy are maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for a fission surface power system. The Fission Surface Power Systems project has focused on subscale component and subsystem demonstrations to address the feasibility of a low-risk, low-cost approach to space nuclear power for surface missions. Laboratory demonstrations of the liquid metal pump, reactor control drum drive, power conversion, heat rejection, and power management and distribution technologies have validated that the fundamental characteristics and performance of these components and subsystems are consistent with a Fission Surface Power preliminary reference concept. In addition, subscale versions of a non-nuclear reactor simulator, using electric resistance heating in place of the reactor fuel, have been built and operated with liquid metal sodium-potassium and helium/xenon gas heat transfer loops, demonstrating the viability of establishing system-level performance and characteristics of fission surface power technologies without requiring a nuclear reactor. While some component and subsystem testing will continue through 2011 and beyond, the results to date provide sufficient confidence to proceed with system level technology readiness demonstration. To demonstrate the system level readiness of fission surface power in an operationally relevant environment (the primary goal of the Fission Surface Power Systems project), a full scale, 1/4 power Technology Demonstration Unit (TDU) is under development. The TDU will consist of a non-nuclear reactor simulator, a sodium-potassium heat transfer loop, a power

  8. 50 years of nuclear fission

    International Nuclear Information System (INIS)

    Hilscher, D.

    1989-01-01

    The article tells the story of the discovery of nuclear fission in Berlin 50 years ago by Otto Hahn and Fritz Strassmann in cooperation with Lise Meitner. 50 years later nuclear fission is still a subject of research. Some question remain unanswered. Selected new research results are used to discuss the dynamics of the collective movement of the elementary nuclear fission process. (orig.) [de

  9. Fission dynamics of hot nuclei

    Indian Academy of Sciences (India)

    2014-04-05

    Apr 5, 2014 ... across the fission barrier is very small or in other words, the fission barrier is much ... of this shape evolution, the gross features of the fissioning nucleus can be described ..... [7] Y Abe, C Gregoire and H Delagrange, J. Phys.

  10. Status of fission yield measurements

    International Nuclear Information System (INIS)

    Maeck, W.J.

    1979-01-01

    Fission yield measurement and yield compilation activities in the major laboratories of the world are reviewed. In addition to a general review of the effort of each laboratory, a brief summary of yield measurement activities by fissioning nuclide is presented. A new fast reactor fission yield measurement program being conducted in the US is described

  11. The discovery of fission

    International Nuclear Information System (INIS)

    McKay, H.A.C.

    1978-01-01

    In this article by the retired head of the Separation Processes Group of the Chemistry Division, Atomic Energy Research Establishment, Harwell, U.K., the author recalls what he terms 'an exciting drama, the unravelling of the nature of the atomic nucleus' in the years before the Second World War, including the discovery of fission. 12 references. (author)

  12. A cost-benefit analysis for materials management information systems.

    Science.gov (United States)

    Slapak-Iacobelli, L; Wilde, A H

    1993-02-01

    The cost-benefit analysis provided the system planners with valuable information that served many purposes. It answered the following questions: Why was the CCF undertaking this project? What were the alternatives? How much was it going to cost? And what was the expected outcome? The process of developing cost-benefit the document kept the project team focused. It also motivated them to involve additional individuals from materials management and accounts payable in its development. A byproduct of this involvement was buy-in and commitment to the project by everyone in these areas. Consequently, the project became a team effort championed by many and not just one. We were also able to introduce two new information system processes: 1) a management review process with goals and anticipated results, and 2) a quality assurance process that ensured the CCF had a better product in the end. The cost-benefit analysis provided a planning tool that assisted in successful implementation of an integrated materials management information system.

  13. Management of radioactive materials and wastes: status, stakes and perspectives

    International Nuclear Information System (INIS)

    Champion, Didier; Devin, Patrick; Tanguy, Loic; Bernard, Herve; Minon, Jean-Paul; Leclaire, Arnaud; Gilli, Ludivine; Lheureux, Yves; Pescatore, Claudio; Barbey, Pierre; Schneider, Thierry; Gay, Didier; Forest, Isabelle; Hemidy, Pierre-Yves; Baglan, Nicolas; Desnoyers, Bruno; Pieraccini, Michel; Poncet, Philippe; Seguin, Bertille; Calvez, Marianne; Leclerc, Elisabeth; Bancelin, Estelle; Fillion, Eric; Segura, Yannick; Vernaz, Etienne; Granier, Guy; De Preter, Peter; Petitfrere, Michael; Laye, Frederic; Nakamura, Takashi; Gin, Stephane; Lebaron-Jacobs, Laurence; Dinant, Sophie; Vacquier, Blandine; Crochon, Philippe; Griffault, Lise; Smith, Graham

    2013-10-01

    These technical days were organized by the Environment section of the French Society of Radiation Protection (SFRP). Time was given to some exchange about the societal aspects of radioactive waste management as well as about the legal context but the most part of the debates delt with the actual management modalities of the different types of wastes, both in France and in foreign countries, and with the related stakes, in particular in terms of impact. This document brings together the presentations (slides) of the following talks: - Contributions of radiation protection to the long-term safety management of radioactive wastes (Jean-Paul MINON - ONDRAF); - The national inventory of radioactive materials and wastes (Arnaud LECLAIRE - ANDRA); - The high activity, medium activity-long living wastes in debate - a co-building approach (ANCCLI/Clis of Bure/IRSN) to share stakes, enlighten, and develop thought (Ludivine GILLI - IRSN, Yves LHEUREUX - ANCCLI); - Social aspects of Radioactive Waste Management - The International Learning (Claudio PESCATORE - AEN/OCDE); - Citizens involvement and ACRO's point of view on radioactive wastes management (Pierre BARBEY - ACRO); - New CIPR recommendations about the geologic disposal of long-living radioactive wastes (Thierry SCHNEIDER - CEPN); - Overview of processes under the views of radiation protection principles (Didier GAY - IRSN); - The national plan of radioactive materials and wastes management (Loic TANGUY - ASN); - Joint convention on spent fuel management safety and on radioactive waste management safety - status and main stakes (Isabelle FOREST - ASN); - Transport of radioactive wastes (Bruno DESNOYERS - AREVA); - Optimisation and limitation of the environmental impacts of very-low level wastes - valorisation and processes selection (Michel PIERACCINI - EDF), Philippe PONCET - AREVA); - Management of hospital wastes - Example of Montpellier's University Regional Hospital (Bertille SEGUIN - CHRU de Montpellier); - Waste

  14. Mission: Possible. Center of Excellence for Hazardous Materials Management

    International Nuclear Information System (INIS)

    Bartlett, W.T.; Prather-Stroud, W.

    2006-01-01

    The Center of Excellence for Hazardous Materials Management (CEHMM) was established in May 2004 as a nonprofit research organization. Its purpose is to develop a sustainable technical/scientific community located in Carlsbad, New Mexico, that interacts worldwide to find solutions to hazardous materials management issues. An important part of the mission is to achieve improved protection of worker safety, human health, and the environment. Carlsbad has a large technical community due to the presence of the Waste Isolation Pilot Plant (WIPP) and its many contractors and support organizations. These groups include the Carlsbad Environmental Monitoring and Research Center, Washington Group International, Los Alamos National Laboratory, and Sandia National Laboratories. These organizations form the basis of a unique knowledge community with strengths in many areas, such as geosciences, actinide chemistry, environmental monitoring, and waste transportation. CEHMM works cooperatively with these organizations and others to develop projects that will maintain this knowledge community beyond the projected closure date of WIPP. At present, there is an emphasis in bio-monitoring, air monitoring, hazardous materials educational programs, and endangered species remediation. CEHMM is also currently working with a group from the American Nuclear Society to help facilitate their conference scheduled for April 2006 in Carlsbad. CEHMM is growing rapidly and is looking forward to a diverse array of new projects. (authors)

  15. Brief description of out-of-pile test facilities for study in corrosion and fission product behaviour in flowing sodium

    International Nuclear Information System (INIS)

    Iizawa, K.; Sekiguchi, N.; Atsumo, H.

    1976-01-01

    The experimental methods to perform tests for study in corrosion and fission products behaviour in flowing sodium are outlined. Flow diagrams for the activated materials and fission products behaviour test loop are given

  16. Fission product and aerosol behaviour within the containment

    International Nuclear Information System (INIS)

    Beard, A.M.; Benson, C.G.; Bowsher, B.R.; Dickinson, S.; Nichols, A.L.

    1990-04-01

    Experimental studies have been undertaken to characterise the behaviour of fission products in the containment of a pressurised water reactor during a severe accident. The following aspects of fission product transport have been studied: (a) aerosol nucleation, (b) vapour transport processes, (c) chemical forms of high-temperature vapours, (d) interaction of fission product vapours with aerosols generated from within the reactor core, (e) resuspension processes, (f) chemistry in the containment. Chemical effects have been shown to be important in defining and quantifying fission product source terms in a wide range of accident sequences. Both the chemical forms of the fission product vapours and their interactions with reactor materials aerosols could have a major effect on the magnitude and physicochemical forms of the radioactive emission from a severe reactor accident. Only the main conclusions are presented in this summary document; detailed technical aspects of the work are described in separate reports listed in the annex

  17. A pharmacy business management simulation exercise as a practical application of business management material and principles.

    Science.gov (United States)

    Rollins, Brent L; Gunturi, Rahul; Sullivan, Donald

    2014-04-17

    To implement a pharmacy business management simulation exercise as a practical application of business management material and principles and assess students' perceived value. As part of a pharmacy management and administration course, students made various calculations and management decisions in the global categories of hours of operation, inventory, pricing, and personnel. The students entered the data into simulation software and a realistic community pharmacy marketplace was modeled. Course topics included accounting, economics, finance, human resources, management, marketing, and leadership. An 18-item posttest survey was administered. Students' slightly to moderately agreed the pharmacy simulation program enhanced their knowledge and understanding, particularly of inventory management, cash flow statements, balance sheets, and income statements. Overall attitudes toward the pharmacy simulation program were also slightly positive and students also slightly agreed the pharmacy simulation program enhanced their learning of pharmacy business management. Inventory management was the only area in which students felt they had at least "some" exposure to the assessed business management topics during IPPEs/internship, while all other areas of experience ranged from "not at all" to "a little." The pharmacy simulation program is an effective active-learning exercise and enhanced students' knowledge and understanding of the business management topics covered.

  18. Elastocapillary Instability in Mitochondrial Fission

    Science.gov (United States)

    Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien

    2015-08-01

    Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.

  19. A threshold for dissipative fission

    International Nuclear Information System (INIS)

    Thoennessen, M.; Bertsch, G.F.

    1993-01-01

    The empirical domain of validity of statistical theory is examined as applied to fission data on pre-fission data on pre-fission neutron, charged particle, and γ-ray multiplicities. Systematics are found of the threshold excitation energy for the appearance of nonstatistical fission. From the data on systems with not too high fissility, the relevant phenomenological parameter is the ratio of the threshold temperature T thresh to the (temperature-dependent) fission barrier height E Bar (T). The statistical model reproduces the data for T thresh /E Bar (T) thresh /E Bar (T) independent of mass and fissility of the systems

  20. Electric vehicles batteries thermal management systems employing phase change materials

    Science.gov (United States)

    Ianniciello, Lucia; Biwolé, Pascal Henry; Achard, Patrick

    2018-02-01

    Battery thermal management is necessary for electric vehicles (EVs), especially for Li-ion batteries, due to the heat dissipation effects on those batteries. Usually, air or coolant circuits are employed as thermal management systems in Li-ion batteries. However, those systems are expensive in terms of investment and operating costs. Phase change materials (PCMs) may represent an alternative which could be cheaper and easier to operate. In fact, PCMs can be used as passive or semi-passive systems, enabling the global system to sustain near-autonomous operations. This article presents the previous developments introducing PCMs for EVs battery cooling. Different systems are reviewed and solutions are proposed to enhance PCMs efficiency in those systems.

  1. Nuclear material data management and integration. A safeguard perspective

    International Nuclear Information System (INIS)

    Wilkey, David D.; Martin, H.R.; O'Leary, Jerry

    1999-01-01

    This paper is a discussion of the use of available data in the performance of nuclear material (NM) safeguards. The discussion considers the various sources of data and system requirements for collecting and managing that data, and is preliminary concerned with domestic safeguards requirements such as those specified by the US Department of Energy. The preferred configuration for integrated data management does not necessarily require a single computer system; however, separate computerized systems with direct inter-system connections is preferred. Use of all relevant data NM accounting, NM control, physical protection, and non-safeguards) is necessary to assure the most effective protection for the NM inventories. Where direct exchange of data is not possible, a systematic program to implement indirect exchange is essential [ru

  2. Westinghouse Hanford Company FY 1996 Materials Management Plan (MMP)

    International Nuclear Information System (INIS)

    Higginson, M.C.

    1995-12-01

    The safe and sound operation of facilities and the storage of nuclear material are top priorities within Hanford's environmental management, site restoration mission. The assumptions, plans and Special Nuclear Material (SNM) inventory summaries contained in this document were prepared for Department of Energy (DOE) use for interim and long- range planning. In accordance with Richland DOE field office (DOE-RL) direction, year-end inventory values were not projected over an 11 year period, as historically done in previous MMP documents. This decision was made since significant SNM movements to or from Hanford are not projected in the foreseeable future. Instead, the inventory summaries within this document reflect an ''as of date'' of June 30, 1995

  3. Decommissioning and material recycling. Radiation risk management issues

    International Nuclear Information System (INIS)

    Dodd, D.H.

    1996-09-01

    Once nuclear fuel cycle facilities have permanently stopped operations they have to be decommissioned. The decommissioning of a nuclear facility involves the surveillance and dismantling of the facility systems and buildings, the management of the materials resulting from the dismantling activities and the release of the site for further use. The management of radiation risks associated with these activities plays an important role in the decommissioning process. Existing legislation covers many aspects of the decommissioning process. However, in most countries with nuclear power programmes legislation with respect to decommissioning is incomplete. In particular this is true in the Netherlands, where government policy with respect to decommissioning is still in development. Therefore a study was performed to obtain an overview of the radiation risk management issues associated with decommissioning and the status of the relevant legislation. This report describes the results of that study. It is concluded that future work at the Netherlands Energy Research Foundation on decommissioning and radiation risk management issues should concentrate on surveillance and dismantling activities and on criteria for site release. (orig.)

  4. Hazardous Materials Management and Emergency Response training Center needs assessment

    International Nuclear Information System (INIS)

    McGinnis, K.A.; Bolton, P.A.; Robinson, R.K.

    1993-09-01

    For the Hanford Site to provide high-quality training using simulated job-site situations to prepare the 4,000 Site workers and 500 emergency responders for known and unknown hazards a Hazardous Materials Management and Emergency Response Training Center is needed. The center will focus on providing classroom lecture as well as hands-on, realistic training. The establishment of the center will create a partnership among the US Department of Energy; its contractors; labor; local, state, and tribal governments; and Xavier and Tulane Universities of Louisiana. This report presents the background, history, need, benefits, and associated costs of the proposed center

  5. Proactive materials aging management and multi-layered maintenance

    International Nuclear Information System (INIS)

    Shoji, Tetsuo

    2009-01-01

    Long term operation of NPP has been receiving a great concern based upon the plant operation experiences and progressive improvement in countermeasures and mitigations. At the same time of this LTO movement, proactive materials aging management is also receiving a great concern to realize the LTO in NPP. Recent PMDM activities in Japan as well as some international one are reviewed and a necessity of an international cooperation is emphasized in relation to reliable maintenance performance connected from the top of the organization to operators and maintenance engineers at plant sites. (author)

  6. Environment - sustainable management of radioactive materials and radioactive - report evaluation

    International Nuclear Information System (INIS)

    2006-05-01

    The economic affairs commission evaluated the report of M. Henri Revol on the law project n 315 of the program relative to the sustainable management of the radioactive materials and wastes. It precises and discusses the choices concerning the researches of the three axis, separation and transmutation, deep underground disposal and retrieval conditioning and storage of wastes. The commission evaluated then the report on the law project n 286 relative to the transparency and the security in the nuclear domain. It precises and discusses this text objectives and the main contributions of the Senate discussion. (A.L.B.)

  7. High thermal conductivity materials for thermal management applications

    Science.gov (United States)

    Broido, David A.; Reinecke, Thomas L.; Lindsay, Lucas R.

    2018-05-29

    High thermal conductivity materials and methods of their use for thermal management applications are provided. In some embodiments, a device comprises a heat generating unit (304) and a thermally conductive unit (306, 308, 310) in thermal communication with the heat generating unit (304) for conducting heat generated by the heat generating unit (304) away from the heat generating unit (304), the thermally conductive unit (306, 308, 310) comprising a thermally conductive compound, alloy or composite thereof. The thermally conductive compound may include Boron Arsenide, Boron Antimonide, Germanium Carbide and Beryllium Selenide.

  8. Fission and r-process nucleosynthesis in neutron star mergers

    International Nuclear Information System (INIS)

    Giuliani, Samuel Andrea

    2018-01-01

    rates are used in r-process calculations for matter dynamically ejected in neutron star mergers and we compare our results with those obtained from a more conventional set of reaction rates. We find that all the models predict the onset of fission above the shell closure N=184 and Z=100 due to the sudden decrease in fission barriers. However, the amount of material accumulated at N=184 turns out to be very sensitive to the height of the fission barriers and the shell gap. Finally, we have also explored the impact of recent advances in fission calculations on the theoretical estimation of spontaneous fission lifetimes. We find that performing dynamical approaches based on the minimization of the integral action with nontraditional collective degrees of freedom has a strong impact in the fission barriers and the spontaneous fission lifetimes. The possible consequences of this new approach for the calculation of neutron induced fission rates has to be addressed.

  9. Fusion-fission hybrid studies in the United States

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Berwald, D.H.; Cheng, E.T.; Delene, J.G.; Jassby, D.L.

    1986-01-01

    Systems and conceptual design studies have been carried out on the following three hybrid types: (1) The fission-suppressed hybrid, which maximizes fissile material produced (Pu or 233 U) per unit of total nuclear power by suppressing the fission process and multiplying neutrons by (n,2n) reactions in materials like beryllium. (2) The fast-fission hybrid, which maximizes fissile material produced per unit of fusion power by maximizing fission of 238 U (Pu is produced) in which twice the fissile atoms per unit of fusion power (but only a third per unit of nuclear power) are made. (3) The power hybrid, which amplifies power in the blanket for power production but does not produce fuel to sell. All three types must sell electrical power to be economical

  10. Barium 139 as Fission Indicator

    Energy Technology Data Exchange (ETDEWEB)

    Broda, E.

    1943-07-01

    This report is based on a measurement performed at the Cavendish Laboratory (Cambridge) by E. Broda in December 1943 where a technique has been worked out for measuring the fission density in a uranium containing medium in relative units by determining the amount of a suitable fission product formed. Generally a given fission product will be formed in natural uranium by slow neutron fission of U235 or by fast neutron fission of either U235 or U238. It is intended to translate the relative units into absolute units by comparison of the Ba yield with the indication of UF6 fission chamber in the same medium. This has to be done separately for fast and slow neutron fission as the yields may be different. Another application of the technique developed is the measurement of thermal neutron density in an uraniferous medium without using a detector subject to variations of sensitivity according to the properties of the medium. (nowak)

  11. Contained fissionly vaporized imploded fission explosive breeder reactor

    International Nuclear Information System (INIS)

    Marwick, E.F.

    1978-01-01

    Disclosed is a nuclear reactor system which produces useful thermal power and breeds fissile isotopes wherein large spherical complex slugs containing fissile and fertile isotopes as well as vaporizing and tamping materials are exploded seriatim in a large containing chamber having walls protected from the effects of the explosion by about two thousand tons of slurry of fissile and fertile isotopes in molten alkali metal. The slug which is slightly sub-critical prior to its entry into the centroid portion of the chamber, then becomes slightly more than prompt-critical because of the near proximity of neutron-reflecting atoms and of fissioning atoms within the slurry. The slurry is heated by explosion of the slugs and serves as a working fluid for extraction of heat energy from the reactor. Explosive debris is precipitated from the slurry and used for the fabrication of new slugs

  12. Applications of inorganic ion-exchange materials in managing radioactivity wastewater

    International Nuclear Information System (INIS)

    He Jiaheng; Li Xingliang; Li Shoujian

    2007-01-01

    This article introduces the application of abio-ion exchange materials in managing radioactivity wastewater, which would be useful for latter research of new inorganic materials that used in managing radioactivity wastewater. (authors)

  13. Fusion-fission dynamics

    International Nuclear Information System (INIS)

    Blocki, J.; Planeta, R.; Brzychczyk, J.; Grotowski, K.

    1991-04-01

    Classical dynamical calculations of the heavy ion induced fission process for the reactions 40 Ar+ 141 Pr, 20 Ne+ 165 Ho and 12 C+ 175 Lu leading to the iridium like nucleus have been performed. As a result prescission lifetimes were obtained and compared with the experimental values. The agreement between the calculated and experimental lifetimes indicates that the one-body dissipation picture is much more relevant in describing the fusion-fission dynamics than the two-body one. Somewhat bigger calculated times than the experimental ones in case of the C+Lu reaction at 16 MeV/nucleon may be a signal on the energy range applicability of the one-body dissipation model. (author)

  14. Geology behind nuclear fission technology

    International Nuclear Information System (INIS)

    Dhana Raju, R.

    2005-01-01

    Geology appears to have played an important role of a precursor to Nuclear Fission Technology (NFT), in the latter's both birth from the nucleus of an atom of and most important application as nuclear power extracted from Uranium (U), present in its minerals. NFT critically depends upon the availability of its basic raw material, viz., nuclear fuel as U and/ or Th, extracted from U-Th minerals of specific rock types in the earth's crust. Research and Development of the Nuclear Fuel Cycle (NFC) depends heavily on 'Geology'. In this paper, a brief review of the major branches of geology and their contributions during different stages of NFC, in the Indian scenario, is presented so as to demonstrate the important role played by 'Geology' behind the development of NFT, in general, and NFC, in particular. (author)

  15. The fission track method

    International Nuclear Information System (INIS)

    Hansen, K.

    1990-01-01

    During the last decade fission track (FT) analysis has evolved as an important tool in exploration for hydrocarbon resources. Most important is this method's ability to yield information about temperatures at different times (history), and thus relate oil generation and time independently of other maturity parameters. The purpose of this paper is to introduce the basics of the method and give an example from the author's studies. (AB) (14 refs.)

  16. 10 CFR 1.41 - Office of Federal and State Materials and Environmental Management Programs.

    Science.gov (United States)

    2010-01-01

    ... Environmental Management Programs. (a) The Office of Federal and State Materials and Environmental Management...) The Office of Federal and State Materials and Environmental Management Programs— (1) Plans and directs... 10 Energy 1 2010-01-01 2010-01-01 false Office of Federal and State Materials and Environmental...

  17. 48 CFR 252.242-7004 - Material management and accounting system.

    Science.gov (United States)

    2010-10-01

    ... CLAUSES Text of Provisions And Clauses 252.242-7004 Material management and accounting system. As prescribed in 242.7204, use the following caluse: Material Management and Accounting System (JUL 2009) (a) Definitions. As used in this clause— (1) Material management and accounting system (MMAS) means the Contractor...

  18. Bulk material management mode of general contractors in nuclear power project

    International Nuclear Information System (INIS)

    Zhang Jinyong; Zhao Xiaobo

    2011-01-01

    The paper introduces the characteristics of bulk material management mode in construction project, and the advantages and disadvantages of bulk material management mode of general contractors in nuclear power project. In combination with the bulk material management mode of China Nuclear Power Engineering Co., Ltd, some improvement measures have been put forward as well. (authors)

  19. [Fission product yields of 60 fissioning reactions]. Final report

    International Nuclear Information System (INIS)

    Rider, B.F.

    1995-01-01

    In keeping with the statement of work, I have examined the fission product yields of 60 fissioning reactions. In co-authorship with the UTR (University Technical Representative) Talmadge R. England ''Evaluation and Compilation of Fission Product Yields 1993,'' LA-UR-94-3106(ENDF-349) October, (1994) was published. This is an evaluated set of fission product Yields for use in calculation of decay heat curves with improved accuracy has been prepared. These evaluated yields are based on all known experimental data through 1992. Unmeasured fission product yields are calculated from charge distribution, pairing effects, and isomeric state models developed at Los Alamos National Laboratory. The current evaluation has been distributed as the ENDF/B-VI fission product yield data set

  20. The wastes of nuclear fission; Les dechets de la fission nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Doubre, H. [Paris-11 Univ., Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, IN2P3/CNRS, 91 - Orsay (France)

    2005-07-01

    In this paper the author presents the problems of the radioactive wastes generated by the nuclear fission. The first part devoted to the fission phenomenon explains the incident neutron energy and the target nuclei role. The second part devoted to the nuclear wastes sources presents the production of wastes upstream of the reactors, in the reactors and why these wastes are dangerous. The third part discusses the radioactive wastes management in France (classification, laws). The last part details the associated research programs: the radionuclides separation, the disposal, the underground storage, the transmutation and the thorium cycle. (A.L.B.)

  1. Fission-track studies of uranium distribution in geological samples

    International Nuclear Information System (INIS)

    Brynard, H.J.

    1983-01-01

    The standard method of studying uranium distribution in geological material by registration of fission tracks from the thermal neutron-induced fission of 235 U has been adapted for utilisation in the SAFARI-1 reactor at Pelindaba. The theory of fission-track registration as well as practical problems are discussed. The method has been applied to study uranium distribution in a variety of rock types and the results are discussed in this paper. The method is very sensitive and uranium present in quantities far below the detection limit of the microprobe have been detected

  2. Determination of 233U, 235U, 238U and 239Pu fission yields induced by fission and 14.7 MeV neutrons

    International Nuclear Information System (INIS)

    Laurec, Jean; Adam, Albert; Bruyne, Thierry de.

    1981-12-01

    The 233 U, 235 U, 238 U, 239 Pu fission yields have been determined by a radiochemical method. A target and a fission chamber made of same fissible material are irradied together. The total fission number is measured from the fission chamber. The fission product activities are directly measured on the target using calibrated Ge-Li detectors. The fissible material masses are determined by alpha and mass spectrometries. The irradiations were made on the critical assemblies PROSPERO and CALIBAN and on the 14 MeV neutron generator of C.E. VALDUC. 3 to 5% fission yield errors are got for the most measured nuclides: 95 Zr, 97 Zr, 99 Mo, 103 Ru, 131 I, 132 Te, 140 Ba, 141 Ce, 143 Ce, 144 Ce, 147 Nd [fr

  3. Hazardous-materials-management system: a guide for local emergency managers

    International Nuclear Information System (INIS)

    Lee, M.T.; Roe, P.G.

    1981-07-01

    An increase in the manufacture, storage, and transportation of hazardous materials is occurring across the nation. Local jurisdictions have realized that they have the responsibility to assure a reasonable level of safety to their community members and visitors alike. Such a responsibility can be met by developing methods of preventing hazardous materials incidents; enforcing laws related to transporting and storing hazardous materials; the initiating of an appropriate first response, and activating available resources of government agencies and commercial organizations that deal with containment and cleanup. This manual has been written to help in the development of a total Hazardous Material Management System. The manual describes one approach but allows for variations as may be appropriate for the specific jurisdiction

  4. Fission neutron output measurements at LANSCE

    International Nuclear Information System (INIS)

    Nelson, Ronald Owen; Haight, Robert C.; Devlin, Matthew J.; Fotiadis, Nikolaos; Laptev, Alexander; O'Donnell, John M.; Taddeucci, Terry N.; Tovesson, Fredrik; Ullmann, J.L.; Wender, Stephen A.; Bredeweg, T.A.; Jandel, M.; Vieira, D.J.; Wu, Ching-Yen; Becker, J.A.; Stoyer, M.A.; Henderson, R.; Sutton, M.; Belier, Gilbert; Chatillon, A.; Granier, Thierry; Laurent, Benoit; Taieb, Julien

    2010-01-01

    Accurate data for both physical properties and fission properties of materials are necessary to properly model dynamic fissioning systems. To address the need for accurate data on fission neutron energy spectra, especially at outgoing neutron energies below about 200 keV and at energies above 8 MeV, ongoing work at LANSCE involving collaborators from LANL, LLNL and CEA Bruyeres-le-Chatel is extending the energy range, efficiency and accuracy beyond previous measurements. Initial work in the outgoing neutron energy range from 1 to 7 MeV is consistent with current evaluations and provides a foundation for extended measurements. As part of these efforts, a new fission fragment detector that reduces backgrounds and improves timing has been designed fabricated and tested, and new neutron detectors are being assessed for optimal characteristics. Simulations of experimental designs are in progress to ensure that accuracy goals are met. Results of these measurements will be incorporated into evaluations and data libraries as they become available.

  5. Coulomb fission and transfer fission at heavy ion collisions

    International Nuclear Information System (INIS)

    Himmele, G.

    1981-01-01

    In the present thesis the first direct evidence of nuclear fission after inelastic scattering of heavy ions (sup(183,184)W, 152 Sm → 238 U; 184 W → 232 Th; 184 W, 232 Th → 248 Cm) is reported. Experiments which were performed at the UNILAC of the Gesellschaft fuer Schwerionenforschung in Darmstadt show the observed heavy ion induced fission possesses significant properties of the Coulomb fission. The observed dependence of the fission probability for inelastic scattering on the projectile charge proves that the nuclear fission is mediated by the electromagnetic interaction between heavy ions. This result suggests moreover a multiple Coulomb-excitation preceding the fission. Model calculations give a first indication, that the Coulomb fission proceeds mainly from the higher β phonons. In the irradiation with 184 W the fission probability of 232 Th is for all incident energies about 40% smaller that at 238 U. The target dependence of the Coulomb fission however doesn't allow, to give quantitative statements about the position and B(E2)-values of higher lying β phonons. (orig./HSI) [de

  6. Transport of fission products in matrix and graphite

    International Nuclear Information System (INIS)

    Hoinkis, E.

    1983-06-01

    In the past years new experimental methods were applied to or developed for the investigation of fission product transport in graphitic materials and to characterization of the materials. Models for fission product transport and computer codes for the calculation of core release rates were improved. Many data became available from analysis of concentration profiles in HTR-fuel elements. New work on the effect on diffusion of graphite corrosion, fast neutron flux and fluence, heat treatment, chemical interactions and helium pressure was reported on recently or was in progress in several laboratories. It seemed to be the right time to discuss the status of transport of metallic fission products in general, and in particular the relationship between structural and transport properties. Following a suggestion a Colloquium was organized at the HMI Berlin. Interdisciplinary discussions were stimulated by only inviting a limited number of participants who work in different fields of graphite and fission product transport research. (orig./RW)

  7. Influence of the cosmic-ray induced fission tracks on the fission track of extraterrestric minerals via the 238U spontaneous fission

    International Nuclear Information System (INIS)

    Damm, G.; Thiel, K.

    1977-01-01

    The age determined by counting fission tracks of lunar and meteorite materials is obviously falsified by additional fission track parts not to be accounted for by the spontaneous fission of uranium 238. For this p and n induced fissions of U, Th and other hreavy elements through the cosmic radiation come into consideration. In order to determine the possible part of such interference factors, a simulation experiment at the proton synchrocycloton (CERN, Geneva) has been carried out and independently of this, the production rates for the p and n induced U, Th, Bi, Pb and Au in the surface-near regolith layers of the moon were calculated. It could be seen that the irradiation age as well as the spacial distribution of the heavy metals in the samples to be dated must be considered. (RB) [de

  8. Feasibility of Target Material Recycling as Waste Management Alternative

    International Nuclear Information System (INIS)

    El-Guebaly, L.; Wilson, P.; Henderson, D.; Varuttamaseni, A.

    2004-01-01

    The issue of waste management has been studied simultaneously along with the development of the ARIES heavy-ion-driven inertial fusion energy (IFE) concept. Options for waste management include disposal in repositories, recycling, or clearance from regulatory control, following a reasonable cooling period. This paper concerns the feasibility of recycling the heavy-ion-beam targets, in particular the hohlraum wall materials that include, for example, Au/Gd, Au, W, Pb, Hg, Ta, Pb/Ta/Cs, Hg/W/Cs, Pb/Hf, Hf, solid Kr, and solid Xe. The choice between target material disposal and recycling depends on the amount of waste generated relative to the nuclear island, the strategy to solve the recycling problem, and the impact of the additional cost and complexity of the recycling process on the overall machine. A detailed flow diagram for the elements of the recycling process was developed to analyze two extreme activation cases: (a) one-shot use and then disposal in a repository and (b) recycling continuously during plant life without removal of transmutation products. Metrics for comparing the two scenarios included waste level, dose to recycling equipment, additional cost, and design complexity. Comparing the two approaches indicated a preference for the one-shot scenario as it generates 1 m 3 /yr of extremely low-level waste (Class A) and offers attractive design and economics features. Recycling reduces the target waste stream by a factor of 10 or more but introduces additional issues. It may produce high-level waste, requires remote handling, adds radioactive storage facilities, and increases the cost and complexity of the plant. The inventory analysis indicated that the heavy-ion-beam (HIB) target materials represent a very small waste stream compared to that of the nuclear island (<1% of the total waste). This means recycling is not a 'must' requirement for IFE-HIB power plants unless the target materials have cost and/or resource problems (e.g., Au and Gd). In this

  9. Conceptual design report of hot cell modification and process for fission Mo-99 production

    International Nuclear Information System (INIS)

    Park, Jin Ho; Choung, W. M.; Lee, K. I.; Hwang, D. S.; Kim, Y. K.; Park, K. B.; Jung, Y. J.; Kim, D. S.; Park, Y. C.

    2001-05-01

    In this conceptual design report, the basic data and design guides for detail design of fission Mo-99 production process and hot cell modification are included.The basic data and design guides for detail design of fission Mo-99 production process contains following contents. -design capacity, the basic process, process flow diagram, process material balance, process data. The basic data and design guides for modification of existing hot cell contains following contents. - plot plan of hot cell facility, the plan for shield reinforcement of hot cell, the plan for management and storage of high level liquid wastes, the plan of ventilation system, the plan for modification of auxiliary facilities. And also, the results of preliminary safety analysis(normal operation and accidents) and criticality analysis are included in this conceptual design report

  10. Conceptual design report of hot cell modification and process for fission Mo-99 production

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I.; Hwang, D. S.; Kim, Y. K.; Park, K. B.; Jung, Y. J.; Kim, D. S.; Park, Y. C

    2001-05-01

    In this conceptual design report, the basic data and design guides for detail design of fission Mo-99 production process and hot cell modification are included.The basic data and design guides for detail design of fission Mo-99 production process contains following contents. -design capacity, the basic process, process flow diagram, process material balance, process data. The basic data and design guides for modification of existing hot cell contains following contents. - plot plan of hot cell facility, the plan for shield reinforcement of hot cell, the plan for management and storage of high level liquid wastes, the plan of ventilation system, the plan for modification of auxiliary facilities. And also, the results of preliminary safety analysis(normal operation and accidents) and criticality analysis are included in this conceptual design report.

  11. Measurements of fission cross-sections and of neutron production rates; Mesures de sections efficaces de fission et du nombre de neutrons prompts emis par fission

    Energy Technology Data Exchange (ETDEWEB)

    Billaud, P; Clair, C; Gaudin, M; Genin, R; Joly, R; Leroy, J L; Michaudon, A; Ouvry, J; Signarbieux, C; Vendryes, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    a) Measurements of neutron induced fission cross-sections in the low energy region. The variation of the fission cross sections of several fissile isotopes has been measured and analysed, for neutron energies below 0,025 eV. The monochromator was a crystal spectrometer used in conjunction with a mechanical velocity selector removing higher order Bragg reflections. The fissile material was laid down on the plates of a fission chamber by painting technic. An ionization chamber, having its plates coated with thin {sup 10}B layers, was used as the neutron flux monitor. b) Measurement of the fission cross section of {sup 235}U. We intend to measure the variation of the neutron induced fission cross section of {sup 235}U over the neutron energy range from 1 keV by the time of flight method. The neutron source is the uranium target of a pulsed 28 MeV electron linear accelerator. The detector is a large fission chamber, with parallel plates, containing about 10 g of {sup 235}U (20 deposits of 25 cm diameter). The relative fission data were corrected for the neutron spectrum measured with a set of BF{sub 3} proportional counters. c) Mean number {nu} of neutrons emitted in neutron induced fission. We measured the value of {nu} for several fissile isotopes in the case of fission induced by 14 MeV neutrons. The 14 MeV neutrons were produced by D (t, n) {alpha} reaction by means of a 300 kV Cockcroft Walton generator. (author)Fren. [French] a) Mesures de sectionficaces de fission a basse energie. Nous avons mesure et analyse la variation de la section efficace de fission de divers isotopes fissiles pour des neutrons d'energie inferieure a 0,025 eV. Le monochromateur est constitue par un spectrometre a cristal auquel est associe un selecteur mecanique destine a eliminer les diffractions de Bragg d'ordre superieur au premier. Le materiau fissile est contenu dans une chambre a fission sous forme de depots realises par peinture; une chambre d'ionisation a depots minces de B{sub 10

  12. Fission, fusion and the energy crisis

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, S E [Aston Univ., Birmingham (UK)

    1980-01-01

    The subject is covered in chapters, entitled: living on capital (energy reserves and consumption forecasts); the atom and its nucleus, mass and energy; fission and the bomb; the natural uranium reactor; enriched reactors; control and safety; long-term economics (the breeder reactions and nuclear fuel reserves); short-term economics (cost per kilowatt hour); national nuclear power programmes; nuclear power and the environment (including reprocessing, radioactive waste management, public relations); renewable energy sources; the fusion programme; summary and comment.

  13. Fission barriers of light nuclei

    International Nuclear Information System (INIS)

    Grotowski, K.; Planeta, R.; Blann, M.; Komoto, T.

    1989-01-01

    Experimental fission excitation functions for compound nuclei /sup 52/Fe, /sup 49/Cr, /sup 46/V, and /sup 44/Ti formed in heavy-ion reactions are analyzed in the Hauser-Feshbach/Bohr-Wheeler formalism using fission barriers based on the rotating liquid drop model of Cohen et al. and on the rotating finite range model of Sierk. We conclude that the rotating finite range approach gives better reproduction of experimental fission yields, consistent with results found for heavier systems

  14. Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices.

    Science.gov (United States)

    Wilson, Mark W B; Rao, Akshay; Ehrler, Bruno; Friend, Richard H

    2013-06-18

    Singlet exciton fission is the process in conjugated organic molecules bywhich a photogenerated singlet exciton couples to a nearby chromophore in the ground state, creating a pair of triplet excitons. Researchers first reported this phenomenon in the 1960s, an event that sparked further studies in the following decade. These investigations used fluorescence spectroscopy to establish that exciton fission occurred in single crystals of several acenes. However, research interest has been recently rekindled by the possibility that singlet fission could be used as a carrier multiplication technique to enhance the efficiency of photovoltaic cells. The most successful architecture to-date involves sensitizing a red-absorbing photoactive layer with a blue-absorbing material that undergoes fission, thereby generating additional photocurrent from higher-energy photons. The quest for improved solar cells has spurred a drive to better understand the fission process, which has received timely aid from modern techniques for time-resolved spectroscopy, quantum chemistry, and small-molecule device fabrication. However, the consensus interpretation of the initial studies using ultrafast transient absorption spectroscopy was that exciton fission was suppressed in polycrystalline thin films of pentacene, a material that would be otherwise expected to be an ideal model system, as well as a viable candidate for fission-sensitized photovoltaic devices. In this Account, we review the results of our recent transient absorption and device-based studies of polycrystalline pentacene. We address the controversy surrounding the assignment of spectroscopic features in transient absorption data, and illustrate how a consistent interpretation is possible. This work underpins our conclusion that singlet fission in pentacene is extraordinarily rapid (∼80 fs) and is thus the dominant decay channel for the photoexcited singlet exciton. Further, we discuss our demonstration that triplet excitons

  15. The management of plutonium (alpha) contaminated waste materials (PCM)

    International Nuclear Information System (INIS)

    Sills, R.J.

    1984-01-01

    This article reviews the management strategies for plutonium contaminated materials (PCM), the techniques which have been used and developed for their implementation and what can be expected for the immediate future. In general reference is made to the situation in the U.K., but where appropriate the International context is noted. In the context of the article plutonium often occurs with other alpha-active materials and the two terms are used virtually synonymously. The technology which is described, and which is the result of substantial research and development programmes, has largely been developed with the objective of recovering the majority of plutonium prior to ultimate disposal of the waste. There is no doubt that this removal to low levels of contamination is technically feasible; indeed there are a number of methods to choose from each with its own advantages and disadvantages. The emphasis has shifted recently from the development and demonstration of technology for waste handling, treatment and disposal (although these are very important), to the assessment of the effects--social, technological and economic--of the various options available for dealing with the waste. The process is thus, one of achieving the lowest overall 'cost' to society; where 'cost' is in the broadest sense of effect on society and not in merely strict financial terms

  16. Nuclear Forensics and Radiochemistry: Fission

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-07

    Radiochemistry has been used to study fission since it’ discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution.

  17. Fission yield measurements at IGISOL

    Science.gov (United States)

    Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.

    2016-06-01

    The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  18. Fission yield measurements at IGISOL

    Directory of Open Access Journals (Sweden)

    Lantz M.

    2016-01-01

    Full Text Available The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f and Th(p,f have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  19. Fusion-fission type collisions

    International Nuclear Information System (INIS)

    Oeschler, H.

    1980-01-01

    Three examples of fusion-fission type collisions on medium-mass nuclei are investigated whether the fragment properties are consistent with fission from equilibrated compound nuclei. Only in a very narrow band of angular momenta the data fulfill the necessary criteria for this process. Continuous evolutions of this mechnism into fusion fission and into a deep-inelastic process and particle emission prior to fusion have been observed. Based on the widths of the fragment-mass distributions of a great variety of data, a further criterion for the compound-nucleus-fission process is tentatively proposed. (orig.)

  20. Robust singlet fission in pentacene thin films with tuned charge transfer interactions.

    Science.gov (United States)

    Broch, K; Dieterle, J; Branchi, F; Hestand, N J; Olivier, Y; Tamura, H; Cruz, C; Nichols, V M; Hinderhofer, A; Beljonne, D; Spano, F C; Cerullo, G; Bardeen, C J; Schreiber, F

    2018-03-05

    Singlet fission, the spin-allowed photophysical process converting an excited singlet state into two triplet states, has attracted significant attention for device applications. Research so far has focused mainly on the understanding of singlet fission in pure materials, yet blends offer the promise of a controlled tuning of intermolecular interactions, impacting singlet fission efficiencies. Here we report a study of singlet fission in mixtures of pentacene with weakly interacting spacer molecules. Comparison of experimentally determined stationary optical properties and theoretical calculations indicates a reduction of charge-transfer interactions between pentacene molecules with increasing spacer molecule fraction. Theory predicts that the reduced interactions slow down singlet fission in these blends, but surprisingly we find that singlet fission occurs on a timescale comparable to that in pure crystalline pentacene. We explain the observed robustness of singlet fission in such mixed films by a mechanism of exciton diffusion to hot spots with closer intermolecular spacings.

  1. Studies of Fission Fragment Rocket Engine Propelled Spacecraft

    Science.gov (United States)

    Werka, Robert O.; Clark, Rodney; Sheldon, Rob; Percy, Thomas K.

    2014-01-01

    The NASA Office of Chief Technologist has funded from FY11 through FY14 successive studies of the physics, design, and spacecraft integration of a Fission Fragment Rocket Engine (FFRE) that directly converts the momentum of fission fragments continuously into spacecraft momentum at a theoretical specific impulse above one million seconds. While others have promised future propulsion advances if only you have the patience, the FFRE requires no waiting, no advances in physics and no advances in manufacturing processes. Such an engine unequivocally can create a new era of space exploration that can change spacecraft operation. The NIAC (NASA Institute for Advanced Concepts) Program Phase 1 study of FY11 first investigated how the revolutionary FFRE technology could be integrated into an advanced spacecraft. The FFRE combines existent technologies of low density fissioning dust trapped electrostatically and high field strength superconducting magnets for beam management. By organizing the nuclear core material to permit sufficient mean free path for escape of the fission fragments and by collimating the beam, this study showed the FFRE could convert nuclear power to thrust directly and efficiently at a delivered specific impulse of 527,000 seconds. The FY13 study showed that, without increasing the reactor power, adding a neutral gas to the fission fragment beam significantly increased the FFRE thrust through in a manner analogous to a jet engine afterburner. This frictional interaction of gas and beam resulted in an engine that continuously produced 1000 pound force of thrust at a delivered impulse of 32,000 seconds, thereby reducing the currently studied DRM 5 round trip mission to Mars from 3 years to 260 days. By decreasing the gas addition, this same engine can be tailored for much lower thrust at much higher impulse to match missions to more distant destinations. These studies created host spacecraft concepts configured for manned round trip journeys. While the

  2. Study on the effect factor of the absolute fission rates measured by depleted uranium fission chamber

    International Nuclear Information System (INIS)

    Jiang Li; Liu Rong; Wang Dalun; Wang Mei; Lin Jufang; Wen Zhongwei

    2003-01-01

    The absolute fission rates was measured by the depleted uranium fission chamber. The efficiency of the fission fragments recorded in the fission chamber was analyzed. The factor influencing absolute fission rates was studied in the experiment, including the disturbing effect between detectors and the effect of the structural of the fission chamber, etc

  3. Energy from nuclear fission()

    Science.gov (United States)

    Ripani, M.

    2015-08-01

    The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.

  4. Measurement of Fission Product Yields from Fast-Neutron Fission

    Science.gov (United States)

    Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Henderson, R.; Kenneally, J.; Macri, R.; McNabb, D.; Ryan, C.; Sheets, S.; Stoyer, M. A.; Tonchev, A. P.; Bhatia, C.; Bhike, M.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.

    2014-09-01

    One of the aims of the Stockpile Stewardship Program is a reduction of the uncertainties on fission data used for analyzing nuclear test data [1,2]. Fission products such as 147Nd are convenient for determining fission yields because of their relatively high yield per fission (about 2%) and long half-life (10.98 days). A scientific program for measuring fission product yields from 235U,238U and 239Pu targets as a function of bombarding neutron energy (0.1 to 15 MeV) is currently underway using monoenergetic neutron beams produced at the 10 MV Tandem Accelerator at TUNL. Dual-fission chambers are used to determine the rate of fission in targets during activation. Activated targets are counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. To date, data have been collected at neutron bombarding energies 4.6, 9.0, 14.5 and 14.8 MeV. Experimental methods and data reduction techniques are discussed, and some preliminary results are presented.

  5. Tip model of cold fission

    International Nuclear Information System (INIS)

    Goennenwein, F.; Boersig, B.

    1991-01-01

    Cold fission is defined to be the limiting case of nuclear fission where virtually all of the available energy is converted into the total kinetic energy of the fragments. The fragments have, therefore, to be born in or at least close to their respective ground states. Starting from the viewpoint that cold fission corresponds to most compact scission configurations, energy constraints have been exploited to calculate minimum tip distances between the two nascent fragments in binary fission. Crucial input parameters to this tip model of cold fission are the ground-state deformations of fragment nuclei. It is shown that the minimum tip distances being compatible with energy conservation vary strongly with both the mass and charge fragmentation of the fission prone nucleus. The tip distances refer to nuclei with equivalent sharp surfaces. In keeping with the size of the surface width of leptodermous nuclei, only configurations where the tip distances are smaller than a few fm may be considered as valid scission configurations. From a comparison with experimental data on cold fission this critical tip distance appears to be 3.0 fm for the model parameters chosen. Whenever the model calculation yields tip distances being smaller than the critical value, a necessary condition for attaining cold fission is considered to be fulfilled. It is shown that this criterion allows to understand in fair agreement with experiment which mass fragmentations are susceptible to lead to cold fission and which fragment-charge divisions are the most favored in each isobaric mass chain. Being based merely on energy arguments, the model cannot aim at predicting fragment yields in cold fission. However, the tip model proposed appears well suited to delineate the phase space where cold fission phenomena may come into sight. (orig.)

  6. Post-scission fission theory: Neutron emission in fission

    International Nuclear Information System (INIS)

    Madland, D.G.

    1997-01-01

    A survey of theoretical representations of two of the observables in neutron emission in fission is given, namely, the prompt fission neutron spectrum N (E) and the average prompt neutron multiplicity bar ν p . Early representations of the two observables are presented and their deficiencies are discussed. This is followed by summaries and examples of recent theoretical models for the calculation of these quantities. Emphasis is placed upon the predictability and accuracy of the recent models. In particular, the dependencies of N (E) and bar ν p upon the fissioning nucleus and its excitation energy are treated. Recent work in the calculation of the prompt fission neutron spectrum matrix N (E, E n ), where E n is the energy of the neutron inducing fission, is then discussed. Concluding remarks address the current status of our ability to calculate these observables with confidence, the direction of future theoretical efforts, and limitations to current (and future) approaches

  7. [The realization way and lean management about medical consumable material in clinical use].

    Science.gov (United States)

    Shang, Changhao; Cheng, Junpei; Xu, Hailin; Wang, Xiaoguang

    2015-01-01

    The medical consumable material management is an important part of logistic support in the management of hospital, but the hospital has many weak links in the management of supplies. This paper aims to explore the common problems (especially in clinical use) existing in the management of medical consumables and years of management experience in Changhai hospital's practice, then discusses lean management from the perspective of lean management

  8. Regulatory aspects of fusion power-lessons from fission plants

    International Nuclear Information System (INIS)

    Natalizio, A.; Brunnader, H.; Sood, S.K.

    1993-01-01

    Experience from fission reactors has shown the regulatory process for licensing a nuclear facility to be legalistic, lengthy, unpredictable, and costly. This experience also indicates that much of the regulatory debate is focused on safety margins, that is, the smaller the safety margins the bigger the regulatory debate and the greater the amount of proof required to satisfy the regulatory. Such experience suggests that caution and prudence guide the development of a regulatory regime for fusion reactors. Fusion has intrinsic safety and environmental advantages over fission, which should alleviate significantly, or even eliminate, the regulatory problems associated with fission. The absence of a criticality concern and the absence of fission products preclude a Chernobyl type accident from occurring in a fusion reactor. Although in a fusion reactor there are large inventories of radioactive products that can be mobilized, the total quantity is orders of magnitude smaller than in fission power reactors. The bulk of the radioactivity in a fusion reactor is either activation products in steel structures, or tritium fuel supplies safely stored in the form of a metal tritide in storage beds. The quantity of tritium that can be mobilized under accident conditions is much less than ten million curies. This compares very favorably with a fission product inventory greater than ten billion curies in a fission power reactor. Furthermore, in a fission reactor, all of the reactivity is contained in a steel vessel that is pressurized to about 150 atmospheres, whereas in a fusion reactor, the inventory of radioactive material is dispersed in different areas of the plant, such that it is improbable that a single event could give rise to the release of the entire inventory to the environment. With such significant intrinsic safety advantages there is no a priori need to make fusion requirements/regulations more demanding and more stringent than fission

  9. Fission fragment driven neutron source

    Science.gov (United States)

    Miller, Lowell G.; Young, Robert C.; Brugger, Robert M.

    1976-01-01

    Fissionable uranium formed into a foil is bombarded with thermal neutrons in the presence of deuterium-tritium gas. The resulting fission fragments impart energy to accelerate deuterium and tritium particles which in turn provide approximately 14 MeV neutrons by the reactions t(d,n).sup.4 He and d(t,n).sup.4 He.

  10. Neutron multiplicity of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Abdelrahman, Y S [Physics department, mu` rah university Al-Karak, (Jordan)

    1995-10-01

    The total average neutron multiplicity of the fission fragments produced by the spontaneous fission of {sup 248} Cm has been measured. This measurement has been done by using a new experimental technique. This technique mainly depends on {gamma}-{gamma} coincidence using a very high resolution high purity germanium (HPGe) detector. 2 figs.

  11. Fission throughout the periodic table

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1989-04-01

    The dualistic view of fission and evaporation as two distinct compound nucleus processes is substituted with a unified view in which fission, complex fragment emission, and light particle evaporation are seen as different aspects of a single process. 47 refs., 22 figs

  12. Characteristics of diallyl phthalate resin as a fission track detector

    CERN Document Server

    Tsuruta, T

    1999-01-01

    Diallyl phthalate (DAP) resin plates were irradiated with fission fragments, and then etched in aqueous solution of KOH. Etched tracks were observed and counted by using an optical microscope. The detection efficiency of fission fragments was about 100% for both perpendicular and random incidence. DAP plates were insensitive to alpha particles and fast neutrons. These characteristics are suitable for detecting selected fission fragments, which coexist with alpha particles or fast neutrons. DAP plates are valuable for quantitative analysis of fissionable materials and neutron dosimetry. DAP and allyl diglycol carbonate (CR-39) were formed into copolymers in various ratios. The copolymers showed intermediate characteristics between DAP and CR-39. The fabrication of the copolymers made it possible to control the discrimination level for detection of heavy charged particles.

  13. Microscopic theory of singlet exciton fission. III. Crystalline pentacene

    International Nuclear Information System (INIS)

    Berkelbach, Timothy C.; Reichman, David R.; Hybertsen, Mark S.

    2014-01-01

    We extend our previous work on singlet exciton fission in isolated dimers to the case of crystalline materials, focusing on pentacene as a canonical and concrete example. We discuss the proper interpretation of the character of low-lying excited states of relevance to singlet fission. In particular, we consider a variety of metrics for measuring charge-transfer character, conclusively demonstrating significant charge-transfer character in the low-lying excited states. The impact of this electronic structure on the subsequent singlet fission dynamics is assessed by performing real-time master-equation calculations involving hundreds of quantum states. We make direct comparisons with experimental absorption spectra and singlet fission rates, finding good quantitative agreement in both cases, and we discuss the mechanistic distinctions that exist between small isolated aggregates and bulk systems

  14. Microscopic theory of singlet exciton fission. III. Crystalline pentacene

    Energy Technology Data Exchange (ETDEWEB)

    Berkelbach, Timothy C., E-mail: tcb2112@columbia.edu; Reichman, David R., E-mail: drr2103@columbia.edu [Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027 (United States); Hybertsen, Mark S., E-mail: mhyberts@bnl.gov [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    2014-08-21

    We extend our previous work on singlet exciton fission in isolated dimers to the case of crystalline materials, focusing on pentacene as a canonical and concrete example. We discuss the proper interpretation of the character of low-lying excited states of relevance to singlet fission. In particular, we consider a variety of metrics for measuring charge-transfer character, conclusively demonstrating significant charge-transfer character in the low-lying excited states. The impact of this electronic structure on the subsequent singlet fission dynamics is assessed by performing real-time master-equation calculations involving hundreds of quantum states. We make direct comparisons with experimental absorption spectra and singlet fission rates, finding good quantitative agreement in both cases, and we discuss the mechanistic distinctions that exist between small isolated aggregates and bulk systems.

  15. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, M.

    1984-09-01

    This is the tenth issue of a report series on Fission Product Data, which informs us about all the activities in this field, which are planned, ongoing, or have recently been completed. The types of activities included are measurements, compilations and evaluations of: fission product yields (neutron induced and spontaneous fission), neutron reaction cross sections of fission products, data related to the radioactive decay of fission products, delayed neutron data of fission products, lumped fission product data (decay heat, absorption, etc.). There is also a section with recent references relative to fission product nuclear data

  16. Mechanisms of fission neutron emission

    International Nuclear Information System (INIS)

    Maerten, H.

    1991-01-01

    The time evolution in fission is the starting point for discussing not only the main mechanism of fission neutron emission, the evaporation from fully accelerated fragments, but also possible secondary ones connected with dynamical features of nuclear fission. ''Asymptotic'' conditions as relevant for describing the particle release from highly excited, rapidly moving fragments are defined. Corresponding statistical model approaches to fission neutron emission, based on the adequate consideration of the intricate fragment occurrence probability, reproduce most of the experimental data. The remarkable influence of fission modes on neutron observables is analyzed in the framework of a macroscopic-microscopic scission point model consistent with energy conservation. Finally, chances and deficiencies for solving the mechanism puzzle are summarized. (author). 87 refs, 21 figs

  17. Fission product release from SLOWPOKE-2 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Harnden-Gillis, A M.C. [Queen` s Univ., Kingston, ON (Canada). Dept. of Physics

    1994-12-31

    Increasing radiation fields at several SLOWPOKE-2 reactors fuelled with highly enriched uranium aluminum alloy fuel have begun to interfere with the daily operation of these reactors. To investigate this phenomenon, samples of reactor container water and gas from the headspace were obtained at four SLOWPOKE-2 reactor facilities and examined by gamma ray spectroscopy methods. These radiation fields are due to the circulation of fission products within the reactor container vessel. The most likely source of the fission product release is an area of uranium-bearing material exposed to the coolant at the end weld line which originated at the time of fuel fabrication. The results of this study are compared with observations from an underwater visual examination of one core and the metallographic examination of archived fuel elements. 19 refs., 4 tabs., 8 figs.

  18. Construction materials as a waste management solution for cellulose sludge.

    Science.gov (United States)

    Modolo, R; Ferreira, V M; Machado, L M; Rodrigues, M; Coelho, I

    2011-02-01

    Sustainable waste management system for effluents treatment sludge has been a pressing issue for pulp and paper sector. Recycling is always recommended in terms of environmental sustainability. Following an approach of waste valorisation, this work aims to demonstrate the technical viability of producing fiber-cement roof sheets incorporating cellulose primary sludge generated on paper and pulp mills. From the results obtained with preliminary studies it was possible to verify the possibility of producing fiber-cement sheets by replacing 25% of the conventional used virgin long fiber by primary effluent treatment cellulose sludge. This amount of incorporation was tested on an industrial scale. Environmental parameters related to water and waste, as well as tests for checking the quality of the final product was performed. These control parameters involved total solids in suspension, dissolved salts, chlorides, sulphates, COD, metals content. In the product, parameters like moisture, density and strength were controlled. The results showed that it is possible to replace the virgin long fibers pulp by primary sludge without impacts in final product characteristics and on the environment. This work ensures the elimination of significant waste amounts, which are nowadays sent to landfill, as well as reduces costs associated with the standard raw materials use in the fiber-cement industrial sector. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Construction materials as a waste management solution for cellulose sludge

    International Nuclear Information System (INIS)

    Modolo, R.; Ferreira, V.M.; Machado, L.M.; Rodrigues, M.; Coelho, I.

    2011-01-01

    Sustainable waste management system for effluents treatment sludge has been a pressing issue for pulp and paper sector. Recycling is always recommended in terms of environmental sustainability. Following an approach of waste valorisation, this work aims to demonstrate the technical viability of producing fiber-cement roof sheets incorporating cellulose primary sludge generated on paper and pulp mills. From the results obtained with preliminary studies it was possible to verify the possibility of producing fiber-cement sheets by replacing 25% of the conventional used virgin long fiber by primary effluent treatment cellulose sludge. This amount of incorporation was tested on an industrial scale. Environmental parameters related to water and waste, as well as tests for checking the quality of the final product was performed. These control parameters involved total solids in suspension, dissolved salts, chlorides, sulphates, COD, metals content. In the product, parameters like moisture, density and strength were controlled. The results showed that it is possible to replace the virgin long fibers pulp by primary sludge without impacts in final product characteristics and on the environment. This work ensures the elimination of significant waste amounts, which are nowadays sent to landfill, as well as reduces costs associated with the standard raw materials use in the fiber-cement industrial sector.

  20. Fifty years with nuclear fission

    International Nuclear Information System (INIS)

    Behrens, J.W.; Carlson, A.D.

    1989-01-01

    The news of the discovery of nuclear fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fifieth anniversary of its discovery by holding a topical meeting entitled, ''Fifty Years with Nuclear Fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent development in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicated a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two fully days of sessions (April 27 and 28) at the main site of the NIST in Gaithersburg, Maryland. The wide range of topics covered in this Volume 1 by this topical meeting included plenary invited, and contributed sessions entitled: Preclude to the First Chain Reaction -- 1932 to 1942; Early Fission Research -- Nuclear Structure and Spontaneous Fission; 50 Years of Fission, Science, and Technology; Nuclear Reactors, Secure Energy for the Future; Reactors 1; Fission Science 1; Safeguards and Space Applications; Fission Data; Nuclear Fission -- Its Various Aspects; Theory and Experiments in Support of Theory; Reactors and Safeguards; and General Research, Instrumentation, and By-Product. The individual papers have been cataloged separately

  1. Materials specific work at Forschungszentrum Karlsruhe and in cooperation with the industrial partners ALKEM and Interatom for the development of nuclear oxide fuels for fission reactors

    International Nuclear Information System (INIS)

    Kleykamp, H.; Muehling, G.

    2005-09-01

    The fabrication of uranium-plutonium oxide fuel started in Forschungszentrum Karlsruhe and at ALKEM company to begin for the criticality experiments in the SNEAK reactor and subsequently for stationary fuel pin irradiations in the FR2, BR2, DFR, Rapsodie, Phenix and KNK II reactors. The production methods comprised first the mechanical blending of UO2 and PuO2 followed by direct pressing and sintering of the pellets, later the advanced methods such as optimized comilling and ammonium uranyl plutonyl coprecititation. The fabrication of pellets was described in the main, further the alternative fuel pin manufacturing processes by vibrational compaction and hot-impact densification were discussed. The first capsule and pin irradiations in the FR2 and BR2 reactors contributed to the assessment of the maximum operation parameters within the fuel pin development such as linear heat rating, cladding temperature and burnup. Subsequently, small-bundle and largebundle irradiations were made in fast reactors in cooperation with Interatom company in order to verify the specifications for the commercial fast reactor SNR 300. Milestones were the maximum burnup of 175 GWd/t metal, corresponding 18.6 % of the heavy atoms, obtained in one of the KNK II fuel pin assemblies, and the displacement rates in the cladding materials of 140 dpa NRT attained in the Phenix reactor. Higher implications gained later the stationary irradiations of defected mixed-oxide pins, the mild fuel pin transient operations, the local blockage experiments and the severe hypothetic accidents in the respective Siloe, HFR, BR2 and CABRI reactors. These experiments were made solely in international partnership. Further activities were the chemical analyses of solid residues and coprecipitations of irradiated mixed-oxide fuels in the head-end of the reprocessing. All these actions were coordinated in the then fast breeder project. Furthermore, irradiated fuels and fuel pins of other reactor types were

  2. Project management plan, Hazardous Materials Management and Emergency Response Training Center

    International Nuclear Information System (INIS)

    Borgeson, M.E.

    1994-01-01

    For the next 30 years, the main activities at the Hanford Site will involve the handling and cleanup of toxic substances. Thousands of workers involved in these new activities will need systematic training appropriate to their tasks and associated risks. This project is an important part of the Hanford Site mission and will enable the US Department of Energy (DOE) to meet high standards for safety. The Hazardous Materials Management and Emergency Response Training Center (HAMMER) project will construct a centralized regional training center dedicated to training hazardous materials workers and emergency responders in classrooms and with hands-on, realistic training aids representing actual field conditions. The HAMMER Training Center will provide a cost-effective, high-quality way to meet the Hanford Site training needs. The training center creates a partnership among DOE; government contractors; labor; local, state, and tribal governments; and selected institutions of higher education

  3. How fission was discovered

    International Nuclear Information System (INIS)

    Fluegge, S.

    1989-01-01

    After the great survey of neutron induced radioactivity by Fermi and co-workers, the laboratories in Paris and Berlin-Dahlen tried to disentangle the complex results found in uranium. At that time neutron sources were small, activities low, and equipment very simple. Chemistry beyond uranium still was unknown. Hahn and Meitner believed to have observed three transuranic isomeric chains, a doubtful result even then. Early in 1938, Curie and Savic in Paris found an activity interpreted to be actinium, and Hahn and Meitner another to be radium. Both interpretations seemed impossible from energy considerations. Hahn and Strassmann, therefore, continued this work and succeeded to separate the new activity from radium. There remained no doubt that a barium isotope had been produced, the uranium nucleus splitting in the yet-unknown process we now call fission

  4. Z-Plant material information tracking system (ZMITS) software development and integration project management plan

    International Nuclear Information System (INIS)

    IBSEN, T.G.

    1999-01-01

    This document plans for software and interface development governing the implementation of ZMITS and other supporting systems necessary to manage information for material stabilization needs of the Project Hanford Management Contract (PHMC)

  5. Defense Virtual Library: Technical Metadata for the Long-Term Management of Digital Materials: Preliminary Guidelines

    National Research Council Canada - National Science Library

    Flynn, Marcy

    2002-01-01

    ... of the digital materials being preserved. This report, prepared by Silver Image Management (SIM), proposes technical metadata elements appropriate for digital objects in the Defense Virtual Library...

  6. Managing Materials and Wastes for Homeland Security Incidents

    Science.gov (United States)

    To provide information on waste management planning and preparedness before a homeland security incident, including preparing for the large amounts of waste that would need to be managed when an incident occurs, such as a large-scale natural disaster.

  7. Neutron threshold activation detectors (TAD) for the detection of fissions

    Science.gov (United States)

    Gozani, Tsahi; Stevenson, John; King, Michael J.

    2011-10-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons (≈3 vs. ≈0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron "flash") where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector material. The technique

  8. Neutron threshold activation detectors (TAD) for the detection of fissions

    International Nuclear Information System (INIS)

    Gozani, Tsahi; Stevenson, John; King, Michael J.

    2011-01-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons (∼3 vs. ∼0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron 'flash') where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector material. The technique

  9. Neutron threshold activation detectors (TAD) for the detection of fissions

    Energy Technology Data Exchange (ETDEWEB)

    Gozani, Tsahi, E-mail: tgozani@rapiscansystems.com [Rapiscan Laboratories, Inc., 520 Almanor Ave., Sunnyvale, CA 94085 (United States); Stevenson, John; King, Michael J. [Rapiscan Laboratories, Inc., 520 Almanor Ave., Sunnyvale, CA 94085 (United States)

    2011-10-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons ({approx}3 vs. {approx}0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron 'flash') where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector

  10. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martovetsky, N. N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Molvik, A. W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simonen, T. C. [Univ. of California, Berkeley, CA (United States)

    2011-05-13

    The achieved performance of the gas dynamic trap version of magnetic mirrors and today’s technology we believe are sufficient with modest further efforts for a neutron source for material testing (Q=Pfusion/Pinput~0.1). The performance needed for commercial power production requires considerable further advances to achieve the necessary high Q>>10. An early application of the mirror, requiring intermediate performance and intermediate values of Q~1 are the hybrid applications. The Axisymmetric Mirror has a number of attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, inherently steady-state operation, and the presence of the natural divertors in the form of end tanks. This level of physics performance has the virtue of low risk and only modest R&D needed and its simplicity promises economy advantages. Operation at Q~1 allows for relatively low electron temperatures, in the range of 4 keV, for the DT injection energy ~ 80 keV. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror length of 35 m is discussed. Simple circular superconducting coils are based on today’s technology. The positive ion neutral beams are similar to existing units but designed for steady state. A brief qualitative discussion of three groups of physics issues is presented: axial heat loss, MHD stability in the axisymmetric geometry, microstability of sloshing ions. Burning fission reactor wastes by fissioning actinides (transuranics: Pu, Np, Am, Cm, .. or just minor actinides: Np, Am, Cm, …) in the hybrid will multiply fusion’s energy by a factor of ~10 or more and diminish the Q needed to less than 1 to overcome the cost of recirculating power for good economics. The economic value of destroying actinides by fissioning is rather low based on either the cost of long-term storage or even deep geologic disposal so most of the revenues of hybrids will come from electrical power. Hybrids that obtain revenues from

  11. Fifty years with nuclear fission

    International Nuclear Information System (INIS)

    Behrens, J.W.; Carlson, A.D.

    1989-01-01

    The news of the discovery of nucler fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fiftieth anniversary of its discovery by holding a topical meeting entitled, ''Fifty years with nuclear fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent developments in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicating a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two full days of sessions (April 27 and 28) at the main sites of the NIST in Gaithersburg, Maryland. The wide range of topics covered by Volume 2 of this topical meeting included plenary invited, and contributed sessions entitled, Nuclear fission -- a prospective; reactors II; fission science II; medical and industrial applications by by-products; reactors and safeguards; general research, instrumentation, and by-products; and fission data, astrophysics, and space applications. The individual papers have been cataloged separately

  12. Development of an audiovisual teaching material for radiation management education of licenceholders

    International Nuclear Information System (INIS)

    Chae, Sung Ki; Park, Tai Jin; Lim, Ki Joong; Jung, Ho Sup; Jun, Sung Youp; Kim, Jung Keun; Heo, Pil Jong; Jang, Han Ki

    2007-02-01

    This study aims at developing an audiovisual teaching material for elevating their abilities for radiation management during the legal education of the licenceholder about radiation and radioisotope. It also aims at developing an educational video material for the RSO in radiation safety management and RI handing. The role or duty, which was needed for the activities of the regulation and management in real fields, of the licenceholder was introduced by referring the medical field and the audiovisual teaching material was then developed by presenting the examples of management in real fields. The procedures of management were analyzed by reflecting the working tables of the supervisors for radiation management in the licensed companies, the working list was divided into the main subjects of 10 and the each main subject was then also divided into the detailed subjects of 103. Based on the detailed subjects, the points of sameness and difference for the management in the educational, researching and medical fields were analyzed and the content of the material was then determined according to the points of sameness and difference. In addition, the material emphasized the effect resulted in the actual education as compared with the existing audiovisual materials. The contents of the material are as follows : regulation of radiation safety, duty of radiation safety management - management of working members, management of facilities, management of sources

  13. Development of an audiovisual teaching material for radiation management education of licenceholders

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Sung Ki; Park, Tai Jin; Lim, Ki Joong; Jung, Ho Sup; Jun, Sung Youp; Kim, Jung Keun; Heo, Pil Jong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Jang, Han Ki [Hanyang Univ., Seoul (Korea, Republic of)

    2007-02-15

    This study aims at developing an audiovisual teaching material for elevating their abilities for radiation management during the legal education of the licenceholder about radiation and radioisotope. It also aims at developing an educational video material for the RSO in radiation safety management and RI handing. The role or duty, which was needed for the activities of the regulation and management in real fields, of the licenceholder was introduced by referring the medical field and the audiovisual teaching material was then developed by presenting the examples of management in real fields. The procedures of management were analyzed by reflecting the working tables of the supervisors for radiation management in the licensed companies, the working list was divided into the main subjects of 10 and the each main subject was then also divided into the detailed subjects of 103. Based on the detailed subjects, the points of sameness and difference for the management in the educational, researching and medical fields were analyzed and the content of the material was then determined according to the points of sameness and difference. In addition, the material emphasized the effect resulted in the actual education as compared with the existing audiovisual materials. The contents of the material are as follows : regulation of radiation safety, duty of radiation safety management - management of working members, management of facilities, management of sources.

  14. Nuclear fission and diplomacy

    International Nuclear Information System (INIS)

    Van Splunter, J.M.

    1993-01-01

    The title study, based on archive investigations in the Netherlands, the United States and Great Britain, deals with the early phase of Dutch involvement in nuclear energy, that is up to the signing of the Euratom treaty in 1957. It concentrates upon the international aspects of Dutch activities in nuclear energy, especially upon relations with other countries active in the field. In chapter two the Dutch government policy regarding the strategic materials uranium and thorium is discussed. Attention is paid to the interest of the United States for such materials. It is explained why the Dutch government kept it a secret that they possessed a certain amount of uranium and why they negotiated the thorium reserves which were mined in the Netherlands East Indies (now Indonesia). In chapter three the Dutch policy in the United Nations regarding the so-called Baruch plan, being the USA-proposal for international control and management of the use of nuclear energy, and the counter proposal of the USSR, the Gromyko plan, in the period 1946-152 is outlined. In chapter four an overview is given of how the Dutch nuclear energy research in the first ten years after the Second World War was set up and organized. As a result of US president Eisenhower's 'Atoms for Peace' speech, held in December 1953, the Americans offered to cooperate with Western European countries, already involved in research on peaceful applications of nuclear energy. This change in the US-policy of secrecy is described in chapter five. The consequences of that speech are dealt with in chapter six. It resulted, amongst other things in the foundation of the Reactor Centre Netherlands (RCN), now Netherlands Energy Research Foundation (ECN). It is concluded that only in the last years of the period, studied in this thesis, the Netherlands reconciled itself to American supremacy, partly explained by the weakly developed political structure in the Netherlands regarding the nuclear energy policy. 17 ills., 137

  15. Nuclear fission and fission-product spectroscopy: 3. International workshop on nuclear fission and fission-product spectroscopy

    International Nuclear Information System (INIS)

    Goutte, Heloise; Fioni, Gabriele; Faust, Herbert; Goutte, Dominique

    2005-01-01

    The present book contains the proceedings of the third workshop in a series of workshops previously held in Seyssins in 1994 and 1998. The meeting was jointly organized by different divisions of CEA and two major international laboratories. In the opening address, Prof. B. Bigot, the French High Commissioner for Atomic Energy, outlined France's energy policy for the next few decades. He emphasized the continuing progress of nuclear fission in both technical and economic terms, allowing it to contribute to the energy needs of the planet even more in the future than it does today. Such progress implies a very strong link between fundamental and applied research based on experimental and theoretical approaches. The workshop gathered the different nuclear communities studying the fission process, including topics as the following: - nuclear fission experiments, - spectroscopy of neutron rich nuclei, - fission data evaluation, - theoretical aspects of nuclear fission, - and innovative nuclear systems and new facilities. The scientific program was suggested by an International Advisory Committee. About 100 scientists from 13 different countries attended the conference in the friendly working atmosphere of the Castle of Cadarache in the heart of the Provence. The proceedings of the workshop were divided into 11 sections addressing the following subject matters: 1. Cross sections and resonances (5 papers); 2. Fission at higher energies - I (5 papers); 3. Fission: mass and charge yields (4 papers); 4. Light particles and cluster emission (4 papers); 5. Spectroscopy of neutron rich nuclei (5 papers); 6. Resonances, barriers, and fission times (5 papers); 7. Fragment excitation and neutron emission (4 papers); 8. Mass and energy distributions (4 papers); 9. Needs for nuclear data and new facilities - I (4 papers); 10. Angular momenta and fission at higher Energies - II (3 papers); 11. New facilities - II (2 papers). A poster session of 8 presentations completed the workshop

  16. Gamma Radiation from Fission Fragments

    International Nuclear Information System (INIS)

    Higbie, Jack

    1969-10-01

    The gamma radiation from the fragments of the thermal neutron fission of 235 U has been investigated, and the preliminary data are presented here with suggestions for further lines of research and some possible interpretations of the data. The data have direct bearing on the fission process and the mode of fragment de-excitation. The parameters measured are the radiation decay curve for the time interval (1 - 7) x 10 -10 sec after fission, the photon yield, the total gamma ray energy yield, and the average photon energy. The last three quantities are measured as a function of the fragment mass

  17. Energy partition in nuclear fission

    International Nuclear Information System (INIS)

    Ruben, A.; Maerten, H.; Seeliger, D.

    1990-01-01

    A scission point model (two spheroid model TSM) including semi-empirical temperature-dependent shell correction energies for deformed fragments at scission is presented. It has been used to describe the mass-asymmetry-dependent partition of the total energy release on both fragments from spontaneous and induced fission. Characteristic trends of experimental fragment energy and neutron multiplicity data as function of incidence energy in the Th-Cf region of fissioning nuclei are well reproduced. Based on model applications, information on the energy dissipated during the descent from second saddle of fission barrier to scission point have been deduced. (author). 39 refs, 13 figs

  18. Gamma Radiation from Fission Fragments

    Energy Technology Data Exchange (ETDEWEB)

    Higbie, Jack

    1969-10-15

    The gamma radiation from the fragments of the thermal neutron fission of {sup 235}U has been investigated, and the preliminary data are presented here with suggestions for further lines of research and some possible interpretations of the data. The data have direct bearing on the fission process and the mode of fragment de-excitation. The parameters measured are the radiation decay curve for the time interval (1 - 7) x 10{sup -10} sec after fission, the photon yield, the total gamma ray energy yield, and the average photon energy. The last three quantities are measured as a function of the fragment mass.

  19. Fission-product source terms

    International Nuclear Information System (INIS)

    Lorenz, R.A.

    1981-01-01

    This presentation consists of a review of fission-product source terms for light water reactor (LWR) fuel. A source term is the quantity of fission products released under specified conditions that can be used to calculate the consequences of the release. The source term usually defines release from breached fuel-rod cladding but could also describe release from the primary coolant system, the reactor containment shell, or the site boundary. The source term would be different for each locality, and the chemical and physical forms of the fission products could also differ

  20. The spectroscopy of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, W.R. [Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    High-resolution measurements on {gamma} rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author) 24 refs., 8 figs., 1 tab.

  1. The spectroscopy of fission fragments

    International Nuclear Information System (INIS)

    Phillips, W.R.

    1998-01-01

    High-resolution measurements on γ rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author)

  2. Development of fission Mo production technology

    International Nuclear Information System (INIS)

    Kim, B. K.; Park, K. B.; Jun, B. J.; Park, J. H.; Choung, W. M.; Lee, K. I.; Woo, M. S.; Whang, D. S.; Kim, Y. K.; Yoo, J. H.; Sohn, D. S.; Lee, Y. W.; Na, S. H.; Koo, Y. H.; Hwang, D. H.; Joo, P. K.

    1997-08-01

    The feasibility study is accomplished in this project for the development of fission moly production. The KAERI process proposed for development in KAERI is discussed together with those of the American Cintichem and Russian IPPE, each of which would be plausible for introduction whenever the indigenous development is not much feasible. For the conceptual design of the KAERI irradiation target, analysis method is set up and some preliminary analysis is performed accordingly for the candidate design. To establish chemical process concepts for the afore-mentioned three processes, characteristics, operation conditions, and the management of the generated wastes are investigated. Basic requirements of hotcell facilities for chemical processing and a possible way of utilizing the existing hotcells are discussed in parallel with the counter-measures for the construction of new hotcell facilities. Various conditions of target irradiation for fission moly production in Hanaro are analyzed. Plan for introduction of the relevant technology introduction and for procurement of highly enriched uranium are considered. On the basis of assuming some conditions, the economic feasibility study for fission moly production is also overviewed. (author). 22 refs., 28 tabs., 24 figs

  3. Guide for Operational Configuration Management Program including the adjunct programs of design reconstitution and material condition and aging management

    International Nuclear Information System (INIS)

    1993-11-01

    This standard presents program criteria and implementation guidance for an operational configuration management program for DOE nuclear and non-nuclear facilities in the operational phase. Portions of this standard are also useful for other DOE processes, activities, and programs. This Part 1 contains foreword, glossary, acronyms, bibliography, and Chapter 1 on operational configuration management program principles. Appendices are included on configuration management program interfaces, and background material and concepts for operational configuration management

  4. Analytical measurements of fission products during a severe nuclear accident

    Science.gov (United States)

    Doizi, D.; Reymond la Ruinaz, S.; Haykal, I.; Manceron, L.; Perrin, A.; Boudon, V.; Vander Auwera, J.; tchana, F. Kwabia; Faye, M.

    2018-01-01

    The Fukushima accident emphasized the fact that ways to monitor in real time the evolution of a nuclear reactor during a severe accident remain to be developed. No fission products were monitored during twelve days; only dose rates were measured, which is not sufficient to carry out an online diagnosis of the event. The first measurements were announced with little reliability for low volatile fission products. In order to improve the safety of nuclear plants and minimize the industrial, ecological and health consequences of a severe accident, it is necessary to develop new reliable measurement systems, operating at the earliest and closest to the emission source of fission products. Through the French program ANR « Projet d'Investissement d'Avenir », the aim of the DECA-PF project (diagnosis of core degradation from fission products measurements) is to monitor in real time the release of the major fission products (krypton, xenon, gaseous forms of iodine and ruthenium) outside the nuclear reactor containment. These products are released at different times during a nuclear accident and at different states of the nuclear core degradation. Thus, monitoring these fission products gives information on the situation inside the containment and helps to apply the Severe Accident Management procedures. Analytical techniques have been proposed and evaluated. The results are discussed here.

  5. Analytical measurements of fission products during a severe nuclear accident

    Directory of Open Access Journals (Sweden)

    Doizi D.

    2018-01-01

    Full Text Available The Fukushima accident emphasized the fact that ways to monitor in real time the evolution of a nuclear reactor during a severe accident remain to be developed. No fission products were monitored during twelve days; only dose rates were measured, which is not sufficient to carry out an online diagnosis of the event. The first measurements were announced with little reliability for low volatile fission products. In order to improve the safety of nuclear plants and minimize the industrial, ecological and health consequences of a severe accident, it is necessary to develop new reliable measurement systems, operating at the earliest and closest to the emission source of fission products. Through the French program ANR « Projet d’Investissement d’Avenir », the aim of the DECA-PF project (diagnosis of core degradation from fission products measurements is to monitor in real time the release of the major fission products (krypton, xenon, gaseous forms of iodine and ruthenium outside the nuclear reactor containment. These products are released at different times during a nuclear accident and at different states of the nuclear core degradation. Thus, monitoring these fission products gives information on the situation inside the containment and helps to apply the Severe Accident Management procedures. Analytical techniques have been proposed and evaluated. The results are discussed here.

  6. Gas-phase transport of fission products

    International Nuclear Information System (INIS)

    Tang, I.N.; Munkelwitz, H.R.

    1982-01-01

    The paper presents the results of an experimental investigation to show the importance of nuclear aerosol formation as a mechanism for semi-volatile fission product transport under certain postulated HTGR accident conditions. Simulated fission product Sr and Ba as oxides are impregnated in H451 graphite and released at elevated temperatures into a dry helium flow. In the presence of graphite, the oxides are quantitatively reduced to metals, which subsequently vaporize at temperatures much lower than required for the oxides alone to vaporize in the absence of graphite. A substantial fraction of the released material is associated with particulate matter, which is collected on filters located downstream at ambient temperatures. Increasing carrier-gas flow rate greatly enhances the extent of particulate transport. The release and transport of simulated fission product Ag as metal are also investigated. Electron microscopic examinations of the collected Sr and Ag aerosols show large agglomerates composed of primary particles roughly 0.06 to 0.08 μm in diameter

  7. Method and apparatus for the management of hazardous waste material

    Science.gov (United States)

    Murray, Jr., Holt

    1995-01-01

    A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal.

  8. Design of material management system of mining group based on Hadoop

    Science.gov (United States)

    Xia, Zhiyuan; Tan, Zhuoying; Qi, Kuan; Li, Wen

    2018-01-01

    Under the background of persistent slowdown in mining market at present, improving the management level in mining group has become the key link to improve the economic benefit of the mine. According to the practical material management in mining group, three core components of Hadoop are applied: distributed file system HDFS, distributed computing framework Map/Reduce and distributed database HBase. Material management system of mining group based on Hadoop is constructed with the three core components of Hadoop and SSH framework technology. This system was found to strengthen collaboration between mining group and affiliated companies, and then the problems such as inefficient management, server pressure, hardware equipment performance deficiencies that exist in traditional mining material-management system are solved, and then mining group materials management is optimized, the cost of mining management is saved, the enterprise profit is increased.

  9. Fission dynamics with systems of intermediate fissility

    Indian Academy of Sciences (India)

    results concerning nuclear dissipation and fission time-scale obtained from several of these studies. In particular ... alent to the assumption that fission is delayed, namely, that the fission probability is not .... parameters to be adjusted on the experimental data. ..... (b) Time distribution of all fission events for the 132Ce nucleus.

  10. Fusion-fission hybrid reactors

    International Nuclear Information System (INIS)

    Greenspan, E.

    1984-01-01

    This chapter discusses the range of characteristics attainable from hybrid reactor blankets; blanket design considerations; hybrid reactor designs; alternative fuel hybrid reactors; multi-purpose hybrid reactors; and hybrid reactors and the energy economy. Hybrid reactors are driven by a fusion neutron source and include fertile and/or fissile material. The fusion component provides a copious source of fusion neutrons which interact with a subcritical fission component located adjacent to the plasma or pellet chamber. Fissile fuel and/or energy are the main products of hybrid reactors. Topics include high F/M blankets, the fissile (and tritium) breeding ratio, effects of composition on blanket properties, geometrical considerations, power density and first wall loading, variations of blanket properties with irradiation, thermal-hydraulic and mechanical design considerations, safety considerations, tokamak hybrid reactors, tandem-mirror hybrid reactors, inertial confinement hybrid reactors, fusion neutron sources, fissile-fuel and energy production ability, simultaneous production of combustible and fissile fuels, fusion reactors for waste transmutation and fissile breeding, nuclear pumped laser hybrid reactors, Hybrid Fuel Factories (HFFs), and scenarios for hybrid contribution. The appendix offers hybrid reactor fundamentals. Numerous references are provided

  11. Fission Evaluation on Th-232

    International Nuclear Information System (INIS)

    Lee, Yong-Deok; Lee, Young-Ouk; Park, Joo-Hwan

    2007-01-01

    In recent years, several studies of neutron induced reaction on thorium were carried out in the framework of an IAEA coordinate research project involving a US contribution. The importance of Th-232 is for an innovative fuel cycle concept based on thorium fuel. Thorium fuels are also considered in accelerator driven system (ADS) to produce the power and radioactive waste transmutation. Therefore, the accurate neutron cross section for fission is crucially important for the design of various reactor systems. On December 2006, the ENDF/B-VII involving the new evaluation of actinides for Th-U fuel cycle was released. From the current environmental change, increasing oil price, air pollution by carbon dioxide, drain of oil resource, increasing demand of electricity, and energy independence, nuclear power is slowly to start to be reconsidered recently and it might be an alternative proposal as a production facility of energy and a reuse of resources. Even though it produces the nuclear wastes, it has an advantage in the emission of greenhouse gases. Therefore, new concept of nuclear technology to be developed for power production is subject to the condition of increased safety, reduction of nuclear wastes, resistance to nuclear material proliferation, Thorium fuel cycle is the most feasible option to satisfy the condition. Specially, thorium reserves are much larger than those of uranium

  12. Pulsed fission/fusion hybrid engines

    International Nuclear Information System (INIS)

    Hudson, G.C.

    1979-01-01

    Research into high-thrust, high-specific impulse rocket engines using energy from nuclear reactions which has been conducted at this organization will be discussed. The engines are all conceptual in nature, yet are within the realization of conventional or near-term technology. The engine concepts under study at Foundation, Inc. are designed to obviate or minimize these negative effects of the ORION scheme. By using non-chemical triggers to initiate a non-breakeven fusion reaction at the core of a target composed of both fission and fusion fuel, it should be possible to employ the fusion neutrons thus produced to begin a fission reaction in U-235 or Pu-239. Since the density of the target can be increased by as much as a factor of 250 through compression of the pellet, the amount of fission material necessary to produce a critical mass can be greatly reduced. (This also means that the amount of fission products produced for a giventhrust level is also reduced from the ORION levels.) Coupling this eeffect to the large number of 14 MeV fusion neutrons produced early in the compression process and subsequently to the heating of some additional fusion fuel surrounding the critical mass leads to the very efficient burnup of the target. This insures both high yield from the target as well as low cost per MJ energy released. Finally, the use of such small pellets allows the scale of the energy released to be tailored to a level usable in rocket engines of a few tens of tons thrust level. (orig.) [de

  13. An information system for sustainable materials management with material flow accounting and waste input–output analysis

    Directory of Open Access Journals (Sweden)

    Pi-Cheng Chen

    2017-05-01

    Full Text Available Sustainable materials management focuses on the dynamics of materials in economic and environmental activities to optimize material use efficiency and reduce environmental impact. A preliminary web-based information system is thus developed to analyze the issues of resource consumption and waste generation, enabling countries to manage resources and wastes from a life cycle perspective. This pioneering system features a four-layer framework that integrates information on physical flows and economic activities with material flow accounting and waste input–output table analysis. Within this framework, several applications were developed for different waste and resource management stakeholders. The hierarchical and interactive dashboards allow convenient overview of economy-wide material accounts, waste streams, and secondary resource circulation. Furthermore, the system can trace material flows through associated production supply chain and consumption activities. Integrated with economic models; this system can predict the possible overloading on the current waste management facility capacities and provide decision support for designing strategies to approach resource sustainability. The limitations of current system are specified for directing further enhancement of functionalities.

  14. Life Science Research Facility materials management requirements and concepts

    Science.gov (United States)

    Johnson, Catherine C.

    1986-01-01

    The Advanced Programs Office at NASA Ames Research Center has defined hypothetical experiments for a 90-day mission on Space Station to allow analysis of the materials necessary to conduct the experiments and to assess the impact on waste processing of recyclable materials and storage requirements of samples to be returned to earth for analysis as well as of nonrecyclable materials. The materials include the specimens themselves, the food, water, and gases necessary to maintain them, the expendables necessary to conduct the experiments, and the metabolic products of the specimens. This study defines the volumes, flow rates, and states of these materials. Process concepts for materials handling will include a cage cleaner, trash compactor, biological stabilizer, and various recycling devices.

  15. Fission gas in thoria

    Energy Technology Data Exchange (ETDEWEB)

    Kuganathan, Navaratnarajah, E-mail: n.kuganathan@imperial.ac.uk [Department of Materials, Faculty of Engineering, Imperial College, London, SW7 2AZ (United Kingdom); Ghosh, Partha S. [Material Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Galvin, Conor O.T. [Department of Materials, Faculty of Engineering, Imperial College, London, SW7 2AZ (United Kingdom); Arya, Ashok K. [Material Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Dutta, Bijon K. [Homi Bhabha National Institute, Trombay, Mumbai 400 094 (India); Dey, Gautam K. [Material Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Grimes, Robin W. [Department of Materials, Faculty of Engineering, Imperial College, London, SW7 2AZ (United Kingdom)

    2017-03-15

    The fission gases Xe and Kr, formed during normal reactor operation, are known to degrade fuel performance, particularly at high burn-up. Using first-principles density functional theory together with a dispersion correction (DFT + D), in ThO{sub 2} we calculate the energetics of neutral and charged point defects, the di-vacancy (DV), different neutral tri-vacancies (NTV), the charged tetravacancy (CTV) defect cluster geometries and their interaction with Xe and Kr. The most favourable incorporation point defect site for Xe or Kr in defective ThO{sub 2} is the fully charged thorium vacancy. The lowest energy NTV in larger supercells of ThO{sub 2} is NTV3, however, a single Xe atom is most stable when accommodated within a NTV1. The di-vacancy (DV) is a significantly less favoured incorporation site than the NTV1 but the CTV offers about the same incorporation energy. Incorporation of a second gas atom in a NTV is a high energy process and more unfavourable than accommodation within an existing Th vacancy. The bi-NTV (BNTV) cluster geometry studied will accommodate one or two gas atoms with low incorporation energies but the addition of a third gas atom incurs a high energy penalty. The tri-NTV cluster (TNTV) forms a larger space which accommodates three gas atoms but again there is a penalty to accommodate a fourth gas atom. By considering the energy to form the defect sites, solution energies were generated showing that in ThO{sub 2−x} the most favourable solution equilibrium site is the NTV1 while in ThO{sub 2} it is the DV. - Highlights: • We have considered Xe and Kr in point defects and defect clusters (neutral and charged) using Density Functional Theory (DFT) with a dispersion correction. • The most favourable charge state for a point defect (vacancy or interstitial) is that with full ionic charge and we have found that in all cases gas atoms occupy the fully charged vacancy sites. • The number of fission gas atoms accommodated in ThO{sub 2} is

  16. Methodology and application of the WIMS-D4M fission product data

    International Nuclear Information System (INIS)

    Mo, S.C.

    1995-01-01

    The WIMS-D4 code has been modified (WIMS-D4m) to generate burn-up dependent microscopic cross sections for use in full core depletion calculations. The calculation of neutron absorption by fission products can be obtained from a reduced fission-product-chain model that includes the 135 Xe and 149 Sm chains, and a lumped fission product to account for the absorption by fission products not explicitly treated. Burn-up calculations were performed for the ANS MEU core using WIMS and EPRI-CELL cross sections. The calculated eigenvalues and material loadings are in good agreements

  17. Chemical effects of fission recoils

    International Nuclear Information System (INIS)

    Meisels, G.G.; Freeman, J.P.; Gregory, J.P.; Richardson, W.C.; Sroka, G.J.

    1978-01-01

    The production of nitrogen from nitrous oxide at high density was employed to investigate the energy deposition efficiency of fission recoils produced from fission of U 235 in uranium-palladium foils clad with platinum. Nitrogen production varied linearly with fission recoil dose from 1.1 x 10 20 to 9.0 x 10 20 eV, and was independent of density between 12.5 and 127.5 g l -1 N 2 O. 16.2 +- 0.8% of the fission recoil energy was deposited external to the foil. Electron microprobe analysis showed some unevenness of new foil and polymer buildup on the surface after irradiation of ethylene-oxygen mixtures. Subsequent irradiation in the presence of nitrous oxide restored some of the original efficiency. This is ascribed to chemical oxidation of the polymer induced by reactive intermediates produced from nitrous oxide. (author)

  18. Extraction chromatography of fission products

    International Nuclear Information System (INIS)

    Bonnevie-Svendsen, M.; Goon, K.

    1978-01-01

    Various cases of using extraction chromatography during analysis of fission products are reviewed. The use of the extraction chromatography method is considered while analysing reprocessed products of nuclear fuel for quantitative radiochemical analysis and control of fission product and actinoide separation during extraction and their chemical state in production solutions. The method is used to obtain pure fractions of typical burnup monitors (neodymium, molybdenum, cerium, cesium, europium, lanthanides) during determination of nuclear fuel burnup degree. While studying the nature of nuclear reactions the method is used to separate quickly short-life isotopes, to purify β-radiator fractions before measuring their half-life periods, to enrich isotopes forming with low output during fission. Examples of using extraction chromatography are given to separate long half-life or stable fission products from spent solutions, to control environment object contamination

  19. Chemical Production using Fission Fragments

    International Nuclear Information System (INIS)

    Dawson, J. K.; Moseley, F.

    1960-01-01

    Some reactor design considerations of the use of fission recoil fragment energy for the production of chemicals of industrial importance have been discussed previously in a paper given at the Second United Nations International Conference on the Peaceful Uses of Atomic Energy [A/Conf. 15/P.76]. The present paper summarizes more recent progress made on this topic at AERE, Harwell. The range-energy relationship for fission fragments is discussed in the context of the choice of fuel system for a chemical production reactor, and the experimental observation of a variation of chemical effect along the length of a fission fragment track is described for the irradiation of nitrogen-oxygen mixtures. Recent results are given on the effect of fission fragments on carbon monoxide-hydrogen gas mixtures and on water vapour. No system investigated to date shows any outstanding promise for large-scale chemical production. (author) [fr

  20. Physics and chemistry of fission

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: In the pleasant and hospitable atmosphere of the Kernforschungsanlage Juelich in the Federal Republic of Germany, the IAEA symposium on the Physics and Chemistry of Fission took place. Almost 200 scientists attended, 154 abstracts were submitted, and 57 papers presented, but more important than the numbers was the quality of the contributions and the progress reported at the symposium. The neutron was discovered almost 50 years ago; 40 years ago the idea of nuclear fission was born. Since then, a number of laboratories have worked hard to explain the phenomenon of fission One would expect that by now scientists would know exactly what happens in a nucleus before and during the process of fission, particularly as there are hundreds of power and research reactors in operation, and fission of uranium isotopes is the basis of their functioning. At first glance, fission seems a simple process: a neutron hits and penetrates the uranium nucleus which becomes excited, i.e. has a surplus of energy. One way to get rid of this energy is for the nucleus to split into two parts; additional products of this process are energy and more neutrons. Nature, however, seems to dislike such straightforward explanations. In the case of fission, scientists have observed a number of phenomena which disagree with a simple model. Sometimes, a nucleus will split into two parts without being 'attacked' by a neutron; this spontaneous fission opens up a new line of fission research and several contributions at the symposium reported on sophisticated experiments designed to unravel some of its specific details. Sometimes, a fissioning nucleus will emit another particle: ternary fission has become a powerful tool for studying the properties of nuclei during the fission process. For the scientist, it is fascinating to observe how the nucleus behaves during fission. They invent models which are supposed to reproduce the most probable course of events leading to fission. In one of these

  1. The research on the material management system in nuclear power plant construction process

    International Nuclear Information System (INIS)

    Liu Xuegeng; Huang Zhongping

    2010-01-01

    According to the module construction speciality of nuclear power plant, this article analyzes the relationship between the actual amount of the material transported to the construction site and the planed needs of the material, and points out the zero inventory management target in the nuclear power plant construction site. Based on this, the article put forward a nuclear power plant material management system which is based on the 'pull' information driver. This system is composed by material coding sub-system, procurement and site material integrated management sub-system and project control sub-system, and is driven by the material demand from construction site to realize the JIT purchasing. This structure of the system can reduce the gap between the actual amount of the material transported to the site and the planed needs of the material and achieve the target of reducing storage at construction site. (authors)

  2. Materials management in an internationally safeguarded fuels reprocessing plant

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Baker, A.L.; Cobb, D.D.

    1980-04-01

    The following appendices are included: aqueous reprocessing and conversion technology, reference facilities, process design and operating features relevant to materials accounting, operator's safeguards system structure, design principles of dynamic materials accounting systems, modeling and simulation approach, optimization of measurement control, aspects of international verification problem, security and reliability of materials measurement and accounting system, estimation of in-process inventory in solvent-extraction contactors, conventional measurement techniques, near-real-time measurement techniques, isotopic correlation techniques, instrumentation available to IAEA inspectors, and integration of materials accounting and containment and surveillance

  3. Materials management in an internationally safeguarded fuels reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, E.A.; Baker, A.L.; Cobb, D.D.

    1980-04-01

    The following appendices are included: aqueous reprocessing and conversion technology, reference facilities, process design and operating features relevant to materials accounting, operator's safeguards system structure, design principles of dynamic materials accounting systems, modeling and simulation approach, optimization of measurement control, aspects of international verification problem, security and reliability of materials measurement and accounting system, estimation of in-process inventory in solvent-extraction contactors, conventional measurement techniques, near-real-time measurement techniques, isotopic correlation techniques, instrumentation available to IAEA inspectors, and integration of materials accounting and containment and surveillance. (DLC)

  4. Unit mechanisms of fission gas release: Current understanding and future needs

    Science.gov (United States)

    Tonks, Michael; Andersson, David; Devanathan, Ram; Dubourg, Roland; El-Azab, Anter; Freyss, Michel; Iglesias, Fernando; Kulacsy, Katalin; Pastore, Giovanni; Phillpot, Simon R.; Welland, Michael

    2018-06-01

    Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel and gap properties. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are beginning to reveal new understanding of the unit mechanisms that define fission product behavior. Here, existing research on the basic mechanisms of fission gas release during normal reactor operation are summarized and critical areas where work is needed are identified. This basic understanding of the fission gas behavior mechanisms has the potential to revolutionize our ability to predict fission product behavior and to design fuels with improved performance. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.

  5. Farm Management and Leadership. Numeracy. Level 1. Level 2. Level 3. Support Materials for Agricultural Training.

    Science.gov (United States)

    Batman, Kangan; Gadd, Nick; Lucas, Michele

    This publication contains the three numeracy units of the three levels of Support Materials for Agricultural Training (SMAT) in farm management and leadership: Level 1 (starting), 2 (continuing), and 3 (completing). The units are designed to help the learner improve his or her numeracy skills needed to deal with farm management. SMAT materials can…

  6. Law project on the radioactive materials and wastes management 2006 recommendations presented by Anne Duthilleul

    International Nuclear Information System (INIS)

    2006-01-01

    This document provides recommendations on the law project concerning the radioactive material and wastes management. It precises the law objectives, the french particularities concerning the radioactive wastes and materials management, the public debate in France, the evaluation of the researches, the recommendations of the economic and social council. (A.L.B.)

  7. Theory of nuclear fission: a review

    International Nuclear Information System (INIS)

    Mosel, U.

    1976-01-01

    General properties of nuclear fission are reviewed and related to our present knowledge of fission theory. For this purpose the basic reasons for the shape of the fission barriers are discussed and their consequences compared with experimental results on barrier shapes and structures. Special emphasis is put on the asymmetry of the fission barriers and mass-distributions and its relation to the shells of the nascent fragment shells. Finally the problem of calculating fission cross sections is discussed

  8. Spontaneous fission of 259Md

    International Nuclear Information System (INIS)

    Hulet, E.K.; Wild, J.F.; Lougheed, R.W.; Baisden, P.A.; Landrum, J.H.; Dougan, R.J.; Mustafa, M.; Ghiorso, A.; Nitschke, J.M.

    1979-01-01

    The mass and kinetic energy distributions of fission fragments from the spontaneous fission of th newly discovered nuclide 259 Md were obtained. 259 Md was identified as the E. C. daughter of 259 No, and was found to decay entirely (> 95%) by spontaneous fission with a 95-min half-life. From the kinetic energies measured for 397 pairs of coincident fragments, a mass distribution was derived that is symmetric with sigma = 13 amu. 259 Md, together with 258 Fm and 259 Fm, form a select group of three nuclides whose mass division in spontaneous fission is highly symmetric. Unlike the total-kinetic-energy (TKE) distributions of 258 Fm and 259 Fm, which peak at approx. = to 240 MeV, this distribution for 259 Md is broad and is 50 MeV lower in energy. Analysis of the mass and energy distributions shows that events near mass symmetry also exhibit a broad TKE distribution, with one-third of the symmetric events having TKEs less than 200 MeV. The associated of low TKEs with symmetric mass division in the fission of very heavy actinides is anomalous and inconsistent with theories based upon the emergence of fragment shells near the scission point. Either three-body fragmentation or peculiar fragment shapes are assumed as the cause for the large consumption of Coulomb energy observed for a significant fraction of symmetric fissions in 259 Md. 6 figures

  9. A stochastic approach to fission

    International Nuclear Information System (INIS)

    Boilley, D.; Suraud, E.; Abe, Yasuhisa

    1992-01-01

    A microscopically derived Langevin equation is applied to thermally induced nuclear fission. An important memory effect is pointed out. A strong friction coefficient, calculated from microscopic quantities, tends to decrease the stationary limit of the fission rate and to increase the transient time. Fission was described as a diffusion over a barrier of a collective variable, and a Langevin Equation (LE) was used to study the phenomenon. A study of the stationary flow over the saddle point with a Fokker-Planck Equation (FPE), equivalent to the LE was used to give formula for the stationary fission rate (or reaction rate for the chemistry applications). More recently, a complete study of the fission process was performed numerically with both FPE and LE. A long transient time, that could allow more pre-scission neutrons to evaporate, was pointed out. The derivation of this new LE is recalled, followed by the description of the memory dependence and by the effect of a large friction coefficient on the fission rate. (author) 6 refs., 3 figs

  10. Modelling isothermal fission gas release

    International Nuclear Information System (INIS)

    Uffelen, P. van

    2002-01-01

    The present paper presents a new fission gas release model consisting of two coupled modules. The first module treats the behaviour of the fission gas atoms in spherical grains with a distribution of grain sizes. This module considers single atom diffusion, trapping and fission induced re-solution of gas atoms associated with intragranular bubbles, and re-solution from the grain boundary into a few layers adjacent to the grain face. The second module considers the transport of the fission gas atoms along the grain boundaries. Four mechanisms are incorporated: diffusion controlled precipitation of gas atoms into bubbles, grain boundary bubble sweeping, re-solution of gas atoms into the adjacent grains and gas flow through open porosity when grain boundary bubbles are interconnected. The interconnection of the intergranular bubbles is affected both by the fraction of the grain face occupied by the cavities and by the balance between the bubble internal pressure and the hydrostatic pressure surrounding the bubbles. The model is under validation. In a first step, some numerical routines have been tested by means of analytic solutions. In a second step, the fission gas release model has been coupled with the FTEMP2 code of the Halden Reactor Project for the temperature distribution in the pellets. A parametric study of some steady-state irradiations and one power ramp have been simulated successfully. In particular, the Halden threshold for fission gas release and two simplified FUMEX cases have been computed and are summarised. (author)

  11. Status of fission power

    International Nuclear Information System (INIS)

    Levenson, M.

    1977-01-01

    Fission energy is reviewed from the viewpoints of technology, economics, politics, manufacturers, consumers, and foreign countries. Technically, the reactor program is operating and the light water reactor industry shows signs of maturing, although recent business has been disappointing. Marketing of gas-cooled reactors depends, not on technical, but economic and political issues. Liquid metal fast breeder reactors have been demonstrated worldwide, while the gas-cooled fast breeder remains an undemonstrated option. Nuclear plants, currently costing the same as coal plants with scrubbers, are the cheapest option for utilities because most of the cost is imbedded. The defeat of nuclear initiatives in seven states indicates that public feeling is not as anti-nuclear as opponents to nuclear power claim. The harshness of last winter demonstrated the advantages of a power source that is not so sensitive to the weather for reliable operation and transport, as well as low cost energy. Other nations are proceeding to build a nuclear capability, which the U.S. may jeopardize because of concerns about the fuel cycle, nuclear waste disposal, uranium reserves, and nuclear proliferation

  12. Fission fragment angular distributions and fission cross section validation

    International Nuclear Information System (INIS)

    Leong, Lou Sai

    2013-01-01

    The present knowledge of angular distributions of neutron-induced fission is limited to a maximal energy of 15 MeV, with large discrepancies around 14 MeV. Only 238 U and 232 Th have been investigated up to 100 MeV in a single experiment. The n-TOF Collaboration performed the fission cross section measurement of several actinides ( 232 Th, 235 U, 238 U, 234 U, 237 Np) at the n-TOF facility using an experimental set-up made of Parallel Plate Avalanche Counters (PPAC), extending the energy domain of the incident neutron above hundreds of MeV. The method based on the detection of the 2 fragments in coincidence allowed to clearly disentangle the fission reactions among other types of reactions occurring in the spallation domain. I will show the methods we used to reconstruct the full angular resolution by the tracking of fission fragments. Below 10 MeV our results are consistent with existing data. For example in the case of 232 Th, below 10 MeV the results show clearly the variation occurring at the first (1 MeV) and second (7 MeV) chance fission, corresponding to transition states of given J and K (total spin and its projection on the fission axis), and a much more accurate energy dependence at the 3. chance threshold (14 MeV) has been obtained. In the spallation domain, above 30 MeV we confirm the high anisotropy revealed in 232 Th by the single existing data set. I'll discuss the implications of this finding, related to the low anisotropy exhibited in proton-induced fission. I also explore the critical experiments which is valuable checks of nuclear data. The 237 Np neutron-induced fission cross section has recently been measured in a large energy range (from eV to GeV) at the n-TOF facility at CERN. When compared to previous measurements, the n-TOF fission cross section appears to be higher by 5-7 % beyond the fission threshold. To check the relevance of n-TOF data, we simulate a criticality experiment performed at Los Alamos with a 6 kg sphere of 237 Np. This

  13. Studies of Fission-Induced Surface Damage in Actinides Using Ultracold Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Broussard, Leah J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-05

    This report describes the results of the fission-induced actinide studies at LANL. Previously, there was no fission data at these energies though there were initial characterizations of UCN energy dependence and material thickness. The proof of principle was demonstrated and the initial characterizations of sputtered rates, angular and size distribution are underway.

  14. Singlet Fission in Rubrene Derivatives: Impact of Molecular Packing

    KAUST Repository

    Sutton, Christopher

    2017-03-13

    We examine the properties of six recently synthesized rubrene derivatives (with substitutions on the side phenyl rings) that show vastly different crystal structures. In order to understand how packing in the solid state affects the excited states and couplings relevant for singlet fission, the lowest excited singlet (S), triplet (T), multiexciton (TT), and charge-transfer (CT) states of the rubrene derivatives are compared to known singlet fission materials [tetracene, pentacene, 5,12-diphenyltetracene (DPT), and rubrene itself]. While a small difference of less than 0.2 eV is calculated for the S and TT energies, a range of 0.50 to 1.2 eV in the CT energies and nearly 3 orders of magnitude in the electronic couplings are computed for the rubrene derivatives in their crystalline packings, which strongly affects the role of the CT state in facilitating SF. To rationalize experimental observations of singlet fission occurring in amorphous phases of rubrene, DPT, and tetracene, we use molecular dynamics (MD) simulations to assess the impact of molecular packing and orientations and to gain a better understanding of the parameters that control singlet fission in amorphous films compared to crystalline packings. The MD simulations point to a crystalline-like packing for thin films of tetracene; on the other hand, DPT, rubrene, and the rubrene derivatives all show various degrees of disorder with a number of sites that have larger electronic couplings than in the crystal, which can facilitate singlet fission in such thin films. Our analysis underlines the potential of these materials as promising candidates for singlet fission and helps understand how various structural motifs affect the critical parameters that control the ability of a system to undergo singlet fission.

  15. Radiochemistry and the Study of Fission

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-14

    These are slides from a lecture given at UC Berkeley. Radiochemistry has been used to study fission since its discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution. The following topics are covered: In the beginning: the discovery of fission; forensics using fission products: what can be learned from fission products, definitions of R-values and Q-values, fission bases, K-factors and fission chambers, limitations; the neutron energy dependence of the mass yield distribution (the two mode fission hypothesis); the influence of nuclear structure on the mass yield distribution. In summary: Radiochemistry has been used to study fission since its discovery. Radiochemical measurement of fission product yields have provided the highest precision data for developing fission models and for nuclear forensics. The two-mode fission hypothesis provides a description of the neutron energy dependence of the mass yield curve. However, data is still rather sparse and more work is needed near second and third chance fission. Radiochemical measurements have provided evidence for the importance of nuclear states in the compound nucleus in predicting the mass yield curve in the resonance region.

  16. Radiochemistry and the Study of Fission

    International Nuclear Information System (INIS)

    Rundberg, Robert S.

    2016-01-01

    These are slides from a lecture given at UC Berkeley. Radiochemistry has been used to study fission since its discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution. The following topics are covered: In the beginning: the discovery of fission; forensics using fission products: what can be learned from fission products, definitions of R-values and Q-values, fission bases, K-factors and fission chambers, limitations; the neutron energy dependence of the mass yield distribution (the two mode fission hypothesis); the influence of nuclear structure on the mass yield distribution. In summary: Radiochemistry has been used to study fission since its discovery. Radiochemical measurement of fission product yields have provided the highest precision data for developing fission models and for nuclear forensics. The two-mode fission hypothesis provides a description of the neutron energy dependence of the mass yield curve. However, data is still rather sparse and more work is needed near second and third chance fission. Radiochemical measurements have provided evidence for the importance of nuclear states in the compound nucleus in predicting the mass yield curve in the resonance region.

  17. Effectiveness in detecting fission fragments with ionization chambers

    International Nuclear Information System (INIS)

    Manrique Garcia, J.; Monne, G.

    1991-01-01

    Detection of fission fragments is important in nuclear measurements. When a high detection accuracy is required it is necessary to take in account the detection losses due to the absorption of fragments in the fissionable material. The losses corrections might change the final results in 2-3%. The traditional expression used in the calculation of the detection efficiency does not consider neither the density variation of the fissionable substance with its width, because it depends on the target material. That's why actually in many labs it is being searched new methods that allow to find the efficiency for each target. In this work a new method for determination of absorption efficiency is presented. The obtained results are analyzed

  18. Estimates of fission yields in nuclear criticality excursions

    International Nuclear Information System (INIS)

    Choi, J.S.; Thompson, J.W.; Reed, R.

    1995-06-01

    There is a need for computer simulation of hypothetical criticality excursions involving significant quantities of fissionable materials, especially in fissile aqueous system. The need arises due to the requirements for the emergency planning of facilities where the fissionable materials are handled, processed, or stored; and the regulatory requirements associated with facility operation or conversion. It is proposed here that a data base of fission yeilds for critical experiments and known accidents (both aqueous and solid) should be generated by using existing or new computer codes. The success in compiling this data base would provide useful source-terms for criticality excursions, realistic estimates of emergency-response boundary, as well as a replacement for the ''rule-of-thumb'' or ''bounding'' method. 10 refs

  19. Where do the Nuclear Materials Management functions fit in the Materials Control and Accountability (MC and A) plan?

    International Nuclear Information System (INIS)

    DeVer, E.A.

    1987-01-01

    Safeguards had its beginning in the early 1940s and has continued to grow through the stormy years in dealing with nuclear materials. MC and A Plans have been developed for each facility which includes requirements for containment, surveillance, internal controls, measurements, statistics, records and report systems, and inventory certification of its nuclear materials, in the context of how precisely the inventory is known at stated risk or confidence levels. The I and E Regulations, the newest document affecting the control system, are used for testing the current MC and A plan in place at each facility. Nuclear Materials Management activities also have reporting requirements that include: (1) Annual Forecast, (2) Materials Management Plan, (3) Quarterly Status Report, (4) Assessment Report, and (5) Scrap and Excess Material Management. Data used to generate reports for both functions come from the same data base and source documents at most facilities. The separation of sponsoring groups at the DOE for NM Accountability and NM Management can and does pose problems for contractors. In this paper, we will try to separate and identify these overlaps at the Facility and DOE level

  20. Recovery of noble metals from fission products

    International Nuclear Information System (INIS)

    Jenson, G.A.; Platt, A.M.; Mellinger, G.B.; Bjorklund, W.J.

    1982-11-01

    Scoping studies were started in 1979 to develop a cost-effective, waste-management-compatible process to extract noble metals from fission products. The process, involving the reaction with glassmelting chemicals, a metal oxide (PbO), and a reducing agent (charcoal), was demonstrated for recovering noble metals from simulated high-level waste oxides. The process has now been demonstrated on a laboratory scale (100 g) using irradiated fuels. Recoveries in the recovered lead averaged 80% for Pd, 60% for Rh, and 14% Ru. The resulting glass product was homogeneous in appearance, and the chemical durability was comparable to other waste oxides

  1. Sandia National Laboratories, California Hazardous Materials Management Program annual report : February 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2009-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental anagement ystem Program Manual. This program annual report describes the activities undertaken during the past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  2. Nuclear fission, chain reaction and criticality

    International Nuclear Information System (INIS)

    Reuss, Paul

    2016-01-01

    Criticality is, notably for nuclear reactors, the status which separates the case of a fission chain reaction which inexorably decays, from that of a reaction which grows faster and faster until a counter-reaction occurs. If this status is an objective in nuclear reactors, it must not be reached or exceeded in any case in other types of installations in which fissile materials are handled (fabrication, transports, nuclear fuel processing). The author proposes an insight into this notion of criticality, discusses elements of neutron science which allow the multiplication factor to be assessed, analyses accidental scenarios which may happen, and presents associated experiments and computation codes

  3. A method to evaluate fission gas release during irradiation testing of spherical fuel - HTR2008-58184

    International Nuclear Information System (INIS)

    Van Der Merwet, H.; Venter, J.

    2008-01-01

    The evaluation of fission gas release from spherical fuel during irradiation testing is critical to understand expected fuel performance under real reactor conditions. Online measurements of Krypton and Xenon fission products explain coated particle performance and contributions from graphitic matrix materials used in fuel manufacture and irradiation rig materials. Methods that are being developed to accurately evaluate fission gas release are described here together with examples of evaluations performed on irradiation tests HFR-K5, -K6 and EU1bis. (authors)

  4. Materials management in an internationally safeguarded fuels reprocessing plant

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Cobb, D.D.; Dayem, H.A.; Dietz, R.J.; Kern, E.A.; Markin, J.T.; Shipley, J.P.; Barnes, J.W.; Scheinman, L.

    1980-04-01

    The second volume describes the requirements and functions of materials measurement and accounting systems (MMAS) and conceptual designs for an MMAS incorporating both conventional and near-real-time (dynamic) measurement and accounting techniques. Effectiveness evaluations, based on recently developed modeling, simulation, and analysis procedures, show that conventional accountability can meet IAEA goal quantities and detection times in these reference facilities only for low-enriched uranium. Dynamic materials accounting may meet IAEA goals for detecting the abrupt (1-3 weeks) diversion of 8 kg of plutonium. Current materials accounting techniques probably cannot meet the 1-y protracted-diversion goal of 8 kg for plutonium

  5. Perspective on the fusion-fission energy concept

    International Nuclear Information System (INIS)

    Liikala, R.C.; Perry, R.T.; Teofilo, V.L.

    1978-01-01

    A concept which has potential for near-term application in the electric power sector of our energy economy is combining fusion and fission technology. The fusion-fission system, called a hybrid, is distinguished from its pure fusion counterpart by incorporation of fertile materials (uranium or thorium) in the blanket region of a fusion machine. The neutrons produced by the fusion process can be used to generate energy through fission events in the blanket or produce fuel for fission reactors through capture events in the fertile material. The performance requirements of the fusion component of hybrids is perceived as being less stringent than those for pure fusion electric power plants. The performance requirements for the fission component of hybrids is perceived as having been demonstrated or could be demonstrated with a modest investment of research and development funds. This paper presents our insights and observations of this concept in the context of why and where it might fit into the picture of meeting our future energy needs. A bibliography of hybrid research is given

  6. Headquarters Air Force Material Command Customer Relationship Management

    National Research Council Canada - National Science Library

    Sullivan, Christopher B

    2006-01-01

    .... Specifically, this project sought to answer how customer relationship management (CRM) initiatives varied in the private and public sectors, and to determine an appropriate means of capturing and measuring this type of data...

  7. Sustainable Materials Management (SMM) Food Recovery Challenge (FRC) Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — As part of EPA's Food Recovery Challenge (FRC), organizations pledge to improve their sustainable food management practices and report their results. The FRC is part...

  8. Review of the management of materials research and development in the Department of Energy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The Materials Working Group of DOE findings and recommendations of a management nature to improve the handling of materials R and D within DOE are presented. The special role of materials in the development of new energy technologies is provided. (FS)

  9. Materials management and logistics in the emergency department.

    Science.gov (United States)

    Williams, Mike

    2004-02-01

    The modern ED must create a clinical environment that has a predictable and sustainable production process equal to the needs of the patients. This means careful analysis of supply and equipment needs but also of costs and revenue challenges. Prediction models and contemporary supply chain management tools go a long way in assisting the manager to meet this need and in maintaining a clinically competent and financially stable ED.

  10. Sustainable Materials Management (SMM) - Recycling Economic Information (REI) Report

    Data.gov (United States)

    U.S. Environmental Protection Agency — The 2016 Recycling Economic Information (REI) Report aims to increase the understanding of the economic implications of material reuse and recycling. The report...

  11. Management of Global Nuclear Materials for International Security

    International Nuclear Information System (INIS)

    Isaacs, T; Choi, J-S

    2003-01-01

    Nuclear materials were first used to end the World War II. They were produced and maintained during the cold war for global security reasons. In the succeeding 50 years since the Atoms for Peace Initiative, nuclear materials were produced and used in global civilian reactors and fuel cycles intended for peaceful purposes. The Nonproliferation Treaty (NPT) of 1970 established a framework for appropriate applications of both defense and civilian nuclear activities by nuclear weapons states and non-nuclear weapons states. As global inventories of nuclear materials continue to grow, in a diverse and dynamically changing manner, it is time to evaluate current and future trends and needed actions: what are the current circumstances, what has been done to date, what has worked and what hasn't? The aim is to identify mutually reinforcing programmatic directions, leading to global partnerships that measurably enhance international security. Essential elements are material protection, control and accountability (MPC and A) of separated nuclear materials, interim storage, and geologic repositories for all nuclear materials destined for final disposal. Cooperation among key partners, such as the MPC and A program between the U.S. and Russia for nuclear materials from dismantled weapons, is necessary for interim storage and final disposal of nuclear materials. Such cooperative partnerships can lead to a new nuclear regime where a complete fuel cycle service with fuel leasing and spent fuel take-back can be offered to reactor users. The service can effectively minimize or even eliminate the incentive or rationale for the user-countries to develop their indigenous enrichment and reprocessing technologies. International cooperation, supported by governments of key countries can be best to facilitate the forum for formation of such cooperative partnerships

  12. Actinide and Fission Product Partitioning and Transmutation

    International Nuclear Information System (INIS)

    2015-06-01

    The benefits of partitioning and transmutation (P and T) have now been established worldwide and, as a result, many countries are pursuing R and D programmes to advance the technologies associated with P and T. In this context, the OECD Nuclear Energy Agency (NEA) has organised a series of biennial information exchange meetings to provide experts with a forum to present and discuss state-of-the-art developments in the field of partitioning and transmutation since 1990. The OECD Nuclear Energy Agency Information Exchange Meeting on Actinides and Fission Products Partitioning and Transmutation is a forum for experts to present and discuss the state-of-the-art development in the field of P and T. Thirteen meetings have been organised so far and held in Japan, the United States, France, Belgium, Spain, the Republic of Korea and the Czech Republic. This 13. meeting was hosted by Seoul National University (Seoul, Republic of Korea) and was organised in co-operation with the International Atomic Energy Agency (IAEA) and the European Community (EC). The meeting covered strategic and scientific developments in the field of P and T such as: fuel cycle strategies and transition scenarios, the role of P and T in the potential evolution of nuclear energy as part of the future energy mix; radioactive waste management strategies; transmutation fuels and targets; advances in pyro and aqueous separation processes; P and T specific technology requirements (materials, spallation targets, coolants, etc.); transmutation systems: design, performance and safety; impact of P and T on the fuel cycle; fabrication, handling and transportation of transmutation fuels. A total of 103 presentations (39 oral and 64 posters) were discussed among the 110 participants from 19 countries and 2 international organisations. The meeting consisted of one plenary session where national and international programmes were presented followed by 5 technical sessions: - Fuel Cycle Strategies and Transition

  13. [Management of human resources, materials, and organization processes in radioprotection].

    Science.gov (United States)

    Coppola, V

    1999-06-01

    The radiologist must learn to face daily management responsibilities and therefore he/she needs the relevant knowledge. Aside from the mechanisms of management accounting, which differ only slightly from similar analysis methods used in other centers, the managing radiologist (the person in charge) is directly responsible for planning, organizing, coordinating and controlling radiation protection, a major discipline characterizing diagnostic imaging. We will provide some practical management hints, keeping in mind that radiation protection must not be considered a simple (or annoying) technical task, but rather an extraordinary positive element for the radiologist's cultural differentiation and professional identity. The managing radiologist can use the theory and practice of management techniques successfully applied in business, customizing them to the ethics and economics of health care. Meeting the users' needs must obviously prevail on balancing the budget from both a logical and an accounting viewpoints, since non-profit organizations are involved. In radiological practice, distinguishing the management of human from structural resources (direct funding is not presently available) permits to use internal benchmarking for the former and controlled acquisition and planned replacement of technologies in the latter, obviously after evaluation of specific indicators and according to the relevant laws and technical guidelines. Managing human resources means safeguarding the patient, the operator and the population, which can be achieved or improved using benchmarking in a diagnostic imaging department. The references for best practice will be set per tabulas based on the relevant laws and (inter)national guidelines. The physical-technical and bureaucratic-administrative factors involved will be considered as process indices to evaluate the gap from normal standards. Among the different elements involved in managing structural resources, the appropriate acquisition

  14. Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

  15. Recycling fusion materials

    International Nuclear Information System (INIS)

    Ooms, L.

    2005-01-01

    The inherent safety and environmental advantages of fusion power in comparison with other energy sources play an important role in the public acceptance. No waste burden for future generations is therefore one of the main arguments to decide for fusion power. The waste issue has thus been studied in several documents and the final conclusion of which it is stated that there is no permanent disposal waste needed if recycling is applied. But recycling of fusion reactor materials is far to be obvious regarding mostly the very high specific activity of the materials to be handled, the types of materials and the presence of tritium. The main objective of research performed by SCK-CEN is to study the possible ways of recycling fusion materials and analyse the challenges of the materials management from fusion reactors, based on current practices used in fission reactors and the requirements for the manufacture of fusion equipment

  16. Fission cross section calculations for 209Bi target nucleus based on fission reaction models in high energy regions

    Directory of Open Access Journals (Sweden)

    Kaplan Abdullah

    2015-01-01

    Full Text Available Implementation of projects of new generation nuclear power plants requires the solving of material science and technological issues in developing of reactor materials. Melts of heavy metals (Pb, Bi and Pb-Bi due to their nuclear and thermophysical properties, are the candidate coolants for fast reactors and accelerator-driven systems (ADS. In this study, α, γ, p, n and 3He induced fission cross section calculations for 209Bi target nucleus at high-energy regions for (α,f, (γ,f, (p,f, (n,f and (3He,f reactions have been investigated using different fission reaction models. Mamdouh Table, Sierk, Rotating Liquid Drop and Fission Path models of theoretical fission barriers of TALYS 1.6 code have been used for the fission cross section calculations. The calculated results have been compared with the experimental data taken from the EXFOR database. TALYS 1.6 Sierk model calculations exhibit generally good agreement with the experimental measurements for all reactions used in this study.

  17. Neutron analysis of a hybrid system fusion-fission

    International Nuclear Information System (INIS)

    Dorantes C, J. J.; Francois L, J. L.

    2011-11-01

    The use of energy at world level implies the decrease of natural resources, reduction of fossil fuels, in particular, and a high environmental impact. In view of this problem, an alternative is the energy production for nuclear means, because up to now is one of the less polluting energy; however, the nuclear fuel wastes continue being even a problem without being solved. For the above mentioned this work intends the creation of a device that incorporates the combined technologies of fission and nuclear fusion, called Nuclear Hybrid Reactor Fusion-Fission (HRFF). The HRFF has been designed theoretically with base in experimental fusion reactors in different parts of the world like: United States, Russia, Japan, China and United Kingdom, mainly. The hybrid reactor model here studied corresponds at the Compact Nuclear Facility Source (CNFS). The importance of the CNFS resides in its feasibility, simple design, minor size and low cost; uses deuterium-tritium like main source of neutrons, and as fuel can use the spent fuel of conventional nuclear reactors, such as the current light water reactors. Due to the high costs of experimental research, this work consists on simulating in computer a proposed model of CNFS under normal conditions of operation, to modify the arrangement of the used fuel: MOX and IMF, to analyze the obtained results and to give final conclusions. In conclusion, the HRFF can be a versatile system for the management of spent fuel of light water reactors, so much for the possibility of actinides destruction, like for the breeding of fissile material. (Author)

  18. Fission-suppressed hybrid reactor: the fusion breeder

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Coops, M.S.

    1982-12-01

    Results of a conceptual design study of a 233 U-producing fusion breeder are presented. The majority of the study was devoted to conceptual design and evaluation of a fission-suppressed blanket and to fuel cycle issues such as fuel reprocessing, fuel handling, and fuel management. Studies in the areas of fusion engineering, reactor safety, and economics were also performed

  19. Development and manufacturing of special fission chambers for in-core measurement requirements in nuclear reactors

    International Nuclear Information System (INIS)

    Geslot, B.; Berhouet, F.; Oriol, L.; Breaud, S.; Jammes, C.; Filliatre, P.; Villard, J. F.

    2009-01-01

    The Dosimetry Command control and Instrumentation Laboratory (LDCI) at CEA/Cadarache is specialized in the development, design and manufacturing of miniature fission chambers (from 8 mm down to 1.5 mm in diameter). The LDCI fission chambers workshop specificity is its capacity to manufacture and distribute special fission chambers with fissile deposits other than U 235 (typically Pu 242 , Np 237 , U 238 , Th 232 ). We are also able to define the characteristics of the detector for any in-core measurement requirements: sensor geometry, fissile deposit material and mass, filling gas composition and pressure, operating mode (pulse, current or Campbelling) with associated cable and electronics. The fission chamber design relies on numerical simulation and modeling tools developed by the LDCI. One of our present activities in fission chamber applications is to develop a fast neutron flux instrumentation using Campbelling mode dedicated to measurements in material testing reactors. (authors)

  20. Development and manufacturing of special fission chambers for in-core measurement requirements in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Geslot, B.; Berhouet, F.; Oriol, L.; Breaud, S.; Jammes, C.; Filliatre, P.; Villard, J. F. [CEA, DEN, Dosimetry Command Control and Instrumentation Laboratory, F-13109 Saint-Paul-lez-Durance (France)

    2009-07-01

    The Dosimetry Command control and Instrumentation Laboratory (LDCI) at CEA/Cadarache is specialized in the development, design and manufacturing of miniature fission chambers (from 8 mm down to 1.5 mm in diameter). The LDCI fission chambers workshop specificity is its capacity to manufacture and distribute special fission chambers with fissile deposits other than U{sup 235} (typically Pu{sup 242}, Np{sup 237}, U{sup 238}, Th{sup 232}). We are also able to define the characteristics of the detector for any in-core measurement requirements: sensor geometry, fissile deposit material and mass, filling gas composition and pressure, operating mode (pulse, current or Campbelling) with associated cable and electronics. The fission chamber design relies on numerical simulation and modeling tools developed by the LDCI. One of our present activities in fission chamber applications is to develop a fast neutron flux instrumentation using Campbelling mode dedicated to measurements in material testing reactors. (authors)