WorldWideScience

Sample records for fission propertiesof heavy

  1. Coulomb fission and transfer fission at heavy ion collisions

    International Nuclear Information System (INIS)

    Himmele, G.

    1981-01-01

    In the present thesis the first direct evidence of nuclear fission after inelastic scattering of heavy ions (sup(183,184)W, 152 Sm → 238 U; 184 W → 232 Th; 184 W, 232 Th → 248 Cm) is reported. Experiments which were performed at the UNILAC of the Gesellschaft fuer Schwerionenforschung in Darmstadt show the observed heavy ion induced fission possesses significant properties of the Coulomb fission. The observed dependence of the fission probability for inelastic scattering on the projectile charge proves that the nuclear fission is mediated by the electromagnetic interaction between heavy ions. This result suggests moreover a multiple Coulomb-excitation preceding the fission. Model calculations give a first indication, that the Coulomb fission proceeds mainly from the higher β phonons. In the irradiation with 184 W the fission probability of 232 Th is for all incident energies about 40% smaller that at 238 U. The target dependence of the Coulomb fission however doesn't allow, to give quantitative statements about the position and B(E2)-values of higher lying β phonons. (orig./HSI) [de

  2. Fission properties of very heavy actinides

    International Nuclear Information System (INIS)

    Hoffman, D.C.

    1979-01-01

    The existing data on neutron-emission, kinetic-energy and mass distributions, and half-lives for spontaneous fission of the heavy actinides are reviewed. A comparison of the data for the Fm isotopes with heavier and lighter nuclides suggests that the properties of the heavy Fm isotopes may be unique and can qualitatively be explained on the basis of fragment shell effects, i.e., symmetric fission results in two fragments with configurations close to the doubly magic 132 Sn nucleus. The effect of excitation energy and the use of systematics and theoretical predictions of fission properties and half-lives in the identification of new heavy element isotopes is discussed. 54 references

  3. Nuclear fission induced by heavy ions

    International Nuclear Information System (INIS)

    Newton, J.O.

    1988-09-01

    Because the accelerators of the 50's and 60's mostly provided beams of light ions, well suited for studying individual quantum states of low angular momentum or reactions involving the transfer of one or two nucleons, the study of fission, being an example of large-scale collective motion, has until recently been outside of the mainstream of nuclear research. This situation has changed in recent years, due to the new generation of accelerators capable of producing beams of heavy ions with energies high enough to overcome the Coulomb barriers of all stable nuclei. These have made possible the study of new examples of large-scale collective motions, involving major rearrangements of nuclear matter, such as deep-inelastic collisions and heavy-ion fusion. Perhaps the most exciting development in the past few years is the discovery that dissipative effects (nuclear viscosity) play an important role in fission induced by heavy ions, contrary to earlier assumptions that the viscosity involved in fission was very weak and played only a minor role. This review will be mainly concerned with developments in heavy-ion induced fission during the last few years and have an emphasis on the very recent results on dissipative effects. Since heavy-ion bombardment usually results in compound systems with high excitation energies and angular momenta, shell effects might be expected to be small, and the subject of low energy fission, where they are important, will not be addressed. 285 refs., 58 figs

  4. (d,p)-transfer induced fission of heavy radioactive beams

    CERN Document Server

    Veselsky, Martin

    2012-01-01

    (d,p)-transfer induced fission is proposed as a tool to study low energy fission of exotic heavy nuclei. Primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission offers a possibility for systematic study the low energy fission of heavy exotic nuclei at the ISOLDE.

  5. Fission of heavy hypernuclei

    International Nuclear Information System (INIS)

    Nifenecker, H.

    1993-01-01

    The results on delayed and prompt fission of heavy hypernuclei obtained by the LEAR PS177 collaboration are recalled and discussed. It is shown that the hypernuclei life-times can be explained in term of a weak strangeness violating lambda-nucleon interaction with a cross section close to 6.0 10 -15 barns. The lambda attachment function is shown to be sensitive to the scission configuration, just before fission, and to the neck dynamics. This function provides a new way to study the nuclear scission process. (author)

  6. Nuclear dynamics in heavy ion induced fusion-fission reactions

    International Nuclear Information System (INIS)

    Kapoor, S.S.

    1992-01-01

    Heavy ion induced fission and fission-like reactions evolve through a complex nuclear dynamics encountered in the medium energy nucleus-nucleus collisions. In the recent years, measurements of the fragment-neutron and fragment-charged particle angular correlations in heavy ion induced fusion-fission reactions, have provided new information on the dynamical times of nuclear deformations of the initial dinuclear complex to the fission saddle point and the scission point. From the studies of fragment angular distributions in heavy ion induced fission it has been possible to infer the relaxation times of the dinuclear complex in the K-degree of freedom and our recent measurements on the entrance channel dependence of fragment anisotropies have provided an experimental signature of the presence of fissions before K-equilibration. This paper reviews recent experimental and theoretical status of the above studies with particular regard to the questions relating to dynamical times, nuclear dissipation and the effect of nuclear dissipation on the K-distributions at the fission saddle in completely equilibrated compound nucleus. (author). 19 refs., 9 figs

  7. Fission in intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.; Boissevain, J.; Fowler, M.M.; Gavron, A.; Jacak, B.V.; Lysaght, P.S.; Britt, H.C.; Fields, D.J.; Hansen, L.F.; Lanier, R.G.; Massoletti, D.J.; Namboodiri, M.M.; Remington, B.A.; Sangster, T.C.; Struble, G.L.; Webb, M.L.; Chan, Y.D.; Dacai, A.; Harmon, A.; Leyba, J.; Pouliot, J.; Stokstad, R.G.; Hansen, O.; Levine, M.J.; Thorn, C.E.; Trautmann, W.; Dichter, B.; Kaufman, S.; Videbaek, F.; Fraenkel, Z.; Mamane, G.; Cebra, D.; Westfall, G.D.

    1989-01-01

    A systematic study of reaction mechanisms at intermediate energies (50-100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: The reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicty of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. (orig.)

  8. Fission in intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.

    1989-01-01

    A systematic study of reaction mechanisms at intermediate energies (50--100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: the reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicity of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. 7 figs

  9. Recent advances in heavy-ion-induced fission

    International Nuclear Information System (INIS)

    Plasil, F.

    1984-01-01

    Three topics are discussed. The first deals with results that have been published recently on angular-momentum-dependent fission barriers. They are discussed because of the significance that we attach to them. We feel that, after a decade of study and controversy, we have arrived at a quantitative understanding of the competition between heavy-ion-induced fission and particle emission from compound nuclei at relatively low bombarding energies. The second topic concerns the extension of our heavy-ion-induced fission studies to higher energies. It is clear that in this regime the effects, both of fission following incomplete fusion and of extra-push requirements, need to be considered. Finally, discussed are our recent conclusions concerning the fissionlike decay of products from reactions between two 58 Ni nuclei at an incident energy, E/A, of 15.3 MeV, as well as the impact of our findings on the conclusions drawn from previous, similar measurements. 39 references

  10. Fission delay and GDR γ-ray from very heavy system

    International Nuclear Information System (INIS)

    Shen, W.Q.; Wang, J.S.; Ye, W.; Cai, Y.H.; Ma, Y.G.; Feng, J.; Fang, D.Q.; Cai, X.Z.

    1999-01-01

    The study of the fission delay in reaction of 84 Kr+ 27 Al at 10.6 Mev/u and the systematics of fission delay are described. Authors also discussed the possibility to study the GDR γ rays emitted from the super-heavy compound system on the basis of the strong increasing of the GDR γ rays duo to the fission delay. The calculation results of the GDR γ rays from the super-heavy compound system via microscopic semi-classical Vlasov equation and the experimental data analysis for searching the super-heavy compound system via GDR γ were given

  11. Study of the Fission Decay of Heavy Hypernuclei

    CERN Multimedia

    2002-01-01

    The purpose of the original experiment PS177 was to produce heavy hypernuclei using the annihilation at rest of antiprotons in heavy targets, and to measure their lifetime. \\\\ \\\\ Lambda hyperons can be produced, within a nucleus, in a 2-step process: p@*~@A~K&bar.K~+~X; &bar.KN~@A~@L@p; or in a direct 3-body interaction: @*NN~@A~K|+@L. In the first case, the kinematical conditions favour recoilless lambda with, consequently, a higher probability of attachment to the nucleus. In a heavy nucleus the lambda-hyperon decays weakly according to: @LN~@A~NN, and the &prop.170~MeV energy released induces fission.\\\\ \\\\ The identification of the hypernuclei and their lifetime measurements were performed through the detection of delayed fission using the recoil-distance-method (suitable for lifetimes in the expected region @=10|-|1|0s). The fission fragments were detected by parallel-plate avalanche counters. \\\\ \\\\ The new proposal aims at i) increasing the accuracy of the measured lifetimes, ii) having a str...

  12. Semiclassical approach to sequential fission in peripheral heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Strazzeri Andrea

    2016-01-01

    Full Text Available A closed-form theoretical approach describing in a single picture both the evaporation component and the fast nonequilibrium component of the sequential fission of projectilelike fragments in a semiperipheral heavy-ion collision is derived and then applied to the dynamical fission observed in the 124Sn+64Ni semiperipheral collision at 35A MeV. Information on opposite polarization effects of the fissioning projectilelike fragments and on their “formation-to-fast fission lifetimes” are obtained.

  13. Dynamics in heavy ion fusion and fission

    International Nuclear Information System (INIS)

    Bjoernholm, S.

    1972-01-01

    Dynamical aspects of heavy ion fussion and fission, mainly the aspect of damping which is meant as the dissipation of kinetic energy and the aspect of the effective mass of the fission motion, are discussed. Two categories of evidence of damping effects are given. One relates to the damping of the fission motion for the ground state shape and for the isomeric more elongated shape. The other relates to the damping of the fission motion from the last barrier to the scission point. The dependence of the effective mass associated with the fission motion on the deormation of nucleus is shown. As the elongation of the nucleus increases the effective mass of the fission motion varies strongly from being about forty times greater than the reduced mass in the beta-vibrational state of the ground state shape to being equal to the reduced mass in the moment of scission. Damping effects are expected to be propartional to the difference between the effective mass and the reduced mass. It is concluded that the damping in fussion reactions is relatively weak for lighter products and quite strong for superheavy products like 236 U or 252 Cf. (S.B.)

  14. Mechanism of nuclear dissipation in fission and heavy-ion reactions

    International Nuclear Information System (INIS)

    Nix, J.R.; Sierk, A.J.

    1986-01-01

    Recent advances in the theoretical understanding of nuclear dissipation at intermediate excitation energies are reviewed, with particular emphasis on a new surface-plus-window mechanism that involves interactions of either one or two nucleons with the moving nuclear surface and also, for dumbbell-like shapes encountered in fission and heavy-ion reactions, the transfer of nucleons through the window separating the two portions of the system. This novel dissipation mechanism provides a unified macroscopic description of such diverse phenomena as widths of isoscalar giant quadrupole and giant octupole resonances, mean fission-fragment kinetic energies and excitation energies, dynamical thresholds for compound-nucleus formation, enhancement in neutron emission prior to fission, and widths of mass and charge distributions in deep-inelastic heavy-ion reactions. 41 refs., 8 figs

  15. What can we learn from the fission time of the super-heavy elements?

    OpenAIRE

    Boilley, D.; Marchix, A.; Wilgenbus, D.; Lallouet, Y.; Gimbert, F.; Abe, Y.

    2007-01-01

    International audience; Recent experiments performed at GANIL with a crystal blocking technique have shown direct evidences of long fission times in the Super-Heavy Elements (SHE) region. Aimed to localize the SHE island of stability, can these experiments give access to the fission barrier and then to the shell-correction energy? In this paper, we calculate the fission time of heavy elements by using a new code, KEWPIE2, devoted to the study of the SHE.We also investigate the effect of poten...

  16. Heavy ion induced fission between 10 and 100 MeV/u

    International Nuclear Information System (INIS)

    Steckmeyer, J.C.; Tamain, B.

    1986-05-01

    Heavy ion induced fission between 10 and 100 MeV/u is discussed. It is shown that one can obtain information on fusion limits and on typical times characterizing nuclear matter. Intermediate energy heavy ions can be used to build very excited fusion nuclei. Section I shows that fission can then be used as a tool to test the fusion mechanism and to discover what are the extreme limits concerning fusion and hot nuclei formation. In section II, it is shown that when very hot nuclei are built, fission evaporation competition cannot any longer be fully described in the usual way by the statistical model. New features as dynamical aspects or cluster evaporation modify dramatically the landscape. Concerning the detailed fission properties of very hot nuclei (for instance fragments properties), no strong deviations from the already know systematics has been obtained. However, very few detailed studies are yet available and a clear experimental program has to be developed in order to progress. From a theoretical point of view, it is rather necessary to described fission and evaporation is an unified way

  17. What can we learn about heavy ion fusion by studying fission angular distributions

    International Nuclear Information System (INIS)

    Back, B.B.

    1984-01-01

    Determinations of complete fusion reactions leading to fissionable systems are associated with problems of separating fragments from quasi-fission reactions from those arising from fission of the completely fused system. Inferring complete fusion cross sections from the minute cross sections for the evaporation residue channel is hampered by the insufficient knowledge of the branching ratio for neutron emission and fission in the decay sequence of the completely fused system. From a quantitative analysis of the fragment angular distributions it is, however, possible under certain assumptions to deduce the relative contribution of complete fusion and quasi-fission. It is found that the complete fusion process is hindered for heavy projectiles. The excess radial energy over the interaction barrier needed to induce fusion with heavy projectiles is determined in several cases and systematic trends are presented

  18. Determination of the fission barrier height in fission of heavy radioactive beams induced by the (d,p)-transfer

    CERN Multimedia

    A theoretical framework is described, allowing to determine the fission barrier height using the observed cross sections of fission induced by the (d,p)-transfer with accuracy, which is not achievable in another type of low-energy fission of neutron-deficient nuclei, the $\\beta$-delayed fission. The primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission of...

  19. Exclusion of nuclear forces in heavy-ion Coulomb excitation and Coulomb fission experiments

    International Nuclear Information System (INIS)

    Neese, R.E.; Guidry, M.W.

    1982-01-01

    A simple prescription for estimating the energy at which nuclear forces begin to play a role in heavy-ion Coulomb excitation and Coulomb fission experiments is presented. The method differs from most commonly used recipes in accounting for projectile and target nucleus deformation effects. Using a single adjustable parameter the formula reproduces the energy for the onset of Coulomb-nuclear interference effects for a broad range of heavy-ion systems. It is suggested that most Coulomb fission experiments which have been done involve both Coulomb and nuclear excitation processes and should more properly be termed Coulomb-nuclear fission experiments

  20. New approach to description of fusion-fission dynamics in super-heavy element formation

    International Nuclear Information System (INIS)

    Zagrebaev, V.I.

    2002-01-01

    A new mechanism of the fusion-fission process for a heavy nuclear system is proposed, which takes place in the (A 1 , A 2 ) space, where A 1 and A 2 are two nuclei, surrounded by a certain number of shared nucleons ΔA. The nuclei A 1 and A 2 gradually lose (or acquire) their individualities with increasing (or decreasing) a number of collectivized nucleons ΔA. The driving potential in the (A 1 , A 2 ) space is derived, which allows the calculation of both the probability of the compound nucleus formation and the mass distribution of fission and quasi-fission fragments in heavy ion fusion reactions. The cross sections of super-heavy element formation in the 'hot' and 'cold' fusion reactions have been calculated up to Z CN =118. (author)

  1. A possible mechanism in heavy ion induced reactions: 'fast fission process'

    International Nuclear Information System (INIS)

    Borderie, B.; Gardes, D.; Berlanger, M.

    1980-01-01

    The influence of the orbital angular momentum l on the mass distribution of fission fragments is studied, both on previously available data on heavy ion induced fission and in new specifically planned experiments: systems 40 Ar + 165 Ho and 24 Mg + 181 Ta at bombarding energies ranging from 180 up to 391 MeV and leading to the same fissionning nucleus 205 At wigh different l distributions. When l values corresponding to a vanished fission barrier are reached, the mass distribution broadens. This suggest the existence of a specific process, 'fast fission', at l-values leading to compound nucleus formation and deep inelastic collisions, respectively. This process and its conditions of occurrence are discussed; of special interest are the correlated differences between the limitations to the fission cross-section and the fission mass distributions broadenings, respectively, for the Ar + Ho and Mg + Ta systems

  2. Remarks on the fission barriers of super-heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Goethe-Universitaet Frankfurt, Institut fuer Physik, Frankfurt (Germany); Heinz, S.; Mann, R.; Maurer, J.; Muenzenberg, G.; Barth, W.; Dahl, L.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Runke, J.; Scheidenberger, C.; Tinschert, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Antalic, S. [Comenius University, Department of Nuclear Physics and Biophysics, Bratislava (Slovakia); Eberhardt, K.; Thoerle-Pospiech, P.; Trautmann, N. [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Grzywacz, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Tennessee, Knoxville, TN (United States); Hamilton, J.H. [Vanderbilt University, Department of Physics and Astronomy, Nashville, TN (United States); Henderson, R.A.; Kenneally, J.M.; Moody, K.J.; Shaughnessy, D.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Miernik, K. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Warsaw, Warsaw (Poland); Miller, D. [University of Tennessee, Knoxville, TN (United States); Morita, K. [RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama (Japan); Nishio, K. [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Popeko, A.G.; Yeremin, A.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Roberto, J.B.; Rykaczewski, K.P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Uusitalo, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland)

    2016-04-15

    Shell-correction energies of super-heavy nuclei are approximated by using Q{sub α} values of measured decay chains. Five decay chains were analyzed, which start at the isotopes {sup 285}Fl, {sup 294}118, {sup 291}Lv, {sup 292}Lv and {sup 293}Lv. The data are compared with predictions of macroscopic-microscopic models. Fission barriers are estimated that can be used to eliminate uncertainties in partial fission half-lives and in calculations of evaporation-residue cross-sections. In that calculations, fission probability of the compound nucleus is a major factor contributing to the total cross-section. The data also provide constraints on the cross-sections of capture and quasi-fission in the entrance channel of the fusion reaction. Arguments are presented that fusion reactions for synthesis of isotopes of elements 118 and 120 may have higher cross-sections than assumed so far. (orig.)

  3. Fission of heavy nuclei: microscopic study of fission barriers and fragments angular momentum

    International Nuclear Information System (INIS)

    Bonneau, L.

    2003-11-01

    A lot of experimental data on nuclear fission has been being collected for the last 65 years, allowing theoreticians to confront their models with reality. The first part of this work is dedicated to the computation of fission barriers. We have extended the HF + BCS (Hartree Fock + Bandeen-Cooper-Schrieffer) method in order to include a new set of polynomials on which wave functions can be broken to, more accurately than on Hermite's polynomials in the 2 fragment configuration. The fission barriers of 26 heavy nuclei from Thorium-230 to Nobelium-256 have been assessed and compared to experimental data, it appears that differences are no greater than 1 MeV. We have discovered a neat correlation between the variation of the experimental fission lifetimes of even Fermium isotopes and the computed heights of second barriers. Moreover our model reproduces the hyper-deformed well of Thorium-230 with a good agreement on the well depth. The second part deals with the scission region. We have performed Hartree-Fock calculations in order to explore different ways of fragmentation. We have shown that the harmonic oscillator gives a valid description of such ways. In order to compute the mean value of J 2 in the fragments we have been driven to propose an adequate definition of that quantity consistent with the non-locality property of the J 2 operator. (A.C.)

  4. Interpretation of the mechanism of spontaneous fission of heavy nuclei in the framework of dinuclear system conception

    International Nuclear Information System (INIS)

    Volkov, V.V.; Cherepanov, E.A.; Kalandarov, Sh.A.

    2016-01-01

    A new approach to the interpretation of the process of spontaneous fission of heavy nuclei is suggested. It is based on nuclear physics data which are obtained in heavy ion collisions. The process of spontaneous fission consists of three sequential stages: clusterization of the valent nucleons of a heavy nucleus into a light nucleus-cluster, which leads to the formation of a dinuclear system; evolution of the dinuclear system which proceeds by nucleon transfer from the heavy to light nucleus; and decay of the dinuclear system from the equilibrium configuration into two fragments. [ru

  5. Fission barriers of two odd-neutron heavy nuclei

    International Nuclear Information System (INIS)

    Koh, Meng-Hock; Bonneau, L.; Nhan Hao, T. V.; Duc, Dao Duy; Quentin, P.

    2015-01-01

    The fission barriers of two odd-neutron heavy odd nuclei,namely the 235 U and 239 Pu isotopes have been calculated within a self-consistent Hartree-Fock-plus-BCS approach with blocking. A Skyrme nucleon-nucleon effective interaction has been used together with a seniority force to describe pairing correlations. A full account of the genuine time-reversal symmetry breaking due to the presence of an unpaired nucleon has been incorporated at the mean field level. The SIII and SkM* parametrizations of the Skyrme interaction have been retained as well as for a part a newer parametrization, SLy5*. The seniority force parameters have been fitted to reproduce experimental odd-even mass differences in the actinide region. To assess the relevance of our calculated fission barrier distribution (as a function of the quantum numbers), we have studied the quality of our results with respect to the spectroscopy of band heads (for configurations deemed to be a pure single particle character) in the ground and fission isomeric states. Fission barriers of the considered odd nuclei have been compared with what is obtained for their even-even neighbouring isotopes (namely 234 U and 236 U, 238 Pu and 240 Pu respectively) to determine the so-called specialization energies. Various corrections and associated uncertainties have been discussed in order to compare our results with available data

  6. Manifestation of transient effects in fission induced by relativistic heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Jurado, B.; Schmitt, C.; Schmidt, K.H.; Benlliure, J. [Universidad de Santiago de Compostela (Spain); Junghans, A.R. [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany)

    2004-03-01

    We examine the manifestation of transient effects in fission by analysing experimental data where fission is induced by peripheral heavy-ion collisions at relativistic energies. Available total nuclear fission cross sections of {sup 238}U at1.A GeV on gold and uranium targets are compared with a nuclear-reaction code, where transient effects in fission are modelled using different approximations to the numerical time-dependent fission-decay width: a new analytical description based on the solution of the Fokker-Planck equation and two widely used but less realistic descriptions, a step function and an exponential-like function. The experimental data are only reproduced when transient effects are considered. The deduced value of the dissipation strength {beta} depends strongly on the approximation applied for the time-dependent fission-decay width and is estimated to be of the order of 2 x 10{sup 21} s{sup -1}. A careful analysis sheds severe doubts on the use of the exponential-like in-growth function largely used in the past. Finally, we discuss which should be the characteristics of experimental observables to be most sensitive to transient effects in fission. (orig.)

  7. Stochastic approaches to dynamics of heavy ion collisions, the case of thermal fission

    International Nuclear Information System (INIS)

    Boilley, D.; Abe, Y.

    1994-01-01

    In order to study the influence of fluctuations on various phenomena linked to heavy ion collisions, a Langevin equation has been derived from a microscopic model. Parameters entering this equation are completely determined from microscopic quantities characterizing nuclear matter. This equation has been applied to various phenomena at intermediate energies. This paper focuses on large amplitude motions and especially thermal fission. Fission rate is calculated and compared to experimental results

  8. Dynamics of nuclear fission and heavy-ion reactions

    International Nuclear Information System (INIS)

    Nix, J.R.; Sierk, A.J.

    1979-01-01

    Large-amplitude collective motion in fission and heavy-ion reactions is studied by solving classical equations of motion for the time evolution of the nuclear shape. In the nuclear potential energy of deformation, the generalized surface energy was calculated by means of a double volume integral of a Yukawa-plus-exponential function, which was obtained by requiring that two semi-infinite slabs of constant-density nuclear matter have minimum energy at zero separation. The collective kinetic energy is calculated for nuclear flow that is a superposition of incompressible, nearly irrotational collective-shape motion and rigid-body rotation. Nuclear dissipation is included by means of the Rayleigh dissipation function, which depends upon the physical mechanism that converts collective energy into internal energy. For both ordinary two-body viscosity and a combined wall and window one-body dissipation, fission-fragment kinetic energies are calculated for the fission of nuclei throughout the periodic table and compare with experimental results. Finally, the one-body dynamics of nucleons inside a cylinder colliding with a moving piston is explicitly studied by solving exactly the collisionless Boltzmann equation for the distribution function. By examining the relative phases of the pressure at the piston and the piston's velocity, a dissipative force and an elastic restoring force can be separately identified. 9 references

  9. Nuclear fission and reactions

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The nuclear fission research programs are designed to elucidate basic features of the fission process. Specifically, (1) factors determining how nucleons of a fissioning nucleus are distributed between two fission fragments, (2) factors determining kinetic energy and excitation energies of fragments, and (3) factors controlling fission lifetimes. To these ends, fission studies are reported for several heavy elements and include investigations of spontaneous and neutron-induced fission, heavy ion reactions, and high energy proton reactions. The status of theoretical research is also discussed. (U.S.)

  10. Dynamical calculations of nuclear fission and heavy-ion reactions

    International Nuclear Information System (INIS)

    Nix, J.R.; Sierk, A.J.

    1984-01-01

    With the goal of determining the magnitude and mechanism of nuclear dissipation from comparisons of predictions with experimental data, we describe recent calculations in a unified macroscopic-microscopic approach to large-amplitude collective nuclear motion such as occurs in fission and heavy-ion reactions. We describe the time dependence of the distribution function in phase space of collective coordinates and momenta by a generalized Fokker-Planck equation. The nuclear potential energy of deformation is calculated as the sum of repulsive Coulomb and centrifugal energies and an attractive Yukawa-plus-exponential potential, the inertia tensor is calculated for a superposition of rigid-body rotation and incompressible, nearly irrotational flow by use of the Werner-Wheeler method, and the dissipation ensor that describes the conversion of collective energy into single-particle excitation energy is calculated for two prototype mechanisms that represent opposite extremes of large and small dissipation. We solve the generalized Hamilton equations of motion for the first moments of the distribution function to obtain the mean translational fission-fragment kinetic energy and mass of a third fragment that sometimes forms between the two end fragments, as well as dynamical thresholds, capture cross sections, and ternary events in heavy-ion reactions. 33 references

  11. Fission 2009 4. International Workshop on Nuclear Fission and Fission Product Spectroscopy - Compilation of slides

    International Nuclear Information System (INIS)

    2009-01-01

    This conference is dedicated to the last achievements in experimental and theoretical aspects of the nuclear fission process. The topics include: mass, charge and energy distribution, dynamical aspect of the fission process, nuclear data evaluation, quasi-fission and fission lifetime in super heavy elements, fission fragment spectroscopy, cross-section and fission barrier, and neutron and gamma emission. This document gathers the program of the conference and the slides of the presentations

  12. The Effect of Stiffness Parameter on Mass Distribution in Heavy-Ion Induced Fission

    Science.gov (United States)

    Soheyli, Saeed; Khalil Khalili, Morteza; Ashrafi, Ghazaaleh

    2018-06-01

    The stiffness parameter of the composite system has been studied for several heavy-ion induced fission reactions without the contribution of non-compound nucleus fission events. In this research, determination of the stiffness parameter is based on the comparison between the experimental data on the mass widths of fission fragments and those predicted by the statistical model treatments at the saddle and scission points. Analysis of the results shows that for the induced fission reactions of different targets by the same projectile, the stiffness parameter of the composite system decreases with increasing the fissility parameter, as well as with increasing the mass number of the compound nucleus. This parameter also exhibits a similar behavior for the reactions of a given target induced by different projectiles. As expected, nearly same stiffness values are obtained for different reactions leading to the same compound nucleus.

  13. New signatures on dissipation from fission induced by relativistic heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Jurado, B.; Schmitt, C.; Schmidt, K.H.; Enqvist, T.; Kelic, A.; Rejmund, F.; Benlliure, J. [Universidad de Santiago de Compostela (Spain); Junghans, A.R. [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany)

    2004-03-01

    Fissile nuclei with small shape distortion relative to the ground-state deformation and with low angular momentum were produced in peripheral heavy-ion collisions. Under the conditions of small shape distortions and low angular momentum, the theoretical description of the fission process can be considerably simplified, and the relevant information on dissipation can be better extracted than in conventional experiments based on fusion-fission reactions. In addition, this experimental approach induces very high excitation energies, a condition necessary to observe transient effects. The experimental data were taken at GSI using a set-up especially conceived for fission studies in inverse kinematics. This set-up allowed determining three observables whose sensitivity to dissipation was investigated for the first time: the total fission cross sections of {sup 238}U at 1 A GeV as a function of the target mass, and, for the reaction of {sup 238}U at 1 A GeV on a (CH{sub 2}){sub n} target, the partial fission cross sections and the partial charge distributions of the fission fragments. The comparison of the new experimental data with a reaction code adapted to the conditions of the reactions investigated leads to clear conclusions on the strength of dissipation at small deformation where the existing results are rather contradictory. (orig.)

  14. New signatures on dissipation from fission induced by relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Jurado, B.; Schmitt, C.; Schmidt, K.H.; Enqvist, T.; Kelic, A.; Rejmund, F.; Benlliure, J.; Junghans, A.R.

    2004-03-01

    Fissile nuclei with small shape distortion relative to the ground-state deformation and with low angular momentum were produced in peripheral heavy-ion collisions. Under the conditions of small shape distortions and low angular momentum, the theoretical description of the fission process can be considerably simplified, and the relevant information on dissipation can be better extracted than in conventional experiments based on fusion-fission reactions. In addition, this experimental approach induces very high excitation energies, a condition necessary to observe transient effects. The experimental data were taken at GSI using a set-up especially conceived for fission studies in inverse kinematics. This set-up allowed determining three observables whose sensitivity to dissipation was investigated for the first time: the total fission cross sections of 238 U at 1 A GeV as a function of the target mass, and, for the reaction of 238 U at 1 A GeV on a (CH 2 ) n target, the partial fission cross sections and the partial charge distributions of the fission fragments. The comparison of the new experimental data with a reaction code adapted to the conditions of the reactions investigated leads to clear conclusions on the strength of dissipation at small deformation where the existing results are rather contradictory. (orig.)

  15. Catapult mechanism for fast particle emission in fission and heavy ion reactions

    International Nuclear Information System (INIS)

    Maedler, P.

    1984-01-01

    The fission processes of slabs of nuclear matter is modelled in the Hartree-Fock time dependence approximation by adding an initial collective velocity field to the static self-consistent solution. In dependence on its amplitude either large amplitude density oscillations are excited or fission occurs. The final disintegration of the slab proceeds on a time scale 10 -22 s and is characterized by a sharp peak in the actual velocity field in the region of the ''snatching'' inner low density tails. A characteristic time later a low density lump correlated with a peak in the velocity field energies in front of the fragments. These particles are called ''catapult particles''. Recent experimental results possibly provide evidence for catapult neutrons in low-energy fission. The significance of the catapult mechanism for fast particle emission in the exit channel of heavy ion reactions is discussed

  16. Measurement of mass and isotopic fission yields for heavy fission products with the LOHENGRIN mass spectrometer

    International Nuclear Information System (INIS)

    Bail, A.

    2009-05-01

    In spite of the huge amount of fission yield data available in different libraries, more accurate values are still needed for nuclear energy applications and to improve our understanding of the fission process. Thus measurements of fission yields were performed at the mass spectrometer Lohengrin at the Institut Laue-Langevin in Grenoble, France. The mass separator Lohengrin is situated at the research reactor of the institute and permits the placement of an actinide layer in a high thermal neutron flux. It separates fragments according to their atomic mass, kinetic energy and ionic charge state by the action of magnetic and electric fields. Coupled to a high resolution ionization chamber the experiment was used to investigate the mass and isotopic yields of the light mass region. Almost all fission yields of isotopes from Th to Cf have been measured at Lohengrin with this method. To complete and improve the nuclear data libraries, these measurements have been extended in this work to the heavy mass region for the reactions 235 U(n th ,f), 239 Pu(n th ,f) and 241 Pu(n th ,f). For these higher masses an isotopic separation is no longer possible. So, a new method was undertaken with the reaction 239 Pu(n th ,f) to determine the isotopic yields by spectrometry. These experiments have allowed to reduce considerably the uncertainties. Moreover the ionic charge state and kinetic energy distributions were specifically studied and have shown, among others, nanosecond isomers for some masses. (author)

  17. Fusion-fission of heavy systems

    International Nuclear Information System (INIS)

    Rivet, M.F.; Alami, R.; Borderie, B.; Fuchs, H.; Gardes, D.; Gauvin, H.

    1988-01-01

    The influence of the entrance channel on fission processes was studied by forming the same composite system by two different target-projectile combinations ( 40 Ar + 209 Bi and 56 Fe + 187 Re, respectively). Compound nucleus fission and quasi fission were observed and the analysis was performed in the framework of the extra-extra-push model, which provides a qualitative interpretation of the results; limits for the extra-extra-push threshold are given, but problems with quantitative predictions for the extra-push are noted. (orig.)

  18. Fission of heavy nuclei: microscopic study of fission barriers and fragments angular momentum; Fission des noyaux lourds: etude microscopique des barrieres de fission et du moment angulaire des fragments

    Energy Technology Data Exchange (ETDEWEB)

    Bonneau, L

    2003-11-01

    A lot of experimental data on nuclear fission has been being collected for the last 65 years, allowing theoreticians to confront their models with reality. The first part of this work is dedicated to the computation of fission barriers. We have extended the HF + BCS (Hartree Fock + Bandeen-Cooper-Schrieffer) method in order to include a new set of polynomials on which wave functions can be broken to, more accurately than on Hermite's polynomials in the 2 fragment configuration. The fission barriers of 26 heavy nuclei from Thorium-230 to Nobelium-256 have been assessed and compared to experimental data, it appears that differences are no greater than 1 MeV. We have discovered a neat correlation between the variation of the experimental fission lifetimes of even Fermium isotopes and the computed heights of second barriers. Moreover our model reproduces the hyper-deformed well of Thorium-230 with a good agreement on the well depth. The second part deals with the scission region. We have performed Hartree-Fock calculations in order to explore different ways of fragmentation. We have shown that the harmonic oscillator gives a valid description of such ways. In order to compute the mean value of J{sup 2} in the fragments we have been driven to propose an adequate definition of that quantity consistent with the non-locality property of the J{sup 2} operator. (A.C.)

  19. Method of measurement of cross sections of heavy nuclei fission induced by intermediate energy protons

    International Nuclear Information System (INIS)

    Kotov, Alexander; Chtchetkovski, Alexander; Fedorov, Oleg; Gavrikov, Yuri; Chestnov, Yuri; Poliakov, Vladimir; Vaishnene, Larissa; Vovchenko, Vil; Fukahori, Tokio

    2003-01-01

    The purpose of this work is experimental studies of the energy dependence of the fission cross sections of heavy nuclei, nat Pb, 209 Bi, 232 Th, 233 U, 235 U, 238 U, 237 Np and 239 Pu, by protons at the energies from 200 to 1000 MeV. At present experiment the method based on use of the gas parallel plate avalanche counters (PPACs) for registration of complementary fission fragments in coincidence and the telescope of scintillation counters for direct counting of the incident protons on the target has been used. First preliminary results of the energy dependences of proton induced fission cross sections for nat Pb, 209 Bi, 235 U and 238 U are reported. (author)

  20. Proceedings of the 12. International Symposium on Nuclear Physics - Heavy-Ion Collisions and Nuclear Fission - organized by the Technical University of Dresden, November 22-26, 1982 in Gaussig (GDR)

    International Nuclear Information System (INIS)

    Reif, R.; Teichert, J.

    1982-12-01

    The following problems in experimental and theoretical investigations of heavy-ion reactions and the dynamics of nuclear fission processes are discussed: (1) emission of fast light particles in heavy-ion collisions, preequilibrium effects; (2) dynamics of deep inelastic heavy-ion reactions; (3) selected topics in quasi-elastic heavy-ion collisions; and (4) collective transport theory for fission, cross sections and neutron spectra of fission. Problems of neutron induced reactions and nuclear data evaluation are also covered. (author)

  1. Fission of heavy nuclei: microscopic study of fission barriers and fragments angular momentum; Fission des noyaux lourds: etude microscopique des barrieres de fission et du moment angulaire des fragments

    Energy Technology Data Exchange (ETDEWEB)

    Bonneau, L

    2003-11-01

    A lot of experimental data on nuclear fission has been being collected for the last 65 years, allowing theoreticians to confront their models with reality. The first part of this work is dedicated to the computation of fission barriers. We have extended the HF + BCS (Hartree Fock + Bandeen-Cooper-Schrieffer) method in order to include a new set of polynomials on which wave functions can be broken to, more accurately than on Hermite's polynomials in the 2 fragment configuration. The fission barriers of 26 heavy nuclei from Thorium-230 to Nobelium-256 have been assessed and compared to experimental data, it appears that differences are no greater than 1 MeV. We have discovered a neat correlation between the variation of the experimental fission lifetimes of even Fermium isotopes and the computed heights of second barriers. Moreover our model reproduces the hyper-deformed well of Thorium-230 with a good agreement on the well depth. The second part deals with the scission region. We have performed Hartree-Fock calculations in order to explore different ways of fragmentation. We have shown that the harmonic oscillator gives a valid description of such ways. In order to compute the mean value of J{sup 2} in the fragments we have been driven to propose an adequate definition of that quantity consistent with the non-locality property of the J{sup 2} operator. (A.C.)

  2. Study of a new mechanism of reaction between heavy ions: the quasi-fission

    International Nuclear Information System (INIS)

    Ngo, Christian.

    1975-01-01

    A new type of deep inelastic reaction between two heavy ions (quasi-fission) has been discovered and studied when the product Z 1 Z 2 between the two ion atomic numbers is greater than or approximately equal to 1500. This mechanism is mainly binary, the total kinetic energy of the products is the one expected for a binary fission giving the same products, most of the products have masses very close to the initial masses, the angular distribution of the light products is peaked slightly forwards the projectile grazing angle (when the bombarding energy is not too much above the interaction barrier), at last, the total cross section for this process is a large part of the total reaction cross section. These results have been interpreted on the one hand using a static model and on the other hand using a dynamic model. An interaction potential between the two heavy ions has been derived using the energy density formalism within the framework of the sudden approximation. It has been shown that the nuclear part satisfies a scaling law which allows to factorize it in one term which depends on the two ion masses and another term which is independent of the system (universal function). Using the critical distance notion, the static calculations reproduce the quasi-fission cross sections. With regards to the dynamical calculations, the previously described potential has been introduced within the framework of Deubler and Dietrich's model. It is a classical dynamical calculation including dissipative terms. The vibration degrees of freedom of each ion have been explicitely taken into account. This calculation nicely reproduces both the energy loss in the relative motion, the focusing effect of the angular distribution, and the quasi-fission cross sections [fr

  3. Formation of heavy compound nuclei, their survival and correlation with longtime-scale fission

    International Nuclear Information System (INIS)

    Karamyan, S.A.; Yakushev, A.B.

    2006-01-01

    Fusion of two massive nuclei with formation of super-heavy compound nucleus (CN) is driven by the potential energy gradient, as follows from the analysis of nuclear reaction cross-sections. The conservative energy of the system is deduced in simple approximation using regularized nuclear mass and interaction barrier values. Different reactions for the synthesis of Z c 110-118 nuclei are compared and the favourable conditions are found for fusion of the stable (W-Pt) isotopes with radioactive fission fragment projectiles, like 94 Kr or 100 Sr. Thus, the cold fusion method can be extended for a synthesis of elements with Z > 113. Survival of the evaporation residue is defined by the neutron-to-fission probability ratio and by the successful emission of gammas at the final step of the reaction. Numerical estimates are presented. Fixation of evaporation residue products must correlate with longtime-scale fission and available experimental results are discussed

  4. The resonance neutron fission on heavy nuclei

    International Nuclear Information System (INIS)

    Kopach, Yu.N.; Popov, A.B.; Furman, V.I.; Alfimenkov, V.P.; Lason', L.; Pikel'ner, L.B.; ); Gonin, N.N.; Kozlovskij, L.K.; Tambovtsev, D.I.; Gagarskij, A.M.; Petrov, G.A.; Sokolov, V.E.

    2001-01-01

    A new approach to the description of the fission, similar to the well-known reaction theory and based on the helicity representation for the exit fission channels, is briefly summarized. This approach allows one to connect the multimodal fission representation with A. Bohr's concept of the fission transition states and to obtain formulae for the partial and differential fission cross sections. The formulae are used for analysis of the angular anisotropy of fragments in the neutron resonance induced fission of aligned 235 U nuclei and of the P-even angular forward-backward and right-left correlations of fragments oe the P-odd correlations caused by the interference of s- and p-wave neutron resonances [ru

  5. Two reports: (i) Correlation properties of delayed neutrons from fast neutron induced fission. (ii) Method and set-up for measurements of trace level content of heavy fissionable elements based on delayed neutron counting

    International Nuclear Information System (INIS)

    Piksaikin, V.M.; Isaev, S.G.; Goverdovski, A.A.; Pshakin, G.M.

    1998-10-01

    The document includes the following two reports: 'Correlation properties of delayed neutrons from fast neutron induced fission' and 'Method and set-up for measurements of trace level content of heavy fissionable elements based on delayed neutron counting. A separate abstract was prepared for each report

  6. Isotopic yield measurement in the heavy mass region for 239Pu thermal neutron induced fission

    International Nuclear Information System (INIS)

    Bail, A.; Serot, O.; Mathieu, L.; Litaize, O.; Materna, T.; Koester, U.; Faust, H.; Letourneau, A.; Panebianco, S.

    2011-01-01

    Despite the huge number of fission yield data available in the different evaluated nuclear data libraries, such as JEFF-3.1.1, ENDF/B-VII.0, and JENDL-4.0, more accurate data are still needed both for nuclear energy applications and for our understanding of the fission process itself. It is within the framework of this that measurements on the recoil mass spectrometer Lohengrin (at the Institut Laue-Langevin, Grenoble, France) was undertaken, to determine isotopic yields for the heavy fission products from the 239 Pu(n th ,f) reaction. In order to do this, a new experimental method based on γ-ray spectrometry was developed and validated by comparing our results with those performed in the light mass region with completely different setups. Hence, about 65 fission product yields were measured with an uncertainty that has been reduced on average by a factor of 2 compared to that previously available in the nuclear data libraries. In addition, for some fission products, a strongly deformed ionic charge distribution compared to a normal Gaussian shape was found, which was interpreted as being caused by the presence of a nanosecond isomeric state. Finally, a nuclear charge polarization has been observed in agreement, with the one described on other close fissioning systems.

  7. Isotopic yield measurement in the heavy mass region for 239Pu thermal neutron induced fission

    Science.gov (United States)

    Bail, A.; Serot, O.; Mathieu, L.; Litaize, O.; Materna, T.; Köster, U.; Faust, H.; Letourneau, A.; Panebianco, S.

    2011-09-01

    Despite the huge number of fission yield data available in the different evaluated nuclear data libraries, such as JEFF-3.1.1, ENDF/B-VII.0, and JENDL-4.0, more accurate data are still needed both for nuclear energy applications and for our understanding of the fission process itself. It is within the framework of this that measurements on the recoil mass spectrometer Lohengrin (at the Institut Laue-Langevin, Grenoble, France) was undertaken, to determine isotopic yields for the heavy fission products from the 239Pu(nth,f) reaction. In order to do this, a new experimental method based on γ-ray spectrometry was developed and validated by comparing our results with those performed in the light mass region with completely different setups. Hence, about 65 fission product yields were measured with an uncertainty that has been reduced on average by a factor of 2 compared to that previously available in the nuclear data libraries. In addition, for some fission products, a strongly deformed ionic charge distribution compared to a normal Gaussian shape was found, which was interpreted as being caused by the presence of a nanosecond isomeric state. Finally, a nuclear charge polarization has been observed in agreement, with the one described on other close fissioning systems.

  8. Fission from Fe and Nb reactions with heavy targets at 50--100 MeV/nucleon

    International Nuclear Information System (INIS)

    Begemann-Blaich, M.; Blaich, T.; Fowler, M.M.; Wilhelmy, J.B.; Britt, H.C.; Fields, D.J.; Hansen, L.F.; Lanier, R.G.; Massoletti, D.J.; Namboodiri, M.N.; Remington, B.A.; Sangster, T.C.; Struble, G.L.; Webb, M.L.; Chan, Y.D.; Dacal, A.; Harmon, A.; Pouliot, J.; Stokstad, R.G.; Kaufman, S.; Videbaek, F.; Fraenkel, Z.

    1992-01-01

    Cross sections, parallel and perpendicular momentum transfers, charge loss, and velocity systematics are presented for fission following reactions of Fe and Nb projectiles at 50--100 MeV/nucleon on targets of Ta, Au, and Th. Data are compared to simple models for peripheral heavy ion collisions

  9. Calculation for fission decay from heavy ion reactions at intermediate energies

    International Nuclear Information System (INIS)

    Blaich, T.; Begemann-Blaich, M.; Fowler, M.M.; Wilhelmy, J.B.; Britt, H.C.; Fields, D.J.; Hansen, L.F.; Namboodiri, M.N.; Sangster, T.C.; Fraenkel, Z.

    1992-01-01

    A detailed deexcitation calculation is presented for target residues resulting from intermediate-energy heavy ion reactions. The model involves an intranuclear cascade, subsequent fast nucleon emission, and final decay by statistical evaporation including fission. Results are compared to data from bombardments with Fe and Nb projectiles on targets of Ta, Au, and Th at 100 MeV/nucleon. The majority of observable features are reproduced with this simple approach, making obvious the need for involving new physical phenomena associated with multifragmentation or other collective dissipation mechanisms

  10. Equilibrium fission model calculations

    International Nuclear Information System (INIS)

    Beckerman, M.; Blann, M.

    1976-01-01

    In order to aid in understanding the systematics of heavy ion fission and fission-like reactions in terms of the target-projectile system, bombarding energy and angular momentum, fission widths are calculated using an angular momentum dependent extension of the Bohr-Wheeler theory and particle emission widths using angular momentum coupling

  11. Effects of rotation on the stability of nuclei under fission and the possibility of fusion in heavy-ion reactions

    International Nuclear Information System (INIS)

    Mustafa, M.G.; Kumar, K.

    1975-06-01

    The two-center shell model for fission is extended to include the effects of nuclear rotation or angular momentum J. The principle of minimization of total nuclear energy with respect to a constraint on J leads to an effective potential energy which depends on J as well as moment of inertia. This effective potential energy is minimized with respect to nuclear shape variables, neutron pairing energy gap, and proton pairing energy gap for each J value. The resulting potential minima, fission barriers, and moments of inertia are quite sensitive to J. Results are given for 208 82 Pb, 240 94 Pu, and for a super-heavy nucleus, 298 114 X. Microscopic calculations of the critical angular momentum (at which the fission barrier vanishes) are compared with the rotating liquid drop calculations of Cohen, Plasil, and Swiatecki. The influence of these results on the possibility of fusion in heavy-ion reactions is discussed. (5 figures, 6 tables) (U.S.)

  12. Fission mass yields of excited medium heavy nuclei

    International Nuclear Information System (INIS)

    Sandulescu, A.; Depta, K.; Herrmann, R.; Greiner, W.; Scheid, W.

    1985-01-01

    The mass distributions resulting from the fission of excited medium mass nuclei are discussed on the basis of the fragmentation theory. It is shown that very asymmetric fission events can be expected with rates which are only a few orders of magnitude smaller than the rates for symmetric fission. As an example a calculation of the fission mass distribution of the excited 172 Yb compound nucleus is presented. This mass distribution reveals observable structures over the entire range of the mass asymmetry due to valleys in the potential energy surface for fission fragments with closed proton and neutron shells

  13. Fusion-fission in Ar-heavy nuclei collisions

    International Nuclear Information System (INIS)

    Zaric, Alexandre

    1984-01-01

    Fusion-fission products have been studied for three reactions: Ar + Au, Ar + Bi and Ar + U (5.25-7.5 MeV/u). By measuring symmetric fragmentation components (fission-like events), cross sections for fusion were deduced and compared with the prediction of static and dynamic models. With increasing projectile energy, the width of the mass distributions strongly increases for the two lighter systems. By contrast, for Ar + U it remains essentially constant at a very large value. These results clearly demonstrate that the large increase of the width of the mass distribution cannot be attributed simply to large values of the angular momentum. However, they can be explained by the occurrence of a different dissipative process, fast fission, which can be expected if there is no barrier to fission. For the reaction Ar + Au, the total kinetic-energy distributions were also studied in detail. In this case fast fission occurs only at high incident energy. The average total kinetic energy (TKE) was found to be constant with increasing energy. (author) [fr

  14. Fission fragment mass and angular distributions

    Indian Academy of Sciences (India)

    2015-07-22

    Jul 22, 2015 ... Synthesis of heavy and superheavy elements is severely hindered by fission and fission-like processes. The probability of these fission-like, non-equilibrium processes strongly depends on the entrance channel parameters. This article attempts to summarize the recent experimental findings and classify the ...

  15. Charged particle-induced nuclear fission reactions

    Indian Academy of Sciences (India)

    The nuclear fission phenomenon continues to be an enigma, even after nearly 75 years of its discovery. Considerable progress has been made towards understanding the fission process. Both light projectiles and heavy ions have been employed to investigate nuclear fission. An extensive database of the properties of ...

  16. Shell effects in fission and quasi-fission of heavy and superheavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Itkis, M.G. E-mail: itkis@flnr.jinr.ru; Aeystoe, J.; Beghini, S.; Bogachev, A.A.; Corradi, L.; Dorvaux, O.; Gadea, A.; Giardina, G.; Hanappe, F.; Itkis, I.M.; Jandel, M.; Kliman, J.; Khlebnikov, S.V.; Kniajeva, G.N.; Kondratiev, N.A.; Kozulin, E.M.; Krupa, L.; Latina, A.; Materna, T.; Montagnoli, G.; Oganessian, Yu.Ts.; Pokrovsky, I.V.; Prokhorova, E.V.; Rowley, N.; Rubchenya, V.A.; Rusanov, A.Ya.; Sagaidak, R.N.; Scarlassara, F.; Stefanini, A.M.; Stuttge, L.; Szilner, S.; Trotta, M.; Trzaska, W.H.; Vakhtin, D.N.; Vinodkumar, A.M.; Voskressenski, V.M.; Zagrebaev, V.I

    2004-04-05

    Results of the experiments aimed at the study of fission and quasi-fission processes in the reactions {sup 12}C+{sup 204}Pb, {sup 48}Ca+{sup 144,154}Sm, {sup 168}Er, {sup 208}Pb, {sup 244}Pu, {sup 248}Cm; {sup 58}Fe+{sup 208}Pb, {sup 244}Pu, {sup 248}Cm, and {sup 64}Ni+{sup 186}W, {sup 242}Pu are presented in the work. The choice of the above-mentioned reactions was inspired by recent experiments on the production of the isotopes {sup 283}112, {sup 289}114 and {sup 283}116 at Dubna [1],[2] using the same reactions. The {sup 58}Fe and {sup 64}Ni projectiles were chosen since the corresponding projectile-target combinations lead to the synthesis of even heavier elements. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR, Russia), the XTU Tandem accelerator of the National Laboratory of Legnaro (LNL, Italy) and the Accelerator of the Laboratory of University of Jyvaskyla (JYFL, Finland) using the time-of-flight spectrometer of fission fragments CORSET[3] and the neutron multi-detector DEMON[4],[5]. The role of shell effects and the influence of the entrance channel on the mechanism of the compound nucleus fusion-fission and the competitive process of quasi-fission are discussed.

  17. Relativistic Coulomb Fission

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.

  18. Overview of research by the fission group in Trombay

    Indian Academy of Sciences (India)

    In the late eighties, heavy-ion beams from the pelletron-based medium energy heavy- ... (9) Ternary fission/light charged particle (LCP) accompanied fission .... There is a clear deviation in the behaviour of neck emission of α-particles at high.

  19. Fission dynamics in the proton induced fission of heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rubchenya, V.A. E-mail: rubchen@phys.jyu.fi; Trzaska, W.H.; Itkis, I.M.; Itkis, M.G.; Kliman, J.; Kniajeva, G.N.; Kondratiev, N.A.; Kozulin, E.M.; Krupa, L.; Pokrovski, I.V.; Voskressenski, V.M.; Hanappe, F.; Materna, T.; Dorvaux, O.; Stuttge, L.; Chubarian, G.; Khlebnikov, S.V.; Vakhtin, D.N.; Lyapin, V.G

    2004-04-05

    Multi-parameter correlation study of the reaction {sup 242}Pu(p, f) at E{sub p} 13, 20 and 55 MeV has been carried out. Fission fragment mass and kinetic energy distributions and the double differential neutron spectra have been measured. It was observed that the two-humped shape of mass distributions prevailed up to highest proton energy. Manifestation of the nuclear shell Z 28 near fragment mass A{sub fr} = 70 has been detected. The experimental results were analyzed in the framework of a time-dependent statistical model with inclusion of nuclear friction effects in the fission process. The multi-parameter correlation study of the reaction.

  20. Neutron-rich rare isotope production from projectile fission of heavy beams in the energy range of 20 MeV/nucleon

    OpenAIRE

    Vonta, N.; Souliotis, G. A.; Loveland, W. D.; Kwon, Y. K.; Tshoo, K.; Jeong, S. C.; Veselsky, M.; Bonasera, A.; Botvina, A.

    2016-01-01

    We investigate the possibilities of producing neutron-rich nuclides in projectile fission of heavy beams in the energy range of 20 MeV/nucleon expected from low-energy facilities. We report our efforts to theoretically describe the reaction mechanism of projectile fission following a multinucleon transfer collision at this energy range. Our calculations are mainly based on a two-step approach: the dynamical stage of the collision is described with either the phenomenological Deep-Inelastic Tr...

  1. International conference on fifty years research in nuclear fission

    International Nuclear Information System (INIS)

    1989-02-01

    These proceedings contain extended abstracts of the papers presented at the named conference. They deal with static properties of fission, instrumentation for fission studies, fission in compound-nucleus reactions, fission dynamics, fission-like heavy ion reactions, and fusion reactions. See hints under the relevant topics. (HSI)

  2. Investigation of exotic fission modes

    International Nuclear Information System (INIS)

    Poenaru, D. N.; Gherghescu, R. A.; Greiner, W.; Nagame, Y.; Hamilton, J. H.; Ramayya, A. V.

    2002-01-01

    Fission approach to the cluster radioactivities and α-decay has been systematically developed during the last two decades. A more complex process, the ternary fission, was observed since 1946 both in neutron-induced and spontaneous fission. We obtained interesting results concerning the binary fission saddle-point reflection asymmetric nuclear shapes, and we can explain how a possible nuclear quasimolecular state is formed during the 10 Be accompanied cold fission of 252 Cf. The equilibrium nuclear shapes in fission theory are usually determined by minimizing the deformation energy for a given surface equation. We developed a method allowing to obtain a very general saddle-point shape as a solution of a differential equation without an a priori introduction of a shape parametrization. In the approach based on a liquid drop model (LDM), saddle-point shapes are always reflection symmetric: the deformation energy increases with the mass-asymmetry parameter η = (A 1 - A 2 )/(A 1 + A 2 ). By adding the shell corrections to the LDM deformation energy, we obtained minima at a finite mass asymmetry for parent nuclei 238 U, 232,228 Th in agreement with experiments. This correction was calculated phenomenologically. A technique based on the fragment identification by using triple γ coincidences in the large arrays of Ge-detectors, like GAMMASPHERE, was employed at Vanderbilt University to discover new characteristics of the fission process, and new decay modes. The possibility of a whole family of new decay modes, the multicluster accompanied fission, was envisaged. Besides the fission into two or three fragments, a heavy or superheavy nucleus spontaneously breaks into four, five or six nuclei of which two are asymmetric or symmetric heavy fragments and the others are light clusters, e.g. α-particles, 10 Be, 14 C, or combinations of them. Examples were presented for the two-, three- and four cluster accompanied cold fission of 252 Cf and 262 Rf, in which the emitted

  3. Spectroscopy of heavy fissionable nuclei

    Indian Academy of Sciences (India)

    2015-08-05

    Aug 5, 2015 ... Nuclei in the actinide chain and beyond are prone to fission owing to ... mass nuclei are typically more difficult, because the intensity is .... j15/2 neutron alignments in a region where shell stablization effects are crucial.

  4. Investigation of the heavy nuclei fission with anomalously high values of the fission fragments total kinetic energy

    Science.gov (United States)

    Khryachkov, Vitaly; Goverdovskii, Andrei; Ketlerov, Vladimir; Mitrofanov, Vecheslav; Sergachev, Alexei

    2018-03-01

    Binary fission of 232Th and 238U induced by fast neutrons were under intent investigation in the IPPE during recent years. These measurements were performed with a twin ionization chamber with Frisch grids. Signals from the detector were digitized for further processing with a specially developed software. It results in information of kinetic energies, masses, directions and Bragg curves of registered fission fragments. Total statistics of a few million fission events were collected during each experiment. It was discovered that for several combinations of fission fragment masses their total kinetic energy was very close to total free energy of the fissioning system. The probability of such fission events for the fast neutron induced fission was found to be much higher than for spontaneous fission of 252Cf and thermal neutron induced fission of 235U. For experiments with 238U target the energy of incident neutrons were 5 MeV and 6.5 MeV. Close analysis of dependence of fission fragment distribution on compound nucleus excitation energy gave us some explanation of the phenomenon. It could be a process in highly excited compound nucleus which leads the fissioning system from the scission point into the fusion valley with high probability.

  5. Dynamical limitations to heavy ion fusion

    International Nuclear Information System (INIS)

    Back, B.B.

    1983-01-01

    Dynamical limitations to heavy ion fusion reaction are considered. The experimental signatures and the importance of a quasi-fission process are examined. The anaular distributions of fission fragments for the 32 S+ 208 Pb and 16 O+ 238 U systems are presented. It is shown that the observations of quasi-fission for even rather ''light'' heavy ions poeess severe limitations on the fusion process. This result may consequently be responsible for the lack of success of the search for super heavy elements in heavy ion fusion reactions

  6. Fission before mass equilibration in heavy ion reactions

    International Nuclear Information System (INIS)

    Yadav, C.; Thomas, R.G.; Mohanty, A.K.

    2013-01-01

    For compound nucleus (CN) fission, it is expected that the width of the fragment mass distribution is independent of the entrance channel. In quasifission reaction, however, recent experiments reported anomalous broadening of mass distribution for more symmetric systems forming the same compound nucleus in fissile (fissility ∼ 0.8) and less fissile (fissility ∼ 0.7) systems. These measurements have not shown any mass-angle correlation, but width of fission fragment mass distribution was found to be consistently higher than that expected for fusion-fission

  7. Systematic features of mass yield curves in low-energy fission of actinides

    International Nuclear Information System (INIS)

    Nagame, Yuichiro

    1999-01-01

    Characteristics of mass yield curves in fission of wide range of nuclides from pre-actinides through transactinides are reviewed and the following points are discussed. (1) Systematic trends of the mass yield distributions in low-energy proton-induced fission of actinides and in spontaneous fission of actinides are discussed in terms of weighted mean mass numbers of the light and heavy asymmetric mass yield peaks and widths of the heavy asymmetric mass yields. (2) Gross features of the two kinds of mass yield curves, symmetric and asymmetric ones, as a function of a fissioning nucleus. (3) Competition between the symmetric and asymmetric fission as a function of not only Z (proton number) but also N (neutron number) of a fissioning nucleus. (4) Experimental verification of the existence of two kinds of deformation paths in low energy fission of actinides; the first path is initiated at higher threshold energy and ends with elongated scission configuration, giving a final mass yield distribution centered around the symmetric mass division, 'symmetric fission path'. In the second path, a fissioning nucleus experiences lower threshold energy and results in more compact scission configuration, which gives a double humped mass distribution always centered around A=140 for the heavier fragment, 'asymmetric fission path'. (5) Interpretation of the 'bimodal fission' observed in the spontaneous fission of heavy actinides as the presence of the two fission paths of the ordinary asymmetric one and a strongly shell-affected symmetric path from the systematic analysis of scission configurations. (6) A dynamical fission process deduced from the analysis of the experimental mass yield curves and the correlation data of neutron multiplicity and fragment mass and total kinetic energy. (7) Prediction of the characteristics of gross properties of fission in superheavy nuclei around 280 114. (8) Characteristics of highly asymmetric fission: formation cross section as a function of

  8. Effects of nuclear structure on quasi-fission

    International Nuclear Information System (INIS)

    Simenel, Cedric; Wakhle, Aditya; Hinde, D.J.; Rietz, R. du; Dasgupta, M.; Evers, M.; Lin, C.J.; Luong, D.H.; Avez, B.

    2012-01-01

    The quasi-fission mechanism hinders fusion of heavy systems because of a mass flow between the reactants, leading to a re-separation of more symmetric fragments in the exit channel. A good understanding of the competition between fusion and quasi-fission mechanisms is expected to be of great help to optimize the formation and study of heavy and superheavy nuclei. Quantum microscopic models, such as the time-dependent Hartree-Fock approach, allow for a treatment of all degrees of freedom associated to the dynamics of each nucleon. This provides a description of the complex reaction mechanisms, such as quasi-fission, with no parameter adjusted on reaction mechanisms. In particular, the role of the deformation and orientation of a heavy target, as well as the entrance channel magicity and isospin are investigated with theoretical and experimental approaches. (authors)

  9. Fission barriers of light nuclei

    International Nuclear Information System (INIS)

    Grotowski, K.; Planeta, R.; Blann, M.; Komoto, T.

    1989-01-01

    Experimental fission excitation functions for compound nuclei /sup 52/Fe, /sup 49/Cr, /sup 46/V, and /sup 44/Ti formed in heavy-ion reactions are analyzed in the Hauser-Feshbach/Bohr-Wheeler formalism using fission barriers based on the rotating liquid drop model of Cohen et al. and on the rotating finite range model of Sierk. We conclude that the rotating finite range approach gives better reproduction of experimental fission yields, consistent with results found for heavier systems

  10. Fusion-fission dynamics

    International Nuclear Information System (INIS)

    Blocki, J.; Planeta, R.; Brzychczyk, J.; Grotowski, K.

    1992-01-01

    Classical dynamical calculations of the heavy ion induced fission processes have been performed for the reactions 40 Ar+ 141 Pr, 20 Ne+ 165 Ho and 12 C+ 175 Lu leading to the iridium like nucleus. As a result prescission lifetimes were obtained and compared with the experimental values. The comparison between the calculated and experimental lifetimes indicates that the one-body dissipation picture is much more relevant in describing the fusion-fission dynamics than the two-body one. (orig.)

  11. CACA-2: revised version of CACA-a heavy isotope and fission-product concentration calculational code for experimental irradiation capsules

    International Nuclear Information System (INIS)

    Allen, E.J.

    1976-02-01

    A computer program is described which calculates nuclide concentration histories, power or neutron flux histories, burnups, and fission-product birthrates for fueled experimental capsules subjected to neutron irradiations. Seventeen heavy nuclides in the chain from 232 Th to 242 Pu and a user-specified number of fission products are treated. A fourth-order Runge-Kutta calculational method solves the differential equations for nuclide concentrations as a function of time. For a particular problem, a user-specified number of fuel regions may be treated. A fuel region is described by volume, length, and specific irradiation history. A number of initial fuel compositions may be specified for each fuel region. The irradiation history for each fuel region can be divided into time intervals, and a constant power density or a time-dependent neutron flux is specified for each time interval. Also, an independent cross-section set may be selected for each time interval in each irradiation history. The fission-product birthrates for the first composition of each fuel region are summed to give the total fission-product birthrates for the problem

  12. Ternary fission

    International Nuclear Information System (INIS)

    Wagemans, C.

    1991-01-01

    Since its discovery in 1946, light (charged) particle accompanied fission (ternary fission) has been extensively studied, for spontaneous as well as for induced fission reactions. The reason for this interest was twofold: the ternary particles being emitted in space and time close to the scission point were expected to supply information on the scission point configuration and the ternary fission process was an important source of helium, tritium, and hydrogen production in nuclear reactors, for which data were requested by the nuclear industry. Significant experimental progress has been realized with the advent of high-resolution detectors, powerful multiparameter data acquisition systems, and intense neutron and photon beams. As far as theory is concerned, the trajectory calculations (in which scission point parameters are deduced from the experimental observations) have been very much improved. An attempt was made to explain ternary particle emission in terms of a Plateau-Rayleigh hydrodynamical instability of a relatively long cylindrical neck or cylindrical nucleus. New results have also been obtained on the so-called open-quotes trueclose quotes ternary fission (fission in three about-equal fragments). The spontaneous emission of charged particles has also clearly been demonstrated in recent years. This chapter discusses the main characteristics of ternary fission, theoretical models, light particle emission probabilities, the dependence of the emission probabilities on experimental variables, light particle energy distributions, light particle angular distributions, correlations between light particle accompanied fission observables, open-quotes trueclose quotes ternary fission, and spontaneous emission of heavy ions. 143 refs., 18 figs., 8 tabs

  13. Fission product detection

    International Nuclear Information System (INIS)

    Liatard, E.; Akrouf, S.; Bruandet, J.F

    1987-01-01

    The response of photovoltaic cells to heavy ions and fission products have been tested on beam. Their main advantages are their extremely low price, their low sensitivity to energetic light ions with respect to fission products, and the possibility to cut and fit them together to any shape without dead zone. The time output signals of a charge sensitive preamplifier connected to these cells allows fast coincidences. A resolution of 12ns (F.W.H.M.) have been measured between two cells [fr

  14. True ternary fission in 310126X

    International Nuclear Information System (INIS)

    Banupriya, B.; Vijayaraghavan, K.R.; Balasubramaniam, M.

    2015-01-01

    All possible combinations are minimized by the two dimensional minimization process and minimized with respect to neutron numbers and proton numbers of the fragments. Potential energy is low and Q - value is high at true ternary fission region. It shows that true ternary mode is the dominant mode in the ternary fission of superheavy nuclei. Also, the results show that the fragments with neutron magic numbers are the dominant one in the ternary fission of superheavy nuclei whereas the fragments with proton magic numbers are the dominant one in the ternary fission of heavy nuclei

  15. Mass dependence of positive pion-induced fission

    International Nuclear Information System (INIS)

    Khan, H.A.; Khan, N.A.; Peterson, R.J.

    1991-01-01

    Fission cross sections for a range of targets have been measured by solid-state track detectors following 80 and 100 MeV π + bombardment. Fission probabilities have been inferred by comparison to computed reaction cross sections. Fission probabilities for heavy targets agree with those for other probes of comparable energy and with statistical calculations. Probabilities for lighter targets are much above those previously observed or computed. Ternary fission cross sections and multiplicities of light fragments have also been determined

  16. Fission in a Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Younes, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-26

    A three-year theory project was undertaken to study the fission process in extreme astrophysical environments, such as the crust of neutron stars. In the first part of the project, the effect of electron screening on the fission process was explored using a microscopic approach. For the first time, these calculations were carried out to the breaking point of the nucleus. In the second part of the project, the population of the fissioning nucleus was calculated within the same microscopic framework. These types of calculations are extremely computer-intensive and have seldom been applied to heavy deformed nuclei, such as fissioning actinides. The results, tools and methodologies produced in this work will be of interest to both the basic-science and nuclear-data communities.

  17. Specific fission J-window and angular momentum dependence of the fission barrier

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Hiroshi; Saito, Tadashi; Takahashi, Naruto; Yokoyama, Akihiko [Osaka Univ., Suita (Japan); Shinohara, Atsushi

    1997-04-01

    A method to determine a unique J-window in the fission process was devised and the fissioning nuclide associated with thus extracted J-window was identified for each of the heavy-ion reaction systems. Obtained fission barriers at the resulting J-window were compared with the calculated values by the rotating finite range model (RFRM). The deduced barriers for individual nuclides were compared with the RFRM barriers to reproduce more or less the angular momentum dependence the RFRM prediction. The deduced systematic behavior of the fission barrier indicates no even-odd and shell corrections are necessary. The nuclear dissipation effect based on Kramer`s model revealed substantial reduction of the statistically deduced barrier heights and brought a fairly large scattering from the RFRM J-dependence. However, introduction of the temperature-dependent friction coefficient ({gamma} = 2 for T {>=} 1.0 MeV and 0.5 for T < 1.0 MeV) was found to bring about satisfactory agreement with both RFRM fission barriers and the pre-fission neutron multiplicity systematics. (author). 81 refs.

  18. Ternary fission

    Indian Academy of Sciences (India)

    the energy minimization of all possible ternary breakups of a heavy radioactive nucleus. Further, within the TCM we have analysed the competition between different geometries as well as different positioning of the fragments. Also, an attempt was made to calculate the mass distribution of ternary fission process within the ...

  19. Calculating the mass distribution of heavy nucleus fission product by neutrons

    International Nuclear Information System (INIS)

    Gudkov, A.N.; Koldobskij, A.B.; Kolobashkin, V.M.; Semenova, E.V.

    1981-01-01

    The technique of calculating the fission product mass yields by neutrons which are necessary for performing nucleus physical calculations in designing nuclear reactor cores is considered. The technique is based on the approximation of fission product mass distribution over the whole mass range by five Gauss functions. New analytical expressions for determining energy weights of used gaussians are proposed. The results of comparison of experimental data with calculated values for fission product mass obtained for reference processes in the capacity of which the fission reactions are chosen: 233 U, 235 U fission by thermal neutrons, 232 Th, 233 U, 235 U, 238 U by fission spectrum neutrons and 14 MeV neutrons and for 232 Th fission reactions by 11 MeV neutrons and 238 U by 7.7 MeV neutrons. On the basis of the analysis of results obtained the conclusion is drawn on a good agreement of fission product mass yield calculation values obtained using recommended values of mass distribution parameters with experimental data [ru

  20. Recent results in heavy-ion-induced fission

    International Nuclear Information System (INIS)

    Plasil, F.; Awes, T.C.; Cheynis, B.

    1984-01-01

    A systematic investigation of angular-momentum-dependent fission barriers has been completed. Fission excitation functions were measured for the compound nuclei 153 Tb, 158 Er, 181 Re, 186 Os, and 204 206 208 210 Po. In the case of 153 Tb and 181 Re, evaporation residue cross sections were also measured. With the exception of some of the Po systems, two to five different reactions were used to produce the same compound nucleus with projectiles ranging from 9 Be to 64 Ni. 12 C reactions with 174 Yb, 198 Pt, and 238 U at energies from 95 to 291 MeV; 16 O reactions with 142 Nd, 170 Er, 192 Os, and 238 U at energies from 140 to 315 Mev; 32 S reactions with 126 Te, 144 Nd, and 238 U at energies from 350 to 700 MeV; and 58 Ni reactions with 96 Zr, 116 Cd, and 238 U at 352 and 875 MeV have also been studied. Also, fission fragment angular distributions were measured for the above 12 C- and 16 O-induced reactions. The results were analyzed in terms of saddle-point moments of inertia obtained from the RFRM

  1. Fission times of excited nuclei: An experimental overview

    International Nuclear Information System (INIS)

    Morjean, M.; Morjean, M.; Jacquet, D.

    2009-01-01

    An overview of selected recent experimental results on fission times is presented. Evidences for over-damped motion up to saddle point during the fission process of highly excited nuclei have been obtained independently through fission probability, pre-scission multiplicity and direct time measurements. In addition, strong clues have been found for a temperature dependency of friction. Experiments probing transient effects through fission probabilities are presented and the counterbalanced effects of friction and level density parameters are discussed. Promising perspectives for super-heavy stability studies, based on fission time measurements, are presented. (authors)

  2. Influence of the cosmic-ray induced fission tracks on the fission track of extraterrestric minerals via the 238U spontaneous fission

    International Nuclear Information System (INIS)

    Damm, G.; Thiel, K.

    1977-01-01

    The age determined by counting fission tracks of lunar and meteorite materials is obviously falsified by additional fission track parts not to be accounted for by the spontaneous fission of uranium 238. For this p and n induced fissions of U, Th and other hreavy elements through the cosmic radiation come into consideration. In order to determine the possible part of such interference factors, a simulation experiment at the proton synchrocycloton (CERN, Geneva) has been carried out and independently of this, the production rates for the p and n induced U, Th, Bi, Pb and Au in the surface-near regolith layers of the moon were calculated. It could be seen that the irradiation age as well as the spacial distribution of the heavy metals in the samples to be dated must be considered. (RB) [de

  3. Different fission behavior induced by heavy ion central and peripheral collisions

    International Nuclear Information System (INIS)

    Wu Enjiu; Zheng Jiwen; Xiao Zhigang; Zhang Chun; Tan Jilian; Yin Shuzhi; Wang Sufang; Jin Genming; Yin Xu; Song Mingtao; Jin Weiyang; Peng Xingping; Li Zuyu; Wu Heyu; He Zhiyong; Jiang Dongxing; Qian Xing

    2000-01-01

    Correlated fission fragments from the 40 Ar + 209 Bi reaction and their further correlation with α particles have been studied for peripheral and central collisions simultaneously. The existence of different fission behavior of hot nuclei formed in central and peripheral collisions was found from the systematic analysis of the mass and energy distributions of fission fragments as a function of the initial temperature of hot fissioning nuclei

  4. Heavy neutron-deficient radioactive beams: fission studies and fragment distributions

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, K.H.; Benlliure, J.; Heinz, A.; Voss, B. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Boeckstiegel, C.; Grewe, A.; Steinhaeuser, S.; Clerc, H.G.; Jong, M. de; Junghans, A.R.; Mueller, J. [Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik; Pfuetzner, M. [Warsaw Univ. (Poland). Inst. of Experimental Physics

    1998-02-01

    The secondary-beam facility of GSI Darmstadt was used to study the fission process of short-lived radioactive nuclei. Relativistic secondary projectiles were produced by fragmentation of a 1 A GeV {sup 238}U primary beam and identified in nuclear charge and mass number. Their production cross sections were determined, and the fission competition in the statistical deexcitation was deduced for long isotopical chains. New results on the enhancement of the nuclear level density in spherical and deformed nuclei due to collective rotational and vibrational excitations were obtained. Using these reaction products as secondary beams, the dipole giant resonance was excited by electromagnetic interactions in a secondary lead target, and fission from excitation energies around 11 MeV was induced. The fission fragments were identified in nuclear charge, and their velocity vectors were determined. Elemental yields and total kinetic energies have been determined for a number of neutron-deficient actinides and preactinides which were not accessible with conventional techniques. The characteristics of multimodal fission of nuclei around {sup 226}Th were systematically investigated and related to the influence of shell effects on the potential energy and on the level density between fission barrier and scission. A systematic view on the large number of elemental yields measured gave rise to a new interpretation of the enhanced production of even elements in nuclear fission and allowed for a new understanding of pair breaking in large-scale collective motion. (orig.)

  5. Theoretical Description of the Fission Process

    International Nuclear Information System (INIS)

    Witold Nazarewicz

    2003-01-01

    The main goals of the project can be summarized as follows: Development of effective energy functionals that are appropriate for the description of heavy nuclei. Our goal is to improve the existing energy density (Skyrme) functionals to develop a force that will be used in calculations of fission dynamics. Systematic self-consistent calculations of binding energies and fission barriers of actinide and trans-actinide nuclei using modern density functionals. This will be followed by calculations of spontaneous fission lifetimes and mass and charge divisions using dynamic adiabatic approaches based on the WKB approximation. Investigate novel microscopic (non-adiabatic) methods to study the fission process

  6. Theoretical Description of the Fission Process

    Energy Technology Data Exchange (ETDEWEB)

    Witold Nazarewicz

    2003-07-01

    The main goals of the project can be summarized as follows: Development of effective energy functionals that are appropriate for the description of heavy nuclei. Our goal is to improve the existing energy density (Skyrme) functionals to develop a force that will be used in calculations of fission dynamics. Systematic self-consistent calculations of binding energies and fission barriers of actinide and trans-actinide nuclei using modern density functionals. This will be followed by calculations of spontaneous fission lifetimes and mass and charge divisions using dynamic adiabatic approaches based on the WKB approximation. Investigate novel microscopic (non-adiabatic) methods to study the fission process.

  7. Fusion-fission dynamics and perspectives of future experiments

    International Nuclear Information System (INIS)

    Zagrebaev, V.I.; Itkis, M.G.; Oganessian, Yu.Ts.

    2003-01-01

    The paper is focused on reaction dynamics of superheavy-nucleus formation and decay at beam energies near the Coulomb barrier. The aim is to review the things we have learned from recent experiments on fusion-fission reactions leading to the formation of compound nuclei with Z ≥ 102 and from their extensive theoretical analysis. Major attention is paid to the dynamics of formation of very heavy compound nuclei taking place in strong competition with the process of fast fission (quasifission). The choice of collective degrees of freedom playing a fundamental role and finding the multidimensional driving potential and the corresponding dynamic equation regulating the whole process are discussed. A possibility of deriving the fission barriers of superheavy nuclei directly from performed experiments is of particular interest here. In conclusion, the results of a detailed theoretical analysis of available experimental data on the 'cold' and 'hot' fusion-fission reactions are presented. Perspectives of future experiments are discussed along with additional theoretical studies in this field needed for deeper understanding of the fusion-fission processes of very heavy nuclear systems

  8. Photon and proton induced fission on heavy nuclei at intermediate energies

    Directory of Open Access Journals (Sweden)

    Andrade-II E.

    2014-04-01

    Full Text Available We present an analysis of fission induced by intermediate energy protons or photons on actinides. The 660 MeV proton induced reactions are on 241Am, 238U, and 237Np targets and the Bremmstrahlung-photons with end-point energies at 50 MeV and 3500 MeV are on 232Th and 238U targets. The study was performed by means of the Monte Carlo simulation code CRISP. A multimodal fission extension was added to the code within an approach which accounts for the contribution of symmetric and asymmetric fission. This procedure allowed the investigation of fission cross sections, fissility, number of evaporated nucleons and fission-fragment charge distributions. The comparison with experimental data show a good agreement between calculations and experiments.

  9. Photon and proton induced fission on heavy nuclei at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Andrade-II, E.; Karapetyan, G.S.; Deppman, A.; Guimaraes, V. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica; Balabekyan, A.R. [Yerevan State University, Alex Manoogian 1, Yerevan (Armenia); Demekhina, N.A. [Yerevan Physics Institute, Alikhanyan Brothers 2, Yerevan (Armenia); Joint Institute for Nuclear Research (JINR), Flerov Laboratory of Nuclear Reactions (LNR), Moscow (Russian Federation)

    2014-07-01

    We present an analysis of fission induced by intermediate energy protons or photons on actinides. The 660 MeV proton induced reactions are on {sup 241}Am, {sup 238}U, and {sup 237}Np targets and the Bremsstrahlung-photons with end-point energies at 50 MeV and 3500 MeV are on {sup 232}Th and {sup 238}U targets. The study was performed by means of the Monte Carlo simulation code CRISP. A multimodal fission extension was added to the code within an approach which accounts for the contribution of symmetric and asymmetric fission. This procedure allowed the investigation of fission cross sections, fissility, number of evaporated nucleons and fission-fragment charge distributions. The comparison with experimental data show a good agreement between calculations and experiments. (author)

  10. Study of transfer induced fission and fusion-fission reactions for 28 Si + 232 Th system at 340 MeV

    International Nuclear Information System (INIS)

    Prete, G.; Rizzi, V.; Fioretto, E.; Cinausero, M.; Shetty, D.V.; Pesente, S.; Brondi, A.; La Rana, G.; Moro, R.; Vardaci, E.; Boiano, A.; Ordine, A.; Gelli, N.; Lucarelli, F.; Bortignon, P.F.; Saxena, A.; Nayak, B.K.; Biswas, D.C.; Choudhury, R.K.; Kapoor, R.S.

    2001-01-01

    Full text: Fission induced by nucleons transfer has been investigated in the reaction 28 Si + 232 Th at 340 MeV. Looking at the projectile-like-fragments (PLF), the fission yield increases as the transfer increases, but a decreases is observed for transfers with DZ . Light charged particles in coincidence with PLF and Fission have been detected with large solid angle and show an increasing multiplicity as the Z of PLF is reduced and a constant value when fission is requested. The present results indicate inhibition of transfer induced fission reaction for higher Z transfer and increasing probability for decay through charged particle evaporation. Fission is the dominant decay process in heavy reactions involving fissile systems but the dynamical evolution of the composite system is largely governed by the formation and decay mechanisms. Important insight into the formation and the survival probability of the heavy composite nuclei formed in heavy ion collisions can be gained by simultaneously investigate the fission process and light particle emission over a continuous range of excitation energy, angular momentum and fissility. This can be achieved by studying fission induced by transfer of nucleons between the interacting projectile and the target nucleus. In the present work, we have carried out measurements on multinucleon transfer induced fission reactions in 28 Si + 232 Th system at Elab = 340 MeV. The experiment has been performed at the Laboratori Nazionale di Legnaro (LNL) using the 8pLP detector in its final configuration with 257 DE-E telescopes. The backward detectors were used to measure both light charged particles and fission fragments. The projectile-like fragments were detected using separate DE-E telescopes around the grazing angle. Two neutron detectors were placed at a distance of 115.5 cm from the target to measure neutrons emitted in coincidence with fission fragments. Here we present the results of the data analysis of transfer induced fission

  11. 14. International workshop on nuclear fission physics. Proceedings

    International Nuclear Information System (INIS)

    2000-01-01

    The meetings on nuclear fission took place 12-15 October 1998 and was organized by Institute of Physics and Power Engineering. The aim of the workshop was to present and discuss main new both theoretical and experimental results obtained in the area of nuclear fission, dynamical feature, properties of fission fragments and complementary radiation. As usual the program of the workshop was designed to cover a wide range of physical phenomena - from low energy and spontaneous fission to fission of hot rotating nuclei and multifragmentation at intermediate and high energies. Reaction induced by slow and fast neutron, light and heavy ions were discussed [ru

  12. Statistical and dynamical aspects in fission process: The rotational ...

    Indian Academy of Sciences (India)

    the fission process, during the evolution from compound nucleus to the ..... For fission induced by light particles like n, p, and α, the total angular momenta ... 96 MeV. 16O+232Th. SaddleTSM. 72 MeV. 10B+232Th. 1.2. 1.4. 1.6. 1.8. 80 ... Systematic investigations in both light- and heavy-ion-induced fissions have shown that.

  13. Lecture 2: Equilibrium statistical treatment of angular momenta associated with collective modes in fission and heavy-ion reactions

    International Nuclear Information System (INIS)

    Moretto, L.G.

    1979-01-01

    The angular momentum effects in deep inelastic processes and fission have been studied in the limit of statistical equilibrium. The model consists of two touching liquid drop spheres. Angular momentum fractionation has been found to occur along the mass asymmetry coordinate. If neutron competition is included (i.e., in compound nucleus formation and fission), the fractionation occurs only to a slight degree, while extensive fractionation is predicted if no neutron competition occurs (i.e., in fusion--fission without compound nucleus formation). Thermal fluctuations in the angular momentum are predicted to occur due to degrees of freedom which can bear angular momentum, like wriggling, tilting, bending, and twisting. The coupling of relative motion to one of the wriggling modes, leading to fluctuations between orbital and intrinsic angular momentum, is considered first. Next the effect of the excitation of all the collective modes on the fragment spin is treated. General expressions for the first and second moments of the fragment spins are derived as a function of total angular momentum and the limiting behavior at large and small total angular momentum is examined. Furthermore, the effect of collective mode excitation on the fragment spin alignment is explored and is discussed in light of recent experiments. The relevance of the present study to the measured first and second moments of the γ-ray multiplicities as well as to sequential fission angular distributions is illustrated by applying the results of the theory to a well studied heavy ion reaction

  14. High-energy nuclear reaction mechanisms - fission, fragmentation and spallation

    International Nuclear Information System (INIS)

    Kaufman, S.B.

    1987-01-01

    Measurements of the correlations in kinetic energy, mass, charge, and angle of coincident fragments formed in high-energy nuclear reactions have helped to characterize the processes of fission, fragmentation and spallation. For example, fission or fission-like two-body breakup mechanisms result in a strong angular correlation between two heavy fragments; in addition, the momentum transfer in the reaction can be deduced from the correlation. Another example is the multiplicity of light charged particles associated with a given heavy fragment, which is a measure of the violence of the collision, thus distinguishing between central and peripheral collisions. A summary of what has been learned about these processes from such studies will be given, along with some suggestions for further experiments

  15. The nuclear fission process

    International Nuclear Information System (INIS)

    Wagemans, C.

    1991-01-01

    Fifty years after its discovery, the nuclear fission phenomenon is of recurring interest. When its fundamental physics aspects are considered, fission is viewed in a very positive way, which is reflected in the great interest generated by the meetings and large conferences organized for the 50th anniversary of its discovery. From a purely scientific and practical point of view, a new book devoted to the (low energy) nuclear fission phenomenon was highly desirable considering the tremendous amount of new results obtained since the publication of the book Nuclear Fission by Vandenbosch and Huizenga in 1973 (Academic Press). These new results could be obtained thanks to the growth of technology, which enabled the construction of powerful new neutron sources, particle and heavy ion accelerators, and very performant data-acquisition and computer systems. The re-invention of the ionization chamber, the development of large fission fragment spectrometers and sophisticated multiparameter devices, and the production of exotic isotopes also contributed significantly to an improved understanding of nuclear fission. This book is written at a level to introduce graduate students to the exciting subject of nuclear fission. The very complete list of references following each chapter also makes the book very useful for scientists, especially nuclear physicists. The book has 12 chapters covering the fission barrier and the various processes leading to fission as well as the characteristics of the various fission reaction products. In order to guarantee adequate treatment of the very specialized research fields covered, several distinguished scientists actively involved in some of these fields were invited to contribute their expertise as authors or co-authors of the different chapters

  16. Ternary fission of 184466,476X formed in U + U collisions

    International Nuclear Information System (INIS)

    Karthikraj, C.; Subramanian, S.; Selvaraj, S.

    2016-01-01

    Recently, the very rare process of nuclear ternary fission has been of great interest in nuclear dynamics. Based on the statistical theory of fission, we discuss here the ternary-fission mass distribution of 184 466,476 X formed in low-energy U + U collisions for different heavy third fragments at T = 1 and 2 MeV. The expected ternary configurations 208 Pb + 208 Pb + 50 Ca and 204 Hg + 204 Hg + 58 Cr are obtained from the ternary fission of 184 466 X at T = 2 MeV. In addition, for both the systems, various possible ternary modes are listed for different heavy third fragments. Our results clearly indicate that the favored ternary configurations have either proton and/or neutron shell closure nucleus as one of their partners. (orig.)

  17. Flavors in the Soup: An Overview of Heavy-Flavored Jet Energy Loss at CMS

    CERN Document Server

    Jung, Kurt

    2016-01-01

    Kurt E. Jung PhD, Purdue University, May 2016. Flavors in the Soup: An Overviewof Heavy-Flavored Jet Energy Loss at CMS. Major Professor: Wei Xie.The energy loss of jets in heavy-ion collisions is expected to depend on the flavorof the fragmenting parton. Thus, measurements of jet quenching as a function offlavor place powerful constraints on the thermodynamical and transport propertiesof the hot and dense medium. Measurements of the nuclear modification factorsof the heavy flavor tagged jets from charm and bottom quarks in both PbPb andpPb collisions can quantify such energy loss e↵ects. Specifically, pPb measurementsprovide crucial insights into the behavior of the cold nuclear matter e↵ect, whichis required to fully understand the hot and dense medium e↵ects on jets in PbPbcollisions. This dissertation presents the energy modification of b-jets in PbPb atppsN N = 2.76 TeV and pPb collisions at sN N = 5.02 TeV, along with the first everpmeasurements of charm jets in pPb collisions at sN N = 5.0...

  18. Fission yield calculation using toy model based on Monte Carlo simulation

    International Nuclear Information System (INIS)

    Jubaidah; Kurniadi, Rizal

    2015-01-01

    Toy model is a new approximation in predicting fission yield distribution. Toy model assumes nucleus as an elastic toy consist of marbles. The number of marbles represents the number of nucleons, A. This toy nucleus is able to imitate the real nucleus properties. In this research, the toy nucleons are only influenced by central force. A heavy toy nucleus induced by a toy nucleon will be split into two fragments. These two fission fragments are called fission yield. In this research, energy entanglement is neglected. Fission process in toy model is illustrated by two Gaussian curves intersecting each other. There are five Gaussian parameters used in this research. They are scission point of the two curves (R c ), mean of left curve (μ L ) and mean of right curve (μ R ), deviation of left curve (σ L ) and deviation of right curve (σ R ). The fission yields distribution is analyses based on Monte Carlo simulation. The result shows that variation in σ or µ can significanly move the average frequency of asymmetry fission yields. This also varies the range of fission yields distribution probability. In addition, variation in iteration coefficient only change the frequency of fission yields. Monte Carlo simulation for fission yield calculation using toy model successfully indicates the same tendency with experiment results, where average of light fission yield is in the range of 90heavy fission yield is in about 135

  19. Fission yield calculation using toy model based on Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jubaidah, E-mail: jubaidah@student.itb.ac.id [Nuclear Physics and Biophysics Division, Department of Physics, Bandung Institute of Technology. Jl. Ganesa No. 10 Bandung – West Java, Indonesia 40132 (Indonesia); Physics Department, Faculty of Mathematics and Natural Science – State University of Medan. Jl. Willem Iskandar Pasar V Medan Estate – North Sumatera, Indonesia 20221 (Indonesia); Kurniadi, Rizal, E-mail: rijalk@fi.itb.ac.id [Nuclear Physics and Biophysics Division, Department of Physics, Bandung Institute of Technology. Jl. Ganesa No. 10 Bandung – West Java, Indonesia 40132 (Indonesia)

    2015-09-30

    Toy model is a new approximation in predicting fission yield distribution. Toy model assumes nucleus as an elastic toy consist of marbles. The number of marbles represents the number of nucleons, A. This toy nucleus is able to imitate the real nucleus properties. In this research, the toy nucleons are only influenced by central force. A heavy toy nucleus induced by a toy nucleon will be split into two fragments. These two fission fragments are called fission yield. In this research, energy entanglement is neglected. Fission process in toy model is illustrated by two Gaussian curves intersecting each other. There are five Gaussian parameters used in this research. They are scission point of the two curves (R{sub c}), mean of left curve (μ{sub L}) and mean of right curve (μ{sub R}), deviation of left curve (σ{sub L}) and deviation of right curve (σ{sub R}). The fission yields distribution is analyses based on Monte Carlo simulation. The result shows that variation in σ or µ can significanly move the average frequency of asymmetry fission yields. This also varies the range of fission yields distribution probability. In addition, variation in iteration coefficient only change the frequency of fission yields. Monte Carlo simulation for fission yield calculation using toy model successfully indicates the same tendency with experiment results, where average of light fission yield is in the range of 90heavy fission yield is in about 135

  20. Fusion-fission dynamics

    International Nuclear Information System (INIS)

    Blocki, J.; Planeta, R.; Brzychczyk, J.; Grotowski, K.

    1991-04-01

    Classical dynamical calculations of the heavy ion induced fission process for the reactions 40 Ar+ 141 Pr, 20 Ne+ 165 Ho and 12 C+ 175 Lu leading to the iridium like nucleus have been performed. As a result prescission lifetimes were obtained and compared with the experimental values. The agreement between the calculated and experimental lifetimes indicates that the one-body dissipation picture is much more relevant in describing the fusion-fission dynamics than the two-body one. Somewhat bigger calculated times than the experimental ones in case of the C+Lu reaction at 16 MeV/nucleon may be a signal on the energy range applicability of the one-body dissipation model. (author)

  1. True ternary fission of 252Cf

    International Nuclear Information System (INIS)

    Vijayaraghavan, K.R.; Balasubramaniam, M.; Oertzen, W. von

    2014-01-01

    Splitting of heavy radioactive nucleus into three fragments is known as ternary fission. If the size of the fragments are almost equal it is referred to as true ternary fission. Recently, Yu. V. Pyatkov et al observed/reported the experimental observation of true ternary fission in 252 Cf. In this work, the possibilities of different true ternary fission modes of 252 Cf through potential energy surface (PES) calculations based on three cluster model (TCM) are discussed. In TCM a condition on the mass numbers of the fission fragments is implied as A 1 ≥ A 2 ≥ A 3 in order to avoid repetition of combinations. Due to this condition, the values of Z 3 vary from 0 to 36 and Z 2 vary from 16 to 51. Of the different pairs having similar (Z 2 , Z 3 ) with different potential energy, a pair possessing minimum potential energy is chosen. Thus identified favourable combinations are plotted. For the PES calculations the arrangement of the fragments is considered in the order of A 1 +A 2 +A 3 . i.e. the heavy and the lightest fragments are kept at the ends. It is seen that the deepest minimum in the PES occurs for Z 3 =2 labelled as (Z 2 ; 2) indicating He accompanied breakup as the most favourable one. Of which, the breakup with Z 2 around 46 to 48 is the least (shown by dashed (Z 1 = 50) and dotted (Z 1 = 52) lines indicating a constant Z 1 value). The other notable minima in the PES are labelled and they correspond to the (Z 2 , Z 3 ) pairs viz., (20, 20), (28, 20), (28, 28) and (32, 32). Of these four minima, the first three are associated with the magic numbers 20 and 28. For Z 3 =20, there are two minimums at (20,20) and (28,20) among them (28,20) is the lowest minimum through which the minimum-path passes, and it is the ternary decay observed by Yu. V. Pyatkov et al. The fourth minima is the most interesting due to the fact that it corresponds to true ternary fission mode with Z 2 =32, Z 3 =32 and Z 1 =34. The minimum potential energy path also goes through this true

  2. Isospin Conservation in Neutron Rich Systems of Heavy Nuclei

    Science.gov (United States)

    Jain, Ashok Kumar; Garg, Swati

    2018-05-01

    It is generally believed that isospin would diminish in its importance as we go towards heavy mass region due to isospin mixing caused by the growing Coulomb forces. However, it was realized quite early that isospin could become an important and useful quantum number for all nuclei including heavy nuclei due to neutron richness of the systems [1]. Lane and Soper [2] also showed in a theoretical calculation that isospin indeed remains quite good in heavy mass neutron rich systems. In this paper, we present isospin based calculations [3, 4] for the fission fragment distributions obtained from heavy-ion fusion fission reactions. We discuss in detail the procedure adopted to assign the isospin values and the role of neutron multiplicity data in obtaining the total fission fragment distributions. We show that the observed fragment distributions can be reproduced rather reasonably well by the calculations based on the idea of conservation of isospin. This is a direct experimental evidence of the validity of isospin in heavy nuclei, which arises largely due to the neutron-rich nature of heavy nuclei and their fragments. This result may eventually become useful for the theories of nuclear fission and also in other practical applications.

  3. Projectile fission of 238U relativistic ions in a Pb target and discovery of new fission fragments

    International Nuclear Information System (INIS)

    Bernas, M.; Donzaud, C.; Dessagne, Ph.; Miehe, Ch.; Hanelt, E.; Heinz, A.

    1994-01-01

    With the 238 U beam accelerated at relativistic energies by the heavy ion synchrotron (SIS) at GSI, fission was investigated using inverse kinematics. This geometry is well suited for analyzing fragments with the fragment separator. The fragments are identified by in flight measurements of their energy loss and time of flight signals. More than forty new isotopes have been discovered focusing on the light branch of fission products. (K.A.) 12 refs., 5 figs., 1 tab

  4. Nuclear fission: a review of experimental advances and phenomenology

    Science.gov (United States)

    Andreyev, A. N.; Nishio, K.; Schmidt, K.-H.

    2018-01-01

    In the last two decades, through technological, experimental and theoretical advances, the situation in experimental fission studies has changed dramatically. With the use of advanced production and detection techniques both much more detailed and precise information can now be obtained for the traditional regions of fission research and, crucially, new regions of nuclei have become routinely accessible for fission studies. This work first of all reviews the recent developments in experimental fission techniques, in particular the resurgence of transfer-induced fission reactions with light and heavy ions, the emerging use of inverse-kinematic approaches, both at Coulomb and relativistic energies, and of fission studies with radioactive beams. The emphasis on the fission-fragment mass and charge distributions will be made in this work, though some of the other fission observables, such as prompt neutron and γ-ray emission will also be reviewed. A particular attention will be given to the low-energy fission in the so far scarcely explored nuclei in the very neutron-deficient lead region. They recently became the focus for several complementary experimental studies, such as β-delayed fission with radioactive beams at ISOLDE(CERN), Coulex-induced fission of relativistic secondary beams at FRS(GSI), and several prompt fusion–fission studies. The synergy of these approaches allows a unique insight in the new region of asymmetric fission around {\\hspace{0pt}}180 Hg, recently discovered at ISOLDE. Recent extensive theoretical efforts in this region will also be outlined. The unprecedented high-quality data for fission fragments, completely identified in Z and A, by means of reactions in inverse kinematics at FRS(GSI) and VAMOS(GANIL) will be also reviewed. These experiments explored an extended range of mercury-to-californium elements, spanning from the neutron-deficient to neutron-rich nuclides, and covering both asymmetric, symmetric and transitional fission regions

  5. Energy dissipation in the process of ternary fission in heavy nuclear reaction

    International Nuclear Information System (INIS)

    Li Xian; Wang Chengqian; Yan Shiwei

    2015-01-01

    We studied the evolution of the collective motion, interaction potential, the total kinetic and excitation energies in ternary fissions of 197 Au + 197 Au system at 15 MeV/u, and discussed energy dissipation of this reaction. Through the comparison with energy-angle correlation data in binary fissions, we preliminarily concluded that the rst fission of ternary fission was an extreme deep-inelastic process. We further analyzed the correlation of the total kinetic energy with impact parameters in both binary and ternary reactions, and found that the total energy of binary reactions systems was lost about 150 MeV more than ternary fission with small impact parameters, and with larger impact parameters the total energy of ternary reactions were lost 300 MeV more than binary reactions. (authors)

  6. Application of pulse shape discrimination in Si detector for fission ...

    Indian Academy of Sciences (India)

    Pulse shape discrimination (PSD) with totally depleted transmission type Si surface barrier detector in reverse mount has been investigated to identify fission fragments in the presence of elastic background in heavy ion-induced fission reactions by both numerical simulation and experimental studies. The PSD method is ...

  7. Fission characteristics of Ra formed in heavy-ion induced reactions

    Indian Academy of Sciences (India)

    A Kramers-modified statistical model is used to calculate the cross-section of the evap- oration residue, fission ... where ρCN and ρsad are the level density of the compound nucleus at the ground and saddle points ... where P(K) is the probability that the system is in a given K. P(K) = T ..... time to be emitted before fission.

  8. Processus of fission at medium energy

    International Nuclear Information System (INIS)

    Delagrange, H.

    1977-01-01

    Excitation functions for the reactions 233 U, 234 U, 235 U( 4 He,xn)Pu have been measured radiochimically between 20 and 45 MeV. Neutron emission probabilities have been deduced from these measurements, for 239 Pu, 238 Pu. These results have been analysed in the framework of a statistical model; the double humped fission barrier has been taken into account explicitly and the parameters of the barrier extracted. In the case of heavy ion reactions, fission probabilities have been calculated with the help of the Bohr-Wheeler formula and compared to experimental data from other authors. Deduced fission parameters (asub(f)/asub(n), Bsub(f)) are compared to different theoretical models [fr

  9. Hyperfission - a new mode of nuclear fission

    International Nuclear Information System (INIS)

    Ion, D.B.; Ivascu, M.; Ion-Mihai, R.

    1988-02-01

    In this paper the nuclear hyperfission as a new mode of fission, possible for heavy elements with Z > 92, is investigated. The Q-systematics, hyperfissibility parameters, hyperfission barrier as well as the essential hindrance factors are presented. The hyperfission hindrance factor relative to that of fission is found to be in the interval 1.0x10 -17 - 3.4x10 -16 for the parent nuclei with Z = 92-108. (orig.)

  10. Report of fission study meeting

    International Nuclear Information System (INIS)

    1986-03-01

    This book is the report of fission Study Meeting held from September 19 to 21, 1985 in the Research Center for Nuclear Physics, Osaka University. The objective of this study meeting was to stimulate the research on nuclear physics in Japan, which began to show new development accompanying the advance of the research on heavy ion nuclear reaction, and to make this a new starting point. More than 50 participants from physical, chemical and engineering fields, who have interest in the theory and experiment related to nuclear fission, gathered, and the meeting was a success beyond expectation. The contents covered a wide range including nuclear smashing reaction as well as nuclear fission in a narrow sense. In this book, the gists of 28 papers are collected. (Kako, I.)

  11. Evidence for bimodal fission in the heaviest elements

    International Nuclear Information System (INIS)

    Hulet, E.K.; Wild, J.F.; Lougheed, R.W.

    1987-08-01

    We have measured the mass and kinetic-energy partitioning in the spontaneous fission of five heavy nuclides: 258 Fm, 259 Md, 260 Md 258 No, and 260 [104]. Each was produced by heavy-ion reactions with either 248 Cm, 249 Bk, or 254 Es targets. Energies of correlated fragments from the isotopes with millisecond half lives, 258 No and 260 [104], were measured on-line by a special rotating-wheel instrument, while the others were determined off-line after mass separation. All fissioned with mass distributions that were symmetric. Total-kinetic-energy distributions peaked near either 200 or 235 MeV. Surprisingly, because only a single Gaussian energy distribution had been observed previously in actinide fission, these energy distributions were skewed upward or downward from the peak in each case, except for 260 [104], indicating a composite of two energy distributions. We were able to fit accurately two Gaussian curves to the gross energy distributions from the four remaining nuclides. From the multiple TKE distributions and the shapes of the mass distributions, we conclude that there is a low-energy fission component with liquid-drop characteristics which is admixed with a much higher-energy component due to closed fragment shells. We now have further evidence for this conclusion from measurements of the neutron multiplicity in the spontaneous fission of 260 Md. 25 refs., 9 figs

  12. Fission cross section calculations for 209Bi target nucleus based on fission reaction models in high energy regions

    Directory of Open Access Journals (Sweden)

    Kaplan Abdullah

    2015-01-01

    Full Text Available Implementation of projects of new generation nuclear power plants requires the solving of material science and technological issues in developing of reactor materials. Melts of heavy metals (Pb, Bi and Pb-Bi due to their nuclear and thermophysical properties, are the candidate coolants for fast reactors and accelerator-driven systems (ADS. In this study, α, γ, p, n and 3He induced fission cross section calculations for 209Bi target nucleus at high-energy regions for (α,f, (γ,f, (p,f, (n,f and (3He,f reactions have been investigated using different fission reaction models. Mamdouh Table, Sierk, Rotating Liquid Drop and Fission Path models of theoretical fission barriers of TALYS 1.6 code have been used for the fission cross section calculations. The calculated results have been compared with the experimental data taken from the EXFOR database. TALYS 1.6 Sierk model calculations exhibit generally good agreement with the experimental measurements for all reactions used in this study.

  13. Dynamical limitations to heavy-ion fusion

    International Nuclear Information System (INIS)

    Back, B.B.

    1983-01-01

    In spite of the many attempts to synthesize superheavy elements in recent years, these efforts have not yet been successful. Recent improved theoretical models of heavy-ion fusion reactions suggest that the formation of super-heavy elements is hindered by the dynamics of the process. Several recent experiments lend support to these theories. The necessity of an excess radial velocity (extra push) over the Coulomb barrier in order to induce fusion is observed experimentally as predicted by the theory. So is a new reaction mechanism, called quasi-fission which tend to exhaust the part of the reaction cross section, which would otherwise lead to fusion. The present study shows that the angular distribution of fragments from quasi-fission processes are very sensitive to the occurrence of this reaction mechanism. A slight modification of one parameter in the theory demanded by the observation of quasi-fission for lighter projectiles via the angular distributions, has the consequence of posing even more-stringent limitations on heavy-ion-fusion reactions. This reduces even further the possibility for synthesizing and identifying superheavy elements in heavy-ion-fusion reactions

  14. Fission time-scale in experiments and in multiple initiation model

    Energy Technology Data Exchange (ETDEWEB)

    Karamian, S. A., E-mail: karamian@nrmail.jinr.ru [Joint Institute for Nuclear Research (Russian Federation)

    2011-12-15

    Rate of fission for highly-excited nuclei is affected by the viscose character of the systemmotion in deformation coordinates as was reported for very heavy nuclei with Z{sub C} > 90. The long time-scale of fission can be described in a model of 'fission by diffusion' that includes an assumption of the overdamped diabatic motion. The fission-to-spallation ratio at intermediate proton energy could be influenced by the viscosity, as well. Within a novel approach of the present work, the cross examination of the fission probability, time-scales, and pre-fission neutron multiplicities is resulted in the consistent interpretation of a whole set of the observables. Earlier, different aspects could be reproduced in partial simulations without careful coordination.

  15. Dynamical features of nuclear fission

    Indian Academy of Sciences (India)

    Wheeler underestimates several observables in heavy-ion-induced ... excitation energies, there may not be sufficient nuclei near the fission barrier after the .... Dissipation in nuclear dynamics in the mean-field regime accounts for the coupling of the .... barrier for different isotopes of Fr. The lines are drawn to guide the eye.

  16. Bimodal nature in low-energy fission of light actinides

    International Nuclear Information System (INIS)

    Nagame, Yuichiro; Nishinaka, Ichiro; Tsukada, Kazuaki; Ikezoe, Hiroshi; Otsuki, Tsutomu; Sueki, Keisuke; Nakahara, Hiromichi; Kudo, Hisaaki.

    1995-01-01

    To solve various problems in the mass division process of light actinoids, some experiments on the basis of bimodal fission were carried. Mass and kinetic energy distribution of Th-232 and U-238 were determined. Pa-225 (N= 134) and Pa-227 (N=136), fission nuclei, were produced by Bi-209 + 0-16 and Bi-209 + 0-18 heavy ion nucleus reactions, and the mass yield distribution were determined by the time-of-flight method and the radiochemical procedure. From the results, two independent deforming processes were proved in the fission process of light actinoid nuclei. On the deforming process through the low fission barrier, nucleus fissioned after small deformation under the influence of stabilization of the shell structure of fission product. In the case of process through the high barrier, however, the nucleus fissioned after large deformation. The unsymmetrical mass division was derived from the former and the symmetrical one from the latter. (S.Y.)

  17. Fusion-fission of heavy systems: influence of the entrance channel mass assymmetry

    International Nuclear Information System (INIS)

    Rivet, M.F.; Alami, R.; Borderie, B.; Fuchs, H.; Gardes, D.; Gauvin, H.

    1988-02-01

    The influence of the entrance channel on fission processes was studied by forming the same composite system by two different target-projectile combinations ( 40 Ar + 209 Bi and 56 Fe + 187 Re, respectively). Compound nucleus fission and quasi fission were observed and the analysis was performed in the framework of the extra-extra-push model, which provides a qualitative interpretation of the results; limits for the extra-extra-push threshold are given, but problems with quantitative predictions for the extra-push are noted

  18. Fission fragment yields from heavy-ion-induced reactions measured with a fragment separator

    Science.gov (United States)

    Tarasov, O. B.; Delaune, O.; Farget, F.; Morrissey, D. J.; Amthor, A. M.; Bastin, B.; Bazin, D.; Blank, B.; Cacéres, L.; Chbihi, A.; Fernández-Dominguez, B.; Grévy, S.; Kamalou, O.; Lukyanov, S. M.; Mittig, W.; Pereira, J.; Perrot, L.; Saint-Laurent, M.-G.; Savajols, H.; Sherrill, B. M.; Stodel, C.; Thomas, J. C.; Villari, A. C.

    2018-04-01

    The systematic study of fission fragment yields under different initial conditions has provided valuable experimental data for benchmarking models of fission product yields. Nuclear reactions using inverse kinematics coupled to the use of a high-resolution spectrometer with good fragment identification are shown here to be a powerful tool to measure the inclusive isotopic yields of fission fragments. In-flight fusion-fission was used in this work to produce secondary beams of neutron-rich isotopes in the collisions of a 238U beam at 24 MeV/u with 9Be and 12C targets at GANIL using the LISE3 fragment separator. Unique identification of the A, Z, and atomic charge state, q, of fission products was attained with the Δ E- TKE-B ρ- ToF measurement technique. Mass, and atomic number distributions are reported for the two reactions. The results show the importance of different reaction mechanisms in the two cases. The optimal target material for higher yields of neutron-rich high- Z isotopes produced in fusion-fission reactions as a function of projectile energy is discussed.

  19. System for studying a sample of material using a heavy ion induced mass spectrometer source

    Science.gov (United States)

    Fries, D.P.; Browning, J.F.

    1998-07-21

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high (n,f) reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.

  20. Method for studying a sample of material using a heavy ion induced mass spectrometer source

    Science.gov (United States)

    Fries, D.P.; Browning, J.F.

    1999-02-16

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.

  1. A new prompt heavy-ion-induced fission mode

    Indian Academy of Sciences (India)

    finement of nuclear systems, methods which are still sometimes used in ... Another type of essentially binary nuclear disintegration of projectile-like fragment ... While the field of nuclear fission research still has a range of questions to investigate, it .... momentum, qualitative to semiquantitative expectations can be formulated ...

  2. Heavy cluster in cold nuclear rearrangements in fusion and fission

    International Nuclear Information System (INIS)

    Armbruster, P.

    1997-01-01

    The experimental evidence for the appearance of cluster aspects in the dynamics of large rearrangements processes, as fusion and fission, is presented. Clusters in the sense as used in the following are strongly bound, doubly magic neutron rich nuclei as 48 Ca 28 , 78 Ni 50 , 132 Sn 82 , and 208 Pb 126 , the spherical nuclei Z=114 - 126 and N=184, and nuclei with closed shells N=28, 50, 82, and 126, and Z=28, 50, and 82. As with increasing nucleon numbers, the absolute shell corrections to the binding energies increase, the strongest effects are to be observed for the higher shells. The 132 cluster manifests itself in low energy fission (Faissner, H. and Wildermuth, K. Nucl. Phys., 58 (1964) 177). The 208 Pb cluster gave the new radioactivity (Rose, M.J. and Jones G.A., Nature, 307 (1984) 245) and the first superheavy elements (SHE) (Armbruster P., Ann. Rev. Nucl. Part. Sci., 35 (1985) 135-94; Munzenberg, G. Rep. Progr. Phys., 51 (1988) 57). The paper discuss experiments concerning the stability of clusters to intrinsic excitation energy in fusion and fission (Armbruster, P. Lect. Notes Phys., 158 (1982) 1). and the manifestation of clusters in the fusion entrance channel (Armbruster, P., J. Phys. Soc. Jpn., 58 (1989) 232). The importance of compactness of the clustering system seems to be equally decisive in fission and fusion. Finally, it s covered the importance of clusters for the production of SHEs)

  3. A large area position-sensitive ionization chamber for heavy-ion-induced reaction studies

    CERN Document Server

    Pant, L M; Dinesh, B V; Thomas, R G; Saxena, A; Sawant, Y S; Choudhury, R K

    2002-01-01

    A large area position-sensitive ionization chamber with a wide dynamic range has been developed to measure the mass, charge and energy of the heavy ions and the fission fragments produced in heavy-ion-induced reactions. The split anode geometry of the detector makes it suitable for both particle identification and energy measurements for heavy ions and fission fragments. The detector has been tested with alpha particles from sup 2 sup 4 sup 1 Am- sup 2 sup 3 sup 9 Pu source, fission fragments from sup 2 sup 5 sup 2 Cf and the heavy-ion beams from the 14UD Mumbai Pelletron accelerator facility. Using this detector, measurements on mass and total kinetic energy distributions in heavy-ion-induced fusion-fission reactions have been carried out for a wide range of excitation energies. Results on deep inelastic collisions and mass-energy correlations on different systems using this detector setup are discussed.

  4. Gamma-ray multiplicities in sub-barrier fission of 226Th

    International Nuclear Information System (INIS)

    Chubaryan, G.G.; Hurst, B.J.; O'Kelly, D.J.

    1998-01-01

    The γ rays from the multimodal fission of the 226 Th formed in 18 O + 208 Pb were investigated at the sub-barrier energies. The corresponding excitation energies at the saddle point, E sp * , ranged from 16.4 to 19.2 MeV. The average γ-ray multiplicities and relative γ-ray energies as a function of the mass of the fission fragments exhibit a complex structure and strong variations. Such strong variations have never been previously observed in heavy ion-induced fusion-fission reactions. Obtained results may be explained with the influence of shell effects on the properties of the fission fragments. The present work is one in series of investigations of the multimodal fission phenomena in At-Th region

  5. Influence of primary fragment excitation energy and spin distributions on fission observables

    Science.gov (United States)

    Litaize, Olivier; Thulliez, Loïc; Serot, Olivier; Chebboubi, Abdelaziz; Tamagno, Pierre

    2018-03-01

    Fission observables in the case of 252Cf(sf) are investigated by exploring several models involved in the excitation energy sharing and spin-parity assignment between primary fission fragments. In a first step the parameters used in the FIFRELIN Monte Carlo code "reference route" are presented: two parameters for the mass dependent temperature ratio law and two constant spin cut-off parameters for light and heavy fragment groups respectively. These parameters determine the initial fragment entry zone in excitation energy and spin-parity (E*, Jπ). They are chosen to reproduce the light and heavy average prompt neutron multiplicities. When these target observables are achieved all other fission observables can be predicted. We show here the influence of input parameters on the saw-tooth curve and we discuss the influence of a mass and energy-dependent spin cut-off model on gamma-rays related fission observables. The part of the model involving level densities, neutron transmission coefficients or photon strength functions remains unchanged.

  6. Charge degree of freedom as a sensitive probe for fission mechanism

    International Nuclear Information System (INIS)

    Yokoyama, A.; Baba, H.; Takahashi, N.; Duh, M.C.; Saito, T.

    1997-01-01

    The role of the charge degree of freedom in the heavy-ion-induced fission was investigated by carrying out a systematic analysis of radiochemically observed charge distribution in the fission of 238 U with 12 C ions of the incident energy between 85 and 140 MeV, particularly in connection with the energy given to the compound system. The charge distribution was found to follow essentially identical systematics as those which govern the light-ion fission except for the extremely weak energy dependence of the most probable charge Z p . That is, values of the derivative of Z p with respect to the energy were found to be quite small, or nearly zero, in the heavy-ion fission as compared to those of the light-ion fission. According to an analysis combining the derivatives of Z p and fission neutron data, it was deduced that the excess energy given to the fused system was spent completely in the form of pre-scission neutrons and hence the number of post-scission neutrons remained constant as in the case of light-ion fission. The observed charge distribution was reproduced under the conditions that the relaxation of the charge degree of freedom be very fast and that the separation between the two potential fragments at the moment when the charge degree of freedom has been frozen is determined by using Viola's systematics on the fragment kinetic energy. (author)

  7. Theoretical Description of the Fission Process

    International Nuclear Information System (INIS)

    Nazarewicz, Witold

    2009-01-01

    Advanced theoretical methods and high-performance computers may finally unlock the secrets of nuclear fission, a fundamental nuclear decay that is of great relevance to society. In this work, we studied the phenomenon of spontaneous fission using the symmetry-unrestricted nuclear density functional theory (DFT). Our results show that many observed properties of fissioning nuclei can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. From the calculated collective potential and collective mass, we estimated spontaneous fission half-lives, and good agreement with experimental data was found. We also predicted a new phenomenon of trimodal spontaneous fission for some transfermium isotopes. Our calculations demonstrate that fission barriers of excited superheavy nuclei vary rapidly with particle number, pointing to the importance of shell effects even at large excitation energies. The results are consistent with recent experiments where superheavy elements were created by bombarding an actinide target with 48-calcium; yet even at high excitation energies, sizable fission barriers remained. Not only does this reveal clues about the conditions for creating new elements, it also provides a wider context for understanding other types of fission. Understanding of the fission process is crucial for many areas of science and technology. Fission governs existence of many transuranium elements, including the predicted long-lived superheavy species. In nuclear astrophysics, fission influences the formation of heavy elements on the final stages of the r-process in a very high neutron density environment. Fission applications are numerous. Improved understanding of the fission process will enable scientists to enhance the safety and reliability of the nation's nuclear stockpile and nuclear reactors. The deployment of a fleet of safe and efficient advanced reactors, which will also minimize radiotoxic

  8. Tunneling process in heavy-ion fusion and fission

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kondratyev, V.; Bonasera, A.

    1998-10-01

    We present a model towards the many-body description of sub-barrier fusion and spontaneous fission based on the semiclassical Vlasov equation and the Feynman path integral method. We define suitable collective variables from the Vlasov solution and use the imaginary time technique for the dynamics below the Coulomb barrier. (author)

  9. Determination of fission product and heavy metals inventories in FTE-4 fuel rods by a grind-burn-leach flowsheet

    International Nuclear Information System (INIS)

    Fitzgerald, C.L.; Vaughen, V.C.A.; Lamb, C.E.

    1977-07-01

    Experiments using High-Temperature Gas-Cooled Reactor (HTGR) fuel material, TRISO-coated (2.75 Th/U)C 2 --TRISO-coated ThC 2 and TRISO-coated UO 2 --BISO-coated ThO 2 , were performed in Building 4507 (the High-Level Chemical Development Facility) to determine the inventory and transport behavior of fission products and heavy metals from a grind-burn-leach process flowsheet. In addition, values calculated by the ORNL Isotope Generation and Depletion Code (ORIGEN, a computer program used for predicting quantities of activation products, actinides, and fission products from irradiation data and nuclear data libraries) are compared with values derived by chemical analyses (CA) and those measured by a gamma-scan nondestructive analytical (NDA) technique. Reasonable agreement was obtained between ORIGEN and NDA results for one of the tests, but the values obtained by chemical analysis were lower than either of the two other sets of values. With the exception of 234 U, isotopic uranium values determined by chemical analysis (mass spectrometry) agreed within 15 percent of the ORIGEN prediction

  10. Systematical calculations on the ground state properties of heavy and superheavy nuclei

    International Nuclear Information System (INIS)

    Ren, Z.Z.; Center of Theoretical Nuclear Physics, Lanzhou; Mao, Y.C.; Zhi, Q.J.; Xu, C.; Dong, T.K.

    2007-01-01

    The synthesis of superheavy elements is now a hot topic in nuclear physics. Alpha-decay and spontaneous fission are two main decay modes in heavy and superheavy regions. Theoretical studies on alpha radioactivity and spontaneous fission can provide useful information for experiments. We investigate the alpha-decay and spontaneous fission of heavy and superheavy nuclei with different models. This includes the alpha-decay energies, alpha decay half-lives, and half-lives of spontaneous fission. The theoretical alpha-decay half-lives are in good agreement with experimental ones. The calculated half-lives of spontaneous fission are in reasonable agreement with present data. The properties of unknown nuclei are predicted. (author)

  11. Description of light charged particle emission in ternary fission

    International Nuclear Information System (INIS)

    Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.; Kuklin, S. N.; Scheid, W.

    2010-01-01

    We consider the motion of three fragments starting from the scission point of ternary system. In the alpha-accompanied ternary fission the initial conditions are not the free parameters and determined by minimization of potential energy at scission point. In the trajectory calculations the angular distribution and mean value of the kinetic energy of the alpha-particles are well described in the spontaneous ternary fission of 252 Cf. In the Be- and C-accompanied ternary fission we found that the emission of the third particle occurs from one of the heavy fragments after their separation. (authors)

  12. Nuclear fission with inertial confinement

    CERN Document Server

    Koshkarev, D G

    2002-01-01

    The possibility of initiating the explosive fission reaction in a small quantity of fissile material through the heavy ions beam from the powerful accelerator-driver, developed for realization of the thermonuclear synthesis in the deuterium-tritium cylindrical targets with the direct ignition, is considered. The consequences of applying this method in the nuclear engineering are discussed

  13. Spontaneous fission of 259Md

    International Nuclear Information System (INIS)

    Hulet, E.K.; Wild, J.F.; Lougheed, R.W.; Baisden, P.A.; Landrum, J.H.; Dougan, R.J.; Mustafa, M.; Ghiorso, A.; Nitschke, J.M.

    1979-01-01

    The mass and kinetic energy distributions of fission fragments from the spontaneous fission of th newly discovered nuclide 259 Md were obtained. 259 Md was identified as the E. C. daughter of 259 No, and was found to decay entirely (> 95%) by spontaneous fission with a 95-min half-life. From the kinetic energies measured for 397 pairs of coincident fragments, a mass distribution was derived that is symmetric with sigma = 13 amu. 259 Md, together with 258 Fm and 259 Fm, form a select group of three nuclides whose mass division in spontaneous fission is highly symmetric. Unlike the total-kinetic-energy (TKE) distributions of 258 Fm and 259 Fm, which peak at approx. = to 240 MeV, this distribution for 259 Md is broad and is 50 MeV lower in energy. Analysis of the mass and energy distributions shows that events near mass symmetry also exhibit a broad TKE distribution, with one-third of the symmetric events having TKEs less than 200 MeV. The associated of low TKEs with symmetric mass division in the fission of very heavy actinides is anomalous and inconsistent with theories based upon the emergence of fragment shells near the scission point. Either three-body fragmentation or peculiar fragment shapes are assumed as the cause for the large consumption of Coulomb energy observed for a significant fraction of symmetric fissions in 259 Md. 6 figures

  14. Further microscopic studies of the fission barriers of heavy nuclei

    International Nuclear Information System (INIS)

    Nhan Hao, T.V.; Le Bloas, J.; Bonneau, L.; Quentin, P.; Koh, Meng-Hock

    2012-01-01

    Two systematic sources of error in most current microscopic evaluations of fission-barrier heights are studied. They are concerned with an approximate treatment of the Coulomb exchange terms (known as the Slater approximation) in the self-consistent mean-fields and the projection on good parity states (e.g., of positive parity for the spontaneous fission of an even–even nucleus) of left–right reflection asymmetric intrinsic solutions (e.g., around the second barrier). Approximate or unprojected solutions are shown to lead each to an underestimation of the barrier heights by a few hundred keV. (author)

  15. Determination of fission gas yields from isotope ratios

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg

    1983-01-01

    This paper describes a method of calculating the actual fission yield of Kr and Xe in nuclear fuel including the effect of neutron capture reactions and decay. The bases for this calculation are the cumulative yields (ref. 1) of Kr and Xe isotopes (or pairs of isotopes) which are unaffected...... by neutron capture reactions, and measured Kr and Xe isotope ratios. Also the burnup contribution from the different fissile heavy isotopes must be known in order to get accurate fission gas yields....

  16. Fission product detection by means of photovoltaic cells

    International Nuclear Information System (INIS)

    Liatard, E.; Akrouf, S.; Bruandet, J.F.; Fontenille, A.; Glasser, F.; Stassi, P.; Tsan Ung Chan

    1988-01-01

    The response of photovoltaic cells to heavy ions and fission products have been tested in-beam. Their main advantages are their extremely low price, their low sensitivity to energetic light ions with respect to fission products, and the possibility to cut and fit them together to any shape without dead zone. The time output signals of a charge sensitive preamplifier connected to these cells allows fast coincidences. A resolution of 12 ns (FWHM) has been measured between two cells. (orig.)

  17. Nuclear structure effects in multi-nucleon transfer and sequential fission reactions

    International Nuclear Information System (INIS)

    Biswas, D.C.

    2001-01-01

    The role of the nuclear structure in multi-nucleon transfer and sequential fission reactions has been discussed. The recent results on multi-nucleon transfer and transfer induced fission reaction, have brought out many interesting features in understanding the reaction mechanism and collective dynamics of heavy ion reactions. The structure of the projectile nucleus has strong influence on the transfer of multi-nucleons and/or clusters from the projectile to the target. The mechanism of multi-nucleon transfer between two heavy nuclei is a complex process which has a strong dependence on the ground state Q-value of the reaction as well as on the number of transferred nucleons

  18. Study of α-particle multiplicity in 16O+196Pt fusion-fission reaction

    International Nuclear Information System (INIS)

    Kapoor, K.; Kumar, A.; Bansal, N.

    2016-01-01

    Study of dynamics of fusion-fission reaction is one of the interesting parts of heavy-ion-induced nuclear reaction. Extraction of fission time scales using different probes is of central importance for understanding the dynamics of fusion-fission process. In the past, extensive theoretical and experimental efforts have been made to understand the various aspects of the heavy ion induced fusion-fission reactions. Compelling evidences have been obtained from the earlier studies that the fission decay of hot nuclei is protracted process i.e. slowed down relative to the expectations of the standard statistical model, and large dynamical delays are required due to this hindrance. Nuclear dissipation is assumed to be responsible for this delay and more light particles are expected to be emitted during the fission process. One of neutron multiplicity measurements have been performed for the 16,18 O+ 194,198 Pt populating the CN 210,212,214,216 Rn and observed fission delay due to nuclear viscosity. In order to have complete understanding for the dynamics of 212 Rn nucleus, we measured the charged particle multiplicity for 16 O+ 196 Pt system. Study of charged particles will give us more information about the emitter in comparison to neutrons as charged particles faces Coulomb barrier and are more sensitive probe for understanding the dynamics of fusion-fission reactions. In the present work, we are reporting some of the preliminary results of charged particle multiplicity

  19. Yields of products from thermal-neutron induced fission of 235U

    International Nuclear Information System (INIS)

    Rudstam, G.; Aagaard, P.; Zwicky, H.U.

    1985-01-01

    Methods for fission yield determinations at an ISOL-system connected to a nuclear reactor have been developed. The present report contains detailed descriptions both of the experimental techniques and of the method used to correct the experimental yields for the decay of short-lived nuclear species in the delay between production and measurement. The methods have been applied to the determination of the fission yields of 40 fission products including 2 isometric pairs in the light mass region and those of 99 fission products including 25 isometric pairs or triplets in the heavy mass region. For 64 cases this is the first determination published. (author)

  20. Influence of angular momentum on fission fragment mass distribution: Interpretation within Langevin dynamics

    International Nuclear Information System (INIS)

    Ryabov, E.G.; Karpov, A.V.; Adeev, G.D.

    2006-01-01

    Dependence of fission fragments mass distribution on the angular momentum within Langevin dynamics is studied. The calculations are performed in the framework of the rotating temperature-dependent finite-range liquid drop model. The calculations are done for the five nuclei, representing heavy fissioning nuclei, medium fissioning nuclei and light fissioning one with the angular momentum varied in the wide range from l=0 to l=70-bar . The dependence coefficients dσ M 2 /dl 2 for the investigated nuclei are extracted. The comparison of the extracted values with the experimental data reveals a good agreement for all the cases (the heavy, medium, and light fissioning nuclei). It is found out that the obtained dependence of σ M 2 on l can be explained with the help of temperature at scission as a function of l. The latter dependence is determined by dependence of the mean prescission neutron multiplicity on l. The analysis of this dependence is done as a competition between fission process and neutron evaporation. 'Remembering of the former large fluctuations of mass asymmetry coordinate during descent from the saddle to scission' is considered. It is shown that the 'remembering effect' takes place, but does not play a crucial role for the investigated dependence of σ M 2 on l

  1. Kinetic-energy distribution for symmetric fission of 236U

    International Nuclear Information System (INIS)

    Brissot, R.; Bocquet, J.P.; Ristori, C.; Crancon, J.; Guet, C.R.; Nifenecker, H.A.; Montoya, M.

    1980-01-01

    Fission fragment kinetic-energy distributions have been measured at the Grenoble high-flux reactor with the Lohengrin facility. Spurious events were eliminated in the symmetric region by a coherence test based on a time-of-flight measurement of fragment velocities. A Monte-Carlo calculation is then performed to correct the experimental data for neutron evaporation. The difference between the most probable kinetic energy in symmetric fission and the fission in which the heavy fragment is 'magic' (Zsub(H)=50) is found to be approximately =30 MeV. The results suggest that for the symmetric case the total excitation energy available at scission is shared equally among the fragments. (author)

  2. Fission barriers in the quasi-molecular shape path

    International Nuclear Information System (INIS)

    Royer, G.; Bonilla, C.; Zbiri, K.; Gherghescu, R.A.

    2003-01-01

    New observed phenomena like asymmetric fission of intermediate mass nuclei, nuclear molecules in light nuclei, super and hyperdeformations, cluster radioactivity, fast-fission of heavy systems and fragmentation have renewed interest in investigating the fusion-like fission valley which leads rapidly to two touching spherical fragments and quasi-molecular shapes. Furthermore, rotating super and hyperdeformed nuclear states and superheavy nuclei can be formed only in heavy-ion collisions for which the initial configuration is two close quasi-spherical nuclei. For these shapes the balance between the Coulomb forces and surface tension forces does not allow to link the sheets of the potential energy surface corresponding to one-body shapes and to two separated fragments, respectively. It is necessary to add another term called proximity energy reproducing the finite-range effects of the nuclear force in the neck or the gap between the nascent fission fragments. A generalized liquid drop model has been developed to take into account this nuclear proximity energy, the mass and charge asymmetry, an accurate nuclear radius and the temperature effects. The initial value of the surface energy coefficient has been kept. Microscopic corrections have been determined within the asymmetric two center shell model or simpler algebraic approximations. With this model and deformation valley first studies had led to the following results: (i) good agreement between the potential barrier heights and the experimental fission barrier heights in the whole mass range; (ii) saddle-point corresponding to two separated fragments maintained in unstable equilibrium by the balance between the repulsive Coulomb forces and the attractive proximity forces; (iii) strong enhancement of the maximal angular momentum against fission; (iv) reasonable agreement with experimental data on the double-humped barriers of actinides. Within this same approach we have recently shown that the calculated potential

  3. GROGi-F. Modified version of GROGi 2 nuclear evaporation computer code including fission decay channel

    International Nuclear Information System (INIS)

    Delagrange, H.

    1977-01-01

    This report is the user manual of the GR0GI-F code, modified version of the GR0GI-2 code. It calculates the cross sections for heavy ion induced fission. Fission probabilities are calculated via the Bohr-Wheeler formalism

  4. Compact time-zero detector for heavy ions

    International Nuclear Information System (INIS)

    Weissenberger, E.; Kast, W.; Goennenwein, F.

    1979-01-01

    A time-zero detector for flight-time measurements with heavy ions is described. The ions traverse a thin foil and the secondary electrons splashed from the foil are detected in a channel plate multiplier. A timing signal is derived from the multiplier pulse. The novel features of the detector are its simplicity and compactness of design. The time resolution achieved for the full energy and mass span of fission fragments from the spontaneous fission of 252 Cf used as a heavy ion source is 115 ps (fwhm). (Auth.)

  5. A new technique to measure fission-product diffusion coefficients in UO2 fuel

    International Nuclear Information System (INIS)

    Hocking, W.H.; Verrall, R.A.; Bushby, S.J.

    1999-01-01

    This paper describes a new out-reactor technique for the measurement of fission-product diffusion rates in UO 2 . The technique accurately simulates in-reactor fission-fragment effects: a thermal diffusion that is due to localized mixing in the fission track, radiation-enhanced diffusion that is due to point-defect creation by fission fragments, and bubble resolution. The technique utilizes heavy-ion accelerators - low energy (40 keV to 1 MeV) for fission-product implantation, high energy (72 MeV) to create fission-fragment damage effects, and secondary ion mass spectrometry (SIMS) for measuring the depth profile of the implanted species. Preliminary results are presented from annealing tests (not in the 72 MeV ion flux) at 1465 deg. C and 1650 deg. C at low and high concentrations of fission products. (author)

  6. Characteristics of diallyl phthalate resin as a fission track detector

    CERN Document Server

    Tsuruta, T

    1999-01-01

    Diallyl phthalate (DAP) resin plates were irradiated with fission fragments, and then etched in aqueous solution of KOH. Etched tracks were observed and counted by using an optical microscope. The detection efficiency of fission fragments was about 100% for both perpendicular and random incidence. DAP plates were insensitive to alpha particles and fast neutrons. These characteristics are suitable for detecting selected fission fragments, which coexist with alpha particles or fast neutrons. DAP plates are valuable for quantitative analysis of fissionable materials and neutron dosimetry. DAP and allyl diglycol carbonate (CR-39) were formed into copolymers in various ratios. The copolymers showed intermediate characteristics between DAP and CR-39. The fabrication of the copolymers made it possible to control the discrimination level for detection of heavy charged particles.

  7. Fission observables from 4D Langevin calculations with macroscopic transport coefficients

    Directory of Open Access Journals (Sweden)

    Usang Mark D.

    2018-01-01

    Full Text Available We have extended the Langevin equations to 4 dimensions (4D by allowing the independent deformation for the left (δ1 and right fragments (δ2 of the fissioning nucleus. At the moment we are only able to use them in conjunction with the macroscopic transport coefficients. Nevertheless, we can see a considerable improvement in the preliminary results for the fission observables, especially those related to the total kinetic energy (TKE of fission fragments. By plotting the TKE distributions we have revealed the super-long fission modes in 236U and super-short fission modes in 257Fm. By plotting the distribution of δ against the fragment’s TKE we have noted a correlation between the values of δ and Brosa’s fission modes. We have found that the standard fission modes correspond to prolate tips of the light fragments while the complementary heavy fragments have oblate fission tips. On the other hand, if both fragments were prolate at the tips, we get super-long fission modes. If both fragments were oblate at the tips, we get super-short fission modes.

  8. Fusion-Fission like studies from medium heavy to light compound systems

    International Nuclear Information System (INIS)

    Heusch, B.

    1991-01-01

    It has been shown that for systems as light as A CN = 47 up to systems just above the Businaro Gallone point in the mass region of 100 to 110 the probability for a system to deexcite by the fission channel, is not negligible. As predicted, the asymmetrical separation becomes dominant when the A CN mass is decreasing but the symmetrical mode remains measurable. The ambiguities in the measured outgoing fragment distributions arise from the competition with IMF emissions as well as dynamical fission processes which depend strongly on the studied system. Fully relaxed DIC has also be used to interpret the results. I tried to show that precise checks on the behavior of two neighbouring systems as well as search for entrance channel effect and/or energy dependence bring evidence enough that the deexcitation of the compound nucleus can account for the symmetric and asymmetric fission channels as well as IMF emissions. This is strongly supported by different recent calculations all done in this frame. These all conclusions indicate also that the RLDM fails in the data interpretation. The strength of the fission channel depends strongly on the possibilities a system has to deexcite. For very light systems especially the number of open channels available determines directly the flux repartition between direct or compound processes and therefore very large differences in the general behaviour of two neighbouring systems can be observed. 15 figs

  9. Yields of fission products produced by thermal-neutron fission of 245Cm

    International Nuclear Information System (INIS)

    Dickens, J.K.; McConnell, J.W.

    1981-01-01

    Absolute yields have been determined for 105 gamma rays emitted in the decay of 95 fission products representing 54 mass chains created during thermal-neutron fission of 245 Cm. These results include 17 mass chains for which no prior yield data exist. Using a Ge(Li) detector, spectra were obtained of gamma rays between 30 sec and 0.3 yr after very short irradiations of thermal neutrons on a 1 μg sample of 245 Cm. On the basis of measured gamma-ray yields and known nuclear data, total chain mass yields and relative uncertainties were obtained for 51 masses between 84 and 156. The absolute overall normalization uncertainty is 239 Pu and for 252 Cf(s.f.); the influences of the closed shells Z=50, N=82 are not as marked as for thermal-neutron fission of 239 Pu but much more apparent than for 252 Cf(s.f.). Information on the charge distribution along several isobaric mass chains was obtained by determining fractional yields for 12 fission products. The charge distribution width parameter, based upon data for the heavy masses, A=128 to 140, is independent of mass to within the uncertainties of the measurements. Gamma-ray assignments were made for decay of short-lived fission products for which absolute gamma-ray transition probabilities are either not known or in doubt. Absolute gamma-ray transition probabilities were determined as (51 +- 8)% for the 374-keV gamma ray from decay of 110 Rh, (35 +- 7)% for the 1096-keV gamma ray from decay of 133 Sb, and (21.2 +- 1.2)% for the 255-keV gamma ray from decay of 142 Ba

  10. Alpha and gamma spectroscopy of fission isomers

    International Nuclear Information System (INIS)

    Makarenko, V.E.

    1988-01-01

    The attempts to discover in the experiment decay of fission isomers of heavy nuclei in the U-Am range by emitting α particles or γ quanta are considered. Some facilities for searching αdecay of spontaneously fissile isomers are given in brief. The first experimental results are discussed

  11. Challenging fission dynamics around the barrier: The case of {sup 34}S + {sup 186}W

    Energy Technology Data Exchange (ETDEWEB)

    Kozulin, E.M.; Itkis, I.; Knyazheva, G.; Novikov, K.; Bogachev, A.; Dmitriev, S.; Loktev, T. [Joint Institute for Nuclear Research, Flerov Laboratory of Nuclear Reactions, Dubna (Russian Federation); Vardaci, E. [Dipartamento di Scienze Fisiche, Napoli (Italy); INFN, Napoli (Italy); Harca, I.M. [Joint Institute for Nuclear Research, Flerov Laboratory of Nuclear Reactions, Dubna (Russian Federation); Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Bucharest - Magurele (Romania); Universitatea din Bucuresti, Facultatea de Fizica, Bucharest (Romania); Schmitt, C.; Piot, J. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, Caen (France); Azaiez, F.; Matea, I.; Verney, D.; Gottardo, A. [Universite Paris-Saclay, IPN, CNRS/IN2P3, Orsay (France); Dorvaux, O. [Universite de Strasbourg, IPHC, CNRS/IN2P3, Strasbourg (France); Chubarian, G. [Texas A and M University, Cyclotron Institute, College Station, TX (United States); Trzaska, W.H. [Accelerator Laboratory of University of Jyvaskyla (JYFL), Jyvaskyla (Finland); Hanappe, F. [Universite Libre de Bruxelles (ULB), Bruxelles (Belgium); Borcea, C.; Calinescu, S.; Petrone, C. [Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Bucharest - Magurele (Romania)

    2016-09-15

    The current status of fission dynamics studies in heavy-ion collisions around the Coulomb barrier is illustrated with the {sup 34}S + {sup 186}W reaction. The fission-fragment mass and total kinetic energy were measured at the ALTO facility at IPN Orsay, France, with a dedicated set-up using the (v, E) approach. The measurement reveals the presence of an asymmetric fission component on top of a predominantly symmetric distribution. The asymmetric structure, pointed out for the first time, is discussed along with results of previous experiments studying the same reaction. While these analyses suggested the contribution from either quasi-fission or pre-equilibrium fission, we offer an alternative interpretation, in terms of shell-driven compound-nucleus fission. The present measurement demonstrates the critical influence of resolution when addressing puzzling cases, situated at the crossroads of the various channels opened in a heavy-ion collision. Current status in the field clearly calls for innovative measurements involving manifold correlations and new observables. The outcome of the attempt done in this work in this direction, based on the coincident measurement of prompt γ-rays is reported, and encouraging perspectives are discussed. (orig.)

  12. Fission neutrons experiments, evaluation, modeling and open problems

    CERN Document Server

    Kornilov, Nikolay

    2014-01-01

    Although the fission of heavy nuclei was discovered over 75 years ago, many problems and questions still remain to be addressed and answered. The reader will be presented with an old, but persistent problem of this field: The contradiction between Prompt Fission Neutron (PFN) spectra measured with differential (microscopic) experiments and integral (macroscopic and benchmark) experiments (the Micro-Macro problem). The difference in average energy is rather small ~3% but it is stable and we cannot explain the difference due to experimental uncertainties. Can we measure the PFN spectrum with hig

  13. Nuclear isomerism in fission fragments produced by the spontaneous fission of {sup 252}Cf; Isomerisme nucleaire dans les fragments de fission produits dans la fission spontanee du {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Gautherin, C

    1997-09-01

    This thesis is devoted to the study of the nuclear structure of neutron-rich nuclei, via the search of isomeric nuclear states. Neutron-rich nuclei were produced in the spontaneous fission of {sup 252}Cf. The experimental study of isomeric states in these nuclei was performed with the {gamma}-array EUROGAM II, coupled to an additional and original fission fragment detector composed by photovoltaic cells, SAPhIR. The photovoltaic cells are well adapted to detect low energy heavy ions and have good energy and time resolutions to obtain a good fission fragment detection. This experiment led to the discovery of new isomeric states in {sup 135}Xe, {sup 104}Mo, {sup 146,147,148}Ce and {sup 152,154,156}Nd, with lifetimes between 60 ns and 2 {mu}s. Level schemes of these nuclei have been completed. An interpretation of the isomeric states in the nuclei {sup 154,156}Nd and {sup 156,158}Sm was performed by Hartree-Fock-Bogolyubov calculations using the DIS Gogny force with two quasi-particles excitations. The confrontation with the experimental results led to an interpretation of these isomeric states as K-isomers. (author)

  14. Revisiting the even-odd staggering in fission-fragment yields

    International Nuclear Information System (INIS)

    Caamano, M.; Rejmund, F.; Schmidt, K. H.

    2010-01-01

    The even-odd staggering observed in the experimental fission-fragment nuclear-charge yields is investigated over a wide systematics of fission fragments measured at Lohengrin in direct kinematics and at GSI in inverse kinematics. The general increase of the even-odd staggering in the fission-fragment charge yields towards asymmetric charge splits is explained by the absorption of the unpaired nucleons by the heavy fragment. As a consequence, the well established trend of even-odd staggering in the fission fragment charge yields to decrease with the fissility is attributed in part to the asymmetry evolution of the charge distribution. This interpretation is strongly supported by the data measured at GSI, which cover the complete charge distribution and include precise yields at symmetry. They reveal that the even-odd effect around symmetry remains constant over a large range of fissility. (authors)

  15. Status of the general description of fission observables by the GEF code

    CERN Document Server

    Jurado, B

    2014-01-01

    The GEneral Fission (GEF) model treats spontaneous fission and fission up to an excitation energy of about 100 MeV of a wide range of heavy nuclei. GEF makes use of general laws of statistical and quantum mechanics, assuring a high predictive power. It is unique in providing a general description of essentially all fission observables in a consistent way while preserving the correlations between all of them. In this contribution we present some of the physical aspects on which the model is based, give an overview on the results that can be obtained with the code and show an example that illustrates how the GEF code can serve as a framework for revealing the sensitivity of the fission observables to some basic nuclear properties.

  16. Preliminary results of total kinetic energy modelling for neutron-induced fission

    International Nuclear Information System (INIS)

    Visan, I.; Giubega, G.; Tudora, A.

    2015-01-01

    The total kinetic energy as a function of fission fragments mass TKE(A) is an important quantity entering in prompt emission calculations. The experimentally distributions of TKE(A) are referring to a limited number of fission systems and incident energies. In the present paper, a preliminary model for TKE calculation in neutron induced fission system is presented. The range of fission fragments is chosen as in the Point by Point treatment. The model needs as input only mass excesses and deformation parameters taken from available nuclear databases being based on the following approximations: total excitation energy of fully accelerated fission fragments TXE is calculated from energy balance of neutron-induced fission systems as sum of the total excitation energy at scission E*sciss and deformation energy Edef. The deformation energy at scission is given by minimizing the potential energy at the scission configuration. At the scission point, the fission system is described by two spheroidal fragments nearly touching by a pre-scission distance or neck caused by the nuclear forces between fragments. Therefore, the Columbian repulsion depending on neck and, consequently, on the fragments deformation at scission, is essentially in TKE determination. An approximation is made based on the fission modes. For the very symmetric fission, the dominant super long channel is characterized by long distance between fragments leading to low TKE values. Due to magic and double-magic shells closure, the dominant S1 fission mode for pairs with heavy fragment mass AH around 130-134 is characterized by spherical heavy fragment shape and easily deformed light fragment. The nearly spherical shape of the complementary fragments are characterized by minimum distance, and consequently to maximum TKE values. The results obtained for TKE(A) are in good agreement with existing experimental data for many neutron induced fission systems, e.g. ''2''3''3&apos

  17. Systematic evaluation of prompt neutron spectra in fission

    International Nuclear Information System (INIS)

    Osawa, Takaaki

    1995-01-01

    To create the nuclear data fail JEND-32, the prompt fission neutron spectra X(E) of 233 U, 235 U, 238 U and 239 Pu were reevaluated and some improvement were added to the calculation models. We tried to extend the calculation method of fission spectra of nuclides with poor measurement data in consideration of increasing the importance of nuclear data of minor actinoids. We improved and extended the following five points. (1) On JENDL-3.1, the fission spectra of principal fissible materials had been calculated by the Modland-Nix model which the neutron emissions of fragments were calculated under the approximation of the constant inverse process cross section. In the paper, the spectra were calculated by the use of the inverse process cross section depend on the energy obtained by the calculation of the optical model. The result showed the increase of low energy components and the softening effect of spectra (2) On JENDL-3.1, the all fission processes were assumed to undergo (n,f) reaction. In the paper, they were calculated by the multi-chance fission such as (n, n'f), (n, 2nf) and (n, 3nf) etc. Softening of the spectra (En > 6 MeV) was obtained by this method. (3) The level density parameter (LDP) has been assumed as a = A/C in either case of light fragment (LF) and heavy fragment (HF) in the original Madland-Nix model. But we used LDP based on the Ignatyuk model under consideration of the shell effects of nuclear fragments, hence the neutron spectra of heavy fragments were hardening. (4) Nuclear temperature of both fragments had been assumed to be the same at original model, but now R T = Tm/TmH was derived to calculate them. The ratio of middle/both side components of spectra was changed. (5) Unknown neutron fission spectra of minor actinide were able to the assumed on the basis of Moriyama-Ohnishi model. (S.Y.)

  18. Pre-scission particle and gamma-ray emission in heavy-ion induced fission

    International Nuclear Information System (INIS)

    Newton, J.O.

    1989-02-01

    An introduction is given to the physics of the equilibrium transition model and of dissipative nuclear dynamics. Experimental data on pre-scission particle and gamma-ray emission and their interpretation are reviewed. They appear to indicate overdamped motion of the nuclear fluid. A time scale for compound-nucleus fission of about 30x10 -21 sec or greater is indicated, whilst that for quasi- or fast-fission is somewhat shorter. 99 refs., 28 figs

  19. Fission theory and actinide fission data

    Energy Technology Data Exchange (ETDEWEB)

    Michaudon, A.

    1975-06-01

    The understanding of the fission process has made great progress recently, as a result of the calculation of fission barriers, using the Strutinsky prescription. Double-humped shapes were obtained for nuclei in the actinide region. Such shapes could explain, in a coherent manner, many different phenomena: fission isomers, structure in near-threshold fission cross sections, intermediate structure in subthreshold fission cross sections and anisotropy in the emission of the fission fragments. A brief review of fission barrier calculations and relevant experimental data is presented. Calculations of fission cross sections, using double-humped barrier shapes and fission channel properties, as obtained from the data discussed previously, are given for some U and Pu isotopes. The fission channel theory of A. Bohr has greatly influenced the study of low-energy fission. However, recent investigation of the yields of prompt neutrons and γ rays emitted in the resonances of {sup 235}U and {sup 239}Pu, together with the spin determination for many resonances of these two nuclei cannot be explained purely in terms of the Bohr theory. Variation in the prompt neutron and γ-ray yields from resonance to resonance does not seem to be due to such fission channels, as was thought previously, but to the effect of the (n,γf) reaction. The number of prompt fission neutrons and the kinetic energy of the fission fragments are affected by the energy balance and damping or viscosity effects in the last stage of the fission process, from saddle point to scission. These effects are discussed for some nuclei, especially for {sup 240}Pu.

  20. Nuclear structure in cold rearrangement processes in fission and fusion

    Energy Technology Data Exchange (ETDEWEB)

    Armbruster, P.

    1998-11-01

    In fission and fusion of heavy nuclei large numbers of nucleons are rearranged at a scale of excitation energy very small compared to the binding energy of the nuclei. The energies involved are less than 40 MeV at nuclear temperatures below 1.5 MeV. The shapes of the configurations in the rearrangement of a binary system into a monosystem in fusion, or vice versa in fission, change their elongations by as much as 8 fm, the radius of the monosystem. The dynamics of the reactions macroscopically described by a potential energy surface, inertia parameters, dissipation, and a collision energy is strongly modified by the nuclear structure of the participating nuclei. Experiments showing nuclear structure effects in fusion and fission of the heaviest nuclei are reviewed. The reaction kinematics and the multitude of isotopes involved are investigated by detector techniques and by recoil spectrometers. The advancement of the latter allows to find very small reaction branches in the range of 10{sup -5} to 10{sup -10}. The experiments reveal nuclear structure effects in all stages of the rearrangement processes. These are discussed pointing to analogies in fusion and fission on the microscopic scale, notwithstanding that both processes macroscopically are irreversible. Heavy clusters, as 132Sn, 208Pb, nuclei with closed shell configurations N=82,126, Z=50,82 survive in large parts of the nuclear rearrangement. They determine the asymmetry in the mass distribution of low energy fission, and they allow to synthesise superheavy elements, until now up to element 112. Experiments on the cold rearrangement in fission and fusion are presented. Here, in the range of excitation energies below 12 MeV the phenomena are observed most convincingly. (orig.)

  1. On-line mass spectometry of nuclear reactions induced by heavy ions

    International Nuclear Information System (INIS)

    Saint Simon, M. de.

    1977-01-01

    The adaptation of the on-line mass-spectrometric technique to the special conditions of heavy ion induced reactions is described. The method is very selective about A and Z, even for the very heavy reaction products in counterpart of the limitation of its applications to the alkaline elements only. This method is used in order to study the effects of angular momentum brought by the projectile in the complete fusion process and in the following neutron evaporation. The analysis of excitation functions shows that the increase in mass of the projectile has not always the effect of increasing the rotation energy of the compound nucleus. The on-line mass spectrometry has allowed to study heavy ion induced fission. Measurements of complementary isotopic distributions of fission products make it possible to explain that the total number of neutrons emitted per fission can be always deduced from the fragment excitation energy. The study of the isotope distribution variance shows that the statistical model for fission is in good agreement with experimental results after taking into account the non-fusion processes [fr

  2. Study on decay of rare earth nuclei produced by fission

    Energy Technology Data Exchange (ETDEWEB)

    Kawade, Kiyoshi; Yamamoto, Hiroshi; Shibata, Michihiro; Asai, Masato [Nagoya Univ. (Japan); Tsukada, Kazuaki; Osa, Akihiko; Shinohara, Nobuo; Iimura, Hideki

    1996-01-01

    JAERI-ISOL utilizes charge particle induced fission by proton and heavy proton produced by the tandem type accelerator (JAERI). To study the decay mechanism and nuclei structure of neutron and excess nuclei produced by actinoid fission, JAERI-ISOL was improved by developing the multilayer target tank. So that, the intensity of mass separated ion beam increased enough to use. New 76.6 KeV {gamma}-ray with about 10s of half life was found in the preliminary experiment. (S.Y.)

  3. SOFIA: An innovative setup to measure complete isotopic yield of fission fragments

    Directory of Open Access Journals (Sweden)

    Pellereau E.

    2013-12-01

    Full Text Available We performed an experiment dedicated to the accurate isotopic yield measurement of fission fragments over the whole range. SOFIA exploits the inverse kinematics technique: using heavy ion beams at relativistic energies, fission is induced by Coulomb excitation in a high-Z target. The fragments are emitted forward and both of them are identified in charge and mass. The setup will be presented, as well as preliminary spectra.

  4. Fission product released experiment of coated fuel particles

    Energy Technology Data Exchange (ETDEWEB)

    Shijiang, Xu; Bing, Yang; Chunhe, Tang; Junguo, Zhu; Jintao, Huang; Binzhong, Zhang [Inst. of Nucl. Energy Technology, Tsinghua Univ., Beijing (China); Jinghan, Luo [Inst. of Atomic Energy, Beijing (China)

    1992-01-15

    Four samples of coated fuel particles were irradiated in the Heavy-Water Research Reactor of the Institute of Atomic Energy. Each of them was divided into two groups and irradiated to the burn up of 0.394% fima and 0.788% fima in two static capsules, respectively. After irradiation and cooling, post irradiation annealing experiment was carried out, the release ratios of the fission product {sup 133}Xe and {sup 131}I were measured, they are in the order of 10{sup -6}{approx}10{sup -7}. The fission product release ratio of naked kernel was also measured under the same conditions as for the coated fuel particles, the ratio of the fission product release of the coated fuel particles and of the naked kernel was in the order of 10{sup -5}{approx}10{sup -4}.

  5. Evaluation of mass distribution data from 252Cf spontaneous fission

    International Nuclear Information System (INIS)

    Liu Tingjin

    2003-01-01

    The mass distribution data of 252 Cf spontaneous fission were evaluated based on 7 sets of available experimental data. The measured data were corrected for the standards and γ intensity used by using the new evaluated ones. The errors were made necessary adjusting. The evaluated experimental data were fitted with spline function without any restriction and with symmetric restriction. These two sets of fit data were recommended as reference data of the mass distribution of 252 Cf spontaneous fission. The errors of the recommended data were considerably reduced comparing with the measured ones. The light and heavy peaks are not completely symmetric. Also there are fine structures on the right side of the light peak at A=109-111 and left side of the heavy peak at A=137-139. These should be paid attention and studied further. (author)

  6. Formation and distribution of fragments in the spontaneous fission of 240Pu

    Science.gov (United States)

    Sadhukhan, Jhilam; Zhang, Chunli; Nazarewicz, Witold; Schunck, Nicolas

    2017-12-01

    Background: Fission is a fundamental decay mode of heavy atomic nuclei. The prevalent theoretical approach is based on mean-field theory and its extensions where fission is modeled as a large amplitude motion of a nucleus in a multidimensional collective space. One of the important observables characterizing fission is the charge and mass distribution of fission fragments. Purpose: The goal of this Rapid Communication is to better understand the structure of fission fragment distributions by investigating the competition between the static structure of the collective manifold and the stochastic dynamics. In particular, we study the characteristics of the tails of yield distributions, which correspond to very asymmetric fission into a very heavy and a very light fragment. Methods: We use the stochastic Langevin framework to simulate the nuclear evolution after the system tunnels through the multidimensional potential barrier. For a representative sample of different initial configurations along the outer turning-point line, we define effective fission paths by computing a large number of Langevin trajectories. We extract the relative contribution of each such path to the fragment distribution. We then use nucleon localization functions along effective fission pathways to analyze the characteristics of prefragments at prescission configurations. Results: We find that non-Newtonian Langevin trajectories, strongly impacted by the random force, produce the tails of the fission fragment distribution of 240Pu. The prefragments deduced from nucleon localizations are formed early and change little as the nucleus evolves towards scission. On the other hand, the system contains many nucleons that are not localized in the prefragments even near the scission point. Such nucleons are distributed rapidly at scission to form the final fragments. Fission prefragments extracted from direct integration of the density and from the localization functions typically differ by more than

  7. Calculated fission properties of the heaviest elements

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.; Swiatecki, W.J.

    1986-09-01

    A quantitative calculation is presented that shows where high-kinetic-energy symmetric fission occurs and why it is associated with a sudden and large decrease in fission half-lives. The study is based on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. For the macroscopic part a Yukawa-plus-exponential model is used and for the microscopic part a folded-Yukawa single-particle potential is used. The three-quadratic-surface parameterization generates shapes for which the potential-energy surfaces are calculated. The use of this parameterization and the use of the finite-range macroscopic model allows for the study of two touching spheres and similar shapes. The results of the calculations in terms of potential-energy surfaces and fission half-lives are presented for heavy even nuclei. The surfaces are displayed in the form of contour diagrams as functions of two moments of the shape. 53 refs., 15 figs., 1 tab

  8. Electromagnetic fission of 238U at 600 and 1000 MeV per nucleon

    International Nuclear Information System (INIS)

    Rubehn, T.; Mueller, W.F.J.; Bassini, R.; Begemann-Blaich, M.; Blaich, T.; Gross, C.; Imme, G.; Iori, I.; Kunde, G.J.; Kunze, W.D.; Lindenstruth, V.; Lynen, U.; Moehlemkamp, T.; Moretto, L.G.; Ocker, B.; Pochodzalla, J.; Raciti, G.; Reito, S.; Sann, H.; Schuettauf, A.; Serfling, V.; Trautmann, W.; Trzcinski, A.; Verde, G.; Woerner, A.; Zude, E.; Zwieglinski, B.

    1995-05-01

    Electromagnetic fission of 238 U projectiles at E/A=600 and 1000 MeV was studied with the ALADIN spectrometer at the heavy-ion synchrotron SIS. Seven different targets (Be, C, Al, Cu, In, Au and U) were used. By considering only those fission events where the two charges added up to 92, most of the nuclear interactions were excluded. The nuclear contributions to the measured fission cross sections were determined by extrapolating from beryllium to the heavier targets with the concept of factorization. The obtained cross sections for electromagnetic fission are well reproduced by extended Weizsaecker-Williams calculations which include E1 and E2 excitations. The asymmetry of the fission fragments' charge distribution gives evidence for the excitation of the double giant-dipole resonance in uranium. (orig.)

  9. Influence of mass-asymmetry and ground state spin on fission fragment angular distributions

    International Nuclear Information System (INIS)

    Thomas, R.G.; Biswas, D.C.; Saxena, A.; Pant, L.M.; Nayak, B.K.; Vind, R.P.; Sahu, P.K.; Sinha, Shrabani; Choudhury, R.K.

    2001-01-01

    The strong influence of the target or/and projectile ground state spin on the anomalously large anisotropies of fission fragments produced in the heavy-ion induced fission of actinide targets were reported earlier. Interestingly, all those systems studied were having a mass asymmetry greater than the Businaro-Gallone critical asymmetry and hence the presence of pre-equilibrium fission was unambiguously ruled out. The observed anisotropies were successfully explained using the ECD-K-States model. It is of interest to know the influence of the target/projectile ground state spin on systems having an entrance channel mass asymmetry less than the critical value where pre-equilibrium fission cannot be ignored. With this motivation we performed measurements of fission fragment angular distributions of the 16 O+ 235 U (spin=7/2) system

  10. Nuclear fission: What have we learned in 50 years?

    International Nuclear Information System (INIS)

    Vandenbosch, R.

    1989-01-01

    Nuclear fission has captured the imagination of chemists and physicists for half a century now. There are several reasons for this. One of course is that it represents the most drastic rearrangement of nuclear matter known, challenged only recently by collisions induced by very heavy ions. Another is that both statistical and dynamical features come into play. Perhaps one of the most compelling reasons is its never-ending capacity to surprise us: asymmetric mass distributions, the sawtooth dependence of neutron yields in fragment mass, spontaneously fissioning isomers and intermediate structure resonances. Finally, and perhaps most importantly, fission is a rich laboratory within which one can explore the delicate interplay between the macroscopic aspects of bulk nuclear matter and the quantal effects of a finite number of Fermions. It will of course be impossible for me to cover all aspects of fission. I have chosen a limited number of topics to cover, with particular topics being chosen either because the have been associated with persistent puzzles in fission or because they have, or hopefully will, tell us something special about how nuclei behave. After a brief historical note, I organize these topics sequentially according to the various stages of the fission process, starting first with the probability for fission to occur and ending with scission phenomena. 56 refs., 11 figs

  11. Structure of heavy-ion tracks in zircon

    International Nuclear Information System (INIS)

    Braunshausen, G.; Bursill, L.A.; Vetter, J.; Spohr, R.

    1990-01-01

    Gem quality zirconas (ZrSiO 4 ) were irradiated with 14MeV/u Pb ions. Observations of heavy-ion tracks confirmed that fission or heavy-ion irradiation damage is confined to a 50-100 Aangstroem core region, which has undergone a crystalline-glass phase transition. 3 refs., 3 figs

  12. Asymmetry of mass and charge division in spontaneous fission

    International Nuclear Information System (INIS)

    Chakraborty, P.P.; Iyer, M.R.; Ganguly, A.K.

    The order-disorder model (ODM) has been used to explain asymmetry of mass and charge division and related phenomena in fission. According to this model the fission process involves two steps consisting of charge polarisation into two impending fragments with beta stable neutron numbers and subsequent distribution of the balance neutrons between the two. The statistics developed on the principle of equal a priori probability of all charge polarisation is used. The shell effects comes into play only in deciding stable neutron number for the charges. The total isotopic yield distribution for a number of fission reactions are presented. These show asymmetry in the actinide region which reduces with increasing mass/charge of the fissioning nuclide and bunching of the higher z peaks. The mass yields obtained therefrom for a number of fission reactions are compared with experimental results. Though there is general agreement with experimental data, the peaks of the distributions are slightly shifted away from the symmetric point and the distributions are somewhat narrower. Charge distribution parameters obtained from these results are also presented. The model predicts preference of asymmetric division for super heavy nuclides. (author)

  13. Mass distribution of fission fragments using SSNTDs based image analysis system

    International Nuclear Information System (INIS)

    Kolekar, R.V.; Sharma, D.N.

    2006-01-01

    Lexan polycarbonate track detector was used to obtain mass distribution of fission fragments from 252 Cf planchette source, Normally, if the fission fragments are incident perpendicular to the lexan surface, the diameter of heavy fragment is greater than that of lighter fragment. In practical problems fission fragments are incident on the detector at all angles. So, in the present experiment, lexan detector was exposed to 252 Cf planchette source in 2π geometry. Fission fragments were incident on the detector with various angles. So the projected fission track length for fission fragment of same energy is different because of different angle of incidence. Image analysis software was used to measure the projected track length. But the problem is that for fission fragment having greater angle of incidence the entire track length is not focused on the surface. So reduced track length is measured. This problem is solved by taking two images, one at the surface and one at the tip of track and then overlapping both the images using image analysis software. The projected track length and the depth of the track were used to get the angle of incidence. Fission track lengths were measured for same angle of incidence. In all 500 track lengths were measured and plot for mass distribution for fission fragment was obtained.(author)

  14. Measurement of fission yields far from the center of isotopic distributions in the thermal neutron fission of 235U

    International Nuclear Information System (INIS)

    Shmid, M.

    1979-08-01

    The main purpose of this work was to measure independent yields, in the thermal neutron fission of 235 U, of fission products which lie far from the centers of the isotopic and isobaric yield distributions. These measurements were used to test the predictions of semi-empirical systematics of fission yields and theoretical fission models. Delay times were measured as a function of temperature in the range 1200-2000degC. The very low delay times achieved in the present work permitted expanding the measurable region to the isotopes 147 , 148 Cs and 99 Rb which are of special interest in the present work. The delay times of Sr and Ba isotopes achieved were more than two orders of magnitude lower than values reported in the literature and thus short-lived isotopes of these elements could be separated for the first time by mass spectrometry. The half-lives of 147 Ba, 148 Ba, 149 La and 149 Ce were measured for the first time. The isotopic distributions of fission yields were measured for the elements Rb, Sr, Cs and Ba in the thermal neutron fission of 235 U, those of 99 Rb, 147 Cs and 148 Cs having been measured for the first time. A comparison of the experimental yields with the predictions of the currently accepted semi-empirical systematics of fission yields, which is the odd-even effect systematics, shows that the systematics succeeds in accounting for the strong odd-even proton effect and the weaker odd-even neutron effect and also in predicting the shape of the distributions in the central region. It is shown that prompt neutron emission broadens the distribution only slightly in the wing of heavy isotopes and more significantly in the wing of light isotopes. But the effect of prompt neutron emission cannot explain the large discrepancies existing between the predictions of fission models and the experimentally measured fission yield in the wings of the isotopic distributions. (B.G.)

  15. Contribution to the study of the influences of the excitation energy on the characteristics of the fission process

    International Nuclear Information System (INIS)

    Wagemans, C.

    1979-01-01

    Neutron induced and spontaneous fission with neutron energies from 10 -2 to 2.10 5 eV have been studied. Thermal neutron induced fission measurements in Pa 231 , Th 232 , Np 237 , U 233 , U 235 , Pu 239 and Pu 241 are reported. Energy and mass distributions of heavy fission fragments due to the spontaneous fission of Pu 240 are compared to the results obtained by thermal neutron fission of Pu 239 ; the events observed with U 236 , Pu 240 , Pa 232 and Np 238 are explained by the Bohr theory of fission channels. Ternary fission phenomena of U 233 , U 235 , Pu 239 , Pa 231 and Np 237 induced by thermal neutrons are explained and compared to models of Carjan and Feather. (MDC)

  16. Irradiation effects and behaviour of fission products in zirconia and spinel

    International Nuclear Information System (INIS)

    Gentils, A.

    2003-10-01

    Crystalline oxides, such as zirconia (ZrO 2 ) and spinel (MgAl 2 O 4 ), are promising inert matrices for the transmutation of plutonium and minor actinides. This work deals with the study of the physico-chemical properties of these matrices, more specifically their behaviour under irradiation and their capacity to retain fission products. Irradiations at low energy and incorporation of stable analogs of fission products (Cs, I, Xe) into yttria-stabilized zirconia and magnesium-aluminate spinel single crystals were performed by using the ion implanter IRMA (CSNSM-Orsay). Irradiations at high energy were made on several heavy ion accelerators (GANIL-Caen, ISL-Berlin, HIL-Warsaw). The damage induced by irradiation and the release of fission products were monitored by in situ Rutherford Backscattering Spectrometry experiments. Transmission electron microscopy was also used in order to determine the nature of the damage induced by irradiation. The results show that irradiation of ZrO 2 and MgAl 2 O 4 with heavy ions (about hundred keV and about hundred MeV) induces a huge structural damage in crystalline matrices. Total disorder (amorphization) is however never reached in zirconia, contrary to what is observed in the case of spinel. The results also emphasize the essential role played by the concentration of implanted species on their retention capacity. A dramatic release of fission products was observed when the concentration exceeds a threshold of a few atomic percent. Irradiation of implanted samples with medium-energy noble-gas ions leads to an enhancement of the fission product release. The exfoliation of spinel crystals implanted at high concentration of Cs ions is observed after a thermal treatment at high temperature. (author)

  17. Determination of extra-push energies for fusion from differential fission cross-section measurements

    International Nuclear Information System (INIS)

    Ramamurthy, V.S.; Kapoor, S.S.

    1993-01-01

    Apparent discrepancies between values of extra-push energies for fusion of two heavy nuclei derived through measurements of fusion evaporation residue cross sections and of differential fission cross sections have been reported by Keller et al. We show here that with the inclusion of the recently proposed preequilibrium fission decay channel in the analysis, there is no inconsistency between the two sets of data in terms of the deduced extra-push energies

  18. Light particles emitted with the fission fragments of thorium

    Energy Technology Data Exchange (ETDEWEB)

    San-Tsiang, T; Faraggi, H

    1947-01-01

    The traces produced by the fission of thorium with fast neutrons have been recorded photographically and studied. The formation of a light fragment of long range by either quadripartition or tripartition was not observed. The release of a short-range light fragment by bipartition was observed about one hundred times more frequently than was the release of such a fragment by tripartition. The ratio of the range of the two heavy fragments produced by tripartition was 1:2; this compares with a ratio of 1:3 for the heavy fragments produced by bipartition.

  19. Studies of the nuclear inertia in fission and heavy-ion reactions

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.

    1978-01-01

    On the basis of the non-self-consistent cranking model the authors study some aspects of the nuclear inertia of interest in fission and heavy-ion reactions. First, the authors consider in the adiabatic limit the inertia for a doubly closed-shell nucleus in a deformed spheroidal harmonic-oscillator single-particle potential plus a small perturbation. When expressed in terms of a coordinate that describes the deformation of the nuclear matter distribution, the inertia for small oscillations about a spherical shape is exactly equal to the incompressible, irrotational value. For large distortions it deviates from the incompressible, irrotational value by up to about +-1% away from level crossings. Second, in order to study the dependence of the inertia upon a level crossing, two levels of the above system are considered. This is done both in the adiabatic limit and for large collective velocities. At level crossings the adiabatic inertia relative to the deformation of the matter distribution diverges as 1/modΔV, where modΔV is the magnitude of the perturbation. However, for large collective velocities the contribution to the inertia from a level crossing is less than 4modΔV(d(rsub(m))/dt) 2 where d(rsub(m))/dt is the collective velocity of the matter distribution. Although the effect of large velocities on the remaining levels of the many-body system or the effect of a statistical ensemble of states has not been considered, some of the results suggest that for high excitation energies and moderately large collective velocities the nuclear inertia approaches approximately the irrotational value. (Auth.)

  20. Time-zero fission-fragment detector based on low-pressure multiwire proportional chambers

    International Nuclear Information System (INIS)

    Assamagan, K.; Baker, K.; Bayatyan, G.; Carlini, R.; Danagoulian, S.; Eden, T.; Egiyan, K.; Ent, R.; Fenker, H.; Gan, L.; Gasparian, A.; Grigoryan, N.; Greenwood, Z.; Gueye, P.; Hashimoto, O.; Johnston, K.; Keppel, C.; Knyazyan, S.; Majewski, S.; Margaryan, A.; Margaryan, Yu.; Marikyan, G.; Martoff, J.; Mkrtchyan, H.; Parlakyan, L.; Sato, Y.; Sawafta, R.; Simicevic, N.; Tadevosyan, V.; Takahashi, T.; Tang, L.; Vartanyan, G.; Vulcan, W.; Wells, S.; Wood, S.

    1999-01-01

    A time-zero fission fragment (FF) detector, based on the technique of low-pressure multiwire proportional chambers (LPMWPC), has been designed and constructed for the heavy hypernuclear lifetime experiment (E95-002) at Thomas Jefferson National Accelerator Facility. Its characteristics and the method of time-zero reconstruction were investigated using fission fragments from a 252 Cf spontaneous fission source. The influence of the ionization energy loss was also studied. It is shown that Heptane, Hexane, and Isobutane gases at a pressure of 1-2 Torr are all suitable for such a FF detector. As desired by experiment, a timing resolution of about 200 ps (FWHM) for a chamber size of 21x21 cm 2 was achieved

  1. Fission - track age of the Marjalahti Pallasite

    International Nuclear Information System (INIS)

    Bondar, Yu.V.; Perelygin, V.P.

    2006-01-01

    Full text: Investigation of fossil charged-particle tracks in various mineral phases of extraterrestrial samples is a powerful method for research the early stages of the solar system. Over geological time, meteorites crystals have accumulated a record of tracks produced by heavily charged energetic particles from both internal (spontaneous fission of 238U and some other extinct isotopes) and external sources (galactic cosmic rays with Z>20). The fortunate fact that meteorite grains can accumulate latent and very long-lived tracks since soon after the end of nucleosynthesis in the solar nebula enables one to decode their radiation history and to detect any thermal events in the meteorite cosmic history by revealing these tracks through suitable etching procedures. Only a few minerals in meteorites (mainly phosphates) contain small amount of uranium; the fact that 238 U undergoes fission with fission-decay constant λ f ∼ 8.2x10 -17 yr -1 allows one to use this isotope as a chronometer. By measuring the U concentration in the crystals (by reactor irradiation) and the density of the spontaneous-fission tracks it is relatively easy to calculate the 'fission-track age' if 238 U is the main source of fission tracks. However the fission-track dating of extraterrestrial samples compared with the terrestrial ones has some peculiar features due to presence of a number of other potential track sources except the spontaneous fission of 238 U, such as the spontaneous fission of presently extinct 244 Pu, heavy nuclei of cosmic rays and induced fission by cosmic ray primaries. Only tracks from the spontaneous fission of U and Pu are suitable for fission-track dating. The competing effects of these fissioning elements, whose half-lives differ by a factor of ∼50, form a basis for a fission-track chronology for samples older than ∼ 4.0 Gyr. Over small intervals in time (∼ few x10 8 yr ) the track density from spontaneous fission of 238 U is nearly constant. However, the

  2. Measurement of 235U fission spectrum-averaged cross sections and neutron spectrum adjusted with the activation data

    International Nuclear Information System (INIS)

    Kobayashi, Katsuhei; Kobayashi, Tooru

    1992-01-01

    The 235 U fission spectrum-averaged cross sections for 13 threshold reactions were measured with the fission plate (27 cm in diameter and 1.1 cm thick) at the heavy water thermal neutron facility of the Kyoto University Reactor. The Monte Carlo code MCNP was applied to check the deviation from the 235 U fission neutron spectrum due to the room-scattered neutrons, and it was found that the resultant spectrum was close to that of 235 U fission neutrons. Supplementally, the relations to derive the absorbed dose rates with the fission plate were also given using the calculated neutron spectra and the neutron Kerma factors. Finally, the present values of the fission spectrum-averaged cross sections were employed to adjust the 235 U fission neutron spectrum with the NEUPAC code. The adjusted spectrum showed a good agreement with the Watt-type fission neutron spectrum. (author)

  3. Solid state nuclear track detectors in the measurement of alpha to fission branching ratios of heavy actinides

    International Nuclear Information System (INIS)

    Pandey, A.K.; Sharma, R.C.; Padalkar, S.K.; Kalsi, P.C.; Iyer, R.H.

    1992-01-01

    A sequential etching procedure for revelation of alpha and fission tracks in CR-39 was developed and optimized. Using this technique alpha and fission tracks can be differentiated unambiguously because of significant differences in their sizes and etching times. This registration and revelation procedure for alpha and fission tracks may be used for the studies of half lives, alpha to fission branching ratios and identification of radionuclides based on their decay schemes. It has the added advantage that both alpha decay and fission events can be studied using one detector and hence uncertainties related to efficiency, registration geometry, registration times, amount of radionuclides etc can be eliminated or minimized. The effects of neutron, gamma and alpha radiations on the alpha and fission fragment tracks registration and revelation properties of CR-39 detectors [CR-39, CR-39 (DOP)] were also studied. The IR spectra were also studied to find out the nature of chemical changes produced by these radiations on CR-39. (author). 32 refs., 7 figs., 4 tabs

  4. Nuclear fission and neutron-induced fission cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    James, G.D.; Lynn, J.E.; Michaudon, A.; Rowlands, J.; de Saussure, G.

    1981-01-01

    A general presentation of current knowledge of the fission process is given with emphasis on the low energy fission of actinide nuclei and neutron induced fission. The need for and the required accuracy of fission cross section data in nuclear energy programs are discussed. A summary is given of the steps involved in fission cross section measurement and the range of available techniques. Methods of fission detection are described with emphasis on energy dependent changed and detector efficiency. Examples of cross section measurements are given and data reduction is discussed. The calculation of fission cross sections is discussed and relevant nuclear theory including the formation and decay of compound nuclei and energy level density is introduced. A description of a practical computation of fission cross sections is given.

  5. Mass and angular distributions of the reaction products in heavy ion collisions

    Science.gov (United States)

    Nasirov, A. K.; Giardina, G.; Mandaglio, G.; Kayumov, B. M.; Tashkhodjaev, R. B.

    2018-05-01

    The optimal reactions and beam energies leading to synthesize superheavy elements is searched by studying mass and angular distributions of fission-like products in heavy-ion collisions since the evaporation residue cross section consists an ignorable small part of the fusion cross section. The intensity of the yield of fission-like products allows us to estimate the probability of the complete fusion of the interacting nuclei. The overlap of the mass and angular distributions of the fusion-fission and quasifission products causes difficulty at estimation of the correct value of the probability of the compound nucleus formation. A study of the mass and angular distributions of the reaction products is suitable key to understand the interaction mechanism of heavy ion collisions.

  6. Cluster radioactivity and very asymmetric fission through quasi-molecular shapes

    International Nuclear Information System (INIS)

    Royer, G.

    1997-01-01

    The decay of radioactive nuclei which emit heavy clusters like C, O, Ne, Mg and Si has been studied in the fission valley which leads one spherical nucleus towards two spherical touching nuclei before crossing the barrier. Assuming volume conservation, the deformation energy has been calculated within a generalized liquid drop model taking into account the proximity effects between the cluster and the daughter nucleus. The theoretical partial half-lives obtained within the WKB barrier penetration probability are in good agreement with the experimental data for the heaviest clusters. The Ne, Mg and Si emission looks like a very-asymmetric spontaneous fission. The 14 C radioactivity is not correctly described within the fission hypothesis. The 14 C and apparently also the 20 O are probably pre-born in the parent nucleus, the emission being similar to the α decay process. (author)

  7. Research in heavy-ion nuclear physics

    International Nuclear Information System (INIS)

    Sanders, S.J.; Prosser, F.W.

    1992-01-01

    This report discusses the following topics: Fusion-fission in light nuclear systems; High-resolution Q-value measurement for the 24 Mg+ 24 Mg reaction; Heavy-ion reactions and limits to fusion; and Hybrid MWPC-Bragg curve detector development

  8. Nuclear fission and fission-product spectroscopy: 3. International workshop on nuclear fission and fission-product spectroscopy

    International Nuclear Information System (INIS)

    Goutte, Heloise; Fioni, Gabriele; Faust, Herbert; Goutte, Dominique

    2005-01-01

    The present book contains the proceedings of the third workshop in a series of workshops previously held in Seyssins in 1994 and 1998. The meeting was jointly organized by different divisions of CEA and two major international laboratories. In the opening address, Prof. B. Bigot, the French High Commissioner for Atomic Energy, outlined France's energy policy for the next few decades. He emphasized the continuing progress of nuclear fission in both technical and economic terms, allowing it to contribute to the energy needs of the planet even more in the future than it does today. Such progress implies a very strong link between fundamental and applied research based on experimental and theoretical approaches. The workshop gathered the different nuclear communities studying the fission process, including topics as the following: - nuclear fission experiments, - spectroscopy of neutron rich nuclei, - fission data evaluation, - theoretical aspects of nuclear fission, - and innovative nuclear systems and new facilities. The scientific program was suggested by an International Advisory Committee. About 100 scientists from 13 different countries attended the conference in the friendly working atmosphere of the Castle of Cadarache in the heart of the Provence. The proceedings of the workshop were divided into 11 sections addressing the following subject matters: 1. Cross sections and resonances (5 papers); 2. Fission at higher energies - I (5 papers); 3. Fission: mass and charge yields (4 papers); 4. Light particles and cluster emission (4 papers); 5. Spectroscopy of neutron rich nuclei (5 papers); 6. Resonances, barriers, and fission times (5 papers); 7. Fragment excitation and neutron emission (4 papers); 8. Mass and energy distributions (4 papers); 9. Needs for nuclear data and new facilities - I (4 papers); 10. Angular momenta and fission at higher Energies - II (3 papers); 11. New facilities - II (2 papers). A poster session of 8 presentations completed the workshop

  9. Irradiation effects and behaviour of fission products in zirconia and spinel; Effets d'irradiation et comportement des produits de fission dans la zircone et le spinelle

    Energy Technology Data Exchange (ETDEWEB)

    Gentils, A

    2003-10-01

    Crystalline oxides, such as zirconia (ZrO{sub 2}) and spinel (MgAl{sub 2}O{sub 4}), are promising inert matrices for the transmutation of plutonium and minor actinides. This work deals with the study of the physico-chemical properties of these matrices, more specifically their behaviour under irradiation and their capacity to retain fission products. Irradiations at low energy and incorporation of stable analogs of fission products (Cs, I, Xe) into yttria-stabilized zirconia and magnesium-aluminate spinel single crystals were performed by using the ion implanter IRMA (CSNSM-Orsay). Irradiations at high energy were made on several heavy ion accelerators (GANIL-Caen, ISL-Berlin, HIL-Warsaw). The damage induced by irradiation and the release of fission products were monitored by in situ Rutherford Backscattering Spectrometry experiments. Transmission electron microscopy was also used in order to determine the nature of the damage induced by irradiation. The results show that irradiation of ZrO{sub 2} and MgAl{sub 2}O{sub 4} with heavy ions (about hundred keV and about hundred MeV) induces a huge structural damage in crystalline matrices. Total disorder (amorphization) is however never reached in zirconia, contrary to what is observed in the case of spinel. The results also emphasize the essential role played by the concentration of implanted species on their retention capacity. A dramatic release of fission products was observed when the concentration exceeds a threshold of a few atomic percent. Irradiation of implanted samples with medium-energy noble-gas ions leads to an enhancement of the fission product release. The exfoliation of spinel crystals implanted at high concentration of Cs ions is observed after a thermal treatment at high temperature. (author)

  10. Induced fission of nuclei: dynamical chaos and lifetime of compound nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Krivoshej, I V

    1987-01-01

    A semi-phenomenological theory is proposed to describe the induced fission of heavy nuclei at low and intermediate excitation energies. The theory is based on the concept of the dynamical chaos, arising because of a negative curvature of the n-dimensional potential energy surface (PES). The nuclear fission is treated as a diffusion of the representing point across a vicinity of the saddle point in PES. The diffusion coefficient is calculated for various metrics in PES as an explicit function of the two-dimensional curvatures at the saddle point of PES. The present theory suggests an estimate for the fission time, tau/sub f/approx.10/sup -14/ s. Coefficients of nuclear friction and viscosity are also calculated in general, and the resulting numerical estimates are in agreement with the experimental data.

  11. Time-zero fission-fragment detector based on low-pressure multiwire proportional chambers

    CERN Document Server

    Assamagan, Ketevi A; Bayatyan, G L; Carlini, R; Danagulyan, S; Eden, T; Egiyan, K; Ent, R; Fenker, H; Gan, L; Gasparian, A; Grigoryan, N K; Greenwood, Z; Gueye, P; Hashimoto, O; Johnston, K; Keppel, C; Knyazyan, S; Majewski, S; Margaryan, A; Margaryan, Yu L; Marikian, G G; Martoff, J; Mkrtchyan, H G; Parlakyan, L; Sato, Y; Sawafta, R; Simicevic, N; Tadevosyan, V; Takahashi, T; Tang, L; Vartanian, G S; Vulcan, W; Wells, S; Wood, S

    1999-01-01

    A time-zero fission fragment (FF) detector, based on the technique of low-pressure multiwire proportional chambers (LPMWPC), has been designed and constructed for the heavy hypernuclear lifetime experiment (E95-002) at Thomas Jefferson National Accelerator Facility. Its characteristics and the method of time-zero reconstruction were investigated using fission fragments from a sup 2 sup 5 sup 2 Cf spontaneous fission source. The influence of the ionization energy loss was also studied. It is shown that Heptane, Hexane, and Isobutane gases at a pressure of 1-2 Torr are all suitable for such a FF detector. As desired by experiment, a timing resolution of about 200 ps (FWHM) for a chamber size of 21x21 cm sup 2 was achieved.

  12. Thermal Energetic Reactor with High Reproduction of Fission Materials

    International Nuclear Information System (INIS)

    Kotov, V.M.

    2012-01-01

    Existing thermal reactors are energy production scale limited because of low portion of raw uranium usage. Fast reactors are limited by reprocessing need of huge mass of raw uranium at the initial stage of development. The possibility of development of thermal reactors with high fission materials reproduction, which solves the problem, is discussed here. Neutron losses are decreased, uranium-thorium fuel with artificial fission materials equilibrium regime is used, additional in-core and out-core neutron sources are used for supplying of high fission materials reproduction. Liquid salt reactors can use dynamic loading regime for this purpose. Preferable construction is channel type reactor with heavy water moderator. Good materials for fuel element shells and channel walls are zirconium alloys enriched by 90Zr. Water cooled reactors with usage 12% of raw uranium and liquid metal cooled reactors with usage 25% of raw uranium are discussed. Reactors with additional neutron sources obtain full usage of raw uranium with small additional energy expenses. On the base of thermal reactors with high fission materials reproduction world atomic power engineering development supplying higher power and requiring smaller speed of raw uranium mining, than in the variant with fast reactors, is possible.

  13. Transmutation of fission products and actinide waste at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Daemen, L.L.; Pitcher, E.J.; Russell, G.J. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    The authors studied the neutronics of an ATW system for the transmutation of the fission products ({sup 99}Tc in particular) and the type of actinide waste stored in several tanks at Hanford. The heart of the system is a highly-efficient neutron production target. It is surrounded by a blanket containing a moderator/reflector material, as well as the products to be transmuted. The fission products are injected into the blanket in the form of an aqueous solution in heavy water, whereas an aqueous actinides slurry is circulated in the outer part of the blanket. For the sake of definiteness, the authors focussed on {sup 99}Tc (the most difficult fission product to transmute), and {sup 239}Pu, {sup 237}Np, and {sup 241}Am. Because of the low thermal neutron absorption cross-section of {sup 99}Tc, considerable care and effort must be devoted to the design of a very efficient neutron source.

  14. Delayed fission

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukawa, Yuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-07-01

    Delayed fission is a nuclear decay process that couples {beta} decay and fission. In the delayed fission process, a parent nucleus undergoes {beta} decay and thereby populates excited states in the daughter. If these states are of energies comparable to or greater than the fission barrier of the daughter, then fission may compete with other decay modes of the excited states in the daughter. In this paper, mechanism and some experiments of the delayed fission will be discussed. (author)

  15. Review of the book: Vasilenko, I.Ya. Toxicology of nuclear fission products

    International Nuclear Information System (INIS)

    Gordeev, K.I.

    2001-01-01

    Review on monograph of Vasilenko, I.Ya. Toxicology of nuclear fission (Moscow, Medicine, 1999) is presented. Data of longevity full-scale investigations during nuclear explosions on the Semipalatinsk test site are given. Classified, complex investigations into the effect of nuclear fission products mixtures on different kinds of laboratory animals are described, transfer of radiobiological researches to organism of man is scientific valid. The most complicate radiobiological problem of low dose is analyzed. The being investigated monograph contains unique scientific information and makes a heavy contribution in radiobiology [ru

  16. Neutron rich clusters and the dynamics of fission and fusion

    International Nuclear Information System (INIS)

    Armbruster, P.

    1988-07-01

    In this lecture I want to discuss experimental evidence for the appearance of cluster aspects in the dynamics of large rearrangement processes, as fusion and fission. Clusters in the sense as used in my lecture are the strongly bound doubly magic nuclei as 20 Ca 28 48 , 28 Ni 50 78 , 132 50 Sn 82 , and 208 82 Pb 126 and the superheavy nucleus 298 114 184 . Two of these nuclei, 78 Ni and 298 114 have not yet been identified. I discuss first the experimental findings from heavy element production. Then I cover the stability of cluster aspects to intrinsic excitation energy in fusion and fission. (orig./HSI)

  17. Survey of neutron spectra generated by the fission of heavy nuclei induced by fast neutrons

    International Nuclear Information System (INIS)

    Lovchikova, G.N.; Trufanov, A.M.

    1997-01-01

    A review of neutron fission spectra measurements is presented. This review and the results of this analysis was performed with the participation of the authors. It is shown that there is a need for additional measurements of the energy and angular distributions of secondary neutrons in order to improve the understanding of the neutron emission mechanism in fission. (author). 21 refs, 6 figs

  18. Calculation of high-dimensional fission-fusion potential-energy surfaces in the SHE region

    International Nuclear Information System (INIS)

    Moeller, Peter; Sierk, Arnold J.; Ichikawa, Takatoshi; Iwamoto, Akira

    2004-01-01

    We calculate in a macroscopic-microscopic model fission-fusion potential-energy surfaces relevant to the analysis of heavy-ion reactions employed to form heavy-element evaporation residues. We study these multidimensional potential-energy surfaces both inside and outside the touching point.Inside the point of contact we define the potential on a multi-million-point grid in 5D deformation space where elongation, merging projectile and target spheroidal shapes, neck radius and projectile/target mass asymmetry are independent shape variables. The same deformation space and the corresponding potential-energy surface also describe the shape evolution from the nuclear ground-state to separating fragments in fission, and the fast-fission trajectories in incomplete fusion.For separated nuclei we study the macroscopic-microscopic potential energy, that is the ''collision surface'' between a spheroidally deformed target and a spheroidally deformed projectile as a function of three coordinates which are: the relative location of the projectile center-of-mass with respect to the target center-of-mass and the spheroidal deformations of the target and the projectile. We limit our study to the most favorable relative positions of target and projectile, namely that the symmetry axes of the target and projectile are collinear

  19. Physics and chemistry of fission

    International Nuclear Information System (INIS)

    1979-01-01

    fissioning nuclei, with great accuracy. By putting together numerous experimental facts, and carefully analysing their observations, scientists have designed a coherent picture of the products of fission The ball is now back in the theorist's court. He must find a satisfactory explanation which will agree with the available data. New insights into the fission process can be obtained if the nucleus which is to be split, is first created. By utilizing modern accelerators, heavy ions are shot, at a high velocity, at the target nuclei. For example, ions of 20 Ne bombard nuclei of 133 Cs and create nuclei of 153 Tb which has such a large amount of surplus energy that it fissions. This process, called fusion/ fission is being intensively studied, several reports at the symposium indicated the potential power of this method, but they also showed how extremely difficult the interpretation of the results from such complex experiments is The reports and discussions at the 1979 symposium on Physics and Chemistry of Fission demonstrated steady and solid progress in the field At the same time, they opened up a number of new problems and hinted at the difficult tasks facing experimenters and theorists in the coming years. (author)

  20. Fission-product releases from a PHWR terminal debris bed

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.J.; Bailey, D.G., E-mail: morgan.brown@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    During an unmitigated severe accident in a pressurized heavy water reactor (PHWR) with horizontal fuel channels, the core may disassemble and relocate to the bottom of the calandria vessel. The resulting heterogeneous in-vessel terminal debris bed (TDB) would likely be quenched by any remaining moderator, and some of the decay heat would be conducted through the calandria vessel shell to the surrounding reactor vault or shield tank water. As the moderator boiled off, the solid debris bed would transform into a more homogeneous molten corium pool located between top and bottom crusts. Until recently, the severe accident code MAAP-CANDU assumed that unreleased volatile and semi-volatile fission products remained in the TDB until after calandria vessel failure, due to low diffusivity through the top crust and the lack of gases or steam to flush released fission products from the debris. However, national and international experimental results indicate this assumption is unlikely; instead, high- and medium-volatility fission products would be released from a molten debris pool, and their volatility and transport should be taken into account in TDB modelling. The resulting change in the distribution of fission products within the reactor and containment, and the associated decay heat, can have significant effects upon the progression of the accident and fission-product releases to the environment. This article describes a postulated PHWR severe accident progression to generate a TDB and the effects of fission-product releases from the terminal debris, using the simple release model in the MAAP-CANDU severe accident code. It also provides insights from various experimental programs related to fission-product releases from core debris, and their applicability to the MAAP-CANDU TDB model. (author)

  1. Measurement of Am-242 fission yields at the Lohengrin spectrometer; improvement and Benchmarking of the semi-empirical code GEF

    International Nuclear Information System (INIS)

    Amouroux, Charlotte

    2014-01-01

    The study of fission yields has a major impact on the characterization and understanding of the fission process and is mandatory for reactor applications. While the yields are known for the major actinides (U-235, Pu-239) in the thermal neutron-induced fission, only few measurements were performed on Am-242. Moreover, the two main data libraries do not agree among each other on the light peak. Am-241 and Am-242 are nuclei of interest for the MOX-fuel reactors and for the reduction of nuclear waste radiotoxicity using transmutation reactions. Thus, a campaign of precise measurement of the fission mass yields from the reaction Am-241(2n,f) was performed at the Lohengrin mass spectrometer (ILL, France) for both the light and the heavy peak. Forty-one masses were measured. Moreover, the measurement of the isotopic fission yields on the heavy peak by gamma-ray spectrometry led to the extraction of 20 independent isotopic yields. Our measurement was also meant to determine whether there is a difference in fission yields between the Am-242 isomeric state and its ground state as it exists in fission cross sections. The experimental method used to answer this question is based on the measurement a set of fission mass yields as a function of the ratio of Am-242gs to Am-242m fission rate. Results show that the mass yields are independent of the fission rate ratio. A future experimental campaign is proposed to observe a possible influence on the isomeric yields. The theoretical models are nowadays unable to predict the fission yields with enough accuracy and therefore we have to rely on experimental data and phenomenological models. The accuracy of the predictions of the semi empirical GEF fission model predictions makes it a useful tool for evaluation. This thesis also presents the physical content and part of the development of this model. Validation of the kinetic energy distributions, isomeric yields and fission yields predictions was performed. The extension of the GEF

  2. Applications for fission product data to problems in stellar nucleosynthesis

    International Nuclear Information System (INIS)

    Mathews, G.J.

    1983-10-01

    A general overview of the nucleosynthesis mechanisms for heavy (A greater than or equal to 70) nuclei is presented with particular emphasis on critical data needs. The current state of the art in nucleosynthesis models is described and areas in which fission product data may provide useful insight are proposed. 33 references, 10 figures

  3. Dissipation of the tilting degree of freedom in heavy-ion-induced fission from four-dimensional Langevin dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Nadtochy, P.N. [Omsk State Technical University, Omsk (Russian Federation); Ryabov, E.G.; Cheredov, A.V.; Adeev, G.D. [Omsk State University, Omsk (Russian Federation)

    2016-10-15

    A stochastic approach based on four-dimensional Langevin fission dynamics is applied to the calculation of a wide set of experimental observables of excited compound nuclei from {sup 199}Pb to {sup 248}Cf formed in reactions induced by heavy ions. In the model under investigation, the tilting degree of freedom (K coordinate) representing the projection of the total angular momentum onto the symmetry axis of the nucleus is taken into account in addition to three collective shape coordinates introduced on the basis of {c,h,α} parametrization. The evolution of the K coordinate is described by means of the Langevin equation in the overdamped regime. The friction tensor for the shape collective coordinates is calculated under the assumption of the modified version of the one-body dissipation mechanism, where the reduction coefficient k{sub s} of the contribution from the ''wall'' formula is introduced. The calculations are performed both for the constant values of the coefficient k{sub s} and for the coordinate-dependent reduction coefficient k{sub s}(q) which is found on the basis of the ''chaos-weighted wall formula''. Different possibilities of the deformation-dependent dissipation coefficient (γ{sub K}) for the K coordinate are investigated. The presented results demonstrate that an impact of the k{sub s} and γ{sub K} parameters on the calculated observable fission characteristics can be selectively probed. It was found that it is possible to describe the experimental data consistently with the deformation-dependent γ{sub K}(q) coefficient for shapes featuring a neck, which predicts quite small values of γ{sub K} = 0.0077 (MeV zs){sup -1/2} and constant γ{sub K} = 0.1 -0.4 (MeV zs){sup -1/2} for compact shapes featuring no neck. (orig.)

  4. Transmutation of Tc-99 in fission reactors

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Li, J.M.

    1994-12-01

    Transmutation of Tc-99 in three different types of fission reactors is considered: A heavy water reactor, a fast reactor and a light water reactor. For the first type a CANDU reactor was chosen, for the second one the Superphenix reactor, and for the third one a PWR. The three most promising Tc-99 transmuters are the fast reactor with a moderated subassembly in the inner core, a fast reactor with a non-moderated subassembly in the inner core, and a heavy water reactor with Tc-99 target pins in the moderator between the fuel bundles. Transmutation half lives of 15 to 25 years can be achieved, with yearly transmuted Tc-99 masses of about 100 kg at a thermal reactor power of about 3000 MW. (orig.)

  5. Sequential and double sequential fission observed in heavy ion interaction of (11.67 MeV/u)197Au projectile with 197Au target

    International Nuclear Information System (INIS)

    Nasir, Tabassum; Khan, Ehsan Ullah; Baluch, Javaid Jahan; Shafi-Ur-Rehman; Matiullah; Rafique, Muhammad

    2009-01-01

    The heavy ion interaction of 11.67 MeV/u 197 Au+ 197 Au has been investigated using mica as a passive detector. By employing Solid State Nuclear Track Detection Technique the data of elastic scattering as well as inelastic reaction channel was collected. The off-line data analysis of multi-pronged events was performed by measuring the three-dimensional geometrical coordinates of correlated tracks on event-by-event basis. Multi pronged events observed in this reaction were due to sequential and double sequential fission. Using a computer code PRONGY based on the procedure of internal calibration, it was possible to derive quantities like mass transfer, total kinetic energy loss and scattering angles. (author)

  6. Contribution to the design, fulfillment, and data analysis of fission fragment yields of the SOFIA experiment at GSI

    International Nuclear Information System (INIS)

    Pellereau, Eric

    2013-01-01

    The isotopic fission yields of U 238 following the SOFIA experiment, conducted at the GSI facility (Darmstadt), are presented here. This experiment takes advantage of the inverse kinematics technique at relativistic energies. Benefits are several: fission fragments are highly focused (high geometrical efficiency) and are also completely stripped, which greatly simplifies their nuclear charge measurement. The first detector of the SOFIA setup is an active target in which fission occurs via electromagnetic excitation, followed by an ionization chamber to measure the nuclear charge and the horizontal angle of both fission fragments. The masses are deduced by the bending radius measurement of the fragments, deflected by a strong magnet (ALADIN), thanks to two position detectors (MWPC), and also by a highly resolved time-of-flight measurement (40 ps FWHM) so that heavy neighboring isotopes can be separated. The data analysis shows that the main goals are achieved since the isotopic separation is reached over the whole range of the fission fragments. A strong even-odd effect is seen in the charge spectrum, which also exhibits a mean heavy charge close to Z = 54. Surprisingly, the neutron even-odd effect of the light region is seen to be very close to the one in thermal neutron induced fission. The peak-to-valley ratio of the mass spectrum confirms that the mean excitation energy at fission is close to the expected one (14 MeV). The GEF code is used for comparison and always gives results very close to ours. (author) [fr

  7. Survivability and Fusibility in Reactions Leading to Heavy Nuclei in the Vicinity of the N=126 Closed Shell

    International Nuclear Information System (INIS)

    Sagaidak, R. N.

    2009-01-01

    Nuclear fission is well suited to study the dynamic properties and dissipative processes in cold and moderately excited nuclei. It is also a unique tool to explore level density and shell effects at an extreme deformation. Despite the significant progress in the fission studies, the isospin dependence of fission properties and, in particular, of fission barrier heights still remains an open problem. Theoretical fission model parameters are tuned by using the experimental nuclear and fission data close to stability [1]. The models provide a reasonable description of the fission barriers close to the stability line. However, large deviations are observed between predictions of different models for the fission barriers of very neutron-deficient and neutron-rich nuclei. These discrepancies (by as much as 20-30 MeV, see, e.g. [2]) become especially important in the r-process calculations for extremely neutron-rich nuclei, whose fission barriers determine the termination of the r-process by fission [3]. Unfortunately, such neutron-rich nuclei will probably not become accessible in the nearest experiments. Therefore, fission properties of exotic nuclei and especially their isospin dependence can be investigated in alternative regions of the Nuclide Chart, which are accessible for such studies now. Fusion-evaporation cross sections for heavy fissile nuclei obtained in heavy ion induced reactions as well as their fission cross sections are mainly determined by statistical properties of decaying compound nuclei (CN) and first of all by the fission-barrier heights of nuclei involved in the de-excitation chains leading to observable evaporation residues (ER). At the same time, the ER production and fission in nearly symmetric projectile-target fusion reactions leading to the most neutron-deficient CN could be strongly suppressed due to the quasi-fission (QF) effect [4], as observed recently in the 4 8C a induced reactions leading to Ra [5] and Pb [6] CN. The production of

  8. World Energy Data System (WENDS). Volume XI. Nuclear fission program summaries

    International Nuclear Information System (INIS)

    1979-06-01

    Brief management and technical summaries of nuclear fission power programs are presented for nineteen countries. The programs include the following: fuel supply, resource recovery, enrichment, fuel fabrication, light water reactors, heavy water reactors, gas cooled reactors, breeder reactors, research and test reactors, spent fuel processing, waste management, and safety and environment

  9. Study of the neutron-photon competition during fission fragment de-excitation

    International Nuclear Information System (INIS)

    Min, Dong Pil.

    1976-01-01

    A program was developed to study in detail the competition between neutron and photon emissions during the different stages of the nucleus de-excitation. The main conclusions of this work are the following: the neutron-photon competition fairly depends of the initial spin of the primary fragment. It has a strong effect on the mean number of emitted neutrons, on the photon energy, and to a lower degree, on the mean energy per neutron. A relation between the mean initial spin of the heavy fragment for the almost symmetrical fission, the mean initial spin of the heavy fragment for a very asymmetric fission and the corresponding values of the mean number of emitted neutrons is given. The mean initial excitation energy must increase of about 9MeV for the nucleus to emit one more neutron. Two reasons are given to explain the fact that the measured neutron multiplicity variance is higher for the heavy fragment than for the light one: either the existence of a covariance between spin and excitation energy distribution, or a dispersion of the values of the mean number of emitted neutrons due to the mass and charge distribution resulting from experimental incertitudes. The mean energy per neutron calculated with the program is in good agreement with measured values [fr

  10. The Influence of Uranium Content and PVA/U Ratio on Physical Propertiesof PVA-U Gel and Its Oxide

    International Nuclear Information System (INIS)

    Damunir; W, Bangun; Indra-Suryawan; Endang-Nawangsih

    2000-01-01

    The influence of uranium content and PVA/U ratio on physical propertiesof PVA-U gel and its oxide has been investigated. Fifty milliliters of uranylnitrate solution containing 100 g U/l was neutralized using 1M NH 4 0H. Thesolution was converted into PVA-U sol by adding 9.18 % PVA while mixed andheated at 80 o C for 20 minutes. In order to find spherical gel, the solsolution was dropped into a 5 M NH 4 0H solution at room temperature. Theshape formed of the gels small spherical, shape of the formed gels werefiltered, washed and heated at 120 o C. After that the gels were calcined at800 o C for 4 hours. The formed U 3 O 8 particles. Under a similar method, theinfluence of uranium content from 150-400 g/l and the influence of PVA/Uratio of 6.5-12.5 % in 100 g U/l were studied. Characterization of the resultwas obtained from physical properties of the gel and its oxide in the form ofdensity using pycnometer, surface area using surface areameter with N 2 asabsorbent and particle size/ shape using a loop and optical microscope. Theexperimental results showed that both uranium content and PVA/U ratioaffected the physical properties of the kernel properties. The best resultoccurred at uranium content of 100 g/l and PVA/U 9.18 %. The resulted gelwith solid content of 89.17 %, density of 3.36 g/l and size of 124 μm. Theresulted oxide U 3 0 8 had density of 7.98 g U/l, surface area of specific of0.449 m 2 /g and grain size of 810 μm. (author)

  11. World Energy Data System (WENDS). Volume XI. Nuclear fission program summaries

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    Brief management and technical summaries of nuclear fission power programs are presented for nineteen countries. The programs include the following: fuel supply, resource recovery, enrichment, fuel fabrication, light water reactors, heavy water reactors, gas cooled reactors, breeder reactors, research and test reactors, spent fuel processing, waste management, and safety and environment. (JWR)

  12. Influence of fusion dynamics on fission observables: A multidimensional analysis

    Science.gov (United States)

    Schmitt, C.; Mazurek, K.; Nadtochy, P. N.

    2018-01-01

    An attempt to unfold the respective influence of the fusion and fission stages on typical fission observables, and namely the neutron prescission multiplicity, is proposed. A four-dimensional dynamical stochastic Langevin model is used to calculate the decay by fission of excited compound nuclei produced in a wide set of heavy-ion collisions. The comparison of the results from such a calculation and experimental data is discussed, guided by predictions of the dynamical deterministic HICOL code for the compound-nucleus formation time. While the dependence of the latter on the entrance-channel properties can straigthforwardly explain some observations, a complex interplay between the various parameters of the reaction is found to occur in other cases. A multidimensional analysis of the respective role of these parameters, including entrance-channel asymmetry, bombarding energy, compound-nucleus fissility, angular momentum, and excitation energy, is proposed. It is shown that, depending on the size of the system, apparent inconsistencies may be deduced when projecting onto specific ordering parameters. The work suggests the possibility of delicate compensation effects in governing the measured fission observables, thereby highlighting the necessity of a multidimensional discussion.

  13. Fusion-fission dynamics and synthesis of the superheavy elements

    International Nuclear Information System (INIS)

    Abe, Yasuhisa

    2003-01-01

    Experiments of fusion-fission reactions clarify that the life time of nuclear fission is much longer than that expected from Bohr-Wheeler formula from the measurements of multiplicities of neutrons, gamma rays etc. emitted prior scission, and thereby appear to require a dynamical treatment of the process. Following the pioneering work by Kramers with the dissipation- fluctuation dynamics, the fissioning degree of freedom is described with the viewpoint of Brownian motion under incessant interactions with the heat bath particles, i.e., with nucleons in thermal equilibrium, in the present case. In the dynamical description the fission width is no more constant in time, but has a transient feature, as well as the reduction factor, the so-called Kramers factor. Both result in a longer life time, consistent with anomalous multiplicities measured. In the fusion process, Coulomb barriers play a crucial role in lighter heavy ion systems, but in very heavy systems it is known that there exists a hindrance in fusion. That is, the Coulomb barrier is not enough for determination of fusion probability, but an extra-energy above the barrier height is required for the system to fuse. This is understood by the properties of the Liquid Drop Model. After overcoming the Coulomb barrier, the ions touch with each other. But the united system, i.e., the pear-shaped configuration is located outside of the conditional saddle point or of the ridgeline. Therefore, in order to form the spherical compound nucleus, the system has to overcome one more barrier. Naturally, in such a situation, the kinetic energy carried in by the incident projectile has been more or less dissipated, i.e., the composite system is heated up. Thus, the shape evolution toward the spherical shape or toward the re-separation can be considered as a Brownian motion with the heat bath inside. The present author et al. have proposed the two-step model for fusion of massive heavy-ion systems where the fusion probability is

  14. Current experimental situation in heavy-ion reactions

    International Nuclear Information System (INIS)

    Scott, D.K.

    1978-06-01

    A detailed survey of the present experimental situation in heavy-ion physics is presented. The discussion begins by considering the simple excitation of discrete states in elastic scattering, transfer, and compound-nucleus reactions; it then turns to more drastic perturbations of the nucleus high in the continuum through fusion, fission, and deeply inelastic scattering, and concludes with the (possibly) limiting asymptotic phenomena of relativistic heavy-ion collisions. 138 figures, 5 tables, 451 references

  15. Microscopic description of the competition between spontaneous fission and α -decay in neutron-rich Ra, U and Pu nuclei

    International Nuclear Information System (INIS)

    Rodríguez-Guzmán, R; Robledo, L M

    2017-01-01

    Constrained mean-field calculations, based on the Gogny-D1M energy density functional, have been carried out to describe fission in Ra, U and Pu nuclei with neutron number 144 ≤ N ≤ 176. Fission paths, collective masses and zero-point quantum vibrational and rotational corrections are used to compute the spontaneous fission half-lives. We also pay attention to isomeric states along the considered fission paths. Alpha decay half-lives have also been computed using a parametrization of the Viola-Seaborg formula. Though there exists a strong variance of the predicted fission rates with respect to the details involved in their computation a robust trend is obtained indicating, that with increasing neutron number fission dominates over α -decay. Our results also suggest that a dynamical treatment of pairing correlations is required within the microscopic studies of the fission process in heavy nuclear systems. (paper)

  16. Critical angular momentum dependence of the fission barriers and the stability of superheavy nuclei

    International Nuclear Information System (INIS)

    Magda, M.T.; Sandulescu, A.

    1978-10-01

    Measured complete fusion and evaporation cross section data are used to determine the critical angular momenta for which the fission barriers are vanishing in the region of nuclei with Z = 102 - 116. It is shown that, in order to fit these data, larger values of the critical angular momenta are obtained for superheavy nuclei (Z = 110 - 112) than for heavy ones (Z = 102 - 107), which indicates a relatively higher stability against fission for superheavy nuclei, in agreement with the theoretically predicted island of stability. (author)

  17. Competition between fusion and quasi-fission in heavy ion induced reactions

    International Nuclear Information System (INIS)

    Back, B.B.

    1986-09-01

    Quantitative analyses of angular distributions and angle-mass correlations have been applied to the U + Ca reaction to obtain upper limit estimates for the cross sections for complete fusion near or below the interaction barrier. Extrapolating to the systems Ca + Cm and Ca + Es using the well established scaling properties of the extra push model, an estimate of the cross sections relevant to the efforts of synthesizing super-heavy elements in the region Z = 116 and N = 184 via heavy-ion fusion reactions are obtained. A simple evaporation calculation using properties of the super heavy elements shows that the failure to observe super-heavy elements with the Ca + Cm reaction is consistent with estimates of the complete fusion process. 33 refs., 9 figs., 1 tab

  18. Measurement of Fission Product Yields from Fast-Neutron Fission

    Science.gov (United States)

    Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Henderson, R.; Kenneally, J.; Macri, R.; McNabb, D.; Ryan, C.; Sheets, S.; Stoyer, M. A.; Tonchev, A. P.; Bhatia, C.; Bhike, M.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.

    2014-09-01

    One of the aims of the Stockpile Stewardship Program is a reduction of the uncertainties on fission data used for analyzing nuclear test data [1,2]. Fission products such as 147Nd are convenient for determining fission yields because of their relatively high yield per fission (about 2%) and long half-life (10.98 days). A scientific program for measuring fission product yields from 235U,238U and 239Pu targets as a function of bombarding neutron energy (0.1 to 15 MeV) is currently underway using monoenergetic neutron beams produced at the 10 MV Tandem Accelerator at TUNL. Dual-fission chambers are used to determine the rate of fission in targets during activation. Activated targets are counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. To date, data have been collected at neutron bombarding energies 4.6, 9.0, 14.5 and 14.8 MeV. Experimental methods and data reduction techniques are discussed, and some preliminary results are presented.

  19. Fission gas release behaviour in MOX fuels

    International Nuclear Information System (INIS)

    Viswanathan, U.K.; Anantharaman, S.; Sahoo, K.C.

    2002-01-01

    As a part of plutonium recycling programme MOX (U,Pu)O 2 fuels will be used in Indian boiling water reactors (BWR) and pressurised heavy water reactors (PHWR). Based on successful test irradiation of MOX fuel in CIRUS reactor, 10 MOX fuel assemblies have been loaded in the BWR of Tarapur Atomic Power Station (TAPS). Some of these MOX fuel assemblies have successfully completed the initial target average burnup of ∼16,000 MWD/T. Enhancing the burnup target of the MOX fuels and increasing loading of MOX fuels in TAPS core will depend on the feedback information generated from the measurement of released fission gases. Fission gas release behaviour has been studied in the experimental MOX fuel elements (UO 2 - 4% PuO 2 ) irradiated in pressurised water loop (PWL) of CIRUS. Eight (8) MOX fuel elements irradiated to an average burnup of ∼16,000 MWD/T have been examined. Some of these fuel elements contained controlled porosity pellets and chamfered pellets. This paper presents the design details of the experimental set up for studying fission gas release behaviour including measurement of gas pressure, void volume and gas composition. The experimental data generated is compared with the prediction of fuel performance modeling codes of PROFESS and GAPCON THERMAL-3. (author)

  20. Stability of trans-fermium elements at high spin: Measuring the fission barrier of 254No

    International Nuclear Information System (INIS)

    Henning, Greg

    2012-01-01

    Super heavy nuclei provide opportunities to study nuclear structure near three simultaneous limits: in charge Z, spin I and excitation energy E*. These nuclei exist only because of a fission barrier, created by shell effects. It is therefore important to determine the fission barrier and its spin dependence B f (I), which gives information on the shell energy E(shell)(I). Theoretical calculations predict different fission barrier heights from B f (I = 0) = 6.8 MeV for a macro-microscopic model to 8.7 MeV for Density Functional Theory calculations using the Gogny or Skyrme interactions. Hence, a measurement of B f provides a test for theories.To investigate the fission barrier, an established method is to measure the rise of fission with excitation energy, characterized by the ratio of decay widths Γ(fission)/Γ(total), using transfer reactions. However, for heavy elements such as 254 No, there is no suitable target for a transfer reaction. We therefore rely on the complementary decay widths ratio Γ γ /Γ(fission) and its spin dependence, deduced from the entry distribution (I, E*).Measurements of the gamma-ray multiplicity and total energy for 254 No have been performed with beam energies of 219 and 223 MeV in the reaction 208 Pb( 48 Ca,2n) at ATLAS (Argonne Tandem Linac Accelerator System). The 254 No gamma rays were detected using the Gammasphere array as a calorimeter - as well as the usual high resolution γ-ray detector. Coincidences with evaporation residues at the Fragment Mass Analyzer focal plane separated 254 No gamma rays from those from fission fragments, which are ≥ 10 6 more intense. From this measurement, the entry distribution - i.e. the initial distribution of I and E* - is constructed. Each point (I,E*) of the entry distribution is a point where gamma decay wins over fission and, therefore, gives information on the fission barrier. The measured entry distributions show an increase in the maximum spin and excitation energy from 219 to 223 Me

  1. Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS

    International Nuclear Information System (INIS)

    Perkasa, Y. S.; Waris, A.; Kurniadi, R.; Su'ud, Z.

    2014-01-01

    Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS have been conducted. In this work, fission cross section resulted from MCNP6 prediction will be compared with result from TALYS calculation. MCNP6 with its event generator CEM03.03 and LAQGSM03.03 have been validated and verified for several intermediate and heavy nuclides fission reaction data and also has a good agreement with experimental data for fission reaction that induced by photons, pions, and nucleons at energy from several ten of MeV to about 1 TeV. The calculation that induced within TALYS will be focused mainly to several hundred MeV for actinide and sub-actinide nuclides and will be compared with MCNP6 code and several experimental data from other evaluator

  2. Cluster expression in fission and fusion in high-dimensional macroscopic-microscopic calculations

    International Nuclear Information System (INIS)

    Iwamoto, Akira; Ichikawa, Takatoshi; Moller, Peter; Sierk, Arnold J.

    2004-01-01

    We discuss the relation between the fission-fusion potential-energy surfaces of very heavy nuclei and the formation process of these nuclei in cold-fusion reactions. In the potential-energy surfaces, we find a pronounced valley structure, with one valley corresponding to the cold-fusion reaction, the other to fission. As the touching point is approached in the cold-fusion entrance channel, an instability towards dynamical deformation of the projectile occurs, which enhances the fusion cross section. These two 'cluster effects' enhance the production of superheavy nuclei in cold-fusion reactions, in addition to the effect of the low compound-system excitation energy in these reactions. Heavy-ion fusion reactions have been used extensively to synthesize heavy elements beyond actinide nuclei. In order to proceed further in this direction, we need to understand the formation process more precisely, not just the decay process. The dynamics of the formation process are considerably more complex than the dynamics necessary to interpret the spontaneous-fission decay of heavy elements. However, before implementing a full dynamical description it is useful to understand the basic properties of the potential-energy landscape encountered in the initial stages of the collision. The collision process and entrance-channel landscape can conveniently be separated into two parts, namely the early-stage separated system before touching and the late-stage composite system after touching. The transition between these two stages is particularly important, but not very well understood until now. To understand better the transition between the two stages we analyze here in detail the potential energy landscape or 'collision surface' of the system both outside and inside the touching configuration of the target and projectile. In Sec. 2, we discuss calculated five-dimensional potential-energy landscapes inside touching and identify major features. In Sec. 3, we present calculated

  3. [Fission product yields of 60 fissioning reactions]. Final report

    International Nuclear Information System (INIS)

    Rider, B.F.

    1995-01-01

    In keeping with the statement of work, I have examined the fission product yields of 60 fissioning reactions. In co-authorship with the UTR (University Technical Representative) Talmadge R. England ''Evaluation and Compilation of Fission Product Yields 1993,'' LA-UR-94-3106(ENDF-349) October, (1994) was published. This is an evaluated set of fission product Yields for use in calculation of decay heat curves with improved accuracy has been prepared. These evaluated yields are based on all known experimental data through 1992. Unmeasured fission product yields are calculated from charge distribution, pairing effects, and isomeric state models developed at Los Alamos National Laboratory. The current evaluation has been distributed as the ENDF/B-VI fission product yield data set

  4. The Munich accelerator for fission fragments MAFF

    International Nuclear Information System (INIS)

    Habs, D.; Gross, M.; Assmann, W.; Ames, F.; Bongers, H.; Emhofer, S.; Heinz, S.; Henry, S.; Kester, O.; Neumayr, J.; Ospald, F.; Reiter, P.; Sieber, T.; Szerypo, J.; Thirolf, P.G.; Varentsov, V.; Wilfart, T.; Faestermann, T.; Kruecken, R.; Maier-Komor, P.

    2003-01-01

    The Munich Accelerator for Fission Fragments MAFF has been designed for the new Munich research reactor FRM-II. It will deliver several intense beams (∼3x10 11 s -1 ) of very neutron-rich fission fragments with a final energy of 30 keV (low-energy beam) or energies between 3.7 and 5.9 MeV·A (high-energy beam). Such beams are of interest for the creation of super-heavy elements by fusion reactions, nuclear spectroscopy of exotic nuclei, but they also have a potential for applications, e.g. in medicine. Presently the Munich research reactor FRM-II is ready for operation, but authorities delay the final permission to turn the reactor critical probably till the end of 2002. Only after this final permission the financing of the major parts of MAFF can start. On the other hand all major components have been designed and special components have been tested in separate setups

  5. Thermal-Neutron-Induced Fission of U235, U233 and Pu239

    International Nuclear Information System (INIS)

    Thomas, T.D.; Gibson, W.M.; Safford, G.J.

    1965-01-01

    We have used solid-state detectors to measure the kinetic energies of the coincident fission fragments in the thermal-neutron-induced fission of U 235 , U 233 and Pu 239 . Special care has been taken to eliminate spurious-events near symmetry to give an accurate measure of such quantities as the average total kinetic energy at symmetry. For each fissioning system over 10 6 events were recorded. As a result the statistics are good enough to see definite evidence for fine structure over a wide range of masses and energies. The data have been analysed to give mass yield curves, average kinetic energies as a function of mass, and other quantities of interest. For each fissioning system the average total kinetic energy goes through a maximum for a heavy fragment mass of about 132 and for the corresponding light fragment mass. There is a pronounced minimum at symmetry, although not as deep as that found in time-of-flight experiments. The difference between the maximum average kinetic energy and that at symmetry is about 32 MeV for U 235 , 18 MeV for U 233 and 20 MeV for Pu 239 . The dispersion of kinetic energies at symmetry is also smaller than that found in time-of-flight experiments. Fine structure is apparent in two different representations of the data. The energy spectrum of heavy fragments in coincidence with light fragment energies is greater than the most probable value. This structure becomes more pronounced as the light fragment energy increases. The mass yield curves for a given total kinetic energy show a structure suggesting a preference for fission fragments with masses ∼134, ∼140 and ∼145 (and their light fragment partners). Much of the structure observed can be understood by considering a semi-empirical mass surface and a simple model for the nuclear configuration at the saddle point. (author) [fr

  6. Fission level densities

    International Nuclear Information System (INIS)

    Maslov, V.M.

    1998-01-01

    Fission level densities (or fissioning nucleus level densities at fission saddle deformations) are required for statistical model calculations of actinide fission cross sections. Back-shifted Fermi-Gas Model, Constant Temperature Model and Generalized Superfluid Model (GSM) are widely used for the description of level densities at stable deformations. These models provide approximately identical level density description at excitations close to the neutron binding energy. It is at low excitation energies that they are discrepant, while this energy region is crucial for fission cross section calculations. A drawback of back-shifted Fermi gas model and traditional constant temperature model approaches is that it is difficult to include in a consistent way pair correlations, collective effects and shell effects. Pair, shell and collective properties of nucleus do not reduce just to the renormalization of level density parameter a, but influence the energy dependence of level densities. These effects turn out to be important because they seem to depend upon deformation of either equilibrium or saddle-point. These effects are easily introduced within GSM approach. Fission barriers are another key ingredients involved in the fission cross section calculations. Fission level density and barrier parameters are strongly interdependent. This is the reason for including fission barrier parameters along with the fission level densities in the Starter File. The recommended file is maslov.dat - fission barrier parameters. Recent version of actinide fission barrier data obtained in Obninsk (obninsk.dat) should only be considered as a guide for selection of initial parameters. These data are included in the Starter File, together with the fission barrier parameters recommended by CNDC (beijing.dat), for completeness. (author)

  7. Consultancy to review and finalize the IAEA publication 'Compendium on the use of fusion/fission hybrids for the utilization and transmutation of actinides and long-lived fission products'. Working material

    International Nuclear Information System (INIS)

    2004-01-01

    In addition to the traditional fission reactor research, fusion R and D activities are becoming of interest also to nuclear fission power development. There is renewed interest in utilizing fusion neutrons, Heavy Liquid Metals, and molten salts for innovative systems (energy production and transmutation). Indeed, for nuclear power development to become sustainable as a long-term energy option, innovative fuel cycle and reactor technologies will have to be developed to solve the problems of resource utilization and long-lived radioactive waste management. In this context Member States clearly expressed the need for comparative assessments of various transmutation reactors. Both the fusion and fission communities are currently investigating the potential of innovative reactor and fuel cycle strategies that include a fusion/fission system. The attention is mainly focused on substantiating the potential advantages of such systems: utilization and transmutation of actinides and long-lived fission products, intrinsic safety features, enhanced proliferation resistance, and fuel breeding capabilities. An important aspect of the ongoing activities is the comparison with the accelerator driven subcritical system (spallation neutron source), which is the other main option for producing excess neutrons. Apart from comparative assessments, knowledge preservation is another subject of interest to the Member States: the goal, applied to fusion/fission systems, is to review the status of, and to produce a 'compendium' of past and present achievements in this area

  8. Radiochemical study of the reactions of heavy ions with gold

    International Nuclear Information System (INIS)

    Binder, I.

    1977-07-01

    Thick gold foils have been bombarded with heavy-ion projectiles at energies above the Coulomb barrier. The radioactive products were identified and their yields measured using gamma-ray spectrometry and an extensive series of computer programs developed for the data analysis. The total mass-yield distribution was extracted from the data using charge-dispersion curves inferred from the experimental results. One observes a change in the mass-yield distributions corresponding to primarily fusion-fission tractions occurring with the lighter projectiles Ne-20 and Ar-40 and deep-inelastic transfer reactions predominating with heavier Kr-84, Kr-86, and Xe-136 projectiles. For the deep-inelastic transfer reaction, more mass transfer is seen to occur for a higher incident projectile energy, and the Gaussian distribution of products shows exponential tailing. The preferred direction for mass transfer is from gold to the projectile nucleus. Sequential fission is a likely fate for nucludes beyond the lead shell closure. The ''gold finger'' is explained as a combination of mass transfer, nucleon evaporation and sequential fission. The yields of gold nuclides indicate a superposition of two reaction mechanisms, quasi-elastic and deep-inelastic. The angular momentum involved with each mechanism determines which of two isomeric states is the end product of the nuclear reaction. Suggestions are offered regarding the possibility of synthesizing super-heavy elements by use of heavy-ion nuclear reactions

  9. Radiochemical study of the reactions of heavy ions with gold

    Energy Technology Data Exchange (ETDEWEB)

    Binder, I.

    1977-07-01

    Thick gold foils have been bombarded with heavy-ion projectiles at energies above the Coulomb barrier. The radioactive products were identified and their yields measured using gamma-ray spectrometry and an extensive series of computer programs developed for the data analysis. The total mass-yield distribution was extracted from the data using charge-dispersion curves inferred from the experimental results. One observes a change in the mass-yield distributions corresponding to primarily fusion-fission tractions occurring with the lighter projectiles Ne-20 and Ar-40 and deep-inelastic transfer reactions predominating with heavier Kr-84, Kr-86, and Xe-136 projectiles. For the deep-inelastic transfer reaction, more mass transfer is seen to occur for a higher incident projectile energy, and the Gaussian distribution of products shows exponential tailing. The preferred direction for mass transfer is from gold to the projectile nucleus. Sequential fission is a likely fate for nucludes beyond the lead shell closure. The ''gold finger'' is explained as a combination of mass transfer, nucleon evaporation and sequential fission. The yields of gold nuclides indicate a superposition of two reaction mechanisms, quasi-elastic and deep-inelastic. The angular momentum involved with each mechanism determines which of two isomeric states is the end product of the nuclear reaction. Suggestions are offered regarding the possibility of synthesizing super-heavy elements by use of heavy-ion nuclear reactions.

  10. Sequential and double sequential fission observed in heavy ion interaction of (11.67 MeV/u){sup 197}Au projectile with {sup 197}Au target

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, Tabassum [Gomal University, Dera Ismail Khan (Pakistan). Dept. of Physics; Khan, Ehsan Ullah [COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan). Dept. of Physics; Baluch, Javaid Jahan [COMSATS Institute of Information Technology (CIIT), Abbottabad, (Pakistan). Dept. of Environmental Sciences; Shafi-Ur-Rehman, [PAEC, Dera Ghazi Khan (Pakistan). ISL Project; Matiullah, [PINSTECH, Nilore, Islamabad (Pakistan). Physics Div.; Rafique, Muhammad [University of Azad Jammu and Kashmir, Muzaffarabad (Pakistan). Dept. of Physics

    2009-09-15

    The heavy ion interaction of 11.67 MeV/u {sup 197}Au+ {sup 197}Au has been investigated using mica as a passive detector. By employing Solid State Nuclear Track Detection Technique the data of elastic scattering as well as inelastic reaction channel was collected. The off-line data analysis of multi-pronged events was performed by measuring the three-dimensional geometrical coordinates of correlated tracks on event-by-event basis. Multi pronged events observed in this reaction were due to sequential and double sequential fission. Using a computer code PRONGY based on the procedure of internal calibration, it was possible to derive quantities like mass transfer, total kinetic energy loss and scattering angles. (author)

  11. Mass and kinetic-energy distributions of fragments formed in the heavy-ion-induced fission of 208Po

    International Nuclear Information System (INIS)

    Cuninghame, J.G.; Goodall, J.A.B.

    1980-01-01

    Fission fragments following the decay of a 208 Po compound nucleus have been observed by using radiochemical and particle-counting techniques. The (α+ 204 Pb), ( 12 C+ 196 Pt) and ( 16 O+ 192 Os) reactions were studied at two or three bombarding energies, covering overlapping ranges of excitation energies. - Radiochemical separations of As, Br, Y, Nb, Tc, Ag, Sb and I isotopes were made from catcher foils sandwiching isotopic targets, and their isotopic yield distributions determined. The distributions are used to estimate the average number of neutrons associated with each fission event, including neutrons emitted before and after fission. - Prompt coincidence measurements of fragments are used to derive the overall mass and kinetic-energy distributions of primary fragments, taking into account the effects of pre- and post-fission neutron emission. The mass distributions are well fitted by the statistical theory, at a temperature corresponding to an excitation about 10 MeV above that at the saddle point. No evidence is found for an increase of kinetic-energy with increasing angular momentum of the compound nucleus. (author)

  12. Inverse kinematics technique for the study of fission-fragment isotopic yields at GANIL energies

    International Nuclear Information System (INIS)

    Delaune, O.

    2012-01-01

    The characteristics of the fission-products distributions result of dynamical and quantum properties of the deformation process of the fissioning nucleus. These distributions have also an interest for the conception of new nuclear power plants or for the transmutation of the nuclear wastes. Up to now, our understanding of the nuclear fission remains restricted because of experimental limitations. In particular, yields of the heavy fission products are difficult to get with precision. In this work, an innovative experimental technique is presented. It is based on the use of inverse kinematics coupled to the use of a spectrometer, in which a 238 U beam at 6 or 24 A MeV impinges on light targets. Several actinides, from 238 U to 250 Cf, are produced by transfer or fusion reactions, with an excitation energy ranges from ten to few hundreds MeV depending on the reaction and the beam energy. The fission fragments of these actinides are detected by the VAMOS spectrometer or the LISE separator. The isotopic yields of fission products are completely measured for different fissioning systems. The neutron excess of the fragments is used to characterise the isotopic distributions. Its evolution with excitation energy gives important insights on the mechanisms of the compound-nucleus formation and its deexcitation. Neutron excess is also used to determine the multiplicity of neutrons evaporated by the fragments. The role of the proton and neutron shell effects into the formation of fission fragments is also discussed. (author) [fr

  13. Pion-induced fission of 209Bi and 119Sn: measurements, calculations, analyses and comparison

    International Nuclear Information System (INIS)

    Rana, M.A.; Sher, G.; Manzoor, S.; Shehzad, M.I.

    2011-01-01

    Cross-sections for the π - -induced fission of 209 Bi and 119 Sn have been measured using the most sensitive CR-39 solid-state nuclear track detector. In experiments, target–detector stacks were exposed to negative pions of energy 500, 672, 1068, and 1665 MeV at the Brookhaven National Laboratory, USA. An important aspect of the present paper is the comparison of pion-induced fission fragment spectra of above mentioned nuclei with the spontaneous fission fragment spectra of 252 Cf. This comparison is made in terms of fission fragment track lengths in the CR-39 detectors. Measurement results are compared with calculations of Monte Carlo and statistical weight functions methods using the computer code CEM95. Agreement between measurements and calculations is fairly good for 209 Bi target nuclei whereas it is indigent for the case of 119 Sn. The possibilities of the trustworthy calculations, using the computer code CEM95, comparable with measurements of pion-induced fission in intermediate and heavy nuclei are explored by employing various systematics available in the code. Energy dependence of pion-induced fission in 119 Sn and 209 Bi is analyzed employing a newly defined parameter geometric-size-normalized fission cross-section (χ f g ). It is found that the collective nuclear excitations, which may lead to fission, become more probable for both 209 Bi and 119 Sn nuclei with increasing energy of negative pions from 500 to 1665 MeV. (author)

  14. Study of actinides fission induced by multi-nucleon transfer reactions in inverse kinematics

    International Nuclear Information System (INIS)

    Derkx, X.

    2010-10-01

    The study of actinide fission encounters two major issues. On one hand, measurements of the fission fragment distributions and the fission probabilities allow a better understanding of the fission process itself and the discrimination among the models of nuclear structure and dynamics. On the other hand, new measurements are required to improve nuclear data bases, which are a key component for the design of new generation reactors and radio-toxic waste incinerators. This thesis is in line with different French and American experimental projects using the surrogate method, i.e. transfer reactions leading to the same compound nuclei as in neutron irradiation, allowing the study of fission of actinides which are inaccessible by conventional techniques, whereas they are important for applications. The experiment is based on multi-nucleon transfer reactions between a 238 U beam and a 12 C target, using the inverse kinematics technique to measure, for each transfer channel, the complete isotopic distributions of the fission fragments with the VAMOS spectrometer. The work presented in this dissertation is focused on the identification of the transfer channels and their properties, as their angular distributions and the distributions of the associated excitation energy, using the SPIDER telescope to identify the target recoil nuclei. This work of an exploratory nature aims to generalize the surrogate method to heavy transfers and to measure, for the first time, the fission probabilities in inverse kinematics. The obtained results are compared with available direct kinematics and neutron irradiation measurements. (author)

  15. Stablité des Eléments Trans-ferminums à Haut Spin : Mesure de la barrière de fission de 254No

    OpenAIRE

    Henning , Gregoire

    2012-01-01

    Super heavy nuclei provide opportunities to study nuclear structure near three simultaneous limits: in charge Z, spin I and excitation energy E∗. These nuclei exist only because of a fission barrier, created by shell effects. It is therefore important to determine the fission barrier and its spin dependence Bf(I), which gives information on the shell energy Eshell(I). Theoretical calculations predict different fission barrier heights from Bf(I = 0) = 6.8 MeV for a macro-microscopic model to 8...

  16. Emission of light charged particles from fragments produced on fission of uranium nuclei by 153 MeV protons and 1700 MeV negative pions

    International Nuclear Information System (INIS)

    Belovitzky, G.E.; Shteingrad, O.M.

    2000-01-01

    The mechanism underlying the emission of light charged particles (LCP) with Z = 1, 2 from fragments produced in fission of uranium nuclei by 153 MeV protons and 1700 MeV negative pions was studied. It was found that LCP accompanying the fission by pions are emitted from non-accelerated fragments immediately after the fission, whereas in the case of 153 MeV protons, the LCP are emitted from the accelerated heavy fragments. The number of LCP emitted in the course of pion-induced fission is 0.7 per fission event, which exceeds by a factor of 30 the corresponding number for 153 MeV protons [ru

  17. Fission in R-processes Elements (FIRE) - Annual Report: Fiscal Year 2017

    Energy Technology Data Exchange (ETDEWEB)

    Schunck, Nicolas [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-18

    The goal of the FIRE topical collaboration in nuclear theory is to determine the astrophysical conditions of the rapid neutron capture process (r-process), which is responsible for the formation of heavy elements. This will be achieved by including in r-process simulations the most advanced models of fission (spontaneous, neutron-induced, beta-delayed) that have been developed at LLNL and LANL. The collaboration is composed of LLNL (lead) and LANL for work on nuclear data (ground-state properties, fission, beta-decay), BNL for nuclear data management, and the university of Notre Dame and North Carolina State University for r-process simulations. Under DOE/NNSA agreement, both universities receive funds from the DOE Office of Science, while national laboratories receive funds directly from NA221.

  18. Post-scission fission theory: Neutron emission in fission

    International Nuclear Information System (INIS)

    Madland, D.G.

    1997-01-01

    A survey of theoretical representations of two of the observables in neutron emission in fission is given, namely, the prompt fission neutron spectrum N (E) and the average prompt neutron multiplicity bar ν p . Early representations of the two observables are presented and their deficiencies are discussed. This is followed by summaries and examples of recent theoretical models for the calculation of these quantities. Emphasis is placed upon the predictability and accuracy of the recent models. In particular, the dependencies of N (E) and bar ν p upon the fissioning nucleus and its excitation energy are treated. Recent work in the calculation of the prompt fission neutron spectrum matrix N (E, E n ), where E n is the energy of the neutron inducing fission, is then discussed. Concluding remarks address the current status of our ability to calculate these observables with confidence, the direction of future theoretical efforts, and limitations to current (and future) approaches

  19. Fission products collecting devices

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshi

    1979-01-01

    Purpose: To enable fission products trap with no contamination to coolants and cover gas by the provision of a fission products trap above the upper part of a nuclear power plant. Constitution: Upon fuel failures in a reactor core, nuclear fission products leak into coolants and move along the flow of the coolants to the coolants above the reactor core. The fission products are collected in a trap container and guided along a pipeline into fission products detector. The fission products detector monitors the concentration of the fission products and opens the downstream valve of the detector when a predetermined concentration of the fission products is detected to introduce the fission products into a waste gas processing device and release them through the exhaust pipe. (Seki, T.)

  20. Realistic fission models, new beta-decay half-lives and the r-process in neutron star mergers

    International Nuclear Information System (INIS)

    Shibagaki, S.; Kajino, T.; Chiba, S.; Lorusso, G.; Nishimura, S.; Mathews, G. J.

    2014-01-01

    Almost half of heavy nuclei beyond iron are considered to be produced by rapid neutron capture process (r-process). This process occurs in the neutron-rich environment such as core-collapse supernovae or neutron star mergers, but the main production site is still unknown. In the r-process of neutron star mergers, nuclear fission reactions play an important role. Also beta-decay half-lives of magic nuclei are crucial for the r-process. We have carried out r-process nucleosynthesis calculations based upon new theoretical estimates of fission fragment distributions and new beta-decay half-lives for N=82 nuclei measured at RIBF-RIKEN. We investigate the effect of nuclear fission on abundance patterns in the matter ejected from neutron star mergers with two different fission fragment mass distributions. We also discuss how the new experimental beta-decay half-lives affect the r-process

  1. Accumulation of Long-lived activity in heavy metal liquid targets

    International Nuclear Information System (INIS)

    Shubin, Y. N.; Gai, E. V.; Ignatyuk, A. V.; Lunev, V. P.

    1997-01-01

    The calculations and analysis of the accumulation of radioactive nuclei and long-lived activity in heavy metal liquid targets were performed. The dominating contributions to the total radioactivity of radionuclides resulting from fission, spallation reactions and radiative capture by target nuclei for various irradiation and cooling times were calculated and analyzed. The most important parts of neutron and proton spectra were determined that give the dominant contributions to the total and partial activity of the targets. The contributions of fission products to the target activity and partial activities of main long-lived fission products were evaluated. The results of the calculations are compared with the data on Energy Amplifier Project. (Author) 12 refs

  2. Respectives of heavy ion physics in JINR

    International Nuclear Information System (INIS)

    Flerov, G.N.

    1983-01-01

    Perspectives of heavy ion physics in JINR are discussed. The main attention is paid to directions that are connected with the application of intensive beams of U-400 cyclotron. Experiments into studying stability limits of heavy atomic nuclei are considered. The possibility of using beams of heavy ions in applied fields, particularly for the production of very thin nuclear filters is noted. Prospects of synthesis of superheavy elements (SHE) and SHE search in nature are also considered. The data on the events of spontaneous fission found in meteorite and hydrotherms and the data on lengths of tracks in olivines from meteorite prove the possibility of obtaining evidences of SHE existence in nature

  3. Fission-product yields for thermal-neutron fission of curium-243

    International Nuclear Information System (INIS)

    Breederland, D.G.

    1982-01-01

    Cumulative fission yields for 25 gamma rays emitted during the decay of 23 fission products produced by thermal-neutron fission of 243 Cm have been determined. Using Ge(Li) spectroscopy, 33 successive pulse-height spectra of gamma rays emitted from a 77-ng sample of 243 Cm over a period of approximately two and one-half months were analyzed. Reduction of these spectra resulted in the identification and matching of gamma-ray energies and half-lives to specific radionuclides. Using these results, 23 cumulative fission-product yields were calculated. Only those radionuclides having half-lives between 6 hours and 65 days were observed. Prior to this experiment, no fission-product yields had been recorded for 243 Cm

  4. Thirty years of nuclear fission in Yugoslavia

    Energy Technology Data Exchange (ETDEWEB)

    Pesic, M; Stefanovic, D [Boris Kidric Institute of Nuclear Sciences VINCA, Belgrade (Yugoslavia)

    1989-07-01

    Experimental nuclear reactor 'RB' in Boris Kidric Institute in Vinca is the first nuclear facility built in Yugoslavia in which the first Yugoslav controlled nuclear fission was achieved thirty years ago on April 26, 1958. Designed by Yugoslav scientist as a bare, natural uranium-heavy water critical assembly, the 'RB' reactor has survived a series of modifications trying to follow directions of contemporary nuclear research. The actual 'RB' reactor technical characteristics and experimental possibilities are described. The modifications are underlined, the experience gained and plans for future are presented. A brief review of reactor operation and experiments performed is shown. (author)

  5. Neutron emission as a probe of fusion-fission and quasi-fission dynamics

    International Nuclear Information System (INIS)

    Hinde, D.J.

    1991-01-01

    Pre- and post scission neutron yeilds have been measured as a function of projectile mass, compound nucleus fissility, and fission mass-split and total kinetic energy (TKE) for 27 fusion-fission and quasi-fission reactions induced by beams of 16,18 O, 40 Ar and 64 Ni. A new method of interpretation of experimental pre-scission neutron multiplicities ν-pre and mean kinetic energies ε ν allows the extraction of fission time scales with much less uncertainty than previously, all fusion-fission results being consistent with a dynamical time scale of (35±15) x 10 -21 s for symmetric fission. All reactions show that ν-pre falls quite rapidly with increasing mass-asymmetry; evidence is presented that for fusion-fission reactions this is partly due to a reduction of the dynamical fission time scale with mass-asymmetry. For quasi-fission, the data indicate that the pre-scission multiplicity and mean neutron kinetic energy are very sensitive to the final mass-asymmetry, but that the time scale is virtually independent of mass-asymmetry. It is concluded that for fusion-fission there is no dependence of ν-pre on TKE, whilst for 64 Ni-induced quasi-fission reactions, a strong increase of ν-pre with decreasing TKE is observed, probably largely caused by neutron emission during the acceleration time of the fission fragments in these fast reactions. Interpretation of post-scission multiplicities in terms of fragment excitation energies leads to deduced time scales consistent with those determined from the pre-scission data. 54 refs., 17 tabs., 25 figs

  6. Energy released in fission

    International Nuclear Information System (INIS)

    James, M.F.

    1969-05-01

    The effective energy released in and following the fission of U-235, Pu-239 and Pu-241 by thermal neutrons, and of U-238 by fission spectrum neutrons, is discussed. The recommended values are: U-235 ... 192.9 ± 0.5 MeV/fission; U-238 ... 193.9 ± 0.8 MeV/fission; Pu-239 ... 198.5 ± 0.8 MeV/fission; Pu-241 ... 200.3 ± 0.8 MeV/fission. These values include all contributions except from antineutrinos and very long-lived fission products. The detailed contributions are discussed, and inconsistencies in the experimental data are pointed out. In Appendix A, the contribution to the total useful energy release in a reactor from reactions other than fission are discussed briefly, and in Appendix B there is a discussion of the variations in effective energy from fission with incident neutron energy. (author)

  7. Neutron threshold activation detectors (TAD) for the detection of fissions

    Science.gov (United States)

    Gozani, Tsahi; Stevenson, John; King, Michael J.

    2011-10-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons (≈3 vs. ≈0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron "flash") where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector material. The technique

  8. Neutron threshold activation detectors (TAD) for the detection of fissions

    International Nuclear Information System (INIS)

    Gozani, Tsahi; Stevenson, John; King, Michael J.

    2011-01-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons (∼3 vs. ∼0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron 'flash') where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector material. The technique

  9. Neutron threshold activation detectors (TAD) for the detection of fissions

    Energy Technology Data Exchange (ETDEWEB)

    Gozani, Tsahi, E-mail: tgozani@rapiscansystems.com [Rapiscan Laboratories, Inc., 520 Almanor Ave., Sunnyvale, CA 94085 (United States); Stevenson, John; King, Michael J. [Rapiscan Laboratories, Inc., 520 Almanor Ave., Sunnyvale, CA 94085 (United States)

    2011-10-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons ({approx}3 vs. {approx}0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron 'flash') where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector

  10. The evaluation for reference fission yield of 238U fission

    International Nuclear Information System (INIS)

    Liang Qichang; Liu Tingjin

    1998-01-01

    In the fission yield data evaluation and measurement, the reference yield is very important, good or poor recommended or measurement values depend upon the reference data to a great extent. According to the CRP's requirement, the evaluation of reference fission yields have been and will be carried out in CNDC, as a part of the whole work (contract No.9504/R 0 /Regular Budget Fund), the evaluation for 29 reference fission yields of 15 product nuclides from 238 U fission have been completed

  11. Recent Results from Lohengrin on Fission Yields and Related Decay Properties

    Science.gov (United States)

    Serot, O.; Amouroux, C.; Bidaud, A.; Capellan, N.; Chabod, S.; Ebran, A.; Faust, H.; Kessedjian, G.; Köester, U.; Letourneau, A.; Litaize, O.; Martin, F.; Materna, T.; Mathieu, L.; Panebianco, S.; Regis, J.-M.; Rudigier, M.; Sage, C.; Urban, W.

    2014-05-01

    The Lohengrin mass spectrometer is one of the 40 instruments built around the reactor of the Institute Laue-Langevin (France) which delivers a very intense thermal neutron flux. Usually, Lohengrin was combined with a high-resolution ionization chamber in order to obtain good nuclear charge discrimination within a mass line, yielding an accurate isotopic yield determination. Unfortunately, this experimental procedure can only be applied for fission products with a nuclear charge less than about 42, i.e. in the light fission fragment region. Since 2008, a large collaboration has started with the aim of studying various fission aspects, mainly in the heavy fragment region. For that, a new experimental setup which allows isotopic identification by γ-ray spectrometry has been developed and validated. This technique was applied on the 239Pu(nth,f) reaction where about 65 fission product yields were measured with an uncertainty that has been reduced on average by a factor of 2 compared with what was that previously available in nuclear data libraries. The same γ-ray spectrometric technique is currently being applied to the study of the 233U(nth,f) reaction. Our aim is to deduce charge and mass distributions of the fission products and to complete the experimental data that exist mainly for light fission fragments. The measurement of 41 mass yields from the 241Am(2nth,f) reaction has been also performed. In addition to these activities on fission yield measurements, various new nanosecond isomers were discovered. Their presence can be revealed from a strong deformed ionic charge distribution compared to a 'normal' Gaussian shape. Finally, a new neutron long-counter detector designed to have a detection efficiency independent of the detected neutron energy has been built. Combining this neutron device with a Germanium detector and a beta-ray detector array allowed us to measure the beta-delayed neutron emission probability Pn of some important fission products for reactor

  12. Fission yield covariance generation and uncertainty propagation through fission pulse decay heat calculation

    International Nuclear Information System (INIS)

    Fiorito, L.; Diez, C.J.; Cabellos, O.; Stankovskiy, A.; Van den Eynde, G.; Labeau, P.E.

    2014-01-01

    Highlights: • Fission yield data and uncertainty comparison between major nuclear data libraries. • Fission yield covariance generation through Bayesian technique. • Study of the effect of fission yield correlations on decay heat calculations. • Covariance information contribute to reduce fission pulse decay heat uncertainty. - Abstract: Fission product yields are fundamental parameters in burnup/activation calculations and the impact of their uncertainties was widely studied in the past. Evaluations of these uncertainties were released, still without covariance data. Therefore, the nuclear community expressed the need of full fission yield covariance matrices to be able to produce inventory calculation results that take into account the complete uncertainty data. State-of-the-art fission yield data and methodologies for fission yield covariance generation were researched in this work. Covariance matrices were generated and compared to the original data stored in the library. Then, we focused on the effect of fission yield covariance information on fission pulse decay heat results for thermal fission of 235 U. Calculations were carried out using different libraries and codes (ACAB and ALEPH-2) after introducing the new covariance values. Results were compared with those obtained with the uncertainty data currently provided by the libraries. The uncertainty quantification was performed first with Monte Carlo sampling and then compared with linear perturbation. Indeed, correlations between fission yields strongly affect the uncertainty of decay heat. Eventually, a sensitivity analysis of fission product yields to fission pulse decay heat was performed in order to provide a full set of the most sensitive nuclides for such a calculation

  13. Decay of giant resonance E2 isoscalar in heavy nuclei

    International Nuclear Information System (INIS)

    Herdade, S.B.

    1980-01-01

    In this work, it is made a study of the giant resonance E2 isoscalar, in heavy nuclei. Fission probabilities for this resonance were determined by various authors, in different experiments, for 238 U. (A.C.A.S.) [pt

  14. Computer program FPIP-REV calculates fission product inventory for U-235 fission

    Science.gov (United States)

    Brown, W. S.; Call, D. W.

    1967-01-01

    Computer program calculates fission product inventories and source strengths associated with the operation of U-235 fueled nuclear power reactor. It utilizes a fission-product nuclide library of 254 nuclides, and calculates the time dependent behavior of the fission product nuclides formed by fissioning of U-235.

  15. Heavy ion interactions of deformed nuclei. Progress report, May 1, 1984-December 31, 1984

    International Nuclear Information System (INIS)

    Oberacker, V.E.

    1984-11-01

    This progress report describes the main topics that were investigated during the reporting period: (a) a new microscopic approach to the calculation of heavy ion interaction potentials; (b) the dynamical orientation of deformed heavy nuclei near the distance of closest approach; and (c) the theory of Coulomb fission (project finished in Sept.)

  16. Studies on short-lived fission products at the Mainz TRIGA reactor

    International Nuclear Information System (INIS)

    Trautmann, N.

    1974-01-01

    Neutron-rich nuclei of medium mass number are produced by thermal-neutron-induced fission of heavy elements, e.g., 235 U, 239 Pu, and 249 Cf. Pulse irradiations lead to an enhancement of the ratio of short-lived activities to the accompanying longer-lived components. One approach for investigating the properties of short-lived nuclei consists in a combination of rapid chemical separations with higher-resolution gamma spectroscopy. This is demonstrated by the isolation of neutron-rich isotopes of niobium by sorption on glass and of ruthenium by solvent extraction. Other rapid separation procedures from aqueous solutions are briefly summarized and a few examples for their application in nuclear fission- and delayed neutron studies are given. Some experiments with an on-line mass separator of the ISOLDE-type, using chemical targets, are described. (U.S.)

  17. Dynamical effects and time scale in fission processes in nuclear collisions in the Fermi energy range

    International Nuclear Information System (INIS)

    Colin, J.; Bocage, F.; Louvel, M.

    1999-10-01

    Recent experimental results concerning heavy systems (Pb+Au, Pb+Ag, Pb+Al, Gd+U, Gd+C, Ta+Au, U+U, U+C, Xe+Sn...) obtained at Ganil by the Indra and Nautilus collaborations will be presented. A study of reaction mechanisms has shown the dominant binary and highly dissipative character of the process. The two heavy and excited fragments produced after the first stage of the interaction can experience various decay modes: evaporation, fission, multifragmentation. However, deviations from this simple picture have been found by analysing angular and velocity distribution of light charge particles, IMF's (Intermediate Mass Fragment) and fragments. Indeed, there is an amount of matter in excess emitted in-between the two primary sources suggesting either the existence of a mi-rapidity source similar to the one observed in the relativistic regime (participants) or a strong deformation induced by the dynamics of the collision (neck instability). This last scenario is explored by analysing in details the angular distributions of the fission fragments. More precisely, we observed two components: the first one is isotropic and consistent with the predictions of a statistical model, the second is aligned along the velocity direction of the fissioning nuclei and has to be compared with the predictions of dynamical calculations. In this talk, we present the probability associated to each component as a function of the system size, the charge asymmetry of the fission fragments, the incident energy and the impact parameter. From the statistical component we extract the temperature, the charge and the angular momentum of the fissioning nuclei. From the second component we propose a scenario to explain such process and we discuss the physical parameters which can be extracted. (authors)

  18. Dynamical effects and time scale in fission processes in nuclear collisions in the fermi energy range

    International Nuclear Information System (INIS)

    Colin, J.; Bocage, F.; Louvel, M.; Bellaize, N.; Bougault, R.; Brou, R.; Cussol, D.; Durand, D.; Genouin-Duhamel, E.; Lecolley, J.F.; Le Neindre, N.; Lopez, O.; Nguyen, A.D.; Peter, J.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Brun, C. le; Genoux-Lubain, A.

    1999-01-01

    Recent experimental results concerning heavy systems (Pb+Au, Pb+Ag, Pb+Al, Gd+U, Gd+C, Ta+Au, U+U, U+C, Xe+Sn... o btained at Ganil by the Indra and Nautilus collaborations will be presented. A study of reaction mechanisms has shown the dominant binary and highly dissipative character of the process. The two heavy and excited fragments produced after the first stage of the interaction can experience various decay modes: evaporation, fission, multifragmentation. However, deviations from this simple picture have been found by analysing angular and velocity distributions of light charge particles, IMF's (Intermediate Mass Fragment) and fragments. Indeed, there is an amount of matter in excess emitted in-between the two primary sources suggesting either the existence of a mid-rapidity source similar to the one observed in the relativistic regime (participants) or a strong deformation induced by the dynamics of the collision (neck instability). This last scenario is explored by analysing in details the angular distributions of the fission fragments. More precisely, authors observed two components: The first one is isotropic and consistent with the predictions of a statistical model, the second is aligned along the velocity direction of the fissioning nuclei and has to be compared with the predictions of dynamical calculations. In this talk, authors present the probability associated to each component as a function of the system size, the charge asymmetry of the fission fragments, the incident energy and the impact parameter. From the statistical component authors extract the temperature, the charge and the angular momentum of the fissioning nuclei. From the second component authors propose a scenario to explain such process and authors discuss the physical parameters which can be extracted

  19. Mica fission detectors

    International Nuclear Information System (INIS)

    Wong, C.; Anderson, J.D.; Hansen, L.; Lehn, A.V.; Williamson, M.A.

    1977-01-01

    The present development status of the mica fission detectors is summarized. It is concluded that the techniques have been refined and developed to a state such that the mica fission counters are a reliable and reproducible detector for fission events

  20. Fission fragments mass distributions of nuclei populated by the multinucleon transfer channels of the 18O+232Th reaction

    Directory of Open Access Journals (Sweden)

    R. Léguillon

    2016-10-01

    Full Text Available It is shown that the multinucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multinucleon transfer channels of the 18O+232Th reaction are used to study fission of fourteen nuclei 231,232,233,234Th, 232,233,234,235,236Pa, and 234,235,236,237,238U. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel, in selected bins of excitation energy. In particular, the mass distributions of 231,234Th and 234,235,236Pa are measured for the first time. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation–dissipation model.

  1. Fission fragment angular distributions and fission cross section validation

    International Nuclear Information System (INIS)

    Leong, Lou Sai

    2013-01-01

    The present knowledge of angular distributions of neutron-induced fission is limited to a maximal energy of 15 MeV, with large discrepancies around 14 MeV. Only 238 U and 232 Th have been investigated up to 100 MeV in a single experiment. The n-TOF Collaboration performed the fission cross section measurement of several actinides ( 232 Th, 235 U, 238 U, 234 U, 237 Np) at the n-TOF facility using an experimental set-up made of Parallel Plate Avalanche Counters (PPAC), extending the energy domain of the incident neutron above hundreds of MeV. The method based on the detection of the 2 fragments in coincidence allowed to clearly disentangle the fission reactions among other types of reactions occurring in the spallation domain. I will show the methods we used to reconstruct the full angular resolution by the tracking of fission fragments. Below 10 MeV our results are consistent with existing data. For example in the case of 232 Th, below 10 MeV the results show clearly the variation occurring at the first (1 MeV) and second (7 MeV) chance fission, corresponding to transition states of given J and K (total spin and its projection on the fission axis), and a much more accurate energy dependence at the 3. chance threshold (14 MeV) has been obtained. In the spallation domain, above 30 MeV we confirm the high anisotropy revealed in 232 Th by the single existing data set. I'll discuss the implications of this finding, related to the low anisotropy exhibited in proton-induced fission. I also explore the critical experiments which is valuable checks of nuclear data. The 237 Np neutron-induced fission cross section has recently been measured in a large energy range (from eV to GeV) at the n-TOF facility at CERN. When compared to previous measurements, the n-TOF fission cross section appears to be higher by 5-7 % beyond the fission threshold. To check the relevance of n-TOF data, we simulate a criticality experiment performed at Los Alamos with a 6 kg sphere of 237 Np. This

  2. Binary fragmentation based studies for the near super-heavy compound nucleus {sup 256}Rf

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Meenu; Behera, B.R.; Mahajan, Ruchi; Kaur, Gurpreet; Sharma, Priya; Kapoor, Kushal; Rani, Kavita [Panjab University, Department of Physics, Chandigarh (India); Saneesh, N.; Dubey, R.; Yadav, A.; Sugathan, P.; Jhingan, A.; Chatterjee, A.; Chatterjee, M.B. [Inter University Accelerator Centre, New Delhi (India); Kumar, Neeraj; Mandal, S. [University of Delhi, Department of Physics and Astrophysics, Delhi (India); Kumar, S. [Andhra University, Department of Nuclear Physics, Visakhapatnam (India); Saxena, A.; Kailas, S. [Bhabha Atomic Research Centre, Nuclear Physics Division, Mumbai (India); Pal, Santanu [CS, Kolkata (India); Nasirov, Avazbek [JINR, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); National University, Department of Physics, Tashkent (Uzbekistan); Kayumov, Bakhodir [National University, Department of Physics, Tashkent (Uzbekistan)

    2017-06-15

    Binary fragmentation of the near super-heavy compound nucleus {sup 256}Rf has been studied through the reaction {sup 48}Ti + {sup 208}Pb at a bombarding energy well above the Coulomb barrier. For a better understanding of its reaction dynamics, the mass distribution, mass-energy distribution and mass-angle distribution of the fission fragments produced from {sup 256}Rf have been investigated thoroughly. The masses and kinetic energies of the fission fragments were reconstructed event-by-event from their measured velocities and emission angles. From the mass-energy analysis, a sizeable contribution from the asymmetric fission was observed on the edges of symmetric mass distribution. Evidence of asymmetric fission was also clued from the observed correlation between the masses and emission angles of the fission fragments. Contribution of the quasi-fission products has also been estimated by performing the theoretical dinuclear system calculations. (orig.)

  3. Phenomenological approaches of dissipative heavy ion collisions

    International Nuclear Information System (INIS)

    Ngo, C.

    1983-09-01

    These lectures describe the properties of dissipative heavy ion collisions observed in low bombarding energy heavy ion reactions. These dissipative collisions are of two different types: fusion and deep inelastic reactions. Their main experimental properties are described on selected examples. It is shown how it is possible to give a simple interpretation to the data. A large number of phenomenological models have been developped to understand dissipative heavy ion collisions. The most important are those describing the collision by classical mechanics and friction forces, the diffusion models, and transport theories which merge both preceding approaches. A special emphasis has been done on two phenomena observed in dissipative heavy ion collisions: charge equilibratium for which we can show the existence of quantum fluctuations, and fast fission which appears as an intermediate mechanism between deep inelastic reactions and compound nucleus formation [fr

  4. Measurements of fission yields

    International Nuclear Information System (INIS)

    Denschlag, H.O.

    2000-01-01

    After some historical introductory remarks on the discovery of nuclear fission and early fission yield determinations, the present status of knowledge on fission yields is briefly reviewed. Practical and fundamental reasons motivating the pursuit of fission yield measurements in the coming century are pointed out. Recent results and novel techniques are described that promise to provide new interesting insights into the fission process during the next century. (author)

  5. Radiochemical studies on fission

    Energy Technology Data Exchange (ETDEWEB)

    None

    1973-07-01

    Research progress is reported on nuclear chemistry; topics considered include: recoil range and kinetic energy distribution in the thermal neutron ftssion of /sup 245/Cm; mass distribution and recoil range measurements in the reactor neutron-induced fission of /sup 232/U; fission yields in the thermal neutron fission of /sup 241/PU highly asymmetric binary fission of uranium induced by reactor neutrons; and nuclear charge distribution in low energy fission. ( DHM)

  6. Measurement of prompt fission gamma-ray spectra in fast neutron-induced fission

    International Nuclear Information System (INIS)

    Laborie, J.M.; Belier, G.; Taieb, J.

    2012-01-01

    Knowledge of prompt fission gamma-ray emission has been of major interest in reactor physics for a few years. Since very few experimental spectra were ever published until now, new measurements would be also valuable to improve our understanding of the fission process. An experimental method is currently being developed to measure the prompt fission gamma-ray spectrum from some tens keV up to 10 MeV at least. The mean multiplicity and total energy could be deduced. In this method, the gamma-rays are measured with a bismuth germanate (BGO) detector which has the advantage to present a high P/T ratio and a high efficiency compared to other gamma-ray detectors. The prompt fission neutrons are rejected by the time of flight technique between the BGO detector and a fission trigger given by a fission chamber or a scintillating active target. Energy and efficiency calibration of the BGO detector were carried out up to 10.76 MeV by means of the Al-27(p, gamma) reaction. First prompt fission gamma-ray spectrum measurements performed for the spontaneous fission of Cf-252 and for 1.7 and 15.6 MeV neutron-induced fission of U-238 at the CEA, DAM, DIF Van de Graaff accelerator, will be presented. (authors)

  7. Fast fission phenomenon, deep inelastic reactions and compound nucleus formation described within a dynamical macroscopic model

    International Nuclear Information System (INIS)

    Gregoire, C.; Ngo, C.; Remaud, B.

    1982-01-01

    We present a dynamical model to describe dissipative heavy ion reactions. It treats explicitly the relative motion of the two ions, the mass asymmetry of the system and the projection of the isospin of each ion. The deformations, which are induced during the collision, are simulated with a time-dependent interaction potential. This is done by a time-dependent transition between a sudden interaction potential in the entrance channel and an adiabatic potential in the exit channel. The model allows us to compute the compound-nucleus cross section and multidifferential cross-sections for deep inelastic reactions. In addition, for some systems, and under certain conditions which are discussed in detail, a new dissipative heavy ion collision appears: fast-fission phenomenon which has intermediate properties between deep inelastic and compound nucleus reactions. The calculated properties concerning fast fission are compared with experimental results and reproduce some of those which could not be understood as belonging to deep inelastic or compound-nucleus reactions. (orig.)

  8. Indian heavy water programme - challenges and opportunities

    International Nuclear Information System (INIS)

    Aruldoss Kanthiah, W.S.

    2010-01-01

    Discovery of fission of uranium in 1939 opened up hitherto unknown possibilities for utilising the fission energy for use of mankind, mainly for the production of and electrical energy. It was realised that this nuclear energy could be an ideal substitute for the fast depleting fossil fuels which would one day get exhausted. Two main concepts of nuclear power reactor got evolved, one enriched uranium fuelled, ordinary water moderated reactor and another natural uranium fuelled heavy water moderated reactor. The concentration of uranium 235 U needed for ordinary water moderated reactors is 3% but the naturally occurring uranium in India contains only 0.7% of 235 U. The reactors utilising natural uranium as fuel require Heavy Water as moderator. The processing of uranium ore to achieve from 0.7% to 3% is highly complex. Recognising the fact that India has limited uranium resources but rich thorium resources, Dr. Bhabha formulated a three stage nuclear power generation programme for our country. The first generation reactors can use natural uranium as fuel with heavy water as moderator. Since the technology to generate such large scale heavy water to match the urgent need for nuclear power generation was not indigenously available, the technology available with Canada and France was utilised for installation of first generation heavy water plants in India. However, the peaceful nuclear experiment conducted by India in 1974 caused resentment among the countries that supplied Heavy Water technology to India and they stopped all technological help and assistance in nuclear field. Thereafter, it was the story of India going alone in heavy water production. That made India meets successfully all challenges on the way to installation, commissioning and sustained operation of all plants. Today we have six operating Heavy Water plants, spread all over the country. We have reached a stage, a change from a situation of crunch to a level of not only self sufficiency but to a

  9. Nuclear research with heavy ions. Annual progress report, January 1, 1977--December 31, 1977

    International Nuclear Information System (INIS)

    Kaplan, M.

    1977-10-01

    The experimental research program consists of several interrelated parts: (1) Reactions of Very Heavy Ions with Complex Nuclei; (2) Studies of Compound Nucleus Reactions Induced by Heavy Ions; and (3) Recoil Studies of Heavy Ion Reactions. Using solid-state detector telescopes and gas-ionization detector telescopes we have studied the emission of 1 H, 2 H, 3 H, 4 He and heavy fragments from the reactions of 720 MeV 86 Kr with 197 Au. Coincidence measurements between light charged particles and a heavy fragment indicate that most of the observed 4 He particles are evaporated by equilibrated Kr*-like and Au*-like excited products from deep inelastic reactions, but a significant number of preequilibrium 4 He particles seem to be emitted in directions normal to the separating fragments. Studies of angular correlations between two heavy fragments provide strong evidence for sequential fission of the Au*-like reaction fragments, and the probability of this process has been estimated as a function of Q, the energy damping in the primary collision. Parallel studies of charged particle emission, fission, and evaporation residues in compound nucleus reactions map out the de-excitation characteristics of highly excited heavy nuclei as functions of E* and J. Results are presented for the compound nucleus 194 Hg formed at matched excitation energies via different entrance channels

  10. Proposal of measuring the mechanisms of nuclear excitation leading to fission with the ADONE jet-target tagged photon beam

    International Nuclear Information System (INIS)

    Lucherini, V.; Bianchi, N.; De Sanctis, E.; Guaraldo, C.; Levi Sandri, P.; Muccifora, V.; Polli, E.; Reolon, A.R.; Aiello, S.; De Filippo, E.; Lanzano', G.; Lo Nigro, S.; Milone, C.; Pagano, A.; Botvina, A.S.; Iljinov, A.S.; Mebel, M.V.

    1990-01-01

    The mechanisms of excitation with subsequent fission of heavy nuclei can be conveniently studied by means of photons, since this probe is able to interact deeply inside the nucleus. We propose the use of the (200-1200 MeV) tagged photon beam from the ADONE Jet Target in order to study the mass-energy and total momentum distributions of fission fragments, to obtain experimental information on the configurations (excitation energy and nucleonic composition) of produced compound nuclei and on their decay channels

  11. Some aspects of heavy ion macrophysics

    International Nuclear Information System (INIS)

    Ngo, C.

    1984-07-01

    In these notes we review, in a schematic way, some aspect of the physics with heavy ions. In the first lecture we review how is possible to describe the dissipative phenomena observed above the Coulomb barrier, up to 10-15 MeV/u, using transport theories. The second lecture is devoted to the question of fusion and the appearance of a new mechanism: fast fission. It is shown that one can now have a global understanding of these phenomena within single picture. The third lecture presents, in a simplified way, some results obtained recently with heavy ions in the range of 30-50 MeV/u at GANIL and SARA

  12. Fast fission phenomena

    International Nuclear Information System (INIS)

    Gregoire, Christian.

    1982-03-01

    Experimental studies of fast fission phenomena are presented. The paper is divided into three parts. In the first part, problems associated with fast fission processes are examined in terms of interaction potentials and a dynamic model is presented in which highly elastic collisions, the formation of compound nuclei and fast fission appear naturally. In the second part, a description is given of the experimental methods employed, the observations made and the preliminary interpretation of measurements suggesting the occurence of fast fission processes. In the third part, our dynamic model is incorporated in a general theory of the dissipative processes studied. This theory enables fluctuations associated with collective variables to be calculated. It is applied to highly inelastic collisions, to fast fission and to the fission dynamics of compound nuclei (for which a schematic representation is given). It is with these calculations that the main results of the second part can be interpreted [fr

  13. Nuclear fission

    International Nuclear Information System (INIS)

    Kodama, T.

    1981-01-01

    The nuclear fission process is pedagogically reviewed from a macroscopic-microscopic point of view. The Droplet model is considered. The fission dynamics is discussed utilizing path integrals and semiclassical methods. (L.C.) [pt

  14. Identification of fission-like events in the 16O + 181Ta system: Mass and isotopic yield distribution

    International Nuclear Information System (INIS)

    Sharma, Vijay R.; Yadav, Abhishek; Singh, Devendra P.; Unnati,; Singh, B. P.; Prasad, R.; Singh, Pushpendra P.; Sharma, Manoj K.; Kumar, R.; Golda, K. S.; Sinha, A. K.

    2011-01-01

    In this paper, nuclear reaction cross sections for 24 fission-like fragments (30≤Z≤60) have been measured for the 6.5 MeV/A 16 O + 181 Ta system. The recoil-catcher activation technique was employed followed by off-line γ spectroscopy. The isotopic yield distributions for yttrium and indium isotopes have been obtained from the experimental data. The variance of the presently measured isotopic yield distributions have been found to be in agreement with the literature values. However, the variance of the mass distribution of fission residues has found to be narrower as compared to other relatively heavier systems. A self-consistent approach to determining the isobaric charge dispersion parameters has been adopted. The measured fission cross sections at 97 and 100 MeV are satisfactorily described by a statistical model code. An attempt has been made to explain the production cross sections of intermediate mass residues in the fission of heavy residues populated via complete and/or incomplete fusion processes.

  15. ANATOMICAL AND PHYSICAL PROPERTIESOF BISBUL WOOD (Diospyros blancoi A.DC.

    Directory of Open Access Journals (Sweden)

    Krisdianto Krisdianto

    2005-03-01

    Full Text Available Ebony (Diospyros sp.  is a heavy hardwood that is  popularly known as blackwood. Diospyros consists of over 300 species spread throughout tropics area and about 100 species occur in Indonesia. Bisbul wood (Diospyros btancoi A.DC. is one species of  streaked ebony that is locally known as 'buah mentega'.  The anatomical and physical properties of  bisbul  were studied to collect information  for wood identification  and to support appropriate use of the timber. Anatomical properties were studied from microtome sectioned samples, which have been coloured by safranin and mounted by entellan, while fiber dimensions  were studied from macerated samples.  Physical properties  of  bisbul wood studied include moisture content, density and percentage of volumetric shrinkage. Moisture content and density were studied from 20 x 20 x 20 mm samples based on wet and oven dry condition. Volumetric shrinkage was measured from dimension changes in radial, tangential and longitudinal shrinkage of 20 x 20 x 40 mm samples. The samples were measured in wet and oven dry conditions. The main anatomical characteristics to identify bisbul wood were black wood with pinkish streaked, heavy and very hard,  very fine texture, even, lustrous surface and glossy, distinct growth ring, small size of vessels, apotracheal parenchyma forming reticulate pattern. The average moisture content was 59.86 ± 2.84%,  the density average was 0.74 ± 0.04 gr/cm3  and volumetric shrinkage was 10.41±0.70%.   The higher the stem, the more moisture  content and the lower the density will be. Sapwood density was lower and had more moisture  content than heartwood. The black pinkish heavy wood, bisbul was recommended to be used for carvings, sculpture, souvenir and luxuryinterior products.

  16. Modified-surface-energy methods for deriving heavy-ion potentials

    International Nuclear Information System (INIS)

    Sierk, A.J.

    1977-01-01

    The use of a modified-surface-energy approach for the calculation of heavy-ion interaction potentials is discussed. It is not possible to simultaneously fit elastic scattering, ion interaction barriers, and fission barriers with the same set of constants in this model. Possible explanations of this deficiency are discussed

  17. Dose-effect relationship of apoptosis induced by fission-neutron in murine thymocytes

    International Nuclear Information System (INIS)

    Yuan Bin; Li Liang; Xue Wencheng; Sun Jianmin; Wang Baoqin

    2000-01-01

    Objective: To investigate the effectiveness of high LET fission-neutron to induce apoptosis in murine thymocytes and to compare it with that of low LET 60 Co γ-ray. Methods: Apoptosis induction was studied qualitatively by light and transmission electron microscopy and DNA gel electrophoresis,also quantitatively by flow cytometry(FCM) and diphenylamine (DPA)methods. Results: DNA ladders of murine thymocytes were detectable, the typical apoptosis of thymocytes could be observed morphologically by means of light and electron microscopy at 6 h after fission-neutron irradiation with doses ranging from 0.5 to 5.0 Gy, meanwhile the percentages of apoptosis increased with increasing doses. After exposure to γ-rays with doses ranging from 1.0 to 30 Gy, the experimental results were similar to those from neutron radiation. The incidence of apoptosis peaked at about 20 Gy, the percentages did not increase further when doses increased. Conclusion: Apoptosis of murine thymocytes can be induced when mice are exposed to either fission-neutron (0.5-5.0 Gy) or to γ-ray (1-30 Gy). Although the relationship between apoptosis and radiation doses is similar, the percentage of apoptosis induced by neutron irradiation is higher than that induced by γ-irradiation. The RBE values of fission-neutron for inducing apoptosis murine thymocytes are 2.09 (by FCM method) and 2.37 (by DPA method), respectively. These results also suggest that fission-neutron-induced murine immune tissue is more severe than that induced by γ-rays at several hours post-irradiation and this might be the basis for heavy damage to immune tissues induced by fission-neutron-irradiation in later period

  18. Prompt fission neutron spectra of n + 235U above the (n, nf) fission threshold

    International Nuclear Information System (INIS)

    Shu Nengchuan; Chen Yongjing; Liu Tingjin; Jia Min

    2015-01-01

    Calculations of prompt fission neutron spectra (PFNS) from the 235 U(n, f) reaction were performed with a semi-empirical method for En = 7.0 and 14.7 MeV neutron energies. The total PFNS were obtained as a superposition of (n, xnf) pre-fission neutron spectra and post-fission spectra of neutrons which were evaporated from fission fragments, and these two kinds of spectra were taken as an expression of the evaporation spectrum. The contributions of (n, xnf) fission neutron spectra on the calculated PFNS were discussed. The results show that emission of one or two neutrons in the (n, nf) or (n, 2nf) reactions influences the PFNS shape, and the neutron spectra of the (n, xnf) fission-channel are soft compared with the neutron spectra of the (n, f) fission channel. In addition, analysis of the multiple-chance fission component showed that second-chance fission dominates the PFNS with an incident neutron energy of 14.7 MeV whereas first-chance fission dominates the 7 MeV case. (authors)

  19. Fission product yields

    International Nuclear Information System (INIS)

    Valenta, V.; Hep, J.

    1978-01-01

    Data are summed up necessary for determining the yields of individual fission products from different fissionable nuclides. Fractional independent yields, cumulative and isobaric yields are presented here for the thermal fission of 235 U, 239 Pu, 241 Pu and for fast fission (approximately 1 MeV) of 235 U, 238 U, 239 Pu, 241 Pu; these values are included into the 5th version of the YIELDS library, supplementing the BIBFP library. A comparison is made of experimental data and possible improvements of calculational methods are suggested. (author)

  20. Fission, fusion and photonuclear physics. Chapter 2

    International Nuclear Information System (INIS)

    Agarwal, S.; Babinet, R.; Cauvin, B.; Galin, J.; Gatty, B.; Girard, J.; Guerreau, D.; Lefort, M.; Nifenecker, H.; Tarrago, X.

    Combined ΔE-E and time of flight techniques have been used at the ALICE facility to measure the mass and the charge of all light fragments emitted in heavy ion collisions. The following studies have been undertaken: binary character of the deep inelastic collisions in the 40 Ar (280MeV) + 58 Ni reaction, transition from deep inelastic to quasi-elastic processes in the same reaction, relaxation of the mass asymmetry mode in the 52 Cr (265 MeV) + 56 Fe reaction and equilibration of the charge to mass degree of freedom in the fast quasi-fission process, 40 Ar (220MeV) + Au [fr

  1. Cumulative fission yield of Ce-148 produced by thermal-neutron fission of U-235

    International Nuclear Information System (INIS)

    Hasan, A.A.

    1984-12-01

    Cumulative fission yield of 148 cesium isotopes and some other fission products produced by thermal-neutron fission of 235 uranium is determined by Germanium/Lithium spectroscopic methods. The measuremets were done at Tsing-Hua open pool reactor using 3 to 4 mg of 93.15% enriched 235 uranium samples. Gamma rays are assigned to the responsible fission products by matching gamma rays energies and half lives. Fission rate is calculated by fission track method. Cumulative fission yields of 148 cesium, 90 krypton, 130 iodine, 144 lanthanum, 89 krypton, 136 xenon, 137 xenon and 140 cesium are calculated. This values are compared with previously predicted values and showed good agreement. 21 Ref

  2. Comparison of actinides and fission products recycling scheme with the normal plutonium recycling scheme in fast reactors

    Directory of Open Access Journals (Sweden)

    Salahuddin Asif

    2013-01-01

    Full Text Available Multiple recycling of actinides and non-volatile fission products in fast reactors through the dry re-fabrication/reprocessing atomics international reduction oxidation process has been studied as a possible way to reduce the long-term potential hazard of nuclear waste compared to that resulting from reprocessing in a wet PUREX process. Calculations have been made to compare the actinides and fission products recycling scheme with the normal plutonium recycling scheme in a fast reactor. For this purpose, the Karlsruhe version of isotope generation and depletion code, KORIGEN, has been modified accordingly. An entirely novel fission product yields library for fast reactors has been created which has replaced the old KORIGEN fission products library. For the purposes of this study, the standard 26 groups data set, KFKINR, developed at Forschungszentrum Karlsruhe, Germany, has been extended by the addition of the cross-sections of 13 important actinides and 68 most important fission products. It has been confirmed that these 68 fission products constitute about 95% of the total fission products yield and about 99.5% of the total absorption due to fission products in fast reactors. The amount of fissile material required to guarantee the criticality of the reactor during recycling schemes has also been investigated. Cumulative high active waste per ton of initial heavy metal is also calculated. Results show that the recycling of actinides and fission products in fast reactors through the atomics international reduction oxidation process results in a reduction of the potential hazard of radioactive waste.

  3. HAC and fission reactors

    International Nuclear Information System (INIS)

    Fujiwara, I.; Moriyama, H.; Tachikawa, E.

    1984-01-01

    In the fission process, newly formed fission products undergo hot atom reactions due to their energetic recoil and abnormal positive charge. The hot atom reactions of the fission products are usually accompanied by secondary effects such as radiation damage, especially in condensed phase. For reactor safety it is valuable to know the chemical behaviour and the release behaviour of these radioactive fission products. Here, the authors study the chemical behaviour and the release behaviour of the fission products from the viewpoint of hot atom chemistry (HAC). They analyze the experimental results concerning fission product behaviour with the help of the theories in HAC and other neighboring fields such as radiation chemistry. (Auth.)

  4. The Radiological and Thermal Characteristics of Fission Waste from a Deep-Burn Fusion-Fission Hybrid (LIFE) and Implications for Repository Performance

    International Nuclear Information System (INIS)

    Shaw, H.F.; Blink, J.; Farmer, J.; Latkowski, J.; Kramer, K.

    2009-01-01

    We are studying the use of a Laser Inertial-confinement Fusion Engine (LIFE) to drive a hybrid fusion-fission system that can generate electrical power and/or burn nuclear waste. The system uses the neutrons from laser driven ICF to produce tritium and to drive nuclear reactions in a subcritical fission blanket. The fusion neutron source obviates the need for a self-sustaining chain reaction in the fission blanket. Either fissile or fertile could be used as fission fuel, thus eliminating the need for isotopic enrichment. The 'driven' system potentially allows very high levels of burnup to be reached, extracting a large fraction of the available energy in the fission fuel without the need for reprocessing. In this note, we discuss the radionuclide inventory of a depleted uranium (DU) fuel burned to greater than 95% FIMA (Fissions per Initial heavy Metal Atom), the implications for thermal management of the resulting waste, and the implications of this waste for meeting the dose standards for releases from a geological repository for high-level waste. The fission waste discussed here would be that produced by a LIFE hybrid with a 500-MW fusion source. The fusion neutrons are multiplied and moderated by a sequence of concentric shells of materials before encountering the fission fuel, and fission in this region is largely due to thermal neutrons. The fission blanket consists of 40 metric tons (MT) of DU, assumed to be in the form of TRISO-like UOC fuel particles embedded in 2-cm-diameter graphite pebbles. (It is recognized that TRISO-based fuel may not reach the high burnup of the fertile fuel considered here, and other fuel options are being investigated. We postulate the existence of a fuel that can reach >95% FIMA so that the waste disposal implications of high burnup can be assessed.) The engine and plant design considered here would receive one load of fission fuel and produce ∼2 GWt of power (fusion + fission) over its 50- to 70-year lifetime. Neutron and

  5. Timing characteristics of a two-dimensional multi-wire cathode strip detector for fission fragments

    International Nuclear Information System (INIS)

    Vind, R.P.; Joshi, B.N.; Jangale, R.V.; Inkar, A.L.; Prajapati, G.K.; John, B.V.; Biswas, D.C.

    2014-01-01

    In the recent past, a gas filled two-dimensional multi-wire cathode strip detector (MCSD) was developed for the detection of fission fragments (FFs). The position resolution was found to be about 1.0 and 1.5 mm in X and Y directions respectively. The detector has three electrode planes consisting of cathode strip (X-plane), anode wires and split-cathode wires (Y-plane). Each thin wire of the anode plane placed between the two cathode planes is essentially independent and behaves like a proportional counter. The construction of the detector in detail has been given in our earlier paper. The position information has been obtained by employing high impedance discrete delay line read out method for extracting position information in X and Y-directions. In this work, the timing characteristics of MCSD detector are reported to explore the possible use of this detector for the measurement of the mass of the fission fragments produced in heavy ion induced fission reactions

  6. Highly efficient power system based on direct fission fragment energy conversion utilizing magnetic collimation

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel V.; Hart, Ron R.; Parish, Theodore A.

    2003-01-01

    The present study was focused on developing a technologically feasible power system that is based on direct fission fragment energy conversion utilizing magnetic collimation. The new concept is an attempt to combine several advantageous design solutions, which have been proposed for application in both fission and fusion reactors, into one innovative system that can offer exceptional energy conversion efficiency. The analysis takes into consideration a wide range of operational aspects including fission fragment escape from the fuel, collimation, collection, criticality, long-term performance, energy conversion efficiency, heat removal, and safety characteristics. Specific characteristics of the individual system components and the entire system are evaluated. Consistent analysis and evaluation of the technological feasibility of the concept were achieved using state-of-the-art computer codes that allowed realistic and consistent modeling. The calculated energy conversion efficiencies for the presented designs without a thermodynamic cycle and with the heavy water cycle are 52% and 62%, respectively. The analysis indicates that efficiencies up to 90% are potentially achievable. (author)

  7. Nuclear research with heavy ions. Annual progress report, January 1, 1981-December 31, 1981

    International Nuclear Information System (INIS)

    Kaplan, M.

    1981-11-01

    The experimental research program is primarily concerned with the nuclear reactions induced by collisions between heavy-ion projectiles and complex target nuclei, the dynamics and thermodynamics associated with such collisions, and the relationships of the observables to the equilibrium and non-equilibrium properties of nuclear matter. As a sensitive probe of the nuclear interactions, detailed measurements of light-charged-particle emission were performed using counter telescopes for atomic number and mass number identification. Preliminary results from a new experiment on direct and evaporation-like emission of 4 He from reactions of 340-MeV 40 Ar with 238 U are reported. Using a large two-dimensional position-sensitive avalanche detector, and measuring three-fold coincidence events between two fission fragments and an emitted 4 He particle, we were able to distinguish emission processes in fusion-like fission from those associated with inelastic reactions. Analysis of the data shows isotropic and strongly forward-peaked 4 He components for both fusion and sequential fission, and kinematic evidence indicates substantial evaporation-like emission from the composite system rather than from fission fragments. The effects of light element impurities on charged particle spectra from heavy ion collisions are discussed, and a technique for directly evaluating the impurity contribution is briefly described

  8. Fission cross-section calculations and the multi-modal fission model

    International Nuclear Information System (INIS)

    Hambsch, F.J.

    2004-01-01

    New, self consistent, neutron-induced reaction cross section calculations for 235,238 U, 237 Np have been performed. The statistical model code STATIS was improved to take into account the multimodality of the fission process. The three most dominant fission modes, the two asymmetric standards I (S1) and standard II (S2) modes and the symmetric superlong (SL) mode have been taken into account. De-convoluted fission cross sections for those modes for 235,238 U(n,f) and 237 Np(n,f) based on experimental branching ratios, were calculated for the first time up to the second chance fission threshold. For 235 U(n,f), the calculations being made up to 28 MeV incident neutron energy, higher fission chances have been considered. This implied the need for additional calculations for the neighbouring isotopes. As a side product also mass yield distributions could be calculated at energies hitherto not accessible by experiment. Experimental validation of the predictions is being envisaged

  9. Evaluation of the (n,xn) and (n,xnf) cross sections for heavy nuclei with the statistical model

    International Nuclear Information System (INIS)

    Jary, J.

    1975-01-01

    A method was presented to calculate the (n,xn) and (n,xnf) cross sections for the heavy nuclei having mass numbers of 232 1) without fission, according to the law of conventional statistical models, in the (n,xn) process. Fission can also compete with the emission of neutrons and γ-ray for the nuclei and the excitation energy considered. The fission cross sections of 235 U and 238 U recently evaluated by Sowerby and the fission cross section of 236 U have been used to determine the other parameters needed in the calculation. The fission widths of 239 U and 238 U have been obtained by fitting the first-chance and second-chance fission plateaus of the 238 U cross section. For the fission width of 238 U, good agreement was observed between the authors' results and Landrum and others' experimental data. (Iwase, T.)

  10. Heavy ion induced damage in MgAl sub 2 O sub 4 , an inert matrix candidate for the transmutation of minor actinides

    CERN Document Server

    Wiss, T

    1999-01-01

    Magnesium aluminum spinel (MgAl sub 2 O sub 4) is a material selected as a possible matrix for transmutation of minor actinides by neutron capture or fission in nuclear reactors. To study the radiation stability of this inert matrix, especially against fission product impact, irradiations with heavy energetic ions or clusters have been performed. The high electronic energy losses of the heavy ions in this material led to the formation of visible tracks as evidenced by transmission electron microscopy for 30 MeV C sub 6 sub 0 -Buckminster fullerenes and for ions of energy close to or higher than fission energy ( sup 2 sup 0 sup 9 Bi with 120 MeV and 2.38 GeV energy). The irradiations at high energies showed a pronounced degradation of the spinel. Additionally, MgAl sub 2 O sub 4 exhibited a large swelling for irradiation at high fluences with fission products of fission energy (here I-ions of 72 MeV) and at temperatures <= 500 deg. C. These observations are discussed from the technological point of view in ...

  11. Fission Research at IRMM

    Directory of Open Access Journals (Sweden)

    Al-Adili A.

    2010-03-01

    Full Text Available Fission Research at JRC-IRMM has a longstanding tradition. The present paper is discussing recent investigations of fission fragment properties of 238 U(n,f, 234 U(n,f, prompt neutron emission in fission of 252 Cf(SF as well as the prompt fission neutron spectrum of 235 U(n,f and is presenting the most important results.

  12. Process for gasification of heavy hydrocarbons or salvaged oil. [German patent

    Energy Technology Data Exchange (ETDEWEB)

    Koch, C

    1978-09-14

    The invention refers to the separation of solids which are carried over during evaporation of salvaged oil (oil recovered from used oil or fat). They are removed by exposing the oil vapour to an acceleration of 500 g to 20,000g in a hot gas cyclone. Subsequently the cleaned gas is converted to fission gas in a fission gas generator using an air-water gas mixture and is taken to the combustion equipment. By this process salvaged oil and heavy hydrocarbons can be used for burning in Diesel engines without previous refining.

  13. Heavy water cycle in the CANDU reactor

    International Nuclear Information System (INIS)

    Nanis, R.

    2000-01-01

    Hydrogen atom has two isotopes: deuterium 1 H 2 and tritium 1 H 3 . The deuterium oxide D 2 O is called heavy water due to its density of 1105.2 Kg/m 3 . Another important physical property of the heavy water is the low neutron capture section, suitable to moderate the neutrons into natural uranium fission reactor as CANDU. Due to the fact that into this reactor the fuel is cooled into the pressure tubes surrounded by a moderator, the usage of D 2 O as primary heat transport (PHT) agent is mandatory. Therefore a large amount of heavy water (approx. 500 tons) is used in a CANDU reactor. Being a costly resource - it represents 20% of the initial plant capital cost, D 2 O management is required to preserve it. (author)

  14. The use of averages and other summation quantities in the testing of evaluated fission product yield and decay data. Applications to ENDF/B(IV)

    International Nuclear Information System (INIS)

    Walker, W.H.

    1976-01-01

    Averages of some fission product properties can be obtained by multiplying the fission product yield for each fission product by the value of the property (e.g. mass, atomic number, mass defect) for that fission product and summing all significant contributions. These averages can be used to test the reliability of the yield set or provide useful data for reactor calculations. The report gives the derivation of these averages and discusses their application using the ENDF/B(IV) fission product library. The following quantities are treated here: the number of fission products per fission ΣYsub(i); the average mass number and the average number of neutrons per fission; the average atomic number of the stable fission products and the average number of β-decays per fission; the average mass defect of the stable fission products and the total energy release per fission; the average decay energy per fission (beta, gamma and anti-neutrino); the average β-decay energy per fission; individual and group-averaged delayed neutron emission; the total yield for each fission product element. Wherever it is meaningful to do so, a sum is subdivided into its light and heavy mass components. The most significant differences between calculated values based on ENDF/B(IV) and measurements are the β and γ decay energies for 235 U thermal fission and delayed neutron yields for other fissile nuclides, most notably 238 U. (author)

  15. Study on the effect factor of the absolute fission rates measured by depleted uranium fission chamber

    International Nuclear Information System (INIS)

    Jiang Li; Liu Rong; Wang Dalun; Wang Mei; Lin Jufang; Wen Zhongwei

    2003-01-01

    The absolute fission rates was measured by the depleted uranium fission chamber. The efficiency of the fission fragments recorded in the fission chamber was analyzed. The factor influencing absolute fission rates was studied in the experiment, including the disturbing effect between detectors and the effect of the structural of the fission chamber, etc

  16. Investigation of short-living fission products from the spontaneous fission of Cf-252

    International Nuclear Information System (INIS)

    Klonk, H.

    1976-01-01

    In this paper, a method of separating and measuring fission products of Cf-252 is presented. The measurement was achieved by means of γ-spectrometry and thus provides a quantitative analysis with a good separation of the fission products with respect to both atomic number Z and mass number A. The separation of the fission products from the fission source was achieved by means of solid traps. An automatic changing apparatus made it possible to keep irradiation and measuring times short, so even very short-lived fission products could be registered. The quantitative evaluation of primary fission products was made possible by correction according to Bateman equations. With that, the yields of single nuclides and the dispersion of charge can be determined. (orig./WL) [de

  17. The importance of heavy water in nuclear technology

    International Nuclear Information System (INIS)

    Gharib, A.G.

    2004-01-01

    Due to similarities of chemical and almost physical properties in H 2 O and D 2 O but differences in nuclear and particle peculiarities provide valuable application for D 2 O. To sustain a controlled chain reaction, the energy of neutrons produced by fission must be reduced through collisions with other nuclei, a process called moderation. A good moderator has a mass close to that of the neutron to maximize energy loss per collision and a very small neutron capture cross section to minimize unwanted nuclear reactions. Deuterium is far the best moderator, more than 80 times better than hydrogen and 30 times better than 12 C ir 18 O. Heavy water is almost as good as deuterium and has the distinct advantage of being a nonflammable liquid. Heavy water is also an excellent neutron reflector, and thus decreases the number of neutrons that escape the reactor core without participating in fission reactions. For this reason a feasibility study and subsequently a technical survey was carried out on engineering of a pilot scale plant. As the result of this studies, the know-how of heavy water production on basis of selected method including dual temperature isotopic exchange and distillation techniques developed. Subsequently the primary and almost detail engineering documents prepared on best knowledge of our own engineers without external contribution

  18. Neutron kinetics in moderators and SNM detection through epithermal-neutron-induced fissions

    Energy Technology Data Exchange (ETDEWEB)

    Gozani, Tsahi, E-mail: tgmaven@gmail.com [1050 Harriet St., Palo Alto, CA 94301 (United States); King, Michael J. [Rapiscan Laboratories Inc., 520 Almanor Ave., Sunnyvale, CA 94085 (United States)

    2016-01-01

    Extension of the well-established Differential Die Away Analysis (DDAA) into a faster time domain, where more penetrating epithermal neutrons induce fissions, is proposed and demonstrated via simulations and experiments. In the proposed method the fissions stimulated by thermal, epithermal and even higher-energy neutrons are measured after injection of a narrow pulse of high-energy 14 MeV (d,T) or 2.5 MeV (d,D) source neutrons, appropriately moderated. The ability to measure these fissions stems from the inherent correlation of neutron energy and time (“E–T” correlation) during the process of slowing down of high-energy source neutrons in common moderating materials such as hydrogenous compounds (e.g., polyethylene), heavy water, beryllium and graphite. The kinetic behavior following injection of a delta-function-shaped pulse (in time) of 14 MeV neutrons into such moderators is studied employing MCNPX simulations and, when applicable, some simple “one-group” models. These calculations served as a guide for the design of a source moderator which was used in experiments. Qualitative relationships between slowing-down time after the pulse and the prevailing neutron energy are discussed. A laboratory system consisting of a 14 MeV neutron generator, a polyethylene-reflected Be moderator, a liquid scintillator with pulse-shape discrimination (PSD) and a two-parameter E–T data acquisition system was set up to measure prompt neutron and delayed gamma-ray fission signatures in a 19.5% enriched LEU sample. The measured time behavior of thermal and epithermal neutron fission signals agreed well with the detailed simulations. The laboratory system can readily be redesigned and deployed as a mobile inspection system for SNM in, e.g., cars and vans. A strong pulsed neutron generator with narrow pulse (<75 ns) at a reasonably high pulse frequency could make the high-energy neutron induced fission modality a realizable SNM detection technique.

  19. Production and identification of heavy Ni isotopes: Evidence for the doubly magic nucleus 7828Ni. Short note

    International Nuclear Information System (INIS)

    Engelmann, C.; Ameil, F.; Bernas, M.; Heinz, A.; Janas, Z.; Kozhuharov, C.; Miehe, C.; Pfuetzner, M.; Roehl, C.; Stephan, C.; Tassan-Got, L.; Voss, B.

    1995-07-01

    We report the first observation of the doubly magic nucleus 78 Ni 50 and the heavy isotopes 77 Ni, 73,74,75 Co, 80 Cu. The isotopes were produced by nuclear fission in collisions of 750 A.MeV projectiles of 238 U on Be target nuclei. The fully-stripped fission products were separated in-flight by the fragment separator FRS and identified event-by-event by measuring the magnetic rigidity, the trajectory, the energy deposit, and the time of flight. Production cross-sections and fission yields for the new Ni-isotopes are given. (orig.)

  20. From ground state to fission fragments: A complex, multi-dimensional multi-path problem

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.; Swiatecki, W.J.

    1992-01-01

    Experimental results on the fission properties of nuclei close to 264 Fm show sudden and large changes with a change of only one or two neutrons or protons. The nucleus 258 Fm, for instance, undergoes symmetric fission with a half-life of about 0.4 ms and a kinetic-energy distribution peaked at about 235 MeV whereas 256 Fm undergoes asymmetric fission with a half-life of about 3 h and a kinetic-energy distribution peaked at about 200 MeV. Qualitatively, these sudden changes have been postulated to be due to the emergence of fragment shells in symmetric-fission products close to 132 Sn. Here we present a quantitative calculation that shows where high-kinetic-energy symmetric fusion occurs and why it is associated with a sudden and large decrease in fission half-lives. We base our study on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. We use the three-quadratic-surface parameterization to generate the shapes for which the potential-energy surfaces are calculated. The use of this parameterization and the use of the finite-range macroscopic model allows for the study of two touching spheres and similar shapes. Since these shapes are thought to correspond to the scission shapes for the high-kinetic-energy events it is of crucial importance that a continuous sequence of shapes leading from the nuclear ground state to these configurations can be studied within the framework of the model. We present the results of the calculations in terms of potential-energy surfaces and fission half-lives for heavy even nuclei. The surfaces are displayed in the form of contour diagrams as functions of two moments of the shape. They clearly show the appearance of a second fission valley, which leads to scission configurations close to tow touching spheres, for fissioning systems in the vicinity of 264 Fm

  1. Intermediate energy nuclear fission

    International Nuclear Information System (INIS)

    Hylten, G.

    1982-01-01

    Nuclear fission has been investigated with the double-kinetic-energy method using silicon surface barrier detectors. Fragment energy correlation measurements have been made for U, Th and Bi with bremsstrahlung of 600 MeV maximum energy. Distributions of kinetic energy as a function of fragment mass are presented. The results are compared with earlier photofission data and in the case of bismuth, with calculations based on the liquid drop model. The binary fission process in U, Yb, Tb, Ce, La, Sb, Ag and Y induced by 600 MeV protons has been investigated yielding fission cross sections, fragment kinetic energies, angular correlations and mass distributions. Fission-spallation competition calculations are used to deduce values of macroscopic fission barrier heights and nuclear level density parameter values at deformations corresponding to the saddle point shapes. We find macroscopic fission barriers lower than those predicted by macroscopic theories. No indication is found of the Businaro Gallone limit expected to occur somewhere in the mass range A = 100 to A = 140. For Ce and La asymmetric mass distributions similar to those in the actinide region are found. A method is described for the analysis of angular correlations between complementary fission products. The description is mainly concerned with fission induced by medium-energy protons but is applicable also to other projectiles and energies. It is shown that the momentum and excitation energy distributions of cascade residuals leading to fission can be extracted. (Author)

  2. Light charged particle emission in heavy-ion reactions – What have ...

    Indian Academy of Sciences (India)

    coincidence with gamma rays, fission products, evaporation residues have yielded interesting results which bring out the influence of nuclear structure, nuclear mean field and dynamics on the emission of these particles. Keywords. Light charged particles; heavy-ion induced reactions; particle spectra and angular distri-.

  3. Dependence of compound nucleus formation probability on K equilibration time in heavy-ion reactions

    International Nuclear Information System (INIS)

    Yadav, C.; Thomas, R.G.; Mohanty, A.K.; Kapoor, S.S.

    2014-01-01

    In the present work, we have carried out the analysis of fragment anisotropy data of various systems selected for cases Z 1 Z 2 < 1600 and Z CN < 96 so that both QF and FF are absent and the anomalous anisotropies are only due to PEF. It may also be noted that in such cases J cr (the J above which the fusion pocket vanishes) is less than J Bf = 0 (the J at which the liquid drop fission barrier vanishes) so that all J's will be contributing to PEF as well. According to PEF model, the observed angular anisotropy of fission fragments in heavy-ion induced reactions can be written as an admixture of two components: the anisotropy from compound nucleus fission (CN) and anisotropy due to non-compound nucleus fission (NCN)

  4. Fission gas and iodine release measured in IFA-430 up to 15 GWd/t UO2 burnup

    International Nuclear Information System (INIS)

    Appelhans, A.D.; Turnbull, J.A.; White, R.J.

    1983-01-01

    The release of fission products from fuel pellets to the fuel-cladding gap is dependent on the fuel temperature, the power (fission rate) and the burnup (fuel structure). As part of the US Nuclear Regulatory Commission's Fuel Behavior Program, EG and G Idaho, Inc., is conducting fission product release studies in the Heavy Boiling Water Reactor in Halden, Norway. This paper presents a summary of the results up to December, 1982. The data cover fuel centerline temperatures ranging from 700 to 1500 0 C for average linear heat ratings of 16 to 35 kW/m. The measurements have been performed for the period between 4.2 and 14.8 GWd/t UO 2 of burnup of the Instrumented Fuel Assembly 430 (IFA-430). The measurement program has been directed toward quantifying the release of the short-lived radioactive noble gases and iodines

  5. Coulex fission of 234U, 235U, 237Np, and 238Np studied within the SOFIA experimental program

    International Nuclear Information System (INIS)

    Martin, Julie-Fiona

    2014-01-01

    SOFIA (Studies On FIssion with Aladin) is an experimental project which aims at systematically measuring the fission fragments' isotopic yields as well as their total kinetic energy, for a wide variety of fissioning nuclei. The PhD work presented in this dissertation takes part in the SOFIA project, and covers the fission of nuclei in the region of the actinides: 234 U, 235 U, 237 Np and 238 Np. The experiment is led at the heavy-ion accelerator GSI in Darmstadt, Germany. This facility provides intense relativistic primary beam of 238 U. A fragmentation reaction of the primary beam permits to create a secondary beam of radioactive ions, some of which the fission is studied. The ions of the secondary beam are sorted and identified through the FR-S (Fragment Separator), a high resolution recoil spectrometer which is tuned to select the ions of interest.The selected - fissile - ions then fly further to Cave-C, an experimental area where the fission experiment itself takes place. At the entrance of the cave, the secondary beam is excited by Coulomb interaction when flying through an target; the de-excitation process involves low-energy fission. Both fission fragments fly forward in the laboratory frame, due to the relativistic boost inferred from the fissioning nucleus.A complete recoil spectrometer has been designed and built by the SOFIA collaboration in the path of the fission fragments, around the existing ALADIN magnet. The identification of the fragments is performed by means of energy loss, time of flight and deviation in the magnet measurements. Both fission fragments are fully (in mass and charge) and simultaneously identified.This document reports on the analysis performed for (1) the identification of the fissioning system, (2) the identification of both fission fragments, on an event-by-event basis, and (3) the extraction of fission observables: yields, TKE, total prompt neutron multiplicity. These results, concerning the actinides, are discussed, and

  6. Proceedings of the specialists' meeting on interdisciplinary approach to nuclear fission 1998

    International Nuclear Information System (INIS)

    Nakagome, Yoshihiro

    1999-02-01

    One of the prominent features of nuclear fission phenomena distinguished from other reactions consists in its many-facet nature. This includes interesting problems in nuclear physics like stability and properties of transactinide and superheavy nuclei, macroscopic and microscopic effects in large-amplitude deformation process, partition of mass and energy at scission, formation of neutron-rich nuclei, neutron- and gamma-ray emission from highly excited states and so on. These aspects are intriguing not only from scientific point of view but also from technological one, because knowledge and understanding of the essential features of the phenomena forms the basis of application of nuclear energy. Physicists expect to obtain a deeper insight into fundamental problems in subjects such as relation between fission process and fusion of heavy-ions, statistical and dynamical processes in nuclear reactions, level structure and decay modes of highly-excited nuclei. On the other hand, there are still continued requests from scientists in nuclear engineering for more accurate data for transuranium nuclei and fission products, as well as for fundamental constants, like fission cross sections, multiplicity and spectra of prompt and delayed neutrons, and other physical quantities that are important in reactor physics. Studies on properties of neutron-rich nuclei are conducted under double interests: one from nucleosynthesis in the universe, another from nuclear incineration of fission products. We considered that these many-facet nature of the fission phenomena should be the central idea of the Specialists' Meeting itself. This implies that we intended to devise a common place where people from different fields encounter, discuss together, exchange ideas and hopefully find good suggestions for pursuing further studies. We are sure that such a meeting, really rare and unique in academic communities in our country, should serve to vitalize research activities relevant to fission

  7. Prospective utilization of accelerated heavy ions in basic and applied research

    International Nuclear Information System (INIS)

    Flerov, G.; Oganesyan, Yu.

    1982-01-01

    Some important and interesting trends of heavy ion physics are briefly presented, such as giant processes which are characterized by fundamental restructuring of nuclear systems containing hundreds of nucleons, the mechanism of heavy nuclei interaction, the study of nuclear matter compression, the study of the specificity of heating and thermal conductivity of nuclear matter, the study of heavy ion/nucleus interactions at energies of 200 to 300 MeV/nucleon when the meson degree of freedom becomes manifest, the possibility of the production of ions with a large excess or deficiency of neutrons, new possibilities for determining the fission barrier, the critical verification of fundamental physical concepts of quantum electrodynamics and other possibilities of using accelerated heavy ions. The significance of heavy ion physics for the development of acceleration technologies is also described. (B.S.)

  8. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, M.

    1984-09-01

    This is the tenth issue of a report series on Fission Product Data, which informs us about all the activities in this field, which are planned, ongoing, or have recently been completed. The types of activities included are measurements, compilations and evaluations of: fission product yields (neutron induced and spontaneous fission), neutron reaction cross sections of fission products, data related to the radioactive decay of fission products, delayed neutron data of fission products, lumped fission product data (decay heat, absorption, etc.). There is also a section with recent references relative to fission product nuclear data

  9. Effects of fissioning nuclei distributions on fragment mass distributions for high energy fission

    Directory of Open Access Journals (Sweden)

    Rossi P C R

    2012-02-01

    Full Text Available We study the effects of fissioning nuclei mass- and energy-distributions on the formation of fragments for fission induced by high energy probes. A Monte Carlo code called CRISP was used for obtaining mass distributions and spectra of the fissioning nuclei for reactions induced by 660 MeV protons on 241Am and on 239Np, by 500 MeV protons on 208Pb, and by Bremsstrahlung photons with end-point energies at 50 MeV and 3500 MeV on 238U. The results show that even at high excitation energies, asymmetric fission may still contribute significantly to the fission cross section of actinide nuclei, while it is the dominante mode in the case of lead. However, more precise data for high energy fission on actinide are necessary in order to allow definite conclusions.

  10. Angular momenta of fission fragments in the {alpha}-accompanied fission of {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Jandel, M.; Kliman, J.; Krupa, L.; Morhac, M. [Slovak Academy of Sciences, Department of Nuclear Physics, Bratislava (Slovakia); Joint Institute for Nuclear Research, Flerov Laboratory for Nuclear Reactions, Dubna (Russian Federation); Hamilton, J.H.; Kormicki, J.; Ramayya, A.V.; Hwang, J.K.; Luo, Y.X.; Fong, D.; Gore, P. [Vanderbilt University, Department of Physics, Nashville, TN (United States); Ter-Akopian, G.M.; Oganessian, Yu.Ts.; Rodin, A.M.; Fomichev, A.S.; Popeko, G.S. [Joint Institute for Nuclear Research, Flerov Laboratory for Nuclear Reactions, Dubna (Russian Federation); Daniel, A.V. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Rasmussen, J.O.; Macchiavelli, A.O.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Donangelo, R.; Cole, J.D.

    2005-06-01

    For the first time, average angular momenta of the ternary fission fragments {sup 100,102}Zr, {sup 106}Mo, {sup 144,146}Ba and {sup 138,140,142}Xe from the {alpha}-accompanied fission of {sup 252}Cf were obtained from relative intensities of prompt {gamma}-ray transitions with the use of the statistical model calculation. Average values of the angular momenta were compared with the corresponding values for the same fission fragments from the binary fission of {sup 252}Cf. Results indicate the presence of a decreasing trend in the average values of angular momenta induced in ternary fission fragments compared to the same binary fission fragments. On the average, the total angular momentum extracted for ternary fission fragments is {proportional_to}1.4{Dirac_h} lower than in binary fission. Consequently, results indicate that the mechanism of the ternary {alpha}-particles emission may directly effect an induction of angular momenta of fission fragments, and possible scenarios of such mechanisms are discussed. Further, the dependence of the angular momenta of {sup 106}Mo and {sup 140}Xe on the number of emitted neutrons from correlated pairs of primary fragments was obtained also showing a decreasing dependence of average angular momenta with increasing number of emitted neutrons. Consequences are briefly discussed. (orig.)

  11. Technologies for tritium control in fission reactors moderated with heavy water

    International Nuclear Information System (INIS)

    Ramilo, L.B.; Gomez de Soler, S.M.

    1996-01-01

    This study was done within a program one of whose objectives was to analyze the possible strategies and technologies, to be applied to HWR at Argentine nuclear power plants, for tritium control. The high contribution of tritium to the total dose has given rise to the need by the operators and/or designers to carry out developments and improvements to try to optimize tritium control technologies. Within a tritium control program, only that one which includes the heavy water detritiation will allow to reduce the tritium concentrations at optimum levels for safety and cost-effective power plant operation. The technology chosen to be applied should depend not only on the technical feasibility but also on the analysis of economic and juncture factors such as, among others, the quantity of heavy water to be treated. It is the authors' belief that AECL tendency concerning heavy water treatment in its future reactors would be to employ the CECE technology complemented with immobilization on titanium beds, with the 'on-line' detritiation in each nuclear power plant. This would not be of immediate application since our analysis suggests that AECL would assume that the process is under development and needs to be tested. (author). 21 refs

  12. Neutron-induced fission cross sections

    International Nuclear Information System (INIS)

    Weigmann, H.

    1991-01-01

    In the history of fission research, neutron-induced fission has always played the most important role. The practical importance of neutron-induced fission rests upon the fact that additional neutrons are produced in the fission process, and thus a chain reaction becomes possible. The practical applications of neutron-induced fission will not be discussed in this chapter, but only the physical properties of one of its characteristics, namely (n,f) cross sections. The most important early summaries on the subject are the monograph edited by Michaudon which also deals with the practical applications, the earlier review article on fission by Michaudon, and the review by Bjornholm and Lynn, in which neutron-induced fission receives major attention. This chapter will attempt to go an intermediate way between the very detailed theoretical treatment in the latter review and the cited monograph which emphasizes the applied aspects and the techniques of fission cross-section measurements. The more recent investigations in the field will be included. Section II will survey the properties of cross sections for neutron-induced fission and also address some special aspects of the experimental methods applied in their measurement. Section Ill will deal with the formal theory of neutron-induced nuclear reactions for the resolved resonance region and the region of statistical nuclear reactions. In Section IV, the fission width, or fission transmission coefficient, will be discussed in detail. Section V will deal with the broader structures due to incompletely damped vibrational resonances, and in particular will address the special case of thorium and neighboring isotopes. Finally, Section VI will briefly discuss parity violation effects in neutron-induced fission. 74 refs., 14 figs., 3 tabs

  13. Correlation of errors in the Monte Carlo fission source and the fission matrix fundamental-mode eigenvector

    International Nuclear Information System (INIS)

    Dufek, Jan; Holst, Gustaf

    2016-01-01

    Highlights: • Errors in the fission matrix eigenvector and fission source are correlated. • The error correlations depend on coarseness of the spatial mesh. • The error correlations are negligible when the mesh is very fine. - Abstract: Previous studies raised a question about the level of a possible correlation of errors in the cumulative Monte Carlo fission source and the fundamental-mode eigenvector of the fission matrix. A number of new methods tally the fission matrix during the actual Monte Carlo criticality calculation, and use its fundamental-mode eigenvector for various tasks. The methods assume the fission matrix eigenvector is a better representation of the fission source distribution than the actual Monte Carlo fission source, although the fission matrix and its eigenvectors do contain statistical and other errors. A recent study showed that the eigenvector could be used for an unbiased estimation of errors in the cumulative fission source if the errors in the eigenvector and the cumulative fission source were not correlated. Here we present new numerical study results that answer the question about the level of the possible error correlation. The results may be of importance to all methods that use the fission matrix. New numerical tests show that the error correlation is present at a level which strongly depends on properties of the spatial mesh used for tallying the fission matrix. The error correlation is relatively strong when the mesh is coarse, while the correlation weakens as the mesh gets finer. We suggest that the coarseness of the mesh is measured in terms of the value of the largest element in the tallied fission matrix as that way accounts for the mesh as well as system properties. In our test simulations, we observe only negligible error correlations when the value of the largest element in the fission matrix is about 0.1. Relatively strong error correlations appear when the value of the largest element in the fission matrix raises

  14. Radiochemistry and the Study of Fission

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-14

    These are slides from a lecture given at UC Berkeley. Radiochemistry has been used to study fission since its discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution. The following topics are covered: In the beginning: the discovery of fission; forensics using fission products: what can be learned from fission products, definitions of R-values and Q-values, fission bases, K-factors and fission chambers, limitations; the neutron energy dependence of the mass yield distribution (the two mode fission hypothesis); the influence of nuclear structure on the mass yield distribution. In summary: Radiochemistry has been used to study fission since its discovery. Radiochemical measurement of fission product yields have provided the highest precision data for developing fission models and for nuclear forensics. The two-mode fission hypothesis provides a description of the neutron energy dependence of the mass yield curve. However, data is still rather sparse and more work is needed near second and third chance fission. Radiochemical measurements have provided evidence for the importance of nuclear states in the compound nucleus in predicting the mass yield curve in the resonance region.

  15. Radiochemistry and the Study of Fission

    International Nuclear Information System (INIS)

    Rundberg, Robert S.

    2016-01-01

    These are slides from a lecture given at UC Berkeley. Radiochemistry has been used to study fission since its discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution. The following topics are covered: In the beginning: the discovery of fission; forensics using fission products: what can be learned from fission products, definitions of R-values and Q-values, fission bases, K-factors and fission chambers, limitations; the neutron energy dependence of the mass yield distribution (the two mode fission hypothesis); the influence of nuclear structure on the mass yield distribution. In summary: Radiochemistry has been used to study fission since its discovery. Radiochemical measurement of fission product yields have provided the highest precision data for developing fission models and for nuclear forensics. The two-mode fission hypothesis provides a description of the neutron energy dependence of the mass yield curve. However, data is still rather sparse and more work is needed near second and third chance fission. Radiochemical measurements have provided evidence for the importance of nuclear states in the compound nucleus in predicting the mass yield curve in the resonance region.

  16. Decay and Fission Hindrance of Two- and Four-Quasiparticle K Isomers in ^{254}Rf.

    Science.gov (United States)

    David, H M; Chen, J; Seweryniak, D; Kondev, F G; Gates, J M; Gregorich, K E; Ahmad, I; Albers, M; Alcorta, M; Back, B B; Baartman, B; Bertone, P F; Bernstein, L A; Campbell, C M; Carpenter, M P; Chiara, C J; Clark, R M; Cromaz, M; Doherty, D T; Dracoulis, G D; Esker, N E; Fallon, P; Gothe, O R; Greene, J P; Greenlees, P T; Hartley, D J; Hauschild, K; Hoffman, C R; Hota, S S; Janssens, R V F; Khoo, T L; Konki, J; Kwarsick, J T; Lauritsen, T; Macchiavelli, A O; Mudder, P R; Nair, C; Qiu, Y; Rissanen, J; Rogers, A M; Ruotsalainen, P; Savard, G; Stolze, S; Wiens, A; Zhu, S

    2015-09-25

    Two isomers decaying by electromagnetic transitions with half-lives of 4.7(1.1) and 247(73) μs have been discovered in the heavy ^{254}Rf nucleus. The observation of the shorter-lived isomer was made possible by a novel application of a digital data acquisition system. The isomers were interpreted as the K^{π}=8^{-}, ν^{2}(7/2^{+}[624],9/2^{-}[734]) two-quasineutron and the K^{π}=16^{+}, 8^{-}ν^{2}(7/2^{+}[624],9/2^{-}[734])⊗8^{-}π^{2}(7/2^{-}[514],9/2^{+}[624]) four-quasiparticle configurations, respectively. Surprisingly, the lifetime of the two-quasiparticle isomer is more than 4 orders of magnitude shorter than what has been observed for analogous isomers in the lighter N=150 isotones. The four-quasiparticle isomer is longer lived than the ^{254}Rf ground state that decays exclusively by spontaneous fission with a half-life of 23.2(1.1) μs. The absence of sizable fission branches from either of the isomers implies unprecedented fission hindrance relative to the ground state.

  17. The Growth of Sea cucumber Stichopus herrmanni After Transverse Induced Fission in Two and Three Fission Plane

    Directory of Open Access Journals (Sweden)

    Retno Hartati

    2016-06-01

    Full Text Available Transverse induced fission proven could be done in Teripang Tril, Stichopus herrmanni. This present works aimed to analyze wound recovery, regeneration period and growth of Teripang Trill  after asexual reproduction by fission using two and three fission plane. Observations were made every day until the sea cucumber body separated into two or more (depending on treatment and reared for 16 weeks.  The results showed that there are differences in wound recovery, regeneration period and growth of S. herrmanni depend on their different fission plane. The wound recovery and regeneration period (days of anterior, middle and posterior individu S. herrmanni resulted from two and three fission plane were varied but the two fission plane the anterior individu recover for longer period than posterior part and  the wound recover process in both end for thee fission plane was same. Average growth of anterior and posterior fragment were longer for two fission plane than three fission plane.  The middle fragment (M1 and M2 both fission plane was able to grow but very low.  It showed that three fission plane gave very slow growth in every fragment of the body. Keywords: growth, post-fission, fission plane, Stichopus herrmanni

  18. SSNTD study of the probable influence of alpha activity on the mass distribution of sup 2 sup 5 sup 2 Cf fission fragments

    CERN Document Server

    Paul, D; Sastri, R C; Ghose, D

    1999-01-01

    The SSNTD has come a long way in its application for the study of nuclear phenomena. Spontaneous fission of transuranic elements is one such phenomena wherein use of SSNTD offers easy registration of the signature of the fission fragments. The object of the present study is to explore whether any one of the track parameters such as the diameter can be used to estimate the atomic mass ratios of the spontaneous fission fragments. The spontaneous fission data from sup 2 sup 5 sup 2 Cf recorded almost at the end of one and four half-life periods for alpha decay are analysed, taking a plot of the number of tracks versus the track diameter. From these plots it is seen that initially, when significant alpha activity of sup 2 sup 5 sup 2 Cf persists, the fission fragments appear to cluster into two predominant groups as indicated by two peaks. The ratio of the diameters at these peak positions appear to be related to the ratio of average mass numbers of the light and heavy groups of fission fragments. However, absenc...

  19. Effect of fission dynamics on the spectra and multiplicities of prompt fission neutrons

    International Nuclear Information System (INIS)

    Nix, J.R.; Madland, D.G.; Sierk, A.J.

    1985-01-01

    With the goal of examining their effect on the spectra and multiplicities of the prompt neutrons emitted in fission, we discuss recent advances in a unified macroscopic-microscopic description of large-amplitude collective nuclear dynamics. The conversion of collective energy into single-particle excitation energy is calculated for a new surface-plus-window dissipation mechanism. By solving the Hamilton equations of motion for initial conditions appropriate to fission, we obtain the average fission-fragment translational kinetic energy and excitation energy. The spectra and multiplicities of the emitted neutrons, which depend critically upon the average excitation energy, are then calculated on the basis of standard nuclear evaporation theory, taking into account the average motion of the fission fragments, the distribution of fission-fragment residual nuclear temperature, the energy dependence of the cross section for the inverse process of compound-nucleus formation, and the possibility of multiple-chance fission. Some illustrative comparisons of our calculations with experimental data are shown

  20. Fusion-fission type collisions

    International Nuclear Information System (INIS)

    Oeschler, H.

    1980-01-01

    Three examples of fusion-fission type collisions on medium-mass nuclei are investigated whether the fragment properties are consistent with fission from equilibrated compound nuclei. Only in a very narrow band of angular momenta the data fulfill the necessary criteria for this process. Continuous evolutions of this mechnism into fusion fission and into a deep-inelastic process and particle emission prior to fusion have been observed. Based on the widths of the fragment-mass distributions of a great variety of data, a further criterion for the compound-nucleus-fission process is tentatively proposed. (orig.)

  1. Fission neutron multiplicity calculations

    International Nuclear Information System (INIS)

    Maerten, H.; Ruben, A.; Seeliger, D.

    1991-01-01

    A model for calculating neutron multiplicities in nuclear fission is presented. It is based on the solution of the energy partition problem as function of mass asymmetry within a phenomenological approach including temperature-dependent microscopic energies. Nuclear structure effects on fragment de-excitation, which influence neutron multiplicities, are discussed. Temperature effects on microscopic energy play an important role in induced fission reactions. Calculated results are presented for various fission reactions induced by neutrons. Data cover the incident energy range 0-20 MeV, i.e. multiple chance fission is considered. (author). 28 refs, 13 figs

  2. Studies on fission tracks and distributions of uranium and rare earths in granite materials

    International Nuclear Information System (INIS)

    Matsuda, Hiroshi; Sakanoue, Masanobu

    1987-01-01

    Many materials contain fossil records of the slow spontaneous fission of uranium they contain as an impurity. Fission fragments, heavy charged particles released in each fission event, produce microscopic trails of radiation damage that may persist over geological times and may be developed to a size observable under an optical microscope by a suitable etching treatment. Such tracks are also produced by fissions induced by thermal neutron irradiation of the uranium. When the material is heated sufficiently, it anneals and the the microscopic trails become shorter and narrower. The track density decreases, because the chemical etchant will not reach some of the shortened tracks. Measurements of track densities before and after annealing can be used, along with laboratory studies of annealing rates, to determine the annealing temperature. Also, the track density of induced fissions is related to the concentration of uranium and the fluence of neutrons to which it was exposed. If the track density due to induced fissions can be distinguished from that due to fossil tracks, estimates of either the concentration or the fluence can be made if the other is known. Two such materials (one a fragment of a granite paving stone, the other a piece of stained glass from a cathedral window) that had been exposed to the atomic bomb at Nagasaki were used in the present work. The fossil record in zircons in the granite was used to estimate the temperature to which it had been exposed in the bombing. Induced fissions were used to estimate the concentration of uranium in the zircons. Nonuniform heating and cooling and nearly uniform exposure to the neutrons make the granite sample unsuitable for determining the neutron fluence from the bomb. Induced fissions in the stained glass were used to estimate the concentration of uranium and the thermal neutron fluence from the A-bomb. Annealing of tracks in glass was also studied

  3. Proceedings of the Workshop on open problems in heavy ion reaction dynamics at VIVITRON energies

    International Nuclear Information System (INIS)

    Beck, F.A.

    1993-01-01

    Some problems of heavy ion reaction dynamics at the VIVITRON tandem accelerator and the experimental facilities are discussed at the meeting. Topics include light dinuclear systems, collision dynamics at low energies, fission evaporation and fusion of heavy nuclei and others. Most documents consist of transparencies presented at the workshop, texts of papers are missing. All items are indexed and abstracted for the INIS database. (K.A.)

  4. Proceedings of the Workshop on open problems in heavy ion reaction dynamics at VIVITRON energies

    Energy Technology Data Exchange (ETDEWEB)

    Beck, F. A.

    1993-07-01

    Some problems of heavy ion reaction dynamics at the VIVITRON tandem accelerator and the experimental facilities are discussed at the meeting. Topics include light dinuclear systems, collision dynamics at low energies, fission evaporation and fusion of heavy nuclei and others. Most documents consist of transparencies presented at the workshop, texts of papers are missing. All items are indexed and abstracted for the INIS database. (K.A.).

  5. Fission yield measurements at IGISOL

    Science.gov (United States)

    Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.

    2016-06-01

    The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  6. Fission yield measurements at IGISOL

    Directory of Open Access Journals (Sweden)

    Lantz M.

    2016-01-01

    Full Text Available The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f and Th(p,f have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  7. Cluster radioactivity of Z=125 super heavy nuclei

    International Nuclear Information System (INIS)

    Manjunatha, H.C.; Seenappa, L.

    2015-01-01

    For atomic numbers larger than 121 cluster decay and spontaneous fission may compete with α decay. Hence there is a need to make reliable calculations for the cluster decay half-lives of superheavy nuclei to predict the possible isotopes super heavy nuclei. So, in the present work, we have studied the decay of clusters such as 8 Be, 10 Be, 12 C, 14 C, 16 C, 18 O, 20 O, 22 Ne, 24 Ne, 25 Ne, 26 Ne, 28 Mg, 30 Mg, 32 Si, 34 Si, 36 Si, 40 S, 48 Ca, 50 Ca and 52 Ti from the super heavy nuclei Z=125

  8. Investigation of structural materials of reactors using high-energy heavy-ion irradiations

    International Nuclear Information System (INIS)

    Wang Zhiguang

    2007-01-01

    Radiation damage in structural materials of fission/fusion reactors is mainly attributed to the evolution of intensive atom displacement damage induced by energetic particles (n, α and/or fission fragments) and high-rate helium doping by direct α particle bombardments and/or (n, α) reactions. It can cause severe degradation of reactor structural materials such as surface blistering, bulk void swelling, deformation, fatigue, embrittlement, stress erosion corrosion and so on that will significantly affect the operation safety of reactors. However, up to now, behavior of structural materials at the end of their service can hardly be fully tested in a real reactor. In the present work, damage process in reactor structural materials is briefly introduced, then the advantages of energetic ion implantation/irradiation especially high-energy heavy ion irradiation are discussed, and several typical examples on simulation of radiation effects in reactor candidate structural materials using high-energy heavy ion irradiations are pronounced. Experimental results and theoretical analysis suggested that irradiation with energetic particles especially high-energy heavy ions is very useful technique for simulating the evolution of microstructures and macro-properties of reactor structural materials. Furthermore, an on-going plan of material irradiation experiments using high energy H- and He-ions based on the Heavy Ion Research Facilities in Lanzhou (HIRFL) is also briefly interpreted. (authors)

  9. Study of hypernuclei fission

    International Nuclear Information System (INIS)

    Malek, F.

    1990-01-01

    This work is about PS177 experience made on LEAR machine at CERN in 1988. The annihilation reaction of anti protons on a target of Bismuth or Uranium is studied. Lambda particles are produced by this reaction, in the nucleus in 2% of cases 7.1 10 -3 hypernuclei by stopped antiproton in the target are produced. The prompt hypernucleus fission probability of uranium is 75% and that of Bismuth 10%. The mass distribution of fission fragments is symmetrical ((≡ the excitation energy of the nucleus is very high). If the nucleus hasn't fissioned, the non-mesonic lambda decay, gives it an energy of 100 MeV, what allows to fission later. This fission is delayed because the hypernucleus lifetime is 1.3 +0.25 -0.21 10 -10 sec for Bismuth [fr

  10. Elastocapillary Instability in Mitochondrial Fission

    Science.gov (United States)

    Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien

    2015-08-01

    Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.

  11. Nuclear-charge polarization at scission in fission from moderately excited light-actinide nuclei

    International Nuclear Information System (INIS)

    Nishinaka, Ichiro

    2009-01-01

    Fragment mass yields and the average neutron multiplicity in the proton-induced fission of 232 Th and 238 U were measured by a double time-of-flight method. The most probable charges of secondary fragments were evaluated from the fragment mass yields measured by the double time-of-flight method and the fractional cumulative and independent yields reported in literature. The nuclear-charge polarization of primary fragments at scission was obtained by correcting the most probable charge of secondary fragments for neutron evaporation. The results show that the nuclear-charge polarization at scission is associated with the liquid-drop properties of nuclei and the proton shell effect with Z = 50 of heavy fragments and that it is practically insensitive to mass and excitation energy of the fissioning nucleus in the region of light-actinide nuclei. (author)

  12. Determination of the fission products yields, lanthanide and yttrium, in the fission of 238U with neutrons of fission spectra

    International Nuclear Information System (INIS)

    Nicoli, I.G.

    1981-06-01

    A radiochemical investigation is performed to measure the cumulative fission product yields of several lantanides and yttrium nuclides in the 238 U by fission neutron spectra. Natural and depleted uranium are irradiated under the same experimental conditions in order to find a way to subtract the contribution of the 235 U fission. 235 U percentage in the natural uranium was 3.5 times higher than in the depleted uranium. Uranium oxides samples are irradiated inside the core of the Argonaut Reactor, at the Instituto de Engenharia Nuclear, and the lantanides and yttrium are chemically separated. The fission products gamma activities were detected, counted and analysed in a system constituted by a high resolution Ge(Li) detector, 4096 multichannel analyser and a PDP-11 computer. Cumulative yields for fission products with half-lives between 1 to 33 hours are measured: 93 Y, 141 La, 142 La, 143 Ce and 149 Nd. The chain total yields are calculated. The cumulative fission yields measured for 93 Y, 141 La, 142 La, 143 Ce and 149 Nd are 4,49%, 4,54%, 4,95%, 4,16% and 1,37% respectively and they are in good agreement with the values found in the literature. (Author) [pt

  13. Barium 139 as Fission Indicator

    Energy Technology Data Exchange (ETDEWEB)

    Broda, E.

    1943-07-01

    This report is based on a measurement performed at the Cavendish Laboratory (Cambridge) by E. Broda in December 1943 where a technique has been worked out for measuring the fission density in a uranium containing medium in relative units by determining the amount of a suitable fission product formed. Generally a given fission product will be formed in natural uranium by slow neutron fission of U235 or by fast neutron fission of either U235 or U238. It is intended to translate the relative units into absolute units by comparison of the Ba yield with the indication of UF6 fission chamber in the same medium. This has to be done separately for fast and slow neutron fission as the yields may be different. Another application of the technique developed is the measurement of thermal neutron density in an uraniferous medium without using a detector subject to variations of sensitivity according to the properties of the medium. (nowak)

  14. Experimental study of energy dependence of proton induced fission cross sections for heavy nuclei in the energy range 200-1000 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Kotov, A.A.; Gavrikov, Yu.A.; Vaishnene, L.A.; Vovchenko, V.G.; Poliakov, V.V.; Fedorov, O.Ya.; Chestnov, Yu.A.; Shchetkovskiy, A.I [Petersburg Nuclear Physics Institute, Gatchina, Leningrad district, Orlova roscha 1, 188300 (Russian Federation); Fukahori, T. [Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki 319-1195 (Japan)

    2005-07-01

    The results of the total fission cross sections measurements for {sup nat}Pb, {sup 209}Bi, {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu nuclei at the energy proton range 200-1000 MeV are presented. Experiments were carried out at 1 GeV synchrocyclotron of Petersburg Nuclear Physics Institute (Gatchina). The measurement method is based on the registration in coincidence of both complementary fission fragments by two gas parallel plate avalanche counters, located at a short distance and opposite sides of investigated target. The insensitivity of parallel plate avalanche counters to neutron and light charged particles allowed us to place the counters together with target immediately in the proton beam providing a large solid angle acceptance for fission fragment registration and reliable identification of fission events. The proton flux on the target to be studied was determined by direct counting of protons by scintillation telescope. The measured energy dependence of the total fission cross sections is presented. Obtained results are compared with other experimental data as well as with calculation in the frame of the cascade evaporation model. (authors)

  15. Fusability and survivability in reactions leading to heavy nuclei in the vicinity of the N = 126 shell

    International Nuclear Information System (INIS)

    Sagajdak, R.N.

    2008-01-01

    The production of heavy nuclei from Rn to Th around the N = 126 neutron shell in complete fusion reactions of nuclei has been considered in a systematic way in the framework of the conventional barrier-passing fusion model coupled with the Standard Statistical Model (SSM). Available data on the excitation functions for fusion and production of evaporation residues obtained in very asymmetric combinations are described with these models rather well. In the interaction of massive projectiles with heavy target nuclei quasi-fission effects appear in the entrance reaction channel. The quantity of the fusion probability introduced empirically has been used to reproduce excitation functions with the same SSM parameters (fission barriers) as those obtained in the analysis of very asymmetric combinations. A lack of stabilization against fission around N = 126 for Th nuclei was earlier explained with a reduced collective contribution to the level density in spherical nuclei. However, the present analysis shows severe inhibition for fusion, i.e., the drop in production cross sections of Th nuclei in the vicinity of N = 126 is mainly caused by entrance channel effects. The macroscopic component of fission barriers for nuclei involved in a deexcitation cascade has been derived and compared with the theoretical model predictions and available data

  16. Revision of heavy nuclei data in JENDL-3.2

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Toshihiko [Kyushu Univ., Advanced Energy Engineering Science, Kasuga, Fukuoka (Japan)

    2000-03-01

    In order to deal with problems concerning the data of heavy nuclides in JENDL-3.2, a working group was organized to update the evaluated nuclear data of Uranium, Plutonium, and Thorium isotopes. The current status of the working group is reviewed, and some results about resonance parameters, secondary neutron energy spectra, fission cross sections, and direct/semidirect capture process are shown. (author)

  17. Revision of heavy nuclei data in JENDL-3.2

    International Nuclear Information System (INIS)

    Kawano, Toshihiko

    2000-01-01

    In order to deal with problems concerning the data of heavy nuclides in JENDL-3.2, a working group was organized to update the evaluated nuclear data of Uranium, Plutonium, and Thorium isotopes. The current status of the working group is reviewed, and some results about resonance parameters, secondary neutron energy spectra, fission cross sections, and direct/semidirect capture process are shown. (author)

  18. Fission fragment distributions within dynamical approach

    Energy Technology Data Exchange (ETDEWEB)

    Mazurek, K. [Institute of Nuclear, Physics Polish Academy of Sciences, Krakow (Poland); Nadtochy, P.N. [Omsk State Technical University, Omsk (Russian Federation); Ryabov, E.G.; Adeev, G.D. [Omsk State University, Physics Department, Omsk (Russian Federation)

    2017-04-15

    The review covers recent developments and achievements in the dynamical description of fission process at high excitation energy. It is shown that the dynamical approach based on multidimensional Langevin equations combined with the statistical description of nuclear decay by particles evaporation is capable of fairly well describing the formation of fission fragment mass-energy, charge, and angular distributions of fission fragments in coincidence with the pre- and post-scission particle emission. The final yields of fission and evaporation residues channels products could be obtained. The detailed description of fission dynamics allows studying different stages of fission process, indicating the most important ingredients governing fission process and studying in detail such fundamental nuclear properties as nuclear viscosity and fission timescale. The tasks and perspectives of multidimensional dynamical approach are also discussed. (orig.)

  19. Tip model of cold fission

    International Nuclear Information System (INIS)

    Goennenwein, F.; Boersig, B.

    1991-01-01

    Cold fission is defined to be the limiting case of nuclear fission where virtually all of the available energy is converted into the total kinetic energy of the fragments. The fragments have, therefore, to be born in or at least close to their respective ground states. Starting from the viewpoint that cold fission corresponds to most compact scission configurations, energy constraints have been exploited to calculate minimum tip distances between the two nascent fragments in binary fission. Crucial input parameters to this tip model of cold fission are the ground-state deformations of fragment nuclei. It is shown that the minimum tip distances being compatible with energy conservation vary strongly with both the mass and charge fragmentation of the fission prone nucleus. The tip distances refer to nuclei with equivalent sharp surfaces. In keeping with the size of the surface width of leptodermous nuclei, only configurations where the tip distances are smaller than a few fm may be considered as valid scission configurations. From a comparison with experimental data on cold fission this critical tip distance appears to be 3.0 fm for the model parameters chosen. Whenever the model calculation yields tip distances being smaller than the critical value, a necessary condition for attaining cold fission is considered to be fulfilled. It is shown that this criterion allows to understand in fair agreement with experiment which mass fragmentations are susceptible to lead to cold fission and which fragment-charge divisions are the most favored in each isobaric mass chain. Being based merely on energy arguments, the model cannot aim at predicting fragment yields in cold fission. However, the tip model proposed appears well suited to delineate the phase space where cold fission phenomena may come into sight. (orig.)

  20. Recent applications of the Boltzmann master equation to heavy ion precompound decay phenomena

    International Nuclear Information System (INIS)

    Blann, M.; Remington, B.A.

    1988-06-01

    The Boltzmann master equation (BME) is described and used as a tool to interpret preequilibrium neutron emission from heavy ion collisions gated on evaporation residue or fission fragments. The same approach is used to interpret neutron spectra gated on deep inelastic and quasi-elastic heavy ion collisions. Less successful applications of BME to proton inclusive data with 40 MeV/u incident 12 C ions are presented, and improvements required in the exciton injection term are discussed

  1. A threshold for dissipative fission

    International Nuclear Information System (INIS)

    Thoennessen, M.; Bertsch, G.F.

    1993-01-01

    The empirical domain of validity of statistical theory is examined as applied to fission data on pre-fission data on pre-fission neutron, charged particle, and γ-ray multiplicities. Systematics are found of the threshold excitation energy for the appearance of nonstatistical fission. From the data on systems with not too high fissility, the relevant phenomenological parameter is the ratio of the threshold temperature T thresh to the (temperature-dependent) fission barrier height E Bar (T). The statistical model reproduces the data for T thresh /E Bar (T) thresh /E Bar (T) independent of mass and fissility of the systems

  2. Insights into nuclear structure and the fission process from spontaneous fission

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, J.H.; Butler-Moore, K.; Ramayya, A.V. [Vanderbilt Univ., Nashville, TN (United States)] [and others

    1993-12-31

    The {gamma}-rays emitted following spontaneous and induced fission are rich sources of information about the structure of neutron-rich nuclei and about the fission process itself. The study of spontaneous fissioning isotopes with large Ge detector arrays are providing a wealth of such information as seen, for example, in recent reports. In this paper we present some of our most recent results on nuclear structure studies and conclusions on the fission process itself. In our work, we have employed in spontaneous fission, a triple gamma coincidence study for the first time and a high resolution, X-ray detector-{gamma}-coincidence study. These data provide powerful ways of separating the gamma rays which belong to a particular nucleus. The triple coincidence technique was used to uniquely identify the levels in {sup 136}Te and higher spin states in its N=84 isotones, {sup 138}Xe and {sup 140}Ba{sup 171}. Some other examples of the level structures observed in the low and high mass partners are presented, including a detailed analysis of the backbending of the moment of inertia in {sup 112,114,116}Pd. Finally, we present the first examples of how our analysis allows one to extract a detailed picture of the dependence of the angular momentum on the mass and atomic numbers of the fission fragments and of the long-sought neutron multiplicity distribution from zero-n to ten-n as a function of the charge and mass asymmetry.

  3. Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons

    Science.gov (United States)

    Bhatia, C.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.; Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rundberg, R. S.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Macri, R.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.

    2014-09-01

    A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.

  4. Masses and fission barriers of nuclei in the LSD model

    Energy Technology Data Exchange (ETDEWEB)

    Pomorski, Krzysztof

    2009-07-01

    Recently developed Lublin-Strasbourg Drop (LSD) model together with the microscopic corrections taken r is very successful in describing many features of nuclei. In addition to the classical liquid drop model the LSD contains the curvature term proportional to the A{sup 1/3}. The r.m.s. deviation of the LSD binding energies of 2766 isotopes with Z,N>7 from the experimental ones is 0.698 MeV only. It turns out that the LSD model gives also a satisfactory prediction of the fission barrier heights. In addition, it was found in that taking into account the deformation dependence of the congruence energy proposed by Myers and Swiatecki significantly approaches the LSD-model barrier-heights to the experimental data in the case of light isotopes while the fission barriers for heavy nuclei remain nearly unchanged and agree well with experiment. It was also shown in that the saddle point masses of transactinides from {sup 232}Th to {sup 250}Cf evaluated using the LSD differ by less than 0.67 MeV from the experimental data.

  5. Reexamination of fission fragment angular distributions and the fission process: Formalism

    International Nuclear Information System (INIS)

    Bond, P.D.

    1985-01-01

    The theory of fission fragment angular distributions is examined and the universally used expression is found to be valid only under restrictive assumptions. A more general angular distribution formula is derived and applied to recent data of high spin systems. At the same time it is shown that the strong anisotropies observed from such systems can be understood without changing the essential basis of standard fission theory. The effects of reaction mechanisms other than complete fusion on fission fragment angular distributions are discussed and possible angular distribution signatures of noncompound nucleus formation are mentioned

  6. Process for treating fission waste

    International Nuclear Information System (INIS)

    Rohrmann, C.A.; Wick, O.J.

    1983-01-01

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste

  7. A new fission-fragment detector to complement the CACTUS-SiRi setup at the Oslo Cyclotron Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Tornyi, T.G., E-mail: tornyitom@atomki.hu [Department of Physics, University of Oslo (Norway); Institute of Nuclear Research of the Hungarian Academy of Sciences (MTA Atomki), Debrecen (Hungary); Görgen, A.; Guttormsen, M.; Larsen, A.C.; Siem, S. [Department of Physics, University of Oslo (Norway); Krasznahorkay, A. [Institute of Nuclear Research of the Hungarian Academy of Sciences (MTA Atomki), Debrecen (Hungary); Csige, L. [Institute of Nuclear Research of the Hungarian Academy of Sciences (MTA Atomki), Debrecen (Hungary); Max-Planck-Institute for Quantum Optics, D-85748 Garching (Germany)

    2014-02-21

    An array of Parallel Plate Avalanche Counters (PPAC) for the detection of heavy ions has been developed. The new device, NIFF (Nuclear Instrument for Fission Fragments), consists of four individual detectors and covers 60% of 2π. It was designed to be used in conjunction with the SiRi array of ΔE−E silicon telescopes for light charged particles and fits into the CACTUS array of 28 large-volume NaI scintillation detectors at the Oslo Cyclotron Laboratory. The low-pressure gas-filled PPACs are sensitive for the detection of fission fragments, but are insensitive to scattered beam particles of light ions or light-ion ejectiles. The PPAC detectors of NIFF have good time resolution and can be used either to select or to veto fission events in in-beam experiments with light-ion beams and actinide targets. The powerful combination of SiRi, CACTUS, and NIFF provides new research opportunities for the study of nuclear structure and nuclear reactions in the actinide region. The new setup is particularly well suited to study the competition of fission and γ decay as a function of excitation energy.

  8. Fifty years with nuclear fission

    International Nuclear Information System (INIS)

    Behrens, J.W.; Carlson, A.D.

    1989-01-01

    The news of the discovery of nuclear fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fifieth anniversary of its discovery by holding a topical meeting entitled, ''Fifty Years with Nuclear Fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent development in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicated a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two fully days of sessions (April 27 and 28) at the main site of the NIST in Gaithersburg, Maryland. The wide range of topics covered in this Volume 1 by this topical meeting included plenary invited, and contributed sessions entitled: Preclude to the First Chain Reaction -- 1932 to 1942; Early Fission Research -- Nuclear Structure and Spontaneous Fission; 50 Years of Fission, Science, and Technology; Nuclear Reactors, Secure Energy for the Future; Reactors 1; Fission Science 1; Safeguards and Space Applications; Fission Data; Nuclear Fission -- Its Various Aspects; Theory and Experiments in Support of Theory; Reactors and Safeguards; and General Research, Instrumentation, and By-Product. The individual papers have been cataloged separately

  9. Photonuclear fission with quasimonoenergetic electron beams from laser wakefields

    International Nuclear Information System (INIS)

    Reed, S. A.; Chvykov, V.; Kalintchenko, G.; Matsuoka, T.; Rousseau, P.; Yanovsky, V.; Vane, C. R.; Beene, J. R.; Stracener, D.; Schultz, D. R.; Maksimchuk, A.

    2006-01-01

    Recent advancements in laser wakefield accelerators have resulted in the generation of low divergence, hundred MeV, quasimonoenergetic electron beams. The bremsstrahlung produced by these highly energetic electrons in heavy converters includes a large number of MeV γ rays that have been utilized to induce photofission in natural uranium. Analysis of the measured delayed γ emission demonstrates production of greater than 3x10 5 fission events per joule of laser energy, which is more than an order of magnitude greater than that previously achieved. Monte Carlo simulations model the generated bremsstrahlung spectrum and compare photofission yields as a function of target depth and incident electron energy

  10. Sub-barrier quasifission in heavy element formation reactions with deformed actinide target nuclei

    Science.gov (United States)

    Hinde, D. J.; Jeung, D. Y.; Prasad, E.; Wakhle, A.; Dasgupta, M.; Evers, M.; Luong, D. H.; du Rietz, R.; Simenel, C.; Simpson, E. C.; Williams, E.

    2018-02-01

    Background: The formation of superheavy elements (SHEs) by fusion of two massive nuclei is severely inhibited by the competing quasifission process. Low excitation energies favor SHE survival against fusion-fission competition. In "cold" fusion with spherical target nuclei near 208Pb, SHE yields are largest at beam energies significantly below the average capture barrier. In "hot" fusion with statically deformed actinide nuclei, this is not the case. Here the elongated deformation-aligned configurations in sub-barrier capture reactions inhibits fusion (formation of a compact compound nucleus), instead favoring rapid reseparation through quasifission. Purpose: To determine the probabilities of fast and slow quasifission in reactions with prolate statically deformed actinide nuclei, through measurement and quantitative analysis of the dependence of quasifission characteristics at beam energies spanning the average capture barrier energy. Methods: The Australian National University Heavy Ion Accelerator Facility and CUBE fission spectrometer have been used to measure fission and quasifission mass and angle distributions for reactions with projectiles from C to S, bombarding Th and U target nuclei. Results: Mass-asymmetric quasifission occurring on a fast time scale, associated with collisions with the tips of the prolate actinide nuclei, shows a rapid increase in probability with increasing projectile charge, the transition being centered around projectile atomic number ZP=14 . For mass-symmetric fission events, deviations of angular anisotropies from expectations for fusion fission, indicating a component of slower quasifission, suggest a similar transition, but centered around ZP˜8 . Conclusions: Collisions with the tips of statically deformed prolate actinide nuclei show evidence for two distinct quasifission processes of different time scales. Their probabilities both increase rapidly with the projectile charge. The probability of fusion can be severely

  11. Muon-induced fission

    International Nuclear Information System (INIS)

    Polikanov, S.

    1980-01-01

    A review of recent experimental results on negative-muon-induced fission, both of 238 U and 232 Th, is given. Some conclusions drawn by the author are concerned with muonic atoms of fission fragments and muonic atoms of the shape isomer of 238 U. (author)

  12. Direct measurements of the lifetime of medium-heavy hypernuclei

    Science.gov (United States)

    Qiu, X.; Tang, L.; Chen, C.; Margaryan, A.; Wood, S. A.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; Badui, R.; Baturin, P.; Boeglin, W.; Bono, J.; Brash, E.; Carter, P.; Chen, X.; Chiba, A.; Christy, M. E.; Dalton, M. M.; Danagoulian, S.; De Leo, R.; Doi, D.; Elaasar, M.; Ent, R.; Fenker, H.; Fujii, Y.; Furic, M.; Gabrielyan, M.; Gan, L.; Garibaldi, F.; Gaskell, D.; Gasparian, A.; Gogami, T.; Hashimoto, O.; Horn, T.; Hu, B.; Hungerford, Ed V.; Jones, M.; Kanda, H.; Kaneta, M.; Kawama, D.; Khanal, H.; Kohl, M.; Liyanage, A.; Luo, W.; Maeda, K.; Markowitz, P.; Marikyan, G.; Maruta, T.; Matsumura, A.; Maxwell, V.; Mkrtchyan, A.; Mkrtchyan, H.; Nagao, S.; Nakamura, S. N.; Narayan, A.; Neville, C.; Niculescu, G.; Niculescu, M. I.; Nunez, A.; Nuruzzaman; Okayasu, Y.; Petkovic, T.; Pochodzalla, J.; Reinhold, J.; Rodriguez, V. M.; Samanta, C.; Sawatzky, B.; Seva, T.; Shichijo, A.; Tadevosyan, V.; Taniya, N.; Tsukada, K.; Veilleux, M.; Vulcan, W.; Wesselmann, F. R.; Yamamoto, T.; Ye, Z.; Yokota, K.; Yuan, L.; Zhamkochyan, S.; Zhu, L.; HKS (JLab E02-017) Collaboration

    2018-05-01

    The lifetime of a Λ particle embedded in a nucleus (hypernucleus) decreases from that of free Λ decay mainly due to the opening of the ΛN → NN weak decay channel. However, it is generally believed that the lifetime of a hypernucleus attains a constant value (saturation) for medium to heavy hypernuclear masses, yet this hypothesis has been difficult to verify. This paper presents a direct measurement of the lifetime of medium-heavy hypernuclei that were hyper-fragments produced by fission or break-up from heavy hypernuclei initially produced with a 2.34 GeV photon-beam incident on thin Fe, Cu, Ag, and Bi target foils. For each event, fragments were detected in coincident pairs by a low-pressure multi-wire proportional chamber system. The lifetime was extracted from decay time spectrum formed by the difference of the time zeros between the pairs. The measured lifetime from each target is actually a statistical average over a range of mass with mean about 1/2 of the target mass and appears to be a constant of about 200 ps. Although this result cannot exclude unexpected shorter or longer lifetimes for some specific hypernuclei or hypernuclear states, it shows that a systematic decrease in lifetime as hypernuclear mass increases is not a general feature for hypernuclei with mean mass up to A ≈ 130. On the other hand, the success of this experiment and its technique shows that the time delayed fissions observed and used by all the lifetime measurements done so far on heavy hypernuclei could likely have originated from hyper-fragments lighter than the assumed masses.

  13. Studying heavy-ion collisions with coverage near zero degrees using FAUST–QTS

    International Nuclear Information System (INIS)

    Cammarata, Paul; Chapman, Matthew B.; McIntosh, Alan B.; Souliotis, George A.; Bakhtiari, Layla; Behling, Spencer; Bonasera, Giacomo; Heilborn, Lauren A.; Mabiala, Justin; May, Larry W.; Raphelt, Andrew; Youngs, Michael D.

    2015-01-01

    Heavy-ion collisions around the Fermi energy provide a rich environment for investigating reaction dynamics and provide an opportunity to explore the transition from quasi-fission to multi-fragmentation. A new detection system, FAUST–QTS, has been commissioned at Texas A&M University in order to investigate the reaction dynamics in this transitional energy regime. FAUST–QTS is constructed through the coupling of the FAUST array to a large bore quadrupole triplet spectrometer, and designed to detect heavy fragments near the beam axis coincident with lighter particles

  14. Energy production using fission fragment rockets

    International Nuclear Information System (INIS)

    Chapline, G.; Matsuda, Y.

    1991-08-01

    Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: Approximately twice as efficient if one can directly convert the fission fragment energy into electricity; by reducing the buildup of a fission fragment inventory in the reactor one could avoid a Chernobyl type disaster; and collecting the fission fragments outside the reactor could simplify the waste disposal problem. 6 refs., 4 figs., 2 tabs

  15. Comparison of predicted and measured fission product behaviour in the Fort St. Vrain HTGR during the first three cycles of operation

    International Nuclear Information System (INIS)

    Hanson, D.L.; Jovanovic, V.; Burnette, R.D.

    1985-01-01

    The 330 MW(e) Fort St. Vrain (M) High Temperature Gas-Cooled Reactor (HTGR) is fueled with (Th,U)C 2 /ThC 2 TRISO-coated fuel particles contained in prismatic graphite fuel elements. Fission product release from the reactor core has been monitored during the first three cycles of operation. In order to assess the validity of the design methods used to predict fission product source terms for HTGRs, fission product release from the reactor core has been predicted by the reference design methods and compared with reactor surveillance measurements and with the results of postirradiation examination (PIE) of spent FSV fuel elements. Overall, the predictive methods have been shown to be conservative: the predicted fission gas release at the end of Cycle 3 is about five times higher than observed. The dominant source of fission gas release is as-manufactured, heavy-metal contamination; in-service failure of the coated fuel particles appears to be negligible, which is consistent with the PIE of spent fuel elements removed during the first two refuelings. The predicted releases of fission metals are insignificant compared to the release and subsequent decay of their gaseous precursors, which is consistent with plateout probe measurements. (author)

  16. Fission dynamics of hot nuclei

    Indian Academy of Sciences (India)

    2014-04-05

    Apr 5, 2014 ... across the fission barrier is very small or in other words, the fission barrier is much ... of this shape evolution, the gross features of the fissioning nucleus can be described ..... [7] Y Abe, C Gregoire and H Delagrange, J. Phys.

  17. On deuteron break-up at interaction with heavy nuclei

    International Nuclear Information System (INIS)

    Evlanov, M.V.; Nemets, O.F.; Struzhko, B.G.

    1975-01-01

    The aim of the paper is the study of the nuclear boundary diffusivity during disintegration of a deutron on heavy nuclei for various combinations of neutron and proton emission angles. The formulae has obtained for the cross section and the amplitude of nuclear interaction. The calculation of angular correlations between emission directions of deutron disintegration products and energy spectra of released protons depending on the nuclear boundary diffusivity is made. It is shown that the differential cross sections of deutron fission disintegration decrease with increasing nuclear boundary diffusivity. This effect may serve a qualitative explanation for observed differences in the deutron disintegration cross sections on heavy nuclei

  18. Study on fission blanket fuel cycling of a fusion-fission hybrid energy generation system

    International Nuclear Information System (INIS)

    Zhou, Z.; Yang, Y.; Xu, H.

    2011-01-01

    This paper presents a preliminary study on neutron physics characteristics of a light water cooled fission blanket for a new type subcritical fusion-fission hybrid reactor aiming at electric power generation with low technical limits of fission fuel. The major objective is to study the fission fuel cycling performance in the blanket, which may possess significant impacts on the feasibility of the new concept of fusion-fission hybrid reactor with a high energy gain (M) and tritium breeding ratio (TBR). The COUPLE2 code developed by the Institute of Nuclear and New Energy Technology of Tsinghua University is employed to simulate the neutronic behaviour in the blanket. COUPLE2 combines the particle transport code MCNPX with the fuel depletion code ORIGEN2. The code calculation results show that soft neutron spectrum can yield M > 20 while maintaining TBR >1.15 and the conversion ratio of fissile materials CR > 1 in a reasonably long refuelling cycle (>five years). The preliminary results also indicate that it is rather promising to design a high-performance light water cooled fission blanket of fusion-fission hybrid reactor for electric power generation by directly loading natural or depleted uranium if an ITER-scale tokamak fusion neutron source is achievable.

  19. Experimental approach to fission process of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Hiroshi [Osaka Univ., Toyonaka (Japan). Faculty of Science

    1997-07-01

    From experimental views, it seems likely that the mechanism of nuclear fission process remains unsolved even after the Bohr and Weeler`s study in 1939. Especially, it is marked in respect of mass distribution in unsymmetric nuclear fission. The energy dependency of mass distribution can be explained with an assumption of 2-mode nuclear fission. Further, it was demonstrated that the symmetrical fission components and the unsymmetrical ones have different saddle and fission points. Thus, the presence of the 2-mode fission mechanism was confirmed. Here, transition in the nuclear fission mechanism and its cause were investigated here. As the cause of such transition, plausible four causes; a contribution of multiple-chance fission, disappearance of shell effects, beginning of fission following collective excitation due to GDR and nuclear phase transition were examined in the condition of excitation energy of 14.0 MeV. And it was suggested that the transition in the nuclear fission concerned might be related to phase transition. In addition, the mechanism of nuclear fission at a low energy and multi-mode hypothesis were examined by determination of the energy for thermal neutron fission ({sup 233,235}U and {sup 239}Pu) and spontaneous nuclear fission ({sup 252}Cf). (M.N.)

  20. Dynamic of fission and quasi-fission revealed by pre-scission neutron evaporation

    International Nuclear Information System (INIS)

    Hinde, D.J.

    1991-06-01

    The dependence of pre-scission neutron multiplicities (ν-pre) on the mass-split and total kinetic energy (TKE) in fusion-fission and quasi-fission has been measured for a wide range of projectile-target combinations. the data indicate that the fusion-fission time scale is shorter for asymmetric splits than for symmetric splits, whilst there is no dependence on TKE. For quasi-fission reactions induced using 64 Ni projectiles, ν-pre falls rapidly with increasing TKE, indicating that these neutrons are emitted near to or after scission. A new interpretation of both neutron multiplicities and mean energies (the neutron clock-thermometer) allows the extraction of time scales with much less uncertainty than previously, and also gives information about the deformation from which the neutrons are emitted. 15 refs., 13 figs

  1. Measurements of fission cross-sections and of neutron production rates; Mesures de sections efficaces de fission et du nombre de neutrons prompts emis par fission

    Energy Technology Data Exchange (ETDEWEB)

    Billaud, P; Clair, C; Gaudin, M; Genin, R; Joly, R; Leroy, J L; Michaudon, A; Ouvry, J; Signarbieux, C; Vendryes, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    a) Measurements of neutron induced fission cross-sections in the low energy region. The variation of the fission cross sections of several fissile isotopes has been measured and analysed, for neutron energies below 0,025 eV. The monochromator was a crystal spectrometer used in conjunction with a mechanical velocity selector removing higher order Bragg reflections. The fissile material was laid down on the plates of a fission chamber by painting technic. An ionization chamber, having its plates coated with thin {sup 10}B layers, was used as the neutron flux monitor. b) Measurement of the fission cross section of {sup 235}U. We intend to measure the variation of the neutron induced fission cross section of {sup 235}U over the neutron energy range from 1 keV by the time of flight method. The neutron source is the uranium target of a pulsed 28 MeV electron linear accelerator. The detector is a large fission chamber, with parallel plates, containing about 10 g of {sup 235}U (20 deposits of 25 cm diameter). The relative fission data were corrected for the neutron spectrum measured with a set of BF{sub 3} proportional counters. c) Mean number {nu} of neutrons emitted in neutron induced fission. We measured the value of {nu} for several fissile isotopes in the case of fission induced by 14 MeV neutrons. The 14 MeV neutrons were produced by D (t, n) {alpha} reaction by means of a 300 kV Cockcroft Walton generator. (author)Fren. [French] a) Mesures de sectionficaces de fission a basse energie. Nous avons mesure et analyse la variation de la section efficace de fission de divers isotopes fissiles pour des neutrons d'energie inferieure a 0,025 eV. Le monochromateur est constitue par un spectrometre a cristal auquel est associe un selecteur mecanique destine a eliminer les diffractions de Bragg d'ordre superieur au premier. Le materiau fissile est contenu dans une chambre a fission sous forme de depots realises par peinture; une chambre d'ionisation a depots minces de B{sub 10

  2. Theory of nuclear fission: a review

    International Nuclear Information System (INIS)

    Mosel, U.

    1976-01-01

    General properties of nuclear fission are reviewed and related to our present knowledge of fission theory. For this purpose the basic reasons for the shape of the fission barriers are discussed and their consequences compared with experimental results on barrier shapes and structures. Special emphasis is put on the asymmetry of the fission barriers and mass-distributions and its relation to the shells of the nascent fragment shells. Finally the problem of calculating fission cross sections is discussed

  3. Excitation of giant resonances through inelastic scattering of 170 at 84 MeV/u. Fission decay of giant resonances

    International Nuclear Information System (INIS)

    Cabot, C.; Barrette, J.; Mark, S.K.; Turcotte, R.; Xing, J.; Van der Woude, A.; Van Den Berg, A. M.

    1991-01-01

    Inelastic scattering of 84 MeV/u 17 0 projectiles have been used to excite the giant resonances (GR) in various nuclei ranging from A=60 to A=232. For the isoscalar giant quadrupole resonance (ISGQR), the energy and width of the resonance, as well as the EWSR obtained from the measured cross sections, are in agreement with the known systematics for A>40. The observed GMR strengths are close to 100% EWRS and are consistent with other recent experimental results using heavy ion projectiles. These results lead to a somewhat different picture than that provided by previous studies using light projectiles. Strength is also observed at high excitation energy. The analysis of these resonances is in progress. Our study of the fission decay of GR in 232 Th leads to a somewhat different conclusion than previously deduced from data obtained with light ion projectiles, where no evidence for the fission decay of the ISGQR has been found. In the present work, due to the very good peak-to-continuum ratio, a structure is observed in the fission coincidence spectrum around 10 MeV which can be attributed to the fission decay of giant resonances. The measured fission probability is consistent with a statistical decay of the ISGQR. 10 figs

  4. Stability of superheavy elements around Z=120 probed by the study of their fission time obtained by the crystal blocking method; Stabilite d'elements superlourds au voisinage de Z=120 testee par l'etude de leurs temps de fission deduits par la methode du blocage cristallin

    Energy Technology Data Exchange (ETDEWEB)

    Laget, M

    2007-10-15

    While the existence of an island of stability beyond Z=110 is theoretically acquired, the location of this island ranges from Z=114 to Z=126 depending on models. In this work, the stability of super-heavy nuclei is probed through the study of their fission time. The chosen experimental method, the crystal blocking method, is sensitive to the presence of possible long time components in the fission time distribution which indicates a fission mechanism occurring after the formation of a compound nucleus. The blocking dips were therefore constituted for the various products of the reaction U{sup 238} + Ni (6.6 MeV/A) {yields} 120, the experimental set-up allowing us to clearly identify and select the reaction mechanisms. The comparison of the blocking dip constituted for quasi-elastic scattering events with the one obtained for the fission fragments of a Z=120, combined with the study of kinematical properties of these fission fragments, give evidences of the existence of very long fission times (> 10{sup -18} s) only compatible with a fusion-fission mechanism implying a non vanishing fission barrier height for Z=120. The second part outlines microscopic calculations of fission barrier heights, carried out in the framework of the finite temperature of the Hartree-Fock-Bogoliubov (HFB) theory. Because of the progressive vanishing of the pairing correlation with T, which happens differently at the ground state and at the top of the barrier, B{sub f} first grows until T {approx_equal} 0.8 MeV before dropping with T owing to shell-effects damping with temperature. (author)

  5. Non-conservation of parity in fission of 234U, 236U and 240Pu nuclei

    International Nuclear Information System (INIS)

    Danilyan, G.V.; Vodennikov, B.D.; Dronyaev, V.P.; Novitskij, V.V.; Pavlov, V.S.; Borovlev, S.P.

    1980-01-01

    Targets, which contained approximately 100 μg.cm -2 fissionable material placed on both sides of an aluminium backing and were 0.1-0.15 mm wide, were arranged in a vacuum chamber along the axis of the neutron beam. Silicon surface-barrier detectors were arranged on each side of the target to detect fission fragments emitted by the target either in the direction of neutron polarization or away from it, depending on the direction of neutron-beam polarization at the moment of fragment detection. The direction of polarization could be reversed once per second; however, it was reversed not regularly but stochastically. An electronic circuit separated out pulses from light and heavy fragments and channelled them into scaling circuits corresponding to the two opposing directions of polarization. After each measurement cycle a computer connected on line with the experiment calculated the asymmetry in the number of light and heavy fragments counted by a given detector when the direction of neutron beam polarization was reversed. The measurement cycle lasted approximately 17 min, during which time the direction of polarization was reversed on average approximately 600 times. Measurements on a polarized beam alternated with measurements on a depolarized beam. Control measurements excluded the possibility of instruments affecting the results

  6. Study of angular momentum transfer from sequential fission in deeply inelastic collisions 40Ar-209Bi at 255 MeV

    International Nuclear Information System (INIS)

    Le Brun, C.; Lecolley, J.F.; Lefebvres, F.; L'Haridon, M.; Osmont, A.; Patry, J.P.; Steckmeyer, J.C.; Chechik, R.; Guilbault, F.

    We have measured the angular distribution of the target-like reaction product fission fragments emitted in coincidence with the light projectile like reaction product. For the first time, a sequential fission experiment in deeply inelastic collisions has observed an increase of the width of the out of plane angular distributions with the in-plane angle phi. The in-plane distribution exhibits an anisotropy centered in the recoil direction of the heavy fissionning nucleus, and shows up a dealignment mechanism of the transferred angular comparatively to the normal to the reaction plane. The de-aligned spin components have a gaussian distribution with a r.m.s width of about 10h and are lying preferentially in a plane perpendicular to the recoil direction. The mean value of the aligned component is of about 45h in agreement with the sticking limit with deformed nuclei. The dependence of the target-like reaction product fission probabilities on the total kinetic energy loss and Z of the projectile-like reaction product have been measured [fr

  7. Micro plate fission chamber development

    International Nuclear Information System (INIS)

    Wang Mei; Wen Zhongwei; Lin Jufang; Jiang Li; Liu Rong; Wang Dalun

    2014-01-01

    To conduct the measurement of neutron flux and the fission rate distribution at several position in assemblies, the micro plate fission chamber was designed and fabricated. Since the requirement of smaller volume and less structure material was taken into consideration, it is convinient, commercial and practical to use fission chamber to measure neutron flux in specific condition. In this paper, the structure of fission chamber and process of fabrication were introduced and performance test result was presented. The detection efficiency is 91.7%. (authors)

  8. Nuclear Forensics and Radiochemistry: Fission

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-07

    Radiochemistry has been used to study fission since it’ discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution.

  9. Mechanisms of fission neutron emission

    International Nuclear Information System (INIS)

    Maerten, H.

    1991-01-01

    The time evolution in fission is the starting point for discussing not only the main mechanism of fission neutron emission, the evaporation from fully accelerated fragments, but also possible secondary ones connected with dynamical features of nuclear fission. ''Asymptotic'' conditions as relevant for describing the particle release from highly excited, rapidly moving fragments are defined. Corresponding statistical model approaches to fission neutron emission, based on the adequate consideration of the intricate fragment occurrence probability, reproduce most of the experimental data. The remarkable influence of fission modes on neutron observables is analyzed in the framework of a macroscopic-microscopic scission point model consistent with energy conservation. Finally, chances and deficiencies for solving the mechanism puzzle are summarized. (author). 87 refs, 21 figs

  10. Development of a “Fission-proxy” Method for the Measurement of 14-MeV Neutron Fission Yields at CAMS

    Energy Technology Data Exchange (ETDEWEB)

    Gharibyan, Narek [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-25

    Relative fission yield measurements were made for 50 fission products from 25.6±0.5 MeV alpha-induced fission of Th-232. Quantitative comparison of these experimentally measured fission yields with the evaluated fission yields from 14-MeV neutron-induced fission of U-235 demonstrates the feasibility of the proposed fission-proxy method. This new technique, based on the Bohr-independence hypothesis, permits the measurement of fission yields from an alternate reaction pathway (Th-232 + 25.6 MeV α → U-236* vs. U-235 + 14-MeV n → U-236*) given that the fission process associated with the same compound nucleus is independent of its formation. Other suitable systems that can potentially be investigated in this manner include (but are not limited to) Pu-239 and U-237.

  11. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, M.

    1981-06-01

    This is the seventh issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The present issue contains also a section with some recent references relative to fission product nuclear data, which were not covered by the contributions submitted. The types of activities being included in this report are measurements, compilations and evaluations of: fission product yields (neutron induced and spontaneous fission); neutron reaction cross sections of fission products; data related to the radioactive decay of fission products; delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The sixth issue of this series has been published in June 1980 as INDC(NDS)-113/G+P. The present issue includes contributions which were received by NDS between 1 August 1980 and 25 May 1981

  12. Use of heavy ion accelerators in fusion reactor-related radiation-damage studies

    International Nuclear Information System (INIS)

    Taylor, A.; Dobson, D.A.

    1974-01-01

    The heavy-ion accelerator has become an important tool in the study of the fundamentals of radiation damage in fission- and fusion-reactor materials. Present facilities for such studies within the Materials Science Division at Argonne National Laboratory are provided by two complementary accelerator systems. Examples of the work carried out are discussed

  13. Nuclear fission and neutron-induced fission cross-sections

    CERN Document Server

    James, G D; Michaudon, A; Michaudon, A; Cierjacks, S W; Chrien, R E

    2013-01-01

    Nuclear Fission and Neutron-Induced Fission Cross-Sections is the first volume in a series on Neutron Physics and Nuclear Data in Science and Technology. This volume serves the purpose of providing a thorough description of the many facets of neutron physics in different fields of nuclear applications. This book also attempts to bridge the communication gap between experts involved in the experimental and theoretical studies of nuclear properties and those involved in the technological applications of nuclear data. This publication will be invaluable to those interested in studying nuclear fis

  14. Momentum and mass relaxation in heavy-ion collisions

    International Nuclear Information System (INIS)

    Gregoire, C.; Scheuter, F.; Remaud, B.; Sebille, F.

    1984-01-01

    The momentum and mass relaxation are shown to be described by transport equations. The momentum relaxation, which can be studied in the intermediate energy regime by the particle emissions, refers to a microscopic slowing down and diffusion process in the momentum space. The mass relaxation refers to the coupling of the collective mass asymmetry degree of freedom and the intrinsic system. It can be illustrated by the fast fission of light and very heavy systems

  15. Fission product behaviour in severe accidents

    International Nuclear Information System (INIS)

    Jokiniemi, J.; Auvinen, A.; Maekynen, J.; Valmari, T.

    1998-01-01

    The understanding of fission product (FP) behaviour in severe accidents is important for source term assessment and accident mitigation measures. For example in accident management the operator needs to know the effect of different actions on the behaviour and release of fission products. At VTT fission product behaviour have been studied in different national and international projects. In this presentation the results of projects in EU funded 4th framework programme Nuclear Fission Safety 1994-1998 are reported. The projects are: fission product vapour/aerosol chemistry in the primary circuit (FI4SCT960020), aerosol physics in containment (FI4SCT950016), revaporisation of test samples from Phebus fission products (FI4SCT960019) and assessment of models for fission product revaporisation (FI4SCT960044). Also results from the national project 'aerosol experiments in the Victoria facility' funded by IVO PE and VTT Energy are reported

  16. The nuclear fission

    International Nuclear Information System (INIS)

    Fiorentino, J.

    1983-01-01

    The nuclear fission process considering initially the formation of compound nucleus and finishing with radioactive decay of fission products is studied. The process is divided in three parts which consist of the events associated to the nucleus of intermediate transitional state, the scission configuration, and the phenomenum of post scission. (M.C.K.) [pt

  17. Mechanism of fission of neutron-deficient actinoids nuclides

    International Nuclear Information System (INIS)

    Sueki, Keisuke; Nakahara, Hiromichi; Tanase, Masakazu; Nagame, Yuichiro; Shinohara, Nobuo; Tsukada, Kazuaki.

    1996-01-01

    A heavy ion reaction ( 19 F+ 209 Bi) is selected. The reaction produces neutron-deficient 228 U which is compound nucleus with a pair of Rb(z=37) and Cs(Z=55). Energy dissipation problem of nucleus was studied by measuring the isotope distribution of two fissile nuclides. Bismuth metal evaporated on aluminium foil was irradiated by 19 F with the incident energy of 105-128 MeV. We concluded from the results that the excess energy of reaction system obtained with increasing the incident energy is consumed by (1) light Rb much more than Cs and (2) about 60% of energy is given to two fission fragments and the rest 40% to the translational kinetic energy or unknown anomalous γ-ray irradiation. (S.Y.)

  18. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, G.

    1976-05-01

    The purpose of this series is to inform scientists working on Fission Product Nuclear Data, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. This report consists of reproductions of essentially unaltered original contributions which the authors have sent to IAEA/NDS. The types of activities being included in this report are measurements, compilations and evaluations of: fission product yields; neutron cross-section data of fission products; data related to β-, γ-decay of fission products; delayed neutron data; and fission product decay-heat

  19. Critical insight into the influence of the potential energy surface on fission dynamics

    International Nuclear Information System (INIS)

    Mazurek, K.; Schmitt, C.; Wieleczko, J. P.; Ademard, G.; Nadtochy, P. N.

    2011-01-01

    The present work is dedicated to a careful investigation of the influence of the potential energy surface on the fission process. The time evolution of nuclei at high excitation energy and angular momentum is studied by means of three-dimensional Langevin calculations performed for two different parametrizations of the macroscopic potential: the Finite Range Liquid Drop Model (FRLDM) and the Lublin-Strasbourg Drop (LSD) prescription. Depending on the mass of the system, the topology of the potential throughout the deformation space of interest in fission is observed to noticeably differ within these two approaches, due to the treatment of curvature effects. When utilized in the dynamical calculation as the driving potential, the FRLDM and LSD models yield similar results in the heavy-mass region, whereas the predictions can be strongly dependent on the Potential Energy Surface (PES) for medium-mass nuclei. In particular, the mass, charge, and total kinetic energy distributions of the fission fragments are found to be narrower with the LSD prescription. The influence of critical model parameters on our findings is carefully investigated. The present study sheds light on the experimental conditions and signatures well suited for constraining the parametrization of the macroscopic potential. Its implication regarding the interpretation of available experimental data is briefly discussed.

  20. Study of fission barriers in neutron-rich nuclei using the (p,2p) reaction. Status of SAMURAI-experiment NP1306 SAMURAI14

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, Sebastian [TU Munich (Germany); Collaboration: NP1306-SAMURAI14-Collaboration

    2015-07-01

    Violent stellar processes are currently assumed to be a major origin of the elements beyond iron and their abundances. The conditions during stellar explosions lead to the so called r-process in which the rapid capture of neutrons and subsequent β decays form heavier elements. This extension of the nuclei stops at the point when the repulsive Coulomb energy induces fission. Its recycling is one key aspect to describe the macroscopic structure of the r-process and the well known elemental abundance pattern. The RIBF at RIKEN is able to provide such neutron rich heavy element beams and a first test with the primary beam {sup 238}U was performed to understand the response of the SAMURAI spectrometer and detectors for heavy beams. The final goal is the definition of the fission barrier height with a resolution of 1 MeV (in σ) using the missing mass method using (p,2p) reactions in inverse kinematics.

  1. Status of fission yield measurements

    International Nuclear Information System (INIS)

    Maeck, W.J.

    1979-01-01

    Fission yield measurement and yield compilation activities in the major laboratories of the world are reviewed. In addition to a general review of the effort of each laboratory, a brief summary of yield measurement activities by fissioning nuclide is presented. A new fast reactor fission yield measurement program being conducted in the US is described

  2. Spontaneous emission of heavy-ions from uranium

    International Nuclear Information System (INIS)

    Carvalho, H.G. de; Martins, J.B.; Souza, I.O. de; Tavares, O.A.P.

    1974-09-01

    The experimental evidences that 238 U, and perhaps other heavy nuclei, besides undergoing spontaneous fission, are also emitters of ions in the mass-range from 20 to 70. Estimates obtained by means of the WKB method indicate half-lifes of 10 15 to 10 18 years for some of these processes, which agree with our findings. Our results are supported by a systematic observation of neon and argon with abnormal isotopic abundance in both radioactive minerals and helium-bearing natural gases

  3. A stochastic approach to fission

    International Nuclear Information System (INIS)

    Boilley, D.; Suraud, E.; Abe, Yasuhisa

    1992-01-01

    A microscopically derived Langevin equation is applied to thermally induced nuclear fission. An important memory effect is pointed out. A strong friction coefficient, calculated from microscopic quantities, tends to decrease the stationary limit of the fission rate and to increase the transient time. Fission was described as a diffusion over a barrier of a collective variable, and a Langevin Equation (LE) was used to study the phenomenon. A study of the stationary flow over the saddle point with a Fokker-Planck Equation (FPE), equivalent to the LE was used to give formula for the stationary fission rate (or reaction rate for the chemistry applications). More recently, a complete study of the fission process was performed numerically with both FPE and LE. A long transient time, that could allow more pre-scission neutrons to evaporate, was pointed out. The derivation of this new LE is recalled, followed by the description of the memory dependence and by the effect of a large friction coefficient on the fission rate. (author) 6 refs., 3 figs

  4. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, M.

    1983-08-01

    This is the ninth issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS. The present issue contains also a section with some recent references relative to fission product nuclear data, which were not covered by the contributions submitted. The types of activities being included in this report are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission); Neutron reaction cross sections of fission products; Data related to the radioactive decay of fission products; Delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The eighth issue of this series has been published in July 1982 as INDC(NDS)-130. The present issue includes contributions which were received by NDS between 1 August 1982 and 25 June 1983

  5. Properties of Fission-Product decay heat from Minor-Actinide fissioning systems

    International Nuclear Information System (INIS)

    Oyamatsu, Kazuhiro; Mori, Hideki

    2000-01-01

    The aggregate Fission-Product (FP) decay heat after a pulse fission is examined for Minor Actinide (MA) fissiles 237 Np, 241 Am, 243 Am, 242 Cm and 244 Cm. We find that the MA decay heat is comparable but smaller than that of 235 U except for cooling times at about 10 8 s (approx. = 3 y). At these cooling times, either the β or γ component of the FP decay heat for these MA's is substantially larger than the one for 235 U. This difference is found to originate from the cumulative fission yield of 106 Ru (T 1/2 = 3.2x10 7 s). This nuclide is the parent of 106 Rh (T 1/2 = 29.8 s) which is the dominant source of the decay heat at 10 8 s (approx. = 3 y). The fission yield is nearly an increasing function of the fissile mass number so that the FP decay heat is the largest for 244 Cm among the MA's at the cooling time. (author)

  6. Mirror fusion--fission hybrids

    International Nuclear Information System (INIS)

    Lee, J.D.

    1978-01-01

    The fusion-fission concept and the mirror fusion-fission hybrid program are outlined. Magnetic mirror fusion drivers and blankets for hybrid reactors are discussed. Results of system analyses are presented and a reference design is described

  7. Measurement of the ROT effect in the neutron induced fission of 235U in the 0.3 eV resonance at a hot source of polarized neutrons

    Science.gov (United States)

    Kopatch, Yuri; Novitsky, Vadim; Ahmadov, Gadir; Gagarsky, Alexei; Berikov, Daniyar; Danilyan, Gevorg; Hutanu, Vladimir; Klenke, Jens; Masalovich, Sergey

    2018-03-01

    The TRI and ROT asymmetries in fission of heavy nuclei have been extensively studied during more than a decade. The effects were first discovered in the ternary fission in a series of experiments performed at the ILL reactor (Grenoble) by a collaboration of Russian and European institutes, and were carefully measured for a number of fissioning nuclei. Later on, the ROT effect has been observed in the emission of prompt gamma rays and neutrons in fission of 235U and 233U, although its value was an order of magnitude smaller than in the α-particle emission from ternary fission. All experiments performed so far are done with cold polarized neutrons, what assumes a mixture of several spin states, the weights of these states being not well known. The present paper describes the first attempt to get "clean" data by performing the measurement of gamma and neutron asymmetries in an isolated resonance of 235U at the POLI instrument of the FRM2 reactor in Garching.

  8. The fusion-fission process in the reaction {sup 34}S+{sup 186}W near the interaction barrier

    Energy Technology Data Exchange (ETDEWEB)

    Harca, I. M. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, (FLNR JINR) Dubna, Russia and Faculty of Physics, University of Bucharest - P.O. Box MG 11, RO 77125, Bucharest-Magurele (Romania); Dmitriev, S.; Itkis, J.; Kozulin, E. M.; Knyazheva, G.; Loktev, T.; Novikov, K. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, (FLNR JINR) Dubna (Russian Federation); Azaiez, F.; Gottardo, A.; Matea, I.; Verney, D. [IPN, CNRS/IN2P3, Univ. Paris-Sud, 91405 Orsay (France); Chubarian, G. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Hanappe, F. [Universite Libre de Bruxelles (ULB), Bruxelles (Belgium); Piot, J.; Schmitt, C. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Trzaska, W. H. [Accelerator Laboratory of University of Jyväskylä (JYFL), Jyväskylä (Finland); Vardaci, E. [Dipartamento di Scienze Fisiche and INFN (INFN-Na), Napoli (Italy)

    2015-02-24

    The reaction {sup 34}S+{sup 186}W at E{sub lab}=160 MeV was investigated with the aim of diving into the features of the fusion-fission process. Gamma rays in coincidence with binary reaction fragments were measured using the high efficiency gamma-ray spectrometer ORGAM at the TANDEM Accelerator facility of I.P.N., Orsay, and the time-of-flight spectrometer for fission fragments (FF) registration CORSET of the Flerov Laboratory of Nuclear Reactions (FLNR), Dubna. The coupling of the ORGAM and CORSET setups offers the unique opportunity of extracting details for characterizing the fusion-fission process and gives information regarding production of neutron-rich heavy nuclei. The FF–γ coincidence method is of better use then the γ – γ coincidence method when dealing with low statistic measurements and also offers the opportunity to precisely correct the Dopler shift for in-flight emitted gamma rays. Evidence of symmetric and asymmetric fission modes were observed in the mass and TKE distributions, occurring due to shell effects in the fragments. Coincident measurements allow for discrimination between the gamma rays by accepting a specific range within the mass distribution of the reaction products. Details regarding the experimental setup, methods of processing the acquisitioned data and preliminary results are presented.

  9. Detection of fission fragments by secondary emission; Detection des fragments de fission par emission secondaire

    Energy Technology Data Exchange (ETDEWEB)

    Audias, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    This fission fragment detecting apparatus is based on the principle that fragments traversing a thin foil will cause emission of secondary electrons. These electrons are then accelerated (10 kV) and directly detected by means of a plastic scintillator and associated photomultiplier. Some of the advantages of such a detector are, its rapidity, its discriminating power between alpha particles and fission fragments, its small energy loss in detecting the fragments and the relatively great amount of fissionable material which it can contain. This paper is subdivided as follows: a) theoretical considerations b) constructional details of apparatus and some experimental details and c) a study of the secondary emission effect itself. (author) [French] Le detecteur de fragments de fission que nous avons realise est base sur le principe de l'emission secondaire produite par les fragments de fission traversant une feuille mince: les electrons secondaires emis sont acceleres a des tensions telles (de l'ordre de 10 kV), qu'ils soient directement detectables par un scintillateur plastique associe a un photomultiplicateur. L'interet d'un tel detecteur reside: dans sa rapidite, sa tres bonne discrimination alpha, fission, la possibilite de detecter les fragments de fission avec une perte d'energie pouvant rester relativement faible, et la possibilite d'introduire des quantites de matiere fissile plus importantes que dans les autres types de detecteurs. Ce travail comporte: -) un apercu bibliographique de la theorie du phenomene, -) realisation et mise au point du detecteur avec etude experimentale de quelques parametres intervenant dans l'emission secondaire, -) etude de l'emission secondaire (sur la face d'emergence des fragments de fission) en fonction de l'energie du fragment et en fonction de l'epaisseur de matiere traversee avant emission secondaire, et -) une etude comparative de l'emission secondaire sur la face d'incidence et sur la face d'emergence des fragments de

  10. Monte carlo sampling of fission multiplicity.

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, J. S. (John S.)

    2004-01-01

    Two new methods have been developed for fission multiplicity modeling in Monte Carlo calculations. The traditional method of sampling neutron multiplicity from fission is to sample the number of neutrons above or below the average. For example, if there are 2.7 neutrons per fission, three would be chosen 70% of the time and two would be chosen 30% of the time. For many applications, particularly {sup 3}He coincidence counting, a better estimate of the true number of neutrons per fission is required. Generally, this number is estimated by sampling a Gaussian distribution about the average. However, because the tail of the Gaussian distribution is negative and negative neutrons cannot be produced, a slight positive bias can be found in the average value. For criticality calculations, the result of rejecting the negative neutrons is an increase in k{sub eff} of 0.1% in some cases. For spontaneous fission, where the average number of neutrons emitted from fission is low, the error also can be unacceptably large. If the Gaussian width approaches the average number of fissions, 10% too many fission neutrons are produced by not treating the negative Gaussian tail adequately. The first method to treat the Gaussian tail is to determine a correction offset, which then is subtracted from all sampled values of the number of neutrons produced. This offset depends on the average value for any given fission at any energy and must be computed efficiently at each fission from the non-integrable error function. The second method is to determine a corrected zero point so that all neutrons sampled between zero and the corrected zero point are killed to compensate for the negative Gaussian tail bias. Again, the zero point must be computed efficiently at each fission. Both methods give excellent results with a negligible computing time penalty. It is now possible to include the full effects of fission multiplicity without the negative Gaussian tail bias.

  11. Yields of fission products produced by thermal-neutron fission of 229Th

    International Nuclear Information System (INIS)

    Dickens, J.K.; McConnell, J.W.

    1983-01-01

    Absolute yields have been determined for 47 gamma rays emitted in the decay of 37 fission products representing 25 mass chains created during thermal-neutron fission of 229 Th. Using a Ge(Li) detector, spectra were obtained of gamma rays emitted between 15 min and 0.4 yr after very short irradiations by thermal neutrons of a 15-μg sample of 229 Th. On the basis of measured gamma-ray yields and known nuclear data, yields for cumulative production of 37 fission products were deduced. The absolute overall normalization uncertainty is 235 U, we postulate a simple functional dependence sigma = sigma(Z/sub p/), and using this dependence obtain values of Z/sub p/(A) for 15 mass chains created during fission of 229 Th. Values of Z/sub p/(A) were estimated for other mass chains based upon results of a recent study of Z/sub p/(A). Charge distributions determined using the deduced mass distribution and the deduced sets of Z/sub p/(A) and sigma(Z/sub p/) are in very good agreement with recent measurements, exhibiting a pronounced even-odd effect in elemental yields. These results may be used to predict unmeasured yields for 229 Th fission

  12. Systematics of Fission-Product Yields

    International Nuclear Information System (INIS)

    Wahl, A.C.

    2002-01-01

    Empirical equations representing systematics of fission-product yields have been derived from experimental data. The systematics give some insight into nuclear-structure effects on yields, and the equations allow estimation of yields from fission of any nuclide with atomic number Z F = 90 thru 98, mass number A F = 230 thru 252, and precursor excitation energy (projectile kinetic plus binding energies) PE = 0 thru ∼200 MeV--the ranges of these quantities for the fissioning nuclei investigated. Calculations can be made with the computer program CYFP. Estimates of uncertainties in the yield estimates are given by equations, also in CYFP, and range from ∼ 15% for the highest yield values to several orders of magnitude for very small yield values. A summation method is used to calculate weighted average parameter values for fast-neutron (∼ fission spectrum) induced fission reactions

  13. Systematics of Fission-Product Yields

    Energy Technology Data Exchange (ETDEWEB)

    A.C. Wahl

    2002-05-01

    Empirical equations representing systematics of fission-product yields have been derived from experimental data. The systematics give some insight into nuclear-structure effects on yields, and the equations allow estimation of yields from fission of any nuclide with atomic number Z{sub F} = 90 thru 98, mass number A{sub F} = 230 thru 252, and precursor excitation energy (projectile kinetic plus binding energies) PE = 0 thru {approx}200 MeV--the ranges of these quantities for the fissioning nuclei investigated. Calculations can be made with the computer program CYFP. Estimates of uncertainties in the yield estimates are given by equations, also in CYFP, and range from {approx} 15% for the highest yield values to several orders of magnitude for very small yield values. A summation method is used to calculate weighted average parameter values for fast-neutron ({approx} fission spectrum) induced fission reactions.

  14. Asymmetry in ternary fission induced by polarized neutrons and fission mechanism

    International Nuclear Information System (INIS)

    Bunakov, V.E.; Gennenvajn, F.; Dzhessinger, P.; Mutterer, M.; Petrov, G.A.

    2003-01-01

    The results of measuring the P-odd, P-even (right-left) and T-odd asymmetries of the charged particles emission in the double and ternary fission, induced by the polarized neutrons, are considered. It is shown, what kind of information on the mechanism of the ternary nuclear fission may be obtained from the theoretical analysis of these data [ru

  15. Study of advanced fission power reactor development for the United States. Volume I

    International Nuclear Information System (INIS)

    1976-01-01

    This volume summarizes the results and conclusions of an assessment of five advanced fission power reactor concepts in the context of potential nuclear power economies developed over the time period 1975 to 2020. The study was based on the premise that the LMFBR program has been determined to be the highest priority fission reactor program and it will proceed essentially as planned. Accepting this fact, the overall objective of the study was to provide evaluations of advanced fission reactor systems for input to evaluating the levels of research and development funding for fission power. Evaluation of the reactor systems included the following categories: (1) power plant performance, (2) fuel resource utilization; (3) fuel-cycle requirements; (4) economics; (5) environmental impact; (6) risk to the public; and (7) R and D requirements to achieve commercial status. The specific major objectives of the study were twofold: (1) to parametrically assess the impact of various reactor types for various levels of power demand through the year 2020 on fissile fuel utilization, economics, and the environment, based on varying but reasonable assumptions on the rates of installation; and (2) to qualitatively assess the practicality of the advanced reactor concepts, and their research and development. The reactor concepts examined were limited to the following: advanced high-temperature, gas-cooled reactor (HTGR) systems including the thorium/U-233 fuel cycle, gas turbine, and binary cycle (BIHTGR); gas-cooled fast breeder reactor (GCFR); molten salt breeder reactor (MSBR); light water breeder reactor (LWBR); and CANDU heavy water reactor

  16. A high-resolution time-of-flight spectrometer for fission fragments and ion beams

    International Nuclear Information System (INIS)

    Kosev, Krasimir Milchev

    2007-01-01

    For the purpose of fission-fragment detection a double time-of-flight (TOF) spectrometer has been developed. The key component of the TOF spectrometer is a TOF detector consisting of multichannel-plate (MCP) detectors with a position-sensitive readout, a foil for secondary electron (SE) production and an electrostatic mirror. The fission fragments are detected by measuring the SEs impinging on the position-sensitive anode after emission from the foil, acceleration and deflection by the electrostatic mirror. The functionality of the different detector components is proven in detail. Optimised schemes for the high-voltage supplies of the MCP detectors have been implemented successfully. In order to process the multichannel-plate detector signals optimally, a new state-of-the-art constant-fraction discriminator based on the amplitude and rise time compensated technique with very low threshold capabilities and optimised walk properties has been developed and incorporated into the setup. In a setup consisting of two mirror MCP detectors, we could successfully observe the TOF spectrum of a mixed ( 226 Ra, 222 Rn, 210 Po, 218 Po, 214 Po) α-source. Testing photo-fission experiments were performed at the bremsstrahlung facility at the ELBE accelerator. The setup consisted of two mirror detectors (first arm) and a 80 mm diameter MCP detector (second arm) with a 238 U target positioned in between. TOF measurements with two bremsstrahlung end-point energies of 12.9 and 16.0 MeV were carried out. A clear cut separation of the TOF peaks for the medium-mass and heavy fission fragments was observed. (orig.)

  17. A high-resolution time-of-flight spectrometer for fission fragments and ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kosev, Krasimir Milchev

    2007-07-01

    For the purpose of fission-fragment detection a double time-of-flight (TOF) spectrometer has been developed. The key component of the TOF spectrometer is a TOF detector consisting of multichannel-plate (MCP) detectors with a position-sensitive readout, a foil for secondary electron (SE) production and an electrostatic mirror. The fission fragments are detected by measuring the SEs impinging on the position-sensitive anode after emission from the foil, acceleration and deflection by the electrostatic mirror. The functionality of the different detector components is proven in detail. Optimised schemes for the high-voltage supplies of the MCP detectors have been implemented successfully. In order to process the multichannel-plate detector signals optimally, a new state-of-the-art constant-fraction discriminator based on the amplitude and rise time compensated technique with very low threshold capabilities and optimised walk properties has been developed and incorporated into the setup. In a setup consisting of two mirror MCP detectors, we could successfully observe the TOF spectrum of a mixed ({sup 226}Ra,{sup 222}Rn,{sup 210}Po,{sup 218}Po,{sup 214}Po) {alpha}-source. Testing photo-fission experiments were performed at the bremsstrahlung facility at the ELBE accelerator. The setup consisted of two mirror detectors (first arm) and a 80 mm diameter MCP detector (second arm) with a {sup 238}U target positioned in between. TOF measurements with two bremsstrahlung end-point energies of 12.9 and 16.0 MeV were carried out. A clear cut separation of the TOF peaks for the medium-mass and heavy fission fragments was observed. (orig.)

  18. Potentials of fissioning plasmas

    International Nuclear Information System (INIS)

    Karlheinz, Thom.

    1979-01-01

    Successful experiments with the nuclear pumping of lasers have demonstrated that in gaseous medium the kinetic energy of fission fragments can be converted directly into non-equilibrium optical radiation. This confirms the concept that the fissioning medium in a gas-phase nuclear reactor shows an internal structure such as a plasma in nearly thermal equilibrium varying up to a state of extreme-non-equilibrium. The accompanying variations of temperatures, pressure and radiative spectrum suggest wide ranges of applications. For example, in the gas-phase fission reactor concept enriched uranium hexafluoride or an uranium plasma replaces conventional fuel elements and permits operation above the melting point of solid materials. This potential has been motivation for the US National Aeronautics and Space Administration (NASA) to conduct relevant research for high specific impulse propulsion in space. The need to separate the high temperature gaseous fuel from the surfaces of a containing vessel and to protect them against thermal radiation has led to the concept of an externally moderated reactor in which the fissioning gaseous material is suspended by fluid dynamic means and the flow of opaque buffer gas removes the power. The gaseous nuclear fuel can slowly be circulated through the reactor for continuous on-site reprocessing including the annihilation of transuranium actinides at fission when being fed back into the reactor. An equilibrium of the generation and destruction of such actinides at fission when being fed back into the reactor. An equilibrium of the generation and destruction of such actinides can thus be achieved. These characteristics and the unique radiative properties led to the expectation that the gas-phase fission reactor could feature improved safety, safeguarding and economy, in addition to new technologies such as processing, photochemistry and the transmission of power over large distances in space

  19. Measuring fission lifetimes with the crystal-blocking technique in mono-crystal, access to nuclear dissipation

    International Nuclear Information System (INIS)

    Basnary, St.

    2002-10-01

    Energy dissipation in nuclear matter may play an important role in the determination of the way through which heavy nuclei des-excite: fission or particle evaporation. An important dissipation should imply longer interval of time during which the nucleus is deformed. In that way the measurement of fission lifetimes may shed light on energy dissipation, but these measurements are very delicate to perform. Most available data on deformation times come from indirect measurements combined with the use of more or less valid models. The crystal-blocking lifetime technique in mono-crystals allows the direct measurement of long fission lifetimes. This technique has been applied to different nuclei situated in the proximity of lead. We have obtained relatively high values: τ > 3.10 -19 s for both lead and uranium which implies a strong dissipation of energy. The computation of dissipation coefficients has led to the following values: β ≅ 2.10 21 /s for lead and β ≥ 6.10 21 /s for uranium (E * > 120 MeV). These results show that dissipation effects have to be taken into account in the determination of the deexcitation way. (A.C.)

  20. Thorium-uranium fission radiography

    Science.gov (United States)

    Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.

    1976-01-01

    Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.

  1. Excitation energy dependence of fragment-mass distributions from fission of 180,190Hg formed in fusion reactions of 36Ar + 144,154Sm

    Directory of Open Access Journals (Sweden)

    K. Nishio

    2015-09-01

    Full Text Available Mass distributions of fission fragments from the compound nuclei 180Hg and 190Hg formed in fusion reactions 36Ar + 144Sm and 36Ar + 154Sm, respectively, were measured at initial excitation energies of E⁎(Hg180=33–66 MeV and E⁎(Hg190=48–71 MeV. In the fission of 180Hg, the mass spectra were well reproduced by assuming only an asymmetric-mass division, with most probable light and heavy fragment masses A¯L/A¯H=79/101. The mass asymmetry for 180Hg agrees well with that obtained in the low-energy β+/EC-delayed fission of 180Tl, from our earlier ISOLDE(CERN experiment. Fission of 190Hg is found to proceed in a similar way, delivering the mass asymmetry of A¯L/A¯H=83/107, throughout the measured excitation energy range. The persistence as a function of excitation energy of the mass-asymmetric fission for both proton-rich Hg isotopes gives strong evidence for the survival of microscopic effects up to effective excitation energies of compound nuclei as high as 40 MeV. This behavior is different from fission of actinide nuclei and heavier mercury isotope 198Hg.

  2. Fission-product source terms

    International Nuclear Information System (INIS)

    Lorenz, R.A.

    1981-01-01

    This presentation consists of a review of fission-product source terms for light water reactor (LWR) fuel. A source term is the quantity of fission products released under specified conditions that can be used to calculate the consequences of the release. The source term usually defines release from breached fuel-rod cladding but could also describe release from the primary coolant system, the reactor containment shell, or the site boundary. The source term would be different for each locality, and the chemical and physical forms of the fission products could also differ

  3. Measuring fission lifetimes with the crystal-blocking technique in mono-crystal, access to nuclear dissipation; Mesures de temps de fission par la technique d'ombre dans les monocristaux: un acces a la dissipation nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Basnary, St

    2002-10-01

    Energy dissipation in nuclear matter may play an important role in the determination of the way through which heavy nuclei des-excite: fission or particle evaporation. An important dissipation should imply longer interval of time during which the nucleus is deformed. In that way the measurement of fission lifetimes may shed light on energy dissipation, but these measurements are very delicate to perform. Most available data on deformation times come from indirect measurements combined with the use of more or less valid models. The crystal-blocking lifetime technique in mono-crystals allows the direct measurement of long fission lifetimes. This technique has been applied to different nuclei situated in the proximity of lead. We have obtained relatively high values: {tau} > 3.10{sup -19} s for both lead and uranium which implies a strong dissipation of energy. The computation of dissipation coefficients has led to the following values: {beta} {approx_equal} 2.10{sup 21} /s for lead and {beta} {>=} 6.10{sup 21} /s for uranium (E{sup *} > 120 MeV). These results show that dissipation effects have to be taken into account in the determination of the deexcitation way. (A.C.)

  4. Nuclear fission studies: from LOHENGRIN to FIPPS

    International Nuclear Information System (INIS)

    Chebboubi, Abdelaziz

    2015-01-01

    Nuclear fission consists in splitting a nucleus, in general an actinide, into smaller nuclei. Despite nuclear fission was discovered in 1939 by Hahn and Strassman, fission models cannot predict the fission observables with an acceptable accuracy for nuclear fuel cycle studies for instance. Improvement of fission models is an important issue for the knowledge of the process itself and for the applications. To reduce uncertainties of the nuclear data used in a nuclear reactor simulation, a validation of the models hypothesis is mandatory. In this work, two features of the nuclear fission were investigated in order to test the resistance of the theories. One aspect is the study of the symmetric fission fragments through the measurement of their yield and kinetic energy distribution. The other aspect is the study of the fission fragment angular momentum.Two techniques are available to assess the angular momentum of a fission fragment. The first one is to look at the properties of the prompt gamma. The new spectrometer FIPPS (Fission Product Prompt gamma-ray Spectrometer), is currently under development at the ILL and will combine a fission filter with a large array of gamma and neutron detectors in order to respond to these issues. The first part of this work is dedicated to the study of the properties of a Gas Filled Magnet (GFM) which is the type of fission filter considered for the FIPPS project.The second part of this work deals with the measurement of isomeric yields and evaluations of the angular momentum distribution of fission fragments. The study of the spherical nucleus 132 Sn shed the light on the current limits of fission models. Finally, the last part of this work is about the measurement of the yields and kinetic energy distributions of symmetric fission fragments. Since models predict the existence of fission modes, the symmetry region is a suitable choice to investigate this kind of prediction. In parallel with all these studies, an emphasis on the

  5. Generalized Energy-Dependent Q Values for Fission

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, R

    2010-03-31

    We extend Madland's parameterization of the energy release in fission to obtain the dependence of the fission Q value for major and minor actinides on the incident neutron energies in the range 0 {le} E{sub n} {le} 20 MeV. Our parameterization is based on the actinide evaluations recommended for the ENDF/B-VII.1 release. This paper describes the calculation of energydependent fission Q values based on the calculation of the prompt energy release in fission by Madland. This calculation was adopted for use in the LLNL ENDL database and then generalized to obtain the prompt fission energy release for all actinides. Here the calculation is further generalized to the total energy release in fission. There are several stages in a fission event, depending on the time scale. Neutrons and gammas may be emitted at any time during the fission event.While our discussion here is focussed on compound nucleus creation by an incident neutron, similar parameterizations could be obtained for incident gammas or spontaneous fission.

  6. Transmutation of nuclear waste. Status report RAS programme 1994: Recycling and transmutation of actinides and fission products

    Energy Technology Data Exchange (ETDEWEB)

    Cordfunke, E H.P.; Gruppelaar, H; Franken, W M.P.

    1995-07-01

    This report describes the status and progress of the Dutch RAS programme on `Recycling and Transmutation of Actinides and Fission Products` over the year 1994, which is the first year of the second 4-year programme. This programme is outlined and a short progress report is given over 1994, including a listing of 23 reports and publications over the year 1994. Highlights of 1994 were: The completion of long-lived fission-product transmutation studies, the initiation of small-scale demonstration experiments in the HFR on Tc and I, the issue of reports on the potential of the ALMR (Advanced Liquid Metal Reactor) for transmutation adn the participation and international cooperation on irradiation experiments with actinides in inert matrices. The remaining chapters contain more extended contributions on recent developments and selected topics, under the headings: Benefits and risks of partitioning and transmutation, Perspective of chemical partitioning, Inert matrices, Evolutionary options (MOX), Perspective of heavy water reactors, Perspective of fast burners, Perspective of accelerator-based systems, Thorium cycle, Fission-product transmutation, End scenarios, and Executive summary and recommendations. (orig.).

  7. Transmutation of nuclear waste. Status report RAS programme 1994: Recycling and transmutation of actinides and fission products

    International Nuclear Information System (INIS)

    Cordfunke, E.H.P.; Gruppelaar, H.; Franken, W.M.P.

    1995-07-01

    This report describes the status and progress of the Dutch RAS programme on 'Recycling and Transmutation of Actinides and Fission Products' over the year 1994, which is the first year of the second 4-year programme. This programme is outlined and a short progress report is given over 1994, including a listing of 23 reports and publications over the year 1994. Highlights of 1994 were: The completion of long-lived fission-product transmutation studies, the initiation of small-scale demonstration experiments in the HFR on Tc and I, the issue of reports on the potential of the ALMR (Advanced Liquid Metal Reactor) for transmutation adn the participation and international cooperation on irradiation experiments with actinides in inert matrices. The remaining chapters contain more extended contributions on recent developments and selected topics, under the headings: Benefits and risks of partitioning and transmutation, Perspective of chemical partitioning, Inert matrices, Evolutionary options (MOX), Perspective of heavy water reactors, Perspective of fast burners, Perspective of accelerator-based systems, Thorium cycle, Fission-product transmutation, End scenarios, and Executive summary and recommendations. (orig.)

  8. Charge distribution of the 236U* fission fragments with accounting for angular momentum of the compound nuclei

    International Nuclear Information System (INIS)

    Volkov, N.G.; Emel'yanov, V.M.; Krajnov, V.P.

    1979-01-01

    In a statistical fission model calculated are charge distributions of fission fragments (CDFF) of a 236 U* nucleus and their dispersions as the functions of excitation energy and angular momentum (AM) of a compound nucleus as well as the effect of one-particle potential parameter on CDFF. The potential of two-center oscillator was choosen as the one-particle potential. The function of fissioning nucleus level density, which is necessary for calculations in the statistical approach, has been determined from one-particle spectrum. The scheme of calculations is realized with a computer. Presented are the results of calculating the dependence of a neutron gap size on nuclear temperature for various projections of total AM; CDFF for different values of E* excitation energy of AM projection and others. Calculated CDFF and experimental data were compared. Notwithstanding the availability of many parameters and a large volume of numerical calculations the model under consideration permits to describe many common regularities of heavy nucleus CDFF (experimental yields of charges, dispersion dependence on excitation energies and masses of nuclear fragments)

  9. New fission-neutron-spectrum representation for ENDF

    International Nuclear Information System (INIS)

    Madland, D.G.

    1982-04-01

    A new representation of the prompt fission neutron spectrum is proposed for use in the Evaluated Nuclear Data File (ENDF). The proposal is made because a new theory exists by which the spectrum can be accurately predicted as a function of the fissioning nucleus and its excitation energy. Thus, prompt fission neutron spectra can be calculated for cases where no measurements exist or where measurements are not possible. The mathematical formalism necessary for application of the new theory within ENDF is presented and discussed for neutron-induced fission and spontaneous fission. In the case of neutron-induced fission, expressions are given for the first-chance, second-chance, third-chance, and fourth-chance fission components of the spectrum together with that for the total spectrum. An ENDF format is proposed for the new fission spectrum representation, and an example of the use of the format is given

  10. Device for measuring fission product density

    International Nuclear Information System (INIS)

    Kaneda, Mitsunori.

    1980-01-01

    Purpose: To determine the fission product density of xenon or the like and enable measurement of real time of fission product density in a reactor by calculating the disintegration and annihilation of the fission product on the basis of neutron detected output. Constitution: The neutron flux in a reactor is detected by a detector, and applied to first and second density calculators. Second fission product density signal of xenon or the like outputted from first device is again inputted to the device to form an annihilation signal due to disintegration to determine the present density of the second fission product of xenon or the like corresponding to the decrease of the neutron due to the poison of xeron or the like. Similarly, second device determines the first fission product density of iodine or the like. (Sekiya, K.)

  11. Fission cross section and fission fragment angular distribution for oriented nucleus fission by intermediate energy neutrons (epsilon < or approximately 1 Mev)

    International Nuclear Information System (INIS)

    Barabanov, A.L.; Grechukhin, D.P.

    1985-01-01

    General analysis is conducted, and formulae for fission cross section and angular distribution of fission fragments of oriented nuclei by fast neutrons are presented. Geometrical coefficients making up the formulae permitting to carry out calculations for target nuclei with spins I=3/2, 5/2, 7/2 at interaction energies epsilon < or approximately 1 MeV are tabulated. Results of demonstrative calculation of fission fragment angular distribution of oriented sup(235)U nuclei by 0.1 <= epsilon <= 1.0 MeV neutrons reveal that angular distribution weakly depends on the set of permeability factors of neutron waves applied in the calculations

  12. Contribution to the study of nuclear fission

    International Nuclear Information System (INIS)

    Serot, O.

    2009-09-01

    The author proposes an overview of his research activity during the past fifteen years and more particularly that dealing with nuclear fission. The first part reports works on nucleus physics at the scission via the investigation of ternary fission (experimental procedure, influence of fission modes, influence of resonance spin, influence of excitation energy of the fissioning nucleus, emission probabilities, energy spectra of ternary alphas and tritons, emission mechanism). The second part reports measurements and assessments of neutron-induced fission cross sections. The third part reports the investigation of some properties of fission products (efficiencies, branching ratios of the main delayed neutron precursors)

  13. Structure of the β-strength function in heavy nuclei and its influence on the β-delayed fission

    International Nuclear Information System (INIS)

    Wene, C.O.; Isosimow, I.N.; Naumow, Y.W.; Klapdor, H.V.

    1978-01-01

    The shape of the beta strength function Ssub(β) for neutron-rich nuclei is discussed. The structure of Ssub(β) is calculated microscopically for the GT-β-decay of 236 , 238 Pa and is shown to be decisive for the probability for β-delayed fission. (orig.) [de

  14. A small flat fission chamber

    International Nuclear Information System (INIS)

    Li Yijun; Wang Dalun; Chen Suhe

    1999-01-01

    With fission materials of depleted uranium, natural uranium, enriched uranium, 239 Pu, and 237 Np, the authors have designed and made a series of small flat fission chamber. The authors narrated the construction of the fission chamber and its technological process of manufacture, and furthermore, the authors have measured and discussed the follow correct factor, self-absorption, boundary effect, threshold loss factor, bottom scatter and or so

  15. 50 years of nuclear fission

    International Nuclear Information System (INIS)

    Hilscher, D.

    1989-01-01

    The article tells the story of the discovery of nuclear fission in Berlin 50 years ago by Otto Hahn and Fritz Strassmann in cooperation with Lise Meitner. 50 years later nuclear fission is still a subject of research. Some question remain unanswered. Selected new research results are used to discuss the dynamics of the collective movement of the elementary nuclear fission process. (orig.) [de

  16. Fission modelling with FIFRELIN

    International Nuclear Information System (INIS)

    Litaize, Olivier; Serot, Olivier; Berge, Leonie

    2015-01-01

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ, e - ). The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the

  17. Fission gas detection system

    International Nuclear Information System (INIS)

    Colburn, R.P.

    1984-01-01

    A device for collecting fission gas released by failed fuel rods which device uses a filter adapted to pass coolant but to block passage of fission gas bubbles due to the surface tension of the bubbles. The coolant may be liquid metal. (author)

  18. Fission Product Yield Study of 235U, 238U and 239Pu Using Dual-Fission Ionization Chambers

    Science.gov (United States)

    Bhatia, C.; Fallin, B.; Howell, C.; Tornow, W.; Gooden, M.; Kelley, J.; Arnold, C.; Bond, E.; Bredeweg, T.; Fowler, M.; Moody, W.; Rundberg, R.; Rusev, G.; Vieira, D.; Wilhelmy, J.; Becker, J.; Macri, R.; Ryan, C.; Sheets, S.; Stoyer, M.; Tonchev, A.

    2014-05-01

    To resolve long-standing differences between LANL and LLNL regarding the correct fission basis for analysis of nuclear test data [M.B. Chadwick et al., Nucl. Data Sheets 111, 2891 (2010); H. Selby et al., Nucl. Data Sheets 111, 2891 (2010)], a collaboration between TUNL/LANL/LLNL has been established to perform high-precision measurements of neutron induced fission product yields. The main goal is to make a definitive statement about the energy dependence of the fission yields to an accuracy better than 2-3% between 1 and 15 MeV, where experimental data are very scarce. At TUNL, we have completed the design, fabrication and testing of three dual-fission chambers dedicated to 235U, 238U, and 239Pu. The dual-fission chambers were used to make measurements of the fission product activity relative to the total fission rate, as well as for high-precision absolute fission yield measurements. The activation method was employed, utilizing the mono-energetic neutron beams available at TUNL. Neutrons of 4.6, 9.0, and 14.5 MeV were produced via the 2H(d,n)3He reaction, and for neutrons at 14.8 MeV, the 3H(d,n)4He reaction was used. After activation, the induced γ-ray activity of the fission products was measured for two months using high-resolution HPGe detectors in a low-background environment. Results for the yield of seven fission fragments of 235U, 238U, and 239Pu and a comparison to available data at other energies are reported. For the first time results are available for neutron energies between 2 and 14 MeV.

  19. Transfer products from the reactions of heavy ions with heavy nuclei

    International Nuclear Information System (INIS)

    Thomas, K.E. III.

    1979-11-01

    Production of nuclides heavier than the target from 86 Kr- and 136 Xe-induced reactions with 181 Ta and 238 U was investigated. Attempts were made to produce new neutron-excess Np and Pu isotopes by the deep inelastic mechanism. No evidence was found for 242 Np or 247 Pu. Estimates were made for the production of 242 Np, 247 Pu, and 248 Am from heavy-ion reactions with uranium targets. Comparisons of reactions of 86 Kr and 136 Xe ions with thick 181 Ta targets and 86 Kr, 136 Xe and 238 U ions with thick 238 U targets indicate that the most probable products are not dependent on the projectile. The most probable products can be predicted by the equation Z - Z/sub target/ = 0.43 (A - A/sub target/) + 1.0. The major effect of the projectile is the magnitude of the production cross section of the heavy products. Based on these results, estimates are made of the most probable mass of element 114 produced from heavy-ion reactions with 248 Cm and 254 Es targets. These estimates give the mass number of element 114 as approx. 287 if produced in heavy-ion reactions with these very heavy targets. Excitation functions of gold and bismuth isotopes arising from 86 Kr- and 136 Xe-induced reactions with thin 181 Ta targets were measured. These results indicate that the shape and location (in Z and A above the target) of the isotopic distributions are not strongly dependent on the projectile incident energy. Also, the nuclidic cross sections are found to increase with an increase in projectile energy to a maximum at approximately 1.4 to 1.5 times the Coulomb barrier. Above this maximum, the nuclidic cross sections are found to decrease with an increase in projectile energy. This decrease in cross section is believed to be due to fission of the heavy products caused by high excitation energy and angular momentum. 111 references, 39 figures, 34 tables

  20. Fifty years with nuclear fission

    International Nuclear Information System (INIS)

    Behrens, J.W.; Carlson, A.D.

    1989-01-01

    The news of the discovery of nucler fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fiftieth anniversary of its discovery by holding a topical meeting entitled, ''Fifty years with nuclear fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent developments in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicating a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two full days of sessions (April 27 and 28) at the main sites of the NIST in Gaithersburg, Maryland. The wide range of topics covered by Volume 2 of this topical meeting included plenary invited, and contributed sessions entitled, Nuclear fission -- a prospective; reactors II; fission science II; medical and industrial applications by by-products; reactors and safeguards; general research, instrumentation, and by-products; and fission data, astrophysics, and space applications. The individual papers have been cataloged separately

  1. Independent fission yields of Rb and Cs from thermal-neutron-induced fission of 239Pu

    International Nuclear Information System (INIS)

    Balestrini, S.J.; Forman, L.

    1975-01-01

    The relative independent fission yields of Rb and Cs from thermal-neutron-induced fission of 239 Pu have been measured on line using a mass spectrograph and thermalized neutrons from a burst reactor. Independent yields were derived by normalizing the measurements to products of chain yields and fractional independent yields, estimating the latter from measured cumulative yields of Kr and Xe. Comparing the independent yields with those from 238 U fission, the 239 Pu results show shifts in isotopic yield distribution toward lower mass for both Rb and Cs and also toward the production of more Cs and less Rb when 239 Pu is fissioned

  2. Fusion-Fission process and gamma spectroscopy of binary products in light heavy ion collisions (40 {<=} A{sub CN} {<=} 60); Processus de fusion-fission et spectroscopie gamma des produits binaires dans les collisions entre ions lourds legers (40 {<=} A{sub NC} {<=} 60)

    Energy Technology Data Exchange (ETDEWEB)

    Nouicer, Rachid [Institut de Recherche Subatomique, CNRS-IN2P3 - Universite Louis Pasteur, 67 - Strasbourg (France)

    1997-11-21

    During the work on which this Thesis is based, the significant role of the Fusion-Fission Asymmetric mechanism in light heavy ion collisions (A{sub NC} {<=} 60) has been emphasized. The Spin Dis-alignment in the oblate-oblate system has supplied evidence for the first time for the Butterfly mode in a resonant-like reaction. These two aspects, one macroscopic and the other more closely related to microscopic effects are certainly different from a conceptual point of view but are quite complementary for a global understanding of dinuclear systems. In the first part, inclusive and exclusive measurements of the {sup 35}Cl + {sup 12}C and {sup 35}Cl + {sup 24}Mg reaction have been performed at 8 MeV/nucleon in the Saclay experiment. These measurements have permitted us to verify the origin of products which have given rise of the asymmetric fusion-fission mechanism and which have demonstrated that the three-body process in this energy range is very weak. In the second part the {sup 28}Si + {sup 28}Si reaction has been performed at the resonance energy E{sub lab}> = 111.6 MeV at Strasbourg with the Eurogam phase II multi-detector array and VIVITRON accelerator. An angular momentum J{sup {pi}} 38{sup +} for inelastic and mutual channels of the {sup 28}Si + {sup 28}Si exit channel has been measured and has supplied evidence for a spin dis-alignment which has been interpreted in the framework of a molecular model by Butterfly motion. The spectroscopic study of {sup 32}S nucleus, has revealed the occurrence of a new {gamma}-ray transition 0{sup +}(8507.8 keV) {yields} 2{sub 1}{sup +}(2230.2 keV). (author) 105 refs., 116 figs., 26 tabs.

  3. A position sensitive parallel plate avalanche fission detector for use in particle induced fission coincidence measurements

    NARCIS (Netherlands)

    Plicht, J. van der

    1980-01-01

    A parallel plate avalanche detector developed for the detection of fission fragments in particle induced fission reactions is described. The active area is 6 × 10 cm2; it is position sensitive in one dimension with a resolution of 2.5 mm. The detector can withstand a count rate of 25000 fission

  4. Physics of neutron emission in fission

    International Nuclear Information System (INIS)

    Lemmel, H.D.

    1989-06-01

    The document contains the proceedings of the IAEA Consultants' Meeting on the Physics of Neutron Emission in Fission, Mito City (Japan), 24-27 May 1988. Included are the conclusions and recommendations reached at the meeting and the papers presented by the meeting participants. These papers cover the following topics: Energy dependence of the number of fission neutrons ν-bar (3 papers), multiplicity distribution of fission neutrons (3 papers), competition between neutron and γ-ray emission (4 papers), the fission neutron yield in resonances (2 papers) and the energy spectrum of fission neutrons in experiment (9 papers), theory (4 papers) and evaluation (1 paper). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  5. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, G.

    1975-01-01

    This is the first issue of a report series on Fission Product Nuclear Data (FPND), published every six months by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). Its purpose is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The types of activities being included in this report are measurements, compilations and evaluations of: fission product yields; neutron cross-section data of fission products; data related to β-, γ-decay of fission products; delayed neutron data; and fission product decay-heat. The present issue includes contributions which were received by NDS before 1 November 1975

  6. Fission dynamics with systems of intermediate fissility

    Indian Academy of Sciences (India)

    results concerning nuclear dissipation and fission time-scale obtained from several of these studies. In particular ... alent to the assumption that fission is delayed, namely, that the fission probability is not .... parameters to be adjusted on the experimental data. ..... (b) Time distribution of all fission events for the 132Ce nucleus.

  7. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, M.

    1982-07-01

    This is the eighth issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS. Therefore, the IAEA cannot be held responsible for the information contained nor for any consequences resulting from the use of this information. The present issue contains also a section with some recent references relative to fission product nuclear data, which were not covered by the contributions submitted. The types of activities being included in this report are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission); Neutron reaction cross sections of fission products; Data related to the radioactive decay of fission products; Delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The seventh issue of this series has been published in July 1981 as INDC(NDS)-116. The present issue includes contributions which were received by NDS between 1 August 1981 and 15 June 1982

  8. Induced-Fission Imaging of Nuclear Material

    International Nuclear Information System (INIS)

    Hausladen, Paul; Blackston, Matthew A.; Mullens, James Allen; McConchie, Seth M.; Mihalczo, John T.; Bingham, Philip R.; Ericson, Milton Nance; Fabris, Lorenzo

    2010-01-01

    This paper presents initial results from development of the induced-fission imaging technique, which can be used for the purpose of measuring or verifying the distribution of fissionable material in an unopened container. The technique is based on stimulating fissions in nuclear material with 14 MeV neutrons from an associated-particle deuterium-tritium (D-T) generator and counting the subsequent induced fast fission neutrons with an array of fast organic scintillation detectors. For each source neutron incident on the container, the neutron creation time and initial trajectory are known from detection of the associated alpha particle of the d + t → α + n reaction. Many induced fissions will lie along (or near) the interrogating neutron path, allowing an image of the spatial distribution of prompt induced fissions, and thereby fissionable material, to be constructed. A variety of induced-fission imaging measurements have been performed at Oak Ridge National Laboratory with a portable, low-dose D-T generator, including single-view radiographic measurements and three-dimensional tomographic measurements. Results from these measurements will be presented along with the neutron transmission images that have been performed simultaneously. This new capability may have applications to a number of areas in which there may be a need to confirm the presence or configuration of nuclear materials, such as nuclear material control and accountability, quality assurance, treaty confirmation, or homeland security applications.

  9. Mechanism of fission of neutron-deficient actinoids nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Sueki, Keisuke; Nakahara, Hiromichi [Tokyo Metropolitan Univ., Hachioji (Japan). Faculty of Science; Tanase, Masakazu; Nagame, Yuichiro; Shinohara, Nobuo; Tsukada, Kazuaki

    1996-01-01

    A heavy ion reaction ({sup 19}F+{sup 209}Bi) is selected. The reaction produces neutron-deficient {sup 228}U which is compound nucleus with a pair of Rb(z=37) and Cs(Z=55). Energy dissipation problem of nucleus was studied by measuring the isotope distribution of two fissile nuclides. Bismuth metal evaporated on aluminium foil was irradiated by {sup 19}F with the incident energy of 105-128 MeV. We concluded from the results that the excess energy of reaction system obtained with increasing the incident energy is consumed by (1) light Rb much more than Cs and (2) about 60% of energy is given to two fission fragments and the rest 40% to the translational kinetic energy or unknown anomalous {gamma}-ray irradiation. (S.Y.)

  10. Fission gas behaviour and interdiffusion layer growth in in-pile and out-of-pile irradiated U-Mo/Al nuclear fuels

    International Nuclear Information System (INIS)

    Zweifel, Tobias

    2014-01-01

    Worldwide, research and test reactors are to convert their fuel from highly towards lower enriched uranium, among them the FRM II. One prospective fuel is an alloy of uranium and molybdenum (abbr. U-Mo). Test irradiations showed an insufficient irradiation behavior of this new fuel due to the growth of an interdiffusion layer (abbr. IDL) between the U-Mo fuel and the surrounding Al matrix. Furthermore, this layer accumulates fission gases. In this work, heavy ion irradiated U-Mo/Al layer systems were studied and compared to in-reactor irradiated fuel to study the fission gas dynamics. It is demonstrated that the gas behavior is identical for both in-reactor and out-of-reactor approaches.

  11. Comparative measurements of independent yields of 239Pu fission fragments induced by thermal and resonance neutrons

    International Nuclear Information System (INIS)

    Gundorin, N.A.; Kopach, Y.N.; Telezhnikov, S.A.

    1994-01-01

    The independent yields of 239 Pu fission fragments by means of gamma-spectroscopy method were measured for light and heavy groups on the IBR-30 reactor in Dubna. Comparative analysis of experimental data for fission induced by thermal and resonance neutrons was performed. The possibilities to increase the measurement's precision consist of the employment of a HPGe detector with high efficiency and its open-quotes activeclose quotes shielding in the gamma spectrometer, as well as a high speed electronics system. In this way the number of identified fragments will be increased and independent yields will be measured to a precision of 1-3%. Measurements at the source with shorter neutron pulse duration to increase neutron energy resolution will be possible after the reconstruction of a modern neutron source in Dubna in accordance with the IREN project

  12. Heavy ion linear accelerator for radiation damage studies of materials

    Energy Technology Data Exchange (ETDEWEB)

    Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.; Nolen, Jerry; Barcikowski, Albert; Pellin, Michael; Yacout, Abdellatif

    2017-03-01

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response of the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for U-238(50+) and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.

  13. Heavy ion linear accelerator for radiation damage studies of materials.

    Science.gov (United States)

    Kutsaev, Sergey V; Mustapha, Brahim; Ostroumov, Peter N; Nolen, Jerry; Barcikowski, Albert; Pellin, Michael; Yacout, Abdellatif

    2017-03-01

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response of the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for 238 U 50+ and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.

  14. Dynamical decay of nuclei at high temperature: competition between particle emission and fission decay

    International Nuclear Information System (INIS)

    Delagrange, H.; Gregoire, C.; Scheuter, F.; Abe, Y.

    1985-06-01

    A generalized diffusion equation is propounded to follow the time evolution of an excited nucleus towards fission including along the particle decay. This theoretical model is built in order to try to analyse the anomalous behaviour of particle emission observed in many experimental data for heavy-ion induced reactions. Some calculations for the systems 194 Hg, 170 Yb and 248 Cf are presented. A possible extension of this generalized formalism is suggested to deal more consistently with the experimental data. 52 refs. 10 figs.

  15. Evaluation of DD and DT fusion fuel cycles for different fusion-fission energy systems

    International Nuclear Information System (INIS)

    Gohar, Y.

    1980-01-01

    A study has been carried out in order to investigate the characteristics of an energy system to produce a new source of fissile fuel for existing fission reactors. The denatured fuel cycles were used because it gives additional proliferation resistance compared to other fuel cycles. DT and DD fusion drivers were examined in this study with a thorium or uranium blanket for each fusion driver. Various fuel cycles were studied for light-water and heavy-water reactors. The cost of electricity for each energy system was calculated

  16. Some aspects of the nuclear fission process; Quelques aspects du processus de fission nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Netter, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    In the following report one can find first a short general view on the present situation of our knowledge concerning the nuclear fission process, namely on the nucleus going through the saddle-point. Then there are some aspects connected with the excitation energy of the fissioning nucleus. The measurements made at Saclay on the fast neutron fission cross-section of U{sup 233}, U{sup 235}, Pu{sup 239}, U{sup 238} are described at the beginning of this work. It appears that for U{sup 233} there is some characteristic shape modulation of the cross-section curve, in relation with the collective excited state of the deformed nucleus at the saddle-point. Good evidence of this is also given by the study of the relative fission rate with emission of long-range particles; it appears also that this ternary fission rate does not change substantially for neutron between thermal energy and 2 MeV, but that is very lower for the compound nucleus U{sup 239} than for even-even compound nuclei. At the end there are some experiments on the strong 4,5 MeV gamma-ray originated by slow neutron absorption in U{sup 235}. Time-of-flight device is used to establish that this 4,5 MeV gamma-ray seems mostly connected with radiative capture. (author) [French] Le present travail debute par un apercu de l'etat actuel de nos connaissances sur le processus de fission nucleaire, notamment sur le passage par le point-seuil. Puis sont evoques des aspects lies au niveau d'energie d'excitation auquel est porte le noyau qui subit la fission. Les mesures de sections efficaces de fission induite dans {sup 233}U, {sup 235}U, {sup 239}Pu et {sup 238}U par des neutrons rapides effectuees a Saclay sont decrites en premier lieu; elles font apparaitre pour {sup 233}U une ondulation caracteristique du role des etats collectifs d'excitation du noyau deforme au point-seuil. Des experiences sur la fission avec emission de particules de long parcours confirment cet aspect tout en demontrant que la frequence

  17. Some new approaches to the synthesis of heavy and superheavy elements

    International Nuclear Information System (INIS)

    Flerov, G.N.

    1980-01-01

    The results of work on the synthesis of heavy and superheavy elements are considered. It is shown that the new regularity of the systematics of spontaneous-fission half-lives, established for heavy nuclei at Dubna, has made it possible to extend the region of the nuclei being synthesized. In particular, it becomes possible to produce relatively long-lived heavy isotopes of Z>=107. The results of experiments to study the emission of energetic α-particles in the collision of heavy nuclei are presented. It is noted that such reactions can be used to produce atomic nuclei with low excitation energy and large angular momentum. The possible use of similar reactions in the synthesis of heavy and superheavy elements is discussed. In case the existence of a naturally occurring superheavy element has been established, a possibility will arise to synthesize in nuclear reactions a number of isotopes belonging to the island of stability, and to investigate their properties. The present state of work on the search for superheavy elements in nature is briefly described

  18. Survival and compound nucleus probability of super heavy element Z = 117

    Energy Technology Data Exchange (ETDEWEB)

    Manjunatha, H.C. [Government College for Women, Department of Physics, Kolar, Karnataka (India); Sridhar, K.N. [Government First grade College, Department of Physics, Kolar, Karnataka (India)

    2017-05-15

    As a part of a systematic study for predicting the most suitable projectile-target combinations for heavy-ion fusion experiments in the synthesis of {sup 289-297}Ts, we have calculated the transmission probability (T{sub l}), compound nucleus formation probabilities (P{sub CN}) and survival probability (P{sub sur}) of possible projectile-target combinations. We have also studied the fusion cross section, survival cross section and fission cross sections for different projectile-target combination of {sup 289-297}Ts. These theoretical parameters are required before the synthesis of the super heavy element. The calculated probabilities and cross sections show that the production of isotopes of the super heavy element with Z = 117 is strongly dependent on the reaction systems. The most probable reactions to synthetize the super heavy nuclei {sup 289-297}Ts are worked out and listed explicitly. We have also studied the variation of P{sub CN} and P{sub sur} with the mass number of projectile and target nuclei. This work is useful in the synthesis of the super heavy element Z = 117. (orig.)

  19. What do we learn on the dynamics of fission from α-accompanied fission data

    International Nuclear Information System (INIS)

    Guet, C.; Asghar, M.; Nifenecker, H.; Perrin, P.

    1978-01-01

    Measurements of the angular distribution of α-particles emitted by thermal fission of 236 U are presented. Also the dependence of the angular distribution on the kinetic energy of the fission products is studied. (WL) [de

  20. Delayed neutrons as a probe of nuclear charge distribution in fission of heavy nuclei by neutrons

    International Nuclear Information System (INIS)

    Isaev, S.G.; Piksaikin, V.M.; Kazakov, L.E.; Roshchenko, V.A.

    2002-01-01

    A method of the determination of cumulative yields of delayed neutron precursors is developed. This method is based on the iterative least-square procedure applied to delayed neutron decay curves measured after irradiation of 235 U sample by thermal neutrons. Obtained cumulative yields in turns were used for deriving the values of the most probable charge in low-energy fission of the above-mentioned nucleus. (author)

  1. Measurement of Fission Fragment Angular Distributions for 14 N+ 232 Th and 11 B+ 235 U at Near-Barrier Energies

    International Nuclear Information System (INIS)

    Behera, B.R.; Jena, S.; Satapathy, M.; Ison, V.V.; Kailas, S.; Chatterjee, A.; Shrivastava, A.; Mahata, K.; Satpathy, L.; Basu, P.; Roy, S.; Sharan, M.; Chatterjee, M.L; Datta, S.K.

    2000-01-01

    Fission fragment angular distributions of heavy-ion induced fission in actinide nuclei at near-barrier energies show anomalous fragment anisotropies. At above barrier energies entrance channel dependence is a probable cause and explanation in terms of pre-equilibrium fission and the critical mass asymmetry parameter (Businaro-Gallone) has been tried. Target deformation and ground state spin also seem to influence the measured anisotropy. To understand the extent of importance of some or all of these features, we performed a set of experiments where (i) entrance channel dependence (ii) mass asymmetry on the two sides of Businaro-Gallone and (iii) different ground state spins are present. The channels chosen are 14 N+ 232 Th and 11 B+ 235 U. Experiments were done using the Pelletron accelerators at NSC, New Delhi and BARC-TIFR, Bombay. Compound nucleus populated in both cases is 246 Bk. 232 Th has ground state spin zero and 235 U has spin 7/2. Fragment anisotropies have been measured from 10-15 % above barrier to 10 % below barrier at similar excitation energy (around 40 MeV to 58 MeV). The mean square angular momentum is matched at least at one energy. Results indicate that when both excitation energy and angular momentum are matched, there are differences in the measured values of fission anisotropies. This implies entrance channel dependence consistent with the expectation of pre-equilibrium fission model. (authors)

  2. A simple model of heavy ion-induced linear momentum transfer

    International Nuclear Information System (INIS)

    Skulski, W.; Blocki, J.

    1990-01-01

    This paper reports on linear momentum transfer (LMT) from the projectile to the heavy reaction residue which is among the observables, fair account of which is expected from any model of nuclear collisions. Almost thirty years ago it was shown that heavy ions bombarding highly fissionable targets like uranium give rise to double-peaked LMT distributions. (For such targets almost every projectile-target interaction leads to fission, enabling one to use the binary fission fragment correlation technique to obtain LMT distribution for the whole reaction cross section). Since the pioneering work comprehensive systematics of the LMT spectra were published for many HI projectiles, A p = 12-86, almost invariably double-peaked in the bombarding energy range E/A p = 10-40 MeV/nucleon. It was shown in the 16 O+ 238 U experiment at E/A p =20 MeV/nucleon, that the lower LMT peak is in the prompt coincidence with the projectile-like fragment detected at 15 degrees (LAB), an evidence of the peripheral collisions. LMT - neutron multiplicity coincidence study has shown, that the lower LMT peak has also low associated neutron multiplicity n > (and hence low excitation energy E * ), whereas the higher LMT peak has high coincident n > - an evidence of high E * . Low and high E * are plausible signatures of the peripheral and central collisions, respectively. The original interpretation of the double-peaked LMT distributions associates the low LMT peak with the incomplete fusion reaction, in which part of the projectile is emitted forward with the beam velocity. The double-peaked structure would thus reflect the probability of the different projectile divisions into the emitted and captured parts

  3. Measurements of fission cross-sections. Chapter 4

    International Nuclear Information System (INIS)

    James, G.D.

    1981-01-01

    The steps involved in the measurement of fission cross sections are summarized and the range of techniques available are considered. Methods of fission detection are described with particular emphasis on the neutron energy dependent properties of the fission process and the details of fragment energy loss which can lead to energy-dependent changes in detector efficiency. Selected examples of fission cross-section measurements are presented and methods of data reduction, storage, analysis and evaluation, are examined. Finally requested accuracies for fission cross section data are compared to estimated available accuracies. (U.K.)

  4. Muon induced fission and fission track dating of minerals

    International Nuclear Information System (INIS)

    Marques, A.

    1988-01-01

    The effects of muon induced fission on geological dating of samples by the fission track method are evaluated for the case of muscovite minerals. It is found a small but significant effect, greater for the longer ages. Since calculations are developped under the hypothesis of constant atmosphere and primary cosmic ray flux it is suggested that any discrepancy found in ages of very old material that cannot be accounted for by well known environmental influences, be taken as an indication of variation on either the atmospheric stopping power or the intensity of cosmic radiation along the ages. (author) [pt

  5. Status of fission product yield data

    International Nuclear Information System (INIS)

    Cuninghame, J.G.

    1978-01-01

    The topics covered in this paper are: (a) cumulative yields in thermal neutron fission and in fast fission up to 14 MeV incident neutron energy, (b) dependence of the yields on incident neutron energy and spectrum, (c) independent yields, (d) charge dispersion and distribution, and (e) yields of light particles from ternary fission. The paper reviews information on these subjects for fission of actinides from 232 Th upwards with special emphasis on data published since the 1973 Bologna FPND Panel, compares data sets, and discusses the gaps still to be found in them. (author)

  6. Orbital angular momentum transfer and spin desalignment mechanisms in the deep inelastic collisions Ar+Bi and Ni+Pb using the sequential fission method

    International Nuclear Information System (INIS)

    Steckmeyer, J.C.

    1984-10-01

    Angular momentum transfer and spin dealignment mechanisms have been studied in the deep inelastic collisions Ar+Bi and Ni+Pb using the sequential fission method. This experimental technique consists to measure the angular distribution of the fission fragments of a heavy nucleus in coincidence with the reaction partner, and leads to a complete determination of the heavy nucleus spin distribution. High spin values are transferred to the heavy nucleus in the interaction and indicate that the dinuclear system has reached the rigid rotation limit. A theoretical model, taking into account the excitation of surface vibrations of the nuclei and the nucleon transfer between the two partners, is able to reproduce the high spin values measured in our experiments. The spin fluctuations are important, with values of the order of 15 to 20 h units. These fluctuations increase with the charge transfer from the projectile to the target and the total kinetic energy loss. The spin dealignment mechanisms act mainly in a plane approximately perpendicular to the heavy recoil direction in the laboratory system. These results are well described by a dynamical transport model based on the stochastic exchange of individual nucleons between the two nuclei during the interaction. The origin of the dealignment mechanisms in the spin transfer processes is then related to the statistical nature of the nucleon exchange. However other mechanisms can contribute to the spin dealignment as the surface vibrations, the nuclear deformations as well their relative orientations [fr

  7. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Friedman, A.

    1991-01-01

    This report describes the research status in the following areas of research in the field of heavy ion inertial fusion: (1) RF accelerators, storage rings, and synchrotrons; (2) induction linacs; (3) recirculation induction accelerator approach; (4) a new accelerator concept, the ''Mirrortron''; (5) general issues of transport, including beam merging, production of short, fat quadrupoles with nearly linear focusing, calculations of beam behaviour in image fields; 3-D electrostatic codes on drift compression with misalignments and transport around bends; (6) injectors, ion sources and RFQs, a.o., on the development of a 27 MHz RFQ to be used for the low energy portion of a new injector for all ions up to Uranium, and the development of a 2 MV carbon ion injector to provide 16 C + beams of 0.5 A each for ILSE; (7) beam transport from accelerator to target, reporting, a.o., the feasibility to suppress third-order aberrations; while Particle-in-Cell simulations on the propagation of a non-neutral ion beam in a low density gas identified photo-ionization by thermal X-rays from the target as an important source of defocusing; (9) heavy ion target studies; (10) reviewing experience with laser drivers; (11) ion cluster stopping and muon catalyzed fusion; (12) heavy ion systems, including the option of a fusion-fission burner. 1 tab

  8. Measurement of the ROT effect in the neutron induced fission of 235U in the 0.3 eV resonance at a hot source of polarized neutrons

    Directory of Open Access Journals (Sweden)

    Kopatch Yuri

    2018-01-01

    Full Text Available The TRI and ROT asymmetries in fission of heavy nuclei have been extensively studied during more than a decade. The effects were first discovered in the ternary fission in a series of experiments performed at the ILL reactor (Grenoble by a collaboration of Russian and European institutes, and were carefully measured for a number of fissioning nuclei. Later on, the ROT effect has been observed in the emission of prompt gamma rays and neutrons in fission of 235U and 233U, although its value was an order of magnitude smaller than in the α-particle emission from ternary fission. All experiments performed so far are done with cold polarized neutrons, what assumes a mixture of several spin states, the weights of these states being not well known. The present paper describes the first attempt to get “clean” data by performing the measurement of gamma and neutron asymmetries in an isolated resonance of 235U at the POLI instrument of the FRM2 reactor in Garching.

  9. Neutron gamma competition in fast fission

    International Nuclear Information System (INIS)

    Frehaut, J.

    1989-01-01

    In the present paper we analyse the data we have obtained on the distribution of the gamma-ray energy per fission, as well as on the average energy E-barγ released per fission for the neutron induced fission of several isotopes, in the energy range up to 15 MeV. 6 refs, 9 figs

  10. Fission energy of uranium isotopes and transuranium elements

    International Nuclear Information System (INIS)

    Nemirovskij, P.Eh.; Manevich, L.G.

    1981-01-01

    A comparison is made between the prompt fission energy, Esub(pr), calculated from the mass and binding energy spectrum and the Esub(pr) value obtained from the experimental data on the kinetic energy of fragments, the energy of prompt neutrons and prompt γ-quanta. Basing on the data on β-decay chains of fission fragments, the energies of neutrinos, γ-quanta and β-electrons are obtained, which permits to calculate the actual energy released during fission. The calculations are performed for thermal neutron-induced fission, fast-neutron induced fission and for fission after bombardment with 14 MeV neutrons. The available experimental data on the fission fragment kinetic energy, prompt γ-quanta energy and fission neutron energy are presented. The comparison of the Esub(pr) values obtained experimentally for the thermal-neutron-induced fission with the calculated Esub(pr) value shows that for 233 U, 239 Pu, 241 Pu the agreement is rather favourable. For 235 U the agreement is within the error limits. As to the Esub(pr) values for the fast-neutron-induced fission, the agreement between the calculated and experimental data for all nuclides is quite good

  11. Fission product induced swelling of U–Mo alloy fuel

    International Nuclear Information System (INIS)

    Kim, Yeon Soo; Hofman, G.L.

    2011-01-01

    Highlights: ► We measured fuel swelling of U–Mo alloy by fission products at temperatures below 250 °C. ► We quantified the swelling portion of U–Mo by fission gas bubbles. ► We developed an empirical model as a function of fission density. - Abstract: Fuel swelling of U–Mo alloy was modeled using the measured data from samples irradiated up to a fission density of ∼7 × 10 27 fissions/m 3 at temperatures below ∼250 °C. The overall fuel swelling was measured from U–Mo foils with as-fabricated thickness of 250 μm. Volume fractions occupied by fission gas bubbles were measured and fuel swelling caused by the fission gas bubbles was quantified. The portion of fuel swelling by solid fission products including solid and liquid fission products as well as fission gas atoms not enclosed in the fission gas bubbles is estimated by subtracting the portion of fuel swelling by gas bubbles from the overall fuel swelling. Empirical correlations for overall fuel swelling, swelling by gas bubbles, and swelling by solid fission products were obtained in terms of fission density.

  12. The spectroscopy of fission fragments

    International Nuclear Information System (INIS)

    Phillips, W.R.

    1998-01-01

    High-resolution measurements on γ rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author)

  13. Delayed neutrons as a probe of nuclear charge distribution in fission of heavy nuclei by neutrons

    CERN Document Server

    Isaev, S G; Piksaikin, V M; Roshchenko, V A

    2001-01-01

    A method of the determination of cumulative yields of delayed neutron precursors is developed. This method is based on the iterative least-square procedure applied to delayed neutron decay curves measured after irradiation of sup 2 sup 3 sup 5 U sample by thermal neutrons. Obtained cumulative yields in turns were used for deriving the values of the most probable charge in low-energy fission of the above-mentioned nucleus.

  14. Influence of differences in the proton and neutron distributions on nuclear fusion and fission; Infuence de la difference entre les distributions de protons et de neutrons dans le noyau sur les processus de fusion et de fission

    Energy Technology Data Exchange (ETDEWEB)

    Dobrowolski, A

    2006-04-15

    This thesis work is centred on some essential ingredients of a theoretical description of the reaction dynamics of the nuclear fusion and fission process, such as the interaction potential between projectile and target nuclei for fusion and the deformation energy landscape in a multidimensional space for the fission process. We have in particular evaluated the importance of the difference between the neutron and proton density distributions on these 2 processes. The fusion potential between the two interacting nuclei is obtained through the nucleon densities, determined in a self-consistent way through semiclassical density variational calculations for a given effective nucleon-nucleon effective interaction of the Skyrme type. These fusion barriers can then be used in a Langevin formalism to evaluation fusion cross sections. For the fission process it turns out to be essential to allow for the large variety of shapes which appear between the nuclear ground state and the the scission configuration. We show that a shape parametrisation taking into account elongation, as well as possible neck formation, left-right asymmetry and non-axiality allows a precise description of this phenomena in the framework of the macroscopic-microscopic approach. We are thus able to enrich the expression of the liquid-drop type energy through a term which describes the variation of the nuclear energy due to a deformation difference between the proton and neutron distribution. The resulting reduction of the fission barriers is only of the order of one MeV but this can easily cause a change in the fission cross-section by an order of magnitude and thus plays a capital role for the stability of super-heavy of exotic nuclei. (author)

  15. Fission fragment angular momentum

    International Nuclear Information System (INIS)

    Frenne, D. De

    1991-01-01

    Most of the energy released in fission is converted into translational kinetic energy of the fragments. The remaining excitation energy will be distributed among neutrons and gammas. An important parameter characterizing the scission configuration is the primary angular momentum of the nascent fragments. Neutron emission is not expected to decrease the spin of the fragments by more than one unit of angular momentum and is as such of less importance in the determination of the initial fragment spins. Gamma emission is a suitable tool in studying initial fragment spins because the emission time, number, energy, and multipolarity of the gammas strongly depend on the value of the primary angular momentum. The main conclusions of experiments on gamma emission were that the initial angular momentum of the fragments is large compared to the ground state spin and oriented perpendicular to the fission axis. Most of the recent information concerning initial fragment spin distributions comes from the measurement of isomeric ratios for isomeric pairs produced in fission. Although in nearly every mass chain isomers are known, only a small number are suitable for initial fission fragment spin studies. Yield and half-life considerations strongly limit the number of candidates. This has the advantage that the behavior of a specific isomeric pair can be investigated for a number of fissioning systems at different excitation energies of the fragments and fissioning nuclei. Because most of the recent information on primary angular momenta comes from measurements of isomeric ratios, the global deexcitation process of the fragments and the calculation of the initial fragment spin distribution from measured isomeric ratios are discussed here. The most important results on primary angular momentum determinations are reviewed and some theoretical approaches are given. 45 refs., 7 figs., 2 tabs

  16. Fission yield data evaluation system FYDES

    International Nuclear Information System (INIS)

    Liu Tingjin

    1998-01-01

    Taking account of some features of fission yield data, to do the fission yield data evaluation conveniently, a fission yield data evaluation system FYDES has been developed for last two years. Outline of the system, data retrieval and data table standardization, data correction codes, data averaging code, simultaneous evaluation code and data fit programs were introduced

  17. Fission Product Data Measured at Los Alamos for Fission Spectrum and Thermal Neutrons on 239Pu, 235U, 238U

    International Nuclear Information System (INIS)

    Selby, H.D.; Mac Innes, M.R.; Barr, D.W.; Keksis, A.L.; Meade, R.A.; Burns, C.J.; Chadwick, M.B.; Wallstrom, T.C.

    2010-01-01

    We describe measurements of fission product data at Los Alamos that are important for determining the number of fissions that have occurred when neutrons are incident on plutonium and uranium isotopes. The fission-spectrum measurements were made using a fission chamber designed by the National Institute for Standards and Technology (NIST) in the BIG TEN critical assembly, as part of the Inter-laboratory Liquid Metal Fast Breeder Reactor (LMFBR) Reaction Rate (ILRR) collaboration. The thermal measurements were made at Los Alamos' Omega West Reactor. A related set of measurements were made of fission-product ratios (so-called R-values) in neutron environments provided by a number of Los Alamos critical assemblies that range from having average energies causing fission of 400-600 keV (BIG TEN and the outer regions of the Flattop-25 assembly) to higher energies (1.4-1.9 MeV) in the Jezebel, and in the central regions of the Flattop-25 and Flattop-Pu, critical assemblies. From these data we determine ratios of fission product yields in different fuel and neutron environments (Q-values) and fission product yields in fission spectrum neutron environments for 99 Mo, 95 Zr, 137 Cs, 140 Ba, 141,143 Ce, and 147 Nd. Modest incident-energy dependence exists for the 147 Nd fission product yield; this is discussed in the context of models for fission that include thermal and dynamical effects. The fission product data agree with measurements by Maeck and other authors using mass-spectrometry methods, and with the ILRR collaboration results that used gamma spectroscopy for quantifying fission products. We note that the measurements also contradict earlier 1950s historical Los Alamos estimates by ∼5-7%, most likely owing to self-shielding corrections not made in the early thermal measurements. Our experimental results provide a confirmation of the England-Rider ENDF/B-VI evaluated fission-spectrum fission product yields that were carried over to the ENDF/B-VII.0 library, except

  18. Measurements of actinide-fission product yields in Caliban and Prospero metallic core reactor fission neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, P.; Authier, N. [CEA, Centre de Valduc, 21120 Is-sur-Tille (France); Laurec, J.; Bauge, E.; Granier, T. [CEA, Centre DIF, 91297 Arpajon (France)

    2011-07-01

    In the 1970's and early 1980's, an experimental program was performed on the facilities of the CEA Valduc Research Center to measure several actinide-fission product yields. Experiments were, in particular, completed on the Caliban and Prospero metallic core reactors to study fission-neutron-induced reactions on {sup 233}U, {sup 235}U, and {sup 239}Pu. Thick actinide samples were irradiated and the number of nuclei of each fission product was determined by gamma spectrometry. Fission chambers were irradiated simultaneously to measure the numbers of fissions in thin deposits of the same actinides. The masses of the thick samples and the thin deposits were determined by mass spectrometry and alpha spectrometry. The results of these experiments will be fully presented in this paper for the first time. A description of the Caliban and Prospero reactors, their characteristics and performances, and explanations about the experimental approach will also be given in the article. A recent work has been completed to analyze and reinterpret these measurements and particularly to evaluate the associated uncertainties. In this context, calculations have also been carried out with the Monte Carlo transport code Tripoli-4, using the published benchmarked Caliban description and a three-dimensional model of Prospero, to determine the average neutron energy causing fission. Simulation results will be discussed in this paper. Finally, new fission yield measurements will be proposed on Caliban and Prospero reactors to strengthen the results of the first experiments. (authors)

  19. Cold valleys in fusion and fission

    International Nuclear Information System (INIS)

    Misicu, S.

    2003-01-01

    The cold fission configuration after the preformation of the fragments resembles a short-lived dinuclear or quasi-molecular system. The most conceivable scission configuration is given by two fission fragments in touching with the symmetry axes aligned (pole-pole orientation). This conclusion was based on the simple argument that this configuration offers the optimal tunneling time, i.e. the difference between the Coulomb barrier and the decay energy Q is minimal. Other orientations are apparently precluded in cold spontaneous fission and should be regarded as quasi-fission doorways in the synthesis of superheavy elements by cold fusion. (orig.)

  20. High energy {gamma} emission in the spontaneous fission of {sup 252}Cf; Emission {gamma} de grande energie dans la fission spontanee de {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Badimon, C.; Barreau, G.; Doan, T.P.; Pedemay, G. [Centre d`Etudes Nucleaires, Bordeaux-1 Univ., 33 Gradignan (France); Gautherin, C.; Houry, M.; Korten, W.; Le Coz, Y.; Lucas, R.; Thiesen, Ch. [Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee, CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France); Belier, G.; Meot, M.V. [CEA Centre d`Etudes de Bruyeres-le-Chatel, 91 (France); Astier, A.; Ducroux, L.; Meyer, M.; Redon, N. [Inst.de Physique Nucleaire, Lyon-1 Univ., 69 - Villeurbanne (France)

    1997-06-01

    The prompt {gamma} emission in the spontaneous fission of {sup 252}Cf is characterized by an energy spectrum which extends up to 20 MeV. It was established that the spectrum presents in the neighbourhood of symmetric fission an intensity bump in the 3-8 MeV {gamma} energy interval. The origin of this phenomenon is still not well understood, so that it was found interesting to carry out new measurements. The spectrum of the {gamma} rays emitted in spontaneous fission of {sup 252}Cf has been measurement in the EUROGAM II multidetector using photovoltaic cells to detect fragments. The aim of the experiment was to investigate the {gamma} yield enhancement which appears for mass fragment ratio near 132/120. This enhancement was found to be composed of two peaks located at 4 MeV and 5.5 MeV respectively. The results obtained confirm the intensity bound in the 3-8 MeV region but this augmentation reaches the maximum when the heavy fragment is near the mass 132. Beyond mass 140 the phenomenon diminish and the {gamma} spectrum regains the behaviour expected for a statistic emission. The additional structure at 5.5 MeV does not vary with excitation energy while the excitation function of the 4 MeV structure is more structured and presents a maximum when the excitation energy is near 8 MeV. It is likely that all or part of this observed phenomenon is due to a particular excitation mode of this isotope associated for instance with a low energy dipole resonance. A theoretical study of this collective effect is under way 3 refs.

  1. Heavy-ion interactions of deformed nuclei. Progress report and final report, January 1, 1985-December 31, 1985

    International Nuclear Information System (INIS)

    Oberacker, V.E.

    1985-09-01

    This Progress Report describes the main topics that were investigated during the reporting period: (1) a new microscopic approach (many-body theory with two-center shell model basis) to the calculation of heavy-ion interaction potentials, primarily for heavy systems; (2) dynamic alignment of deformed nuclei during heavy-ion collisions; (3) the role of shell effects, static deformation and dynamic alignment in heavy-ion fusion reactions; (4) giant nuclear quasimolecules and the positron problem. The proposed research has direct relevance to experimental programs supported by DOE, e.g. the Holifield Heavy-Ion Research Facility (HHIRF) at Oak Ridge, the ATLAS accelerator at Argonne National Laboratory, the Double MP Tandem at Brookhaven and some of the smaller University-based accelerators. A discussion of a review article on Coulomb fission is presented. 36 refs., 7 figs

  2. Fission gas release in LWR fuel measured during nuclear operation

    International Nuclear Information System (INIS)

    Appelhans, A.D.; Skattum, E.; Osetek, D.J.

    1980-01-01

    A series of fuel behavior experiments are being conducted in the Heavy Boiling Water Reactor in Halden, Norway, to measure the release of Xe, Kr, and I fission products from typical light water reactor design fuel pellets. Helium gas is used to sweep the Xe and Kr fission gases out of two of the Instrumented Fuel Assembly 430 fuel rods and to a gamma spectrometer. The measurements of Xe and Kr are made during nuclear operation at steady state power, and for 135 I following reactor scram. The first experiments were conducted at a burnup of 3000 MWd/t UO 2 , at bulk average fuel temperatures of approx. 850 K and approx. 23 kW/m rod power. The measured release-to-birth ratios (R/B) of Xe and Kr are of the same magnitude as those observed in small UO 2 specimen experiments, when normalized to the estimated fuel surface-to-volume ratio. Preliminary analysis indicates that the release-to-birth ratios can be calculated, using diffusion coefficients determined from small specimen data, to within a factor of approx. 2 for the IFA-430 fuel. The release rate of 135 I is shown to be approximately equal to that of 135 Xe

  3. The spectroscopy of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, W.R. [Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    High-resolution measurements on {gamma} rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author) 24 refs., 8 figs., 1 tab.

  4. Progress in fission product nuclear data. No. 14

    International Nuclear Information System (INIS)

    Lammer, M.

    1994-06-01

    This is the 14th issue of a report series on Fission Product Nuclear Data published by the Nuclear Data Section of the IAEA. The types of activities included are measurements, compilations and evaluations of fission product yields, neutron reaction cross sections of fission products, data related to the radioactive decay of fission products, delayed neutron data from neutron induced and spontaneous fission, lumped fission product data. The first part of the report consists of unaltered original contributions which the authors have sent to IAEA/NDS. The second part contains some recent references relative to fission product nuclear data, which were not covered by the contributions submitted, and selected papers from conferences. The third part contains requirements for further measurements

  5. Progress in fission product nuclear data. No. 13

    International Nuclear Information System (INIS)

    Lammer, M.

    1990-11-01

    This is the 13th issue of a report series published by the Nuclear Data Section of the IAEA. The types of activities included are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission), neutron reaction cross-sections of fission products, data related to the radioactive decay of fission products, delayed neutron data of fission products and bumped fission product data (decay heat, absorption, etc.). The first part of the report consists of unaltered original data which the authors have sent to IAEA/NDS. The second part contains some recent references relative to fission product nuclear data, which were not covered by the contributions submitted, and selected papers from conferences. Part 3 contains requirements for further measurements

  6. Irradiation effects and diffusion of fission products (cesium and iodine) in silicon carbide; Effets d'irradiation et diffusion des produits de fission (cesium et iode) dans le carbure de silicium

    Energy Technology Data Exchange (ETDEWEB)

    Audren, A

    2007-03-15

    Silicon carbide is envisaged as a cladding material for the nuclear fuel in the fourth generation reactors. The aim of this work is to study the capacity to retain fission products and the structure evolution of this material under the combined effects of temperature and irradiation. The low energy ion implantations and the incorporation of stable analogues of fission products (Cs and I) in single crystalline 6H-SiC samples were performed by using the ion implanter or the accelerator of the CSNSM. The high energy heavy ion irradiations were made at GANIL. The evolution of the implanted ion profiles and the crystal structure were studied by RBS and Channeling. Complementary information were obtained by using the UV-visible absorption spectroscopy. The low energy ion implantations at room temperature induce a fast structural damage in the crystal. On the other hand, it is possible to attain a small disorder rate in the crystal during implantation by increasing the implantation temperature (600 C). The high energy heavy ion irradiations do not damage the SiC crystals. On the contrary, they cause an annealing of the disorder created by the low energy implantations. The implanted ions (I) do not diffuse during low or high energy ion irradiations at room temperature and at 600 C. However, a diffusion of Cs ions was observed during a post-implantation annealing at 1300 C. At this temperature, the crystal which had an extended amorphous layer starts to recover a single-crystal structure. (author)

  7. The role of the dinuclear system in the processes of nuclear fusion, quasi-fission, fission and cluster formation

    International Nuclear Information System (INIS)

    Volkov, V.V.

    1999-01-01

    The nuclear fusion, quasi-fission, fission and cluster formation in an excited nucleus are considered as the processes of the formation and evolution of the dinuclear system. This approach allows one to reveal new aspects of nuclear fusion, to show that quasi-fission plays an important role in nuclear reactions used to synthesise superheavy elements. A qualitative picture is given of the fission process of an excited nucleus and an important role of cluster formation in this process is shown

  8. Utilization of fission reactors for fusion engineering testing

    International Nuclear Information System (INIS)

    Deis, G.A.; Miller, L.G.

    1985-01-01

    Fission reactors can be used to conduct some of the fusion nuclear engineering tests identified in the FINESSE study. To further define the advantages and disadvantages of fission testing, the technical and programmatic constraints on this type of testing are discussed here. This paper presents and discusses eight key issues affecting fission utilization. Quantitative comparisons with projected fusion operation are made to determine the technical assets and limitations of fission testing. Capabilities of existing fission reactors are summarized and compared with technical needs. Conclusions are then presented on the areas where fission testing can be most useful

  9. Options for development of space fission propulsion systems

    International Nuclear Information System (INIS)

    Houts, Mike; Van Dyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana

    2001-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include high specific power continuous impulse propulsion systems and bimodal nuclear thermal rockets. Despite their tremendous potential for enhancing or enabling deep space and planetary missions, to date space fission systems have only been used in Earth orbit. The first step towards utilizing advanced fission propulsion systems is development of a safe, near-term, affordable fission system that can enhance or enable near-term missions of interest. An evolutionary approach for developing space fission propulsion systems is proposed

  10. Attachment of gaseous fission products to aerosols

    International Nuclear Information System (INIS)

    Skyrme, G.

    1985-01-01

    Accidents may occur in which the integrity of fuel cladding is breached and volatile fission products are released to the containment atmosphere. In order to assess the magnitude of the subsequent radiological hazard it is necessary to know the transport behaviour of such fission products. It is frequently assumed that the fission products remain in the gaseous phase. There is a possibility, however, that they may attach themselves to particles and hence substantially modify their transport properties. This paper provides a theoretical assessment of the conditions under which gaseous fission products may be attached to aerosol particles. Specific topics discussed are: the mass transfer of a gaseous fission product to an isolated aerosol particle in an infinite medium; the rate at which the concentration of fission products in the gas phase diminishes within a container as a result of deposition on a population of particles; and the distribution of deposited fission product between different particle sizes in a log-normal distribution. It is shown that, for a given mass, small particles are more efficient for fission product attachment, and that only small concentrations of such particles may be necessary to achieve rapid attachment. Conditions under which gaseous fission products are not attached to particles are also considered, viz, the competing processes of deposition onto the containment walls and onto aerosol particles, and the possibility of the removal of aerosols from the containment by various deposition processes, or agglomeration, before attachment takes place. (author)

  11. Modelling isothermal fission gas release

    International Nuclear Information System (INIS)

    Uffelen, P. van

    2002-01-01

    The present paper presents a new fission gas release model consisting of two coupled modules. The first module treats the behaviour of the fission gas atoms in spherical grains with a distribution of grain sizes. This module considers single atom diffusion, trapping and fission induced re-solution of gas atoms associated with intragranular bubbles, and re-solution from the grain boundary into a few layers adjacent to the grain face. The second module considers the transport of the fission gas atoms along the grain boundaries. Four mechanisms are incorporated: diffusion controlled precipitation of gas atoms into bubbles, grain boundary bubble sweeping, re-solution of gas atoms into the adjacent grains and gas flow through open porosity when grain boundary bubbles are interconnected. The interconnection of the intergranular bubbles is affected both by the fraction of the grain face occupied by the cavities and by the balance between the bubble internal pressure and the hydrostatic pressure surrounding the bubbles. The model is under validation. In a first step, some numerical routines have been tested by means of analytic solutions. In a second step, the fission gas release model has been coupled with the FTEMP2 code of the Halden Reactor Project for the temperature distribution in the pellets. A parametric study of some steady-state irradiations and one power ramp have been simulated successfully. In particular, the Halden threshold for fission gas release and two simplified FUMEX cases have been computed and are summarised. (author)

  12. Spontaneous fission of superheavy nuclei

    Indian Academy of Sciences (India)

    The fission-like configurations are used for the total deformation energy calculations. A ... oscillator potential for the two fission fragment regions reads as ... Beyond this limit, the contribution of more remote levels is negligible. Once the density ...

  13. Extraction chromatography of fission products

    International Nuclear Information System (INIS)

    Bonnevie-Svendsen, M.; Goon, K.

    1978-01-01

    Various cases of using extraction chromatography during analysis of fission products are reviewed. The use of the extraction chromatography method is considered while analysing reprocessed products of nuclear fuel for quantitative radiochemical analysis and control of fission product and actinoide separation during extraction and their chemical state in production solutions. The method is used to obtain pure fractions of typical burnup monitors (neodymium, molybdenum, cerium, cesium, europium, lanthanides) during determination of nuclear fuel burnup degree. While studying the nature of nuclear reactions the method is used to separate quickly short-life isotopes, to purify β-radiator fractions before measuring their half-life periods, to enrich isotopes forming with low output during fission. Examples of using extraction chromatography are given to separate long half-life or stable fission products from spent solutions, to control environment object contamination

  14. Chemical effects of fission recoils

    International Nuclear Information System (INIS)

    Meisels, G.G.; Freeman, J.P.; Gregory, J.P.; Richardson, W.C.; Sroka, G.J.

    1978-01-01

    The production of nitrogen from nitrous oxide at high density was employed to investigate the energy deposition efficiency of fission recoils produced from fission of U 235 in uranium-palladium foils clad with platinum. Nitrogen production varied linearly with fission recoil dose from 1.1 x 10 20 to 9.0 x 10 20 eV, and was independent of density between 12.5 and 127.5 g l -1 N 2 O. 16.2 +- 0.8% of the fission recoil energy was deposited external to the foil. Electron microprobe analysis showed some unevenness of new foil and polymer buildup on the surface after irradiation of ethylene-oxygen mixtures. Subsequent irradiation in the presence of nitrous oxide restored some of the original efficiency. This is ascribed to chemical oxidation of the polymer induced by reactive intermediates produced from nitrous oxide. (author)

  15. Fission Product Library and Resource

    Energy Technology Data Exchange (ETDEWEB)

    Burke, J. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Padgett, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-29

    Fission product yields can be extracted from an irradiated sample by performing gamma ray spectroscopy on the whole sample post irradiation. There are several pitfalls to avoid when trying to determine a specific isotope's fission product yield.

  16. Theory of neutron emission in fission

    International Nuclear Information System (INIS)

    Madland, D.G.

    1989-01-01

    Following a summary of the observables in neutron emission in fission, a brief history is given of theoretical representations of the prompt fission neutron spectrum N(E) and average prompt neutron multiplicity /bar /nu///sub p/. This is followed by descriptions, together with examples, of modern approaches to the calculation of these quantities including recent advancements. Emphasis will be placed upon the predictability and accuracy of the modern approaches. In particular, the dependence of N(E) and /bar /nu///sub p/ on the fissioning nucleus and its excitation energy will be discussed, as will the effects of and competition between first-, second- and third-chance fission in circumstances of high excitation energy. Finally, properties of neutron-rich (fission-fragment) nuclei are discussed that must be better known to calculate N(E) and /bar /nu///sub p/ with higher accuracy than is currently possible. 17 refs., 11 figs

  17. Calculated apparent yields of rare gas fission products

    International Nuclear Information System (INIS)

    Delucchi, A.A.

    1975-01-01

    The apparent fission yield of the rare gas fission products from four mass chains is calculated as a function of separation time for six different fissioning systems. A plot of the calculated fission yield along with a one standard deviation error band is given for each rare gas fission product and for each fissioning system. Those parameters in the calculation that were major contributors to the calculated standard deviation at each separation time were identified and the results presented on a separate plot. To extend the usefulness of these calculations as new and better values for the input parameters become available, a third plot was generated for each system which shows how sensitive the derived fission yield is to a change in any given parameter used in the calculation. (U.S.)

  18. Fission of nuclei far from stability

    International Nuclear Information System (INIS)

    Schmidt, K.H.; Benlliure, J.; Junghans, A.R.

    2000-11-01

    The secondary-beam facility of GSI provided the technical equipment for a new kind of fission experiment. Fission properties of short-lived neutron-deficient nuclei have been investigated in inverse kinematics. The measured element distributions reveal new kinds of systematics on shell structure and even-odd effects and lead to an improved understanding of structure effects in nuclear fission. Prospects for further experimental studies are discussed. (orig.)

  19. Decay of giant resonance E2 isoscalar in heavy nuclei. Decaimento da ressonancia gigante E2 isoescalar em nucleos pesados

    Energy Technology Data Exchange (ETDEWEB)

    Herdade, S B [Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    1980-01-01

    In this work, it is made a study of the giant resonance E2 isoscalar, in heavy nuclei. Fission probabilities for this resonance were determined by various authors, in different experiments, for {sup 238}U. (A.C.A.S.).

  20. In-reactor testing of self-powered neutron detectors and miniature fission chambers

    International Nuclear Information System (INIS)

    Duchene, J.; LeMeur, R.; Verdant, R.

    1975-01-01

    The CEA has tested a variety of ''slow'' self-powered neutron detectors with rhodium, silver and vanadium emitters. Currently there are 120 vanadium detectors in the EL4 heavy water reactor. In addition, ''fast'' detectors with cobalt emitters have been tested at Saclay and 50 of these are in reactor. Other studies are concerned with 6 mm diameter miniature fission chambers. Two fast response chambers with argon-nitrogen filling gas became slow during irradiation, but operated to 600 deg C. An argon filled chamber of 4.7 mm diameter, for traversing in core system in pressurized water reactor, has shown satisfactory test results. (author)

  1. Towards a microscopic description of the fission process

    CERN Document Server

    Goutte, H; Berger, J F

    2010-01-01

    One major issue in nuclear physics is to develop a consistent model able to describe on the same footing the different aspects of the fission process, i.e. properties of the fissioning system, fission dynamics and fragment distributions. Microscopic fission studies based on the mean-field approximation are here presented.

  2. Light fragment preformation in cold fission of {sup 282}Cn

    Energy Technology Data Exchange (ETDEWEB)

    Poenaru, D.N.; Gherghescu, R.A. [Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), P.O. Box MG-6, Bucharest-Magurele (Romania); Johann Wolfgang Goethe University, Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main (Germany)

    2016-11-15

    In a previous article, published in Phys. Rev. C 94, 014309 (2016), we have shown for the first time that the best dynamical trajectory during the deformation toward fission of the superheavy nucleus {sup 286}Fl is a linearly increasing radius of the light fragment, R{sub 2}. This macroscopic-microscopic result reminds us about the α or cluster preformation at the nuclear surface, assumed already in 1928, and proved microscopically many times. This time we give more detailed arguments for the nucleus {sup 282}Cn. Also similar figures are presented for heavy nuclei {sup 240}Pu and {sup 252} Cf. The deep minimum of the total deformation energy near the surface is shown for the first time as a strong argument for cluster preformation. (orig.)

  3. Fission in Empire-II version 2.19 beta1, Lodi

    International Nuclear Information System (INIS)

    Sin, M.

    2003-01-01

    This is a description of the fission model implemented presently in EMPIRE-II. This package offers two ways to calculate the fission probability selected by parameters in the optional input. Fission barriers, fission transmission coefficients, fission cross sections and fission files are calculated

  4. The study of prompt and delayed muon induced fission III. The ratios of prompt to delayed fission yields

    NARCIS (Netherlands)

    Rösel, Ch.; Hänscheid, H.; Hartfiel, J.; Mutius, von R.; Achard van Enschut, d' J.F.M.; David, P; Janszen, H.; Johansson, T.; Konijn, J.; Krogulski, T.; Laat, de C.T.A.M.; Paganetti, H.; Petitjean, C.; Polikanov, S.M.; Reist, H.W.; Risse, F.; Schaller, L.A.; Schrieder, W.; Sinha, A.K.; Taal, A.; Theobald, J.P.; Tibell, G.; Trautmann, N.

    1993-01-01

    The ratios of prompt to delayed fission yields for the isotopes U-233, U-234, U-235, U-236, U-238, Np-237, Pu-242, and Pu-244 and the fission probabilities relative to each other have been investigated experimentally. Using the value of the total fission probability for Np-237 the absolute

  5. Fission throughout the periodic table

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1989-04-01

    The dualistic view of fission and evaporation as two distinct compound nucleus processes is substituted with a unified view in which fission, complex fragment emission, and light particle evaporation are seen as different aspects of a single process. 47 refs., 22 figs

  6. Radiation characteristics of spent fuel of heavy-water research reactor during long-term storage

    International Nuclear Information System (INIS)

    Gerasimov, A.S.; Kiselev, G.V.; Myrtsymova, L.A.; Zaritskaya, T.S.

    2002-01-01

    Decay heat power and radiotoxicity by water of actinides and fission products from spent fuel of heavy-water research reactor RA were calculated for period of storage during 300000 years. Three variants of fuel enrichment by 235 U were considered: 2%, 21%, and 80%. The mass of 235 U in one fuel element was supposed to be the same for all variants of enrichment. The decay heat power of fission products in initial period is about 20 times higher than that of actinides. Decay heat power and radiotoxicity of actinides do not practically decrease during long period of time as they are determined by nuclides with very long half-life periods. (author)

  7. What happens to the fission process above the 2nd- and 3rd-chance fission thresholds

    International Nuclear Information System (INIS)

    Stewart, L.; Howerton, R.J.

    1976-01-01

    Although the multiple fission process is important at high neutron energies, most of the evaluations available today do not include these individual fission cross sections or their associated fission spectra. The representations used in the Los Alamos and Livermore libraries are described and calculations compared with 14-MeV integral experiments available on 235 U, 238 U, and 239 Pu. Further work is needed to clearly delineate the specific problems in order to propose unique solutions

  8. Chemical Production using Fission Fragments

    International Nuclear Information System (INIS)

    Dawson, J. K.; Moseley, F.

    1960-01-01

    Some reactor design considerations of the use of fission recoil fragment energy for the production of chemicals of industrial importance have been discussed previously in a paper given at the Second United Nations International Conference on the Peaceful Uses of Atomic Energy [A/Conf. 15/P.76]. The present paper summarizes more recent progress made on this topic at AERE, Harwell. The range-energy relationship for fission fragments is discussed in the context of the choice of fuel system for a chemical production reactor, and the experimental observation of a variation of chemical effect along the length of a fission fragment track is described for the irradiation of nitrogen-oxygen mixtures. Recent results are given on the effect of fission fragments on carbon monoxide-hydrogen gas mixtures and on water vapour. No system investigated to date shows any outstanding promise for large-scale chemical production. (author) [fr

  9. 50 years with nuclear fission, April 25-28, 1989. A prelude to fission: France

    International Nuclear Information System (INIS)

    Savic, P.

    1989-01-01

    A personal account of the events leading to the 1938 discovery, by Irene Joliot-Curie and the author, of the unidentified element R 3.5h will be presented, as well as the experimental methods proving the R 3.5h had chemical properties similar to lanthanum which in turn led Hahn and Strassmann to the discovery of fission in 1939. The author points out that Irene Curie's intuition indicated the path towards the solution of the problem of uranium irradiated by neutrons, which made possible the discovery of fission by Hahn and Strassmann. Further applications of fission became possible by tremendous efforts and excellent contributions of scientists in the USA

  10. Apparatus for measuring the release of fission gases and other fission products by degassing

    Energy Technology Data Exchange (ETDEWEB)

    Stradal, Karl Alfred

    1970-10-15

    In gas-cooled high-temperature reactors, the fuel is, in general, inserted in the fuel elements in the form of small particles, which are, for example, coated with pyrolytic carbon. The purpose of this coating is to keep the fission products separate from the coolant gas. The further development of these coated particles makes it necessary to check the retention capacity. One possible method of doing this is the degassing test after irradiation in the reactor. An apparatus is described below, which was developed and installed in order to measure to a higher degree of sensitivity and in serial measurements the release of fission gases and sparingly volatile fission products.

  11. The fast fission effect in a cylindrical fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Carlvik, I; Pershagen, B

    1959-06-15

    A new formula for the fast fission factor is derived, which takes proper account to fast capture. The fission neutron spectrum is divided into two groups with constant fission cross section in one group and zero fission cross section in the other. The average total, elastic, inelastic and capture cross sections in the two groups are calculated. Different assumptions regarding anisotropic and inelastic scattering are investigated. The effects of backscattering from the moderator and fast fission in neighbouring fuel elements are pointed out. Formulas for the fast fission ratio and for the fast conversion ratio are derived. The calculated fast fission ratios are compared with experimental values. Curves are given for the fast fission factor in uranium metal and uranium oxide.

  12. Nuclear fission as a macroscopic quantum tunneling

    International Nuclear Information System (INIS)

    Takigawa, N.

    1995-01-01

    We discuss nuclear fission from the point of view of a macroscopic quantum tunneling, one of whose major interests is to study the effects of environments on the tunneling rate of a macroscopic variable. We show that a vibrational excitation of the fissioning nucleus significantly enhances the fission rate. We show this effect by two different methods. The one is to treat the vibrational excitation as an environmental degree of freedom, the other treats the fission as a two dimensional quantum tunneling. (author)

  13. Nuclear research with heavy ions

    International Nuclear Information System (INIS)

    Kaplan, M.

    1991-08-01

    This report discusses the following topics: Asymmetric fission of 149 Tb* from the finite-range, rotating-liquid-drop model: mean total kinetic energies for binary fragmentation; charged-particle evaporation from hot composite nuclei: evidence over a broad Z range for distortions from cold nuclear profiles; the role of reversed kinematics and double kinematic solutions in nuclear reactions studies; production of intermediate-mass-fragments in the reaction 98 Mo + 51 V at an excitation energy E* = 224-MeV; emission of light charged particles in the reaction 344-MeV 28 Si + 121 Sb; continued developments of the statistical evaporation code LILITA N90; and planning for heavy-ion-collision studies at very high energies: the STAR collaboration at RHIC

  14. Behavior of solid fission products in irradiated fuel

    International Nuclear Information System (INIS)

    Song, Ung Sup; Jung, Yang Hong; Kim, Hee Moon; Yoo, Byun Gok; Kim, Do Sik; Choo, Yong Sun; Hong, Kwon Pyo

    2004-01-01

    Many fission products are generated by fission events in UO 2 fuel under irradiation in nuclear reactor. Concentration of each fission product is changed by conditions of neutron energy spectrum, fissile material, critical thermal power, irradiation period and cooling time. Volatile materials such as Cs and I, the fission products, degrade nuclear fuel rod by the decrease of thermal conductivity in pellet and the stress corrosion cracking in cladding. Metal fission products (white inclusion) make pellet be swelled and decrease volume of pellet by densification. It seems that metal fission products are filled in the pore in pellet and placed between UO 2 lattices as interstitial. In addition, metal oxide state may change structural lattice volume. Considering behavior of fission products mentioned above, concentration of them is important. Fission products could be classified as bellows; solid solution in matrix : Sr, Zr, Nb, Y, La, Ce, Pr, Nd, Pm, Sm - metal precipitates : Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sb, Te - oxide precipitates : Ba, Zr, Nb, Mo, (Rb, Cs, Te) - volatile and gases : Kr, Xe, Br, I, (Rb, Cs, Te)

  15. Fission and r-process nucleosynthesis in neutron star mergers

    International Nuclear Information System (INIS)

    Giuliani, Samuel Andrea

    2018-01-01

    Fission plays a crucial role for the r-process nucleosynthesis in neutron star mergers. Due to the high neutron densities achieved in this astrophysical scenario the sequence of neutron captures and beta decays that constitutes the r process produces superheavy neutron rich nuclei that become unstable against fission. Fission determines thus the heaviest nuclei that can be produced by the r process and the fission yields shape the abundances of lighter nuclei. But despite the key role of fission the sensitivity of the r-process nucleosynthesis to uncertainties in fission predictions has not been explored. Nowadays there are only few set of fission rates suited for r-process calculations and most of them rely on a simplified treatment of the fission process. In this thesis we go beyond these approximations and compute the fission properties of r-process nuclei using the energy density functional approach. Fission is described as a tunneling process where the nucleus ''moves'' in a collective space characterized by coordinates describing the nuclear shape. Thus fission depends on the evolution of the energy with the deformation but also on the inertia due to the motion in the collective space. This is analogous to the quantum mechanical tunneling of a particle inside a potential well. In our study the relevant quantities for the description of the fission process are consistently computed for 3642 nuclei following the Hartree-Fock-Bogolyubov theory with constraining operators. We perform an extensive benchmark against the available experimental data and explore the variations of the fission properties along the superheavy landscape. We find that while collective inertias have a strong impact in the fission probabilities of light nuclei their role becomes less relevant in r -process nuclei. Within the statistical model we compute the neutron induced stellar reaction rates relevant for the r-process nucleosynthesis. These sets of stellar reaction

  16. New experimental approaches to investigate the fission dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Benlliure, J., E-mail: j.benlliure@usc.es; Rodríguez-Sánchez, J. L.; Alvarez-Pol, H.; Ayyad, Y.; Cortina-Gil, D.; Paradela, C.; Pietras, B.; Ramos, D.; Vargas, J. [Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Audouin, L.; Boutoux, G. [Institut de Physique Nucléaire d’Orsay, F-91406 Orsay (France); Bélier, G.; Chatillon, A.; Gorbinet, T.; Laurent, B.; Martin, J.-F.; Pellereau, E.; Taïeb, J. [CEA, DAM, DIF, F-91297 Arpajon (France); Casarejos, E. [Universidad de Vigo, E-36200 Vigo (Spain); Heinz, A. [Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); and others

    2016-07-07

    The first ever achieved full identification of both fission fragments, in atomic and mass number, made it possible to define new observables sensitive to the fission dynamics along the fission path up to the scission point. Moreover, proton-induced fission of {sup 208}Pb at high energies offers optimal conditions for the investigation of dissipative, and transient effects, because of the high-excitation energy of the fissioning nuclei, its low angular momentum, and limited shape distortion by the reaction. In this work we show that the charge distribution of the final fission fragments can constrain the ground-to-saddle dynamics while the mass distribution is sensitive to the dynamics until the scission point.

  17. Fission gas release of MOX with heterogeneous structure

    International Nuclear Information System (INIS)

    Nakae, N.; Akiyama, H.; Kamimura, K; Delville, R.; Jutier, F.; Verwerft, M.; Miura, H.; Baba, T.

    2015-01-01

    It is very useful for fuel integrity evaluation to accumulate knowledge base on fuel behavior of uranium and plutonium mixed oxide (MOX) fuel used in light water reactors (LWRs). Fission gas release is one of fuel behaviors which have an impact on fuel integrity evaluation. Fission gas release behavior of MOX fuels having heterogeneous structure is focused in this study. MOX fuel rods with a heterogeneous fuel microstructure were irradiated in Halden reactor (IFA-702) and the BR-3/BR-2 CALLISTO Loop (CHIPS program). The 85 Kr gamma spectrometry measurements were carried out in specific cycles in order to examine the concerned LHR (Linear Heat Rate) for fission gas release in the CHIPS program. The concerned LHR is defined in this paper to be the LHR at which a certain additional fission gas release thermally occurs. Post-irradiation examination was performed to understand the fission gas release behavior in connection with the pellet microstructure. The followings conclusions can be made from this study. First, the concerned LHR for fission gas release is estimated to be in the range of 20-23 kW/m with burnup over 37 GWd/tM. It is moreover guessed that the concerned LHR for fission gas release tends to decrease with increasing burnup. Secondly It is observed that FGR (fission gas release rate) is positively correlated with LHR when the LHR exceeds the concerned value. Thirdly, when burnup dependence of fission gas release is discussed, effective burnup should be taken into account. The effective burnup is defined as the burnup at which the LHR should be exceed the concerned value at the last time during all the irradiation period. And fourthly, it appears that FGR inside Pu spots is higher than outside and that retained (not released) fission gases mainly exist in the fission gas bubbles. Since fission gases in bubbles are considered to be easily released during fuel temperature increase, this information is very important to estimate fission gas release behavior

  18. Gamma Radiation from Fission Fragments

    International Nuclear Information System (INIS)

    Higbie, Jack

    1969-10-01

    The gamma radiation from the fragments of the thermal neutron fission of 235 U has been investigated, and the preliminary data are presented here with suggestions for further lines of research and some possible interpretations of the data. The data have direct bearing on the fission process and the mode of fragment de-excitation. The parameters measured are the radiation decay curve for the time interval (1 - 7) x 10 -10 sec after fission, the photon yield, the total gamma ray energy yield, and the average photon energy. The last three quantities are measured as a function of the fragment mass

  19. Gamma Radiation from Fission Fragments

    Energy Technology Data Exchange (ETDEWEB)

    Higbie, Jack

    1969-10-15

    The gamma radiation from the fragments of the thermal neutron fission of {sup 235}U has been investigated, and the preliminary data are presented here with suggestions for further lines of research and some possible interpretations of the data. The data have direct bearing on the fission process and the mode of fragment de-excitation. The parameters measured are the radiation decay curve for the time interval (1 - 7) x 10{sup -10} sec after fission, the photon yield, the total gamma ray energy yield, and the average photon energy. The last three quantities are measured as a function of the fragment mass.

  20. Energy partition in nuclear fission

    International Nuclear Information System (INIS)

    Ruben, A.; Maerten, H.; Seeliger, D.

    1990-01-01

    A scission point model (two spheroid model TSM) including semi-empirical temperature-dependent shell correction energies for deformed fragments at scission is presented. It has been used to describe the mass-asymmetry-dependent partition of the total energy release on both fragments from spontaneous and induced fission. Characteristic trends of experimental fragment energy and neutron multiplicity data as function of incidence energy in the Th-Cf region of fissioning nuclei are well reproduced. Based on model applications, information on the energy dissipated during the descent from second saddle of fission barrier to scission point have been deduced. (author). 39 refs, 13 figs