WorldWideScience

Sample records for fission products uranium

  1. Chemical Separation of Fission Products in Uranium Metal Ingots from Electrolytic Reduction Process

    International Nuclear Information System (INIS)

    Lee, Chang-Heon; Kim, Min-Jae; Choi, Kwang-Soon; Jee, Kwang-Yong; Kim, Won-Ho

    2006-01-01

    Chemical characterization of various process materials is required for the optimization of the electrolytic reduction process in which uranium dioxide, a matrix of spent PWR fuels, is electrolytically reduced to uranium metal in a medium of LiCl-Li 2 O molten at 650 .deg. C. In the uranium metal ingots of interest in this study, residual process materials and corrosion products as well as fission products are involved to some extent, which further adds difficulties to the determination of trace fission products. Besides it, direct inductively coupled plasma atomic emission spectrometric (ICP-AES) analysis of uranium bearing materials such as the uranium metal ingots is not possible because a severe spectral interference is found in the intensely complex atomic emission spectra of uranium. Thus an adequate separation procedure for the fission products should be employed prior to their determinations. In present study ion exchange and extraction chromatographic methods were adopted for selective separation of the fission products from residual process materials, corrosion products and uranium matrix. The sorption behaviour of anion and tri-nbutylphosphate (TBP) extraction chromatographic resins for the metals in acidic solutions simulated for the uranium metal ingot solutions was investigated. Then the validity of the separation procedure for its reliability and applicability was evaluated by measuring recoveries of the metals added

  2. The use of recoil for the separation of uranium fission products; Utilisation du recul pour la separation des produits de fission de l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Henry, R; Herczec, C [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    The recoil distance of fission fragments in U{sub 3}O{sub 8} is about 8 microns. By using highly diluted suspensions of uranium oxide particles having dimension much smaller than this figure (mean diameter 0,5 micron), we were able to study the re-adsorption of fission products on uranium oxide. Separation results have been studied as a function of the nature of the irradiation medium (solid or liquid) and the separation medium, of particle size and of concentration of particles in the dispersing medium. Decay curves can be used to discriminate between {sup 239}Np and mixed fission products. Most of the {sup 239}Np is found in the U{sub 3}O{sub 8} particles. The location of fission products in solid dispersing media has been determined, fission products being found always inside the dispersing medium particles. The results obtained can be applied to the rapid separation of short-lived fission products from a uranium-free starting material. (author) [French] Le parcours de recul des fragments de fission est en moyenne de 8 microns dans l'U{sub 3}O{sub 8}. En prenant des suspensions d'oxyde d'uranium dont les particules, tres diluees, ont des dimensions nettement inferieures a cette valeur (diametre moyen 0,5 micron), on a pu etudier directement la readsorption des produits de fission sur l'oxyde d'uranium. Les resultats de separation ont ete etudies en fonction de la nature du milieu d'irradiation (solide ou liquide) et du milieu de separation, de la taille des particules d'oxyde et de leur concentration dans le milieu dispersant. Les courbes de decroissance permettent de determiner la perturbation apportee dans les mesures par le {sup 239}Np qui reste en majorite dans les grains d'U{sub 3}O{sub 8}. On a determine enfin l'emplacement des produits de fission dans le cas des melanges solides; ils se trouvent toujours a l'interieur des grains du milieu recepteur. Les resultats obtenus permettent d'envisager la separation rapide de produits de fission a periode courte a

  3. The separation of plutonium from uranium and fission products on zirconium phosphate columns

    Energy Technology Data Exchange (ETDEWEB)

    Gal, I; Ruvarac, A [Institute of Nuclear Sciences Boris Kidric, Laboratorija za visoku aktivnost, Vinca, Beograd (Serbia and Montenegro)

    1963-12-15

    In recent years special attention has been given to the ion-exchange properties of zirconium phosphate and similar compounds in aqueous solutions. These inorganic cation exchangers are stable in oxidizing media and at elevated temperatures. Their resistance to ionizing radiation makes them particularly suitable for work with radioactive solutions. On account of this we considered ir worthwhile to investigate the separation of plutonium from uranium and fission products on zirconium phosphate columns. We were interested in nitric and solutions containing macro-amounts of uranium (a few grams per litre), and micro-amounts of plutonium and long-lived fission products. To obtain a better insight into the ion-exchange behaviour of the different ionic species towards zirconium phosphate, we first determined the dependence of the distribution coefficients of uranium, plutonium and fission product cations on the aqueous nitric acid concentration. Then, taking the distribution data as a guide, we separated plutonium on small glass columns filled with zirconium phosphate and calculated the decontamination factors (author)

  4. The release of fission products from uranium metal: a review

    International Nuclear Information System (INIS)

    Minshall, P.C.

    1989-03-01

    The literature on the release of fission products as gaseous species from irradiated uranium metal in oxidising atmospheres has been reviewed. Release of actinides and of fission products as spalled particulate were not considered. Data is given on the release in air, carbon dioxide, steam and mixtures of steam and air. The majority of data discussed lie between 800 and 1200 0 C though some results for xenon, krypton and iodine releases below 800 0 C are given. Two measures of fission product release are discussed: the release fraction, F(tot), which is the ratio of the total release to the initial inventory, and the fractional release, F(ox), which is the fraction released from the oxidised metal. The effect of burn-up, atmosphere and temperature on F(tot) and F(ox) is examined and the conditions under which the release fraction, F(tot) is proportional to the extent of oxidation discussed. (author)

  5. An alternate procedure in the recovery of no fissioned remainder uranium in the production of molybdenum 99 from fission

    International Nuclear Information System (INIS)

    Acosta Chavez, A.L.

    1992-01-01

    An effective modification of the chemical processes to dissolve the U-IV in the dissolver has been obtained, using its highly alkaline pH and extracting it as Uranyl Triperoxidate soluble anionic complex, in its experimental design without fission products. Even when the extraction of uranium is usually more complete through acidic dissolution, the characteristics for the dissolver used in production of fission Mo-99 do not allow this kind of extraction and alkaline option is more adecuate for this purpose. The dissolution of the insoluble residue, through the production of the anionic Triperoxidate Uranyl complexes, arises rapidly due to the presence of and oxidizing agent. The best results in the extraction of soluble Uranium were obtained with and organic solvent and a mixture of carbonate/bicarbonate. The concentrated Uranium in the aqueous alkaline solution was separated through fixation as an anion Tricarbonate of Uranyl in columns of anionic resin, moderately basic in dynamic conditions. The superiority of the resin used, over other exchangers, was evident in the elution with nitric acid that may be done for small volumes with a quite favorable separation of Uranium. The eluate contains the Uranium as an hexahydrated Uranyl Nitrate with a high degree of purity in reduced volume, in an average concentration of 90.2 % with respect to the initial concentration of Uranium (Author)

  6. On the separation of so-called non-volatile uranium fission products of uranium using the conversion of neutron-irradiated uranium dioxide and graphite

    International Nuclear Information System (INIS)

    Elhardt, W.

    1979-01-01

    The investigations are continued in the following work which arose from the concept of separating uranium fission products from uranium. This is achieved in that due to the lattice conversions occurring during the course of solid chemical reactions, fission products can easily pass from the uranium-contained solid to a second solid. The investigations carried out primarily concern the release behaviour of cerium and neodymium in the temperature region of 1200 to 1700 0 C. UO 2 + graphite, both in powder form, are selected as suitable reaction system having the preconditions needed for the lattice conversion for the release effect. The target aimed at from the practical aspect for the improved release of lanthanoids is achieved by an isobar test course - changing temperature from 1200 to 1500 0 C at constant pressure, with a cerium release of 75-80% and a neodynium release of 80-90% (maximum at 1400 0 C). The concepts on the mechanism of the fission product release are related to transport processes in crystal lattices, as well as chemical solid reactions and evaporation processes on the surface of UC 2 grains. (orig./RB) [de

  7. Influence of solvent radiolysis on extraction, scrubbing and stripping of uranium and some fission products

    International Nuclear Information System (INIS)

    Gawlowska, W.; Nowak, M.

    1978-01-01

    Radiolytically degraded TBP-n-paraffins solvent was used in the laboratory flow-sheet to study the influence of radiation exposure on decontamination of uranium. The influence of accumulated doses on extraction, scrubbing and stripping of uranium and some fission products has been discussed. (author)

  8. Determination of {sup 90}Sr in uranium fission products

    Energy Technology Data Exchange (ETDEWEB)

    Bajo, S; Tobler, L [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-02-01

    A previously published radiochemical procedure for the determination of {sup 90}Sr in grass and soil has been successfully employed - with minor modifications - for the determination of this nuclide in a solution of uranium fission products. It is suitable for the determination of {sup 90}Sr in environmental materials following a nuclear accident. The procedure is based on tributylphosphate extraction of {sup 90}Y, precipitation of Y-oxalate, and counting in a proportional counter. (author) figs., tabs., 10 refs.

  9. Compound Nucleus Reactions in LENR, Analogy to Uranium Fission

    Science.gov (United States)

    Hora, Heinrich; Miley, George; Philberth, Karl

    2008-03-01

    The discovery of nuclear fission by Hahn and Strassmann was based on a very rare microanalytical result that could not initially indicate the very complicated details of this most important process. A similarity is discussed for the low energy nuclear reactions (LENRs) with analogies to the yield structure found in measurements of uranium fission. The LENR product distribution measured earlier in a reproducible way in experiments with thin film electrodes and a high density deuteron concentration in palladium has several striking similarities with the uranium fission fragment yield curve.ootnotetextG.H. Miley and J.A. Patterson, J. New Energy 1, 11 (1996); G.H. Miley et al, Proc ICCF6, p. 629 (1997).This comparison is specifically focussed to the Maruhn-Greiner local maximum of the distribution within the large-scale minimum when the fission nuclei are excited. Implications for uranium fission are discussed in comparison with LENR relative to the identification of fission a hypothetical compound nuclear reaction via a element ^306X126 with double magic numbers.

  10. Fission track method for uranium ore exploration

    International Nuclear Information System (INIS)

    Guo Shilun; Deng Xinlu; Sun Shengfen; Meng Wu; Zhang Pengfa; Hao Xiuhong

    1986-01-01

    The uranium concentrations in natural water collected in the fields of uranium ore exploration with fission track method have been determined. It shows that the results of fission track method are consistent with that of fluoro-colorimetry and laser fluorometry for the same samples of water with uranium concentration in the region of 10 -4 to 10 -8 g/l. For water samples with lower uranium concentration (≤10 -8 g/l), the fission track method can still give accurate or referential results, but the other two methods failed. The reproducibility of fission track method was checked and discussed by using samples collected in the same fields of uranium ore exploration. The effects of the concentration of the impurities in natural water on determination of uranium concentration were analysed and discussed as well

  11. The solubility of solid fission products in carbides and nitrides of uranium and plutonium. Part I: literature review on experimental results

    International Nuclear Information System (INIS)

    Benedict, U.

    1977-01-01

    This review compiles the available data on the solubility of the most important non-volatile fission products in the carbides, nitrides, and carbonitrides of uranium and plutonium. It includes some elements which are not fission products, but belong to a group of the Periodic Table which contains one or more fission products elements

  12. Production of Fission Product 99Mo using High-Enriched Uranium Plates in Polish Nuclear Research Reactor MARIA: Technology and Neutronic Analysis

    Directory of Open Access Journals (Sweden)

    Jaroszewicz Janusz

    2014-07-01

    Full Text Available The main objective of 235U irradiation is to obtain the 99mTc isotope, which is widely used in the domain of medical diagnostics. The decisive factor determining its availability, despite its short lifetime, is a reaction of radioactive decay of 99Mo into 99mTc. One of the possible sources of molybdenum can be achieved in course of the 235U fission reaction. The paper presents activities and the calculation results obtained upon the feasibility study on irradiation of 235U targets for production of 99Mo in the MARIA research reactor. Neutronic calculations and analyses were performed to estimate the fission products activity for uranium plates irradiated in the reactor. Results of dummy targets irradiation as well as irradiation uranium plates have been presented. The new technology obtaining 99Mo is based on irradiation of high-enriched uranium plates in standard reactor fuel channel and calculation of the current fission power generation. Measurements of temperatures and the coolant flow in the molybdenum installation carried out in reactor SAREMA system give online information about the current fission power generated in uranium targets. The corrective factors were taken into account as the heat generation from gamma radiation from neighbouring fuel elements as well as heat exchange between channels and the reactor pool. The factors were determined by calibration measurements conducted with aluminium mock-up of uranium plates. Calculations of fuel channel by means of REBUS code with fine mesh structure and libraries calculated by means of WIMS-ANL code were performed.

  13. The Oklo natural nuclear reactors: neutron parameters, age and duration of the reactions, uranium and fission products migrations

    International Nuclear Information System (INIS)

    Ruffenach, J.-C.

    1979-09-01

    Mass spectrometry and isotopic dilution technique are used in order to carry out, on various samples from the fossil nuclear reactors at Oklo, Gabon, isotopic and chemical analyses of some particular elements involved in the nuclear reactions: uranium, lead, bismuth, thorium, rare gases (krypton, xenon), rare earths (neodymium, samarium, europium, gadolinium, dysprosium), ruthenium and palladium. Interpretations of these analyses lead to the determination of many neutron parameters such as the neutron fluence received by the samples, the spectrum index, the conversion coefficient, and also the percentages of fissions due to uranium-238 and plutonium-239 and the total number of fissions relative to uranium. All these results make it possible to determine the age of the nuclear reactions by measuring the amounts of fission rare earths formed, i.e. 1.97 billion years. This study brings some informations to the general problem of radioactive wastes storage in deep geological formations, the storage of uranium, plutonium and many fission products having been carried out naturally, and for about two billion years [fr

  14. A Model to Reproduce the Response of the Gaseous Fission Product Monitor (GFPM) in a CANDU{sup R} 6 Reactor (An Estimate of Tramp Uranium Mass in a Candu Core)

    Energy Technology Data Exchange (ETDEWEB)

    Mostofian, Sara; Boss, Charles [AECL Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga Ontario L5K 1B2 (Canada)

    2008-07-01

    In a Canada Deuterium Uranium (Candu) reactor, the fuel bundles produce gaseous and volatile fission products that are contained within the fuel matrix and the welded zircaloy sheath. Sometimes a fuel sheath can develop a defect and release the fission products into the circulating coolant. To detect fuel defects, a Gaseous Fission Product Monitoring (GFPM) system is provided in Candu reactors. The (GFPM) is a gamma ray spectrometer that measures fission products in the coolant and alerts the operator to the presence of defected fuel through an increase in measured fission product concentration. A background fission product concentration in the coolant also arises from tramp uranium. The sources of the tramp uranium are small quantities of uranium contamination on the surfaces of fuel bundles and traces of uranium on the pressure tubes, arising from the rare defected fuel element that released uranium into the core. This paper presents a dynamic model that reproduces the behaviour of a GFPM in a Candu 6 plant. The model predicts the fission product concentrations in the coolant from the chronic concentration of tramp uranium on the inner surface of the pressure tubes (PT) and the surface of the fuel bundles (FB) taking into account the on-power refuelling system. (authors)

  15. Determination of the fission products yields, lanthanide and yttrium, in the fission of 238U with neutrons of fission spectra

    International Nuclear Information System (INIS)

    Nicoli, I.G.

    1981-06-01

    A radiochemical investigation is performed to measure the cumulative fission product yields of several lantanides and yttrium nuclides in the 238 U by fission neutron spectra. Natural and depleted uranium are irradiated under the same experimental conditions in order to find a way to subtract the contribution of the 235 U fission. 235 U percentage in the natural uranium was 3.5 times higher than in the depleted uranium. Uranium oxides samples are irradiated inside the core of the Argonaut Reactor, at the Instituto de Engenharia Nuclear, and the lantanides and yttrium are chemically separated. The fission products gamma activities were detected, counted and analysed in a system constituted by a high resolution Ge(Li) detector, 4096 multichannel analyser and a PDP-11 computer. Cumulative yields for fission products with half-lives between 1 to 33 hours are measured: 93 Y, 141 La, 142 La, 143 Ce and 149 Nd. The chain total yields are calculated. The cumulative fission yields measured for 93 Y, 141 La, 142 La, 143 Ce and 149 Nd are 4,49%, 4,54%, 4,95%, 4,16% and 1,37% respectively and they are in good agreement with the values found in the literature. (Author) [pt

  16. REGENERATION OF FISSION-PRODUCT-CONTAINING MAGNESIUM-THORIUM ALLOYS

    Science.gov (United States)

    Chiotti, P.

    1964-02-01

    A process of regenerating a magnesium-thorium alloy contaminated with fission products, protactinium, and uranium is presented. A molten mixture of KCl--LiCl-MgCl/sub 2/ is added to the molten alloy whereby the alkali, alkaline parth, and rare earth fission products (including yttrium) and some of the thorium and uranium are chlorinated and

  17. Development of Industrial-Scale Fission 99Mo Production Process Using Low Enriched Uranium Target

    Directory of Open Access Journals (Sweden)

    Seung-Kon Lee

    2016-06-01

    Full Text Available Molybdenum-99 (99Mo is the most important isotope because its daughter isotope, technetium-99m (99mTc, has been the most widely used medical radioisotope for more than 50 years, accounting for > 80% of total nuclear diagnostics worldwide. In this review, radiochemical routes for the production of 99Mo, and the aspects for selecting a suitable process strategy are discussed from the historical viewpoint of 99Mo technology developments. Most of the industrial-scale 99Mo processes have been based on the fission of 235U. Recently, important issues have been raised for the conversion of fission 99Mo targets from highly enriched uranium to low enriched uranium (LEU. The development of new LEU targets with higher density was requested to compensate for the loss of 99Mo yield, caused by a significant reduction of 235U enrichment, from the conversion. As the dramatic increment of intermediate level liquid waste is also expected from the conversion, an effective strategy to reduce the waste generation from the fission 99Mo production is required. The mitigation of radioxenon emission from medical radioisotope production facilities is discussed in relation with the monitoring of nuclear explosions and comprehensive nuclear test ban. Lastly, the 99Mo production process paired with the Korea Atomic Energy Research Institute's own LEU target is proposed as one of the most suitable processes for the LEU target.

  18. Preliminary investigations on the use of uranium silicide targets for fission Mo-99 production

    Energy Technology Data Exchange (ETDEWEB)

    Cols, H.; Cristini, P.; Marques, R.

    1997-08-01

    The National Atomic Energy Commission (CNEA) of Argentine Republic owns and operates an installation for production of molybdenum-99 from fission products since 1985, and, since 1991, covers the whole national demand of this nuclide, carrying out a program of weekly productions, achieving an average activity of 13 terabecquerel per week. At present they are finishing an enlargement of the production plant that will allow an increase in the volume of production to about one hundred of terabecquerel. Irradiation targets are uranium/aluminium alloy with 90% enriched uranium with aluminium cladding. In view of international trends held at present for replacing high enrichment uranium (HEU) for enrichment values lower than 20 % (LEU), since 1990 the authors are in contact with the RERTR program, beginning with tests to adapt their separation process to new irradiation target conditions. Uranium silicide (U{sub 3}Si{sub 2}) was chosen as the testing material, because it has an uranium mass per volume unit, so that it allows to reduce enrichment to a value of 20%. CNEA has the technology for manufacturing miniplates of uranium silicide for their purposes. In this way, equivalent amounts of Molybdenum-99 could be obtained with no substantial changes in target parameters and irradiation conditions established for the current process with Al/U alloy. This paper shows results achieved on the use of this new target.

  19. Contribution to the study of the diffusion of fission products in uranium; Contribution a l'etude de la diffusion des produits de fission dans l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Tournier, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-10-15

    In this work we have developed a simple method for determining the diffusion constants and the solid-state solubilities of a metal which is volatile and only slightly soluble in second metal. This method has been applied to the behaviour of certain fission products in {gamma} uranium: strontium, barium, lanthanum, samarium and cerium. This work has made it possible to show the effect of the atomic radius of the solute on the diffusion constants. (author) [French] Dans ce travail nous avons mis au point une methode simple permettant de determiner les constantes de diffusion ainsi que les solubilites a l'etat solide d'un metal volatil et peu soluble dans un autre. Cette methode a ete appliquee au comportement de certains produits de fission dans l'uranium {gamma}: strontium, baryum, lanthane, samarium et cerium. Cette etude a permis de mettre en evidence le role du rayon atomique du solute sur les constantes de diffusion. (auteur)

  20. Separation of short-lived fission products

    International Nuclear Information System (INIS)

    Tamai, Tadaharu; Ohyoshi, Emiko; Ohyoshi, Akira; Kiso, Yoshiyuki; Shinagawa, Mutsuaki.

    1976-01-01

    A rbief review is presented on the various methods of separation available for both gaseous and liquid states, for the separation of short-lived fission products formed by binary fission of neutron irradiated uranium. The means available for gaseous state are the hot atom reaction, the hydride method and on-line mass separation. For liquid state, use can be made of precipitation, ionic or atomic exchange, solvent extraction and paper electrophoresis. Particular reference is made to electrophoretic separation of ions produced by fission in aqueous solution of uranium. The principle of electrophoretic separation and the procedures for separating the element of interest from the other fission products are outlined, with reference made to the results obtained with the method by the present authors. The elements in question are alkalines, alkaline earths, rare earths, halogens, selenium and

  1. Development of industrial-scale fission {sup 99}Mo production process using low enriched uranium target

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Kon; Lee, Jun Sig [Radioisotope Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Beyer, Gerd J. [Grunicke Strasse 15, Leipzig (Germany)

    2016-06-15

    Molybdenum-99 ({sup 99}Mo) is the most important isotope because its daughter isotope, technetium-99m ({sup 99}mTc), has been the most widely used medical radioisotope for more than 50 years, accounting for > 80% of total nuclear diagnostics worldwide. In this review, radiochemical routes for the production of {sup 99}Mo, and the aspects for selecting a suitable process strategy are discussed from the historical viewpoint of {sup 99}Mo technology developments. Most of the industrial-scale {sup 99}Mo processes have been based on the fission of {sup 235}U. Recently, important issues have been raised for the conversion of fission {sup 99}Mo targets from highly enriched uranium to low enriched uranium (LEU). The development of new LEU targets with higher density was requested to compensate for the loss of {sup 99}Mo yield, caused by a significant reduction of {sup 235}U enrichment, from the conversion. As the dramatic increment of intermediate level liquid waste is also expected from the conversion, an effective strategy to reduce the waste generation from the fission {sup 99}Mo production is required. The mitigation of radioxenon emission from medical radioisotope production facilities is discussed in relation with the monitoring of nuclear explosions and comprehensive nuclear test ban. Lastly, the {sup 99}Mo production process paired with the Korea Atomic Energy Research Institute's own LEU target is proposed as one of the most suitable processes for the LEU target.

  2. Ejection of Uranium Atoms from UO{sub 2} by Fission Fragments

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Goesta

    1964-02-15

    The numbers of uranium atoms ejected from the surface of sintered plates of UO{sub 2} by fission fragments have been measured over the fission density range 5x10{sup 15} to 7x10{sup 16} fissions/cm{sup 3}. The number of uranium atoms ejected per escaping fragment was about 9. The measurements were performed by irradiating the plates in vacuum and collecting a fraction of the uranium atoms ejected on catcher foils. The amount collected was determined by fission counting. Saturation of the amount collected, as reported by Rogers and Adam, was not observed. The numbers of uranium atoms ejected as knock-ons under the same experimental conditions have been calculated. The reasonably close agreement between the experimental and theoretical values indicates that, under the prevailing experimental conditions, mainly knock-ons are ejected. Other ejection mechanisms, e. g. evaporation of material in thermal spikes, are probably insignificant; this is in contrast to the usual interpretation of the ejection process. The mean range in UO{sub 2}, of fission products of mass number 140 was found to be 7.37 {+-} 0. 05 mg/cm{sup 2} by direct gamma spectrometric, determination of the fraction of {sup 140}La escaping from the surface of the plates.

  3. The discovery of uranium fission

    International Nuclear Information System (INIS)

    Brix, P.

    1990-01-01

    Uranium was discovered 200 years ago. Its radioactive character was first demonstrated in 1896 and two years later radium was extracted from uranium minerals. In 1911 studies with alpha rays from radioactive decay led to the unexpected discovery of the atomic nucleus. Exposure of beryllium to alpha rays yielded neutrons, first detected in 1932. Starting in 1934, neutron irradiation of uranium produced radioactive substances erroneously attributed to transuranium elements but with confusing properties. Painstaking experiments by chemists left no doubt on 17 December 1938 that barium was produced by these irradiations: the neutrons had split some uranium nuclei. The physics of the fission process was understood two weeks later; after a few months, neutron multiplication was found to be probable. This review deals with the eminent scientists involved, their successes, errors and disappointments, and the unexpected insights which occurred on the paths and detours of scientific research. It is, therefore, instructive also to discuss how fission was not discovered. The momentous discovery must be considered inevitable; the great tragedy was that Germany started World War II just at the time when the possibility of nuclear chain reactions and bombs became known. The consequences and anxieties that remain after 50 years of nuclear fission demand that mankind act with reason and conscience to maintain peace. (author)

  4. Mo-99 production by fission and future projections

    International Nuclear Information System (INIS)

    Carranza, E.C.; Novello, A.; Bronca, M.; Cestau, D.; Bavaro, R.; Centurion, R.; Bravo, C.; Bronca, P.; Gualda, E.; Fraguas, F.; Giomi, A.; Ivaldi, L.

    2012-01-01

    Description of the I-131 and Mo-99 production process: The process starts with the irradiation of uranium-aluminum mini plates in the RA-3, Argentinean Reactor No.3, Ezeiza Atomic Center. In a nuclear reactor there is a constant flow of neutrons and when a neutron with proper energy impacts on a nucleus of U-235, it is absorbed at the same time generate an unstable configuration nuclear. For this reason, the nucleus formed is fission, getting two different atoms. Approximately 6% of the fissions produce Mo-99 and 3% produce I-131; the percentage remaining corresponds to formation of atoms without interest for use in medicine. In conclusion, the objective of the process developed in the Fission Plant, is starting from uranium mini plates, separate the Mo-99 and I-131 generated, the remaining elements formed. - Evolution of Mo-99 Production in the last 10 years: The Fission Mo-99 Plant Production begins routine production of Mo-99 in 1985, using targets made of uranium enriched at 90% U-235. In the 1990s, global concern regarding the use of highly enriched uranium, due to non-proliferation issues, caused the interruption of supply of nuclear material (HEU enriched at 90% of U-235). Following this, Argentina developed target based on low-enriched uranium (less than 20% U-235), becoming in 2002 the first country in the world to produce Mo-99 with LEU targets. From 2002 to date, the activity produced of Mo-99 has been tripled annually (author)

  5. Fission 99Mo production technology

    International Nuclear Information System (INIS)

    Miao Zengxing; Luo Zhifu; Ma Huimin; Liang Yufu; Yu Ningwen

    2003-01-01

    This paper describes a production technology of fission 99 Mo in the Department Isotope, CIAE. The irradiation target is tubular U-Al alloy containing highly enriched uranium. The target is irradiated in the swimming pool reactor core. The neutron flux is about 4x10 13 /cm 2 .sec. The production scale is 3.7-7.4 TBq (100-200Ci) of fission 99 Mo per batch. Total recovery of 99 Mo is more than 70%. The production practice proves that the process and equipment are safe and reliable. (author)

  6. Ternary fission of spontaneously fissile uranium isomers excited by neutrons

    International Nuclear Information System (INIS)

    Makarenko, V.E.; Molchanov, Y.D.; Otroshchenko, G.A.; Yan'kov, G.B.

    1989-01-01

    Spontaneously fissile isomers (SFI) of uranium were excited in the reactions 236,238 U(n,n') at an average neutron energy 4.5 MeV. A pulsed electrostatic accelerator and time analysis of the fission events were used. Fission fragments were detected by the scintillation method, and long-range particles from fission were detected by an ionization method. The relative probability of fission of nuclei through a spontaneously fissile isomeric state was measured: (1.30±0.01)·10 -4 ( 236 U) and (1.48±0.02)·10 -4 ( 238 U). Half-lives of the isomers were determined: 121±2 nsec (the SFI 236 U) and 267±13 nsec (the SFI 238 U). In study of the ternary fission of spontaneously fissile isotopes of uranium it was established that the probability of the process amounts to one ternary fission per 163±44 binary fissions of the SFI 236 U and one ternary fission per 49±14 binary fissions of the SFI 238 U. The substantial increase of the probability of ternary fission of SFI of uranium in comparison with the case of ternary fission of nuclei which are not in an isomeric state may be related to a special nucleon configuration of the fissile isomers of uranium

  7. Uranium content of petroleum by Fission track technique

    International Nuclear Information System (INIS)

    Paschaa, A.S.; Mafra, O.Y.; Oliveira, C.A.N.; Pinto, L.R.

    1982-01-01

    This paper examines the feasibility of the fission track registration technique to investigate the natural uranium concentration in petroleum. The application is briefly described and the results obtained indicate the presence of uranium concentrations in samples of Brazilian petroleum which are over the detection limit of the fission track technique. The irradiations were performed by using fluxes with predominance of thermal neutrons, which have a fission cross-section for U 235 equal to 579 barns. Since the neutron fluxes were not comp sed exclusively of thermal neutrons, fissions from fast neutrons would also be taken into account for U 238 and Th 232

  8. Fission-track studies of uranium distribution in geological samples

    International Nuclear Information System (INIS)

    Brynard, H.J.

    1983-01-01

    The standard method of studying uranium distribution in geological material by registration of fission tracks from the thermal neutron-induced fission of 235 U has been adapted for utilisation in the SAFARI-1 reactor at Pelindaba. The theory of fission-track registration as well as practical problems are discussed. The method has been applied to study uranium distribution in a variety of rock types and the results are discussed in this paper. The method is very sensitive and uranium present in quantities far below the detection limit of the microprobe have been detected

  9. Measurement of fission track of uranium particle by solid state nuclear track detector

    International Nuclear Information System (INIS)

    Son, S. C.; Pyo, H. W.; Ji, K. Y.; Kim, W. H.

    2002-01-01

    In this study, we discussed results of the measurement of fission tracks for the uranium containing particles by solid state nuclear track detector. Uranium containing silica and uranium oxide particles were prepared by uranium sorption onto silica powder in weak acidic medium and laser ablation on uranium pellet, respectively. Fission tracks for the uranium containing silica and uranium oxide particles were detected on Lexan plastic detector. It was found that the fission track size and shapes depend on the particle size uranium content in particles. Correlation of uranium particle diameter with fission track radius was also discussed

  10. Uranium content of petroleum by fission track technique

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Mafra, O.Y.; Oliveira, C.A.N. de; Pinto, L.R.

    1981-03-01

    The feasibility of the fission track registration technique to investigate the natural uranium concentration in petroleum is examined. The application of this technique to petroleum is briefly described and discussed critically. The results obtained so far indicate uranium concentrations in samples of Brazilian petroleum which are over the detect ion limit of fission track technique. (Author) [pt

  11. A Very High Uranium Density Fission Mo Target Suitable for LEU Using atomization Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C. K.; Kim, K. H.; Lee, Y. S.; Ryu, H. J.; Woo, Y. M.; Jang, S. J.; Park, J. M.; Choi, S. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    Currently HEU minimization efforts in fission Mo production are underway in connection with the global threat reduction policy. In order to convert HEU to LEU for the fission Mo target, higher uranium density material could be applied. The uranium aluminide targets used world widely for commercial {sup 99}Mo production are limited to 3.0 g-U/cc in uranium density of the target meat. A consideration of high uranium density using the uranium metal particles dispersion plate target is taken into account. The irradiation burnup of the fission Mo target are as low as 8 at.% and the irradiation period is shorter than 7 days. Pure uranium material has higher thermal conductivity than uranium compounds or alloys. It is considered that the degradation by irradiation would be almost negligible. In this study, using the computer code of the PLATE developed by ANL the irradiation behavior was estimated. Some considerations were taken into account to improve the irradiation performance further. It has been known that some alloying elements of Si, Cr, Fe, and Mo are beneficial for reducing the swelling by grain refinement. In the RERTR program recently the interaction problem could be solved by adding a small amount of Si to the aluminum matrix phase. The fabrication process and the separation process for the proposed atomized uranium particles dispersion target were reviewed

  12. Process for separately recovering uranium, transuranium elements, and fission products of uranium from atomic reactor fuel

    International Nuclear Information System (INIS)

    Balal, A.L.; Metscher, K.; Muehlig, B.; Reichmuth, C.; Schwarz, B.; Zimen, K.E.

    1976-01-01

    Spent reactor fuel elements are dissolved in dilute nitric acid. After addition of acetic acid as a complexing agent, the nitric acid is partly decomposed and the mixture subjected to electrolysis while a carrier liquid, which may be dilute acetic acid or a dilute mixture of acetic acid and nitric acid is caused to flow in the electric field between the electrodes either against the direction of ion migration or transversely thereto. The ions of uranium, plutonium, and other transuranium elements, and of fission products accumulate in discrete portions of the electrolyte and are separately withdrawn as at least three fractions after one or more stages of electrolysis

  13. Separation of cesium-137 from uranium fission products via a NeoflonR column supporting tetraphenylboron

    International Nuclear Information System (INIS)

    Whitney, C.D.; Landsberger, S.

    2009-01-01

    Cesium is a member of the Group I alkali metals, very reactive earth metals that react vigorously with both air and water. The chemistry of cesium is much like the chemistry of neighboring elements on the periodic table, potassium and rubidium. This close relation creates many problems in plant-life exposed to cesium because it is so easily confused for potassium, an essential nutrient to plants. Radioactive 134 Cs and 137 Cs are also chemically akin to potassium and stable cesium. Uptake of these radioactive isotopes from groundwater by plant-life destroys the plant-life and can potentially expose humans to the radioactive affects of 134 Cs and 137 Cs. Much experimental work has been focused on the separation of 137 Cs from uranium fission products. In previous experimental work performed a column consisting of Kel-F supporting tetraphenylboron (TPB) was utilized to separate 137 Cs from uranium fission products. It is of interest at this time to attempt the separation of 134 Cs from 0.01M EDTA using the same method and Neoflon in the place of Kel-F as the inert support. The results of this experiment give a separation efficiency of 88% and show a linear relationship between the column bed length and the separation efficiency obtained. (author)

  14. Fission product release from TRIGA-LEU reactor fuels

    International Nuclear Information System (INIS)

    Baldwin, N.L.; Foushee, F.C.; Greenwood, J.S.

    1980-01-01

    Due to present international concerns over nuclear proliferation, TRIGA reactor fuels will utilize only low-enriched uranium (LEU) (enrichment <20%). This requires increased total uranium loading per unit volume of fuel in order to maintain the appropriate fissile loading. Tests were conducted to determine the fractional release of gaseous and metallic fission products from typical uranium-zirconium hydride TRIGA fuels containing up to 45 wt-% uranium. These tests, performed in late 1977 and early 1978, were similar to those conducted earlier on TRIGA fuels with 8.5 wt-% U. Fission gas release measurements were made on prototypic specimens from room temperature to 1100 deg. C in the TRIGA King Furnace Facility. The fuel specimens were irradiated in the TRIGA reactor at a low power level. The fractional releases of the gaseous nuclides of krypton and xenon were measured under steady-state operating conditions. Clean helium was used to sweep the fission gases released during irradiation from the furnace into a standard gas collection trap for gamma counting. The results of these tests on TRIGA-LEU fuel agree well with data from the similar, earlier tests on TRIGA fuel. The correlation used to calculate the release of fission products from 8.5 wt-% U TRIGA fuel applies equally well for U contents up to 45 wt-%. (author)

  15. Preparation of a primary target for the production of fission products in a nuclear reactor

    International Nuclear Information System (INIS)

    Arino, H.; Cosolito, F.J.; George, K.D.; Thornton, A.K.

    1976-01-01

    A primary target for the production of fission products in a nuclear reactor, such as uranium or plutonium fission products, is comprised of an enclosed, cylindrical vessel, preferably comprised of stainless steel, having a thin, continuous, uniform layer of fissionable material, integrally bonded to its inner walls and a port permitting access to the interior of the vessel. A process is also provided for depositing uranium material on to the inner walls of the vessel. Upon irradiation of the target with neutrons from a nuclear reactor, radioactive fission products, such as molybdenum-99, are formed, and thereafter separated from the target by the introduction of an acidic solution through the port to dissolve the irradiated inner layer. The irradiation and dissolution are thus effected in the same vessel without the necessity of transferring the fissionable material and fission products to a separate chemical reactor. Subsequently, the desired isotopes are extracted and purified. Molybdenum-99 decays to technetium-99m which is a valuable medical diagnostic radioisotope. 3 claims, 1 drawing figure

  16. Migration of fission products in UO2. Final report

    International Nuclear Information System (INIS)

    Prussin, S.G.; Olander, D.R.

    1995-01-01

    Results of an experimental and calculational effort to examine the fundamental mechanisms of fission product migration in and release from polycrystalline uranium dioxide are reported. The experiments were designed to provide diffusion parameters for the representative fission products tellurium, iodine, xenon, molybdenum and ruthenium under both reducing and oxidizing conditions. The calculational effort applied a new model of fission product release from reactor fuel that incorporates grain growth as well as grain boundary and lattice diffusion

  17. Fission blanket benchmark experiment on spherical assembly of uranium and PE with PE reflector

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Tonghua; Lu, Xinxin; Wang, Mei; Han, Zijie, E-mail: neutron_integral@aliyun.com; Jiang, Li; Wen, Zhongwei; Liu, Rong

    2016-04-15

    Highlights: • The fission rate distribution on two depleted uranium assemblies was measured with plate fission chambers. • We do calculations using MCNP code and ENDF/B-V.0 library. • The overestimation of calculations to the measured fission rates was found. • The observed discrepancy are discussed. - Abstract: New concept of fusion-fission hybrid for energy generation has been proposed. To validate the nuclear performance of fission blanket of hybrid, as part of series of validation experiment, two types of fission blanket assemblies were setup in this work and measurements were made of the reaction rate distribution for uranium fission in the spherical assembly of depleted uranium and polyethylene by Plate Fission Chamber (PFC). There are two PFCs in experiment, one is depleted uranium chamber and the other is enriched uranium chamber. The Monte-Carlo transport code MCNP5 and continuous energy cross sections library ENDF/BV.0 were used for the analysis of fission rate distribution in the two types of assemblies. The calculated results were compared with the experimental ones. The overestimation of fission rate for depleted uranium and enriched uranium were found in the inner boundary of the two assemblies. However, the C/E ratio tends to decrease for the distance from the core slightly and the results for enriched uranium are better than that for depleted uranium.

  18. Exact Solution of Fractional Diffusion Model with Source Term used in Study of Concentration of Fission Product in Uranium Dioxide Particle

    International Nuclear Information System (INIS)

    Fang Chao; Cao Jianzhu; Sun Lifeng

    2011-01-01

    The exact solution of fractional diffusion model with a location-independent source term used in the study of the concentration of fission product in spherical uranium dioxide (UO 2 ) particle is built. The adsorption effect of the fission product on the surface of the UO 2 particle and the delayed decay effect are also considered. The solution is given in terms of Mittag-Leffler function with finite Hankel integral transformation and Laplace transformation. At last, the reduced forms of the solution under some special physical conditions, which is used in nuclear engineering, are obtained and corresponding remarks are given to provide significant exact results to the concentration analysis of nuclear fission products in nuclear reactor. (nuclear physics)

  19. History of the discovery of uranium fission by neutrons

    International Nuclear Information System (INIS)

    Simane, C.

    1989-01-01

    The history is briefly described of the discovery of uranium fission by neutrons, based on the texts of original scientific studies, memories or biographies of those who participated in the discovery and of their contemporaries. Obstacles that stood in the way of the discovery are discussed. It is stated that only a few scientists contributed to the discovery of uranium fission. The fission process itself still remains subject of physical research which studies its detailed laws. (Z.M.). 2 tabs., 16 refs

  20. Standard test method for gamma energy emission from fission products in uranium hexafluoride and uranyl nitrate solution

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the measurement of gamma energy emitted from fission products in uranium hexafluoride (UF6) and uranyl nitrate solution. It is intended to provide a method for demonstrating compliance with UF6 specifications C 787 and C 996 and uranyl nitrate specification C 788. 1.2 The lower limit of detection is 5000 MeV Bq/kg (MeV/kg per second) of uranium and is the square root of the sum of the squares of the individual reporting limits of the nuclides to be measured. The limit of detection was determined on a pure, aged natural uranium (ANU) solution. The value is dependent upon detector efficiency and background. 1.3 The nuclides to be measured are106Ru/ 106Rh, 103Ru,137Cs, 144Ce, 144Pr, 141Ce, 95Zr, 95Nb, and 125Sb. Other gamma energy-emitting fission nuclides present in the spectrum at detectable levels should be identified and quantified as required by the data quality objectives. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its us...

  1. Study on the effect factor of the absolute fission rates measured by depleted uranium fission chamber

    International Nuclear Information System (INIS)

    Jiang Li; Liu Rong; Wang Dalun; Wang Mei; Lin Jufang; Wen Zhongwei

    2003-01-01

    The absolute fission rates was measured by the depleted uranium fission chamber. The efficiency of the fission fragments recorded in the fission chamber was analyzed. The factor influencing absolute fission rates was studied in the experiment, including the disturbing effect between detectors and the effect of the structural of the fission chamber, etc

  2. Production of a pulseable fission-like neutron flux using a monoenergetic 14 MeV neutron generator and a depleted uranium reflector

    Science.gov (United States)

    Koltick, D.; McConchie, S.; Sword, E.

    2008-04-01

    The design and performance of a pulseable neutron source utilizing a D-T neutron generator and a depleted uranium reflector are presented. Approximately half the generator's 14 MeV neutron flux is used to produce a fission-like neutron spectrum similar to 252Cf. For every 14 MeV neutron entering the reflector, more than one fission-like neutron is reflected back across the surface of the reflector. Because delayed neutron production is more than two orders of magnitude below the prompt neutron production, the source takes full advantage of the generator's pulsed mode capability. Applications include all elemental characterization systems using neutron-induced gamma-ray spectroscopy. The source simultaneously emits 14 MeV neutrons optimal to excite fast neutron-induced gamma-ray signals, such as from carbon and oxygen, and fission-like neutrons optimal to induce neutron capture gamma-ray signals, such as from hydrogen, nitrogen, and chlorine. Experiments were performed, which compare well to Monte Carlo simulations, showing that the uranium reflector enhances capture signals by up to a factor of 15 compared to the absence of a reflector.

  3. Some studies on the fission of uranium with the help of a self-controlled wilson chamber; Quelques etudes sur la fission de l'uranium a l'aide d'une chambre de wilson autocommandee

    Energy Technology Data Exchange (ETDEWEB)

    Laboulaye, H de; Tzara, C; Olkowsky, J [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires

    1953-07-01

    The authors applied the method of Wilson's chamber self intern control to the survey of the uranium fission with neutrons of the core. This method allowed them: 1) - to establish a distribution of the courses of the fission fragments in argon on a big number of events. 2) - to search for the probability of production of tri-partitions to third fragment of short course. The authors succeed to the conclusion that in relation to ordinary fission, this, probability is lower to (1 {+-} 3)/1000, what permits to doubt the existence of the phenomenon. (author) [French] Les auteurs ont applique la methode de la chambre de Wilson a autocommande interne a l'etude de la fission de l'uranium par neutrons de pile. Cette methode leur a permis: 1) - d'etablir une distribution des parcours des fragments de fission dans l'argon portant sur un grand nombre d'evenements. 2) - de rechercher la probabilite de production de tripartitions a troisieme fragment de court parcours. Les auteurs aboutissent a la conclusion que par rapport a la fission ordinaire, cette probabilite est inferieure a (1 {+-} 3)/1000, ce qui permet de douter de l'existence du phenomene. (auteur)

  4. Radioactive Waste Issues related to Production of Fission-based Mo-99 by using Low Enriched Uranium (LEU)

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Muhmood ul; Ryu, Ho Jin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    In order to produce fission-based Mo-99 from research reactors, two types of targets are being used and they are highly enriched uranium (HEU) targets with {sup 235}U enrichment more than 90wt% of {sup 235}U and low enriched uranium (LEU) targets with {sup 235}U enrichment less than 20wt% of {sup 235}U. It is worth noting that medium enriched uranium i.e. 36wt% of {sup 235}U as being used in South Africa is also regarded as non-LEU from a nuclear security point of view. In order to cope with the proliferation issues, international nuclear security policy is promoting the use of LEU targets in order to minimize the civilian use of HEU. It is noteworthy that Mo-99 yield of the LEU target is less than 20% of the HEU target, which requires approximately five times more LEU targets to be irradiated and consequently results in increased volume of waste. The waste generated from fission Mo-99 production can be mainly due to: target fabrication, assembling of target, irradiation in reactor and processing of irradiated targets. During the fission of U-235 in a reactor, a large number of radionuclides with different chemical and physical properties are formed. The waste produced from these practices may be a combination of low level waste (LLW) and intermediate level waste (ILW) comprised of all three types, i.e., solid, liquid and gas. Handling and treatment of the generated waste are dependent on its form and activity. In case of the large production facility, waste storage facility should be constructed in order to limit the radiation exposures of the workers and the environment. In this study, we discuss and compare mainly the radioactive waste generated by alkaline digestion of both HEU and LEU targets to assist in planning and deciding the choice of the technology with better arrangements for proper handling and disposal of generated waste. With the use of the LEU targets in Mo-99 production facility, significant increase in liquid and solid waste has been expected.

  5. Development of Commercial-scale Fission Mo-99 Production System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Kon; Lee, Suseung; Hong, Soon-Bog; Jang, Kyung-Duk; Park, Ul Jael; Lee, Jun Sig [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    These days, worldwide {sup 99} Mo supply is not only insufficient but also unstable. Because, most of the main {sup 99}Mo production reactors are more than years old and suffered from frequent and unscheduled shutdown. Therefore, movement to replace old reactors to keep stable supply is now active. Under these conditions, KAERI (Korea Atomic Energy Research Institute) is developing LEU-based fission {sup 99}Mo production process which is connected to the new research reactor (Kijang New Research Reactor, KJRR), which is being constructed in Gijang, Busan, Korea. Historically, the most fission {sup 99}Mo producers have been used highly enriched uranium (HEU) targets so far. However, to reduce the use of HEU in private sector for non-proliferation, {sup 99}Mo producers are forced to convert their HEU-based process to use low enriched uranium (LEU) targets. Economic impact of a target conversion from HEU to LEU is significant. In this study, fission {sup 99}Mo process with non-irradiated LEU targets was presented except separation and purification steps. Pre- and post-irradiation tests of the fission {sup 99}Mo target will be done in 4th quarter of 2016. For the fission Mo production process development, hot experiments with irradiated LEU targets will be done in 4th quarter of 2016. Then, verification of the production process with quality control will be followed until the commercial production of fission {sup 99}Mo scheduled in 2019.

  6. Chemical states of fission products in irradiated uranium-plutonium mixed oxide fuel

    International Nuclear Information System (INIS)

    Kurosaki, Ken; Uno, Masayoshi; Yamanaka, Shinsuke

    1999-01-01

    The chemical states of fission products (FPs) in irradiated uranium-plutonium mixed oxide (MOX) fuel for the light water reactor (LWR) were estimated by thermodynamic equilibrium calculations on system of fuel and FPs by using ChemSage program. A stoichiometric MOX containing 6.1 wt. percent PuO 2 was taken as a loading fuel. The variation of chemical states of FPs was calculated as a function of oxygen potential. Some pieces of information obtained by the calculation were compared with the results of the post-irradiation examination (PIE) of UO 2 fuel. It was confirmed that the multicomponent and multiphase thermodynamic equilibrium calculation between fuel and FPs system was an effective tool for understanding the behavior of FPs in fuel. (author)

  7. GGA+U study of uranium mononitride: A comparison of the U-ramping and occupation matrix schemes and incorporation energies of fission products

    Energy Technology Data Exchange (ETDEWEB)

    Claisse, Antoine, E-mail: claisse@kth.se [KTH Royal Institute of Technology, Reactor Physics, AlbaNova University Centre, 106 91 Stockholm (Sweden); Klipfel, Marco [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe (Germany); Lindbom, Niclas [KTH Royal Institute of Technology, Reactor Physics, AlbaNova University Centre, 106 91 Stockholm (Sweden); Freyss, Michel [CEA, DEN, DEC, Centre de Cadarache, 13108 Saint-Paul-lez-Durance (France); Olsson, Pär [KTH Royal Institute of Technology, Reactor Physics, AlbaNova University Centre, 106 91 Stockholm (Sweden)

    2016-09-15

    Uranium mononitride is studied in the DFT + U framework. Its ground state is investigated and a study of the incorporation of diverse fission products in the crystal is conducted. The U-ramping and occupation matrix control (OMC) schemes are used to eliminate metastable states. Beyond a certain amount of introduced correlation, the OMC scheme starts to find a lower total energy. The OMC scheme is chosen for the second part of this study. Furthermore, the influence of the magnetic ordering is studied using the U-ramping method, showing that antiferromagnetic order is the most stable one when the U parameter is larger than 1.75 eV. The effect on the density of states is investigated and elastic constants are provided for comparison with other methods and experiments. The incorporation energies of fission products in different defect configurations are calculated and these energies are corrected to take into account the limited size of the supercell. - Highlights: • We studied bulk uranium nitride with means of DFT+U with the U-ramping scheme and the OMC scheme. • We produces a density of states plot and calculated the elastic constants of UN. • We calculated the incorporation energy of many fission products in UN, and corrected them to take into account the elastic interactions. • The OMC scheme should be used over the U-ramping scheme. • Fission products go to larger crystal sites.

  8. Fission product release from SLOWPOKE-2 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Harnden-Gillis, A M.C. [Queen` s Univ., Kingston, ON (Canada). Dept. of Physics

    1994-12-31

    Increasing radiation fields at several SLOWPOKE-2 reactors fuelled with highly enriched uranium aluminum alloy fuel have begun to interfere with the daily operation of these reactors. To investigate this phenomenon, samples of reactor container water and gas from the headspace were obtained at four SLOWPOKE-2 reactor facilities and examined by gamma ray spectroscopy methods. These radiation fields are due to the circulation of fission products within the reactor container vessel. The most likely source of the fission product release is an area of uranium-bearing material exposed to the coolant at the end weld line which originated at the time of fuel fabrication. The results of this study are compared with observations from an underwater visual examination of one core and the metallographic examination of archived fuel elements. 19 refs., 4 tabs., 8 figs.

  9. Uranium deposits obtention for fission chambers

    International Nuclear Information System (INIS)

    Artacho Saviron, E.

    1972-01-01

    The obtention of uranium deposits of the required quality for small cylindrical fission chambers presents some difficulties. With the method of electroplating here described the uniformity, reproducibility and adherence of the obtained deposits were satisfactory. (Author) 6 refs

  10. Separation of fission Molybdenum for production of technetium generator

    International Nuclear Information System (INIS)

    Bayat, L.; Shaham, V.; Davarkha, R.

    2002-01-01

    There are two basically different methods for Mo-99 productions: Activation of Mo-99 contained at about 24% in natural isotopic mixtures. Mo-98 enriched targets are irradiated in high-flux reactors in order to achieve the highest possible specific activity of the product. Idolisation of fission molybdenum from irradiated nuclear fuel targets which have undergone short-term cooling. Maximum fission yield can be attained by irradiation of uranium-235 with the highest possible enrichment. On account of its approximately 1000 times higher specific activity. Fission molybdenum has almost replaced worldwide the product fabricated by activation. However, fission molybdenum-99 production has as its prerequisite a suitably advanced technology by which the production process taking place under high activity conditions can be controlled. An integral part of the process consist in the retention of the fission gases the recycling of non-consumed fuel and the treatment of the waste streams arising. This publication will deal with the individual steps in the process

  11. Sequential separation of transuranic elements and fission products from uranium metal ingots in electrolytic reduction process of spent PWR fuels

    International Nuclear Information System (INIS)

    Chang Heon Lee; Kih Soo Joe; Won Ho Kim; Euo Chang Jung; Kwang Yong Jee

    2009-01-01

    A sequential separation procedure has been developed for the determination of transuranic elements and fission products in uranium metal ingot samples from an electrolytic reduction process for a metallization of uranium dioxide to uranium metal in a medium of LiCl-Li 2 O molten salt at 650 deg C. Pu, Np and U were separated using anion-exchange and tri-n-butylphosphate (TBP) extraction chromatography. Cs, Sr, Ba, Ce, Pr, Nd, Sm, Eu, Gd, Zr and Mo were separated in several groups from Am and Cm using TBP and di(2-ethylhexyl)phosphoric acid (HDEHP) extraction chromatography. Effect of Fe, Ni, Cr and Mg, which were corrosion products formed through the process, on the separation of the analytes was investigated in detail. The validity of the separation procedure was evaluated by measuring the recovery of the stable metals and 239 Pu, 237 Np, 241 Am and 244 Cm added to a synthetic uranium metal ingot dissolved solution. (author)

  12. Irradiated uranium reprocessing, Final report I-VI, Part VI - Separation of uranium, plutonium and fission products from HNO3 solution on the zirconium phosphate (part I), Adsorption equilibrium and kinetics

    International Nuclear Information System (INIS)

    Gal, I.; Ruvarac, A.

    1961-12-01

    Separation of uranium, plutonium and long-lived fission products was investigated on a inorganic ion exchanger. Zirconium phospate was chosen for this purpose because its ion exchanger properties were well known. This report deals with the study of equilibrium and kinetics of the adsorption

  13. Interaction of noble-metal fission products with pyrolytic silicon carbide

    International Nuclear Information System (INIS)

    Lauf, R.J.; Braski, D.N.

    1982-01-01

    Fuel particles for the High-Temperature Gas-Cooled Reactor (HTGR) contain layers of pyrolytic carbon and silicon carbide, which act as a miniature pressure vessel and form the primary fission product barrier. Of the many fission products formed during irradiation, the noble metals are of particular interest because they interact significantly with the SiC layer and their concentrations are somewhat higher in the low-enriched uranium fuels currently under consideration. To study fission product-SiC interactions, particles of UO 2 or UC 2 are doped with fission product elements before coating and are then held in a thermal gradient up to several thousand hours. Examination of the SiC coatings by TEM-AEM after annealing shows that silver behaves differently from the palladium group

  14. Active-interrogation measurements of fast neutrons from induced fission in low-enriched uranium

    International Nuclear Information System (INIS)

    Dolan, J.L.; Marcath, M.J.; Flaska, M.; Pozzi, S.A.; Chichester, D.L.; Tomanin, A.; Peerani, P.

    2014-01-01

    A detection system was designed with MCNPX-PoliMi to measure induced-fission neutrons from U-235 and U-238 using active interrogation. Measurements were then performed with this system at the Joint Research Centre in Ispra, Italy on low-enriched uranium samples. Liquid scintillators measured induced fission neutrons to characterize the samples in terms of their uranium mass and enrichment. Results are presented to investigate and support the use of organic liquid scintillators with active interrogation techniques to characterize uranium containing materials. -- Highlights: • We studied low-enriched uranium using active-interrogation experiments including a deuterium–tritium neutron generator and an americium–lithium isotopic neutron source. • Liquid scintillators measured induced-fission neutrons from the active-interrogation methods. • Fast-neutron (DT) and thermal-neutron (Am–Li) interrogation resulted in the measurement of trends in uranium mass and 235 U enrichment respectively. • MCNPX-PoliMi, the Monte Carlo transport code, simulated the measured induced-fission neutron trends in the liquid scintillators

  15. Active-interrogation measurements of fast neutrons from induced fission in low-enriched uranium

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, J.L., E-mail: jldolan@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Marcath, M.J.; Flaska, M.; Pozzi, S.A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Chichester, D.L. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Tomanin, A.; Peerani, P. [European Commission, Joint Research Centre, Institute for Transuranium Elements, Ispra (Italy)

    2014-02-21

    A detection system was designed with MCNPX-PoliMi to measure induced-fission neutrons from U-235 and U-238 using active interrogation. Measurements were then performed with this system at the Joint Research Centre in Ispra, Italy on low-enriched uranium samples. Liquid scintillators measured induced fission neutrons to characterize the samples in terms of their uranium mass and enrichment. Results are presented to investigate and support the use of organic liquid scintillators with active interrogation techniques to characterize uranium containing materials. -- Highlights: • We studied low-enriched uranium using active-interrogation experiments including a deuterium–tritium neutron generator and an americium–lithium isotopic neutron source. • Liquid scintillators measured induced-fission neutrons from the active-interrogation methods. • Fast-neutron (DT) and thermal-neutron (Am–Li) interrogation resulted in the measurement of trends in uranium mass and {sup 235}U enrichment respectively. • MCNPX-PoliMi, the Monte Carlo transport code, simulated the measured induced-fission neutron trends in the liquid scintillators.

  16. Fission product release from fuel of water-cooled reactors

    International Nuclear Information System (INIS)

    Strupczewski, A.; Marks, P.; Klisinska, M.

    1997-01-01

    The report contains a review of theoretical models and experimental works of gaseous and volatile fission products from uranium dioxide fuel. The experimental results of activity release at low burnup and the model of fission gas behaviour at initial stage of fuel operational cycle are presented. Empirical models as well as measured results of transient fission products release rate in the temperature up to UO 2 melting point, with consideration of their chemical reactions with fuel and cladding, are collected. The theoretical and experimental data were used for calculations of gaseous and volatile fission products release, especially iodine and caesium, to the gas volume of WWER-1000 and WWER-440 type fuel rods at low and high burnup and their further release from defected rods at the assumed loss-of-coolant accident. (author)

  17. Fission Product Yields from {sup 232}Th, {sup 238}U, and {sup 235}U Using 14 MeV Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, B.D., E-mail: bpnuke@umich.edu [Department of Nuclear Engineering Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48109 (United States); Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States); Greenwood, L.R. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States); Flaska, M. [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, 227 Reber Bldg., University Park, PA 16802 (United States); Pozzi, S.A. [Department of Nuclear Engineering Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48109 (United States)

    2017-01-15

    Neutron-induced fission yield studies using deuterium-tritium fusion-produced 14 MeV neutrons have not yet directly measured fission yields from fission products with half-lives on the order of seconds (far from the line of nuclear stability). Fundamental data of this nature are important for improving and validating the current models of the nuclear fission process. Cyclic neutron activation analysis (CNAA) was performed on three actinide targets–thorium-oxide, depleted uranium metal, and highly enriched uranium metal–at the University of Michigan's Neutron Science Laboratory (UM-NSL) using a pneumatic system and Thermo-Scientific D711 accelerator-based fusion neutron generator. This was done to measure the fission yields of short-lived fission products and to examine the differences between the delayed fission product signatures of the three actinides. The measured data were compared against previously published results for {sup 89}Kr, −90, and −92 and {sup 138}Xe, −139, and −140. The average percent deviation of the measured values from the Evaluated Nuclear Data Files VII.1 (ENDF/B-VII.1) for thorium, depleted-uranium, and highly-enriched uranium were −10.2%, 4.5%, and −12.9%, respectively. In addition to the measurements of the six known fission products, 23 new fission yield measurements from {sup 84}As to {sup 146}La are presented.

  18. Uranium borehole logging using delayed or prompt fission neutrons

    International Nuclear Information System (INIS)

    Schulze, G.; Wuerz, H.

    1977-04-01

    The measurement of induced fission neutrons using Cf 252 and 14 MeV neutrons is a sensitive method for an in situ determination of Uranium. Applying this methods requires a unique relation between concentration of Uranium and intensity of induced fission neutrons. A discussion of parameters influencing the determination of concentration is given. A simple method is developed allowing an elemination of the geochemistry of the deposit and of the borehole configuration. Borehole probes using the methods described are of considerable help during the phase of detailed exploration of uranium ore deposits. These on-line tools allow an immediate determination of concentration. Thus avoiding the expensive and time consuming step of core drilling and subsequent chemical analysis. (orig./HP) [de

  19. Cumulative fission yield of Ce-148 produced by thermal-neutron fission of U-235

    International Nuclear Information System (INIS)

    Hasan, A.A.

    1984-12-01

    Cumulative fission yield of 148 cesium isotopes and some other fission products produced by thermal-neutron fission of 235 uranium is determined by Germanium/Lithium spectroscopic methods. The measuremets were done at Tsing-Hua open pool reactor using 3 to 4 mg of 93.15% enriched 235 uranium samples. Gamma rays are assigned to the responsible fission products by matching gamma rays energies and half lives. Fission rate is calculated by fission track method. Cumulative fission yields of 148 cesium, 90 krypton, 130 iodine, 144 lanthanum, 89 krypton, 136 xenon, 137 xenon and 140 cesium are calculated. This values are compared with previously predicted values and showed good agreement. 21 Ref

  20. Fission and activation of uranium by fashion-plasma neutrons

    International Nuclear Information System (INIS)

    Lee, J.H.; Hochl, F.; McFarland, D.R.

    1978-01-01

    Disks of enriched and depleted uranium were irradiated by neutrons from the D-D fusions in a dense plasma-focus. A fission yield of 10 6 fissions-cm -3 in U 235 per pulse was determined with Ge(Li) gamme-ray spectrometry. Activation of U 238 caused increased beta activity after the plasma-neutron irradiation but alpha-particle spectrometry showed Pu 239 production was negligible. In addition, with a disk of lithium in the apparatus, 13.3 MeV neutrons from 7 Li(d,n) 8 Be was observed with a 80-m time-of-flight neutron detector. Dense plasma focuses are now operated not only in a single coaxial gun, but also in improved geometries, such as the hypocycloidal pinch and the staged plasma focus, from which a multiple plasma-focus array suitable for experimental verification of, and eventuel development into a fusion-fission hybrid reactor could be produced. (orig.) [de

  1. Irradiated uranium reprocessing

    International Nuclear Information System (INIS)

    Gal, I.

    1961-12-01

    Task concerned with reprocessing of irradiated uranium covered the following activities: implementing the method and constructing the cell for uranium dissolving; implementing the procedure for extraction of uranium, plutonium and fission products from radioactive uranium solutions; studying the possibilities for using inorganic ion exchangers and adsorbers for separation of U, Pu and fission products

  2. First-principles study of defects and fission product behavior in uranium diboride

    Science.gov (United States)

    Jossou, Ericmoore; Oladimeji, Dotun; Malakkal, Linu; Middleburgh, Simon; Szpunar, Barbara; Szpunar, Jerzy

    2017-10-01

    A Systematic study of defects and incorporation of xenon (Xe) and zirconium (Zr) fission products in uranium diboride (UB2) has been investigated using density functional theory (DFT) calculations as implemented in Quantum ESPRESSO code. The incorporation and solution energies show that both FPs (Xe and Zr) are most stable in U vacancies with Zr being more stable than Xe. A volume expansion is observed as the concentration of Xe increases in the fuel matrix while Zr incorporation leads to a contraction. Bader charge analysis is used to establish the formation of Zr-B ionic/covalent bond due to large electron transfer observed while there is only a weak electronic interaction between Xe and the UB2 lattice. Finally, using climbing-image nudged elastic band calculation, we found that the energy barrier of U in UB2 is 0.08 eV higher than B migration energy.

  3. The usage of electron beam to produce radio isotopes through the uranium fission by γ-rays and neutrons

    International Nuclear Information System (INIS)

    Bunatyan, G.G.; Nikolenko, V.G.; Popov, A.V.

    2010-01-01

    We treat the production of desirable radio isotopes due to the 238 U photo-fission by the bremsstrahlung induced in converter by an initial electron beam provided by a linear electron accelerator. We consider as well the radio isotope production through the 238 U fission by the neutrons that stem in the 238 U sample irradiated by that bremsstrahlung. The yield of the most applicable radio isotope 99 Mo is calculated. We correlate the findings acquired in the work presented with those obtained by treating the nuclear photo-neutron reaction. Menace of the plutonium contamination of an irradiated uranium sample because of the neutron capture by 238 U is considered. As we get convinced, the photo-neutron production of radio isotopes proves to be more practicable than the production by the uranium photo- and neutron-fission. Both methods are certain to be brought into action due to usage of the electron beam provided by modern linear accelerators

  4. Integral measurement of fission products capture in fast breeder reactors

    International Nuclear Information System (INIS)

    Martin Deidier, Loick.

    1979-12-01

    For the SUPERPHENIX reactor project, it was necessary to know fission products capture with about 10% accuracy in the fast breeder reactor spectra. In this purpose, integral measurements have been carried out on the main separated products by different experimental technics (oscillation, activation and irradiation methods), but particularly on irradiated fuel pins from RAPSODIE and PHENIX reactors in order to directly obtain total effect of fission products. Same tendencies have been observed for both enriched uranium fuel and LMFBR characteristic plutonium fuel. All experimental results have been introduced in CARNAVAL cross section set [fr

  5. Release of fission products from irradiated aluminide fuel at high temperature

    International Nuclear Information System (INIS)

    Shibata, Toshikazu; Kanda, Keiji; Mishima, Kaichiro; Tamai, Tadaharu; Hayashi, Masatoshi; Snelgrove, James L.; Stahl, David; Matos, James E.; Travelli, Armando; Case, F. Neil; Posey, John C.

    1983-01-01

    Irradiated uranium aluminide fuel plates of 40% U-235 enrichment were heated for the determination of fission products released under flowing helium gas at temperatures up to and higher than the melting point of fuel cladding material. The release of fission products from the fuel plate at temperature below 500 deg. C was found negligible. The first rapid release of fission products was observed with the occurrence of blistering at 561±1 deg. C on the plates. The next release at 585. C might be caused by melting of the cladding material of 6061-Al alloy. The last release of fission product gases was occurred at the eutectic temperature of 640 deg. C of U-Al x . The released material was mostly xenon, but small amounts of iodine and cesium were observed. (author)

  6. Release of fission products from irradiated aluminide fuel at high temperature

    International Nuclear Information System (INIS)

    Shibata, T.; Kanda, K.; Mishima, K.

    1982-01-01

    Irradiated uranium aluminide fuel plates of 40% U-235 enrichment were heated for the determination of fission products released under flowing helium gas at temperatures up to and higher than the melting point of fuel-cladding material. The release of fission products from the fuel plate at temperature below 500 0 C was found negligible. The firist rapid release of fission products was observed with the occurrence of blistering at 561 +- 1 0 C on the plates. The next release at 585 0 C might be caused by melting of the cladding material of 6061-Al alloy. The last release of fission product gases was occurred at the eutectic temperature of 640 0 C of U-Al/sub x/. The released material was mostly xenon, but small amounts of iodine and cesium were observed

  7. The migration of intra-granular fission gas bubbles in irradiated uranium dioxide

    International Nuclear Information System (INIS)

    Baker, C.

    1977-05-01

    The mobility of intragranular fission gas bubbles in uranium dioxide irradiated at 1600-1800 0 C has been studied following isothermal annealing at temperatures below 1600 0 C. The intragranular fission gas bubbles, average diameter approximately 2nm, are virtually immobile at temperatures below 1500 0 C. The bubbles have clean surfaces with no solid fission product contamination and are faceted to the highest observed irradiation temperature of 1800 0 C. This bubble faceting is believed to be a major cause of bubble immobility. In fuel operating below 1500 0 C the predominant mechanism allowing the growth of intragranular bubbles and the subsequent gas release must be the diffusion of dissolved gas atoms rather than the movement of entire intragranular bubbles. (author)

  8. Map of calculated radioactivity of fission product, (4)

    International Nuclear Information System (INIS)

    Takeda, Tsuneo

    1978-07-01

    The overall radioactivities of fission products depending on irradiation time and cooling time were calculated for 18 different neutron fluxes, which are presented in contour maps and tables. Irradiation condition etc. are the followings: neutron flux (n sub(th)) 1 x 10 12 - 6.8 x 10 14 n/cm 2 /sec, uranium quantity 1 mole (6 x 10 23 atoms, ca. 271 g UO 2 ), U-235 enrichment 2.7%, irradiation time 60. - 6 x 10 7 sec (1 min - 1.9 y), cooling time 0. and 60. - 6 x 10 7 sec (1 min - 1.9 y). The enrichment value represents those for LWRs. To calculate the overall radioactivities, 595 fission product nuclides were introduced. Overall radioactivities calculations were made for 68,000 combinations of irradiation time, cooling time and neutron flux. The many complex decay chains of fission products were treated with CODAC-No.6 computer code. (author)

  9. Determination of uranium and plutonium in metal conversion products from electrolytic reduction process

    International Nuclear Information System (INIS)

    Lee, Chang Heon; Suh, Moo Yul; Joe, Kih Soo; Sohn, Se Chul; Jee, Kwang Young; Kim, Won Ho

    2005-01-01

    Chemical characterization of process materials is required for the optimization of an electrolytic reduction process in which uranium dioxide, a matrix of spent PWR fuels, is electrolytically reduced to uranium metal in a medium of LiCl-Li 2 O molten at 650 .deg. C. A study on the determination of fissile materials in the uranium metal products containing corrosion products, fission products and residual process materials has been performed by controlled-potential coulometric titration which is well known in the field of nuclear science and technology. Interference of Fe, Ni, Cr and Mg (corrosion products), Nd (fission product) and LiCl molten salt (residual process material) on the determination of uranium and plutonium, and the necessity of plutonium separation prior to the titration are discussed in detail. Under the analytical condition established already, their recovery yields are evaluated along with analytical reliability

  10. Alpha and fission autoradiography of uranium rods

    International Nuclear Information System (INIS)

    Copic, M.; Ilicj, R.; Najzher, M.; Rant, J.

    1977-01-01

    Macro and micro-distribution of uranium minerals in ore bodies are investigated by alpha autoradiography and by neutron induced fission autoradiography using LR 115 solid state track detector. Optimal conditions are determined experimentally for both methods and examples presented. For field applications the alpha autoradiography (author)

  11. Development of fission Mo production technology

    International Nuclear Information System (INIS)

    Kim, B. K.; Park, K. B.; Jun, B. J.; Park, J. H.; Choung, W. M.; Lee, K. I.; Woo, M. S.; Whang, D. S.; Kim, Y. K.; Yoo, J. H.; Sohn, D. S.; Lee, Y. W.; Na, S. H.; Koo, Y. H.; Hwang, D. H.; Joo, P. K.

    1997-08-01

    The feasibility study is accomplished in this project for the development of fission moly production. The KAERI process proposed for development in KAERI is discussed together with those of the American Cintichem and Russian IPPE, each of which would be plausible for introduction whenever the indigenous development is not much feasible. For the conceptual design of the KAERI irradiation target, analysis method is set up and some preliminary analysis is performed accordingly for the candidate design. To establish chemical process concepts for the afore-mentioned three processes, characteristics, operation conditions, and the management of the generated wastes are investigated. Basic requirements of hotcell facilities for chemical processing and a possible way of utilizing the existing hotcells are discussed in parallel with the counter-measures for the construction of new hotcell facilities. Various conditions of target irradiation for fission moly production in Hanaro are analyzed. Plan for introduction of the relevant technology introduction and for procurement of highly enriched uranium are considered. On the basis of assuming some conditions, the economic feasibility study for fission moly production is also overviewed. (author). 22 refs., 28 tabs., 24 figs

  12. Inorganic oxides as alternative in the separation of non fissioned residual uranium

    International Nuclear Information System (INIS)

    Baca G, A.

    1997-01-01

    The Al 2 O 3 , SiO 2 and SnO 2 as well as vegetable carbon have been studied for its possible use as sorbent in the concentration and separation of non fissioned residual uranium of some fission products such as: 141 Ce, 134 Cs, 125 Sb, 103 Ru, 95 Zr, 95 Nb of alkaline aqueous systems. The separation efficiency has been evaluated using natural uranium and radionuclides in static and dynamic processes, through liquid scintillation and gamma spectrometry. Therefore Al 2 O 3 , SiO 2 , SnO 2 and carbon were pre-treated thermic and chemically and characterized through the technique of Nitrogen absorption analysis, X-ray diffraction and IR spectroscopy. By means of the p H determination and the aqueous system potential the present hydrolysis products were determined. The inorganic oxides show structural and surface changes due to the treatment. The adsorption process is realized by different mechanism depending of the sorbent. The results show that the retention capacity is a dependence of the oxides pre-treatment and of the hydrolysis products in the aqueous system, as well as of the experimental conditions. Not in this way for carbon in which the results show the treatment and the experimental conditions significantly have not influence in its adsorption capacity. (Author)

  13. Neutronic analysis for the fission Mo99 production by irradiation of leu targets in TRIGA 14 MW reactor

    International Nuclear Information System (INIS)

    Dulugeac, S. D.; Mladin, M.; Budriman, A. G.

    2013-01-01

    Molybdenum production can be a solution for the future in the utilization of the Romanian TRIGA, taking into account the international market supply needs. Generally, two different techniques are available for Mo 99 production for use in medical Tc 99 generation.The first one is based on neutron irradiation of molybdenum targets of natural isotopic composition or enriched in Mo 98 . In a second process, Mo 99 is obtained as a result of the neutron induced fission of U 235 according to U 235 (n,f) Mo 99 . The objectives of the paper are related to Mo 99 production as a result of fission. Neutron physics parameters are determined and presented, such as: thermal flux axial distribution for the critical reactor at 10 MW inside the irradiation location; reactivity introduced by three Uranium foil containers; neutron fluxes and fission rates in the Uranium foils; released and deposited power in the Uranium foils; Mo 99 activity in the Uranium foils. (authors)

  14. Development of the fission fragment track registration technique for the determination of the uranium contamination

    International Nuclear Information System (INIS)

    Tanaka, E.M.

    1979-01-01

    The Fission Fragment Track Registration Technique is developed to measure the uranium concentration about microgram of uranium per litre of liquid samples. The drying method of drops on the detector (Makrofol KG) and a special sampling procedure to avoid the cumbersome high density of tracks formation at the edge of the deposition surface as a 'ring' is adopted. The samples are irradiated by neutrons produced by the IEA-R1 Reactor (thermal neutron flux about 10 12 neutrons/cm 2 .s) inducing the uranium fission. The tracks registered by the fission fragments in the detector are chemically enlarged and counted by an automatic couting system. By this method the uranium concentrations ranging from 0,9 to 7,6 microgram of uranium per litre, can be determined with precisions between 2,7% the greater and 23% to the lower concentration. The uranium concentration measurements in human hair and urine are made showing that this method is very useful to control and detect eventual uranium contamination [pt

  15. Utilisation of prompt fission neutron technology in Greenfields uranium exploration

    International Nuclear Information System (INIS)

    Mutz, P.R.

    2007-01-01

    Conventionally, gamma detection technology has been used in uranium exploration programs for the initial detection of uranium as well as for a determination of uranium concentration. Geophysical logging companies use wireline gamma probes to measure uranium within boreholes, and field technicians utilise hand held gamma meters to detect uranium in rock samples, drill cuttings and cores. Borehole geophysical logging equipment typically records the uranium concentration as %eU 3 O8, where e represents an equivalent determination of uranium concentration as opposed to a laboratory assay. This method of uranium determination is an indirect method, as it measures gamma radiation from uranium-238 (U-238) isotope decay chain progeny; principally the bismuth-214 (Bi-214) isotope. Consequently, the uranium determination can be inaccurate due to natural disequilibrium between the U-238 parent and the decay chain progeny. This is especially true in sedimentary hosted uranium deposits, where the uranium and daughter progeny may have been geochemically separated. The gamma detection method for uranium can also be rendered inaccurate by detecting the gamma signature from potassium in clays as well as from thorium; both of which can provide a false (enhanced) eU 3 O8 determination. Prompt Fission Neutron (PFN) technology is a geophysical wireline logging technology used in the same manner as conventional gamma logging. The difference is that PFN provides a direct determination of uranium within a borehole, irrespective of natural disequilibrium or the presence of other radioactive elements. This paper provides a brief description of natural uranium and radioactivity as a basis for explaining the conventional use of gamma radiation detectors for the detection and determination of uranium concentration in exploration boreholes, including the potential pitfalls of this technology. A detailed description of prompt fission neutron technology is also presented, along with a discussion

  16. Immobilization of fission products arising from pyrometallurgical reprocessing in chloride media

    Science.gov (United States)

    Leturcq, G.; Grandjean, A.; Rigaud, D.; Perouty, P.; Charlot, M.

    2005-12-01

    Spent nuclear fuel reprocessing to recover energy-producing elements such as uranium or plutonium can be performed by a pyrochemical process. In such method, the actinides and fission products are extracted by electrodeposition in a molten chloride medium. These processes generate chlorinated alkali salt flows contaminated by fission products, mainly Cs, Ba, Sr and rare earth elements constituting high-level waste. Two possible alternatives are investigated for managing this wasteform; a protocol is described for dechlorinating the fission products to allow vitrification, and mineral phases capable of immobilizing chlorides are listed to allow specification of a dedicated ceramic matrix suitable for containment of these chlorinated waste streams. The results of tests to synthesize chlorosilicate phases are also discussed.

  17. Methods to Collect, Compile, and Analyze Observed Short-lived Fission Product Gamma Data

    Energy Technology Data Exchange (ETDEWEB)

    Finn, Erin C.; Metz, Lori A.; Payne, Rosara F.; Friese, Judah I.; Greenwood, Lawrence R.; Kephart, Jeremy D.; Pierson, Bruce D.; Ellis, Tere A.

    2011-09-29

    A unique set of fission product gamma spectra was collected at short times (4 minutes to 1 week) on various fissionable materials. Gamma spectra were collected from the neutron-induced fission of uranium, neptunium, and plutonium isotopes at thermal, epithermal, fission spectrum, and 14-MeV neutron energies. This report describes the experimental methods used to produce and collect the gamma data, defines the experimental parameters for each method, and demonstrates the consistency of the measurements.

  18. Fission Product Release from Spent Nuclear Fuel During Melting

    International Nuclear Information System (INIS)

    Howell, J.P.; Zino, J.F.

    1998-09-01

    The Melt-Dilute process consolidates aluminum-clad spent nuclear fuel by melting the fuel assemblies and diluting the 235U content with depleted uranium to lower the enrichment. During the process, radioactive fission products whose boiling points are near the proposed 850 degrees C melting temperature can be released. This paper presents a review of fission product release data from uranium-aluminum alloy fuel developed from Severe Accident studies. In addition, scoping calculations using the ORIGEN-S computer code were made to estimate the radioactive inventories in typical research reactor fuel as a function of burnup, initial enrichment, and reactor operating history and shutdown time.Ten elements were identified from the inventory with boiling points below or near the 850 degrees C reference melting temperature. The isotopes 137Cs and 85Kr were considered most important. This review serves as basic data to the design and development of a furnace off-gas system for containment of the volatile species

  19. Vaporization of low-volatile fission products under severe CANDU reactor accident conditions

    International Nuclear Information System (INIS)

    Lewis, B.J.; Corse, B.J.; Thompson, W.T.; Kaye, M.H.; Iglesias, F.C.; Elder, P.; Dickson, R.; Liu, Z.

    1997-01-01

    An analytical model has been developed to describe the release behaviour of low-volatile fission products from uranium dioxide fuel under severe reactor accident conditions. The effect of the oxygen potential on the chemical form and volatility of fission products is determined by Gibbs-energy minimization. The release kinetics are calculated according to the rate-controlling step of diffusional transport in the fuel matrix or fission product vaporization from the fuel surface. The effect of fuel volatilization (i.e., matrix stripping) on the release behaviour is also considered. The model has been compared to data from an out-of-pile annealing experiment performed in steam at the Chalk River Laboratories. (author)

  20. Fission products stability in uranium dioxide

    International Nuclear Information System (INIS)

    Brillant, G.; Gupta, F.; Pasturel, A.

    2011-01-01

    Fission product stability in nuclear fuels is investigated using density functional theory (DFT). In particular, incorporation and solution energies of He, Kr, Xe, I, Te, Ru, Sr and Ce in pre-existing trap sites of UO 2 (vacancies, interstitials, U-O divacancy, and Schottky trio defects) are calculated using the projector-augmented-wave method as implemented in the Vienna ab initio simulation package. Correlation effects are taken into account within the DFT+U approach. The stability of many binary and ternary compounds in comparison to soluted atoms is also explored. Finally the involvement of FP in the formation of metallic and oxide precipitates in oxide fuels is discussed in the light of experimental results.

  1. An experimental investigation of fission product release in SLOWPOKE-2 reactors - Data report

    International Nuclear Information System (INIS)

    Harnden, A.M.C.

    1995-09-01

    The results of an investigation into the release of fission products from SLOWPOKE-2 reactors fuelled with a highly-enriched uranium alloy core are detailed in Volume 1. This data report (Volume 2) contains plots of the activity concentrations of the fission products observed in the reactor container at the University of Toronto, Ecole Polytechnique and the Kanata Isotope Production Facility. Release rates from the reactor container water to the gas headspace are also included. (author)

  2. Heated uranium tetrafluoride target system to release non-rare gas fission products for the TRISTAN isotope separator

    International Nuclear Information System (INIS)

    Gill, R.L.

    1977-10-01

    Off-line experiments indicated that fluorides of As, Se, Br, Kr, Zr, Nb, Mo, Tc, Ru, Sb, Te, I and Xe could be volatilized, but except for Br, Kr, I and Xe, none of these elements were observed after mass separation in the on-line experiments. The results of the on-line experiments indicated a very low level of hydride contamination at ambient temperature and consequently, uranium tetrafluoride replaced uranyl stearate as the primary gaseous fission product target. Possible reasons for the failure of the heated target system to yield non-rare gas activities are discussed and suggestions for designing a new heated target system are presented

  3. Refining of crude uranium by solvent extraction for production of nuclear pure uranium metal

    International Nuclear Information System (INIS)

    Gupta, S.K.; Manna, S.; Singha, M.; Hareendran, K.N.; Chowdhury, S.; Satpati, S.K.; Kumar, K.

    2007-01-01

    Uranium is the primary fuel material for any nuclear fission energy program. Natural uranium contains only 0.712% of 235 U as fissile constituent. This low concentration of fissile isotope in natural uranium calls for a very high level of purity, especially with respect to neutron poisons like B, Cd, Gd etc. before it can be used as nuclear fuel. Solvent extraction is a widely used technique by which crude uranium is purified for reactor use. Uranium metal plant (UMP), BARC, Trombay is engaged in refining of uranium concentrate for production of nuclear pure uranium metal for fabrication of fuel for research reactors. This paper reviews some of the fundamental aspects of this refining process with some special references to UMP, BARC. (author)

  4. Study of the behaviour of tetracycline as fission products extracting agent

    International Nuclear Information System (INIS)

    Cunha, I.I.L.

    1983-01-01

    Both spectrophotometric and potentiometric titration techniques were used to show the formation of complexes between tetracycline and the elements: zirconium, uranium, molybdenum, strontium, barium and ruthenium. It has been verified that tetracycline does not form complexes with cesium, tellurium and iodine. Those techniques have also been used to determine the sites on the tetracycline molecule at which ions may be bound. The behaviour of tetracycline as an extracting agent for those elements, as well as for niobium and technetium has been studied and the influence of the acidity of the aqueous phase upon extraction of the elements mentioned has been considered. Extraction experiments were carried out in the presence of chloride, perchlorate, nitrate and sulfate ions. Studies have been made to determine whether or not the complex extracted into organic phase is really the complex formed between tetracycline and the elements considered as well as to determine the time of shaking necessary so that the equilibrium between the phases is attained. Based on all information obtained from extraction experiments made for uranium and the fission products Zr-95, Nb-95, Ce-141, La-140, Ru-103, Ba-140 and Cs-137, the possibility of using tetracycline for separating those fission products from each other and from uranium has been studies and a scheme for simultaneous separation of those elements has been proposed. The same study has been made for I-131, Tc-99m, Mo-99, Te-132, Np-239 and uranium. The method described is applicable to the separation of some fission products existing in solutions at tracer levels, and not to be used in nuclear fuel reprocessing or any other industrial application. (Author) [pt

  5. Studies on fission tracks and distributions of uranium and rare earths in granite materials

    International Nuclear Information System (INIS)

    Matsuda, Hiroshi; Sakanoue, Masanobu

    1987-01-01

    Many materials contain fossil records of the slow spontaneous fission of uranium they contain as an impurity. Fission fragments, heavy charged particles released in each fission event, produce microscopic trails of radiation damage that may persist over geological times and may be developed to a size observable under an optical microscope by a suitable etching treatment. Such tracks are also produced by fissions induced by thermal neutron irradiation of the uranium. When the material is heated sufficiently, it anneals and the the microscopic trails become shorter and narrower. The track density decreases, because the chemical etchant will not reach some of the shortened tracks. Measurements of track densities before and after annealing can be used, along with laboratory studies of annealing rates, to determine the annealing temperature. Also, the track density of induced fissions is related to the concentration of uranium and the fluence of neutrons to which it was exposed. If the track density due to induced fissions can be distinguished from that due to fossil tracks, estimates of either the concentration or the fluence can be made if the other is known. Two such materials (one a fragment of a granite paving stone, the other a piece of stained glass from a cathedral window) that had been exposed to the atomic bomb at Nagasaki were used in the present work. The fossil record in zircons in the granite was used to estimate the temperature to which it had been exposed in the bombing. Induced fissions were used to estimate the concentration of uranium in the zircons. Nonuniform heating and cooling and nearly uniform exposure to the neutrons make the granite sample unsuitable for determining the neutron fluence from the bomb. Induced fissions in the stained glass were used to estimate the concentration of uranium and the thermal neutron fluence from the A-bomb. Annealing of tracks in glass was also studied

  6. Irradiated uranium reprocessing; Prerada ozracenog urana

    Energy Technology Data Exchange (ETDEWEB)

    Gal, I [Institute of Nuclear Sciences Boris Kidric, Laboratorijaza visoku aktivnost, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    Task concerned with reprocessing of irradiated uranium covered the following activities: implementing the method and constructing the cell for uranium dissolving; implementing the procedure for extraction of uranium, plutonium and fission products from radioactive uranium solutions; studying the possibilities for using inorganic ion exchangers and adsorbers for separation of U, Pu and fission products.

  7. Fission products collecting devices

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshi

    1979-01-01

    Purpose: To enable fission products trap with no contamination to coolants and cover gas by the provision of a fission products trap above the upper part of a nuclear power plant. Constitution: Upon fuel failures in a reactor core, nuclear fission products leak into coolants and move along the flow of the coolants to the coolants above the reactor core. The fission products are collected in a trap container and guided along a pipeline into fission products detector. The fission products detector monitors the concentration of the fission products and opens the downstream valve of the detector when a predetermined concentration of the fission products is detected to introduce the fission products into a waste gas processing device and release them through the exhaust pipe. (Seki, T.)

  8. Separation and purification of short lived fission products from irradiated uranium

    International Nuclear Information System (INIS)

    Balasubramanian, K.R.; Rao, K.L.N.; Mathai, C.; Varma, R.N.; Dhiwar, V.I.; Saxena, S.K.

    1991-01-01

    Fission produced radioisotopes like 95 Zr, 140 Ba, 103 Ru, 89 Sr and 91 Y whose half lives are less than 1 year find a wide variety of applications in the fields of industry, medicine and research. Isotope Division, BARC has been supplying these isotopes in hudreds of mCi amounts during the past several years. A new method for the sequential separation of these isotopes from irradiated uranium has been developed based on synthetic inorganic exchangers like stannic phosphate, polyphospho antimonic acid, hydrous manganese dioxide, etc. This report describes the new flow sheet worked out and adopted for the regular processing of these isotopes at hundreds of milli curie amounts. (author). 19 refs., 4 tabs. , 1 fig

  9. RIB production with photofission of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Oganessian, Yu.Ts. E-mail: oganessian@flnr.jinr.ru; Dmitriev, S.N.; Kliman, J.; Maslov, O.A.; Starodub, G.Ya.; Belov, A.G.; Tretiakova, S.P

    2002-04-22

    The process of uranium photofission with electron beams of 20-50 MeV is considered in terms of the production of fission fragments. It is shown that in the interaction between an electron beam (25 MeV in energy and 20 {mu}A in intensity), produced by a compact accelerator of the microtron type, and a uranium target of about 40 g/cm{sup 2} in thickness, an average of 1.5x10{sup 11} fission events per second is generated. According to the calculations and test experiments, this corresponds to the yield of {sup 132}Sn and {sup 142}Xe isotopes of approximately 2x10{sup 9}/s. The results of experiments on the optimal design of the U-target are presented. Problems are discussed connected with the separation of isotopes and isobars for their further acceleration up to energies of 5-18 MeV A. The photofission reactions of a heavy nucleus are compared with other methods of RIB production of medium mass nuclei.

  10. A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium

    International Nuclear Information System (INIS)

    Reed, Mark; Parker, Ronald R.; Forget, Benoit

    2012-01-01

    This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more

  11. Research of the Mass Spectra of the Fission Products and Yields of (n, gamma) and (n, 2n) Reactions in a Model Subcritical Uranium Blanket of the Electronuclear System "Energy Plus Transmutation" on Proton Beam of the Dubna Synchrophasotron at 1.5 Ge

    CERN Document Server

    Chultem, D; Krivopustov, M I; Gerbish, S; Tumendemberel, B; Pavlyuk, A B; Zaveryukha, O S

    2002-01-01

    This paper is devoted to the research of the spatial distributions of the yields of (n, f), (n, gamma) and (n, 2n) reactions in a two-section model of the uranium blanket electronuclear installation constructed at the Laboratory of High Energies, JINR (Dubna) for experiments according to the program "Research of physical aspects of the electronuclear method of energy production and of radioactive waste transmutation in atomic power-engineering on beams of the synchrophasotron and nuclotron" - project "Energy plus Transmutation". The mass spectrum of the fission products and yields of above reactions in uranium activation detectors placed on the radii of the so-called detector plates is determined. The experimental results testify that the fission of nuclei in the uranium blanket is made by fast neutrons. This conclusion coincides with the result obtained with track integrators of uranium fission.

  12. Study of the production of neutron-rich isotope beams issuing from fissions induced by fast neutrons; Etude de la production de faisceaux riches en neutrons par fission induite par neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Ch

    2000-09-15

    This work is a contribution to the PARRNe project (production of radioactive neutron-rich isotopes). This project is based on the fission fragments coming from the fission of 238-uranium induced by fast neutrons. The fast neutron flux is produced by the collisions of deutons in a converter. Thick targets of uranium carbide and liquid uranium targets have been designed in order to allow a quick release of fission fragments. A device, able to trap on a cryogenic thimble rare gas released by the target, has allowed the production of radioactive nuclei whose half-life is about 1 second. This installation has been settled to different deuton accelerators in the framework of the European collaboration SPIRAL-2. A calibration experiment has proved the feasibility of fixing an ISOL-type isotope separator to a 15 MV tandem accelerator, this installation can provide 500 nA deutons beams whose energy is 26 MeV and be a valuable tool for studying fast-neutron induced fission. Zinc, krypton, rubidium, cadmium, iodine, xenon and cesium beams have been produced in this installation. The most intense beams reach 10000 nuclei by micro-coulomb for 26 MeV deutons. An extra gain of 2 magnitude orders can be obtained by using a more specific ion source and by increasing the thickness of the target. Another extra gain of 2 magnitude orders involves 100 MeV deutons.

  13. Effects of solid fission products forming dissolved oxide (Nd) and metallic precipitate (Ru) on the thermal conductivity of uranium base oxide fuel

    International Nuclear Information System (INIS)

    Kim, Dong-Joo; Yang, Jae-Ho; Kim, Jong-Hun; Rhee, Young-Woo; Kang, Ki-Won; Kim, Keon-Sik; Song, Kun-Woo

    2007-01-01

    The effects of solid fission products on the thermal conductivity of uranium base oxide nuclear fuel were experimentally investigated. Neodymium (Nd) and ruthenium (Ru) were added to represent the physical states of solid fission products such as 'dissolved oxide' and 'metallic precipitate', respectively. Thermal conductivity was determined on the basis of the thermal diffusivity, density and specific heat values. The effects of the additives on the thermal conductivity were quantified in the form of the thermal resistivity equation - the reciprocal of the phonon conduction equation - which was determined from the measured data. It is concluded that the thermal conductivity of the irradiated nuclear fuel is affected by both the 'dissolved oxide' and the 'metallic precipitate', however, the effects are in the opposite direction and the 'dissolved oxide' influences the thermal conductivity more significantly than that of the 'metallic precipitate'

  14. Natural Transmutation of Actinides via the Fission Reaction in the Closed Thorium-Uranium-Plutonium Fuel Cycle

    Science.gov (United States)

    Marshalkin, V. Ye.; Povyshev, V. M.

    2017-12-01

    It is shown for a closed thorium-uranium-plutonium fuel cycle that, upon processing of one metric ton of irradiated fuel after each four-year campaign, the radioactive wastes contain 54 kg of fission products, 0.8 kg of thorium, 0.10 kg of uranium isotopes, 0.005 kg of plutonium isotopes, 0.002 kg of neptunium, and "trace" amounts of americium and curium isotopes. This qualitatively simplifies the handling of high-level wastes in nuclear power engineering.

  15. Thermochemical Study on the Sulfurization of Fission Products in Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Lee, Jung Won; Yang, M. S.; Park, G. I.; Kim, W. K.; Lee, J. W.

    2005-11-01

    The thermodynamic behavior of the sulfurization of Nd, and Eu element, which are contained in spent nuclear fuel as fission products was investigated through collection and properties analysis of thermodynamic data in sulfurization of uranium oxides, thermodynamic properties analysis for the oxidation and reduction of fission products, and test and analysis for sulfurization characteristics of Nd and Eu oxide. And also, analysis on thermodynamic data, such as M-O-S phase stability diagram and changes of Gibbs free energy for sulfurization of uranium and Nd 2 O 3 and Eu 2 O 3 were carried out. Nd 2 O 3 and Eu 2 O 3 are sulfurized into Nd 2 O 2 S and Eu 2 O 2 S or NdySx and EuySx at a range of 400 to 450 .deg. C, while uranium oxides, such as UO 2 and U 3 O 8 remain unreacted up to 450 .deg. C Formation of UOS at 500 .deg. C is initiated by sulfurization of uranium oxides. Hence, reaction temperature for the sulfurization of the Nd 2 O 3 and Eu 2 O 3 was selected as a 450 .deg. C

  16. Study of fission product γ spectra in the band 2-500 keV

    International Nuclear Information System (INIS)

    Rousseau, A.

    1959-01-01

    In the study of the γ spectrum of uranium fission products, particular attention has been given in this note to the part of the spectrum ranging between 0 and 500 keV after a given pile operating programme and the evolution of this spectrum with time after a pile shutdown has been followed. The study be related to the fission products which appear in the pile as a whole or on those produced in a uranium sample assumed to have been placed in the pile. The latter case has been envisaged here. The spectrum determination is based partly on theory and partly on experiment. The pile operating conditions are different in the two cases, which widens the range of validity of the spectra traced here. (author) [fr

  17. Theoretical analysis of knock-out release of fission products from nuclear fuels

    International Nuclear Information System (INIS)

    Yamagishi, S.

    1975-01-01

    The knock-out release of fission products is studied theoretically. The general equations of knock-out release are derived, assuming that a fission fragment passing through the surface of nuclear fuels knocks out a local region of the surface with an effective thickness and an effective cross-sectional area. Using these equations, the knock-out release of fission gases is calculated for various cases. The conditions under which the knock-out coefficients (the average number of uranium atoms knocked out by one fission fragment) is obtainable are clarified by experiments on the knock-out release of fission gases. A method of determining the effective thickness and the effective cross-sectional area of a knock-out region is proposed. (Auth.)

  18. Irradiated uranium reprocessing, Final report I-VI, IV Deo IV - Separation of uranium, plutonium and fission products from the irradiated fuel of the reactor in Vinca; Prerada ozracenog urana. Zavrsni izvestaj - I-VI, IV Deo - Odvajanje urana, plutonijuma i fisionih produkata iz isluzenog goriva reaktora u Vinci

    Energy Technology Data Exchange (ETDEWEB)

    Gal, I [Institute of Nuclear Sciences Boris Kidric, Laboratorija za visoku aktivnost, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    This study describes the technology for separation of uranium, plutonium and fission products from the radioactive water solution which is obtained by dissolving the spent uranium fuel from the reactor in Vinca. The procedure should be completed in a hot cell, with the maximum permitted activity of 10 Ci.

  19. Pulsed neutron uranium borehole logging with prompt fission neutrons

    International Nuclear Information System (INIS)

    Bivens, H.M.; Smith, G.W.; Jensen, D.H.

    1976-01-01

    The gross count natural gamma log normally used for uranium borehole logging is seriously affected by disequilibrium. Methods for the direct measurement of uranium, such as neutron logging, which are not affected by disequilibrium have been the object of considerable effort in recent years. This paper describes a logging system for uranium which uses a small accelerator to generate pulses of 14 MeV neutrons to detect and assay uranium by the measurement of prompt fission neutrons in the epithermal energy range. After an initial feasibility study, a prototype logging probe was built for field evaluation which began in January 1976. Physical and operational characteristics of the prototype probe, the neutron tube-transformer assembly, and the neutron tube are described. In logging operations, only the epithermal prompt fission neutrons detected between 250 microseconds to 2500 microseconds following the excitation neutron pulse are counted. Comparison of corrected neutron logs with the conventional gross count natural gamma logs and the chemical assays of cores from boreholes are shown. The results obtained with this neutron probe clearly demonstrate its advantages over the gross count natural gamma log, although at this time the accuracy of the neutron log assay is not satisfactory under some conditions. The necessary correction factors for various borehole and formation parameters are being determined and, when applied, should improve the assay accuracy

  20. Barium 139 as Fission Indicator

    Energy Technology Data Exchange (ETDEWEB)

    Broda, E.

    1943-07-01

    This report is based on a measurement performed at the Cavendish Laboratory (Cambridge) by E. Broda in December 1943 where a technique has been worked out for measuring the fission density in a uranium containing medium in relative units by determining the amount of a suitable fission product formed. Generally a given fission product will be formed in natural uranium by slow neutron fission of U235 or by fast neutron fission of either U235 or U238. It is intended to translate the relative units into absolute units by comparison of the Ba yield with the indication of UF6 fission chamber in the same medium. This has to be done separately for fast and slow neutron fission as the yields may be different. Another application of the technique developed is the measurement of thermal neutron density in an uraniferous medium without using a detector subject to variations of sensitivity according to the properties of the medium. (nowak)

  1. Assay of low-enriched uranium using spontaneous fission neutrons

    International Nuclear Information System (INIS)

    Zucker, M.S.; Fainberg, A.

    1980-01-01

    Low-enriched uranium oxide in bulk containers can be assayed for safeguards purposes, using the neutrons from spontaneous fission of 238 U as a signature, to complement enrichment and mass measurement. The penetrability of the fast fission neutrons allows the inner portion of bulk samples to register. The measurement may also be useful for measuring moisture content, of significance in process control. The apparatus used can be the same as for neutron correlation counting for Pu assay. The neutron multiplication observed in 238 U is of intrinsic interest

  2. Trace uranium analysis in Indian coal samples using the fission track technique

    International Nuclear Information System (INIS)

    Jojo, P.J.; Rawat, A.; Kumar, Ashavani; Prasad, Rajendra

    1993-01-01

    The ever-growing demand for energy has resulted in the extensive use of fossil fuels, especially coal, for power generation. Coal and its by-products often contain significant amounts of radionuclides, including uranium, which is the ultimate source of the radioactive gas Radon-222. The present study gives the concentration of uranium in coal samples of different collieries in India, collected from various thermal power plants in the state of Uttar Pradesh. The estimates were made using the fission track technique. Latent damage tracks were not found to be uniformly distributed but showed sun bursts and clusters. Non-uniform distributions of trace elements are a very common phenomenon in rocks. The levels of uranium in the coal samples were found to vary from 2.0 to 4.9 ppm in uniform distributions and from 21.3 to 41.0 ppm in non-uniform distributions. Measurements were also made on fly ash samples where the average uranium concentration was found to be 8.4 and 49.3 ppm in uniform and non-uniform distributions, respectively. (author)

  3. Fission decay properties of ultra neutron-rich uranium isotopes

    Indian Academy of Sciences (India)

    in the chain of neutron-rich uranium isotopes is examined here. The neutron ... mean field theory, this nucleus is shown to undergo exotic decay mode of thermal neu- .... For 250U with a fission barrier of 4.3 MeV [5], we obtain the value of.

  4. Determination of the uranium concentration in soil solutions by the fission track registration technique

    International Nuclear Information System (INIS)

    Fernandes, G.P.

    1980-02-01

    The fission tracks registration technique was used to determine the uranium concentration in soil solutions. The Makrofol KG, a synthetic plastic manufactured by Bayer, was used as a detector and the wet method was applied. From the calibration curves obtained, it was possible to determine uranium concentrations in soil solutions, from 90 to 320 μg U/l, with an error between 9.4% and 4.0%, respectively. The method was applied to a few soil samples from Pocos de Caldas, Minas Gerais in Brazil. The uranium concentrations in the sample and residues were also determined by other methods to compare the results obtained; only one sample showed deviation from the results obtained by the fission tracks method. And this discrepancy was explained in a reasonable way. It was shown that the fission tracks technique can be used with sucess for application in soil solutions. (Author) [pt

  5. Potential for large-scale uses for fission-product Xenon

    International Nuclear Information System (INIS)

    Rohrmann, C.A.

    1983-03-01

    Of all fission products in spent, low-enrichment-uranium power-reactor fuels, xenon is produced in the highest yield - nearly one cubic meter, STP, per metric ton. In aged fuels which may be considered for processing in the US, radioactive xenon isotopes approach the lowest limits of detection. The separation from accompanying radioactive 85 Kr is the essential problem; however, this is state-of-the-art technology which has been demonstrated on the pilot scale to yield xenon with pico-curie levels of 85 Kr contamination. If needed for special applications, such levels could be further reduced. Environmental considerations require the isolation of essentially all fission-product krypton during fuel processing. Economic restraints assure that the bulk of this krypton will need to be separated from the much-more-voluminous xenon fraction of the total amount of fission gas. Xenon may thus be discarded or made available for uses at probably very low cost. In contrast with many other fission products which have unique radioactive characteristics which make them useful as sources of heat, gamma and x-rays, and luminescence - as well as for medicinal diagnostics and therapeutics - fission-product xenon differs from naturally occurring xenon only in its isotopic composition which gives it a slightly hgiher atomic weight, because of the much higher concentrations of the 134 Xe and 136 Xe isotopes. Therefore, fission-product xenon can most likely find uses in applications which already exist but which can not be exploited most beneficially because of the high cost and scarcity of natural xenon. Unique uses would probably include applications in improved incandescent light illumination in place of krypton and in human anesthesia

  6. Disintegration constant of uranium-238 by spontaneous fission redetermined by glass track method

    International Nuclear Information System (INIS)

    Lima Medeiros, E. de.

    1978-01-01

    The disintegration constant of U 238 by spontaneous fission using glass as fission fragment detector was redetermined. A film of natural uranium (UO 3 ) prepared by chemical methods on the glass lamina was used in a long time experience of exposure (about 16 years). The good conditions of sample preparation and storage allow to observe, after chemical etching, fission fragment tracks. (M.C.K.) [pt

  7. Studies of short-lived products of spallation fission reactions at TRIUMF

    CERN Document Server

    Bischoff, G; D'Auria, J M; Dautet, H; Lee, J K P; Pate, B D; Wiesehahn, W

    1976-01-01

    The gas-jet recoil transport technique has been used to transport products from spallation and fission reactions from a target chamber to a shielded location for nuclear spectroscopic studies. These involve X- beta - gamma coincidence measurements and (shortly) time- of-flight mass spectroscopy. It has been deduced that the proton beam at present intensities has no appreciable effect on the ability of ethylene and other cluster-producing gases to transport radioactivity. Preliminary results will be presented for shortlived fission products from uranium, and for spallation products of iodine and argon. The latter were obtained from the bombardment of gas and aerosol targets mixed with the transporting gas in the target chamber, which appears to be a generally useful technique.

  8. Thorium-uranium fission radiography

    Science.gov (United States)

    Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.

    1976-01-01

    Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.

  9. Separation Of Uranium From Fission Products Zr And Ru With 30% TBP (Tri Butyl Phosphate) Dodecane In Nitric Acid Medium As An Extract Material

    International Nuclear Information System (INIS)

    Herdady, R. Didiek; Masduki, Busron; Sigit

    2000-01-01

    Separation of uranium from fission products Zr and Ru in batch process with Tbp 30% - dodecane in nitric acid medium has been investigated. The extraction was carried out on various acidity of 1,006 M, 1.990 M, 2,980 M, 4,006 M, and 5,006 M, and uranium concentration in feed of 100.30 g/l; 149.96 g/l, 250.30 g/l and 300.7 g/l. The results showed that equilibrium of extraction was achieved at 25 minutes, enhancement factor of ruthenium increased and of zirconium decreased Utilization of grand concentration of uranium in feed caused decreasing of distribution coefficient, zirconium and ruthenium. The better contribution of experiments was obtained at the acidity of 2 M and uranium concentration in feed of 149.9 g/l with the decontamination factor of zirconium, FD zr-u was 1,65 and of ruthenium, FD ru-u was 1,52

  10. Study of the short-lived fission products. Separation of iodine and xenon fission radionuclides

    International Nuclear Information System (INIS)

    Barrachina, M.; Villar, M. A.

    1965-01-01

    The separation by distillation in a sulfuric acid or phosphoric acid-hydrogen peroxide medium of the iodine isotopes (8 day iodine-131, 2,3 hour iodine-132 21 hour iodine-133, 53 minute iodine-134 and 6,7 hour iodine-135) present in a uranium sample after different irradiation and cooling times is here described. It is also reported the use of active charcoal columns for the retention of xenon isotopes (5,27 days xenon-133 and 9,2 hours xenon-135) either released during the dissolution of the uranium irradiated samples or generated along the fission isobaric chains in the solutions of distillated iodine. In both cases the radiochemical purity of the separated products is established by gamma spectrometry. (Author) 15 refs

  11. Post-irradiation studies on knock-out and pseudo-recoil releases of fission products from fissioning UO2

    International Nuclear Information System (INIS)

    Yamagishi, S.; Tanifuji, T.

    1976-01-01

    By using post-irradiation techniques, in-pile releases of 133 Xe, sup(85m)Kr, 88 Kr, 87 Kr and 138 Xe from UO 2 fissioning at low temperatures below about 200 0 C are studied: these are analyzed into a time-dependent knock-out and time-independent pseudo-recoil releases. For the latter, a 'self knock-out' mechanism is proposed: when a fission fragment loses thoroughly its energy near the UO 2 surface and stops there, it will knock out the surface substances and accordingly the fragment (i.e. the fission product) will be released. The effective thickness of the layer where the self knock-out occurs is found to be approximately 7A. As for the knock-out release, the following is estimated from its dependence on various factors: the knock-out release of fission products occurs from the surface layer with the effective thickness of approximately 20A: the shape of UO 2 matrix knocked out by one fission fragment passing through the surface is equivalent to a cylinder approximately 32A diameter by approximately 27A thick, (i.e. the knock-out coefficient for UO 2 is approximately 660 uranium atoms per knock-out event). On the basis of the above estimations, the conclusions derived from the past in-pile studies of fission gas releases are evaluated. (Auth.)

  12. Fission Product Data Measured at Los Alamos for Fission Spectrum and Thermal Neutrons on 239Pu, 235U, 238U

    International Nuclear Information System (INIS)

    Selby, H.D.; Mac Innes, M.R.; Barr, D.W.; Keksis, A.L.; Meade, R.A.; Burns, C.J.; Chadwick, M.B.; Wallstrom, T.C.

    2010-01-01

    We describe measurements of fission product data at Los Alamos that are important for determining the number of fissions that have occurred when neutrons are incident on plutonium and uranium isotopes. The fission-spectrum measurements were made using a fission chamber designed by the National Institute for Standards and Technology (NIST) in the BIG TEN critical assembly, as part of the Inter-laboratory Liquid Metal Fast Breeder Reactor (LMFBR) Reaction Rate (ILRR) collaboration. The thermal measurements were made at Los Alamos' Omega West Reactor. A related set of measurements were made of fission-product ratios (so-called R-values) in neutron environments provided by a number of Los Alamos critical assemblies that range from having average energies causing fission of 400-600 keV (BIG TEN and the outer regions of the Flattop-25 assembly) to higher energies (1.4-1.9 MeV) in the Jezebel, and in the central regions of the Flattop-25 and Flattop-Pu, critical assemblies. From these data we determine ratios of fission product yields in different fuel and neutron environments (Q-values) and fission product yields in fission spectrum neutron environments for 99 Mo, 95 Zr, 137 Cs, 140 Ba, 141,143 Ce, and 147 Nd. Modest incident-energy dependence exists for the 147 Nd fission product yield; this is discussed in the context of models for fission that include thermal and dynamical effects. The fission product data agree with measurements by Maeck and other authors using mass-spectrometry methods, and with the ILRR collaboration results that used gamma spectroscopy for quantifying fission products. We note that the measurements also contradict earlier 1950s historical Los Alamos estimates by ∼5-7%, most likely owing to self-shielding corrections not made in the early thermal measurements. Our experimental results provide a confirmation of the England-Rider ENDF/B-VI evaluated fission-spectrum fission product yields that were carried over to the ENDF/B-VII.0 library, except

  13. Grain boundary sweeping and dissolution effects on fission product behaviour under severe fuel damage accident conditions

    International Nuclear Information System (INIS)

    Rest, J.

    1986-01-01

    The theoretical FASTGRASS-VFP model has been used in the interpretation of fission gas, iodine, tellurium, and cesium release from severe-fuel-damage (SFD) tests performed in the PBF reactor in Idaho. A theory of grain boundary sweeping of gas bubbles, gas bubble behavior during fuel liquefaction (destruction of grain boundaries due to formation of a U-rich melt phase), and during U-Zr eutectic melting has been included within the FASTGRASS-VFP formalism. The grain-boundary-sweeping theory considers the interaction between the moving grain boundary and two distinct size classes of bubbles, those on grain faces and on grain edges. The theory of the effects of fuel liquefaction and U-Zr eutectic melting on fission product behaviour considers the migration and coalescence of fission gas bubbles in either molten uranium, or a Zircaloy-Uranium eutectic melt. Results of the analyses demonstrate that intragranular fission product behavior during the tests can be interpreted in terms of a grain-growth/grain-boundary-sweeping mechanism that enhances the flow of fission products from within the grains to the grain boundaries. Whereas fuel liquefaction leads to an enhanced release of fission products in trace-irradiated fuel, the occurrence of fuel liquefaction in normally-irradiated fuel can degrade fission product release. This phenomenon is due in part to reduced gas-bubble mobilities in a viscous medium as compared to vapor transport, and in part to a degradation of grain growth rates and the subsequent decrease in grain-boundary sweeping of intragranular fission products into the liquified lamina. The analysis shows that total UO 2 dissolution due to eutectic melting leads to increased release for both trace-irradiated and normally-irradiated fuel. The FASTGRASS-VFP predictions, measured release rates from the above tests, and previously published release rates are compared and differences between fission product behavior in trace-irradiated and in normally

  14. The Comparison Study of Neutron Activation Analysis and Fission Track Technique for Uranium Determination

    International Nuclear Information System (INIS)

    Sirinuntavid, Alice; Rodthongkom, Chouvana

    2007-08-01

    Full text: Comparison between Neutron Activation Analysis (NAA) and fission track technique for uranium determination in solid samples was studied by use of standard reference materials, i.e., ore, coal fly ash, soil. For NAA, the epithermal neutron was applied for activated irradiation. Then, the 74.5 keV gamma from U-239 or 277.7 keV gamma from Np-239 was measured. For high Uranium content samples, NAA method with 74.5 keV gamma measurement, gave higher precision result than the 277.7 keV gamma measurement method. NAA method with 277.7 keV gamma measurement, gave higher sensitivity and precision result for low Uranium content samples and the uranium contained less than 10 ppm samples. Nevertheless, the latter procedure needed longer time for neutron irradiation and analysis procedure. In comparison the results of Uranium analysis between NAA and fission track, it was found that no significant difference within 95 % of confidence level

  15. Status report on the development of a prompt fission neutron uranium borehole logging technique

    International Nuclear Information System (INIS)

    Smith, G.W.

    1977-05-01

    The prompt fission neutron (PFN) method of direct uranium measurement was studied. The PFN uranium logging technique measures the enhanced epithermal neutron population created by the prompt thermal fission of 235 U to assay uranium mineralization around a borehole. This neutron population exists for several hundred microseconds after a pulsed neutron source produces a burst of high energy (14 MeV) neutrons. A feasibility study established the basic relationship between the uranium concentration and the enhanced epithermal neutron count, and defined the major measurement perturbing factors. Following the feasibility study, development of a PFN prototype field probe was undertaken. A laboratory type neutron generator, the Controlatron, was modified for use in the probe. Field evaluation of the prototype system began in January 1976. Comparisons of neutron logs and natural gamma logs taken during this evaluation period clearly define many disequilibrium conditions as verified by ore grade estimates from core samples. The feasibility of the PFN logging technique to detect uranium in-situ has now been demonstrated

  16. Separation of fission products by the use of recoil; Separation des produits de fission par utilisation du recul

    Energy Technology Data Exchange (ETDEWEB)

    Henry, R; Beydon, J; Bardy, A [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    We have studied fission recoil in U{sub 3}O{sub 8} organic solvent mixtures. The organic phase chosen was first naphtalene then terphenyl. Graphite and activated carbon were also tried out as recoil media. We first verified that the fission fragments are ejected from the uranium oxide particles under our experimental conditions. The retention phenomenon observed is due to an adsorption occurring either during irradiation or during the chemical treatment. Using naphthalene or terphenyl, the individual separation of the fission products has made it possible to show the influence of the chemical nature of the recoil medium on the retention of each fission product. We put forward a hypothesis concerning this phenomenon: experiments carried out using 'scavengers', together with kinetic studies make it possible to explain the retention phenomenon and to choose the most favorable conditions for reducing this retention to a low value. The thermal recombination kinetics demonstrate the influence of the fission ion charge on the final value of the retention for a given temperature. The origins of this thermal recombination are discussed. (author) [French] On a etudie le recul de fission dans les melanges U{sub 3}0{sub 8}, phase organique. La phase organique choisie a ete le naphtalene puis le terphenyle. Le graphite et le charbon actif ont egalement ete essayes comme milieux de recul. On a d'abord determine que les fragments de fission sortent des particules d'oxyde d'uranium avec un rendement de 100 pour cent dans nos conditions experimentales. Le phenomene de retention observe est du a une adsorption ayant lieu pendant l'irradiation ou pendant le traitement chimique. Dans le naphtalene et le terphenyle, la separation individuelle des produits de fission a permis de mettre en evidence l'influence de la nature chimique du milieu de recul sur la retention de chaque produit de fission. On avance une hypothese sur ce phenomene: des experiences effectuees avec des 'scavengers

  17. Grain boundary sweeping and dissolution effects on fission product behavior under severe fuel damage accident conditions

    International Nuclear Information System (INIS)

    Rest, J.

    1985-10-01

    The theoretical FASTGRASS-VFP model has been used in the interpretation of fission gas, iodine, tellurium, and cesium release from severe-fuel-damage (SFD) tests performed in the PBF reactor in Idaho. A theory of grain boundary sweeping of gas bubbles, gas bubble behavior during fuel liquefaction (destruction of grain boundaries due to formation of a U-rich melt phase), and during U-Zr eutectic melting has been included within the FASTGRASS-VFP formalism. The grain-boundary-sweeping theory considers the interaction between the moving grain boundary and two distinct size classes of bubbles, those on grain faces and on grain edges. The theory of the effects of fuel liquefaction and U-Zr eutectic melting on fission product behavior considers the migration and coalescence of fission gas bubbles in either molten uranium, or a zircaloy-uranium eutectic melt. The FASTGRASS-VFP predictions, measured release rates from the above tests, and previously published release rates are compared and differences between fission product behavior in trace-irradiated and in normally irradiated fuel are highlighted

  18. A review of selected aspects of the effect of water vapor on fission gas release from uranium oxycarbide

    International Nuclear Information System (INIS)

    Myers, B.F.

    1994-04-01

    A selective review is presented of previous measurements and the analysis of experiments on the effect of water vapor on fission gas release from uranium oxycarbide. Evidence for the time-dependent composition of the uranium oxycarbide fuel; the diffusional release of fission gas; and the initial, rapid and limited release of stored fission gas is discussed. In regard to the initial, rapid release of fission gas, clear restrictions on mechanistic hypotheses can be deduced from the experimental data. However, more fundamental experiments may be required to establish the mechanism of the rapid release

  19. PROCESSING OF URANIUM-METAL-CONTAINING FUEL ELEMENTS

    Science.gov (United States)

    Moore, R.H.

    1962-10-01

    A process is given for recovering uranium from neutronbombarded uranium- aluminum alloys. The alloy is dissolved in an aluminum halide--alkali metal halide mixture in which the halide is a mixture of chloride and bromide, the aluminum halide is present in about stoichiometric quantity as to uranium and fission products and the alkali metal halide in a predominant quantity; the uranium- and electropositive fission-products-containing salt phase is separated from the electronegative-containing metal phase; more aluminum halide is added to the salt phase to obtain equimolarity as to the alkali metal halide; adding an excess of aluminum metal whereby uranium metal is formed and alloyed with the excess aluminum; and separating the uranium-aluminum alloy from the fission- productscontaining salt phase. (AEC)

  20. [Fission product yields of 60 fissioning reactions]. Final report

    International Nuclear Information System (INIS)

    Rider, B.F.

    1995-01-01

    In keeping with the statement of work, I have examined the fission product yields of 60 fissioning reactions. In co-authorship with the UTR (University Technical Representative) Talmadge R. England ''Evaluation and Compilation of Fission Product Yields 1993,'' LA-UR-94-3106(ENDF-349) October, (1994) was published. This is an evaluated set of fission product Yields for use in calculation of decay heat curves with improved accuracy has been prepared. These evaluated yields are based on all known experimental data through 1992. Unmeasured fission product yields are calculated from charge distribution, pairing effects, and isomeric state models developed at Los Alamos National Laboratory. The current evaluation has been distributed as the ENDF/B-VI fission product yield data set

  1. Study of the production of neutron-rich isotope beams issuing from fissions induced by fast neutrons

    International Nuclear Information System (INIS)

    Lau, Ch.

    2000-01-01

    This work is a contribution to the PARRNe project (production of radioactive neutron-rich isotopes). This project is based on the fission fragments coming from the fission of 238-uranium induced by fast neutrons. The fast neutron flux is produced by the collisions of deutons in a converter. Thick targets of uranium carbide and liquid uranium targets have been designed in order to allow a quick release of fission fragments. A device, able to trap on a cryogenic thimble rare gas released by the target, has allowed the production of radioactive nuclei whose half-life is about 1 second. This installation has been settled to different deuton accelerators in the framework of the European collaboration SPIRAL-2. A calibration experiment has proved the feasibility of fixing an ISOL-type isotope separator to a 15 MV tandem accelerator, this installation can provide 500 nA deutons beams whose energy is 26 MeV and be a valuable tool for studying fast-neutron induced fission. Zinc, krypton, rubidium, cadmium, iodine, xenon and cesium beams have been produced in this installation. The most intense beams reach 10000 nuclei by micro-coulomb for 26 MeV deutons. An extra gain of 2 magnitude orders can be obtained by using a more specific ion source and by increasing the thickness of the target. Another extra gain of 2 magnitude orders involves 100 MeV deutons

  2. The potential for large scale uses for fission product xenon

    International Nuclear Information System (INIS)

    Rohrmann, C.A.

    1983-01-01

    Of all fission products in spent, low enrichment, uranium, power reactor fuels xenon is produced in the highest yield - nearly one cubic meter, STP, per metric ton. In aged fuels which may be considered for processing in the U.S. radioactive xenon isotopes approach the lowest limits of detection. The separation from accompanying radioactive 85 Kr is the essential problem; however, this is state of the art technology which has been demonstrated on the pilot scale to yield xenon with pico-curie levels of 85 Kr contamination. If needed for special applications, such levels could be further reduced. Environmental considerations require the isolation of essentially all fission product krypton during fuel processing. Economic restraints assure that the bulk of this krypton will need to be separated from the much more voluminous xenon fraction of the total amount of fission gas. Xenon may thus be discarded or made available for uses at probably very low cost. In contrast with many other fission products which have unique radioactive characteristics which make them useful as sources of heat, gamma and x-rays and luminescence as well as for medicinal diagnostics and therapeutics fission product xenon differs from naturally occurring xenon only in its isotopic composition which gives it a slightly higher atomic weight, because of the much higher concentrations of the 134 X and 136 Xe isotopes. Therefore, fission product xenon can most likely find uses in applications which already exist but which can not be exploited most beneficially because of the high cost and scarcity of natural xenon. Unique uses would probably include applications in improved incandescent light illumination in place of krypton and in human anesthesia

  3. Separation of uranium, plutonium and fission products on zirconium phosphate, Part 1 - Adsorption equilibria and kinetics

    International Nuclear Information System (INIS)

    Gal, I.; Ruvarac, A.

    1963-01-01

    The distribution coefficients of UO 2 ++ , PuO 2 ++ , Pu 3+ , Pu 4+ , Fe 3+ , 137 Cs + , 90 Sr ++ , 95 Zr + + 95 Nb 5+ , 106 Ru and 144 Ce 3+ were determined in the system zirconium phosphate-aqueous solution of HNO 3 . As for the exchange reation Cs + /H + and Sr ++ /2H + , it has been shown that the mass action law can be applied. For these reactions the corresponding equilibrium constants were calculated. The rates of adsorption of Cs + , Sr ++ , Fe 3+ and Pu 4+ from solutions of a fixed HNO 3 concentration were studied, and empirical rate equations were derived. The experimental data confirm that UO 2 ++ can be separated from Pu 4+ . Among the fission products, 90 Sr, 106 Ru and 144 Ce mainly follow the fraction of uranium, while 137 Cs, 95 Zr and 95 Nb follow the plutonium fraction. Separations within the fractions are possible (author)

  4. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, M.

    1984-09-01

    This is the tenth issue of a report series on Fission Product Data, which informs us about all the activities in this field, which are planned, ongoing, or have recently been completed. The types of activities included are measurements, compilations and evaluations of: fission product yields (neutron induced and spontaneous fission), neutron reaction cross sections of fission products, data related to the radioactive decay of fission products, delayed neutron data of fission products, lumped fission product data (decay heat, absorption, etc.). There is also a section with recent references relative to fission product nuclear data

  5. Enhanced fuel production in thorium/lithium hybrid blankets utilizing uranium multipliers

    International Nuclear Information System (INIS)

    Pitulski, R.H.

    1979-10-01

    A consistent neutronics analysis is performed to determine the effectiveness of uranium bearing neutron multiplier zones on increasing the production of U 233 in thorium/lithium blankets for use in a tokamak fusion-fission hybrid reactor. The nuclear performance of these blankets is evaluated as a function of zone thicknesses and exposure by using the coupled transport burnup code ANISN-CINDER-HIC. Various parameters such as U 233 , Pu 239 , and H 3 production rates, the blanket energy multiplication, isotopic composition of the fuels, and neutron leakages into the various zones are evaluated during a 5 year (6 MW.y.m -2 ) exposure period. Although the results of this study were obtained for a tokomak magnetic fusion device, the qualitative behavior associated with the use of the uranium bearing neutron multiplier should be applicable to all fusion-fission hybrids

  6. Measurements of fission cross-sections and of neutron production rates; Mesures de sections efficaces de fission et du nombre de neutrons prompts emis par fission

    Energy Technology Data Exchange (ETDEWEB)

    Billaud, P; Clair, C; Gaudin, M; Genin, R; Joly, R; Leroy, J L; Michaudon, A; Ouvry, J; Signarbieux, C; Vendryes, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    a) Measurements of neutron induced fission cross-sections in the low energy region. The variation of the fission cross sections of several fissile isotopes has been measured and analysed, for neutron energies below 0,025 eV. The monochromator was a crystal spectrometer used in conjunction with a mechanical velocity selector removing higher order Bragg reflections. The fissile material was laid down on the plates of a fission chamber by painting technic. An ionization chamber, having its plates coated with thin {sup 10}B layers, was used as the neutron flux monitor. b) Measurement of the fission cross section of {sup 235}U. We intend to measure the variation of the neutron induced fission cross section of {sup 235}U over the neutron energy range from 1 keV by the time of flight method. The neutron source is the uranium target of a pulsed 28 MeV electron linear accelerator. The detector is a large fission chamber, with parallel plates, containing about 10 g of {sup 235}U (20 deposits of 25 cm diameter). The relative fission data were corrected for the neutron spectrum measured with a set of BF{sub 3} proportional counters. c) Mean number {nu} of neutrons emitted in neutron induced fission. We measured the value of {nu} for several fissile isotopes in the case of fission induced by 14 MeV neutrons. The 14 MeV neutrons were produced by D (t, n) {alpha} reaction by means of a 300 kV Cockcroft Walton generator. (author)Fren. [French] a) Mesures de sectionficaces de fission a basse energie. Nous avons mesure et analyse la variation de la section efficace de fission de divers isotopes fissiles pour des neutrons d'energie inferieure a 0,025 eV. Le monochromateur est constitue par un spectrometre a cristal auquel est associe un selecteur mecanique destine a eliminer les diffractions de Bragg d'ordre superieur au premier. Le materiau fissile est contenu dans une chambre a fission sous forme de depots realises par peinture; une chambre d'ionisation a depots minces de B{sub 10

  7. Determination of burnup in irradiated nuclear fuels by the method of stable 148Nd fission products

    International Nuclear Information System (INIS)

    Souza Sarkis, J.E. de.

    1982-01-01

    A method is described for the isotopic analysis and determination of burnup in irradiated nuclear fuel by mass spectrometric technique. The burnup is calculed from the determination of the concentration of uranium, plutonium and the fission product 148 Nd in the samples of UO 2 irradiated fuel from a P.W.R. type reactor. The method involves the separation of fractions of uranium, plutonium and neodimium from the dissolved irradiated fuel by ion exchange technique. The determination of uranium, plutonium and the fission product 148 Nd is carried out by isotope diluition mass spectrometry technique using as isotope tracers the nuclides 233 U, 242 Pu and 150 Nd. For the chemical processing and handling of the irradiated sample a Hot Chemistry Laboratory was mounted. It consists of glove boxes and equipments for radiation monitoring and protection. The results obtained indicate an atom percent burnup of 2.181 + - 0.035% wich corresponds an 20.937 + - 0.739 Gwd/ton of thermal energy produced. (Author) [pt

  8. Natural uranium impurities in fission track detectors and associated geocronological parameters

    International Nuclear Information System (INIS)

    Ricabarra, G.H.; Bovisio de Ricabarra, M.D.; Waisman, Dina; Faradjie de Turjanski, Rosa

    1981-01-01

    A technique, based in counting neutron induced fission tracks, has been developed for the measurement of uranium impurities in mica. Uranium concentrations of 10 -10 and 10 -9 (U atom/mica atom) have been measured. As a part of the development of this technique, the mica geological age was also measured, by fossil and induced track detection. The agreement obtained by this method, T = (472+-52) x 10 6 years with that of (450+-15) x 10 6 years obtained by the Ar-K technique is satisfactory and is an indirect test of the fission track technique used. A careful analysis of the neutron field parameters and nuclear data used in the age determination was made. This analysis is useful for applications in geocronology. According to this analysis a value of lambdasub(f)=(7.1+-0.1) x 10 -17 years -1 is recommended for the spontaneous fission of U238. However, in order to compare the results, the quoted age, T=(472+-52) x 10 6 years, was obtained with the generally accepted value of lambdasub(f)=(6.85-0.20) x 10 -17 years -1 (Fleischer and Price 1964). (author) [es

  9. SEPARATION OF URANIUM, PLUTONIUM, AND FISSION PRODUCTS

    Science.gov (United States)

    Spence, R.; Lister, M.W.

    1958-12-16

    Uranium and plutonium can be separated from neutron-lrradiated uranium by a process consisting of dissolvlng the lrradiated material in nitric acid, saturating the solution with a nitrate salt such as ammonium nitrate, rendering the solution substantially neutral with a base such as ammonia, adding a reducing agent such as hydroxylamine to change plutonium to the trivalent state, treating the solution with a substantially water immiscible organic solvent such as dibutoxy diethylether to selectively extract the uranium, maklng the residual aqueous solutlon acid with nitric acid, adding an oxidizing agent such as ammonlum bromate to oxidize the plutonium to the hexavalent state, and selectlvely extracting the plutonium by means of an immlscible solvent, such as dibutoxy dlethyletber.

  10. Dating by fission track method: study of neutron dosimetry with natural uranium thin films

    International Nuclear Information System (INIS)

    Iunes, P.J.

    1990-06-01

    Fission track dating is described, focalizing the problem of the decay constant for spontaneous fission of 238 U and the use of neutron dosimetry in fission track analysis. Experimental procedures using thin films of natural uranium as neutron dosimeters and its results are presented. The author shows a intercomparison between different thin films and between the dosimetry with thin film and other dosimetries. (M.V.M.). 52 refs, 12 figs, 9 tabs

  11. Neutronics analysis of water-cooled energy production blanket for a fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Jiang Jieqiong; Wang Minghuang; Chen Zhong; Qiu Yuefeng; Liu Jinchao; Bai Yunqing; Chen Hongli; Hu Yanglin

    2010-01-01

    Neutronics calculations were performed to analyse the parameters of blanket energy multiplication factor (M) and tritium breeding ratio (TBR) in a fusion-fission hybrid reactor for energy production named FDS (Fusion-Driven hybrid System)-EM (Energy Multiplier) blanket. The most significant and main goal of the FDS-EM blanket is to achieve the energy gain of about 1 GWe with self-sustaining tritium, i.e. the M factor is expected to be ∼90. Four different fission materials were taken into account to evaluate M in subcritical blanket: (i) depleted uranium, (ii) natural uranium, (iii) enriched uranium, and (iv) Nuclear Waste (transuranic from 33 000 MWD/MTU PWR (Pressurized Water Reactor) and depleted uranium) oxide. These calculations and analyses were performed using nuclear data library HENDL (Hybrid Evaluated Nuclear Data Library) and a home-developed code VisualBUS. The results showed that the performance of the blanket loaded with Nuclear Waste was most attractive and it could be promising to effectively obtain tritium self-sufficiency and a high-energy multiplication.

  12. Study of the behaviour of cesium fission product in uranium dioxide by the ab initio method

    International Nuclear Information System (INIS)

    Gupta, Florence

    2008-01-01

    The knowledge of the behaviour of fission products in the nuclear fuel is very important for safety considerations and for understanding the evolution of the fuel properties under irradiation. In this work, we focussed mainly on the behaviour of caesium in UO 2 through ab initio studies of its solubility at point defects in the matrix, its diffusion and its contribution to the formation of solid phases in the fuel. The role of electronic correlation effects of the f electrons of uranium on these properties and on the description of the defect free crystal, is assessed. The formation energies of the main point defects are calculated and their concentration as a function of fuel stoichiometry and temperature is estimated. The migration barriers and migration paths for the self-diffusion of oxygen and uranium vacancies and oxygen interstitials in UO 2 are discussed. The solubility of Cs is found to be very low in UO 2 in agreement with experimental findings. The most favourable trapping sites are determined as a function of oxygen concentration in the fuel. Our results show that in the hyper-stoichiometric regime, the diffusion of Cs from its most favourable trapping site is limited by the uranium vacancy diffusion mechanism. We also considered the formation of the main solid phases of caesium resulting from its oxidation (Cs 2 O, Cs 2 O 2 , CsO 2 ) and from its interaction with the fuel (Cs 2 UO 4 ), with molybdenum (Cs 2 MoO 4 ) and with the zirconium of the clad (Cs 2 ZrO 3 ), since the formation of such phases, their solubility and their interdependence will affect the release of caesium. (author)

  13. Study of fission product {gamma} spectra in the band 2-500 keV; Etude du spectre {gamma} des produits de fission dans la bande 0-500 keV

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, A. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In the study of the {gamma} spectrum of uranium fission products, particular attention has been given in this note to the part of the spectrum ranging between 0 and 500 keV after a given pile operating programme and the evolution of this spectrum with time after a pile shutdown has been followed. The study be related to the fission products which appear in the pile as a whole or on those produced in a uranium sample assumed to have been placed in the pile. The latter case has been envisaged here. The spectrum determination is based partly on theory and partly on experiment. The pile operating conditions are different in the two cases, which widens the range of validity of the spectra traced here. (author) [French] Dans l'etude du spectre {gamma} des produits de fission de l'uranium, on s'est plus particulierement interesse dans la presente note a determiner la partie du spectre qui s'etend entre 0 et 500 keV, au bout d'un fonctionnement donne de pile, et a suivre l'evolution de ce spectre dans le temps apres un arret de pile. L'etude peut porter sur les produits de fission apparus dans toute la pile ou sur ceux apparus dans un echantillon d'uranium suppose place en pile. C'est ce dernier cas que nous avons envisage. La determination du spectre s'appuie sur une partie theorique et sur une partie experimentale. Les fonctionnements de pile choisis sont differents dans les deux cas, ce qui permet d'etendre la gamme de validite des spectres traces ici. (auteur)

  14. Study of fission product {gamma} spectra in the band 2-500 keV; Etude du spectre {gamma} des produits de fission dans la bande 0-500 keV

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, A [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In the study of the {gamma} spectrum of uranium fission products, particular attention has been given in this note to the part of the spectrum ranging between 0 and 500 keV after a given pile operating programme and the evolution of this spectrum with time after a pile shutdown has been followed. The study be related to the fission products which appear in the pile as a whole or on those produced in a uranium sample assumed to have been placed in the pile. The latter case has been envisaged here. The spectrum determination is based partly on theory and partly on experiment. The pile operating conditions are different in the two cases, which widens the range of validity of the spectra traced here. (author) [French] Dans l'etude du spectre {gamma} des produits de fission de l'uranium, on s'est plus particulierement interesse dans la presente note a determiner la partie du spectre qui s'etend entre 0 et 500 keV, au bout d'un fonctionnement donne de pile, et a suivre l'evolution de ce spectre dans le temps apres un arret de pile. L'etude peut porter sur les produits de fission apparus dans toute la pile ou sur ceux apparus dans un echantillon d'uranium suppose place en pile. C'est ce dernier cas que nous avons envisage. La determination du spectre s'appuie sur une partie theorique et sur une partie experimentale. Les fonctionnements de pile choisis sont differents dans les deux cas, ce qui permet d'etendre la gamme de validite des spectres traces ici. (auteur)

  15. Accelerator based production of fissile nuclides, threshold uranium price and perspectives

    International Nuclear Information System (INIS)

    Djordjevic, D.; Knapp, V.

    1988-01-01

    Accelerator breeder system characteristics are considered in this work. One such system which produces fissile nuclides can supply several thermal reactors with fissile fuel, so this system becomes analogous to an uranium enrichment facility with difference that fissile nuclides are produced by conversion of U-238 rather than by separation from natural uranium. This concept, with other long-term perspective for fission technology on the basis of development only one simpler technology. The influence of basic system characteristics on threshold uranium price is examined. Conditions for economically acceptable production are established. (author)

  16. Determination in soils of soluble uranium fraction in acid medium by fission tracks registration techniques

    International Nuclear Information System (INIS)

    Fernandes, G.P.

    1980-01-01

    The fission tracks registration technique was used to determine the concentration of uranium in soil solutions. The Makrofol KG, a synthetic plastic manufactured by Bayer, was used as a detector and the wet method was applied. The method was applied to a few samples of soils from Pocos de Caldas, Minas Gerais in Brazil. The concentrations of uranium in the samples and residues were also determined by other methods to compare the results obtained; only one sample showed deviation among the results obtained by the fission tracks method. (author)

  17. An investigation of fission models for high-energy radiation transport calculations

    International Nuclear Information System (INIS)

    Armstrong, T.W.; Cloth, P.; Filges, D.; Neef, R.D.

    1983-07-01

    An investigation of high-energy fission models for use in the HETC code has been made. The validation work has been directed checking the accuracy of the high-energy radiation transport computer code HETC to investigate the appropriate model for routine calculations, particularly for spallation neutron source applications. Model calculations are given in terms of neutron production, fission fragment energy release, and residual nuclei production for high-energy protons incident on thin uranium targets. The effect of the fission models on neutron production from thick uranium targets is also shown. (orig.)

  18. Enhanced fuel production in thorium/lithium hybrid blankets utilizing uranium multipliers

    Energy Technology Data Exchange (ETDEWEB)

    Pitulski, R.H.

    1979-10-01

    A consistent neutronics analysis is performed to determine the effectiveness of uranium bearing neutron multiplier zones on increasing the production of U/sup 233/ in thorium/lithium blankets for use in a tokamak fusion-fission hybrid reactor. The nuclear performance of these blankets is evaluated as a function of zone thicknesses and exposure by using the coupled transport burnup code ANISN-CINDER-HIC. Various parameters such as U/sup 233/, Pu/sup 239/, and H/sup 3/ production rates, the blanket energy multiplication, isotopic composition of the fuels, and neutron leakages into the various zones are evaluated during a 5 year (6 MW.y.m/sup -2/) exposure period. Although the results of this study were obtained for a tokomak magnetic fusion device, the qualitative behavior associated with the use of the uranium bearing neutron multiplier should be applicable to all fusion-fission hybrids.

  19. Fission track dating and estimation of uranium in some garnets of Rajasthan (India)

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S; Virk, H S [Punjabi Univ., Patiala (India). Dept. of Physics

    1978-09-01

    The experimental procedure, involving the preparation, etching, thermal neutron irradiation and scanning of the garnet samples, is described. The calculated fission track ages and uranium concentration are tabulated.

  20. Separation and purification of uranium by ion exchange on stannic phosphate

    International Nuclear Information System (INIS)

    Mayankutty, P.C.; Nadkarni, M.N.; Venkateswarlu, K.S.

    1977-01-01

    Exchange of uranium, plutonium and some fission product elements was investigated on stannic phosphate (SnP) exchanger from nitric acid solutions. Batch equilibration studies exhibited stronger absorption of plutonium (IV) and some of the fission products on the exchanger than uranium. This indicated the possibility of separation and purification of uranium from plutonium and fission products. Breakthrough studies were carried out to determine the effects of flow-rates and uranium, plutonium and free nitric acid concentrations in the feed to establish the optimum conditions for this separation. Several reagents were also tested to find suitable eluting agents to desorb plutonium from the exchanger. The results indicate that traces of plutonium and fission products present as impurities in the uranium product of the purex process stream can be removed by ion exchange method using SnP. 1 M nitric acid solution containing low concentrations of reducing agents such as ferrous sulfamate or ascorbic acid was found to be an effective eluting agent for plutonium. (author)

  1. Recovering and recycling uranium used for production of molybdenum-99

    Science.gov (United States)

    Reilly, Sean Douglas; May, Iain; Copping, Roy; Dale, Gregory Edward

    2017-12-12

    A processes for recycling uranium that has been used for the production of molybdenum-99 involves irradiating a solution of uranium suitable for forming fission products including molybdenum-99, conditioning the irradiated solution to one suitable for inducing the formation of crystals of uranyl nitrate hydrates, then forming the crystals and a supernatant and then separating the crystals from the supernatant, thus using the crystals as a source of uranium for recycle. Molybdenum-99 is recovered from the supernatant using an adsorbent such as alumina. Another process involves irradiation of a solid target comprising uranium, forming an acidic solution from the irradiated target suitable for inducing the formation of crystals of uranyl nitrate hydrates, then forming the crystals and a supernatant and then separating the crystals from the supernatant, thus using the crystals as a source of uranium for recycle. Molybdenum-99 is recovered from the supernatant using an adsorbent such as alumina.

  2. Uranium

    International Nuclear Information System (INIS)

    Hamdoun, N.A.

    2007-01-01

    The article includes a historical preface about uranium, discovery of portability of sequential fission of uranium, uranium existence, basic raw materials, secondary raw materials, uranium's physical and chemical properties, uranium extraction, nuclear fuel cycle, logistics and estimation of the amount of uranium reserves, producing countries of concentrated uranium oxides and percentage of the world's total production, civilian and military uses of uranium. The use of depleted uranium in the Gulf War, the Balkans and Iraq has caused political and environmental effects which are complex, raising problems and questions about the effects that nuclear compounds left on human health and environment.

  3. Measurement of Fission Product Yields from Fast-Neutron Fission

    Science.gov (United States)

    Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Henderson, R.; Kenneally, J.; Macri, R.; McNabb, D.; Ryan, C.; Sheets, S.; Stoyer, M. A.; Tonchev, A. P.; Bhatia, C.; Bhike, M.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.

    2014-09-01

    One of the aims of the Stockpile Stewardship Program is a reduction of the uncertainties on fission data used for analyzing nuclear test data [1,2]. Fission products such as 147Nd are convenient for determining fission yields because of their relatively high yield per fission (about 2%) and long half-life (10.98 days). A scientific program for measuring fission product yields from 235U,238U and 239Pu targets as a function of bombarding neutron energy (0.1 to 15 MeV) is currently underway using monoenergetic neutron beams produced at the 10 MV Tandem Accelerator at TUNL. Dual-fission chambers are used to determine the rate of fission in targets during activation. Activated targets are counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. To date, data have been collected at neutron bombarding energies 4.6, 9.0, 14.5 and 14.8 MeV. Experimental methods and data reduction techniques are discussed, and some preliminary results are presented.

  4. Determination of the uranium concentration in apatite by the fission - track registration technique

    International Nuclear Information System (INIS)

    D'Oliveira Cardoso, D.

    1983-01-01

    The feasibility of using the fission-track registration technique to determine the uranium content in the phosphate rock beneficiation steps carried on by CompanhiA Arafertil, Araxa, Minas Gerais, Brazil is studied. This determination is of considerable interest to the environmental control of the Arafertil installations as well as of its surroundings or of the areas where these products will be used. The so called wet method was adopted and a 10 μm polycarbonate foil, fabricated by Bayer under the trade name Makrofol KG was used as detector. From the calibration curve obtained, it was possible to determine uranium contents in sample solutions ranging from 21 to 212 μg U/1 with an accuracy of 8 to 14.7%, respectively. The results obtained demonstrated that the technique used is appropriate to the purposes previously aimed at. (Author) [pt

  5. Reactor AQUILON. The hardening of neutron spectrum in natural uranium rods, with a computation of epithermal fissions (1961); Pile AQUILON. Durcissement du spectre des neutrons dans les barreaux d'uranium et calcul des fissions epithermiques (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Durand -Smet, R; Lourme, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    - Microscopic flux measurements in reactor Aquilon have allowed to investigate the thermal and epithermal flux distribution in natural uranium rods, then to obtain the neutron spectrum variations in uranium, Wescott '{beta}' term of the average spectrum in the rod, and the ratio of epithermal to therma fissions. A new definition for the infinite multiplication factor is proposed in annex, which takes into account epithermal parameters. (authors) [French] - Un certain nombre de mesures effectuees dans la pile Aquilon ont permis d'etablir la distribution fine des flux thermique et epithermique dans les barreaux d'uranium, et d'en deduire les variations du spectre des neutrons dans l'uranium, le terme {beta} du spectre de Wescott moyen dans le barreau et le nombre de fissions epithermiques. En annexe, il est propose une definition nouvelle du coefficient de multiplication infini, qui fait intervenir les parametres epithermiques. (auteurs)

  6. Human resource development for uranium production cycle

    International Nuclear Information System (INIS)

    Ganguly, C.

    2014-01-01

    Nuclear fission energy is a viable option for meeting the ever increasing demand for electricity and high quality process heat in a safe, secured and sustainable manner with minimum carbon foot print and degradation of the environment. The growth of nuclear power has shifted from North America and Europe to Asia, mostly in China and India. Bangladesh, Vietnam, Indonesia, Malaysia and the United Arab Emirates are also in the process of launching nuclear power program. Natural uranium is the basic raw material for U-235 and Pu-239, the fuels for all operating and upcoming nuclear power reactors. The present generation of nuclear power reactors are mostly light water cooled and moderated reactor (LWR) and to a limited extent pressurized heavy water reactor (PHWR). The LWRs and PHWRs use low enriched uranium (LEU with around 5% U-235) and natural uranium as fuel in the form of high density UO_2 pellets. The uranium production cycle starts with uranium exploration and is followed by mining and milling to produce uranium ore concentrate, commonly known as yellow cake, and ends with mine and mill reclamation and remediation. Natural uranium and its daughter products, radium and radon, are radioactive and health hazardous to varying degrees. Hence, radiological safety is of paramount importance to uranium production cycle and there is a need to review and share best practices in this area. Human Resource Development (HRD) is yet another challenge as most of the experts in this area have retired and have not been replaced by younger generation because of the continuing lull in the uranium market. Besides, uranium geology, exploration, mining and milling do not form a part of the undergraduate or post graduate curriculum in most countries. Hence, the Technical Co-operation activities of the IAEA are required to be augmented and more country specific and regional training and workshop should be conducted at different universities with the involvement of international experts

  7. Development of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.

    1997-01-01

    The Reduced Enrichment Research and Test Reactor Program has continued its effort in the past 3 yr to develop use of low-enriched uranium (LEU) to produce the fission product 99 Mo. This work comprises both target and chemical processing development and demonstration. Two major target systems are now being used to produce 99 Mo with highly enriched uranium-one employing research reactor fuel technology (either uranium-aluminum alloy or uranium aluminide-aluminum dispersion) and the other using a thin deposit of UO 2 on the inside of a stainless steel (SST) tube. This paper summarizes progress in irradiation testing of targets based on LEU uranium metal foils. Several targets of this type have been irradiated in the Indonesian RSG-GAS reactor operating at 22.5 MW

  8. Thermal Energetic Reactor with High Reproduction of Fission Materials

    International Nuclear Information System (INIS)

    Kotov, V.M.

    2012-01-01

    Existing thermal reactors are energy production scale limited because of low portion of raw uranium usage. Fast reactors are limited by reprocessing need of huge mass of raw uranium at the initial stage of development. The possibility of development of thermal reactors with high fission materials reproduction, which solves the problem, is discussed here. Neutron losses are decreased, uranium-thorium fuel with artificial fission materials equilibrium regime is used, additional in-core and out-core neutron sources are used for supplying of high fission materials reproduction. Liquid salt reactors can use dynamic loading regime for this purpose. Preferable construction is channel type reactor with heavy water moderator. Good materials for fuel element shells and channel walls are zirconium alloys enriched by 90Zr. Water cooled reactors with usage 12% of raw uranium and liquid metal cooled reactors with usage 25% of raw uranium are discussed. Reactors with additional neutron sources obtain full usage of raw uranium with small additional energy expenses. On the base of thermal reactors with high fission materials reproduction world atomic power engineering development supplying higher power and requiring smaller speed of raw uranium mining, than in the variant with fast reactors, is possible.

  9. Continuing investigations for technology assessment of 99Mo production from LEU [low enriched uranium] targets

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Kwok, J.D.; Marshall, S.L.; Vissers, D.R.; Matos, J.E.

    1987-01-01

    Currently much of the world's supply of 99m Tc for medical purposes is produced from 99 Mo derived from the fissioning of high enriched uranium (HEU). This paper presents the results of our continuing studies on the effects of substituting low enriched uranium (LEU) for HEU in targets for the production of fission product 99 Mo. Improvements in the electrodeposition of thin films of uranium metal continue to increase the appeal for the substitution of LEU metal for HEU oxide films in cylindrical targets. The process is effective for targets fabricated from stainless steel or zircaloy. Included is a cost estimate for setting up the necessary equipment to electrodeposit uranium metal on cylindrical targets. Further investigations on the effect of LEU substitution on processing of these targets are also reported. Substitution of uranium silicides for the uranium-aluminium alloy or uranium aluminide dispersed fuel used in current target designs will allow the substitution of LEU for HEU in these targets with equivalent 99 Mo-yield per target and no change in target geometries. However, this substitution will require modifications in current processing steps due to 1) the insolubility of uranium silicides in alkaline solutions and 2) the presence of significant quantities of silicate in solution. Results to date suggest that substitution of LEU for HEU can be achieved. (Author)

  10. A study of fission product transport from failed fuel during N reactor postulated accidents

    International Nuclear Information System (INIS)

    Hagrman, D.L.

    1989-09-01

    This report presents a study of fission product transport behavior in N Reactor during a severe accident. More detail about fission product behavior than has previously been available is provided and key parameters that control this behavior are identified. The current report is an extension to a previous interum study that has added an aerosol formation model, replaced an older aerosol deposition model with an improved correlation, and incorporated results of a revised analysis of the process tubes. The LACE LA1 and LA3 tests are used to assess the revised model applied to determine aerosol deposition. The study concludes that a cesium iodide aerosol is likely to form near the downstream end of the process tubes. Transport of most of the released cesium and iodine as well as less volatile material depends on the behavior of this aerosol and the behavior is sensitive to several parameters that are not well known. If the environment is very clean and effluent flow is sufficient to support oxidation of the zircaloy and uranium of the process tubes, almost none of the aerosol deposits in the riser. Reduction of the effluent flow or the presence of high concentrations of aerosols of very low volatile material like zirconium, uranium, or their oxides causes deposition of the fission products in the riser piping. 24 refs., 18 figs., 11 tabs

  11. Fission product release modelling for application of fuel-failure monitoring and detection - An overview

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.J., E-mail: lewibre@gmail.com [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, K7K 7B4 (Canada); Chan, P.K.; El-Jaby, A. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, K7K 7B4 (Canada); Iglesias, F.C.; Fitchett, A. [Candesco Division of Kinectrics Inc., 26 Wellington Street East, 3rd Floor, Toronto, Ontario M5E 1S2 (Canada)

    2017-06-15

    A review of fission product release theory is presented in support of fuel-failure monitoring analysis for the characterization and location of defective fuel. This work is used to describe: (i) the development of the steady-state Visual-DETECT code for coolant activity analysis to characterize failures in the core and the amount of tramp uranium; (ii) a generalization of this model in the STAR code for prediction of the time-dependent release of iodine and noble gas fission products to the coolant during reactor start-up, steady-state, shutdown, and bundle-shifting manoeuvres; (iii) an extension of the model to account for the release of fission products that are delayed-neutron precursors for assessment of fuel-failure location; and (iv) a simplification of the steady-state model to assess the methodology proposed by WANO for a fuel reliability indicator for water-cooled reactors.

  12. Uranium's scientific history

    International Nuclear Information System (INIS)

    Goldschmidt, B.

    1990-01-01

    The bicentenary of the discovery of uranium coincides with the fiftieth anniversary of the discovery of fission, an event of worldwide significance and the last episode in the uranium -radium saga which is the main theme of this paper. Uranium was first identified by the German chemist Martin Klaproth in 1789. He extracted uranium oxide from the ore pitchblende which was a by-product of the silver mines at Joachimsthal in Bohemia. For over a century after its discovery, the main application for uranium derived from the vivid colours of its oxides and salts which are used in glazes for ceramics, and porcelain. In 1896, however, Becquerel discovered that uranium emitted ionizing radiation. The extraction by Pierre and Marie Curie of the more radioactive radium from uranium in the early years of the twentieth century and its application to the treatment of cancer shifted the chief interest to radium production. In the 1930s the discovery of the neutron and of artificial radioactivity stimulated research in a number of European laboratories which culminated in the demonstration of fission by Otto Frisch in January 1939. The new found use of uranium for the production of recoverable energy, and the creation of artificial radioelements in nuclear reactors, eliminated the radium industry. (author)

  13. Determination of microamounts of uranium in waste solutions

    International Nuclear Information System (INIS)

    Birringer, K.J.; Netzer, S.; Kuhn, E.; Groll, P.

    1975-07-01

    A method for the determination of microamounts of uranium in presence of high amounts of fission and corrosion products is described. Uranium is separated by reversed-phase chromatography on a small column, packed with Voltalef micro and impregnated with TOPO. For the direct photometric determination uranium is eluted by TAM dissolved in ethanol/pyridine. The efficiency of the separation, using a suitable scrub-solution, was tested with solutions of simulated inactive fission and corrosion products. The reproducibility of the method, with 24 μg of uranium, is +- 2,5%. (orig.) [de

  14. Fission-product burnup chain model for research reactor application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Do; Gil, Choong Sup; Lee, Jong Tai [Korea Atomic Energy Research Inst., Daeduk (Republic of Korea)

    1990-12-01

    A new fission-product burnup chain model was developed for use in research reactor analysis capable of predicting the burnup-dependent reactivity with high precision over a wide range of burnup. The new model consists of 63 nuclides treated explicitly and one fissile-independent pseudo-element. The effective absorption cross sections for the preudo-element and the preudo-element yield of actinide nuclides were evaluated in the this report. The model is capable of predicting the high burnup behavior of low-enriched uranium-fueled research reactors.(Author).

  15. Fission track ages and uranium concentration of apatites of different rocks of South India

    International Nuclear Information System (INIS)

    Nand Lal; Nagpaul, K.K.; Nagpal, M.K.

    1975-01-01

    The uranium concentration and ages of apatite grains of various rocks of South India have been measured by fission track technique. The ages range from 100 m.y. to 730 m.y. whereas uranium concentrations vary from 0.5 to 23.8 atom/million atoms of the apatite mineral. The ages agree well with the Deccan volcanic and Ocean Cycle activities. (author)

  16. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, G.

    1976-05-01

    The purpose of this series is to inform scientists working on Fission Product Nuclear Data, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. This report consists of reproductions of essentially unaltered original contributions which the authors have sent to IAEA/NDS. The types of activities being included in this report are measurements, compilations and evaluations of: fission product yields; neutron cross-section data of fission products; data related to β-, γ-decay of fission products; delayed neutron data; and fission product decay-heat

  17. Computer program FPIP-REV calculates fission product inventory for U-235 fission

    Science.gov (United States)

    Brown, W. S.; Call, D. W.

    1967-01-01

    Computer program calculates fission product inventories and source strengths associated with the operation of U-235 fueled nuclear power reactor. It utilizes a fission-product nuclide library of 254 nuclides, and calculates the time dependent behavior of the fission product nuclides formed by fissioning of U-235.

  18. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, M.

    1981-06-01

    This is the seventh issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The present issue contains also a section with some recent references relative to fission product nuclear data, which were not covered by the contributions submitted. The types of activities being included in this report are measurements, compilations and evaluations of: fission product yields (neutron induced and spontaneous fission); neutron reaction cross sections of fission products; data related to the radioactive decay of fission products; delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The sixth issue of this series has been published in June 1980 as INDC(NDS)-113/G+P. The present issue includes contributions which were received by NDS between 1 August 1980 and 25 May 1981

  19. Continuing investigations for technology assessment of 99Mo production from LEU [low enriched Uranium] targets

    International Nuclear Information System (INIS)

    Vandergrift, G.F.; Kwok, J.D.; Marshall, S.L.; Vissers, D.R.; Matos, J.E.

    1987-01-01

    Currently much of the world's supply of /sup 99m/Tc for medical purposes is produced from 99 Mo derived from the fissioning of high enriched uranium (HEU). The need for /sup 99m/Tc is continuing to grow, especially in developing countries, where needs and national priorities call for internal production of 99 Mo. This paper presents the results of our continuing studies on the effects of substituting low enriched Uranium (LEU) for HEU in targets for the production of fission product 99 Mo. Improvements in the electrodeposition of thin films of uranium metal are reported. These improvements continue to increase the appeal for the substitution of LEU metal for HEU oxide films in cylindrical targets. The process is effective for targets fabricated from stainless steel or hastaloy. A cost estimate for setting up the necessary equipment to electrodeposit uranium metal on cylindrical targets is reported. Further investigations on the effect of LEU substitution on processing of these targets are also reported. Substitution of uranium silicides for the uranium-aluminum alloy or uranium aluminide dispersed fuel used in other current target designs will allow the substitution of LEU for HEU in these targets with equivalent 99 Mo-yield per target and no change in target geometries. However, this substitution will require modifications in current processing steps due to (1) the insolubility of uranium silicides in alkaline solutions and (2) the presence of significant quantities of silicate in solution. Results to date suggest that both concerns can be handled and that substitution of LEU for HEU can be achieved

  20. A new mechanistic and engineering fission gas release model for a uranium dioxide fuel

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Yang, Yong Sik; Kim, Dae Ho; Kim, Sun Ki; Bang, Je Geun

    2008-01-01

    A mechanistic and engineering fission gas release model (MEGA) for uranium dioxide (UO 2 ) fuel was developed. It was based upon the diffusional release of fission gases from inside the grain to the grain boundary and the release of fission gases from the grain boundary to the external surface by the interconnection of the fission gas bubbles in the grain boundary. The capability of the MEGA model was validated by a comparison with the fission gas release data base and the sensitivity analyses of the parameters. It was found that the MEGA model correctly predicts the fission gas release in the broad range of fuel burnups up to 98 MWd/kgU. Especially, the enhancement of fission gas release in a high-burnup fuel, and the reduction of fission gas release at a high burnup by increasing the UO 2 grain size were found to be correctly predicted by the MEGA model without using any artificial factor. (author)

  1. Method of assaying uranium with prompt fission and thermal neutron borehole logging adjusted by borehole physical characteristics

    International Nuclear Information System (INIS)

    Barnard, R.W.; Jensen, D.H.

    1982-01-01

    Uranium formations are assayed by prompt fission neutron logging techniques. The uranium in the formation is proportional to the ratio of epithermal counts to thermal or eqithermal dieaway. Various calibration factors enhance the accuracy of the measurement

  2. Fission product yields

    International Nuclear Information System (INIS)

    Valenta, V.; Hep, J.

    1978-01-01

    Data are summed up necessary for determining the yields of individual fission products from different fissionable nuclides. Fractional independent yields, cumulative and isobaric yields are presented here for the thermal fission of 235 U, 239 Pu, 241 Pu and for fast fission (approximately 1 MeV) of 235 U, 238 U, 239 Pu, 241 Pu; these values are included into the 5th version of the YIELDS library, supplementing the BIBFP library. A comparison is made of experimental data and possible improvements of calculational methods are suggested. (author)

  3. Fission-product yields for thermal-neutron fission of curium-243

    International Nuclear Information System (INIS)

    Breederland, D.G.

    1982-01-01

    Cumulative fission yields for 25 gamma rays emitted during the decay of 23 fission products produced by thermal-neutron fission of 243 Cm have been determined. Using Ge(Li) spectroscopy, 33 successive pulse-height spectra of gamma rays emitted from a 77-ng sample of 243 Cm over a period of approximately two and one-half months were analyzed. Reduction of these spectra resulted in the identification and matching of gamma-ray energies and half-lives to specific radionuclides. Using these results, 23 cumulative fission-product yields were calculated. Only those radionuclides having half-lives between 6 hours and 65 days were observed. Prior to this experiment, no fission-product yields had been recorded for 243 Cm

  4. Amount, disposal and relative toxicity of long-lived fission products and actinides in the radioactive wastes of the nuclear fuel cycles

    International Nuclear Information System (INIS)

    Haug, H.O.

    1975-11-01

    A review is presented on the magnitude of the long-term problems of radioactive wastes from the nuclear power industry of the FRG (and Western Europe). The production of long-lived fission products and actinides has been calculated for several fuel types of the uranium-plutonium and thorium-uranium fuel cycles and related to a prediction of the development and share of LWR, FBR and HTGR. The quantities and concentrations of actinides, the radioactivity and relative toxicity index of the wastes of reprocessing (and fuel refabrication) and their changes by radioactive decay are presented. The radiotoxicity of the nuclide inventory of the solidified high-level wastes have been compared with naturally occuring uranium ores. On the long term (>10 3 years) the radiotoxicity level of the total area of the final repository in deep geological formation does not result in a significantly higher radiotoxicity level than an uranium ore deposit of low uranium content. Also discussed have been the chemical separation of the actinides from high-level wastes and recycling in fission reactors. (orig.) [de

  5. Fission-product source terms

    International Nuclear Information System (INIS)

    Lorenz, R.A.

    1981-01-01

    This presentation consists of a review of fission-product source terms for light water reactor (LWR) fuel. A source term is the quantity of fission products released under specified conditions that can be used to calculate the consequences of the release. The source term usually defines release from breached fuel-rod cladding but could also describe release from the primary coolant system, the reactor containment shell, or the site boundary. The source term would be different for each locality, and the chemical and physical forms of the fission products could also differ

  6. Fission product behaviour in severe accidents

    International Nuclear Information System (INIS)

    Jokiniemi, J.; Auvinen, A.; Maekynen, J.; Valmari, T.

    1998-01-01

    The understanding of fission product (FP) behaviour in severe accidents is important for source term assessment and accident mitigation measures. For example in accident management the operator needs to know the effect of different actions on the behaviour and release of fission products. At VTT fission product behaviour have been studied in different national and international projects. In this presentation the results of projects in EU funded 4th framework programme Nuclear Fission Safety 1994-1998 are reported. The projects are: fission product vapour/aerosol chemistry in the primary circuit (FI4SCT960020), aerosol physics in containment (FI4SCT950016), revaporisation of test samples from Phebus fission products (FI4SCT960019) and assessment of models for fission product revaporisation (FI4SCT960044). Also results from the national project 'aerosol experiments in the Victoria facility' funded by IVO PE and VTT Energy are reported

  7. The quantitative determination of uranium in human hair by fission track measurements

    International Nuclear Information System (INIS)

    Wilson, D.J.; Bentley, K.W.

    1985-01-01

    Human hairs containing a uranium burden were placed in contact with a mica sheet as the recording matrix and irradiated in a thermal neutron flux. The fission fragment tracks penetrating the mica were etched and counted. Calculations have been made to show the losses due to the fission fragment range being less than the diameter of the hair and for the variation of track density with distance from the line of contact between the hair and the mica. Experimental data from 50 μm diameter hair and those derived by calculation were compared. (author)

  8. Detection of gaseous fission products in water - a method of monitoring fuel sheathing failures

    Energy Technology Data Exchange (ETDEWEB)

    Tunnicliffe, P. R.; Whittier, A. C.

    1959-05-15

    The gaseous activities stripped from samples of effluent coolant from the NRU fuel elements tested in the central thimble of the NRX reactor (NRU loop) and from the NRX main effluent have been investigated. The activities obtained from the NRU loop can be attributed to gaseous fission products only. Design data have been obtained for a 'Gaseous Fission Product Monitor' to be installed for use with the NRU reactor. It is expected that this monitor will have high sensitivity to activity indicative of an incipient fuel element sheath failure. No qualitative determination of the various gaseous activities obtained from the NRX effluent has been made. A strong component of 25 {+-}1 seconds half-life is not consistent with O-19. Limited information concerning sheath failures in NRX was obtained. Of six failures observed in parallel with the installed delayed neutron monitors, three of these gave pre-warnings and in each case the gaseous fission product monitor showed a substantially greater sensitivity. An experiment in which small samples of uranium, inserted into the NRX reactor, could be exposed at will to a stream of water showed the behaviour of the two types of monitors to be similar. However, a number of signals were detected only by the gaseous fission product monitor. These can be attributed to its sensitivity to relatively long lived fission products. (author)

  9. Determination of the uranium concentration in water samples by the technique of fission track recording

    International Nuclear Information System (INIS)

    Geraldo, L.P.

    1979-01-01

    The technique of fission track register was developed for the determination of micrograms of uranium. The Makrofol KG, a synthetic plastic made by Bayer, was used as the detector and the wet method was utilized. The detector calibration curve allows the determination of the uranium concentration in a sample within an interval from 8.0 to 0.4μgU/L, the total error ranging from 3.3% to 29.0% respectively. The method was used in the determination of the uranium content in various water samples, obtained from various sources like rivers, sea etc. in the state of Sao Paulo, Brazil. Results were compared with those obtained by other authors using different methods. The average concentration found in sea waters (3.27 +- 9.12μgU/l) by this method is compatible with the international average accepted value of 3.3μgU/l, irrespective of site and depth. The determination of the uranium content by fission track counting has proved to be very convenient. (Author) [pt

  10. Experimental measurement of fission fragments paths in uranium gold, molybdenum, zirconium and silicon; Mesure experimentale des parcours des fragments de fission dans l'uranium, l'or, le molybdene, le zirconium et le silicium

    Energy Technology Data Exchange (ETDEWEB)

    Faraggi, H; Garin-Bonnet, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The measurement of total number of fissiongments emerging from an homogeneous, thick alloy composed of uranium plus another element (the concentration of uranium being known) allows to obtain the range of the fragments in this alloy. By varying the concentration, the range of the fragments in uranium and in the other element can be deduced. (author)Fren. [French] La mesure du nombre total de fragments de fission sortant d'un alliage homogene epais d'uranium et d'un autre element, pour lequel la concentration en uranium est donnee, permet la mesure du parcours des fragments dans cet alliage. En faisant varier la concentration, on peut deduire de ces mesures le parcours des fragments dans l'uranium et dans l'autre element. (auteur)

  11. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, M.

    1983-08-01

    This is the ninth issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS. The present issue contains also a section with some recent references relative to fission product nuclear data, which were not covered by the contributions submitted. The types of activities being included in this report are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission); Neutron reaction cross sections of fission products; Data related to the radioactive decay of fission products; Delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The eighth issue of this series has been published in July 1982 as INDC(NDS)-130. The present issue includes contributions which were received by NDS between 1 August 1982 and 25 June 1983

  12. Uranium chloride extraction of transuranium elements from LWR fuel

    International Nuclear Information System (INIS)

    Miller, W.E.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Pierce, R.D.

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800 C to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein. 1 figure

  13. Neutronic and thermal hydraulic analysis for production of fission molybdenum-99 at Pakistan Research Reactor-1

    Energy Technology Data Exchange (ETDEWEB)

    Mushtaq, A. [Isotope Production Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)], E-mail: mushtaqa@pinstech.org.pk; Iqbal, Massod; Bokhari, Ishtiaq Hussain; Mahmood, Tariq; Mahmood, Tayyab; Ahmad, Zahoor; Zaman, Qamar [Nuclear Engineering Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)

    2008-02-15

    Neutronic and thermal hydraulic analysis for the fission molybdenum-99 production at PARR-1 has been performed. Low enriched uranium foil (<20% {sup 235}U) will be used as target material. Annular target designed by ANL (USA) will be irradiated in PARR-1 for the production of 100 Ci of molybdenum-99 at the end of irradiation, which will be sufficient to prepare required {sup 99}Mo/{sup 99m}Tc generators at PINSTECH and its supply in the country. Neutronic and thermal hydraulic analysis were performed using various codes. Data shows that annular targets can be safely irradiated in PARR-1 for production of required amount of fission molybdenum-99.

  14. A solvent proceed for the extraction of the irradiate uranium and plutonium in the reactor core; Un procede par solvant pour l'extraction du plutonium de l'uranium irradie dans les piles

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, B; Regnaut, P; Prevot, I [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    Description of the conditions of plutonium, fission products and of uranium separation by selective extraction of the nitrates by organic solvent, containing a simultaneous extraction of plutonium and uranium, followed by a plutonium re-extraction after reduction, and an uranium re-extraction. The rates of decontamination being insufficient in this first stage, we also describes the processes of decontamination permitting separately to get the rates wanted for uranium and plutonium. Finally, we describes the beginning of the operation that consists in a nitric dissolution of the active uranium while capturing the products of gaseous fission, as well as the final concentration of the products of fission in a concentrated solution. (authors) [French] Description des conditions de separation du plutonium, des produits de fission et de l'uranium au moyen d'une extraction selective des nitrates par solvant organique, comprenant une extraction simultanee du plutonium et de l'uranium, suivie d'une reextraction du plutonium apres reduction, et d'une reextraction de l'uranium. Les taux de decontamination etant insuffisants dans ce premier stade, on decrit egalement les processus de decontamination permettant separement d'obtenir les taux desires pour l'uranium et le plutonium. Enfin, on decrit aussi le debut de l'operation qui consiste en une dissolution nitrique de l'uranium actif en captant les produits de fission gazeux, ainsi que la concentration finale des produits de fission sous forme de solution concentree. (auteurs)

  15. Device for measuring fission product density

    International Nuclear Information System (INIS)

    Kaneda, Mitsunori.

    1980-01-01

    Purpose: To determine the fission product density of xenon or the like and enable measurement of real time of fission product density in a reactor by calculating the disintegration and annihilation of the fission product on the basis of neutron detected output. Constitution: The neutron flux in a reactor is detected by a detector, and applied to first and second density calculators. Second fission product density signal of xenon or the like outputted from first device is again inputted to the device to form an annihilation signal due to disintegration to determine the present density of the second fission product of xenon or the like corresponding to the decrease of the neutron due to the poison of xeron or the like. Similarly, second device determines the first fission product density of iodine or the like. (Sekiya, K.)

  16. Simple estimate of fission rate during JCO criticality accident

    Energy Technology Data Exchange (ETDEWEB)

    Oyamatsu, Kazuhiro [Faculty of Studies on Contemporary Society, Aichi Shukutoku Univ., Nagakute, Aichi (Japan)

    2000-03-01

    The fission rate during JCO criticality accident is estimated from fission-product (FP) radioactivities in a uranium solution sample taken from the preparation basin 20 days after the accident. The FP radioactivity data are taken from a report by JAERI released in the Accident Investigation Committee. The total fission number is found quite dependent on the FP radioactivities and estimated to be about 4x10{sup 16} per liter, or 2x10{sup 18} per 16 kgU (assuming uranium concentration 278.9 g/liter). On the contrary, the time dependence of the fission rate is rather insensitive to the FP radioactivities. Hence, it is difficult to determine the fission number in the initial burst from the radioactivity data. (author)

  17. Simple estimate of fission rate during JCO criticality accident

    International Nuclear Information System (INIS)

    Oyamatsu, Kazuhiro

    2000-01-01

    The fission rate during JCO criticality accident is estimated from fission-product (FP) radioactivities in a uranium solution sample taken from the preparation basin 20 days after the accident. The FP radioactivity data are taken from a report by JAERI released in the Accident Investigation Committee. The total fission number is found quite dependent on the FP radioactivities and estimated to be about 4x10 16 per liter, or 2x10 18 per 16 kgU (assuming uranium concentration 278.9 g/liter). On the contrary, the time dependence of the fission rate is rather insensitive to the FP radioactivities. Hence, it is difficult to determine the fission number in the initial burst from the radioactivity data. (author)

  18. A small flat fission chamber

    International Nuclear Information System (INIS)

    Li Yijun; Wang Dalun; Chen Suhe

    1999-01-01

    With fission materials of depleted uranium, natural uranium, enriched uranium, 239 Pu, and 237 Np, the authors have designed and made a series of small flat fission chamber. The authors narrated the construction of the fission chamber and its technological process of manufacture, and furthermore, the authors have measured and discussed the follow correct factor, self-absorption, boundary effect, threshold loss factor, bottom scatter and or so

  19. Determination of average fission fraction produced by 14 MeV neutrons in assemblies with large volume of depleted uranium

    International Nuclear Information System (INIS)

    Wang Dalun; Li Benci; Wang Xiuchun; Li Yijun; Zhang Shaohua; He Yongwu

    1991-07-01

    The average fission fraction of 238 U caused by 14 MeV neutrons in assemblies with large volume depleted uranium has been determined. The measured value of p f 238U (R ∞ depleted ) 14 was 0.897 ± 0.036. Measurements were also completed for neutron flux distribution and average fission fraction of 235 U isotope in depleted uranium sphere. Values of p f 238U (R depleted ) have been obtained by using a series of uranium spheres. For a sphere with Φ 600 the p f 23 '8 U (R 300 depleted ) is 0.823 ± 0.041, the density of depleted uranium assembly is 18.8g/cm 3 and total weight of assembly is about 2.8t

  20. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, G.

    1975-01-01

    This is the first issue of a report series on Fission Product Nuclear Data (FPND), published every six months by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). Its purpose is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The types of activities being included in this report are measurements, compilations and evaluations of: fission product yields; neutron cross-section data of fission products; data related to β-, γ-decay of fission products; delayed neutron data; and fission product decay-heat. The present issue includes contributions which were received by NDS before 1 November 1975

  1. Los Alamos National Laboratory Support for Commercial U.S. Production of 99Mo without the Use of Highly Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-04

    There is currently a serious shortage of 99Mo, from which to generate the medically significant isotope 99mTc. Most of the world's supply comes from the fission of highly enriched uranium targets--this is a proliferation concern. This document focuses on the technology involved in two alternative methods: electron accelerator production of 99Mo from the 100Mo(γ,n)99Mo reaction and production of 99Mo as a fission product in a subcritical, DT accelerator-driven low enriched uranium salt solution.

  2. How much of the rocks and the oceans for power? Exploiting the uranium-thorium fission cycle

    International Nuclear Information System (INIS)

    Lewis, W.B.

    1964-04-01

    Even at quite low costs there appear to be many routes available to supply the world population of the future with its power for electricity, heat, energy storage, portable fuel, desalting water and local climate control. For example, sufficient power could come from nuclear fission in thermal neutron reactors. When rich uranium ores have become scarce, the price will rise from the current $13/kg U, but with improved techniques of extraction and the choice of an economical fuel cycle, abundant uranium for many centuries appears to be available in the rocks and the oceans. Even from reactors already developed to the stage of engineering design it is possible to choose a fuel cycle to which uranium at $250/kg U would contribute no more than 2 mill/kWh. Without suggesting when such a high cost might he reached, its implications are examined. The optimum fuel cycle would balance the financing charges on the fuel inventory and the costs of fuel make-up supply and reprocessing. By using uranium and thorium in combination at least 50,000 MWd can be derived per tonne of uranium. At a current low net conversion efficiency of 30% and an overall rating of 6 thermal kW/kg, the natural uranium inventory would cost at the suggested high price $250/(6 x 0.3) $139/ekW and for 7000 hr/yr at 7% annual charges would contribute 1.4 mill/ekWh. At 50 MWd/kg U the make-up supply contributes 250/(50 x 24 x 0.3) = 0.7 mill/ekWh. Probably higher efficiency and possibly higher specific power ratings would be used to lower such costs. The value of uranium is related to its content of the fissile U-235, and even though most power may be derived from thorium, its value will not rise comparably with that of uranium. In the course of time a ceiling will be set on the value of fissile material by the introduction of processes other than the thermal neutron fission chain reaction for producing power or neutrons. The total cost of nuclear power includes also contributions from the cost of equipment

  3. How much of the rocks and the oceans for power? Exploiting the uranium-thorium fission cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W B

    1964-04-15

    Even at quite low costs there appear to be many routes available to supply the world population of the future with its power for electricity, heat, energy storage, portable fuel, desalting water and local climate control. For example, sufficient power could come from nuclear fission in thermal neutron reactors. When rich uranium ores have become scarce, the price will rise from the current $13/kg U, but with improved techniques of extraction and the choice of an economical fuel cycle, abundant uranium for many centuries appears to be available in the rocks and the oceans. Even from reactors already developed to the stage of engineering design it is possible to choose a fuel cycle to which uranium at $250/kg U would contribute no more than 2 mill/kWh. Without suggesting when such a high cost might be reached, its implications are examined. The optimum fuel cycle would balance the financing charges on the fuel inventory and the costs of fuel make-up supply and reprocessing. By using uranium and thorium in combination at least 50,000 MWd can be derived per tonne of uranium. At a current low net conversion efficiency of 30% and an overall rating of 6 thermal kW/kg, the natural uranium inventory would cost at the suggested high price $250/(6 x 0.3) $139/ekW and for 7000 hr/yr at 7% annual charges would contribute 1.4 mill/ekWh. At 50 MWd/kg U the make-up supply contributes 250/(50 x 24 x 0.3) = 0.7 mill/ekWh. Probably higher efficiency and possibly higher specific power ratings would be used to lower such costs. The value of uranium is related to its content of the fissile U-235, and even though most power may be derived from thorium, its value will not rise comparably with that of uranium. In the course of time a ceiling will be set on the value of fissile material by the introduction of processes other than the thermal neutron fission chain reaction for producing power or neutrons. The total cost of nuclear power includes also contributions from the cost of equipment

  4. Measurement of mass distribution of U-235 fission products in the intermediate neutron region

    International Nuclear Information System (INIS)

    Nakagomi, Yoshihiro; Kobayashi, Shohei; Yamamoto, Shuji; Kanno, Ikuo; Wakabayashi, Hiroaki.

    1982-01-01

    The mass distribution and the momentum distribution of U-235 fission products in the intermediate neutron region were measured by using a combination system of the Yayoi intermediate neutron column and an electron linear accelerator. The double energy measurement method was applied. A fission chamber, which consists of an enriched uranium target and two Si surface barrier detectors, was used for the measurement of the neutrons with energy above 1.3 eV. The linear accelerator was operated at the repetition rate of 100 Hz and the pulse width of 10 ns. The data obtained by the two-dimensional pulse height analysis were analyzed by the Schmitt's method. The preliminary results of the mass distribution and the momentum distribution of fission fragments were obtained. (Kato, T.)

  5. Enriched uranium recovery flowsheet improvements

    International Nuclear Information System (INIS)

    Holt, D.L.

    1986-01-01

    Savannah River uses 7.5% TBP to recover and purify enriched uranium. Adequate decontamination from fission products is necessary to reduce personnel exposure and to ensure that the enriched uranium product meets specifications. Initial decontamination of the enriched uranium from the fission products is carried out in the 1A bank, 16 stages of mixer-settlers. Separation of the enriched uranium from the fission product, 95 Zr, has been adequate, but excessive solvent degradation caused by the long phase contact times in the mixer-settlers has limited the 95 Zr decontamination factor (DF). An experimental program is investigating the replacement of the current 1A bank with either centrifugal contactors or a combination of centrifugal contactors and mixer-settlers. Experimental work completed has compared laboratory-scale centrifugal contactors and mixer-settlers for 95 Zr removal efficiencies. Feed solutions spiked with actual plant solutions were used. The 95 Zr DF was significantly better in the mixer-settlers than in the centrifugal contactors. As a result of this experimental study, a hybrid equipment flowsheet has been proposed for plant use. The hybrid equipment flowsheet combines the advantages of both types of solvent extraction equipment. Centrifugal contactors would be utilized in the extraction and initial scrub sections, followed by additional scrub stages of mixer-settlers

  6. Detection of fission products in carbon dioxide by instantaneous ion collection

    International Nuclear Information System (INIS)

    Le Meur, R.; Lorin, A.

    1968-01-01

    This report describes a fission product detector with instantaneous electric collection, capable of analyzing carbon dioxide up to a pressure of 60 bars and at a temperature of 200 C. In contrast to delayed collection detectors, this apparatus makes it possible to collect rubidium and cesium ions as soon as they are formed; this avoids losses due to recombination. The detector has been tested with a fission product source made up of a uranium oxide sample subjected to a neutron flux. The activity of the ions collected as a function of an electric field has been measured for different parameters: pressure, temperature, CO 2 gas flow rate, and the volume of the ion-formation chamber. The sensitivity of this apparatus is compared to that of other fission product detectors. For a low volume-flow rate, e.g. 100 cm 3 sec -1 , its sensitivity for krypton 88 is better than that of a delayed collection detector. An apparatus of this type could be used as a can rupture detector on a reactor with a large number of channels, with a low gas sampling rate per channel. The equipment will be included in the can rupture detector installations in the Fessenheim reactor. (authors) [fr

  7. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, M.

    1982-07-01

    This is the eighth issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS. Therefore, the IAEA cannot be held responsible for the information contained nor for any consequences resulting from the use of this information. The present issue contains also a section with some recent references relative to fission product nuclear data, which were not covered by the contributions submitted. The types of activities being included in this report are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission); Neutron reaction cross sections of fission products; Data related to the radioactive decay of fission products; Delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The seventh issue of this series has been published in July 1981 as INDC(NDS)-116. The present issue includes contributions which were received by NDS between 1 August 1981 and 15 June 1982

  8. Fission product detection

    International Nuclear Information System (INIS)

    Liatard, E.; Akrouf, S.; Bruandet, J.F

    1987-01-01

    The response of photovoltaic cells to heavy ions and fission products have been tested on beam. Their main advantages are their extremely low price, their low sensitivity to energetic light ions with respect to fission products, and the possibility to cut and fit them together to any shape without dead zone. The time output signals of a charge sensitive preamplifier connected to these cells allows fast coincidences. A resolution of 12ns (F.W.H.M.) have been measured between two cells [fr

  9. Extraction chromatography of fission products

    International Nuclear Information System (INIS)

    Bonnevie-Svendsen, M.; Goon, K.

    1978-01-01

    Various cases of using extraction chromatography during analysis of fission products are reviewed. The use of the extraction chromatography method is considered while analysing reprocessed products of nuclear fuel for quantitative radiochemical analysis and control of fission product and actinoide separation during extraction and their chemical state in production solutions. The method is used to obtain pure fractions of typical burnup monitors (neodymium, molybdenum, cerium, cesium, europium, lanthanides) during determination of nuclear fuel burnup degree. While studying the nature of nuclear reactions the method is used to separate quickly short-life isotopes, to purify β-radiator fractions before measuring their half-life periods, to enrich isotopes forming with low output during fission. Examples of using extraction chromatography are given to separate long half-life or stable fission products from spent solutions, to control environment object contamination

  10. The Fission-Based  99Mo Production Process ROMOL-99 and Its Application to PINSTECH Islamabad

    Directory of Open Access Journals (Sweden)

    Rudolf Muenze

    2013-01-01

    Full Text Available An innovative process for fission based 99Mo production has been developed under Isotope Technologies Dresden (ITD GmbH (former Hans Wälischmiller GmbH (HWM, Branch Office Dresden, and its functionality has been tested and proved at the Pakistan Institute of Nuclear Science and Technology (PINSTECH, Islamabad. Targets made from uranium aluminum alloy clad with aluminum were irradiated in the core of Pakistan Research Reactor-1 (PARR-1. In the mean time more than 50 batches of fission molybdenum-99 (99Mo have been produced meeting the international purity/pharmacopoeia specifications using this ROMOL-99 process. The process is based on alkaline dissolution of the neutron irradiated targets in presence of NaNO3, chemically extracting the 99Mo from various fission products and purifying the product by column chromatography. This ROMOL-99 process will be described in some detail.

  11. Investigation of short-living fission products from the spontaneous fission of Cf-252

    International Nuclear Information System (INIS)

    Klonk, H.

    1976-01-01

    In this paper, a method of separating and measuring fission products of Cf-252 is presented. The measurement was achieved by means of γ-spectrometry and thus provides a quantitative analysis with a good separation of the fission products with respect to both atomic number Z and mass number A. The separation of the fission products from the fission source was achieved by means of solid traps. An automatic changing apparatus made it possible to keep irradiation and measuring times short, so even very short-lived fission products could be registered. The quantitative evaluation of primary fission products was made possible by correction according to Bateman equations. With that, the yields of single nuclides and the dispersion of charge can be determined. (orig./WL) [de

  12. Distribution of uranium in dental porcelains by means of the fission track method

    International Nuclear Information System (INIS)

    Shimizu, Masami; Noguchi, Kunikazu; Moriwaki, Kazunari; Sairenji, Eiko

    1980-01-01

    Porcelain teeth, some of which contain uranium compounds for aesthetic purpose, have been widely used in dental clinics. Hazardous effects due to uranium radiation have been suggested by recent publications. In the previous study, the authors reported the uranium content of porcelain teeth and radiation dose by it. In this study, using the fission track method, the authors examined spatial distribution of uranium in dental porcelain teeth (4 brands) which were marketed in Japan. From each sample of porcelain tooth, a 1-mm-thick specimen was sliced, and uranium content was measured at every 0.19 mm from labial side to lingual side for making a uranium distribution chart. Higher uranium concentration was found in Trubyte Bioblend porcelain teeth (USA) and they showed almost uniform distribution of uranium, while those of the Japanese three brands indicated, in most case, comparatively lower concentration and found to be non-uniform distributions. Range of uranium concentration in these brands were N.D. -- 5.2 ppm (Shofu-Ace), N.D. -- 342 ppm (Shofu-Real), N.D. -- 47 ppm (G.C. Livdent) and N.D. -- 235 ppm (Trubyte Bioblend), respectively. (author)

  13. Some safety studies for conceptual fusion--fission hybrid reactors. Final report

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Okrent, D.

    1978-07-01

    The objective of this study was to make a preliminary examination of some potential safety questions for conceptual fusion-fission hybrid reactors. The study and subsequent analysis was largely based upon reference to one design, a conceptual mirror fusion-fission reactor, operating on the deuterium-tritium plasma fusion fuel cycle and the uranium-plutonium fission fuel cycle. The blanket is a fast-spectrum, uranium carbide, helium cooled, subcritical reactor, optimized for the production of fissile fuel. An attempt was made to generalize the results wherever possible

  14. Operation of plant to produce Mo-99 from fission products

    International Nuclear Information System (INIS)

    Marques, R.O.; Cristini, P.R.; Marziale, D.P.; Furnari, E.S.; Fernandez, H.O.

    1987-01-01

    As it is well known, the production of Mo-99/Tc-99m generators has an outstanding place in radioisotope programs of the Argentine National Atomic Energy Commission. The basic raw material is Mo-99 from fission of U-235. In 1985 the production plant of this radionuclide began to operate, according to an adaptation of the method that was developed in Kernforschungszentrum Karlsruhe. The present work describes the target irradiation conditions in the reactor RA-3 (mini plates of U/Al alloy with 90% enriched uranium), the flow diagram and the operative conditions of the production process. The containment, filtration and removal conditions of the generated fission gases and the disposal of liquid and solid wastes are also analyzed. On the basis of the experience achieved in the development of more than twenty production processes, process efficiency is analyzed, taking into account the theoretical evaluation resulting from the application of the computer program 'Origin'(ORML) to the conditions of our case. The purity characteristics of the final product are reported (Zr-95 0,1 ppm; Nb-95 1 ppm; Ru-103 20 ppm; I-131 10 ppm) as well as the chemical characteristics that make it suitable to be used in the production of Mo-99/I c-99m generators. (Author)

  15. Separation of uranium, plutonium and fission products on zirconium phosphate, Part 1 - Adsorption equilibria and kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Gal, I; Ruvarac, A [Institute of Nuclear Sciences Boris Kidric, Laboratorija za hemiju visoke aktivnosti, Vinca, Beograd (Serbia and Montenegro)

    1963-02-15

    The distribution coefficients of UO{sub 2}{sup ++}, PuO{sub 2}{sup ++}, Pu{sup 3+}, Pu{sup 4+}, Fe{sup 3+}, {sup 137}Cs{sup +}, {sup 90}Sr{sup ++}, {sup 95}Zr{sup +}+{sup 95}Nb{sup 5+}, {sup 106}Ru and {sup 144}Ce{sup 3+} were determined in the system zirconium phosphate-aqueous solution of HNO{sub 3}. As for the exchange reation Cs{sup +}/H{sup +} and Sr{sup ++}/2H{sup +}, it has been shown that the mass action law can be applied. For these reactions the corresponding equilibrium constants were calculated. The rates of adsorption of Cs{sup +}, Sr{sup ++}, Fe{sup 3+} and Pu{sup 4+} from solutions of a fixed HNO{sub 3} concentration were studied, and empirical rate equations were derived. The experimental data confirm that UO{sub 2}{sup ++} can be separated from Pu{sup 4+}. Among the fission products, {sup 90}Sr, {sup 106}Ru and {sup 144}Ce mainly follow the fraction of uranium, while {sup 137}Cs, {sup 95}Zr and {sup 95}Nb follow the plutonium fraction. Separations within the fractions are possible (author)

  16. Ceramic Hosts for Fission Products Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Peter C Kong

    2010-07-01

    Natural spinel, perovskite and zirconolite rank among the most leach resistant of mineral forms. They also have a strong affinity for a large number of other elements and including actinides. Specimens of natural perovskite and zirconolite were radioisotope dated and found to have survived at least 2 billion years of natural process while still remain their loading of uranium and thorium . Developers of the Synroc waste form recognized and exploited the capability of these minerals to securely immobilize TRU elements in high-level waste . However, the Synroc process requires a relatively uniform input and hot pressing equipment to produce the waste form. It is desirable to develop alternative approaches to fabricate these durable waste forms to immobilize the radioactive elements. One approach is using a high temperature process to synthesize these mineral host phases to incorporate the fission products in their crystalline structures. These mineral assemblages with immobilized fission products are then isolated in a durable high temperature glass for periods measured on a geologic time scale. This is a long term research concept and will begin with the laboratory synthesis of the pure spinel (MgAl2O4), perovskite (CaTiO3) and zirconolite (CaZrTi2O7) from their constituent oxides. High temperature furnace and/or thermal plasma will be used for the synthesis of these ceramic host phases. Nonradioactive strontium oxide will be doped into these ceramic phases to investigate the development of substitutional phases such as Mg1-xSrxAl2O4, Ca1-xSrxTiO3 and Ca1-xSrxZrTi2O7. X-ray diffraction will be used to establish the crystalline structures of the pure ceramic hosts and the substitution phases. Scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX) will be performed for product morphology and fission product surrogates distribution in the crystalline hosts. The range of strontium doping is planned to reach the full substitution of the divalent

  17. Fission Product Library and Resource

    Energy Technology Data Exchange (ETDEWEB)

    Burke, J. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Padgett, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-29

    Fission product yields can be extracted from an irradiated sample by performing gamma ray spectroscopy on the whole sample post irradiation. There are several pitfalls to avoid when trying to determine a specific isotope's fission product yield.

  18. Studies on tin based inorganic ion exchangers for fission products separation

    International Nuclear Information System (INIS)

    Dash, A.; Balasubramanian, K.R.; Murthy, T.S.

    1993-01-01

    Tin(IV) antimonate and hydrous tin(IV) oxide have been prepared and their characteristics are evaluated. A new method has been finalized for the separation of 95 Zr- 95 Nb from irradiated uranium using hydrous tin(IV) oxide. In this process, the irradiated sample is dissolved in concentrated HNO 3 , evaporated to near dryness and taken up in 0.5 M HNO 3 . The solution is passed over tin(IV) oxide column and the isotope eluted with 10 M HNO 3 . The product is obtained in pure nitrate form which is generally preferred for different applications. A method has been finalized for the separation of 106 Ru from fission product solution using tin(IV) antimonate. In this method fission product solution is adjusted to 2 M with respect to nitric acid, 137 Cs is separated on a column of ammonium phosphomolybdate, the effluent after adjustment of acidity to 0.2 M is then passed over a column of tin(IV) antimonate where the effluent contains pure 106 Ru. (author). 14 refs., 6 figs., 2 tabs

  19. Development of Fission Mo-99 Process for LEU Dispersion Target

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Kon; Lee, Su Seung; Hong, Soon Bog; Jang, Kyung Duk; Park, Ul Jae; Lee, Jun Sig [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    KAERI (Korea Atomic Energy Research Institute) is developing LEU-based fission {sup 99}Mo production process which is connected to the new research reactor (Kijang New Research Reactor, KJRR), which is being constructed in Gijang, Busan, Korea. Historically, the most fission {sup 99}Mo producers have been used highly enriched uranium (HEU) targets so far. However, to reduce the use of HEU in private sector for non-proliferation, {sup 99}Mo producers are forced to convert their HEU-based process to use low enriched uranium (LEU) targets. Economic impact of a target conversion from HEU to LEU is significant. Overall cost for the production of the fission {sup 99}Mo increases significantly with the conversion of fission {sup 99}Mo targets from HEU to LEU. It is not only because the yield of LEU is only 50% of HEU, but also because radioactive waste production increases 200%. On the basis, worldwide efforts on the development of {sup 99}Mo production process that is optimized for the LEU target become an important issue. In this study, fission {sup 99}Mo process with non-irradiated LEU targets was presented except separation and purification steps. Pre- and post-irradiation tests of the fission {sup 99}Mo target will be done in 4th quarter of 2016.

  20. Development of Fission Mo-99 Process for LEU Dispersion Target

    International Nuclear Information System (INIS)

    Lee, Seung Kon; Lee, Su Seung; Hong, Soon Bog; Jang, Kyung Duk; Park, Ul Jae; Lee, Jun Sig

    2016-01-01

    KAERI (Korea Atomic Energy Research Institute) is developing LEU-based fission 99 Mo production process which is connected to the new research reactor (Kijang New Research Reactor, KJRR), which is being constructed in Gijang, Busan, Korea. Historically, the most fission 99 Mo producers have been used highly enriched uranium (HEU) targets so far. However, to reduce the use of HEU in private sector for non-proliferation, 99 Mo producers are forced to convert their HEU-based process to use low enriched uranium (LEU) targets. Economic impact of a target conversion from HEU to LEU is significant. Overall cost for the production of the fission 99 Mo increases significantly with the conversion of fission 99 Mo targets from HEU to LEU. It is not only because the yield of LEU is only 50% of HEU, but also because radioactive waste production increases 200%. On the basis, worldwide efforts on the development of 99 Mo production process that is optimized for the LEU target become an important issue. In this study, fission 99 Mo process with non-irradiated LEU targets was presented except separation and purification steps. Pre- and post-irradiation tests of the fission 99 Mo target will be done in 4th quarter of 2016

  1. Analysis of reaction cross-section production in neutron induced fission reactions on uranium isotope using computer code COMPLET.

    Science.gov (United States)

    Asres, Yihunie Hibstie; Mathuthu, Manny; Birhane, Marelgn Derso

    2018-04-22

    This study provides current evidence about cross-section production processes in the theoretical and experimental results of neutron induced reaction of uranium isotope on projectile energy range of 1-100 MeV in order to improve the reliability of nuclear stimulation. In such fission reactions of 235 U within nuclear reactors, much amount of energy would be released as a product that able to satisfy the needs of energy to the world wide without polluting processes as compared to other sources. The main objective of this work is to transform a related knowledge in the neutron-induced fission reactions on 235 U through describing, analyzing and interpreting the theoretical results of the cross sections obtained from computer code COMPLET by comparing with the experimental data obtained from EXFOR. The cross section value of 235 U(n,2n) 234 U, 235 U(n,3n) 233 U, 235 U(n,γ) 236 U, 235 U(n,f) are obtained using computer code COMPLET and the corresponding experimental values were browsed by EXFOR, IAEA. The theoretical results are compared with the experimental data taken from EXFOR Data Bank. Computer code COMPLET has been used for the analysis with the same set of input parameters and the graphs were plotted by the help of spreadsheet & Origin-8 software. The quantification of uncertainties stemming from both experimental data and computer code calculation plays a significant role in the final evaluated results. The calculated results for total cross sections were compared with the experimental data taken from EXFOR in the literature, and good agreement was found between the experimental and theoretical data. This comparison of the calculated data was analyzed and interpreted with tabulation and graphical descriptions, and the results were briefly discussed within the text of this research work. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Attachment of gaseous fission products to aerosols

    International Nuclear Information System (INIS)

    Skyrme, G.

    1985-01-01

    Accidents may occur in which the integrity of fuel cladding is breached and volatile fission products are released to the containment atmosphere. In order to assess the magnitude of the subsequent radiological hazard it is necessary to know the transport behaviour of such fission products. It is frequently assumed that the fission products remain in the gaseous phase. There is a possibility, however, that they may attach themselves to particles and hence substantially modify their transport properties. This paper provides a theoretical assessment of the conditions under which gaseous fission products may be attached to aerosol particles. Specific topics discussed are: the mass transfer of a gaseous fission product to an isolated aerosol particle in an infinite medium; the rate at which the concentration of fission products in the gas phase diminishes within a container as a result of deposition on a population of particles; and the distribution of deposited fission product between different particle sizes in a log-normal distribution. It is shown that, for a given mass, small particles are more efficient for fission product attachment, and that only small concentrations of such particles may be necessary to achieve rapid attachment. Conditions under which gaseous fission products are not attached to particles are also considered, viz, the competing processes of deposition onto the containment walls and onto aerosol particles, and the possibility of the removal of aerosols from the containment by various deposition processes, or agglomeration, before attachment takes place. (author)

  3. Fission products control by gamma spectrometry in purex process solutions

    International Nuclear Information System (INIS)

    Goncalves, Maria Augusta

    1982-01-01

    This paper deals with a radiometric method for fission products analysisby gamma spectrometry. This method will be applied for fission productscontrol at the irradiated material processing facility, under construction inthe Instituto de Pesquisas Energeticas e Nucleares, SP, Brazil. Countinggeometry was defined taking into account the activities of process solutionsto be analysed, the remotely operated aliquotation device of analytical celland the available detection system. Natural and 19,91% enriched uraniumsamples were irradiated at IEAR-1 reactor in order to simulate thecomposition of Purex process solutions. After a short decay time, the sampleswere dissolved with HNO 3 and then, conditioned in standard flasks withdefined geometry. The spectra were obtained by a Ge(Li) semiconductordetector and analysed by the GELIGAM software system, losing a floppy-diskconnected to a PDP-11/05 computer. Libraries were prepared and calibrationswere made with standard sources to fit the programs to the analysis offission products in irradiated uranium solutions. It was possible to choosethe best program to be used in routine analysis with the obtained data.(author)

  4. Determination of trace uranium in atmospheric precipitation of the Xiangjiang river valley by fission track method

    International Nuclear Information System (INIS)

    Zhai Pengji; Kang Tiesheng

    1986-01-01

    In this work the uranium contents in atmospheric precipitations in the region of the Xiangjiang River valley have been measured by fission track method, which range from 0.008 to 1.5 ppb. The majority of them are below 0.1 ppb. The uranium contents in the samples form different geographical positions are obviously different. Sometimes the differences in uranium contents of the samples from the same area collected at different times are also great. A preliminary discussion is given on the sources of uranium in atmospheric precipitation and on the reason of the difference in contents

  5. Converting targets and processes for fission-product molybdenum-99 from high- to low-enriched uranium

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Snelgrove, J.L.; Aase, S.

    1999-01-01

    Most of the world's supply of 99 Mo is produced by the fissioning of 235 U in high-enriched uranium targets (HEU, generally 93% 235 U). To reduce nuclear-proliferation concerns, the U.S. Reduced Enrichment for Research and Test Reactor Program is working to convert the current HEU targets to low-enriched uranium (LEU, 235 U). Switching to LEU targets also requires modifying the separation processes. Current HEU processes can be classified into two main groups based on whether the irradiated target is dissolved in acid or base. Our program has been working on both fronts, with development of targets for acid-side processes being the furthest along. However, using an LEU metal foil target may allow the facile replacement of HEU for both acid and basic dissolution processes. Demonstration of the irradiation and 99 Mo separation processes for the LEU metal-foil targets is being done in cooperation with researchers at the Indonesian PUSPIPTEK facility. We are also developing LEU UO 2 /Al dispersion plates as substitutes for HEU UA1 x /A1 dispersion plates for base-side processes. Results show that conversion to LEU is technically feasible; working with producers is essential to lowering any economic penalty associated with conversion. (author)

  6. Analysis of 137Cs in fission based neutron dosimetry

    International Nuclear Information System (INIS)

    Peltonen, T.

    1995-11-01

    137 Cs analysis is based on dissolving an irradiated fission dosimeter and chemically separating the cesium from the rest of the fission material. The samples consisted of uranium and neptunium in the form of metal or oxide. The uranium samples were dissolved in nitric acid and the neptunium samples in a mixture of nitric acid and chloric acid with addition of hydrogen peroxide. Cs was precipitated into a mixture of ammonium molyndophoshate and cellulose powder. A preparate for measurement was made from the precipitate and covered with polyethen plastic. Since other fission products than cesium were precipitated as well from the more recently irradiated samples, the activity measurements could not be carried out with a NaI(Tl) cavity crystal, but had to be made with a less efficient but more selective germanium semiconductor crystal. The method is well suited for 137 Cs determination, especially for older dosimeters where the more short-lived fission products have decayed. (orig.) (6 refs., 7 figs., 7 tabs.)

  7. An experimental investigation of fission product release in SLOWPOKE-2 reactors

    International Nuclear Information System (INIS)

    Harnden, A.M.C.

    1995-09-01

    Increasing radiation fields due to a release of fission products in the reactor container of several SLOWPOKE-2 reactors fuelled with a highly-enriched uranium (HEU) alloy core have been observed. It is believed that these increases are associated with the fuel fabrication where a small amount of uranium-bearing material is exposed to the coolant at the end-welds of the fuel element. To investigate this phenomenon samples of reactor water and gas from the headspace above the water have been obtained and examined by gamma spectrometry methods for reactors of various burnups at the University of Toronto, Ecole Polytechnique and Kanata Isotope Production Facility. An underwater visual examination of the fuel core at Ecole Polytechnique has also provided information on the condition of the core. This report (Volume 1) summarizes the equipment, analysis techniques and results of tests conducted at the various reactor sites. The data report is published as Volume 2. (author). 30 refs., 9 tabs., 20 figs

  8. Development of windowless liquid lithium targets for fragmentation and fission of 400-kW uranium beams

    CERN Document Server

    Nolen, J A; Hassanein, A; Novick, V J; Plotkin, P; Specht, J R

    2003-01-01

    The driver linac of the proposed rare isotope accelerator facility is designed to deliver 2x10 sup 1 sup 3 uranium ions per second at 400 MeV/u on target for radionuclide production via the fission and fragmentation mechanisms. The ion optics of the large acceptance, high-resolution fragment separators that follow the production target require primary beam spot widths of 1 mm. To cope with the resulting high power densities, windowless liquid lithium targets are being developed. The present designs build on existing experience with liquid lithium and liquid sodium systems that have been used for fusion and fission applications. However, no completely windowless systems have been developed or tested to date. For the beam power indicated above (400 kW), the flow requirements are up to about 20 m/s and 10 l/s linear and volume flow rates, respectively. The required target thickness is 1-1.5 g/cm sup 2 (2-3 cm lithium thickness). At this time a prototype windowless system with a lithium thickness of 1-2 cm is und...

  9. Progress in fission product nuclear data. No. 14

    International Nuclear Information System (INIS)

    Lammer, M.

    1994-06-01

    This is the 14th issue of a report series on Fission Product Nuclear Data published by the Nuclear Data Section of the IAEA. The types of activities included are measurements, compilations and evaluations of fission product yields, neutron reaction cross sections of fission products, data related to the radioactive decay of fission products, delayed neutron data from neutron induced and spontaneous fission, lumped fission product data. The first part of the report consists of unaltered original contributions which the authors have sent to IAEA/NDS. The second part contains some recent references relative to fission product nuclear data, which were not covered by the contributions submitted, and selected papers from conferences. The third part contains requirements for further measurements

  10. Progress in fission product nuclear data. No. 13

    International Nuclear Information System (INIS)

    Lammer, M.

    1990-11-01

    This is the 13th issue of a report series published by the Nuclear Data Section of the IAEA. The types of activities included are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission), neutron reaction cross-sections of fission products, data related to the radioactive decay of fission products, delayed neutron data of fission products and bumped fission product data (decay heat, absorption, etc.). The first part of the report consists of unaltered original data which the authors have sent to IAEA/NDS. The second part contains some recent references relative to fission product nuclear data, which were not covered by the contributions submitted, and selected papers from conferences. Part 3 contains requirements for further measurements

  11. Fission-product release during accidents

    International Nuclear Information System (INIS)

    Hunt, C.E.L.; Cox, D.S.

    1991-09-01

    One of the aims when managing a reactor accident is to minimize the release of radioactive fission products. Release is dependent not only on the temperature, but also on the partial pressure of oxygen. Strongly oxidizing atmospheres, such as those that occurred during the Chernobyl accident, released semi-volatile elements like ruthenium, which has volatile oxides. At low temperatures, UO 2 oxidization to U 3 O 8 can result in extensive breakup of the fuel, resulting in the release of non-volatile fission products as aerosols. Under less oxidizing conditions, when hydrogen accumulates from the zirconium-water reaction, the resulting low oxygen partial pressure can significantly reduce these reactions. At TMI-2, only the noble gases and volatile fission products were released in significant quantities. A knowledge of the effect of atmosphere as well as temperature on the release of fission products from damaged reactor cores is therefore a useful, if not necessary, component of information required for accident management

  12. Chemical effects of fission recoils

    International Nuclear Information System (INIS)

    Meisels, G.G.; Freeman, J.P.; Gregory, J.P.; Richardson, W.C.; Sroka, G.J.

    1978-01-01

    The production of nitrogen from nitrous oxide at high density was employed to investigate the energy deposition efficiency of fission recoils produced from fission of U 235 in uranium-palladium foils clad with platinum. Nitrogen production varied linearly with fission recoil dose from 1.1 x 10 20 to 9.0 x 10 20 eV, and was independent of density between 12.5 and 127.5 g l -1 N 2 O. 16.2 +- 0.8% of the fission recoil energy was deposited external to the foil. Electron microprobe analysis showed some unevenness of new foil and polymer buildup on the surface after irradiation of ethylene-oxygen mixtures. Subsequent irradiation in the presence of nitrous oxide restored some of the original efficiency. This is ascribed to chemical oxidation of the polymer induced by reactive intermediates produced from nitrous oxide. (author)

  13. Separation and purification of uranium product from thorium in thorex process by precipitation technique

    International Nuclear Information System (INIS)

    Ramanujam, A.; Dhami, P.S.; Gopalakrishnan, V.; Mukherjee, A.; Dhumwad, R.K.

    1989-01-01

    A sequential precipitation technique is reported for the separation of uranium and thorium present in the uranium product stream of a single cycle 5 per cent TBP Thorex Process. It involves the precipitation of thorium as oxalate in 1M HNO 3 medium at 60-70degC and after filtration, precipitation of uranium as ammonium diuranate at 80-90degC from the oxalate supernatant. This technique has several advantages over the ion-exchange process normally used for treating these products. In order to meet the varying feed conditions, this method has been tested for feeds containing 10 g/1 uranium and 1-50 g/1 thorium in 1-6M HNO 3 . Various parameters like feed acidities, uranium and thorium concentrations, excess oxalic acid concentrations in the oxalate supernatant, precipitation temperatures, precipitate wash volumes etc. have been optimised to obtain more than 99 per cent recovery of thorium and uranium as their oxides with less than 50 ppm uranium losses to ammonium diuranate filtrate. The distribution patterns of different fission products and stainless steel corrosion products during various steps of this procedure have also been studied. For simulating the actual Thorex plant scale operation, experiments have been conducted with 25g and 100g lots of uranium per batch. (author). 6 tabs., 8 figs., 22 refs

  14. Separation and purification of 99Mo from uranium and fission products using Cintichem process, our experience

    International Nuclear Information System (INIS)

    Manolkar, R.B.; Mathakar, A.R.; Kumar, Yogendra; Kumar, Manoj; Dash, A.; Venkatesh, Meera; Pillai, K.T.; Singh, Sarbjit; Venugopal, V.

    2009-01-01

    A pilot study was carried out to assess the feasibility of producing 99 Mo by fission of Unat following the Cintichem method. U-Mo alloy was irradiated for one week at Dhruva reactor and processed for the separation of 99 Mo from fission products. The irradiated targets were chemically processed to separate and purify the 99 Mo. Recovery of ∼70% and the purity of 99 Mo was > 99%. (author)

  15. Chemical Production using Fission Fragments

    International Nuclear Information System (INIS)

    Dawson, J. K.; Moseley, F.

    1960-01-01

    Some reactor design considerations of the use of fission recoil fragment energy for the production of chemicals of industrial importance have been discussed previously in a paper given at the Second United Nations International Conference on the Peaceful Uses of Atomic Energy [A/Conf. 15/P.76]. The present paper summarizes more recent progress made on this topic at AERE, Harwell. The range-energy relationship for fission fragments is discussed in the context of the choice of fuel system for a chemical production reactor, and the experimental observation of a variation of chemical effect along the length of a fission fragment track is described for the irradiation of nitrogen-oxygen mixtures. Recent results are given on the effect of fission fragments on carbon monoxide-hydrogen gas mixtures and on water vapour. No system investigated to date shows any outstanding promise for large-scale chemical production. (author) [fr

  16. Behavior of solid fission products in irradiated fuel

    International Nuclear Information System (INIS)

    Song, Ung Sup; Jung, Yang Hong; Kim, Hee Moon; Yoo, Byun Gok; Kim, Do Sik; Choo, Yong Sun; Hong, Kwon Pyo

    2004-01-01

    Many fission products are generated by fission events in UO 2 fuel under irradiation in nuclear reactor. Concentration of each fission product is changed by conditions of neutron energy spectrum, fissile material, critical thermal power, irradiation period and cooling time. Volatile materials such as Cs and I, the fission products, degrade nuclear fuel rod by the decrease of thermal conductivity in pellet and the stress corrosion cracking in cladding. Metal fission products (white inclusion) make pellet be swelled and decrease volume of pellet by densification. It seems that metal fission products are filled in the pore in pellet and placed between UO 2 lattices as interstitial. In addition, metal oxide state may change structural lattice volume. Considering behavior of fission products mentioned above, concentration of them is important. Fission products could be classified as bellows; solid solution in matrix : Sr, Zr, Nb, Y, La, Ce, Pr, Nd, Pm, Sm - metal precipitates : Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sb, Te - oxide precipitates : Ba, Zr, Nb, Mo, (Rb, Cs, Te) - volatile and gases : Kr, Xe, Br, I, (Rb, Cs, Te)

  17. Recovery and use of fission product noble metals

    International Nuclear Information System (INIS)

    Jensen, G.A.; Rohmann, C.A.; Perrigo, L.D.

    1980-06-01

    Noble metals in fission products are of strategic value. Market prices for noble metals are rising more rapidly than recovery costs. A promising concept has been developed for recovery of noble metals from fission product waste. Although the assessment was made only for the three noble metal fission products (Rh, Pd, Ru), there are other fission products and actinides which have potential value

  18. On the use of thin natural uranium film dosimetry in mineral dating by the fission track method

    International Nuclear Information System (INIS)

    Hadler Neto, J.C.; Iunes, P.J.; Khouri, M.C.

    1993-01-01

    Three obsidian samples were irradiated in a neutron facility and their age was measured by the fission track method; using a thin uranium film dosemeter. The results were compared to others made previously on the same type of rock using conventional neutron dosimetry. The use of thin uranium film for age determination is discussed. (F.E.). 20 refs, 4 tabs

  19. Mechanical properties and structure of Zircaloy attached by UO2+x and fission products

    International Nuclear Information System (INIS)

    Holub, F.

    1987-08-01

    The aim of this project was to determine the combined long-term effect of simulated fission products and hyperstoichiometric uranium dioxide on the mechanical properties and structure of Zircaloy. Three groups of fission product elements or compounds were defined: The rare earth oxides CeO 2 , La 2 O 3 , Nd 2 O 3 , Y 2 O 3 ; The metals No, Ru, Ag; The low melting elements Te, Sb and Cd. Each of these groups of fission products was mixed with UO 2+x in proportion related for burnups of 5, 10 and 30%. The simulated fuel mixtures were filled into tubular Zircaloy casings, plugged and welded. These specimens were annealed at 350, 500 and 700 deg. C up to 17,500 hours. The test results indicate different kinds of action of the simulated fuel constituents. Mixtures of rare earth oxides and UO 2+x embrittle Zircaloy drastically at higher temperatures. There exists a mutual intensifying effect of rare earth oxides and UO 2+x . UO 2+x and (Mo + Ru + Ag) and their mixtures act very similar on Zircaloy. The low melting fission products (Te + Sb + Cd) influence the ductility of Zircaloy in an advantageous manner, compared to pure UO 2+x fuel. The layer of zirconium tellurides seems to protect the Zircaloy metal against the embrittling attack of oxygen from UO 2+x . The most important events of tensile tests at 400 deg. C are the high values of the elongation of specimens which are brittled at room temperature. It should guarantee the integrity of fuel elements, which have been attacked chemically by fission products at temperatures of 400 deg. C and higher

  20. Fission track dating and uranium estimation in pegmatitic minerals of Rajasthan state (India)

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S; Virk, H S [Punjabi Univ., Patiala (India). Dept. of Physics

    1978-12-01

    Fission track geochronology of muscovite samples collected from some pegmatitic mines of Bhilwara and Ajmer districts of Rajasthan state (India) has been discussed. The ages obtained suggest the occurrence of Delhi Orogenic Cycle as the last major metamorphic activity in the region. The atomic fraction of uranium in muscovite samples is less than 1 p.p.b.

  1. RSAC, Gamma Doses, Inhalation and Ingestion Doses, Fission Products Inventory after Fission Products Release

    International Nuclear Information System (INIS)

    Richardson, L.C.

    1967-01-01

    1 - Description of problem or function: RSAC generates a fission product inventory from a given set of reactor operating conditions and then computes the external gamma dose, the deposition gamma dose, and the inhalation-ingestion dose to critical body organs as a result of exposure to these fission products. Program output includes reactor operating history, fission product inventory, dosages, and ingestion parameters. 2 - Method of solution: The fission product inventory generated by the reactor operating conditions and the inventory remaining at various times after release are computed using the equations of W. Rubinson in Journal of Chemical Physics, Vol. 17, pages 542-547, June 1949. The external gamma dose and the deposition gamma dose are calculated by determining disintegration rates as a function of space and time, then integrating using Hermite's numerical techniques for the spatial dependence. The inhalation-ingestion dose is determined by the type and quantity of activity inhaled and the biological rate of decay following inhalation. These quantities are integrated with respect to time to obtain the dosage. The ingestion dose is related to the inhalation dose by an input constant

  2. Preliminary investigations for technology assessment of 99Mo production from LEU [low enriched uranium] targets

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Chaiko, D.J.; Heinrich, R.R.; Kucera, E.T.; Jensen, K.J.; Poa, D.S.; Varma, R.; Vissers, D.R.

    1986-11-01

    This paper presents the results of preliminary studies on the effects of substituting low enriched uranium (LEU) for highly enriched uranium (HEU) in targets for the production of fission product 99 Mo. Issues that were addressed are: (1) purity and yield of the 99 Mo//sup 99m/Tc product, (2) fabrication of LEU targets and related concerns, and (3) radioactive waste. Laboratory experimentation was part of the efforts for issues (1) and (2); thus far, radioactive waste disposal has only been addressed in a paper study. Although the reported results are still preliminary, there is reason to be optimistic about the feasibility of utilizing LEU targets for 99 Mo production. 37 refs., 1 fig., 5 tabs

  3. Separation of heavier rare earths from neutron irradiated uranium targets

    International Nuclear Information System (INIS)

    Bhargava, V.K.; Rao, V.K.; Marathe, S.G.; Sahakundu, S.M.; Iyer, R.H.

    1978-01-01

    A radiochemical method is described for the separation of heavier rare earths from the fission of uranium. The method is particularly suitable for the separation of low yield (10sup(-5)%-10sup(-7)%), highly asymmetric rare earth fission products viz. sup(179,177)Lu, sup(175)Yb, sup(173)Tm, sup(172,171)Er, sup(167)Ho and sup(161,160)Tb in the neutron induced fission of natural and depleted uranium targets. Additional separation steps have been incorporated for decontamination from sup(239)Np (an activation product) and sup(93-90)Y (a high fission-yield product) which show similar chemical behaviour to rare earths. Separation of individual rare earths is achieved by a cation exchange method performed at 80 deg C by elution with α-hydroxyisobutyric acid (α-HIBA). (author)

  4. Determination of relative krypton fission product yields from 14 MeV neutron induced fission of 238U at the National Ignition Facility.

    Science.gov (United States)

    Edwards, E R; Cassata, W S; Velsko, C A; Yeamans, C B; Shaughnessy, D A

    2016-11-01

    Precisely-known fission yield distributions are needed to determine a fissioning isotope and the incident neutron energy in nuclear security applications. 14 MeV neutrons from DT fusion at the National Ignition Facility induce fission in depleted uranium contained in the target assembly hohlraum. The fission yields of Kr isotopes (85m, 87, 88, and 89) are measured relative to the cumulative yield of 88 Kr and compared to previously tabulated values. The results from this experiment and England and Rider are in agreement, except for the 85m Kr/ 88 Kr ratio, which may be the result of incorrect nuclear data.

  5. Process for the extraction of fission products

    International Nuclear Information System (INIS)

    Anav, M.; Chesne, A.; Leseur, A.; Miquel, P.; Pascard, R.

    1979-01-01

    A process is described for the extraction of fission products contained in irradiated nuclear fuel elements which have been subject to a temperature of at least 1200 0 C during their irradiation prior to dissolving the fuel by the wet process. After mechanically treating the elements in order to decan and/or cut them they are brought into contact with water in order to pass the fission products into aqueous solution. The treated elements are then separated from the thus obtained aqueous solution. At least one of the fission products is then recovered from the aqueous solution. The fission products are iodine, cesium, rubidium and tritium

  6. Cyclotron production of molybdenum-99 via proton-induced uranium-238 fission

    International Nuclear Information System (INIS)

    Lagunas-Solar, M.C.; Zeng, N.X.; Mirshad, I.; Castaneda, C.M.

    1996-01-01

    Technetium-99m ( 99m Tc; 6.02 h) is the most widely used radioisotope in nuclear medicine worldwide. It is currently supplied from elutions of a 99 Mo → 99m Tc generator and used for regional distribution or locally for institutional use. The parent 99 Mo (66.02 h) radioactivities are being produced commercially in reactors using the 235 U(n, fission) 99 Mo (preferred method) or the 98 Mo(n,γ) 99 Mo (less desirable) methods. The production of 99 Mo is based on the operation of a small number of nuclear reactors, most of which have reached decommissioning age. Two new reactors to be dedicated to radioisotope production are now being planned in Canada. Accelerator-based methods for producing 99 Mo and/or 99m Tc would then provide new alternatives to the current reliance on reactor-based technologies

  7. Determination of irradiated reactor uranium in soil samples in Belarus using 236U as irradiated uranium tracer.

    Science.gov (United States)

    Mironov, Vladislav P; Matusevich, Janna L; Kudrjashov, Vladimir P; Boulyga, Sergei F; Becker, J Sabine

    2002-12-01

    This work presents experimental results on the distribution of irradiated reactor uranium from fallout after the accident at Chernobyl Nuclear Power Plant (NPP) in comparison to natural uranium distribution in different soil types. Oxidation processes and vertical migration of irradiated uranium in soils typical of the 30 km relocation area around Chernobyl NPP were studied using 236U as the tracer for irradiated reactor uranium and inductively coupled plasma mass spectrometry as the analytical method for uranium isotope ratio measurements. Measurements of natural uranium yielded significant variations of its concentration in upper soil layers from 2 x 10(-7) g g(-1) to 3.4 x 10(-6) g g(-1). Concentrations of irradiated uranium in the upper 0-10 cm soil layers at the investigated sampling sites varied from 5 x 10(-12) g g(-1) to 2 x 10(-6) g g(-1) depending on the distance from Chernobyl NPP. In the majority of investigated soil profiles 78% to 97% of irradiated "Chernobyl" uranium is still contained in the upper 0-10 cm soil layers. The physical and chemical characteristics of the soil do not have any significant influence on processes of fuel particle destruction. Results obtained using carbonate leaching of 236U confirmed that more than 60% of irradiated "Chernobyl" uranium is still in a tetravalent form, ie. it is included in the fuel matrix (non-oxidized fuel UO2). The average value of the destruction rate of fuel particles determined for the Western radioactive trace (k = 0.030 +/- 0.005 yr(-1)) and for the Northern radioactive trace (k = 0.035 + 0.009 yr(-1)) coincide within experimental errors. Use of leaching of fission products in comparison to leaching of uranium for study of the destruction rate of fuel particles yielded poor coincidence due to the fact that use of fission products does not take into account differences in the chemical properties of fission products and fuel matrix (uranium).

  8. Study of uranium mineralization in rock samples from marwat range bannu basin by fission track analysis technique

    International Nuclear Information System (INIS)

    Qureshi, A.Z.; Ullah, K.; Ullah, N.; Akram, M.

    2004-07-01

    The Geophysics Division, Atomic Energy Minerals Centre (AEMC), Lahore has planned a uranium exploration program in Marwat Range, Bannu Basin. In this connection 30 thin sections of rock samples, collected from four areas; namely, Darra Tang, Simukili, Karkanwal and Sheikhillah from Marwat Range, and one from Salt Range were provided to Nuclear Geology Group of Physics Research Division, PINSTECH for the study of nature and mechanism of uranium mineralization These studies are aimed to help in designing uranium exploration strategy by providing the loci of uranium sources in the Marwat and Salt Ranges. The samples have been studied using fission track analysis technique. (author)

  9. Fuel depletion analyses for the HEU core of GHARR-1: Part II: Fission product inventory

    International Nuclear Information System (INIS)

    Anim-Sampong, S.; Akaho, E.H.K.; Boadu, H.O.; Intsiful, J.D.K.; Osae, S.

    1999-01-01

    The fission product isotopic inventories have been estimated for a 90.2% highly enriched uranium (HEU) fuel lattice cell of the Ghana Research Reactor-1 (GHARR-1) using the WIMSD/4 transport lattice code. The results indicate a gradual decrease in the Xe 135 inventory, and saturation trend for Sm 149 , Cs 134 and Cs 135 inventories as the fuel is depleted to 10,000 MWd/tU. (author)

  10. Determination of the uranium content in phosphate fertilizers by the fission track registration technique

    International Nuclear Information System (INIS)

    Rocha, A.C.S. da.

    1983-01-01

    The application of fission track registration technique (SSNTD) to determine the uranium contents in phosphate fertilizers is dealt with. Samples were prepared by the wet method and the detector used was Makrofol Kg 10μm thick. The determination of uranium in phosphate fertilizer industry is of considerable interest in environmental control. The roots of vegetables tend to absorb and accumulate uranium form soil and so the human body could be contaminated. The phosphate fertilizers were originated from the phosphate-rich apatite deposits located in the high naturally radioactive areas of Araxa and Tapira in the state of Minas Gerais, Brazil. The results obtained ranged from 11.1 to 100ppm of uranium with a total error from 8.2 to 15.7%. The thorium contributions to the total track counting were discounted, though the actual concentrations of thorium in the samples were not determined. (Author) [pt

  11. Influence of the cosmic-ray induced fission tracks on the fission track of extraterrestric minerals via the 238U spontaneous fission

    International Nuclear Information System (INIS)

    Damm, G.; Thiel, K.

    1977-01-01

    The age determined by counting fission tracks of lunar and meteorite materials is obviously falsified by additional fission track parts not to be accounted for by the spontaneous fission of uranium 238. For this p and n induced fissions of U, Th and other hreavy elements through the cosmic radiation come into consideration. In order to determine the possible part of such interference factors, a simulation experiment at the proton synchrocycloton (CERN, Geneva) has been carried out and independently of this, the production rates for the p and n induced U, Th, Bi, Pb and Au in the surface-near regolith layers of the moon were calculated. It could be seen that the irradiation age as well as the spacial distribution of the heavy metals in the samples to be dated must be considered. (RB) [de

  12. Fission products in glasses. Pt. 2

    International Nuclear Information System (INIS)

    De, A.K.; Luckscheiter, B.; Malow, G.; Schiewer, E.

    1977-09-01

    Glass ceramics of different composition with high leach and impact resistance can be produced for fission product solidification. In contrast to commercial glass products, they consist of a number of crystalline phases and a residual glass phase. The major crystalline phase allows a classification into celsian, diopside, encryptite, and perovskite ceramics. They all are of special importance as host phases for long-lived fission products. The paper reports on relations between product composition and melting properties, viscosity, crystallization properties, and fixation capability for fission products. Further investigations deal with dimensional stability, impact resistance, thermal expansion, and thermal conductivity. The properties of the ceramics are compared with those of the basic products. The problems still to be solved with regard to further improvement and application of these products are discussed. (RB) [de

  13. METHOD OF SEPARATING URANIUM VALUES, PLUTONIUM VALUES AND FISSION PRODUCTS BY CHLORINATION

    Science.gov (United States)

    Brown, H.S.; Seaborg, G.T.

    1959-02-24

    The separation of plutonium and uranium from each other and from other substances is described. In general, the method comprises the steps of contacting the uranium with chlorine in the presence of a holdback material selected from the group consisting of lanthanum oxide and thorium oxide to form a uranium chloride higher than uranium tetrachloride, and thereafter heating the uranium chloride thus formed to a temperature at which the uranium chloride is volatilized off but below the volatilizalion temperature of plutonium chloride.

  14. Thermochromatographic investigations of fission product transport and chemistry

    International Nuclear Information System (INIS)

    Growcock, F.B.; Aronson, S.; Friedlander, M.; Skalyo, J. Jr.; Hosseini, A.; Taylor, R.D.

    1978-01-01

    A thermochromatographic technique has been developed to investigate the chemical states of fission products from irradiated fuel as well as in fission product simulation studies. Some recent work on iodine transport and on release of fission products from irradiated fuel kernels will be discussed

  15. Fission-product retention in HTGR fuels

    International Nuclear Information System (INIS)

    Homan, F.J.; Kania, M.J.; Tiegs, T.N.

    1982-01-01

    Retention data for gaseous and metallic fission products are presented for both Triso-coated and Biso-coated HTGR fuel particles. Performance trends are established that relate fission product retention to operating parameters, such as temperature, burnup, and neutron exposure. It is concluded that Biso-coated particles are not adequately retentive of fission gas or metallic cesium, and Triso-coated particles which retain cesium still lose silver. Design implications related to these performance trends are identified and discussed

  16. 800-MeV proton irradiation of thorium and depleted uranium targets

    Energy Technology Data Exchange (ETDEWEB)

    Russell, G.J.; Brun, T.O.; Pitcher, E.J. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-10-01

    As part of the Los Alamos Fertile-to-Fissile-Conversion (FERFICON) program in the late 1980`s, thick targets of the fertile materials thorium and depleted uranium were bombarded by 800-MeV protons to produce the fissile materials {sup 233}U and {sup 239}Pu, respectively. The amount of {sup 233}U made was determined by measuring the {sup 233}Pa activity, and the yield of {sup 239}Pu was deduced by measuring the activity of {sup 239}Np. For the thorium target, 4 spallation products and 34 fission products were also measured. For the depleted uranium target, 3 spallation products and 16 fission products were also measured. The number of fissions in each target was deduced from fission product mass-yield curves. In actuality, axial distributions of the products were measured, and the distributions were then integrated over the target volume to obtain the total number of products for each reaction.

  17. Miniaturization of uranium/plutonium/fission products separation: design of a 'lab-on-CD' micro-system and application

    International Nuclear Information System (INIS)

    Bruchet, A.

    2012-01-01

    The chemical analysis of spent nuclear fuels is essential to design future nuclear fuels cycle and reprocessing methods but also for waste management. The analysis cycle consists of several chemical separation steps which are time consuming and difficult to implement due to confinement in glove boxes. It is required that the separation steps be automated and that the volume of radioactive waste generated be reduced. The design of automated, miniaturized and disposable analytical platforms should fulfill these requirements. This project aims to provide an alternative to the first analytical step of the spent fuels analysis: the chromatographic separation of Uranium and Plutonium from the minor actinides and fission products. The goal is to design a miniaturized platform showing analytical performances equivalent to the current process, and to reduce both the exposure of workers through automation, and the volume of waste produced at the end of the analysis cycle. Thus, the separation has been implemented on a disposable plastic micro-system (COC), specifically designed for automation: a lab on a Compact Disk or lab-on-CD. The developed prototype incorporates an anion-exchange monolithic micro-column whose in-situ synthesis as well as surface functionalization have been optimized specifically for the desired separation. The development of an adapted separation protocol was carried out using a simulation tool modeling the elution of the various elements of interest. This tool is able to predict the column geometry (length and cross section) suited to obtain pure fractions of Uranium and Plutonium as a function of the sample composition. Finally, the prototype is able to automatically carry out four separations simultaneously reducing the number of manipulations, the analysis time and reducing the volume of liquid waste by a factor of 1000. (author) [fr

  18. Oklo natural reactor. Study of uranium and rare earths migration on a core drilled through a reaction zone. Application to determination of the date of the nuclear reaction by measurement of fission products

    International Nuclear Information System (INIS)

    Ruffenach, J.C.

    1977-01-01

    Isotopic and chemical analysis of uranium and five rare earths: neodymium, samarium, europium, gadolinium and dysprosium were effected on fourteen samples taken in the same core drilled through a reaction zone of the Oklo uranium deposit. This study points out the general stability of uranium and fission rare earths; spatial distributions of these elements are quite analogous. Migrations have affected about 5% only of fission neodymium in the core of the reaction zone; corresponding values for samarium and gadolinium are slightly higher. These migration phenomena have carried rare earths to no more than 80 cm out of the core. By study of the europium it is shown that nuclear reactions have stayed in the ground since the time of reactions. On the other hand it is shown by analysis of the dysprosium that rare earths have not undergone an important movement. This study allow also the datation of nuclear reactions from the measurement of the quantity of fission neodymium produced. A value of 1.98x10 9 years is obtained slightly higher than the value obtained by geochronology [fr

  19. Calculation of energy transfer by fission fragments from plane uranium layer to thin wire

    International Nuclear Information System (INIS)

    Pikulev, A.A.

    2006-01-01

    Energy transfer from a flat fissile uranium slab to a fine wire via fission fragments is calculated. The rate of energy transfer versus the thicknesses of the slab and protecting aluminum film, as well as the wire-slab gap, is found. An expression for the absorption coefficient of the wire is derived, and the effect the thickness of the wire has on the energy transfer process is studied. The amount of the edge effect for a finite-size uranium slab is demonstrated with calculations for vacuum conditions and for argon under a pressure of 0.25 atm [ru

  20. Standard method of test for atom percent fission in uranium fuel - radiochemical method

    International Nuclear Information System (INIS)

    Anon.

    The determination of the U at. % fission that has occurred in U fuel from an analysis of the 137 Cs ratio to U ratio after irradiation is described. The method is applicable to high-density, clad U fuels (metal, alloys, or ceramic compounds) in which no separation of U and Cs has occurred. The fuels are best aged for several months after irradiation in order to reduce the 13-day 136 Cs activity. The fuel is dissolved and diluted to produce a solution containing a final concentration of U of 100 to 1000 mg U/l. The 137 Cs concentration is determined by ASTM method E 320, for Radiochemical Determination of Cesium-137 in Nuclear Fuel Solutions, and the U concentration is determined by ASTM method E 267, for Determination of Uranium and Plutonium Concentrations and Isotopic Abundances, ASTM method E 318, for Colorimetric Determination of Uranium by Controlled-Potential Coulometry. Calculations are given for correcting the 137 Cs concentration for decay during and after irradiation. The accuracy of this method is limited, not only by the experimental errors with which the fission yield and the half-life of 137 Cs are known

  1. Plutonium recovery from spent reactor fuel by uranium displacement

    Science.gov (United States)

    Ackerman, J.P.

    1992-03-17

    A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  2. Plutonium recovery from spent reactor fuel by uranium displacement

    International Nuclear Information System (INIS)

    Ackerman, J.P.

    1992-01-01

    A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished

  3. Physics and potentials of fissioning plasmas for space power and propulsion

    Science.gov (United States)

    Thom, K.; Schwenk, F. C.; Schneider, R. T.

    1976-01-01

    Fissioning uranium plasmas are the nuclear fuel in conceptual high-temperature gaseous-core reactors for advanced rocket propulsion in space. A gaseous-core nuclear rocket would be a thermal reactor in which an enriched uranium plasma at about 10,000 K is confined in a reflector-moderator cavity where it is nuclear critical and transfers its fission power to a confining propellant flow for the production of thrust at a specific impulse up to 5000 sec. With a thrust-to-engine weight ratio approaching unity, the gaseous-core nuclear rocket could provide for propulsion capabilities needed for manned missions to the nearby planets and for economical cislunar ferry services. Fueled with enriched uranium hexafluoride and operated at temperatures lower than needed for propulsion, the gaseous-core reactor scheme also offers significant benefits in applications for space and terrestrial power. They include high-efficiency power generation at low specific mass, the burnup of certain fission products and actinides, the breeding of U-233 from thorium with short doubling times, and improved convenience of fuel handling and processing in the gaseous phase.

  4. Dosimetric measurement of the disintegration rate of fission products

    International Nuclear Information System (INIS)

    Solymosi, J.; Nagy, L.G.; Zagyvai, P.

    1992-01-01

    Investigations on the disintegration rate of fission products of 238 U and 239 Pu are presented. The intensity of the β-and γ-radiation of fission products were measured continously in an interval of 1-1300 hours following the fission, offering the possibility for determining the general and specific characteristics of the individual fission products. A universal measuring procedure was elaborated for the rapid in situ determination of the dosimetric features of fission products, which is suitable for the accurate evaluation and prediction of external absorbed dose even in case of fission products of various origin and unknown composition. (author) 6 refs.; 7 figs.; 1 tab

  5. Progress in fission product nuclear data. Information about activities in the field of measurements and compilations/evaluations of fission product nuclear data (FPND)

    International Nuclear Information System (INIS)

    Lammer, G.

    1978-07-01

    This is the fourth issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS. The types of activities being included in this report are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission); neutron reaction cross sections of fission products; data related to the radioactive decay of fission products; delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.)

  6. Burn-Up Determination by High Resolution Gamma Spectrometry: Spectra from Slightly-Irradiated Uranium and Plutonium between 400-830 keV

    International Nuclear Information System (INIS)

    Forsyth, R.S.; Ronqvist, N.

    1966-08-01

    Previously published studies of the short-cooled fission product spectra of irradiated uranium have been severely restricted by the poor energy resolution of the sodium iodide detectors used. In this report are presented fission product spectra of irradiated uranium and plutonium obtained by means of a lithium-drifted germanium detector. The resolved gamma peaks have been assigned to various fission products by correlation of measured energy and half-life values with published data. By simultaneous study of the spectra of two irradiated mixtures of plutonium and uranium, the possibility of using the activities of Ru-103 and Ru-106 as a measure of the relative fission rate in U-235 and Pu-239 has been briefly examined

  7. Burn-Up Determination by High Resolution Gamma Spectrometry: Spectra from Slightly-Irradiated Uranium and Plutonium between 400-830 keV

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, R S; Ronqvist, N

    1966-08-15

    Previously published studies of the short-cooled fission product spectra of irradiated uranium have been severely restricted by the poor energy resolution of the sodium iodide detectors used. In this report are presented fission product spectra of irradiated uranium and plutonium obtained by means of a lithium-drifted germanium detector. The resolved gamma peaks have been assigned to various fission products by correlation of measured energy and half-life values with published data. By simultaneous study of the spectra of two irradiated mixtures of plutonium and uranium, the possibility of using the activities of Ru-103 and Ru-106 as a measure of the relative fission rate in U-235 and Pu-239 has been briefly examined.

  8. Amount and activity of fission products which will be obtainable in France in the immediate future taking into account the development of atomic energy; Quantite et activite des produits de fission abtenus en France dans les annees a venir compte tenu du developpement de l'energie atomique

    Energy Technology Data Exchange (ETDEWEB)

    Guirlet, J; Lavie, J M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    By using the Wigner and Way formula, the activity of the complex mixture of fission products produced in a pile may be estimated theoretically in advance. This study was carried out on the basis of forecasts, in the case of France for the production of electricity of atomic origin up to the year 1975. The uranium was assumed to be in the pile during periods of three months and six months. It is also possible to find the activity of a particular fission product and to give its decay rate. The element chosen is strontium for a three months' activation period. Each set of curves gives at any moment the total activity accumulated, and the characteristic activity of the fission products corresponding to a given half-life. (author) [French] En utilisant la formule de Wigner et Way, il est possible de prevoir theoriquement l'activite du melange complexe de produits de fission provenant d'une pile. L'etude a ete faite en tenant compte de previsions, en ce qui concerne la France, de la production d'electricite d'origine atomique jusqu'en 1975. On a suppose des temps de sejour en pile de l'uranium de trois mois et de six mois. Il est possible egalement de trouver l'activite d'un produit de fission particulier, et de donner sa decroissance. Le corps choisi est le strontium pour un temps d'activation de trois mois. Chaque ensemble de courbes donne a tout instant l'activite totale accumulee, et l'activite propre des produits de fission correspondant a une periode donnee. (auteur)

  9. Fission product induced swelling of U–Mo alloy fuel

    International Nuclear Information System (INIS)

    Kim, Yeon Soo; Hofman, G.L.

    2011-01-01

    Highlights: ► We measured fuel swelling of U–Mo alloy by fission products at temperatures below 250 °C. ► We quantified the swelling portion of U–Mo by fission gas bubbles. ► We developed an empirical model as a function of fission density. - Abstract: Fuel swelling of U–Mo alloy was modeled using the measured data from samples irradiated up to a fission density of ∼7 × 10 27 fissions/m 3 at temperatures below ∼250 °C. The overall fuel swelling was measured from U–Mo foils with as-fabricated thickness of 250 μm. Volume fractions occupied by fission gas bubbles were measured and fuel swelling caused by the fission gas bubbles was quantified. The portion of fuel swelling by solid fission products including solid and liquid fission products as well as fission gas atoms not enclosed in the fission gas bubbles is estimated by subtracting the portion of fuel swelling by gas bubbles from the overall fuel swelling. Empirical correlations for overall fuel swelling, swelling by gas bubbles, and swelling by solid fission products were obtained in terms of fission density.

  10. Study of hypernuclei fission

    International Nuclear Information System (INIS)

    Malek, F.

    1990-01-01

    This work is about PS177 experience made on LEAR machine at CERN in 1988. The annihilation reaction of anti protons on a target of Bismuth or Uranium is studied. Lambda particles are produced by this reaction, in the nucleus in 2% of cases 7.1 10 -3 hypernuclei by stopped antiproton in the target are produced. The prompt hypernucleus fission probability of uranium is 75% and that of Bismuth 10%. The mass distribution of fission fragments is symmetrical ((≡ the excitation energy of the nucleus is very high). If the nucleus hasn't fissioned, the non-mesonic lambda decay, gives it an energy of 100 MeV, what allows to fission later. This fission is delayed because the hypernucleus lifetime is 1.3 +0.25 -0.21 10 -10 sec for Bismuth [fr

  11. Fission induced swelling and creep of U–Mo alloy fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Hofman, G.L. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Cheon, J.S. [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong, Daejeon 305-353 (Korea, Republic of); Robinson, A.B.; Wachs, D.M. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States)

    2013-06-15

    Tapering of U–Mo alloy fuel at the end of plates is attributed to lateral mass transfer by fission induced creep, by which fuel mass is relocated away from the fuel end region where fission product induced fuel swelling is in fact the highest. This mechanism permits U–Mo fuel to achieve high burnup by effectively relieving stresses at the fuel end region, where peak stresses are otherwise expected because peak fission product induced fuel swelling occurs there. ABAQUS FEA was employed to examine whether the observed phenomenon can be simulated using physical–mechanical data available in the literature. The simulation results obtained for several plates with different fuel fabrication and loading scheme showed that the measured data were able to be simulated with a reasonable creep rate coefficient. The obtained creep rate constant lies between values for pure uranium and MOX, and is greater than all other ceramic uranium fuels.

  12. Irradiation tests of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.; Suripto, A.; Nasution, H.; Lufti-Amin, D.; Gogo, A.

    1996-01-01

    Most of the world's supply of 99 mTc for medical purposes is currently produced from the decay of 99 Mo derived from the fissioning of high-enriched uranium (HEU). Substitution of low-enriched uranium (LEU) metal foils for the HEU UO 2 used in current target designs will allow equivalent 99 Mo yields with little change in target geometries. Substitution of uranium metal for uranium alloy and aluminide in other target designs will also allow the conversion of HEU to LEU. Several uranium-metal-foil targets have been fabricated at ANL and irradiated to prototypic burnup in the Indonesian RSG-GAS reactor. Postirradiation examination of the initial test indicated that design modifications were required to allow the irradiated foil to be removed for chemical processing. The latest test has shown good irradiation behavior, satisfactory dismantling and foil removal when the U-foil is separated from its containment by metallic, fission-recoil absorbing barriers. (author)

  13. Irradiation tests of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.; Suripto, A.; Nasution, H.; Lufti-Amin, D.; Gogo, A.

    1996-01-01

    Most of the world's supply of 99m Tc for medical purposes is currently produced form the decay of 99 Mo derived from the fissioning of high-enriched uranium (HEU). Substitution of low-enriched uranium (LEU) metal foils for the HEU UO 2 used in current target designs will allow equivalent 99 Mo yields with little change in target geometries. Substitution of uranium metal for uranium alloy and aluminide in other target designs will also allow the conversion of HEU to LEU. Several uranium-metal-foil targets have been fabricated at ANL and irradiated to prototypic burnup in the Indonesian RSG-GAS reactor. Postirradiation examination of the initial test indicated that design modifications were required to allow the irradiated foil to be removed for chemical processing. The latest test has shown good irradiation behavior, satisfactory dismantling and foil removal when the U-foil is separated from its containment by metallic, fission-recoil absorbing barriers

  14. Investigation of applications for high-power, self-critical fissioning uranium plasma reactors. Final technical report

    International Nuclear Information System (INIS)

    Rodgers, R.J.; Latham, T.S.; Krascella, N.L.

    1976-09-01

    Analytical studies were conducted to investigate potentially attractive applications for gaseous nuclear cavity reactors fueled by uranium hexafluoride and its decomposition products at temperatures of 2000 to 6000 K and total pressures of a few hundred atmospheres. Approximate operating conditions and performance levels for a class of nuclear reactors in which fission energy removal is accomplished principally by radiant heat transfer from the high temperature gaseous nuclear fuel to surrounding absorbing media were determined. The results show the radiant energy deposited in the absorbing media may be efficiently utilized in energy conversion system applications which include (1) a primary energy source for high thrust, high specific impulse space propulsion, (2) an energy source for highly efficient generation of electricity, and (3) a source of high intensity photon flux for heating working fluid gases for hydrogen production or MHD power extraction. (Author)

  15. Simulation of Fission Product Liftoff Behavior During Depressurization Transients

    International Nuclear Information System (INIS)

    Tak, Nam-il; Yoon, Churl; Lee, Sung Nam

    2016-01-01

    As one of crucial technologies for the NHDD project, the development of the GAMMA-FP code is on-going. The GAMMA-FP code is targeted for fission product transport analysis under accident conditions. A well-known experiment named COMEDIE considered two important phenomena, i.e., fission product plateout and liftoff, for fission product transport within the primary circuit of a prismatic high temperature gas cooled reactor. The accumulated fission products on the structural material via the plateout can be liftoff during a blowdown phase after a pipe break accident. Since the fission product liftoff can increase a radioactivity risk, it is important to predict the amount of fission product liftoff during depressurization accidents. In this work, a model for fission product liftoff is implemented into the GAMMA-FP code and the GAMMA-FP code with the implemented model is validated using the COMEDIE blowdown test data. The results of GAMMA-FP show that the GAMMA-FP code can reliably simulate a pressure transient during blowdown phase after a pipe break accident. In addition, a reasonable amount of fission product liftoff was predicted by the GAMMA-FP code. The maximum difference between the measured and predicted liftoff fraction was less than a factor of 10. More in-depth study is required to increase the accuracy of prediction for a fission product liftoff

  16. Neutron activation analysis of high pure uranium using preconcentration

    International Nuclear Information System (INIS)

    Sadikov, I.I.; Rakhimov, A.V.; Salimov, M.I.; Zinov'ev, V.G.

    2006-01-01

    Full text: Uranium and its compounds are used as nuclear fuel, and requirements for purity of initial uranium are very high. Therefore highly sensitive and multielemental analysis of uranium is required. One of such methods is neutron activation analysis (NAA). During irradiation of uranium by nuclear reactor neutrons the induced radioactivity of a sample is formed by uranium radionuclide 239 U (T 1/2 = 23,4 min.) and its daughter radionuclide 239 Np (T 1/2 = 2,39 d). Short-lived 239 U almost completely decays in 24 hours after irradiation and the radioactivity of the sample is mainly due to 239 Np and is more than 10 9 Bq for 0.1 g of uranium sample (F = 1*10 14 cm -2 s -1 , t irr . = 5 h). That is why nondestructive determination of the impurities is impossible and they should be separated from 239 Np. When irradiated uranium yields fission products - radionuclides of some elements with mass numbers 91-104 and 131-144. The main problem in NAA of uranium is to take into account correctly the influence of fission products on the analysis results. We have developed a radiochemical separation procedure for RNAA of uranium [1]. Comparing the results of analysis carried out by radiochemical NAA and instrumental NAA with preconcentration of trace elements can be used for evaluating the interference of fission products on uranium analysis results. Preconcentration of trace elements have been carried out by extraction chromatography in 'TBP - 6M HNO 3 ' system [1]. Experiments have shown that if 0.1 g uranium sample is taken for analysis (F = 1*10 14 cm -2 s -1 , t irr . =5 h) the apparent concentration of Y, Zr, Mo, Cs, La, Ce, Pr, Nd exceeds the true concentration by 2500-3000 times and so determination of these elements is not possible by radiochemical NAA. (author)

  17. Irradiated uranium reprocessing, Final report I-VI, Part VI - Separation of uranium, plutonium and fission products from HNO{sub 3} solution on the zirconium phosphate (part I), Adsorption equilibrium and kinetics; Prerada ozracenog urana. Zavrani izvestaj - I-VI, VI Deo - Odvajanje urana, plutonijuma i fisionih produkata iz rastvora HNO{sub 3} na cirkonijum fosfatu (deo I.), Ravnoteza i kinetika adsorpcije

    Energy Technology Data Exchange (ETDEWEB)

    Gal, I; Ruvarac, A [Institute of Nuclear Sciences Boris Kidric, Odeljenje za eksploataciju nuklearnog goriva, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    Separation of uranium, plutonium and long-lived fission products was investigated on a inorganic ion exchanger. Zirconium phospate was chosen for this purpose because its ion exchanger properties were well known. This report deals with the study of equilibrium and kinetics of the adsorption.

  18. Fission gas behaviour in water reactor fuels

    International Nuclear Information System (INIS)

    2002-01-01

    During irradiation, nuclear fuel changes volume, primarily through swelling. This swelling is caused by the fission products and in particular by the volatile ones such as krypton and xenon, called fission gas. Fission gas behaviour needs to be reliably predicted in order to make better use of nuclear fuel, a factor which can help to achieve the economic competitiveness required by today's markets. These proceedings communicate the results of an international seminar which reviewed recent progress in the field of fission gas behaviour in light water reactor fuel and sought to improve the models used in computer codes predicting fission gas release. State-of-the-art knowledge is presented for both uranium-oxide and mixed-oxide fuels loaded in water reactors. (author)

  19. Uranium deposits obtention for fission chambers; Obtencion de depositos de uranio para fabricacion de camaras de fision

    Energy Technology Data Exchange (ETDEWEB)

    Artacho Saviron, E

    1972-07-01

    The obtention of uranium deposits of the required quality for small cylindrical fission chambers presents some difficulties. With the method of electroplating here described the uniformity, reproducibility and adherence of the obtained deposits were satisfactory. (Author) 6 refs.

  20. Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons

    Science.gov (United States)

    Bhatia, C.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.; Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rundberg, R. S.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Macri, R.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.

    2014-09-01

    A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.

  1. Uranium production from phosphates

    International Nuclear Information System (INIS)

    Ketzinel, Z.; Folkman, Y.

    1979-05-01

    According to estimates of the world's uranium consumption, exploitation of most rich sources is expected by the 1980's. Forecasts show that the rate of uranium consumption will increase towards the end of the century. It is therefore desirable to exploit poor sources not yet in use. In the near future, the most reasonable source for developing uranium is phosphate rock. Uranium reserves in phosphates are estimated at a few million tons. Production of uranium from phosphates is as a by-product of phosphate rock processing and phosphoric acid production; it will then be possible to save the costs incurred in crushing and dissolving the rock when calculating uranium production costs. Estimates show that the U.S. wastes about 3,000 tons of uranium per annum in phosphoric acid based fertilisers. Studies have also been carried out in France, Yugoslavia and India. In Israel, during the 1950's, a small plant was operated in Haifa by 'Chemical and Phosphates'. Uranium processes have also been developed by linking with the extraction processes at Arad. Currently there is almost no activity on this subject because there are no large phosphoric acid plants which would enable production to take place on a reasonable scale. Discussions are taking place about the installation of a plant for phosphoric acid production utilising the 'wet process', producing 200 to 250,000 tons P 2 O 5 per annum. It is necessary to combine these facilities with uranium production plant. (author)

  2. Modeling Fission Product Sorption in Graphite Structures

    International Nuclear Information System (INIS)

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-01-01

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high-temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products

  3. Fission-product SiC reaction in HTGR fuel

    International Nuclear Information System (INIS)

    Montgomery, F.

    1981-01-01

    The primary barrier to release of fission product from any of the fuel types into the primary circuit of the HTGR are the coatings on the fuel particles. Both pyrolytic carbon and silicon carbide coatings are very effective in retaining fission gases under normal operating conditions. One of the possible performance limitations which has been observed in irradiation tests of TRISO fuel is chemical interaction of the SiC layer with fission products. This reaction reduces the thickness of the SiC layer in TRISO particles and can lead to release of fission products from the particles if the SiC layer is completely penetrated. The experimental section of this report describes the results of work at General Atomic concerning the reaction of fission products with silicon carbide. The discussion section describes data obtained by various laboratories and includes (1) a description of the fission products which have been found to react with SiC; (2) a description of the kinetics of silicon carbide thinning caused by fission product reaction during out-of-pile thermal gradient heating and the application of these kinetics to in-pile irradiation; and (3) a comparison of silicon carbide thinning in LEU and HEU fuels

  4. Study on the solid state chemistry of ternary uranium oxides

    International Nuclear Information System (INIS)

    Yamashita, Toshiyuki

    1988-03-01

    With the increase of burnup of uranium oxide fuels, various kinds of fission products are formed, and the oxygen atoms combined with the consumed heavy atoms are freed. The solid state chemical and/or thermodynamic properties of these elements at high temperatures are complex, and have not been well clarified. In the present report, an approach was taken that the chemical interactions between UO 2 and these fission products can be regarded as causing overlapped effects of composing ternary uranium oxides, and formation reactions and phase behavior were studied for several ternary uranium oxides with typical fission product elements such as alkaline earth metals and rare earth elements. Precise determination methods for the composition of ternary uranium oxides were developed. The estimated accuracies for x and y values in M y U 1-y O 2+x were ± 0.006 and ± 0.004, respectively. The thermodynamic properties and the lattice parameters of the phases in the Ca-U-O and Pr-U-O systems were discussed in relation to the composition determined by the methods. Crystal structure analyses of cadmium monouranates were made with X-ray diffraction method. (author) 197 refs

  5. MICRO/NANO-STRUCTURAL EXAMINATION AND FISSION PRODUCT IDENTIFICATION IN NEUTRON IRRADIATED AGR-1 TRISO FUEL

    Energy Technology Data Exchange (ETDEWEB)

    van Rooyen, I. J.; Lillo, T. M.; Wen, H. M.; Hill, C. M.; Holesinger, T. G.; Wu, Y. Q.; Aguiara, J. A.

    2016-11-01

    Advanced microscopic and microanalysis techniques were developed and applied to study irradiation effects and fission product behavior in selected low-enriched uranium oxide/uranium carbide TRISO-coated particles from fuel compacts in six capsules irradiated to burnups of 11.2 to 19.6% FIMA. Although no TRISO coating failures were detected during the irradiation, the fraction of Ag-110m retained in individual particles often varied considerably within a single compact and at the capsule level. At the capsule level Ag-110m release fractions ranged from 1.2 to 38% and within a single compact, silver release from individual particles often spanned a range that extended from 100% retention to nearly 100% release. In this paper, selected irradiated particles from Baseline, Variant 1 and Variant 3 type fueled TRISO coated particles were examined using Scanning Electron Microscopy, Atom Probe Tomography; Electron Energy Loss Spectroscopy; Precession Electron Diffraction, Transmission Electron Microscopy, Scanning Transmission Electron Microscopy (STEM), High Resolution Electron Microscopy (HRTEM) examinations and Electron Probe Micro-Analyzer. Particle selection in this study allowed for comparison of the fission product distribution with Ag retention, fuel type and irradiation level. Nano sized Ag-containing features were predominantly identified in SiC grain boundaries and/or triple points in contrast with only two sitings of Ag inside a SiC grain in two different compacts (Baseline and Variant 3 fueled compacts). STEM and HRTEM analysis showed evidence of Ag and Pd co-existence in some cases and it was found that fission product precipitates can consist of multiple or single phases. STEM analysis also showed differences in precipitate compositions between Baseline and Variant 3 fuels. A higher density of fission product precipitate clusters were identified in the SiC layer in particles from the Variant 3 compact compared with the Variant 1 compact. Trend analysis shows

  6. An analysis of the additional fission product release phenomena

    International Nuclear Information System (INIS)

    Takeda, Tsuneo; Nagai, Hitoshi

    1978-09-01

    The additional fission product release behavior through a defect hole on the cladding of fuel rods has been studied qualitatively with a computer program CODAC-ARFP. The additional fission product release phenomena are described as qualitative evaluation. The additional fission product release behavior in coolant temperature and pressure fluctuations and in reactor start-up and shut-down depends on coolant water flow behavior into and from the free space of fuel rods through a defect hole. Based on the results of evaluations, the experimental results with an inpile water loop OWL-1 are described in detail. The estimation methods of fission product quantity in the free space and fission product release ratio (quantity released into the coolant/quantity in the free space before beginning of release) are necessary for analysis of the fission product release behavior; the estimation method of water flow through a defect hole is also necessary. In development of the above estimation methods, outpile and capsule experiments supporting the additional fission product release experiments are required. (author)

  7. Development of fission Mo-99 production technology

    International Nuclear Information System (INIS)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2000-05-01

    Fission Mo-99 is the only parent nuclide of Tc-99m, an extremely useful tool for mdeical diagnosis, with an estimated usage of greater than 80% of nuclear medicine applicatons. HEU and LEU targets to optimize in HANARO irradiation condition suggested and designed for domestic production of fission Mo-99. The optimum process conditions are established in each unit process to meet quality requirements of fission Mo-99 products, and the results of performance test in combined process show Mo separation and purification yield of the above 97%. The concept of Tc generator production process is established, and the result of performance test show Tc production yield of 98.4% in Tc generator procuction process. The drafts is prepared for cooperation of technical cooperation and business investment with foreign country. Evaluation on economic feasibility is accompanied for fission Mo-99 and Tc-99m generator production

  8. Development of fission Mo-99 production technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2000-05-01

    Fission Mo-99 is the only parent nuclide of Tc-99m, an extremely useful tool for mdeical diagnosis, with an estimated usage of greater than 80% of nuclear medicine applicatons. HEU and LEU targets to optimize in HANARO irradiation condition suggested and designed for domestic production of fission Mo-99. The optimum process conditions are established in each unit process to meet quality requirements of fission Mo-99 products, and the results of performance test in combined process show Mo separation and purification yield of the above 97%. The concept of Tc generator production process is established, and the result of performance test show Tc production yield of 98.4% in Tc generator procuction process. The drafts is prepared for cooperation of technical cooperation and business investment with foreign country. Evaluation on economic feasibility is accompanied for fission Mo-99 and Tc-99m generator production.

  9. ENDF/B-5. Fission Product Yields File

    International Nuclear Information System (INIS)

    Schwerer, O.

    1985-10-01

    The ENDF/B-5 Fission Product Yields File contains a complete set of independent and cumulative fission product yields, representing the final data from ENDF/B-5 as received at the IAEA Nuclear Data Section in June 1985. Yields for 11 fissioning nuclides at one or more neutron incident energies are included. The data are available costfree on magnetic tape from the IAEA Nuclear Data Section. (author). 4 refs

  10. Radiochemical studies on fission

    Energy Technology Data Exchange (ETDEWEB)

    None

    1973-07-01

    Research progress is reported on nuclear chemistry; topics considered include: recoil range and kinetic energy distribution in the thermal neutron ftssion of /sup 245/Cm; mass distribution and recoil range measurements in the reactor neutron-induced fission of /sup 232/U; fission yields in the thermal neutron fission of /sup 241/PU highly asymmetric binary fission of uranium induced by reactor neutrons; and nuclear charge distribution in low energy fission. ( DHM)

  11. Model for fission-product calculations

    International Nuclear Information System (INIS)

    Smith, A.B.

    1984-01-01

    Many fission-product cross sections remain unmeasurable thus considerable reliance must be placed upon calculational interpolation and extrapolation from the few available measured cross sections. The vehicle, particularly for the lighter fission products, is the conventional optical-statistical model. The applied goals generally are: capture cross sections to 7 to 10% accuracies and inelastic-scattering cross sections to 25 to 50%. Comparisons of recent evaluations and experimental results indicate that these goals too often are far from being met, particularly in the area of inelastic scattering, and some of the evaluated fission-product cross sections are simply physically unreasonable. It is difficult to avoid the conclusion that the models employed in many of the evaluations are inappropriate and/or inappropriately used. In order to alleviate the above unfortunate situations, a regional optical-statistical (OM) model was sought with the goal of quantitative prediction of the cross sections of the lighter-mass (Z = 30-51) fission products. The first step toward that goal was the establishment of a reliable experimental data base consisting of energy-averaged neutron total and differential-scattering cross sections. The second step was the deduction of a regional model from the experimental data. It was assumed that a spherical OM is appropriate: a reasonable and practical assumption. The resulting OM then was verified against the measured data base. Finally, the physical character of the regional model is examined

  12. A METHOD OF PREPARING URANIUM DIOXIDE

    Science.gov (United States)

    Scott, F.A.; Mudge, L.K.

    1963-12-17

    A process of purifying raw, in particular plutonium- and fission- products-containing, uranium dioxide is described. The uranium dioxide is dissolved in a molten chloride mixture containing potassium chloride plus sodium, lithium, magnesium, or lead chloride under anhydrous conditions; an electric current and a chlorinating gas are passed through the mixture whereby pure uranium dioxide is deposited on and at the same time partially redissolved from the cathode. (AEC)

  13. Systematics of Fission-Product Yields

    International Nuclear Information System (INIS)

    Wahl, A.C.

    2002-01-01

    Empirical equations representing systematics of fission-product yields have been derived from experimental data. The systematics give some insight into nuclear-structure effects on yields, and the equations allow estimation of yields from fission of any nuclide with atomic number Z F = 90 thru 98, mass number A F = 230 thru 252, and precursor excitation energy (projectile kinetic plus binding energies) PE = 0 thru ∼200 MeV--the ranges of these quantities for the fissioning nuclei investigated. Calculations can be made with the computer program CYFP. Estimates of uncertainties in the yield estimates are given by equations, also in CYFP, and range from ∼ 15% for the highest yield values to several orders of magnitude for very small yield values. A summation method is used to calculate weighted average parameter values for fast-neutron (∼ fission spectrum) induced fission reactions

  14. Systematics of Fission-Product Yields

    Energy Technology Data Exchange (ETDEWEB)

    A.C. Wahl

    2002-05-01

    Empirical equations representing systematics of fission-product yields have been derived from experimental data. The systematics give some insight into nuclear-structure effects on yields, and the equations allow estimation of yields from fission of any nuclide with atomic number Z{sub F} = 90 thru 98, mass number A{sub F} = 230 thru 252, and precursor excitation energy (projectile kinetic plus binding energies) PE = 0 thru {approx}200 MeV--the ranges of these quantities for the fissioning nuclei investigated. Calculations can be made with the computer program CYFP. Estimates of uncertainties in the yield estimates are given by equations, also in CYFP, and range from {approx} 15% for the highest yield values to several orders of magnitude for very small yield values. A summation method is used to calculate weighted average parameter values for fast-neutron ({approx} fission spectrum) induced fission reactions.

  15. The role of fission products in whole core accidents

    Energy Technology Data Exchange (ETDEWEB)

    Baker, A R [FRSD, UKAEA, RNPDE, Risley, Warrington (United Kingdom); Teague, H J [SRD, UKAEA, Culcheth, Warrington (United Kingdom)

    1977-07-01

    The review of the role of fission products in whole-core accidents falls into two parts. Firstly, there is a discussion of the hypothetical accidents usually considered in the UK and how they are dealt with. Secondly, there is a discussion of individual topics where fission products are known to be important or might be so. There is a brief discussion of the UK work on the establishment of an equation of state for unirradiated fuel and how this might be extended to incorporate fission product effects. The main issue is the contribution of fission products to the effective vapour pressure and the experimental programme on the pulsed reactor VIPER investigates this. Fission products may influence the probability of occurrence and the severity of MFCIs. Finally, the fission product effects in the pre-disassembly, disassembly and recriticality stages of an accident are discussed. (author)

  16. Impact of fuel chemistry on fission product behaviour

    International Nuclear Information System (INIS)

    Poortmans, C.; Van Uffelen, P.; Van den Berghe, S.

    1999-01-01

    The report contains a series of papers presented at SCK-CEN's workshop on the impact of fuel chemistry on fission product behaviour. Contributing authors discuss different processes affecting the behaviour of fission products in different types of spent nuclear fuel. In addition, a number of papers discusses the behaviour of actinides and fission products released from spent fuel and vitrified high-level waste in geological disposal conditions

  17. A novel monolithic LEU foil target based on a PVD manufacturing process for 99Mo production via fission.

    Science.gov (United States)

    Hollmer, Tobias; Petry, Winfried

    2016-12-01

    99 Mo is the most widely used radioactive isotope in nuclear medicine. Its main production route is the fission of uranium. A major challenge for a reliable supply is the conversion from highly enriched uranium (HEU) to low enriched uranium (LEU). A promising candidate to realize this conversion is the cylindrical LEU irradiation target. The target consists of a uranium foil encapsulated between two coaxial aluminum cladding cylinders. This target allows a separate processing of the irradiated uranium foil and the cladding when recovering the 99 Mo. Thereby, both the costs and the volume of highly radioactive liquid waste are significantly reduced compared to conventional targets. The presented manufacturing process is based on the direct coating of the uranium on the inside of the outer cladding cylinder. This process was realized by a cylindrical magnetron enhanced physical vapor deposition (PVD) technique. The method features a highly automated process, a good quality of the resulting uranium foils and a high material utilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Fission product and aerosol behaviour within the containment

    International Nuclear Information System (INIS)

    Beard, A.M.; Benson, C.G.; Bowsher, B.R.; Dickinson, S.; Nichols, A.L.

    1990-04-01

    Experimental studies have been undertaken to characterise the behaviour of fission products in the containment of a pressurised water reactor during a severe accident. The following aspects of fission product transport have been studied: (a) aerosol nucleation, (b) vapour transport processes, (c) chemical forms of high-temperature vapours, (d) interaction of fission product vapours with aerosols generated from within the reactor core, (e) resuspension processes, (f) chemistry in the containment. Chemical effects have been shown to be important in defining and quantifying fission product source terms in a wide range of accident sequences. Both the chemical forms of the fission product vapours and their interactions with reactor materials aerosols could have a major effect on the magnitude and physicochemical forms of the radioactive emission from a severe reactor accident. Only the main conclusions are presented in this summary document; detailed technical aspects of the work are described in separate reports listed in the annex

  19. Measurements of fission cross-sections and of neutron production rates

    International Nuclear Information System (INIS)

    Billaud, P.; Clair, C.; Gaudin, M.; Genin, R.; Joly, R.; Leroy, J.L.; Michaudon, A.; Ouvry, J.; Signarbieux, C.; Vendryes, G.

    1958-01-01

    a) Measurements of neutron induced fission cross-sections in the low energy region. The variation of the fission cross sections of several fissile isotopes has been measured and analysed, for neutron energies below 0,025 eV. The monochromator was a crystal spectrometer used in conjunction with a mechanical velocity selector removing higher order Bragg reflections. The fissile material was laid down on the plates of a fission chamber by painting technic. An ionization chamber, having its plates coated with thin 10 B layers, was used as the neutron flux monitor. b) Measurement of the fission cross section of 235 U. We intend to measure the variation of the neutron induced fission cross section of 235 U over the neutron energy range from 1 keV by the time of flight method. The neutron source is the uranium target of a pulsed 28 MeV electron linear accelerator. The detector is a large fission chamber, with parallel plates, containing about 10 g of 235 U (20 deposits of 25 cm diameter). The relative fission data were corrected for the neutron spectrum measured with a set of BF 3 proportional counters. c) Mean number ν of neutrons emitted in neutron induced fission. We measured the value of ν for several fissile isotopes in the case of fission induced by 14 MeV neutrons. The 14 MeV neutrons were produced by D (t, n) α reaction by means of a 300 kV Cockcroft Walton generator. (author) [fr

  20. Calculated apparent yields of rare gas fission products

    International Nuclear Information System (INIS)

    Delucchi, A.A.

    1975-01-01

    The apparent fission yield of the rare gas fission products from four mass chains is calculated as a function of separation time for six different fissioning systems. A plot of the calculated fission yield along with a one standard deviation error band is given for each rare gas fission product and for each fissioning system. Those parameters in the calculation that were major contributors to the calculated standard deviation at each separation time were identified and the results presented on a separate plot. To extend the usefulness of these calculations as new and better values for the input parameters become available, a third plot was generated for each system which shows how sensitive the derived fission yield is to a change in any given parameter used in the calculation. (U.S.)

  1. Photofission observations in reactor environments using selected fission-product yields

    International Nuclear Information System (INIS)

    Gold, R.; Ruddy, F.H.; Roberts, J.H.

    1982-01-01

    A new method for the observation of photofission in reactor environments is advanced. It is based on the in-situ observation of fission product yield. In fact, at a given in-situ reactor location, the fission product yield is simply a weighted linear combination of the photofission product yield, Y/sub gamma/, and the neutron induced fission product yield, Y/sub n. The weight factors arising in this linear combination are the photofission fraction and neutron induced fission fraction, respectively. This method can be readily implemented with established techniques for measuring in-situ reactor fission product yield. For example, one can use the method based on simultaneous irradiation of radiometric (RM) and solid state track recorder (SSTR) fission monitors. The sensitivity and accuracy and current knowledge of fission product yields. Unique advantages of this method for reactor applications are emphasized

  2. Glances on uranium. From uranium in the earth to electric power

    International Nuclear Information System (INIS)

    Valsardieu, C.

    1995-01-01

    This book is a technical, scientific and historical analysis of the nuclear fuel cycle from the origin of uranium in the earth and the exploitation of uranium ores to the ultimate storage of radioactive wastes. It comprises 6 chapters dealing with: 1) the different steps of uranium history (discovery, history of uranium chemistry, the radium era, the physicists and the structure of matter, the military uses, the nuclear power, the uranium industry and economics), 2) the uranium in nature (nuclear structure, physical-chemical properties, radioactivity, ores, resources, cycle, deposits), 3) the sidelights on uranium history (mining, prospecting, experience, ore processing, resources, reserves, costs), 4) the uranium in the fuel cycle, energy source and industrial product (fuel cycle, fission, refining, enrichment, fuel processing and reprocessing, nuclear reactors, wastes management), 5) the other energies in competition and the uranium market (other uranium uses, fossil fuels and renewable energies, uranium market), and 6) the future of uranium (forecasting, ecology, economics). (J.S.)

  3. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    Science.gov (United States)

    Travelli, Armando

    1988-01-01

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  4. Uranium rich granite and uranium productive granite in south China

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Feng; Debao, He [CNNC Key Laboratory of Uranium Resource Exploration and Evaluation Technology, Beijing Research Institute of Uranium Geology (China)

    2012-07-15

    The paper briefly introduces the differences between uranium rich granite and uranium productive granite in the 5 provinces of South China, and discusses their main characteristics in 4 aspects, the uranium productive granite is highly developed in fracture, very strong in alteration, often occurred as two-mica granite and regularly developed with intermediate-basic and acid dikes. The above characteristics distinguish the uranium productive granite from the uranium rich granite. (authors)

  5. Uranium rich granite and uranium productive granite in south China

    International Nuclear Information System (INIS)

    Feng Mingyue; He Debao

    2012-01-01

    The paper briefly introduces the differences between uranium rich granite and uranium productive granite in the 5 provinces of South China, and discusses their main characteristics in 4 aspects, the uranium productive granite is highly developed in fracture, very strong in alteration, often occurred as two-mica granite and regularly developed with intermediate-basic and acid dikes. The above characteristics distinguish the uranium productive granite from the uranium rich granite. (authors)

  6. Thermodynamic analysis of volatile organometallic fission products

    International Nuclear Information System (INIS)

    Auxier II, J.D.; Hall, H.L.; Cressy, Derek

    2016-01-01

    The ability to perform rapid separations in a post nuclear weapon detonation scenario is an important aspect of national security. In the past, separations of fission products have been performed using solvent extraction, precipitation, etc. The focus of this work is to explore the feasibility of using thermochromatography, a technique largely employed in superheavy element chemistry, to expedite the separation of fission products from fuel components. A series of fission product complexes were synthesized and the thermodynamic parameters were measured using TGA/DSC methods. Once measured, these parameters were used to predict their retention times using thermochromatography. (author)

  7. Yields of fission products produced by thermal-neutron fission of 229Th

    International Nuclear Information System (INIS)

    Dickens, J.K.; McConnell, J.W.

    1983-01-01

    Absolute yields have been determined for 47 gamma rays emitted in the decay of 37 fission products representing 25 mass chains created during thermal-neutron fission of 229 Th. Using a Ge(Li) detector, spectra were obtained of gamma rays emitted between 15 min and 0.4 yr after very short irradiations by thermal neutrons of a 15-μg sample of 229 Th. On the basis of measured gamma-ray yields and known nuclear data, yields for cumulative production of 37 fission products were deduced. The absolute overall normalization uncertainty is 235 U, we postulate a simple functional dependence sigma = sigma(Z/sub p/), and using this dependence obtain values of Z/sub p/(A) for 15 mass chains created during fission of 229 Th. Values of Z/sub p/(A) were estimated for other mass chains based upon results of a recent study of Z/sub p/(A). Charge distributions determined using the deduced mass distribution and the deduced sets of Z/sub p/(A) and sigma(Z/sub p/) are in very good agreement with recent measurements, exhibiting a pronounced even-odd effect in elemental yields. These results may be used to predict unmeasured yields for 229 Th fission

  8. Accelerator based production of fissile nuclides, threshold uranium price and perspectives; Akceleratorska proizvodnja fisibilnih nuklida, granicna cijena urana i perspektive

    Energy Technology Data Exchange (ETDEWEB)

    Djordjevic, D [INIS-Inzenjering, Sarajevo (Yugoslavia); Knapp, V [Elektrotehnicki fakultet, zagreb (Yugoslavia)

    1988-07-01

    Accelerator breeder system characteristics are considered in this work. One such system which produces fissile nuclides can supply several thermal reactors with fissile fuel, so this system becomes analogous to an uranium enrichment facility with difference that fissile nuclides are produced by conversion of U-238 rather than by separation from natural uranium. This concept, with other long-term perspective for fission technology on the basis of development only one simpler technology. The influence of basic system characteristics on threshold uranium price is examined. Conditions for economically acceptable production are established. (author)

  9. NEACRP thermal fission product benchmark

    International Nuclear Information System (INIS)

    Halsall, M.J.; Taubman, C.J.

    1989-09-01

    The objective of the thermal fission product benchmark was to compare the range of fission product data in use at the present time. A simple homogeneous problem was set with 200 atoms H/1 atom U235, to be burnt up to 1000 days and then decay for 1000 days. The problem was repeated with 200 atoms H/1 atom Pu239, 20 atoms H/1 atom U235 and 20 atoms H/1 atom Pu239. There were ten participants and the submissions received are detailed in this report. (author)

  10. Inorganic oxides as alternative in the separation of non fissioned residual uranium; Oxidos inorganicos como alternativa en la separacion del uranio residual no fisionado

    Energy Technology Data Exchange (ETDEWEB)

    Baca G, A

    1997-07-01

    The Al{sub 2}O{sub 3}, SiO{sub 2} and SnO{sub 2} as well as vegetable carbon have been studied for its possible use as sorbent in the concentration and separation of non fissioned residual uranium of some fission products such as: {sup 141} Ce, {sup 134} Cs, {sup 125} Sb, {sup 103} Ru, {sup 95} Zr, {sup 95} Nb of alkaline aqueous systems. The separation efficiency has been evaluated using natural uranium and radionuclides in static and dynamic processes, through liquid scintillation and gamma spectrometry. Therefore Al{sub 2}O{sub 3}, SiO{sub 2}, SnO{sub 2} and carbon were pre-treated thermic and chemically and characterized through the technique of Nitrogen absorption analysis, X-ray diffraction and IR spectroscopy. By means of the p H determination and the aqueous system potential the present hydrolysis products were determined. The inorganic oxides show structural and surface changes due to the treatment. The adsorption process is realized by different mechanism depending of the sorbent. The results show that the retention capacity is a dependence of the oxides pre-treatment and of the hydrolysis products in the aqueous system, as well as of the experimental conditions. Not in this way for carbon in which the results show the treatment and the experimental conditions significantly have not influence in its adsorption capacity. (Author)

  11. Structures and properties of (U,Pu)O2 containing non-active fission products. A simulation of irradiated nuclear fuel

    International Nuclear Information System (INIS)

    Schmitz, F.

    1969-01-01

    We have made oxides with the same uranium and plutonium content, the same stoichiometry and the same fission product content as an oxide fuel (U 0,8 PuO 2 )O 1,96 after 2 per cent burn up. We have calculated the stoichiometry changes due to irradiation and checked the calculation by X rays parameters measurements. We have calculated and measured the contraction of the oxide lattice due to fission products in solid solution. Microprobe analysis of precipitates have been made and have lead to the identification of non metallic barium containing compounds and have shown the particular behaviour of molybdenum. Some physical properties have been measured especially the electrical resistivity, the thermal diffusivity and the vapour pressure of zirconium in solid solution. (author) [fr

  12. Potentialities and practical limitations of absolute neutron dosimetry using thin films of uranium and thorium applied to the fission track dating

    CERN Document Server

    Bigazzi, G; Hadler-Neto, J C; Iunes, P J; Paulo, S R; Oddone, M; Osorio, A M A; Zúñiga, A G

    1999-01-01

    Neutron dosimetry using natural uranium and thorium thin films makes possible that mineral dating by the fission-track method can be accomplished, even when poor thermalized neutron facilities are employed. In this case, the contributions of the fissions of sup 2 sup 3 sup 5 U, sup 2 sup 3 sup 8 U and sup 2 sup 3 sup 2 Th induced by thermal, epithermal and fast neutrons to the population of tracks produced during irradiation are quantified through the combined use of natural uranium and thorium films. If the Th/U ratio of the sample is known, only one irradiation (where the sample and the films of uranium and thorium are present) is necessary to perform the dating. However, if that ratio is unknown, it can be determined through another irradiation where the mineral to be dated and both films are placed inside a cadmium box. Problems related with film manufacturing and calibration are discussed. Special attention is given to the utilization of thin films having very low uranium content. The problems faced sugg...

  13. Fission dynamics of superheavy nuclei formed in uranium induced reactions

    International Nuclear Information System (INIS)

    Gurjit Kaur; Sandhu, Kirandeep; Sharma, Manoj K.

    2017-01-01

    The compound nuclear system follows symmetric fission if the competing processes such as quasi-elastic, deep inelastic, quasi-fission etc are absent. The contribution of quasi fission events towards the fusion-fission mechanism depends on the entrance channel asymmetry of reaction partners, deformations and orientations of colliding nuclei beside the dependence on energy and angular momentum. Usually the 209 Bi and 208 Pb targets are opted for the production of superheavy nuclei with Z CN =104-113. The nuclei in same mass/charge range can also be synthesized using actinide targets + light projectiles (i.e. asymmetric reaction partners) via hot fusion interactions. These actinide targets are prolate deformed which prefer the compact configurations at above barrier energies, indicating the occurrence of symmetric fission events. Here an attempt is made to address the dynamics of light superheavy system (Z CN =104-106), formed via hot fusion interactions involving actinide targets

  14. Fission products and nuclear fuel behaviour under severe accident conditions part 3: Speciation of fission products in the VERDON-1 sample

    Science.gov (United States)

    Le Gall, C.; Geiger, E.; Gallais-During, A.; Pontillon, Y.; Lamontagne, J.; Hanus, E.; Ducros, G.

    2017-11-01

    Qualitative and quantitative analyses on the VERDON-1 sample made it possible to obtain valuable information on fission product behaviour in the fuel during the test. A promising methodology based on the quantitative results of post-test characterisations has been implemented to assess the release fraction of non γ-emitter fission products. The order of magnitude of the estimated release fractions for each fission product was consistent with their class of volatility.

  15. Transport properties of fission product vapors

    International Nuclear Information System (INIS)

    Im, K.H.; Ahluwalia, R.K.

    1983-07-01

    Kinetic theory of gases is used to calculate the transport properties of fission product vapors in a steam and hydrogen environment. Provided in tabular form is diffusivity of steam and hydrogen, viscosity and thermal conductivity of the gaseous mixture, and diffusivity of cesium iodide, cesium hydroxide, diatomic tellurium and tellurium dioxide. These transport properties are required in determining the thermal-hydraulics of and fission product transport in light water reactors

  16. Uranium production in Sweden

    International Nuclear Information System (INIS)

    Bergh, S.

    1994-01-01

    The history of uranium production in Sweden is reviewed in the article. The World War II led to an exploitation of the Swedish alum shale on a large scale. In the last phase of the war it also became obvious that the shale might be used for energy production of quite another kind than oil. In 1947 AB Atom energy was founded, an enterprise with one of its purposes to extract uranium for peaceful use. A plant with a yearly capacity of 120 tons of uranium was erected at Ranstad and ready for production by 1965. From the start in Ranstad and for many years to come there was hardly any interest in an immediate large uranium production. It was decided to use the plant for studies on its more effective exploitation in case of an expansion in the future, bearing in mind the reactor programme. In the course of time economical reasons began to speak against the project. The shale seemed to have a future neither as oil nor as uranium resource. The complete termination of the work on uranium production from shale occurred in 1989

  17. Determination Of Uranium Concentration In Teeth Female Samples Using Fission Tracks In CR-39 From Different Countries

    International Nuclear Information System (INIS)

    Hummadi, S.S

    2010-01-01

    The present study was under taken to measure the uranium concentration in female teeth samples collected from different nationalities.The determination of uranium concentration in these samples has been done by using CR-39 track detector.The nuclear reaction is used as a source of nuclear fission fragments is (n, f) obtained by the bombardment of U-235 with thermal neutrons with flux (5*10 3 n/cm 2 .s) was used from (Am-Be) neutron source.The obtained results show the concentration is ranging from (0.58±0.7ppm) in Oman and Uae to (0.35±0.03ppm)in Iraqi for male, the uranium concentration was the highest in Oman and Uae for female

  18. Correlation of recent fission product release data

    International Nuclear Information System (INIS)

    Kress, T.S.; Lorenz, R.A.; Nakamura, T.; Osborne, M.F.

    1989-01-01

    For the calculation of source terms associated with severe accidents, it is necessary to model the release of fission products from fuel as it heats and melts. Perhaps the most definitive model for fission product release is that of the FASTGRASS computer code developed at Argonne National Laboratory. There is persuasive evidence that these processes, as well as additional chemical and gas phase mass transport processes, are important in the release of fission products from fuel. Nevertheless, it has been found convenient to have simplified fission product release correlations that may not be as definitive as models like FASTGRASS but which attempt in some simple way to capture the essence of the mechanisms. One of the most widely used such correlation is called CORSOR-M which is the present fission product/aerosol release model used in the NRC Source Term Code Package. CORSOR has been criticized as having too much uncertainty in the calculated releases and as not accurately reproducing some experimental data. It is currently believed that these discrepancies between CORSOR and the more recent data have resulted because of the better time resolution of the more recent data compared to the data base that went into the CORSOR correlation. This document discusses a simple correlational model for use in connection with NUREG risk uncertainty exercises. 8 refs., 4 figs., 1 tab

  19. JNDC nuclear data library of fission products

    International Nuclear Information System (INIS)

    Tasaka, Kanji; Ihara, Hitoshi; Akiyama, Masatsugu; Yoshida, Tadashi; Matumoto, Zyun-itiro; Nakasima, Ryuzo

    1983-10-01

    The JNDC (Japanese Nuclear Data Committee) FP (Fission Product) nuclear data library for 1172 fission products is described in this report. The gross theory of beta decay has been used extensively for estimating unknown decay data and also some of known decay data with poor accuracy. The calculated decay powers of fission products using the present library show excellent agreement with the latest measurements at ORNL (Oak Ridge National Laboratory), LANL (Los Alamos National Laboratory) and UTT (University of Tokyo, Tokai) for cooling times shorter than 10 3 s after irradiation. The calculated decay powers by the existing libraries showed systematic deviations at short cooling times; the calculated beta and gamma decay powers after burst fission were smaller than the experimental results for cooling times shorter than 10 s, and in the cooling time range 10 to 10 3 s the beta-decay power was larger than the measured values and the gamma decay power smaller than the measured results. The present JNDC FP nuclear data library resolved these discrepancies in the short cooling time ranges. The decay power of fission products has been calculated for ten fission types and the results have been fitted by an analytical function with 31 exponentials. This permits the easy application of the present results of decay power calculations to a LOCA (Loss-of-Coolant Accident) analysis of a light water reactor and so on. (author)

  20. Volatilization and reaction of fission products in flowing steam

    International Nuclear Information System (INIS)

    Johnson, I.; Steidl, D.V.; Johnson, C.E.

    1985-01-01

    The principal risk to the public from nuclear power plants derives from the highly radioactive atoms (fission products) generated as energy is produced in the nuclear fuel. The revolatilization of fission products from reactor system surfaces due to self-heating by radioactive decay has become a complicating factor in the source-term redefinition effort. It has had a major impact on calculations of fission product distributions in accident safety analyses. The focus of this research effort was to investigate the volatilization and transport of fission products and control rod materials in a flowing gaseous steam-hydrogen mixture. Fission product and control rod materials in various combinations were studied including CsI, CsOH, TeO 2 , SrO, Ag, In, Cd and Mn. The vaporization behavior of the deposits were characterized with respect to vaporization rates, chemical species and downstream transport behavior

  1. Production of uranium dioxide

    International Nuclear Information System (INIS)

    Hart, J.E.; Shuck, D.L.; Lyon, W.L.

    1977-01-01

    A continuous, four stage fluidized bed process for converting uranium hexafluoride (UF 6 ) to ceramic-grade uranium dioxide (UO 2 ) powder suitable for use in the manufacture of fuel pellets for nuclear reactors is disclosed. The process comprises the steps of first reacting UF 6 with steam in a first fluidized bed, preferably at about 550 0 C, to form solid intermediate reaction products UO 2 F 2 , U 3 O 8 and an off-gas including hydrogen fluoride (HF). The solid intermediate reaction products are conveyed to a second fluidized bed reactor at which the mol fraction of HF is controlled at low levels in order to prevent the formation of uranium tetrafluoride (UF 4 ). The first intermediate reaction products are reacted in the second fluidized bed with steam and hydrogen at a temperature of about 630 0 C. The second intermediate reaction product including uranium dioxide (UO 2 ) is conveyed to a third fluidized bed reactor and reacted with additional steam and hydrogen at a temperature of about 650 0 C producing a reaction product consisting essentially of uranium dioxide having an oxygen-uranium ratio of about 2 and a low residual fluoride content. This product is then conveyed to a fourth fluidized bed wherein a mixture of air and preheated nitrogen is introduced in order to further reduce the fluoride content of the UO 2 and increase the oxygen-uranium ratio to about 2.25

  2. GRASS-SST, Fission Products Gas Release and Fuel Swelling in Steady-State and Transients

    International Nuclear Information System (INIS)

    Zawadzki, S.

    2001-01-01

    1 - Description of program or function: GRASS-SST is a comprehensive, mechanistic model for the prediction of fission-gas behaviour in UO 2 -base fuels during steady-state and transient conditions. GRASS-SST treats fission-gas release and fuel swelling on an equal basis and simultaneously treats all major mechanisms that influence fission-gas behaviour. Models are included for intra- and inter-granular fission-gas bubble behaviour as well as a mechanistic description of the role of grain-edge inter-linked porosity on fission-gas release and swelling. GRASS-SST calculations include the effects of gas production from fissioning uranium atoms, bubble nucleation, a realistic equation of state for xenon, lattice bubble diffusivities based on experimental observations, bubble migration, bubble coalescence, re-solution, temperature and temperature gradients, inter-linked porosity, and fission-gas interaction with structural defects (dislocations and grain boundaries) on both the distribution of fission-gas within the fuel and on the amount of fission-gas released from the fuel. GRASS-SST includes the effects of the degree of nonequilibrium in the UO 2 lattice on fission-gas bubble mobility and bubble coalescence and also accounts for the observed formation of grain-surface channels. GRASS-SST also includes mechanistic models for grain-growth/grain boundary sweeping and for the behaviour of fission gas during liquefaction/dissolution and fuel melting conditions. 2 - Method of solution: A system of coupled equations for the evolution of the fission-gas bubble-size distributions in the lattice, on dislocations, on grain faces, and grain edges is derived based on the GRASS-SST models. Given a set of operating conditions, GRASS-SST calculates the bubble radii for the size classes of bubbles under consideration using a realistic equation of state for xenon as well as a generalised capillary relation. 3 - Restrictions on the complexity of the problem: Maxima of : 1 axial section

  3. The behavior of fission products during nuclear rocket reactor tests

    International Nuclear Information System (INIS)

    Bokor, P.C.; Kirk, W.L.; Bohl, R.J.

    1991-01-01

    Fission product release from nuclear rocket propulsion reactor fuel is an important consideration for nuclear rocket development and application. Fission product data from the last six reactors of the Rover program are collected in this paper to provide as basis for addressing development and testing issues. Fission product loss from the fuel will depend on fuel composition and reactor design and operating parameters. During ground testing, fission products can be contained downstream of the reactor. The last Rover reactor tested, the Nuclear Furnance, was mated to an effluent clean-up system that was effective in preventing the discharge of fission products into the atmosphere

  4. Fuel morphology effects on fission product release

    International Nuclear Information System (INIS)

    Osetek, D.J.; Hartwell, J.K.; Cronenberg, A.W.

    1986-01-01

    Results are presented of fission product release behavior observed during four severe fuel damage tests on bundles of UO 2 fuel rods. Transient temperatures up to fuel melting were obtained in the tests that included both rapid and slow cooldown, low and high (36 GWd/t) burnup fuel and the addition of Ag-In-Cd control rods. Release fractions of major fission product species and release rates of noble gas species are reported. Significant differences in release behavior are discussed between heatup and cooldown periods, low and high burnup fuel and long- and short-lived fission products. Explanations for the observed differences are offered that relate fuel morphology changes to the releases

  5. Measurement of tritium production rate distribution for a fusion-fission hybrid conceptual reactor

    International Nuclear Information System (INIS)

    Wang Xinhua; Guo Haiping; Mou Yunfeng; Zheng Pu; Liu Rong; Yang Xiaofei; Yang Jian

    2013-01-01

    A fusion-fission hybrid conceptual reactor is established. It consists of a DT neutron source and a spherical shell of depleted uranium and hydrogen lithium. The tritium production rate (TPR) distribution in the conceptual reactor was measured by DT neutrons using two sets of lithium glass detectors with different thicknesses in the hole in the vertical direction with respect to the D + beam of the Cockcroft-Walton neutron generator in direct current mode. The measured TPR distribution is compared with the calculated results obtained by the three-dimensional Monte Carlo code MCNP5 and the ENDF/B-Ⅵ data file. The discrepancy between the measured and calculated values can be attributed to the neutron data library of the hydrogen lithium lack S(α, β) thermal scattering model, so we show that a special database of low-energy and thermal neutrons should be established in the physics design of fusion-fission hybrid reactors. (authors)

  6. ELSA: A simplified code for fission product release calculations

    International Nuclear Information System (INIS)

    Manenc, H.; Notley, M.J.

    1996-01-01

    During a light water reactor severe accident, fission products are released from the overheated core as it progressively degrades. A new computer module named ELSA is being developed to calculate fission product release. The authors approach is to model the key phenomena, as opposed to more complete mechanistic approaches. Here they present the main features of the module. Different release mechanisms have been identified and are modeled in ELSA, depending on fission product volatility: diffusion seems to govern the release of the highly volatile species if fuel oxidation is properly accounted for, whereas mass transport governs that of lower volatility fission products and fuel volatilization that of the practically involatile species

  7. Simulation of fission products behavior in severe accidents for advanced passive PWR

    International Nuclear Information System (INIS)

    Tong, L.L.; Huang, G.F.; Cao, X.W.

    2015-01-01

    Highlights: • A fission product analysis model based on thermal hydraulic module is developed. • An assessment method for fission product release and transport is constructed. • Fission products behavior during three modes of containment response is investigated. • Source term results for the three modes of containment response are obtained. - Abstract: Fission product behavior for common Pressurized Water Reactor (PWR) has been studied for many years, and some analytical tools have developed. However, studies specifically on the behavior of fission products related to advanced passive PWR is scarce. In the current study, design characteristics of advanced passive PWR influencing fission product behavior are investigated. An integrated fission products analysis model based on a thermal hydraulic module is developed, and the assessment method for fission products release and transport for advanced passive PWR is constructed. Three modes of containment response are simulated, including intact containment, containment bypass and containment overpressure failure. Fission products release from the core and corium, fission products transport and deposition in the Reactor Coolant System (RCS), fission products transport and deposition in the containment considering fission products retention in the in-containment refueling water storage tank (IRWST) and in the secondary side of steam generators (SGs) are simulated. Source term results of intact containment, containment bypass and containment overpressure failure are obtained, which can be utilized to evaluate the radiological consequences

  8. Synthesis of Actinide Materials for the Study of Basic Actinide Science and Rapid Separation of Fission Products

    Energy Technology Data Exchange (ETDEWEB)

    Dorhout, Jacquelyn Marie [Univ. of Nevada, Las Vegas, NV (United States)

    2017-11-28

    This dissertation covers several distinct projects relating to the fields of nuclear forensics and basic actinide science. Post-detonation nuclear forensics, in particular, the study of fission products resulting from a nuclear device to determine device attributes and information, often depends on the comparison of fission products to a library of known ratios. The expansion of this library is imperative as technology advances. Rapid separation of fission products from a target material, without the need to dissolve the target, is an important technique to develop to improve the library and provide a means to develop samples and standards for testing separations. Several materials were studied as a proof-of-concept that fission products can be extracted from a solid target, including microparticulate (< 10 μm diameter) dUO2, porous metal organic frameworks (MOFs) synthesized from depleted uranium (dU), and other organicbased frameworks containing dU. The targets were irradiated with fast neutrons from one of two different neutron sources, contacted with dilute acids to facilitate the separation of fission products, and analyzed via gamma spectroscopy for separation yields. The results indicate that smaller particle sizes of dUO2 in contact with the secondary matrix KBr yield higher separation yields than particles without a secondary matrix. It was also discovered that using 0.1 M HNO3 as a contact acid leads to the dissolution of the target material. Lower concentrations of acid were used for future experiments. In the case of the MOFs, a larger pore size in the framework leads to higher separation yields when contacted with 0.01 M HNO3. Different types of frameworks also yield different results.

  9. LEUbased Fission Mo-99 Process with Reduced Solid Wastes

    International Nuclear Information System (INIS)

    Lee, Seungkon; Lee, Suseung; Jung, Sunghee; Hong, Soonbog; Jang, Kyungduk; Choi, Sang Mu; Lee, Jun Sig; Lim, Incheol

    2014-01-01

    99m Tc emits 140 keV of very low gamma-ray radiation energy, as low as conventional diagnostic X-ray, and has short half-life of 6.0058 hours. Therefore, as radioactive tracer, 99m Tc provides high quality diagnostic images but keeps total patient radiation exposure low. Depending on the tagging pharmaceuticals and procedures, 99m Tc can be applied for the diagnostics of various target organs and diseases: brain, myocardium, thyroid, lungs, liver, gallbladder, kidneys, skeleton, blood and tumors. More than 95% of 99 Mo is produced through fission of 235 U worldwide because, 99m o generated from the fission (fission 99 Mo) exhibits very high specific activity (<100 Ci/g). Over 90% of fission 99 Mo producers have been used highly enriched uranium (HEU) targets so far. However, the IAEA recommends the use of low enriched uranium (LEU) to the 99 Mo producers for nonproliferation reason. These days, worldwide 99 Mo supply is not only insufficient but also unstable. Because, most of the main 99 Mo production reactors are about 50 years old and suffered from frequent and unscheduled shutdown. Planned weekly productivity of 2000 Ci fission 99 Mo, in a 6-day reference, will cover 100% domestic demand of Korea, as well as 20% of international market. It is expected to replace 4.3 million USD ($800/Ci) of 99 Mo import for domestic market while exporting 82.8 million USD for world market, annually

  10. Measurement of the fission cross section of uranium-235 between 4 eV and 20 keV; Mesure de la section efficace de fission de l'uranium-235 entre 4 eV et 20 keV

    Energy Technology Data Exchange (ETDEWEB)

    Michaudon, A; Genin, R; Joly, R; Vendryes, G

    1959-01-01

    The neutron fission cross section of uranium-235 has been measured between 4 ev and 20 kev by the time of flight method with the Saclay electron linear accelerator as a pulsed neutron source. After a brief description of the experimental apparatus and the conditions of work during the experiment, the curve {sigma}{sub F} {radical}E in the energy range studied is shown. This curve is then analyzed by the ''area'' method and a set of {sigma}{sub 0} {gamma}{sub F} values is obtained. With {sigma}{sub 0} {gamma} values measured in other laboratories, it is possible to compute fission widths for several resonances and to study their distribution. This distribution is then compared to Porter-Thomas distributions with different values of the number of exit channels. (authors) [French] La section efficace de fission de l'uranium--235 a ete mesuree entre 4 eV et 20 KeV par la methode du temps de vol en utilisant l'accelerateur lineaire a electrons de Saclay comme source pulses de neutrons. Apres une rapide description de l'appareillage experimental et des conditions de fonctionnement au cours de l'experience, on presente la courbe {sigma}{sub F} {radical}E obtenue dans la game d'energie etudiee. Cette courbe est ensuite analysee par la methode de surface des resonances et un lot de valeurs de {sigma}{sub 0} {gamma}{sub F} est obtenue. Conjuguee avec les valeurs de {sigma}{sub 0} {gamma} obtenues dans d'autres laboratoires, cette analyse permet de calculer les largeurs de fission pour plusieurs resonances et d'etudier leur distribution. Cette distribution est ensuite comparee aux distributions de Porter et Thomas correspondant a differentes valeurs du nombre de voies de sortie. (auteurs)

  11. Recovery of uranium from an irradiated solid target after removal of molybdenum-99 produced from the irradiated target

    Science.gov (United States)

    Reilly, Sean Douglas; May, Iain; Copping, Roy; Dale, Gregory Edward

    2017-10-17

    A process for minimizing waste and maximizing utilization of uranium involves recovering uranium from an irradiated solid target after separating the medical isotope product, molybdenum-99, produced from the irradiated target. The process includes irradiating a solid target comprising uranium to produce fission products comprising molybdenum-99, and thereafter dissolving the target and conditioning the solution to prepare an aqueous nitric acid solution containing irradiated uranium. The acidic solution is then contacted with a solid sorbent whereby molybdenum-99 remains adsorbed to the sorbent for subsequent recovery. The uranium passes through the sorbent. The concentrations of acid and uranium are then adjusted to concentrations suitable for crystallization of uranyl nitrate hydrates. After inducing the crystallization, the uranyl nitrate hydrates are separated from a supernatant. The process results in the purification of uranyl nitrate hydrates from fission products and other contaminants. The uranium is therefore available for reuse, storage, or disposal.

  12. Concentration of uranium in human cancerous tissues of Southern Iraqi patients using fission track analysis

    International Nuclear Information System (INIS)

    Al-Hamzawi, A.A.; Al-Qadisiyah University, Qadisiyah; Jaafar, M.S.; Tawfiq, N.F.

    2015-01-01

    The technique of nuclear fission track analysis with solid state nuclear track detectors CR-39 has been applied to determine concentrations of uranium in cancerous samples of human tissues that excised from patients in the three key southern Iraqi governorates namely, Basrah, Dhi-Qar, and Muthanna. These provinces were the sites of intensive military events during the Gulf Wars in 1991 and 2003. The investigation was based on the study of 24 abnormal samples and 12 normal samples for comparing the results. These samples include four types of soft tissues (kidney, breast, stomach and uterus). The results show that uranium concentrations in the normal tissues ranged between (1.42-4.76 μg kg -1 ), whereas in the cancerous tissues ranged between (3.37-7.22 μg kg -1 ). The uranium concentrations in the normal tissues were significantly lower than in the abnormal tissues (P < 0.001). (author)

  13. On the safety of conceptual fusion-fission hybrid reactors

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Okrent, D.; Badham, V.; Caspi, S.; Chan, C.K.; Ferrell, W.J.; Frederking, T.H.K.; Grzesik, J.; Lee, J.Y.; McKone, T.E.; Pomraning, G.C.; Ullman, A.Z.; Ting, T.D.; Kim, Y.I.

    1979-01-01

    A preliminary examination of some potential safety questions for conceptual fusion-fission hybrid reactors is presented in this paper. The study and subsequent analysis was largely based upon one design, a conceptual mirror fusion-fission reactor, operating on the deuterium-tritium plasma fusion fuel cycle and the uranium-plutonium fission fuel cycle. The major potential hazards were found to be: (a) fission products, (b) actinide elements, (c) induced radioactivity, and (d) tritium. As a result of these studies, it appears that highly reliable and even redundent decay heat removal must be provided. Loss of the ability to remove decay heat results in melting of fuel, with ultimate release of fission products and actinides to the containment. In addition, the studies indicate that blankets can be designed which will remain subcritical under extensive changes in both composition and geometry. Magnet safety and the effects of magnetic fields on thermal parameters were also considered. (Auth.)

  14. Characteristics of fission product release from a molten pool

    International Nuclear Information System (INIS)

    Yun, J.I.; Suh, K.Y.; Kang, C.S.

    2001-01-01

    The volatile fission products are released from the debris pool, while the less volatile fission products tend to remain as condensed phases because of their low vapor pressure. The release of noble gases and the volatile fission products is dominated by bubble dynamics. The release of the less volatile fission products from the pool can be analyzed based on mass transport through a liquid with the convection flow. The physico-numerical models were orchestrated from existing submodels in various disciplines of engineering to estimate the released fraction of fission products from a molten pool. It was assumed that the pool has partially filled hemispherical geometry. For the high pool pressure, the diameter of the bubbles at detachment was calculated utilizing the Cole and Shulman correlation with the effect of system pressure. Sensitivity analyses were performed and results of the numerical calculations were compared with analysis results for the TMI-2 accident. (author)

  15. Nuclear fission and fission-product spectroscopy: 3. International workshop on nuclear fission and fission-product spectroscopy

    International Nuclear Information System (INIS)

    Goutte, Heloise; Fioni, Gabriele; Faust, Herbert; Goutte, Dominique

    2005-01-01

    The present book contains the proceedings of the third workshop in a series of workshops previously held in Seyssins in 1994 and 1998. The meeting was jointly organized by different divisions of CEA and two major international laboratories. In the opening address, Prof. B. Bigot, the French High Commissioner for Atomic Energy, outlined France's energy policy for the next few decades. He emphasized the continuing progress of nuclear fission in both technical and economic terms, allowing it to contribute to the energy needs of the planet even more in the future than it does today. Such progress implies a very strong link between fundamental and applied research based on experimental and theoretical approaches. The workshop gathered the different nuclear communities studying the fission process, including topics as the following: - nuclear fission experiments, - spectroscopy of neutron rich nuclei, - fission data evaluation, - theoretical aspects of nuclear fission, - and innovative nuclear systems and new facilities. The scientific program was suggested by an International Advisory Committee. About 100 scientists from 13 different countries attended the conference in the friendly working atmosphere of the Castle of Cadarache in the heart of the Provence. The proceedings of the workshop were divided into 11 sections addressing the following subject matters: 1. Cross sections and resonances (5 papers); 2. Fission at higher energies - I (5 papers); 3. Fission: mass and charge yields (4 papers); 4. Light particles and cluster emission (4 papers); 5. Spectroscopy of neutron rich nuclei (5 papers); 6. Resonances, barriers, and fission times (5 papers); 7. Fragment excitation and neutron emission (4 papers); 8. Mass and energy distributions (4 papers); 9. Needs for nuclear data and new facilities - I (4 papers); 10. Angular momenta and fission at higher Energies - II (3 papers); 11. New facilities - II (2 papers). A poster session of 8 presentations completed the workshop

  16. Release of fission products during and after oxidation of trace-irradiated uranium dioxide at 300-900 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Wood, P; Bannister, G H [Central Electricity Generating Board, Berkeley Nuclear Laboratories (United Kingdom)

    1985-07-01

    Should defected UO{sub 2} fuel pins come into contact with air then oxidation of the fuel may occur, the rate and consequences of which are dependent upon temperature and oxygen partial pressure. At CEGB-BNL an experimental programme is underway investigating the kinetics, and extent, of release of fission products during and after oxidation of trace-irradiated UO{sub 2} to U{sub 3}O{sub 8}, and reduction of U{sub 3}O{sub 8} to UO{sub 2}. This paper presents preliminary results and analysis of experiments performed at 300-900 deg. C. Dense sintered UO{sub 2} has been oxidised at 300-500 deg. C using a thermo balance with simultaneous counting of released {sup 85}Kr. The kinetics of the {sup 85}Kr release are shown to correlate with the kinetics of oxidation, and the extent of release has been determined as 3-8% of that in the UO{sub 2} converted to U{sub 3}O{sub 8}. The release of {sup 106}Ru and {sup 137}Cs during this oxidation has been estimated by {gamma}-counting of the fuel sample, before and after oxidation, and of glassware in the vicinity of the sample. This indicates slight release of ruthenium and caesium. Greater fission product release is caused by oxidation at higher temperatures or by heating of the oxidation product. U{sub 3}O{sub 8} produced at 400 deg. C has been heated at 800 and 900 deg. C in air for 20 hours. This results in near total release of {sup 85}Kr and {sup 106}Ru, but still only slight release of {sup 137}Cs. The kinetics of the {sup 85}Kr release have been analysed and found to follow the Booth diffusion equation at 900 deg. C, but not at 800 deg. C. The fuel burn-up level may also have an effect. Some results of fission product release during reduction of the oxidation product U{sub 3}O{sub 8} are presented, and the influence of chemical effects upon the release of individual fission products is discussed. The future programme is outlined. (author)

  17. The fast fission effect in a cylindrical fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Carlvik, I; Pershagen, B

    1959-06-15

    A new formula for the fast fission factor is derived, which takes proper account to fast capture. The fission neutron spectrum is divided into two groups with constant fission cross section in one group and zero fission cross section in the other. The average total, elastic, inelastic and capture cross sections in the two groups are calculated. Different assumptions regarding anisotropic and inelastic scattering are investigated. The effects of backscattering from the moderator and fast fission in neighbouring fuel elements are pointed out. Formulas for the fast fission ratio and for the fast conversion ratio are derived. The calculated fast fission ratios are compared with experimental values. Curves are given for the fast fission factor in uranium metal and uranium oxide.

  18. World uranium production in 1995

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    For the first time since the political and economic opening of the former Soviet Union and Eastern Europe, world uranium production actually increased in 1995. Preliminary estimates for 1996 continue this trend, indicating additional (if slight) production increases over 1995 levels. Natural uranium production increased by about 5% in 1995 to 34,218 tons uranium or 89 Mlbs U3O8. This is an increase of approximately 1700 tons of uranium or 4.3 Mlbs of U3O8 over the updated 1994 quantities. Data is presented for each of the major uranium producing countries, for each of the world's largest uranium mines, for each of the world's largest corporate producers, and for major regions of the world

  19. Gas-phase transport of fission products

    International Nuclear Information System (INIS)

    Tang, I.N.; Munkelwitz, H.R.

    1982-01-01

    The paper presents the results of an experimental investigation to show the importance of nuclear aerosol formation as a mechanism for semi-volatile fission product transport under certain postulated HTGR accident conditions. Simulated fission product Sr and Ba as oxides are impregnated in H451 graphite and released at elevated temperatures into a dry helium flow. In the presence of graphite, the oxides are quantitatively reduced to metals, which subsequently vaporize at temperatures much lower than required for the oxides alone to vaporize in the absence of graphite. A substantial fraction of the released material is associated with particulate matter, which is collected on filters located downstream at ambient temperatures. Increasing carrier-gas flow rate greatly enhances the extent of particulate transport. The release and transport of simulated fission product Ag as metal are also investigated. Electron microscopic examinations of the collected Sr and Ag aerosols show large agglomerates composed of primary particles roughly 0.06 to 0.08 μm in diameter

  20. Determining the isotopic compositions of uranium and fission products in radioactive environmental microsamples using laser ablation ICP-MS with multiple ion counters

    International Nuclear Information System (INIS)

    Boulyga, Sergei F.; Prohaska, Thomas

    2008-01-01

    This paper presents the application of a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS) - a Nu Plasma HR - equipped with three ion-counting multipliers and coupled to a laser ablation system (LA) for the rapid and sensitive determination of the 235 U/ 238 U, 236 U/ 238 U, 145 Nd/ 143 Nd, 146 Nd/ 143 Nd, 101 Ru/( 99 Ru+ 99 Tc) and 102 Ru/( 99 Ru+ 99 Tc) isotope ratios in microsamples collected in the vicinity of Chernobyl. Microsamples with dimensions ranging from a hundred μm to about 1 mm and with surface alpha activities of 3-38 mBq were first identified using nuclear track radiography. U, Nd and Ru isotope systems were then measured sequentially for the same microsample by LA-MC-ICP-MS. The application of a zoom ion optic for aligning the ion beams into the ion counters allows fast switching between different isotope systems, which enables all of the abovementioned isotope ratios to be measured for the same microsample within a total analysis time of 15-20 min (excluding MC-ICP-MS optimization and calibration). The 101 Ru/( 99 Ru+ 99 Tc) and 102 Ru/( 99 Ru+ 99 Tc) isotope ratios were measured for four microsamples and were found to be significantly lower than the natural ratios, indicating that the microsamples were contaminated with the corresponding fission products (Ru and Tc). A slight depletion in 146 Nd of about 3-5% was observed in the contaminated samples, but the Nd isotopic ratios measured in the contaminated samples coincided with natural isotopic composition within the measurement uncertainty, as most of the Nd in the analyzed samples originates from the natural soil load of this element. The 235 U/ 238 U and 236 U/ 238 U isotope ratios were the most sensitive indicators of irradiated uranium. The present work yielded a significant variation in uranium isotope ratios in microsamples, in contrast with previously published results from the bulk analysis of contaminated samples originating from the vicinity of Chernobyl. Thus

  1. Determining the isotopic compositions of uranium and fission products in radioactive environmental microsamples using laser ablation ICP-MS with multiple ion counters.

    Science.gov (United States)

    Boulyga, Sergei F; Prohaska, Thomas

    2008-01-01

    This paper presents the application of a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS)--a Nu Plasma HR--equipped with three ion-counting multipliers and coupled to a laser ablation system (LA) for the rapid and sensitive determination of the 235U/238U, 236U/238U, 145Nd/143Nd, 146Nd/143Nd, 101Ru/(99Ru+99Tc) and 102Ru/(99Ru+99Tc) isotope ratios in microsamples collected in the vicinity of Chernobyl. Microsamples with dimensions ranging from a hundred mum to about 1 mm and with surface alpha activities of 3-38 mBq were first identified using nuclear track radiography. U, Nd and Ru isotope systems were then measured sequentially for the same microsample by LA-MC-ICP-MS. The application of a zoom ion optic for aligning the ion beams into the ion counters allows fast switching between different isotope systems, which enables all of the abovementioned isotope ratios to be measured for the same microsample within a total analysis time of 15-20 min (excluding MC-ICP-MS optimization and calibration). The 101Ru/(99Ru+99Tc) and 102Ru/(99Ru+99Tc) isotope ratios were measured for four microsamples and were found to be significantly lower than the natural ratios, indicating that the microsamples were contaminated with the corresponding fission products (Ru and Tc). A slight depletion in 146Nd of about 3-5% was observed in the contaminated samples, but the Nd isotopic ratios measured in the contaminated samples coincided with natural isotopic composition within the measurement uncertainty, as most of the Nd in the analyzed samples originates from the natural soil load of this element. The 235U/238U and 236U/238U isotope ratios were the most sensitive indicators of irradiated uranium. The present work yielded a significant variation in uranium isotope ratios in microsamples, in contrast with previously published results from the bulk analysis of contaminated samples originating from the vicinity of Chernobyl. Thus, the 235U/238U ratios measured in ten

  2. Microscopic description of fission in odd-mass uranium and plutonium nuclei with the Gogny energy density functional

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Guzman, R. [Kuwait University, Physics Department, Kuwait (Kuwait); Robledo, L.M. [Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Madrid (Spain); Universidad Politecnica de Madrid, Center for Computational Simulation, Boadilla del Monte (Spain)

    2017-12-15

    The parametrization D1M of the Gogny energy density functional is used to study fission in the odd-mass Uranium and Plutonium isotopes with A = 233,.., 249 within the framework of the Hartree-Fock-Bogoliubov (HFB) Equal Filling Approximation (EFA). Ground state quantum numbers and deformations, pairing energies, one-neutron separation energies, barrier heights and fission isomer excitation energies are given. Fission paths, collective masses and zero point rotational and vibrational quantum corrections are used to compute the systematic of the spontaneous fission half-lives t{sub SF}, the masses and charges of the fission fragments as well as their intrinsic shapes. Although there exits a strong variance of the predicted fission rates with respect to the details involved in their computation, it is shown that both the specialization energy and the pairing quenching effects, taken into account fully variationally within the HFB-EFA blocking scheme, lead to larger spontaneous fission half-lives in odd-mass U and Pu nuclei as compared with the corresponding even-even neighbors. It is shown that modifications of a few percent in the strengths of the neutron and proton pairing fields can have a significant impact on the collective masses leading to uncertainties of several orders of magnitude in the predicted t{sub SF} values. Alpha-decay lifetimes have also been computed using a parametrization of the Viola-Seaborg formula. (orig.)

  3. Improved accountability method for measuring enriched uranium in H-Canyon dissolver solution at the Savannah River Site

    International Nuclear Information System (INIS)

    Maxwell, S.L. III; Satkowski, J.; Mahannah, R.N.

    1992-01-01

    At the Savannah River Site (SRS), accountability measurement of enriched uranium dissolved in H-Canyon is performed using isotope dilution mass spectrometry (IDMS). In the IDMS analytical method, a known quantity of uranium 233 is added to the sample solution containing enriched uranium and fission products. The resulting uranium mixture must first be purified using a separation technique in the shielded analytical(''hot'') cells to lower radioactivity levels by removing fission products. Following this purification, the sample is analyzed by mass spectrometry to determine the total uranium content and isotopic abundance. The magnitude of the response of each uranium isotope in the sample solution and the response of the U 233 spike is measured. By ratioing these responses, relative to the known quantity of the U 233 spike, the uranium content can be determined. A hexane solvent extraction technique, used for years at SRS to remove fission products prior to the mass spectrometry analysis of uranium, has several problems. The hexone method is tedious, requires additional sample clean-up after the purified sample is removed from the shielded cells and requires the use of Resource Conservation and Recovery Act (RCRA)-listed hazardous materials (hexone and chromium compounds). A new high speed separation method that enables a rapid removal of fission products in a shielded cells environment has been developed by the SRS Central Laboratory to replace the hexone method. The new high speed column extraction chromatography technique employs applied vacuum and columns containing tri (2-ethyl-hexyl) phosphate (TEHP) solvent coated on a small particle inert support (SM-7 Bio Beads). The new separation is rapid, user friendly, eliminates the use of the RCA-listed hazardous chemicals and reduces the amount of solid waste generated by the separation method. 2 tabs. 4 figs

  4. Effects of the radiation gamma on the activity and selectivity of the Al2 O3 in the retention of uranium and fission products

    International Nuclear Information System (INIS)

    Duran B, J.M.

    1996-01-01

    The study that here comes constitute a contribution for the treatment of based on waste the properties of retention of the inorganic oxides. The effect induced of the radiation has been determined gamma of the 60 Co in the Al 2 O 3 and their influence in their capacity of retention of uranium and products of fission of watery solutions strongly alkaline. In order to obtain useful information it made the superficial characterizations, structural, crystalline and of retention by means of the techniques of superficial adsorption, spectroscopy infrared, rays-X diffraction, liquid twinkling and γ- spectrometry. The obtained results show that the treatment of the Al 2 O 3 this associated with slight changes in their structural characteristics and superficialities concluding that the molecular water present in the crystalline net of the oxide was not displaced radiolytic for effect, but rather, this spread in the volume of the oxide, blocking the change in the contribution to crystalline of the oxide. (Author)

  5. Transport of fission products in matrix and graphite

    International Nuclear Information System (INIS)

    Hoinkis, E.

    1983-06-01

    In the past years new experimental methods were applied to or developed for the investigation of fission product transport in graphitic materials and to characterization of the materials. Models for fission product transport and computer codes for the calculation of core release rates were improved. Many data became available from analysis of concentration profiles in HTR-fuel elements. New work on the effect on diffusion of graphite corrosion, fast neutron flux and fluence, heat treatment, chemical interactions and helium pressure was reported on recently or was in progress in several laboratories. It seemed to be the right time to discuss the status of transport of metallic fission products in general, and in particular the relationship between structural and transport properties. Following a suggestion a Colloquium was organized at the HMI Berlin. Interdisciplinary discussions were stimulated by only inviting a limited number of participants who work in different fields of graphite and fission product transport research. (orig./RW)

  6. Determination by neutron activation of the uranium-235 concentration in uranium oxides; Determination par activation neutronique de la concentration d'uranium-235 dans des oxydes d'urane

    Energy Technology Data Exchange (ETDEWEB)

    May, S; Leveque, P [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    Classical methods of measuring isotopic abundance have the disadvantage of being long and of requiring chemical separation. A non-destructive method of measuring the uranium-235 content is described. It is based on an overall measurement of the short lived fission product activity formed during a 15 s neutron irradiation. The precision is of the order {+-} 1.5 per cent for 20 per cent enriched samples. The error due to the contribution from fast fission is discussed in detail. (author) [French] Les methodes classiques de mesure de l'abondance isotopique presentent le gros inconvenient d'etre longues et de necessiter des separations chimiques. Nous exposons une methode non destructive de mesure de la concentration d'uranium-235. Elle est basee sur la mesure globale de l'activite des produits de fission de courte periode formes par une irradiation neutronique de 15 s de l'echantillon. La precision est de l'ordre de {+-} 1,5 pour cent pour des echantillons enrichis jusqu'a 20 pour cent. L'erreur a la contribution de la fission rapide est discutee en detail. (auteur)

  7. Uranium. Resources, production and demand

    International Nuclear Information System (INIS)

    1997-01-01

    The events characterising the world uranium market in the last several years illustrate the persistent uncertainly faced by uranium producers and consumers worldwide. With world nuclear capacity expanding and uranium production satisfying only about 60 per cent of demand, uranium stockpiles continue to be depleted at a high rate. The uncertainty related to the remaining levels of world uranium stockpiles and to the amount of surplus defence material that will be entering the market makes it difficult to determine when a closer balance between uranium supply and demand will be reached. Information in this report provides insights into changes expected in uranium supply and demand until well into the next century. The 'Red Book', jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is the foremost reference on uranium. This world report is based on official information from 59 countries and includes compilations of statistics on resources, exploration, production and demand as of 1 January 1997. It provides substantial new information from all of the major uranium producing centres in Africa, Australia, Eastern Europe, North America and the New Independent States, including the first-ever official reports on uranium production in Estonia, Mongolia, the Russian Federation and Uzbekistan. It also contains an international expert analysis of industry statistics and worldwide projections of nuclear energy growth, uranium requirements and uranium supply

  8. Production of annular blanks for Mo-99 using natural uranium, LEU uranium, nickel and structural Al-3003 plates

    International Nuclear Information System (INIS)

    Lisboa, J.R.; Barrera, M.E.; Marin, J.

    2010-01-01

    The Tc-99m radioisotope for medical use is the one most used in nuclear medicine worldwide. In Chile the Tc-99m is applied in more than 90% of nuclear medicine studies. In order to supply the whole country with this radioisotope, in 2005-2007 the CCHEN developed its own production of Tc-99m generators from Mo-99 imported from Canada, which are prepared with the activity needed by the Chilean hospitals and clinics. As of 2007 Mo-99 was no longer imported, and since then the Tc-99m is produced only by neutron activation of the Mo. The present challenge is to produce Mo-99 by irradiating blanks that contain enriched uranium foils, with locally produced LEU. The annular blank consists of 2 concentric tubes of A1-3003 structural aluminum that, in an interior annular space, contain a LEU foil, covered on both sides by a nickel foil. This work presents the development of the production technology for annular blanks using natural uranium and U-325 enriched uranium. The structural components are made with A1-3003 aluminum alloy, the foils are 13 grams of uranium measuring 100 x 50 mm and 120-150 μ thick. The blank was assembled using a methodology to control, adapt and assemble the blank's different internal components. A foil of natural uranium and LEU uranium, and a nickel foil are included, used as a barrier for the escape of fission products. During the blank's expansion, for analysis alcohol as lubricant was used, allowing the expander to move smoothly through the inside of the blank. The blank was sealed by TIG welding with a pulsed AC current and a mixture of Ar-5% He gases. Two methods were used for the water tightness test; for high escape levels the temperature was used as a promoter of the ΔP provided by hot water and liquid nitrogen, for low escape levels high vacuum technology was used where the ΔP is provided by a high pressure helium atmosphere. The technology for the production of annular LEU blanks was achieved by applying innovations to technologies

  9. The fusion-fission hybrid

    International Nuclear Information System (INIS)

    Teller, E.

    1985-01-01

    As the history of the development of fusion energy shows, a sustained controlled fusion reaction is much more difficult to produce than rapid uncontrolled release of fusion energy. Currently, the ''magnetic bottle'' technique shows sufficient progress that it might applied for the commercial fuel production of /sup 233/U, suitable for use in fission reactors, by developing a fusion-fission hybrid. Such a device would consist of a fusion chamber core surrounded by a region containing cladded uranium pellets cooled by helium, with lithium salts also present to produce tritium to refuel the fusion process. Successful development of this hybrid might be possible within 10 y, and would provide both experience and funds for further development of controlled fusion energy

  10. Nuclear fission - the great discovery of the nuclear chemistry 50 years ago

    International Nuclear Information System (INIS)

    Eichler, B.

    1988-01-01

    A scientific discovery only seldom in that extent has influenced the scientific-technical progress and the historical development of mankind as the discovery of nuclear fission. The investigation of the reactions at irradiation of the uranium with neutrons was historically the order of the day. In 1938, the radiochemical proof of the nuclear fission succeeded by coprecipitation, fractional crystallization and application of the tracer method. To be master of these methods as well as their profound physico-chemical insight enabled O. Hahn and F. Strassmann to give reliable evidence of fission by identifying the fission product barium. (author)

  11. Criticality accident in uranium fuel processing plant. The estimation of the total number of fissions with related reactor physics parameters

    International Nuclear Information System (INIS)

    Nishina, Kojiro; Oyamatsu, Kazuhiro; Kondo, Shunsuke; Sekimoto, Hiroshi; Ishitani, Kazuki; Yamane, Yoshihiro; Miyoshi, Yoshinori

    2000-01-01

    This accident occurred when workers were pouring a uranium solution into a precipitation tank with handy operation against the established procedure and both the cylindrical diameter and the total mass exceeded the limited values. As a result, nuclear fission chain reactor in the solution reached not only a 'criticality' state continuing it independently but also an instantly forming criticality state exceed the criticality and increasing further nuclear fission number. The place occurring the accident at this time was not reactor but a place having not to form 'criticality' called by a processing process of uranium fuel. In such place, as because of relating to mechanism of chain reaction, it is required naturally for knowledge on the reactor physics, it is also necessary to understand chemical reaction in chemical process, and functions of tanks, valves and pumps mounted at the processes. For this purpose, some information on uranium concentration ratio, atomic density of nuclides largely affecting to chain reaction such as uranium, hydrogen, and so forth in the solution, shape, inner structure and size of container for the solution, and its temperature and total volume, were necessary for determining criticality volume of the accident uranium solution by using nuclear physics procedures. Here were described on estimation of energy emission in the JCO accident, estimation from analytical results on neutron and solution, calculation of various nuclear physics property estimation on the JCO precipitation tank at JAERI. (G.K.)

  12. Regulatory simplification of fission product chemistry

    International Nuclear Information System (INIS)

    Read, J.B.J.; Soffer, L.

    1986-01-01

    The requirements for design provisions intended to limit fission product escape during reactor accidents have been based since 1962 upon a small number of simply-stated assumptions. These assumptions permeate current reactor regulation, but are too simple to deal with the complex processes that can reasonably be expected to occur during real accidents. Potential chemical processes of fission products in severe accidents are compared with existing plant safety features designed to minimize off-site consequences, and the possibility of a new set of simply-stated assumptions to replace the 1982 set is discussed

  13. Study on the calculation method of source term from fission products

    International Nuclear Information System (INIS)

    Zhou Jing; Gong Quan; Qiu Haifeng

    2014-01-01

    As a major part of radioactive nuclides, fission products play an important role in nuclear power plant design. The paper analyzes the calculation model of core activity inventory, the model of fission products releasing from the pellets to RCS, the balance model of fission products in RCS, and then proves them by calculation of the typical pressurized water reactor. The model is proved applicable for calculating fission products of pressurized water reactors. (authors)

  14. Fission product yield measurements using monoenergetic photon beams

    Science.gov (United States)

    Krishichayan; Bhike, M.; Tonchev, A. P.; Tornow, W.

    2017-09-01

    Measurements of fission products yields (FPYs) are an important source of information on the fission process. During the past couple of years, a TUNL-LANL-LLNL collaboration has provided data on the FPYs from quasi monoenergetic neutron-induced fission on 235U, 238U, and 239Pu and has revealed an unexpected energy dependence of both asymmetric fission fragments at energies below 4 MeV. This peculiar FPY energy dependence was more pronounced in neutron-induced fission of 239Pu. In an effort to understand and compare the effect of the incoming probe on the FPY distribution, we have carried out monoenergetic photon-induced fission experiments on the same 235U, 238U, and 239Pu targets. Monoenergetic photon beams of Eγ = 13.0 MeV were provided by the HIγS facility, the world's most intense γ-ray source. In order to determine the total number of fission events, a dual-fission chamber was used during the irradiation. These irradiated samples were counted at the TUNL's low-background γ-ray counting facility using high efficient HPGe detectors over a period of 10 weeks. Here we report on our first ever photofission product yield measurements obtained with monoenegetic photon beams. These results are compared with neutron-induced FPY data.

  15. Fission product yield measurements using monoenergetic photon beams

    Directory of Open Access Journals (Sweden)

    Krishichayan

    2017-01-01

    Full Text Available Measurements of fission products yields (FPYs are an important source of information on the fission process. During the past couple of years, a TUNL-LANL-LLNL collaboration has provided data on the FPYs from quasi monoenergetic neutron-induced fission on 235U, 238U, and 239Pu and has revealed an unexpected energy dependence of both asymmetric fission fragments at energies below 4 MeV. This peculiar FPY energy dependence was more pronounced in neutron-induced fission of 239Pu. In an effort to understand and compare the effect of the incoming probe on the FPY distribution, we have carried out monoenergetic photon-induced fission experiments on the same 235U, 238U, and 239Pu targets. Monoenergetic photon beams of Eγ = 13.0 MeV were provided by the HIγS facility, the world's most intense γ-ray source. In order to determine the total number of fission events, a dual-fission chamber was used during the irradiation. These irradiated samples were counted at the TUNL's low-background γ-ray counting facility using high efficient HPGe detectors over a period of 10 weeks. Here we report on our first ever photofission product yield measurements obtained with monoenegetic photon beams. These results are compared with neutron-induced FPY data.

  16. Fission-product releases from a PHWR terminal debris bed

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.J.; Bailey, D.G., E-mail: morgan.brown@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    During an unmitigated severe accident in a pressurized heavy water reactor (PHWR) with horizontal fuel channels, the core may disassemble and relocate to the bottom of the calandria vessel. The resulting heterogeneous in-vessel terminal debris bed (TDB) would likely be quenched by any remaining moderator, and some of the decay heat would be conducted through the calandria vessel shell to the surrounding reactor vault or shield tank water. As the moderator boiled off, the solid debris bed would transform into a more homogeneous molten corium pool located between top and bottom crusts. Until recently, the severe accident code MAAP-CANDU assumed that unreleased volatile and semi-volatile fission products remained in the TDB until after calandria vessel failure, due to low diffusivity through the top crust and the lack of gases or steam to flush released fission products from the debris. However, national and international experimental results indicate this assumption is unlikely; instead, high- and medium-volatility fission products would be released from a molten debris pool, and their volatility and transport should be taken into account in TDB modelling. The resulting change in the distribution of fission products within the reactor and containment, and the associated decay heat, can have significant effects upon the progression of the accident and fission-product releases to the environment. This article describes a postulated PHWR severe accident progression to generate a TDB and the effects of fission-product releases from the terminal debris, using the simple release model in the MAAP-CANDU severe accident code. It also provides insights from various experimental programs related to fission-product releases from core debris, and their applicability to the MAAP-CANDU TDB model. (author)

  17. Emission of light charged particles from fragments produced on fission of uranium nuclei by 153 MeV protons and 1700 MeV negative pions

    International Nuclear Information System (INIS)

    Belovitzky, G.E.; Shteingrad, O.M.

    2000-01-01

    The mechanism underlying the emission of light charged particles (LCP) with Z = 1, 2 from fragments produced in fission of uranium nuclei by 153 MeV protons and 1700 MeV negative pions was studied. It was found that LCP accompanying the fission by pions are emitted from non-accelerated fragments immediately after the fission, whereas in the case of 153 MeV protons, the LCP are emitted from the accelerated heavy fragments. The number of LCP emitted in the course of pion-induced fission is 0.7 per fission event, which exceeds by a factor of 30 the corresponding number for 153 MeV protons [ru

  18. An improved technique for fission track dating

    International Nuclear Information System (INIS)

    Zhao Yunlong; Wu Zhaohui; Xia Yuliang

    1996-01-01

    The necessity of improving the fission track dating (FTD) technique both at home and abroad is illustrated. The ways of making such improvement are also proposed. It is suggested to calibrate the constant b value of the uranium standard glass by using the method of fission products activity. The 3 kinds of uranium standard glass which have been calibrated are NBS SRM962a, UB 1 and UB 2 . An established new method σ·Φ ρ d /b, to measure neutron fluence, avoids the influence of the varying neutron spectrum on measuring neutron fluence. The improved etching technique for fission tracks in zircon adopted a two-step method which includes the molten alkali system etching using NaOH + KOH and the mixed acid system etching using HNO 3 + HF; this technique results in adequate track etching, increased track clarity and less interference. In this way the intensity of tracks is authentically reflected. Dividing angular zone in accordance with the angular distribution of spontaneous fission track on the crystal surface of minerals to count the tracks and using the improved etching technique to remove the non-uniform angular distribution of spontaneous fission tracks in zircon, ensure the accuracy of tracks count. The improved FTD techniques were used to finish Laboratory Standardized Calibration. The tests using international FTD age standards samples have proved that above mentioned techniques are reliable and practical in obtaining the accurate FTD data. (8 tabs.; 3 figs.)

  19. ENDF/B-5 Fission Products Library 1979

    International Nuclear Information System (INIS)

    Schwerer, O.; Lemmel, H.D.

    1981-10-01

    This document summarizes contents and documentation of the 1979 version of the Fission Products File of the ENDF/B Library maintained by the National Nuclear Data Center (NNDC) at the Brookhaven National Laboratory, USA. This file contains numerical neutron reaction data and decay data for 877 fission product nuclides. The entire file or selective retrievals from it can be obtained on magnetic tape from the IAEA Nuclear Data Section. (author)

  20. Measurement of uranium in human teeth and kidney stones with the fission track technique

    International Nuclear Information System (INIS)

    Vartanian, R.

    1986-01-01

    The measurement of uranium in human teeth and in kidney stones was carried out using the fission track activation technique. In this determination 2759 and 2205 absolute counts of tracks for teeth samples and 1689 tracks for kidney stone samples were performed, respectively. The results are as follows: xsub(tooth) (1)=(0.227+-0.006) ppm, xsub(tooth) (2)=(0.143+-0.007) ppm and xsub(kidney)=(0.568+-0.020) ppm. The experimental method is described and the results are discussed. (author)

  1. Mesozoic-Cenozoic tectonic evolution and its relation to sandstone-type uranium mineralization in northern Tarim area--Evidence from apatite fission track

    International Nuclear Information System (INIS)

    Liu Hongxu; Dong Wenming; Liu Zhangyue; Chen Xiaolin

    2009-01-01

    The apatite fission track dating and inversion result of geological thermal history of four rock specimens from Sawafuqi area and Talike area in northern Tarim Basin show that two areas uplifted at different ages. The apatite fission track ages of Sawafuqi range from 3.5 to 3.9 Ma, while the ages of Talike range from 53 to 59 Ma. The thermal history recorded by rock samples reveals that there are at least three prominent cooling phases since Late Cretaceous epoch. Detailed study was made on the division of uplifting stages during Mesozoic and Cenozoic tectonic evolution with the existing data in northern Tarim area. And new ideas on tectonic evolution and sandstone-type uranium mineralization have been put forward by combining with the sandstone-type uranium mineralization ages in this area.(authors)

  2. Microprobe study of fission product behavior in high-burnup HTR fuels

    International Nuclear Information System (INIS)

    Kleykamp, H.

    Electron microprobe analysis of irradiated coated particles with high burnup (greater than 50 percent fima) gives detailed information on the chemical state and the transport behavior of the fission products in UO 2 and UC 2 kernels and in the coatings. In oxide fuel kernels, metallic inclusions and ceramic precipitations are observed. The solubility behavior of the fission products in the fuel matrix has been investigated. Fission product inclusions could not be detected in carbide fuel kernels; post irradiation annealed UC 2 kernels, however, give information on the element combinations of some fission product phases. Corresponding to the chemical state in the kernel, Cs, Sr, Ba, Pd, Te and the rare earths are released easily and diffuse through the entire pyrocarbon coating. These fission products can be retained by a silicon carbide layer. The initial stage of a corrosive attack of the SiC coating by the fission products is evidenced

  3. Evaluation of Cross-Section Sensitivities in Computing Burnup Credit Fission Product Concentrations

    International Nuclear Information System (INIS)

    Gauld, I.C.

    2005-01-01

    U.S. Nuclear Regulatory Commission Interim Staff Guidance 8 (ISG-8) for burnup credit covers actinides only, a position based primarily on the lack of definitive critical experiments and adequate radiochemical assay data that can be used to quantify the uncertainty associated with fission product credit. The accuracy of fission product neutron cross sections is paramount to the accuracy of criticality analyses that credit fission products in two respects: (1) the microscopic cross sections determine the reactivity worth of the fission products in spent fuel and (2) the cross sections determine the reaction rates during irradiation and thus influence the accuracy of predicted final concentrations of the fission products in the spent fuel. This report evaluates and quantifies the importance of the fission product cross sections in predicting concentrations of fission products proposed for use in burnup credit. The study includes an assessment of the major fission products in burnup credit and their production precursors. Finally, the cross-section importances, or sensitivities, are combined with the importance of each major fission product to the system eigenvalue (k eff ) to determine the net importance of cross sections to k eff . The importances established the following fission products, listed in descending order of priority, that are most likely to benefit burnup credit when their cross-section uncertainties are reduced: 151 Sm, 103 Rh, 155 Eu, 150 Sm, 152 Sm, 153 Eu, 154 Eu, and 143 Nd

  4. Determination of the uranium concentration in samples of raw, retorted and spent shale from Irati, Parana-Brazil, by the fission track registration technique

    International Nuclear Information System (INIS)

    Cabral, R.G.

    1981-02-01

    The feasibility of the determination of uranium in oil shale, by the fission track registration technique is studied. The wet and dry methods were employed, using a Bayer policarbonate, Makrofol KG, as detector. It was created a new variant of the dry method. The fission track registration technique was used in samples of raw, retorted and spent shale from Irati, Parana in Brazil, 16 μg U/g, 20 μg U/g and 20μg U/g were found, respectively, with a total error ranging from 19% to 20%. Some experimental results were included for illustration and comparison. The feasibility of the determination of uranium in oil shale from Irati was verified. (Author) [pt

  5. Attachment behavior of fission products to solution aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Takamiya, Koichi; Tanaka, Toru; Nitta, Shinnosuke; Itosu, Satoshi; Sekimoto, Shun; Oki, Yuichi; Ohtsuki, Tsutomu [Research Reactor Institute, Kyoto University, Osaka (Japan)

    2016-12-15

    Various characteristics such as size distribution, chemical component and radioactivity have been analyzed for radioactive aerosols released from Fukushima Daiichi Nuclear Power Plant. Measured results for radioactive aerosols suggest that the potential transport medium for radioactive cesium was non-sea-salt sulfate. This result indicates that cesium isotopes would preferentially attach with sulfate compounds. In the present work the attachment behavior of fission products to aqueous solution aerosols of sodium salts has been studied using a generation system of solution aerosols and spontaneous fission source of {sup 248}Cm. Attachment ratios of fission products to the solution aerosols were compared among the aerosols generated by different solutions of sodium salt. A significant difference according as a solute of solution aerosols was found in the attachment behavior. The present results suggest the existence of chemical effects in the attachment behavior of fission products to solution aerosols.

  6. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission

  7. Apparatus for measuring the release of fission gases and other fission products by degassing

    Energy Technology Data Exchange (ETDEWEB)

    Stradal, Karl Alfred

    1970-10-15

    In gas-cooled high-temperature reactors, the fuel is, in general, inserted in the fuel elements in the form of small particles, which are, for example, coated with pyrolytic carbon. The purpose of this coating is to keep the fission products separate from the coolant gas. The further development of these coated particles makes it necessary to check the retention capacity. One possible method of doing this is the degassing test after irradiation in the reactor. An apparatus is described below, which was developed and installed in order to measure to a higher degree of sensitivity and in serial measurements the release of fission gases and sparingly volatile fission products.

  8. Energetics of gaseous and volatile fission products in molten U–10Zr alloy: A density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ning; Tian, Jie; Jiang, Tao; Yang, Yanqiu; Hu, Sheng [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999 (China); Peng, Shuming, E-mail: pengshuming@caep.cn [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999 (China); Yan, Liuming [Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444 (China)

    2015-11-15

    Gaseous and volatile fission products have a number of adverse effects on the safety and efficiency of the U–10Zr alloy fuel. The theoretical calculations were applied to investigate the energetics related to the formation, nucleation, and degassing of gaseous and volatile fission products (Kr, Xe and I) in molten U–10Zr alloy. The molecular dynamics (MD) simulations were applied to generate equilibrium configurations. The density functional theory (DFT) calculations were used to build atomistic models including molten U–10Zr alloy as well as its fission products substituted systems. The vacancy formation in liquid U–10Zr alloy were studied using DFT calculations, with average Gibbs free formation energies at 8.266 and 6.333 eV for U- and Zr-vacancies, respectively. And the interaction energies were −1.911 eV, −2.390 eV, and −1.826 eV for the I–I, Xe–Xe, and Kr–Kr interaction in lattice when two of the adjacent uranium atoms were substituted by gaseous atoms. So it could be concluded that the interaction between I, Kr, and Xe in lattice is powerful than the interaction between these two atoms and the other lattice atoms in U–10Zr.

  9. Yields of fission products produced by thermal-neutron fission of 245Cm

    International Nuclear Information System (INIS)

    Dickens, J.K.; McConnell, J.W.

    1981-01-01

    Absolute yields have been determined for 105 gamma rays emitted in the decay of 95 fission products representing 54 mass chains created during thermal-neutron fission of 245 Cm. These results include 17 mass chains for which no prior yield data exist. Using a Ge(Li) detector, spectra were obtained of gamma rays between 30 sec and 0.3 yr after very short irradiations of thermal neutrons on a 1 μg sample of 245 Cm. On the basis of measured gamma-ray yields and known nuclear data, total chain mass yields and relative uncertainties were obtained for 51 masses between 84 and 156. The absolute overall normalization uncertainty is 239 Pu and for 252 Cf(s.f.); the influences of the closed shells Z=50, N=82 are not as marked as for thermal-neutron fission of 239 Pu but much more apparent than for 252 Cf(s.f.). Information on the charge distribution along several isobaric mass chains was obtained by determining fractional yields for 12 fission products. The charge distribution width parameter, based upon data for the heavy masses, A=128 to 140, is independent of mass to within the uncertainties of the measurements. Gamma-ray assignments were made for decay of short-lived fission products for which absolute gamma-ray transition probabilities are either not known or in doubt. Absolute gamma-ray transition probabilities were determined as (51 +- 8)% for the 374-keV gamma ray from decay of 110 Rh, (35 +- 7)% for the 1096-keV gamma ray from decay of 133 Sb, and (21.2 +- 1.2)% for the 255-keV gamma ray from decay of 142 Ba

  10. Trace uranium determination in beverages and mineral water using fission track techniques

    International Nuclear Information System (INIS)

    Cheng, Y.L.; Lin, J.Y.; Hao, X.H.

    1993-01-01

    The uranium contents of beverages and mineral water have been estimated using the technique of fission track analysis with polycarbonate detector. The U contents in beverages have been found to vary from 0.26 ± 0.03 to 1.65 ± 0.07 ppb, the average value is 0.93 ± 0.05 ppb. The mean U content in mineral water is 9.20 ± 0.16 ppb, which is ∼ 10 times higher than the mean U content of beverages. The present study shows the high U content in mineral water, indicating need for further investigation of U content in mineral water for the studies of radiation health hazards. (Author)

  11. Uranium 2009: Resources, Production and Demand

    International Nuclear Information System (INIS)

    2010-01-01

    With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry - the first critical link in the fuel supply chain for nuclear reactors - is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The 'Red Book', jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23. edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global uranium exploration, resources, production and reactor-related requirements. It provides substantive new information from major uranium production centres around the world, as well as from countries developing production centres for the first time. Projections of nuclear generating capacity and reactor-related uranium requirements through 2035 are also featured, along with an analysis of long-term uranium supply and demand issues

  12. Development of fission Mo-99 production technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2001-05-01

    This R and D project is planed to supply domestic demands of Mo-99 through fission route, and consequently this project will be expected to rise up utilization of HANARO and KAERI's capability for marketing extension into domestic and oversea radiopharmaceutical market. HEU and LEU target types are decided and designed for fission Mo-99 production in domestic. Experimental study of target fabrication technology was performed and developed processing equipments. And conceptual design of target loading/unloading in/from HANARO device are performed. Tracer test of Mo-99 separation and purification process was performed, test results reach to Mo-99 recovery yield above 80% and decontamination factor above 1600. Combined Mo-99 separation and purification process was decided for hot test scheduled from next year, and performance test was performed. Conceptual design for modification of existing hot cell for fission Mo-99 production facility was performed and will be used for detail design. Assumption for the comparison of LEU and HEU target in fission Mo-99 production process were suggested and compared of merits and demerits in view of fabrication technology and economy feasibility.

  13. Development of fission Mo-99 production technology

    International Nuclear Information System (INIS)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2001-05-01

    This R and D project is planed to supply domestic demands of Mo-99 through fission route, and consequently this project will be expected to rise up utilization of HANARO and KAERI's capability for marketing extension into domestic and oversea radiopharmaceutical market. HEU and LEU target types are decided and designed for fission Mo-99 production in domestic. Experimental study of target fabrication technology was performed and developed processing equipments. And conceptual design of target loading/unloading in/from HANARO device are performed. Tracer test of Mo-99 separation and purification process was performed, test results reach to Mo-99 recovery yield above 80% and decontamination factor above 1600. Combined Mo-99 separation and purification process was decided for hot test scheduled from next year, and performance test was performed. Conceptual design for modification of existing hot cell for fission Mo-99 production facility was performed and will be used for detail design. Assumption for the comparison of LEU and HEU target in fission Mo-99 production process were suggested and compared of merits and demerits in view of fabrication technology and economy feasibility

  14. Fission energy of uranium isotopes and transuranium elements

    International Nuclear Information System (INIS)

    Nemirovskij, P.Eh.; Manevich, L.G.

    1981-01-01

    A comparison is made between the prompt fission energy, Esub(pr), calculated from the mass and binding energy spectrum and the Esub(pr) value obtained from the experimental data on the kinetic energy of fragments, the energy of prompt neutrons and prompt γ-quanta. Basing on the data on β-decay chains of fission fragments, the energies of neutrinos, γ-quanta and β-electrons are obtained, which permits to calculate the actual energy released during fission. The calculations are performed for thermal neutron-induced fission, fast-neutron induced fission and for fission after bombardment with 14 MeV neutrons. The available experimental data on the fission fragment kinetic energy, prompt γ-quanta energy and fission neutron energy are presented. The comparison of the Esub(pr) values obtained experimentally for the thermal-neutron-induced fission with the calculated Esub(pr) value shows that for 233 U, 239 Pu, 241 Pu the agreement is rather favourable. For 235 U the agreement is within the error limits. As to the Esub(pr) values for the fast-neutron-induced fission, the agreement between the calculated and experimental data for all nuclides is quite good

  15. Fission product release mechanisms and groupings

    International Nuclear Information System (INIS)

    Iglesia, F.C.; Brito, A.C.; Liu, Y.

    1995-01-01

    During CANDU postulated accidents the reactor fuel is estimated to be exposed to a variety of conditions. These conditions are dynamic and, during the course of an accident, the fuel may experience a wide range of temperatures and conditions from highly oxidizing to mildly reducing environments. The exposure of the reactor fuel to these environments and temperatures may affect its stoichiometry and release performance. In this paper a review of the important fission product release mechanisms is presented, the results of three out-of-pile experimental programs are summarized, and fission product release groups, for both oxidizing and reducing conditions are proposed. (author)

  16. Transmutation of fission products through accelerator

    International Nuclear Information System (INIS)

    Nakamura, H.; Tani, S.; Takahashi, T.; Yamamura, O.

    1995-01-01

    The transmutation of fission products through particle accelerators has been studied under the OMEGA program. The photonuclear reaction has also been investigated to be applied to transmuting long-lived fission products, such as Cesium and Strontium, which have difficulties on reaction with neutrons due to its so small cross section. It is applicable for the transmutation if the energy balance can be improved with a monochromatic gamma rays in the range of the Giant Dipole Resonance generated through an excellent high current electron linear accelerator. The feasibility studies are being conducted on the transmutation system using it through an electron accelerator. (authors)

  17. Plutonium and surrogate fission products in a composite ceramic waste form

    International Nuclear Information System (INIS)

    Esh, D. W.; Frank, S. M.; Goff, K. M.; Johnson, S. G.; Moschetti, T. L.; O'Holleran, T.

    1999-01-01

    Argonne National Laboratory is developing a ceramic waste form to immobilize salt containing fission products and transuranic elements. Preliminary results have been presented for ceramic waste forms containing surrogate fission products such as cesium and the lanthanides. In this work results from scanning electron microscopy/energy dispersive spectroscopy and x-ray diffraction are presented in greater detail for ceramic waste forms containing surrogate fission products. Additionally, results for waste forms containing plutonium and surrogate fission products are presented. Most of the surrogate fission products appear to be silicates or aluminosilicates whereas the plutonium is usually found in an oxide form. There is also evidence for the presence of plutonium within the sodalite phase although the chemical speciation of the plutonium is not known

  18. Calculating the mass distribution of heavy nucleus fission product by neutrons

    International Nuclear Information System (INIS)

    Gudkov, A.N.; Koldobskij, A.B.; Kolobashkin, V.M.; Semenova, E.V.

    1981-01-01

    The technique of calculating the fission product mass yields by neutrons which are necessary for performing nucleus physical calculations in designing nuclear reactor cores is considered. The technique is based on the approximation of fission product mass distribution over the whole mass range by five Gauss functions. New analytical expressions for determining energy weights of used gaussians are proposed. The results of comparison of experimental data with calculated values for fission product mass obtained for reference processes in the capacity of which the fission reactions are chosen: 233 U, 235 U fission by thermal neutrons, 232 Th, 233 U, 235 U, 238 U by fission spectrum neutrons and 14 MeV neutrons and for 232 Th fission reactions by 11 MeV neutrons and 238 U by 7.7 MeV neutrons. On the basis of the analysis of results obtained the conclusion is drawn on a good agreement of fission product mass yield calculation values obtained using recommended values of mass distribution parameters with experimental data [ru

  19. Uranium 2003 resources, production and demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris

    2004-01-01

    Uranium 2003: Resources, Production and Demand paints a detailed statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Eastern Europe and North America and for the first time, a report for Turkmenistan. Also included are international expert analyses and projections of nuclear generating capacity and reactor-related uranium requirements through 2020.

  20. Fission track dating of kimberlitic zircons

    International Nuclear Information System (INIS)

    Haggerty, S.E.

    1983-01-01

    The only reliable method for dating kimberlites at present is the lengthy and specialized hydrothermal procedure that extracts 206 Pb and 238 U from low-uranium zircons. This paper describes a second successful method by fission track dating of large single-crystal zircons, 1.0-1.5 cm in dimension. The use of large crystals overcomes the limitations imposed in conventional fission track analysis which utilizes crushed fragments. Low track densities, optical track dispersion, and the random orientation of polished surfaces in the etch and irradiation cycle are effectively overcome. Fission track ages of zircons from five African kimberlites are reported, from the Kimberley Pool (90.0 +- 6.5 m.y.), Orapa (87.4 +- 5.7 and 92.4 +- 6.1 m.y.), Nzega (51.1 +- 3.8 m.y.), Koffiefontein (90.9 +- 8.2 m.y.), and Val do Queve (133.4 +- 11.5 m.y.). In addition we report the first radiometric ages (707.9 +- 59.6 and 705.5 +- 61.0 m.y.) of crustal zircons from kimberlites in northwest Liberia. The fission track ages agree well with earlier age estimates. Most of the zircons examined in this study are zoned with respect to uranium but linear correlations are established (by regression analysis) between zones of variable uranium content, and within zones of constant uranium content (by analysis of variance). Concordance between the fission track method and the U/Pb technique is established and we concluded that track fading from thermal annealing has not taken place. Kimberlitic zircons dated in this study, therefore, record the time of eruption. (orig.)

  1. Potential health hazard of nuclear fuel waste and uranium ore

    International Nuclear Information System (INIS)

    Mehta, K.; Sherman, G.R.; King, S.G.

    1991-06-01

    The variation of the radioactivity of nuclear fuel waste (used fuel and fuel reprocessing waste) with time, and the potential health hazard (or inherent radiotoxicity) resulting from its ingestion are estimated for CANDU (Canada Deuterium Uranium) natural-uranium reactors. Four groups of radionuclides in the nuclear fuel waste are considered: actinides, fission products, activation products of zircaloy, and activation products of fuel impurities. Contributions from each of these groups to the radioactivity and to the potential health hazard are compared and discussed. The potential health hazard resulting from used fuel is then compared with that of uranium ore, mine tailings and refined uranium (fresh fuel) on the basis of equivalent amounts of uranium. The computer code HAZARD, specifically developed for these computations, is described

  2. Uranium resources, demand and production

    International Nuclear Information System (INIS)

    Stipanicic, P.N.

    1985-05-01

    Estimations of the demand and production of principal uranium resource categories are presented. The estimations based on data analysis made by a joint 'NEA/IAEA Working Party on Uranium Resources' and the corresponding results are published by the OECD (Organization for Economic Co-operation and Development) in the 'Uranium Resources, Production and Demand' Known as 'Red Book'. (M.C.K.) [pt

  3. Fission product release from UO2 during irradiation. Diffusion data and their application to reactor fuel pins

    International Nuclear Information System (INIS)

    Findlay, J.R.; Johnson, F.A.; Turnbull, J.A.; Friskney, C.A.

    1980-01-01

    Release of fission product species from UO 2 , and to a limited extent from (U, Pu)0 2 was studied using small scale in-reactor experiments in which these interacting variables may be separated, as far as is possible, and their influences assessed. Experiments were at fuel ratings appropriate to water reactor fuel elements and both single crystal and poly-crystalline specimens were used. They employed highly enriched uranium such that the relative number of fissions occurring in plutonium formed by neutron capture was small. The surface to volume ratio (S/V) of the specimens was well defined thus reducing the uncertainties in the derivation of diffusion coefficients. These experiments demonstrate many of the important characteristics of fission product behaviour in UO 2 during irradiation. The samples used for these experiments were small being always less than 1g with a fissile content usually between 2 and 5mg. Polycrystalline materials were taken from batches of production fuel prepared by conventional pressing and sintering techniques. The enriched single crystals were grown from a melt of sodium and potassium chloride doped with UO 2 powder 20% 235 U content. The irradiations were performed in the DIDO reactor at Harwell. The neutron flux at the specimen was 4x10 16 neutrons m -2 s -1 providing a heat rating within the samples of 34.5 MW/teU

  4. Uranium 2005 Resources, Production and Demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris. Nuclear Energy Agency

    2006-01-01

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. This 21st edition presents the results of a thorough review of world uranium supplies and demand as of 1st January 2005 and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2025 are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major c...

  5. Uranium 2014 resources, production and demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris

    2014-01-01

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. It presents the results of a thorough review of world uranium supplies and demand and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Long-term projections of nuclear generating capacity and reactor-related uranium requirements are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major changes in the industry.

  6. Removal of fission product ruthenium from purex process solutions: thiourea as complexing agent

    International Nuclear Information System (INIS)

    Floh, B.; Abrao, A.

    1980-01-01

    A new method for the treatment of spent uranium fuel is presented. It is based on the Purex Process using thiourea to increase the ruthenium decontamination factor. Thiourea exhibits a strong tendency for the formation of coordination compounds in acidic media. This tendency serves as a basis to transform nitrosyl-ruthenium species into Ru /SC(NH)(NH 2 )/ 2+ and Ru /SC(NH)(NH 2 )/ 3 complexes which are unextractable by TBP-varsol. The best conditions for the ruthenium-thiourea complex formation were found to be: thiourea-ruthenium ratio (mass/mass) close to 42, at 75 0 C, 30 minutes reaction time and aging period of 60 minutes. The ruthenium decontamination factor for a single uranium extraction are ca. 80-100, not interfering with extraction of actinides. These values are rather high in comparison to those obtained using the conventional Purex Process (e.g. F.D. sub(Ru)=10). By this reason the method developed here is suitable for the treatment of spent uranium fuels. Thiourea (100g/l) scrubbing experiments of ruthenium, partially co-extracted with actinides, confirmed the possibility of its removal from the extract. A decontamination greater than 83,5% for ruthenium as fission product is obtained in two stages with this procedure. (Author) [pt

  7. Uranium production - needs and 'in the ground' resources, situation in 2007 and perspectives

    International Nuclear Information System (INIS)

    Capus, G.

    2007-01-01

    Under the combined effect of energies price increase and of the worldwide growing fear of global warming effects, nuclear power is again entering a favorable era. The questions of how much and how long it might bring a significant contribution to global power supplies must be addressed. In particular, it is worth considering uranium production capability and its long term perspective, in accordance to the currently available knowledge about uranium resources. Also, the issue of world resources geographic distribution should be analyzed from a security of supply viewpoint. The careful analysis of all available information leads us to the following conclusive remarks. The current tension on uranium market prices is by no mean a signal of 'in the ground' resources depletion. It is just the temporary consequence of a too long depressed market. There are enough identified and foreseen uranium resources to quietly start a huge power plant fleet increase (a doubling or tripling the current installed capacity by 2030). Ultimately, several types within the generation 4 reactors allow us to envisage a very far extended use of currently available fissile and fertile nuclear material, along with a significant expansion of fission based nuclear power. (author)

  8. Uranium

    International Nuclear Information System (INIS)

    Poty, B.; Cuney, M.; Bruneton, P.; Virlogeux, D.; Capus, G.

    2010-01-01

    With the worldwide revival of nuclear energy comes the question of uranium reserves. For more than 20 years, nuclear energy has been neglected and uranium prospecting has been practically abandoned. Therefore, present day production covers only 70% of needs and stocks are decreasing. Production is to double by 2030 which represents a huge industrial challenge. The FBR-type reactors technology, which allows to consume the whole uranium content of the fuel, is developing in several countries and will ensure the long-term development of nuclear fission. However, the implementation of these reactors (the generation 4) will be progressive during the second half of the 21. century. For this reason an active search for uranium ores will be necessary during the whole 21. century to ensure the fueling of light water reactors which are huge uranium consumers. This dossier covers all the aspects of natural uranium production: mineralogy, geochemistry, types of deposits, world distribution of deposits with a particular attention given to French deposits, the exploitation of which is abandoned today. Finally, exploitation, ore processing and the economical aspects are presented. Contents: 1 - the uranium element and its minerals: from uranium discovery to its industrial utilization, the main uranium minerals (minerals with tetravalent uranium, minerals with hexavalent uranium); 2 - uranium in the Earth's crust and its geochemical properties: distribution (in sedimentary rocks, in magmatic rocks, in metamorphic rocks, in soils and vegetation), geochemistry (uranium solubility and valence in magmas, uranium speciation in aqueous solution, solubility of the main uranium minerals in aqueous solution, uranium mobilization and precipitation); 3 - geology of the main types of uranium deposits: economical criteria for a deposit, structural diversity of deposits, classification, world distribution of deposits, distribution of deposits with time, superficial deposits, uranium

  9. Uranium 2003: resources, production and demand

    International Nuclear Information System (INIS)

    2004-01-01

    The 'Red Book', jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. This edition, the 20., presents the results of a thorough review of world uranium supplies and demand as of 1 January 2003 based on official information received from 43 countries. Uranium 2003: Resources, Production and Demand paints a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Eastern Europe and North America and for the first time, a report for Turkmenistan. Also included are international expert analyses and projections of nuclear generating capacity and reactor-related uranium requirements through 2020. The long lead times required to bring resources into production underscore the importance of making timely decisions to pursue production capability well in advance of any supply shortfall. (author)

  10. Chemical immobilization of fission products reactive with nuclear reactor components

    International Nuclear Information System (INIS)

    Grossman, L.N.; Kaznoff, A.I.; Clukey, H.V.

    1975-01-01

    This invention teaches a method of immobilizing deleterious fission products produced in nuclear fuel materials during nuclear fission chain reactions through the use of additives. The additives are disposed with the nuclear fuel materials in controlled quantities to form new compositions preventing attack of reactor components, especially nuclear fuel cld, by the deleterious fission products. (Patent Office Record)

  11. Determining the isotopic compositions of uranium and fission products in radioactive environmental microsamples using laser ablation ICP-MS with multiple ion counters

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, Sergei F.; Prohaska, Thomas [University of Natural Resources and Applied Life Sciences, Department of Chemistry, Division of Analytical Chemistry-VIRIS Laboratory, Vienna (Austria)

    2008-01-15

    This paper presents the application of a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS) - a Nu Plasma HR - equipped with three ion-counting multipliers and coupled to a laser ablation system (LA) for the rapid and sensitive determination of the {sup 235}U/{sup 238}U, {sup 236}U/{sup 238}U, {sup 145}Nd/{sup 143}Nd, {sup 146}Nd/{sup 143}Nd, {sup 101}Ru/({sup 99}Ru+{sup 99}Tc) and {sup 102}Ru/({sup 99}Ru+{sup 99}Tc) isotope ratios in microsamples collected in the vicinity of Chernobyl. Microsamples with dimensions ranging from a hundred {mu}m to about 1 mm and with surface alpha activities of 3-38 mBq were first identified using nuclear track radiography. U, Nd and Ru isotope systems were then measured sequentially for the same microsample by LA-MC-ICP-MS. The application of a zoom ion optic for aligning the ion beams into the ion counters allows fast switching between different isotope systems, which enables all of the abovementioned isotope ratios to be measured for the same microsample within a total analysis time of 15-20 min (excluding MC-ICP-MS optimization and calibration). The {sup 101}Ru/({sup 99}Ru+{sup 99}Tc) and {sup 102}Ru/({sup 99}Ru+{sup 99}Tc) isotope ratios were measured for four microsamples and were found to be significantly lower than the natural ratios, indicating that the microsamples were contaminated with the corresponding fission products (Ru and Tc). A slight depletion in {sup 146}Nd of about 3-5% was observed in the contaminated samples, but the Nd isotopic ratios measured in the contaminated samples coincided with natural isotopic composition within the measurement uncertainty, as most of the Nd in the analyzed samples originates from the natural soil load of this element. The {sup 235}U/{sup 238}U and {sup 236}U/{sup 238}U isotope ratios were the most sensitive indicators of irradiated uranium. The present work yielded a significant variation in uranium isotope ratios in microsamples, in contrast with previously

  12. Analytical measurements of fission products during a severe nuclear accident

    Science.gov (United States)

    Doizi, D.; Reymond la Ruinaz, S.; Haykal, I.; Manceron, L.; Perrin, A.; Boudon, V.; Vander Auwera, J.; tchana, F. Kwabia; Faye, M.

    2018-01-01

    The Fukushima accident emphasized the fact that ways to monitor in real time the evolution of a nuclear reactor during a severe accident remain to be developed. No fission products were monitored during twelve days; only dose rates were measured, which is not sufficient to carry out an online diagnosis of the event. The first measurements were announced with little reliability for low volatile fission products. In order to improve the safety of nuclear plants and minimize the industrial, ecological and health consequences of a severe accident, it is necessary to develop new reliable measurement systems, operating at the earliest and closest to the emission source of fission products. Through the French program ANR « Projet d'Investissement d'Avenir », the aim of the DECA-PF project (diagnosis of core degradation from fission products measurements) is to monitor in real time the release of the major fission products (krypton, xenon, gaseous forms of iodine and ruthenium) outside the nuclear reactor containment. These products are released at different times during a nuclear accident and at different states of the nuclear core degradation. Thus, monitoring these fission products gives information on the situation inside the containment and helps to apply the Severe Accident Management procedures. Analytical techniques have been proposed and evaluated. The results are discussed here.

  13. Analytical measurements of fission products during a severe nuclear accident

    Directory of Open Access Journals (Sweden)

    Doizi D.

    2018-01-01

    Full Text Available The Fukushima accident emphasized the fact that ways to monitor in real time the evolution of a nuclear reactor during a severe accident remain to be developed. No fission products were monitored during twelve days; only dose rates were measured, which is not sufficient to carry out an online diagnosis of the event. The first measurements were announced with little reliability for low volatile fission products. In order to improve the safety of nuclear plants and minimize the industrial, ecological and health consequences of a severe accident, it is necessary to develop new reliable measurement systems, operating at the earliest and closest to the emission source of fission products. Through the French program ANR « Projet d’Investissement d’Avenir », the aim of the DECA-PF project (diagnosis of core degradation from fission products measurements is to monitor in real time the release of the major fission products (krypton, xenon, gaseous forms of iodine and ruthenium outside the nuclear reactor containment. These products are released at different times during a nuclear accident and at different states of the nuclear core degradation. Thus, monitoring these fission products gives information on the situation inside the containment and helps to apply the Severe Accident Management procedures. Analytical techniques have been proposed and evaluated. The results are discussed here.

  14. Fission product removal from molten salt using zeolite

    International Nuclear Information System (INIS)

    Pereira, C.; Babcock, B.D.

    1996-01-01

    Spent nuclear fuel (SNF) can be treated in a molten salt electrorefiner for conversion into metal and mineral waste forms for geologic disposal. The fuel is dissolved in molten chloride salt. Non-transuranic fission products in the molten salt are ion-exchanged into zeolite A, which is subsequently mixed with glass and consolidated. Zeolite was found to be effective in removing fission product cations from the molten salt. Breakthrough of cesium and the alkaline earths occurred more rapidly than was observed for the rare earths. The effluent composition as a function of time is presented, as well as results for the distribution of fission products along the length of the column. Effects of temperature and salt flow rate are also discussed

  15. Fission Product Yield Study of 235U, 238U and 239Pu Using Dual-Fission Ionization Chambers

    Science.gov (United States)

    Bhatia, C.; Fallin, B.; Howell, C.; Tornow, W.; Gooden, M.; Kelley, J.; Arnold, C.; Bond, E.; Bredeweg, T.; Fowler, M.; Moody, W.; Rundberg, R.; Rusev, G.; Vieira, D.; Wilhelmy, J.; Becker, J.; Macri, R.; Ryan, C.; Sheets, S.; Stoyer, M.; Tonchev, A.

    2014-05-01

    To resolve long-standing differences between LANL and LLNL regarding the correct fission basis for analysis of nuclear test data [M.B. Chadwick et al., Nucl. Data Sheets 111, 2891 (2010); H. Selby et al., Nucl. Data Sheets 111, 2891 (2010)], a collaboration between TUNL/LANL/LLNL has been established to perform high-precision measurements of neutron induced fission product yields. The main goal is to make a definitive statement about the energy dependence of the fission yields to an accuracy better than 2-3% between 1 and 15 MeV, where experimental data are very scarce. At TUNL, we have completed the design, fabrication and testing of three dual-fission chambers dedicated to 235U, 238U, and 239Pu. The dual-fission chambers were used to make measurements of the fission product activity relative to the total fission rate, as well as for high-precision absolute fission yield measurements. The activation method was employed, utilizing the mono-energetic neutron beams available at TUNL. Neutrons of 4.6, 9.0, and 14.5 MeV were produced via the 2H(d,n)3He reaction, and for neutrons at 14.8 MeV, the 3H(d,n)4He reaction was used. After activation, the induced γ-ray activity of the fission products was measured for two months using high-resolution HPGe detectors in a low-background environment. Results for the yield of seven fission fragments of 235U, 238U, and 239Pu and a comparison to available data at other energies are reported. For the first time results are available for neutron energies between 2 and 14 MeV.

  16. Map of calculated radioactivity of fission product, 3

    International Nuclear Information System (INIS)

    Takeda, Tsuneo

    1977-02-01

    In this work, the radioactivities of fission products were calculated and summarized in contour maps and tables depending on irradiation and cooling times. The irradiation condition and other parameters used for the present calculation are shown in the followings. Neutron flux (N sub(th)): 3x10 13 n/sec/cm 2 Atom number of uranium: 1 mole (6x10 23 , ca. 271 gUO 2 ) Enrichment of U-235: 2.7% Range of irradiation time: 60-6x10 7 sec (ca. 1.9 y) Range of cooling time: 60-6x10 7 sec (ca. 1.9 y). Values of the neutron flux and the enrichment treated here are representative for common LWRs. The maps and tables of 560 nuclides are divided and compiled into the following three volumes. Vol. I: Maps of radioactivity of overall total, element total and each nuclide (Ni - Zr), Vol. II: Maps of radioactivity of each nuclide (Nb - Sb), Vol. III: Maps of radioactivity of each nuclide (Te - Tm). (auth.)

  17. Map of calculated radioactivity of fission product, (1)

    International Nuclear Information System (INIS)

    Takeda, Tsuneo

    1977-02-01

    In this work, the radioactivities of fission products were calculated and summarized in contour maps and tables depending on irradiation and cooling times. The irradiation condition and other parameters used for the present calculation are shown in the followings. Neutron flux (N sub(th)): 3x10 13 n/sec/cm 2 Atom number of uranium: 1 mole (6x10 23 , ca. 271 gUO 2 ) Enrichment of U-235: 2.7% Range of irradiation time: 60-6x10 7 sec (ca. 1.9 y) Range of cooling time: 60-6x10 7 sec (ca. 1.9 y). Values of the neutron flux and the enrichment treated here are representative for common LWRs. The maps and tables of 560 nuclides are divided and compiled into the following three volumes. Vol. I Maps of radioactivity of overall total, element total and each nuclide (Ni - Zr) Vol. II Maps of radioactivity of each nuclide (Nb - Sb) Vol. III Maps of radioactivity of each nuclide (Te - Tm) (auth.)

  18. Map of calculated radioactivity of fission product, 2

    International Nuclear Information System (INIS)

    Takeda, Tsuneo

    1977-02-01

    In this work, the radioactivities of fission products were calculated and summarized in contour maps and tables depending on irradiation and cooling times. The irradiation condition and other parameters used for the present calculation are shown in the followings. Neutron flux (N sub(th)): 3x10 13 n/sec/cm 2 Atom number of uranium: 1 mole (6x10 23 , ca. 271 gUO 2 ) Enrichment of U-235: 2.7% Range of irradiation time: 60-6x10 7 sec (ca. 1.9 y) Range of cooling time: 60-6x10 7 sec (ca. 1.9 y). Values of the neutron flux and the enrichment treated here are representative for common LWRs. The maps and tables of 560 nuclides are divided and compiled into the following three volumes. Vol. I: Maps of radioactivity of overall total, element total and each nuclide (Ni - Zr), Vol. II: Maps of radioactivity of each nuclide (Nb - Sb), Vol. III: Maps of radioactivity of each nuclide (Te - Tm). (auth.)

  19. Trapping technology for gaseous fission products from voloxidation process

    International Nuclear Information System (INIS)

    Shin, Jin Myeong; Park, J. J.; Park, G. I.; Jung, I. H.; Lee, H. H.; Kim, G. H.; Yang, M. S.

    2005-05-01

    The objective of this report is to review the different technologies for trapping the gaseous wastes containing Cs, Ru, Tc, 14 C, Kr, Xe, I and 3 H from a voloxidation process. Based on literature reviews and KAERI's experimental results on the gaseous fission products trapping, appropriate trapping method for each fission product has been selected considering process reliability, simplicity, decontamination factor, availability, and disposal. Specifically, the most promising trapping method for each fission product has been proposed for the development of the INL off-gas trapping system. A fly ash filter is proposed as a trapping media for a cesium trapping unit. In addition, a calcium filter is proposed as a trapping media for ruthenium, technetium, and 14 C trapping unit. In case of I trapping unit, AgX is proposed. For Kr and Xe, adsorption on solid is proposed. SDBC (Styrene Divinyl Benzene Copolymer) is also proposed as a conversion media to HTO for 3 H. This report will be used as a useful means for analyzing the known trapping technologies and help selecting the appropriate trapping methods for trapping volatile and semi-volatile fission products, long-lived fission products, and major heat sources generated from a voloxidation process. It can also be used to design an off-gas treatment system

  20. Fission Detection Using the Associated Particle Technique

    International Nuclear Information System (INIS)

    R.P. Keegan; J.P. Hurley; J.R. Tinsley; R. Trainham; S.C. Wilde

    2008-01-01

    A beam of tagged 14 MeV neutrons from the deuterium-tritium (DT) reaction is used to induce fission in a target composed of depleted uranium. The generator yield is 10 7 neutrons/second radiated into a 4 x 4 in. NaI detectors are used for gamma-ray detection. The fission process is known to produce multiple gamma-rays and neutrons. Triple coincidences (α-γ-γ) are measured as a function of neutron flight time up to 90 ns after fission, where the α-particle arises from the DT reaction. A sudden increase in the triple coincidence rate at the location of the material is used to localize and detect fission in the interrogated target. Comparisons are made with experiment runs where lead, tungsten, and iron were used as target materials. The triple coincidence response profile from depleted uranium is noted to be different to those observed from the other target materials. The response from interrogation targets composed of fissile material is anticipated to be even more unique than that observed from depleted uranium

  1. Estimation of penetration depth of fission products in cladding Hull

    International Nuclear Information System (INIS)

    Kim, Hee Moon; Jung, Yang Hong; Yoo, Byong Ok; Choo, Yong Sun; Hong, Kwon Pyo

    2005-01-01

    A disposal and a reprocessing for spent fuel rod with high burnup need de-cladding procedure. Pellet in this rod has been separated from a cladding hull to reduce a radioactivity of hull by chemical and mechanical methods. But fission products and actinides(U,Pu) still remain inside of cladding hull by chemical bonding and fission spike, which is called as 'contamination'. More specific removal of this contamination would have been considered. In this study, the sorts of fission products and penetration depth in hull were observed by EPMA test. To analyze this behavior, SRIM 2000 code was also used as energies of fission products and an oxide thickness of hull

  2. Progress in developing processes for converting 99Mo production from high- to low-enriched uranium--1998

    International Nuclear Information System (INIS)

    Conner, C.

    1998-01-01

    During 1998, the emphasis of our activities was focused mainly on target fabrication. Successful conversion requires a reliable irradiation target; the target being developed uses thin foils of uranium metal, which can be removed from the target hardware for dissolution and processing. This paper describes successes in (1) improving our method for heat-treating the uranium foil to produce a random-small grain structure, (2) improving electrodeposition of zinc and nickel fission-fragment barriers onto the foil, and (3) showing that these fission fragment barriers should be stable during transport of the targets following irradiation. A method was also developed for quantitatively electrodepositing uranium and plutonium contaminants in the 99 Mo. Progress was also made in broadening international cooperation in our development activities

  3. Fission product release mechanisms and groupings

    Energy Technology Data Exchange (ETDEWEB)

    Iglesia, F C; Brito, A C; Liu, Y [Ontario Hydro, Toronto, ON (Canada); and others

    1996-12-31

    During CANDU postulated accidents the reactor fuel is estimated to be exposed to a variety of conditions. These conditions are dynamic and, during the course of an accident, the fuel may experience a wide range of temperatures and conditions from highly oxidizing to mildly reducing environments. The exposure of the reactor fuel to these environments and temperatures may affect its stoichiometry and release performance. In this paper a review of the important fission product release mechanisms is presented, the results of three out-of-pile experimental programs are summarized, and fission product release groups, for both oxidizing and reducing conditions are proposed. (author) 92 refs., 6 tabs.

  4. Chemistry of actinides and fission products

    International Nuclear Information System (INIS)

    Pruett, D.J.; Sherrow, S.A.; Toth, L.M.

    1988-01-01

    This task is concerned primarily with the fundamental chemistry of the actinide and fission product elements. Special efforts are made to develop research programs in collaboration with researchers at universities and in industry who have need of national laboratory facilities. Specific areas currently under investigation include: (1) spectroscopy and photochemistry of actinides in low-temperature matrices; (2) small-angle scattering studies of hydrous actinide and fission product polymers in aqueous and nonaqueous solvents; (3) kinetic and thermodynamic studies of complexation reactions in aqueous and nonaqueous solutions; and (4) the development of inorganic ion exchange materials for actinide and lanthanide separations. Recent results from work in these areas are summarized here

  5. The abundance and distribution of uranium in some oceanic, continental ultramafic inclusions and host basalts

    International Nuclear Information System (INIS)

    Hamilton, E.I.

    1975-01-01

    The abundance and distribution of uranium in various continental and oceanic ultramafic inclusions and host basalts are reported. Uranium was determined by neutron activation (fission products, fission tracks and delayed-neutron methods) and alpha-particle autoradiography; data is also reported for the uranium content of various USGS standard rock powders. The concentration of uranium in both oceanic and continental samples is similar, levels are controlled by mineral compositions and their relative abundance in different rock types. Highest levels are found in feldspathic and lowest in olivine-rich inclusions. Uranium is enriched in mylonitised samples and along some inter-crystal boundaries. With the exception of some apatites, highest levels of uranium are in clinopyroxenes (chrome) and lowest in olivines; no enrichment of uranium in orthopyroxenes was observed. Attention is drawn to the problem of obtaining representative samples from the sea floor which have not been altered by saline solutions and the identification of uranium and daughter products present along inter-crystal boundaries. Differences in observed heat flow between continental and oceanic areas may reflect inadequate sampling of representative rock types present below the sea floor and lack of information for the true abundance and distribution of uranium in such rocks

  6. Methodology of simultaneous analysis of Uranium and Thorium by nuclear and atomic techniques. Application to the Uranium and Thorium dosing in mineralogic samples

    International Nuclear Information System (INIS)

    Fakhi, S.

    1988-01-01

    This work concerns essentially the potential applications of 100 kW nuclear reactor of Strasbourg Nuclear Research Centre to neutron activation analysis of Uranium and Thorium. The Uranium dosing has been made using: 239-U, 239-Np, fission products or delayed neutrons. Thorium has been showed up by means of 233-Th or 233-Pa. The 239-U and 233-Th detection leads to a rapid and non-destructive analysis of Uranium and Thorium. The maximum sensitivity is of 78 ng for Uranium and of 160 ng for Thorium. The Uranium and Thorium dosing based on 239-Np and 233-Pa detection needs chemical selective separations for each of these radionuclides. The liquid-liquid extraction has permitted to elaborate rapid and quantitative separation methods. The sensitivities of the analysis after extraction reach 30 ng for Uranium and 50 ng for Thorium. The fission products separation study has allowed to elaborate the La, Ce and Nd extractions and its application to the Uranium dosing gives satisfying results. A rapid dosing method with a sensitivity of 0.35 microgramme has been elaborated with the help of delayed neutrons measurement. These different methods have been applied to the Uranium and Thorium dosing in samples coming from Oklo mine in Gabon. The analyses of these samples by atomic absorption spectroscopy and by the proton induced X-ray emission (PIXE) method confirm that the neutron activation analysis methods are reliable. 37 figs., 14 tabs., 50 refs

  7. Advantages of Production of New Fissionable Nuclides for the Nuclear Power Industry in Hybrid Fusion-Fission Reactors

    Science.gov (United States)

    Tsibulskiy, V. F.; Andrianova, E. A.; Davidenko, V. D.; Rodionova, E. V.; Tsibulskiy, S. V.

    2017-12-01

    A concept of a large-scale nuclear power engineering system equipped with fusion and fission reactors is presented. The reactors have a joint fuel cycle, which imposes the lowest risk of the radiation impact on the environment. The formation of such a system is considered within the framework of the evolution of the current nuclear power industry with the dominance of thermal reactors, gradual transition to the thorium fuel cycle, and integration into the system of the hybrid fusion-fission reactors for breeding nuclear fuel for fission reactors. Such evolution of the nuclear power engineering system will allow preservation of the existing structure with the dominance of thermal reactors, enable the reprocessing of the spent nuclear fuel (SNF) with low burnup, and prevent the dangerous accumulation of minor actinides. The proposed structure of the nuclear power engineering system minimizes the risk of radioactive contamination of the environment and the SNF reprocessing facilities, decreasing it by more than one order of magnitude in comparison with the proposed scheme of closing the uranium-plutonium fuel cycle based on the reprocessing of SNF with high burnup from fast reactors.

  8. Implementation of a Thermodynamic Solver within a Computer Program for Calculating Fission-Product Release Fractions

    Science.gov (United States)

    Barber, Duncan Henry

    During some postulated accidents at nuclear power stations, fuel cooling may be impaired. In such cases, the fuel heats up and the subsequent increased fission-gas release from the fuel to the gap may result in fuel sheath failure. After fuel sheath failure, the barrier between the coolant and the fuel pellets is lost or impaired, gases and vapours from the fuel-to-sheath gap and other open voids in the fuel pellets can be vented. Gases and steam from the coolant can enter the broken fuel sheath and interact with the fuel pellet surfaces and the fission-product inclusion on the fuel surface (including material at the surface of the fuel matrix). The chemistry of this interaction is an important mechanism to model in order to assess fission-product releases from fuel. Starting in 1995, the computer program SOURCE 2.0 was developed by the Canadian nuclear industry to model fission-product release from fuel during such accidents. SOURCE 2.0 has employed an early thermochemical model of irradiated uranium dioxide fuel developed at the Royal Military College of Canada. To overcome the limitations of computers of that time, the implementation of the RMC model employed lookup tables to pre-calculated equilibrium conditions. In the intervening years, the RMC model has been improved, the power of computers has increased significantly, and thermodynamic subroutine libraries have become available. This thesis is the result of extensive work based on these three factors. A prototype computer program (referred to as SC11) has been developed that uses a thermodynamic subroutine library to calculate thermodynamic equilibria using Gibbs energy minimization. The Gibbs energy minimization requires the system temperature (T) and pressure (P), and the inventory of chemical elements (n) in the system. In order to calculate the inventory of chemical elements in the fuel, the list of nuclides and nuclear isomers modelled in SC11 had to be expanded from the list used by SOURCE 2.0. A

  9. Production of uranium in Navoi Mining and Metallurgy Combinat, Uzbekistan

    International Nuclear Information System (INIS)

    Kuchersky, N.; Tolstov, E.A.; Mazurkevich, A.P.; Inozemzev, S.B.

    2001-01-01

    transfer system allowing the integrated information exchange. Introduced are the systems for automated design of ISL process preparation, which realize computer aided geological support and design of block mining procedure as well as operative planning of recovery and mining preparation works and metal transfer accounting during the course of operations. The park of logging stations is at the moment in the process of being changed to microprocessor computer-aided complexes to provide automated services during geophysical investigations of wells. For the deposits with complicated radiological condition we widely apply the direct method of uranium determination based on instant neutron fission which has increased the efficiency of logging. The large number of uranium reserves in the Kyzylkum province lay the basis for the plan to significantly increase the uranium oxide production. The realization of the above mentioned innovations makes it possible to significantly intensify the ISL operations performance in the Navoi Mining and Metallurgy Combinat and ensure high revenues from uranium sales at the world market. (author)

  10. Uranium 2007 resources, production and demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris

    2008-01-01

    Based on official information received from 40 countries, Uranium 2007 provides a comprehensive review of world uranium supply and demand as of 1st January 2007, as well as data on global uranium exploration, resources, production and reactor-related requirements. It provides substantive new information from major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2030 are also featured, along with an analysis of long-term uranium supply and demand issues. It finds that with rising demand and declining inventories, uranium prices have increased dramatically in recent years. As a result, the uranium industry is undergoing a significant revival, bringing to an end a period of over 20 years of underinvestment.

  11. Investigation of spatial distribution of fission-rate of natural uranium nuclei in the blanket of electronuclear setup 'Energy plus Transmutation' at Dubna Nuclotron proton beam at energy 1.5 GeV

    International Nuclear Information System (INIS)

    Hashemi-Nezhad, S.R.; Zhuk, I.V.; Kievets, M.; Krivopustov, M.I.; Sosnin, A.N.; Westmeier, W.; Brandt, R.

    2008-01-01

    The 'Energy plus Transmutation' experimental setup of the Veksler and Baldin Laboratory of High Energy Physics within the Joint Institute for Nuclear Research (JINR) in Dubna, Russia, is a lead target (with a diameter of 8.4 cm and length of 45.6 cm) surrounded by a uranium blanket (weight 206.4 kg of natural uranium). A polyethylene plus cadmium shield is placed around the target-blanket assembly to modify the spallation and fission neutron spectra in the system. The setup was irradiated by a proton beam of energy 1.5 GeV using the Nuclotron accelerator. The spatial distribution of natural uranium fission-rate in the assembly and fission-rate in the blanket was determined experimentally and compared with Monte Carlo predictions using the MCNPX 2.6C code. Besides neutron-induced fission the calculations include the Nat U(p,f), Nat U(π,f) as well as Nat U(γ,f) reactions. Good agreement between the experimental and calculation results was obtained. The possible sources of errors in the experiment and calculations are discussed in detail

  12. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  13. RSAC-6, Gamma doses, inhalation and ingestion doses, fission products inventory after fission products release

    International Nuclear Information System (INIS)

    Wenzel, Douglas R.; Schrader, Brad J.

    2007-01-01

    1 - Description of program or function: RSAC-6 is the latest version of the program RSAC (Radiological Safety Analysis Computer Program). It calculates the consequences of a release of radionuclides to the atmosphere. Using a personal computer, a user can generate a fission product inventory; decay and in-grow the inventory during transport through processes, facilities, and the environment; model the downwind dispersion of the activity; and calculate doses to downwind individuals. Internal dose from the inhalation and ingestion pathways is calculated. External dose from ground surface and plume gamma pathways is calculated. New and exciting updates to the program include the ability to evaluate a release to an enclosed room, resuspension of deposited activity and evaluation of a release up to 1 meter from the release point. Enhanced tools are included for dry deposition, building wake, occupancy factors, respirable fraction, AMAD adjustment, updated and enhanced radionuclide inventory and inclusion of the dose-conversion factors from FOR 11 and 12. 2 - Methods: RSAC6 calculates meteorological dispersion in the atmosphere using Gaussian plume diffusion for Pasquill-Gifford, Hilmeier-Gifford and Markee models. A unique capability is the ability to model Class F fumigation conditions, the meteorological condition that causes the highest ground level concentrations from an elevated release. Doses may be calculated for various pathways including inhalation, ingestion, ground surface, air immersion, water immersion pathways. Dose calculations may be made for either acute or chronic releases. Internal doses (inhalation and ingestion) are calculated using the ICRP-30 model with dose conversion factors from FOR 11. External factors are calculated using FOR 12. 3 - Unusual Features: RSAC6 calculates complete progeny in-growth and decay during all accident phases. The calculation of fission product inventories in particularly useful in the analysis of accidents where the

  14. Properties of Fission-Product decay heat from Minor-Actinide fissioning systems

    International Nuclear Information System (INIS)

    Oyamatsu, Kazuhiro; Mori, Hideki

    2000-01-01

    The aggregate Fission-Product (FP) decay heat after a pulse fission is examined for Minor Actinide (MA) fissiles 237 Np, 241 Am, 243 Am, 242 Cm and 244 Cm. We find that the MA decay heat is comparable but smaller than that of 235 U except for cooling times at about 10 8 s (approx. = 3 y). At these cooling times, either the β or γ component of the FP decay heat for these MA's is substantially larger than the one for 235 U. This difference is found to originate from the cumulative fission yield of 106 Ru (T 1/2 = 3.2x10 7 s). This nuclide is the parent of 106 Rh (T 1/2 = 29.8 s) which is the dominant source of the decay heat at 10 8 s (approx. = 3 y). The fission yield is nearly an increasing function of the fissile mass number so that the FP decay heat is the largest for 244 Cm among the MA's at the cooling time. (author)

  15. Clay minerals in sandstone uranium deposits: radwaste applications

    International Nuclear Information System (INIS)

    Brookins, D.G.

    1990-01-01

    Clay minerals play an important role in the genesis of uranium deposits in sandstones. They incorporate the rate earths (REE), U, Sb, Th, Cs, Rb, Sr, Y, Ba, and even small amounts of chalcophiles. These minerals possess analog elements for many of the radwaste fission products as well as actinides and some actinide daughters. In sandstone uranium deposits, clay minerals are also associated with sulfide minerals, usually pyrite, and organic carbonaceous matter. The primary clay minerals are usually smectites, illites, chlorites and mixed layer varieties. The integrity of these clay minerals is demonstrated by their retention of formational-mineralization ages determined by Rb-Sr geochronologic investigation of the Grants Mineral Belt of the United States. The importance of the clay minerals as analog for parts of the multi-barrier concept in radwaste disposal is their ability to impede water penetration into - and movement of key elements out of uranium rich zones. The clay minerals further sorb and in other ways incorporate into their structures many fission products and actinide analogs from man-made nuclear wastes. 22 refs., 1 fig., 3 tabs

  16. URANIUM 1991 resources, production and demand

    International Nuclear Information System (INIS)

    1992-01-01

    The uranium supply aspects of the nuclear fuel cycle have undergone considerable change during the last few years. Nuclear power generating capacity can continue to expand only if there is confidence in the final supply of uranium. This report presents governmental compilations of uranium resource and production data, as established in 1991. It also presents short-term projections of the nuclear industry future natural uranium requirements and reviews the status of uranium exploration, resources and production throughout the world. 10 refs., 14 figs., 15 tabs., 6 appendices

  17. Production and study of fission fragments, from Lohengrin to Alto; Production et etude des fragments de fission, de Lohengrin a Alto

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, F

    2005-06-15

    The study of nuclei far from stability is constitutive of the history of nuclear physics at its very beginning and has been making considerable great strides since then. The study of these nuclei give the opportunity to reach new information on the nuclear structure and thus to measure the solidity of our knowledge on nuclear matter and its validity when it is pushed to its limits. The reaction selected for the production of exotic nuclei in the framework of the PARRNe program is the fission of uranium 238. The nuclei produced have an intermediate mass and are very rich in neutrons. The technique to recover them in order to accelerate them is the thick target method called also the Isol technique. The installation of the ancient Lep injector at the Tandem line in Orsay (IPN) is expected to increase by a factor 100 the production rate of exotic nuclei in the PARRNe program, it is the Alto project. The work presented here concerns studies carried out at the Lohengrin spectrometer installed at the ILL in Grenoble, and at the Tandem installation in Orsay. This document is divided into 4 parts: 1) in flight techniques at Lohengrin, 2) the Isol technique, 3) magic numbers in the domain N=50, and 4) the Alto project.

  18. Fission product behavior in the Molten Salt Reactor Experiment

    International Nuclear Information System (INIS)

    Compere, E.L.; Kirslis, S.S.; Bohlmann, E.G.; Blankenship, F.F.; Grimes, W.R.

    1975-10-01

    Essentially all the fission product data for numerous and varied samples taken during operation of the Molten Salt Reactor Experiment or as part of the examination of specimens removed after particular phases of operation are reported, together with the appropriate inventory or other basis of comparison, and relevant reactor parameters and conditions. Fission product behavior fell into distinct chemical groups. Evidence for fission product behavior during operation over a period of 26 months with 235 U fuel (more than 9000 effective full-power hours) was consistent with behavior during operation using 233 U fuel over a period of about 15 months (more than 5100 effective full-power hours)

  19. BIG-10 fission product generation and reaction rates

    International Nuclear Information System (INIS)

    Rogers, J.W.

    1976-01-01

    Fission product generation rates for high quality fission foils and reaction rates of nonfission foils have been measured by gamma ray activation analyses. These foils were irradiated in the BIG-10 facility and the activities were measured by NaI counting techniques

  20. Evaluation of six decontamination processes on actinide and fission product contamination

    International Nuclear Information System (INIS)

    Conner, C.; Chamberlain, D.B.; Chen, L.

    1995-01-01

    In-situ decontamination technologies were evaluated for their ability to: (1) reduce equipment contamination levels to allow either free release of the equipment or land disposal, (2) minimize residues generated by decontamination, and (3) generate residues that are compatible with existing disposal technologies. Six decontamination processes were selected. tested and compared to 4M nitric acid, a traditional decontamination agent: fluoroboric acid (HBF 4 ), nitric plus hydrofluoric acid, alkaline persulfate followed by citric acid plus oxalic acid, silver(II) plus sodium persulfate plus nitric acid, oxalic acid plus hydrogen peroxide plus hydrofluoric acid, and electropolishing using nitric acid electrolyte. The effectiveness of these solutions was tested using prepared 304 stainless steel couponds contaminated with uranium, plutonium, americium, or fission products. The decontamination factor for each of the solutions and tests conditions were determined; the results of these experiments are presented

  1. Extraction of hexavalent uranium, tetravalent plutonium and fission products by N, N'-tetraalkyldiamides

    International Nuclear Information System (INIS)

    Charbonnel, M.C.

    1988-10-01

    This study deals with the extractive properties of N, N'-tetraalkylglutaramides of generic formula R 2 NC(0)(CH 2 ) 3 C(0)NR 2 . These molecules were considered as alternative extractants to tributylphosphate in nuclear fuels reprocessing. They are selective extractants of uranium and plutonium as far as trivalent actinides and lanthanides remain in aqueous nitric solutions. Distribution ratios measurements and F.T. Infra-Red investigations show that HN0 3 extraction takes place via the formation of the following species: 2L.HN0 3 , L.HN0 3 and L.2HN0 3 in the organic phase (L: glutaramide). Distribution ratios of actinide ions followed by UV-visible spectroscopy and Infra-Red investigations agree with formation of the following neutral organometallic complexes in low nitric acidity conditions: L.U0 2 (N0 3 ) 2 and L.Pu(N0 3 ) 4 and the anionic species at higher acidities: L.U0 2 (N0 3 ) 3 H and L.Pu(N0 3 ) 6 H 2 . Interactions occur through neutral complexes and free molecules of diamides which explain the non ideality of the organic phase. Degradation products of these molecules don't seem to alter the extractive properties of these extractants towards uranium and plutonium [fr

  2. Application of fission track technique for estimation of uranium concentration in drinking waters of Punjab

    International Nuclear Information System (INIS)

    Prabhu, S.P.; Sawant, P.D.; Raj, S.S.; Kumar, A.; Sarkar, P.K.; Tripathi, R.M.

    2012-01-01

    Drinking water samples were collected from four different districts, namely Bhatinda, Mansa, Faridkot and Firozpur, of Punjab for ascertaining the U(nat.) concentrations. All samples were preserved, processed and analyzed by laser fluorimetry (LF). To ensure accuracy of the data obtained by LF, few samples (10 nos) from each district were analyzed by alpha spectrometry as well as by fission track analysis (FTA) technique. For FTA technique few μl of water sample was transferred to polythene tube, lexan detector was immersed in it and the other end of the tube was also heat-sealed. Two samples and one uranium standard were irradiated in DHRUVA reactor. Irradiated detectors were chemically etched and tracks counted using an optical microscope. Uranium concentrations in samples ranged from 3.2 to 60.5 ppb and were comparable with those observed by LF. (author)

  3. Human Resource Development for Uranium Production Cycle

    International Nuclear Information System (INIS)

    Ganguly, C.

    2014-01-01

    Concluding Remarks & Suggestions: • HRD will be one of the major challenges in the expanding nuclear power program in countries like China and India. • China and India get uranium raw material from domestic mines and international market. In addition, China has overseas uranium property. India is also exploring the possibility of overseas Joint Venture and uranium properties. For uranium production cycle there is a need for trained geologist, mining engineers, chemical and mechanical engineers. • There is a need for introducing specialization course on “uranium production cycle” at post graduate levels in government and private universities. Overseas Utilities and private firms in India engaged in nuclear power and fuel cycle activities may like to sponsor MTech students with assurance of employment after the successful completion of the course. • The IAEA may consider to extend Technical Assistance to universities in HRD in nuclear power and fuel cycle in general and uranium production cycle in particular - IAEA workshops, with participation of international experts, on uranium geology, mining, milling and safety and best practices in uranium production cycle will be of great help. • The IAEA – UPSAT could play an important role in HRD in uranium production cycle

  4. User's manual for computer code RIBD-II, a fission product inventory code

    International Nuclear Information System (INIS)

    Marr, D.R.

    1975-01-01

    The computer code RIBD-II is used to calculate inventories, activities, decay powers, and energy releases for the fission products generated in a fuel irradiation. Changes from the earlier RIBD code are: the expansion to include up to 850 fission product isotopes, input in the user-oriented NAMELIST format, and run-time choice of fuels from an extensively enlarged library of nuclear data. The library that is included in the code package contains yield data for 818 fission product isotopes for each of fourteen different fissionable isotopes, together with fission product transmutation cross sections for fast and thermal systems. Calculational algorithms are little changed from those in RIBD. (U.S.)

  5. Trapping technology for gaseous fission products from voloxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jin Myeong; Park, J. J.; Park, G. I.; Jung, I. H.; Lee, H. H.; Kim, G. H.; Yang, M. S

    2005-05-15

    The objective of this report is to review the different technologies for trapping the gaseous wastes containing Cs, Ru, Tc, {sup 14}C, Kr, Xe, I and {sup 3}H from a voloxidation process. Based on literature reviews and KAERI's experimental results on the gaseous fission products trapping, appropriate trapping method for each fission product has been selected considering process reliability, simplicity, decontamination factor, availability, and disposal. Specifically, the most promising trapping method for each fission product has been proposed for the development of the INL off-gas trapping system. A fly ash filter is proposed as a trapping media for a cesium trapping unit. In addition, a calcium filter is proposed as a trapping media for ruthenium, technetium, and {sup 14}C trapping unit. In case of I trapping unit, AgX is proposed. For Kr and Xe, adsorption on solid is proposed. SDBC (Styrene Divinyl Benzene Copolymer) is also proposed as a conversion media to HTO for {sup 3}H. This report will be used as a useful means for analyzing the known trapping technologies and help selecting the appropriate trapping methods for trapping volatile and semi-volatile fission products, long-lived fission products, and major heat sources generated from a voloxidation process. It can also be used to design an off-gas treatment system.

  6. Angular momentum distribution of primary fission fragments by measurement of the relative yield of isomeric fission products

    International Nuclear Information System (INIS)

    Dornhoefer, H.

    1980-01-01

    The fission products 132 I and 136 I produced in the fission reactions 238 U(α,f) and 238 U(d,f) were spectroscoped using a gas transport system. Thereby was taken advantage of the fact that at the transport with pure helium without aerosols only iodine activities were collected in a membrane filter. The relative independent yields of the isomeric fission products of 132 I and 136 I were determined for different excitation energies. Thereby was taken advantage of the fact that the transport yield of the gas transport system for 136 I directly produced from the fission was greater than for iodine indirectly produced by β-decay. (orig./HSI) [de

  7. Uranium fission track length distribution modelling for retracing chronothermometrical history of minerals

    International Nuclear Information System (INIS)

    Rebetez, M.

    1987-01-01

    Spontaneous fission of uranium 238 isotope contained in certain minerals creates damage zones called latent tracks, that can be etched chemically. The observation of these etched tracks and the measurement of their characteristics using an optical microscope are the basis of several applications in the domain of the earth sciences. First, the determination of their densities permits dating a mineral and establishing uranium mapping of rocks. Second, the measurement of their lengths can be a good source of information for retracing the thermal and tectonic history of the sample. The study of the partial annealing of tracks in apatite appears to be the ideal indicator for the evaluation of petroleum potential of a sedimentary basin. To allow the development of this application, it is necessary to devise a theoretical model of track length distributions. The model which is proposed takes into account the most realistic hypotheses concerning registration, etching and observation of tracks. The characteristics of surface tracks (projected lengths, depths, inclination angles, real lengths) and confined tracks (Track IN Track and Track IN Cleavage) are calculated. Surface tracks and confined tracks are perfectly complementary for chrono-thermometric interpretation of complex geological histories. The method is applied to the case of two samples with different tectonic history, issued from the cretaceous alcalin magmatism from the Pyrenees (Bilbao, Spain). A graphic method of distribution deconvolution is proposed. Finally, the uranium migration, depending on the hydrothermal alteration, is studied on the granite from Auriat (France) [fr

  8. The uranium resources and production of Namibia

    International Nuclear Information System (INIS)

    Palfi, A.G.

    1997-01-01

    The promulgation of the Minerals (Prospecting and Mining) Act, 1992, on 1 April 1994 and the simultaneous repeal of restrictive South African legislation on reporting uranium exploration and production results, allowed the Namibian Government for the first time to present information for publication of the report ''Uranium 1995 - Resource, Production and Demand'', by the OECD Nuclear Energy Agency and the IAEA. Namibia, one of the youngest independent nations in Africa, has a large number of uranium occurrences and deposits in several geological environments. The total estimated uranium resource amounts to about 299 thousand tonnes recoverable uranium at a cost of less than US$ 130/kg U, within the known conventional resources category. The most prominent geological type of these is the unique, granite-related uranium occurrences located in the central part of the Namib Desert. Permo-Triassic age Karoo sandstone-hosted uranium deposits were subject to only limited exploration due to the down-turn of uranium prices in the latter part of 1980s, despite they very encouraging exploration results. As only limited Karoo sandstone-covered areas were tested there is still great potential for further discoveries. The planned output of Roessing Uranium Mine at 40,000 tonnes of ore per day which results in an annual production of 4536 tonnes of uranium oxide, was achieved in 1979. In case of improved uranium market conditions, Namibia is in a strong position to increase uranium production and open up new production centres to strengthen the country's position as an important uranium producer in the world. 6 figs, 2 tabs

  9. Structures and properties of (U,Pu)O{sub 2} containing non-active fission products. A simulation of irradiated nuclear fuel; Structure et proprietes de (U, Pu)O{sub 2} contenant des produits de fission sous forme inactive. Une simulation de combustible nucleaire irradie

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, F [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-07-01

    We have made oxides with the same uranium and plutonium content, the same stoichiometry and the same fission product content as an oxide fuel (U{sub 0,8}PuO{sub 2})O{sub 1,96} after 2 per cent burn up. We have calculated the stoichiometry changes due to irradiation and checked the calculation by X rays parameters measurements. We have calculated and measured the contraction of the oxide lattice due to fission products in solid solution. Microprobe analysis of precipitates have been made and have lead to the identification of non metallic barium containing compounds and have shown the particular behaviour of molybdenum. Some physical properties have been measured especially the electrical resistivity, the thermal diffusivity and the vapour pressure of zirconium in solid solution. (author) [French] Nous avons fabrique des oxydes dont la composition en uranium et plutonium, la stoechiometrie et la teneur en produit de fission, sont identiques a celles d'un oxyde (U{sub 0,8}PuO{sub 2})O{sub 1,96} ayant subi 2 pour cent de combustion. Nous avons calcule les changements de stoechiometrie entraines par l'irradiation et controle ces calculs par des mesures de parametre. Nous avons calcule et mesure la contraction du reseau due aux produits de fissions solubles dans la matrice. Des analyses a la microsonde des precipites de produits de fission insolubles ont ete faites et ont conduit a l'identification de composes non metalliques contenant du baryum et a la mise en evidence du role particulier du molybdene. Certaines proprietes physiques ont ete mesurees sur ces composes, en particulier la resistivite electrique, la diffusivite thermique et la tension de vapeur du zirconium dissout dans la matrice. (auteur)

  10. An Evaluation of a Fission Product Inventory for CANDU Fuels

    International Nuclear Information System (INIS)

    Jung, Jong Yeob; Park, Joo Hwan

    2007-01-01

    Fission products are released by two processes when a single channel accident occurs. One is a 'prompt release' and the other is a 'delayed release'. Prompt release assumes that the gap inventory of the fuel elements is released by a fuel element failure at the time of an accident. Delayed release assumes that the inventories within the grain or at the grain boundary are released after a accident due to a diffusion through grains, an oxidation of the fuel and an interaction between the fuel and the Zircaloy sheath. Therefore, the calculation of a fission product inventory and its distribution in a fuel during a normal operating is the starting point for the assessment of a fission product release for single channel accidents. In this report, the fission product inventories and their distributions within s fuel under a normal operating condition are evaluated for three types of CANDU fuels such as the 37 element fuel, CANFLEX-NU and CANFLEX-RU fuel bundles in the 'limiting channel'. To accomplish the above mentioned purposes, the basic power histories for each type of CANDU fuel were produced and the fission product inventories were calculated by using the ELESTRES code

  11. Fission product released experiment of coated fuel particles

    Energy Technology Data Exchange (ETDEWEB)

    Shijiang, Xu; Bing, Yang; Chunhe, Tang; Junguo, Zhu; Jintao, Huang; Binzhong, Zhang [Inst. of Nucl. Energy Technology, Tsinghua Univ., Beijing (China); Jinghan, Luo [Inst. of Atomic Energy, Beijing (China)

    1992-01-15

    Four samples of coated fuel particles were irradiated in the Heavy-Water Research Reactor of the Institute of Atomic Energy. Each of them was divided into two groups and irradiated to the burn up of 0.394% fima and 0.788% fima in two static capsules, respectively. After irradiation and cooling, post irradiation annealing experiment was carried out, the release ratios of the fission product {sup 133}Xe and {sup 131}I were measured, they are in the order of 10{sup -6}{approx}10{sup -7}. The fission product release ratio of naked kernel was also measured under the same conditions as for the coated fuel particles, the ratio of the fission product release of the coated fuel particles and of the naked kernel was in the order of 10{sup -5}{approx}10{sup -4}.

  12. Process for continuous production of metallic uranium and uranium alloys

    Science.gov (United States)

    Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  13. Process for continuous production of metallic uranium and uranium alloys

    Science.gov (United States)

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  14. Fission product yield evaluation for the USA evaluated nuclear data files

    International Nuclear Information System (INIS)

    Rider, B.F.; England, T.R.

    1994-01-01

    An evaluated set of fission product yields for use in calculation of decay heat curves with improved accuracy has been prepared. These evaluated yields are based on all known experimental data through 1992. Unmeasured fission product yields are calculated from charge distribution, pairing effects, and isomeric state models developed at Los Alamos National Laboratory. The current evaluation has been distributed as the ENDF/B-VI fission product yield data set

  15. Detector for gaseous nuclear fission products

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro; Kubo, Katsumi.

    1979-01-01

    Purpose: To facilitate the fabrication of a precipitator type detector, as well as improve the reliability. Constitution: Gas to be measured flown in an anode is stored in a gas processing system. By applying a voltage between the anode and the cathode, if positively charged Rb or Cs which is the daughter products of gaseous fission products are present in the gas to be measured, the daughter products are successively deposited electrostatically to the cathode. The daughter products issue beta-rays and gamma-rays to ionize the argon gas at the anode, whereby ionizing current flows between both of the electrodes. Pulses are generated from the ionizing current, and presence or absence, as well as the amount of the gaseous fission products are determined by the value recorded for the number of the pulses to thereby detect failures in the nuclear fuel elements. After the completion of the detection, the inside of the anode is evacuated and the cathode is heated to evaporate and discharge the daughter products externally. This eliminates the effects of the former detection to the succeeding detection. (Moriyama, K.)

  16. Determination of fission product and heavy metals inventories in FTE-4 fuel rods by a grind-burn-leach flowsheet

    International Nuclear Information System (INIS)

    Fitzgerald, C.L.; Vaughen, V.C.A.; Lamb, C.E.

    1977-07-01

    Experiments using High-Temperature Gas-Cooled Reactor (HTGR) fuel material, TRISO-coated (2.75 Th/U)C 2 --TRISO-coated ThC 2 and TRISO-coated UO 2 --BISO-coated ThO 2 , were performed in Building 4507 (the High-Level Chemical Development Facility) to determine the inventory and transport behavior of fission products and heavy metals from a grind-burn-leach process flowsheet. In addition, values calculated by the ORNL Isotope Generation and Depletion Code (ORIGEN, a computer program used for predicting quantities of activation products, actinides, and fission products from irradiation data and nuclear data libraries) are compared with values derived by chemical analyses (CA) and those measured by a gamma-scan nondestructive analytical (NDA) technique. Reasonable agreement was obtained between ORIGEN and NDA results for one of the tests, but the values obtained by chemical analysis were lower than either of the two other sets of values. With the exception of 234 U, isotopic uranium values determined by chemical analysis (mass spectrometry) agreed within 15 percent of the ORIGEN prediction

  17. ENDF/B-5 Fission Products Library. Rev. 2

    International Nuclear Information System (INIS)

    Schwerer, O.; Pronyaev, V.G.; Lemmel, H.D.

    1984-07-01

    This document summarizes contents and documentation of the 1984 version of the Fission Products Nuclear Data File of the ENDF/B-5 Library (Rev. 2) maintained by the National Nuclear Data Center (NNDC) at the Brookhaven National Laboratory, USA. This file contains numerical neutron reaction data and decay data for 877 fission product nuclides. The entire file or selective retrievals from it can be obtained on magnetic tape from the IAEA Nuclear Data Section. (author)

  18. Application of dynamic pseudo fission products and actinides for accurate burnup calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E.; Leege, P.F.A. de [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.; Kloosterman, J.L.

    1996-09-01

    The introduction of pseudo fission products for accurate fine-group spectrum calculations during burnup is discussed. The calculation of the density of the pseudo nuclides is done before each spectrum calculation from the actual densities and their cross sections of all nuclides to be lumped into a pseudo fission product. As there are also many actinides formed in the fuel during its life cycle, a pseudo actinide with fission cross section is also introduced. From a realistic burnup calculation it is demonstrated that only a few fission products and actinides need to be included explicitly in a spectrum calculation. All other fission products and actinides can be accurately represented in the pseudo nuclides. (author)

  19. Fission fragment driven neutron source

    Science.gov (United States)

    Miller, Lowell G.; Young, Robert C.; Brugger, Robert M.

    1976-01-01

    Fissionable uranium formed into a foil is bombarded with thermal neutrons in the presence of deuterium-tritium gas. The resulting fission fragments impart energy to accelerate deuterium and tritium particles which in turn provide approximately 14 MeV neutrons by the reactions t(d,n).sup.4 He and d(t,n).sup.4 He.

  20. Mass yields in the reaction 235U(nsub(th),f) as a function of the kinetic energy and ion charge of the fission products

    International Nuclear Information System (INIS)

    Wohlfarth, H.

    1977-01-01

    In this paper measurements of mass- and ioncharge distributions of the lower mass 235 U(nsub(th),f)-fission products, performed with the 'Lohengrin' recoil spectrometer of the Institut Lane-Langevin at Grenoble, are reported. The uranium targets used led to an energy loss of the fission fragments of only 1 to 2 MeV, so their energy was well defined. The mass abundance have been measured for the following fragment energies: E = 83.6, 88.5, 93.4, 98.3, 103.1, 108.0, 112.0 MeV. The energy integrated mass distributions were compared with recent data collections of fission yields. For nearly all masses the abundancies agree well within the limits of error. So these maesurements can be used as an independent source of data. (orig./RW) [de

  1. Study of the short-lived fission products. Separation of iodine and xenon fission radionuclides; Estudio de los productos de fision de periodo corto. Separacion de los radionuclidos de fision del yodo y del xenon

    Energy Technology Data Exchange (ETDEWEB)

    Barrachina, M; Villar, M A

    1965-07-01

    The separation by distillation in a sulfuric acid or phosphoric acid-hydrogen peroxide medium of the iodine isotopes (8 day iodine-131, 2,3 hour iodine-132 21 hour iodine-133, 53 minute iodine-134 and 6,7 hour iodine-135) present in a uranium sample after different irradiation and cooling times is here described. It is also reported the use of active charcoal columns for the retention of xenon isotopes (5,27 days xenon-133 and 9,2 hours xenon-135) either released during the dissolution of the uranium irradiated samples or generated along the fission isobaric chains in the solutions of distillated iodine. In both cases the radiochemical purity of the separated products is established by gamma spectrometry. (Author) 15 refs.

  2. Transmutation of uranium and thorium in the particle field of the Quinta sub-critical assembly

    Science.gov (United States)

    Hashemi-Nezhad, S. R.; Asquith, N. L.; Voronko, V. A.; Sotnikov, V. V.; Zhadan, Alina; Zhuk, I. V.; Potapenko, A.; Husak, Krystsina; Chilap, V.; Adam, J.; Baldin, A.; Berlev, A.; Furman, W.; Kadykov, M.; Khushvaktov, J.; Kudashkin, I.; Mar'in, I.; Paraipan, M.; Pronskih, V.; Solnyshkin, A.; Tyutyunnikov, S.

    2018-03-01

    The fission rates of natural uranium and thorium were measured in the particle field of Quinta, a 512 kg natural uranium target-blanket sub-critical assembly. The Quinta assembly was irradiated with deuterons of energy 4 GeV from the Nuclotron accelerator of the Joint Institute for Nuclear Research (JINR), Dubna, Russia. Fission rates of uranium and thorium were measured using Gamma spectroscopy and fission track techniques. The production rate of 239Np was also measured. The obtained experimental results were compared with Monte Carlo predictions using the MCNPX 2.7 code employing the physics and fission-evaporation models of INCL4-ABLA, CEM03.03 and LAQGSM03.03. Some of the neutronic characteristics of the Quinta are compared with the "Energy plus Transmutation (EpT)" subcritical assembly, which is composed of a lead target and natU blanket. This comparison clearly demonstrates the importance of target material, neutron moderator and reflector types on the performance of a spallation neutron driven subcritical system. As the dimensions of the Quinta are very close to those of an optimal multi-rod-uranium target, the experimental and Monte Carlo calculation results presented in this paper provide insights on the particle field within a uranium target as well as in Accelerator Driven Systems in general.

  3. Immobilization of fission products in phosphate ceramic waste forms

    International Nuclear Information System (INIS)

    Singh, D.

    1996-01-01

    The goal of this project is to develop and demonstrate the feasibility of a novel low-temperature solidification/stabilization (S/S) technology for immobilizing waste streams containing fission products such as cesium, strontium, and technetium in a chemically bonded phosphate ceramic. This technology can immobilize partitioned tank wastes and decontaminate waste streams containing volatile fission products

  4. Uranium 2011: Resources, Production and Demand

    International Nuclear Information System (INIS)

    2012-01-01

    In the wake of the Fukushima Daiichi nuclear power plant accident, questions are being raised about the future of the uranium market, including as regards the number of reactors expected to be built in the coming years, the amount of uranium required to meet forward demand, the adequacy of identified uranium resources to meet that demand and the ability of the sector to meet reactor requirements in a challenging investment climate. This 24. edition of the 'Red Book', a recognised world reference on uranium jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, provides analyses and information from 42 producing and consuming countries in order to address these and other questions. It offers a comprehensive review of world uranium supply and demand as well as data on global uranium exploration, resources, production and reactor-related requirements. It also provides substantive new information on established uranium production centres around the world and in countries developing production centres for the first time. Projections of nuclear generating capacity and reactor-related requirements through 2035, incorporating policy changes following the Fukushima accident, are also featured, along with an analysis of long-term uranium supply and demand issues

  5. Uranium production

    International Nuclear Information System (INIS)

    Spriggs, M.

    1980-01-01

    The balance between uranium supply and demand is examined. Should new resources become necessary, some unconventional sources which could be considered include low-grade extensions to conventional deposits, certain types of intrusive rock, tuffs, and lake and sea-bed sediments. In addition there are large but very low grade deposits in carbonaceous shales, granites, and seawater. The possibility of recovery is discussed. Programmes of research into the feasibility of extraction of uranium from seawater, as a by-product from phosphoric acid production, and from copper leach solutions, are briefly discussed. Other possible sources are coal, old mine dumps and tailings, the latter being successfully exploited commercially in South Africa. The greatest constraints on increased development of U from lower grade sources are economics and environmental impact. It is concluded that apart from U as a by-product from phosphate, other sources are unlikely to contribute much to world requirements in the foreseeable future. (U.K.)

  6. Utilization of fast reactor excess neutrons for burning long-lived fission products

    International Nuclear Information System (INIS)

    Kawashima, K.; Kobayashi, K.; Kaneto, K.

    1995-01-01

    An evaluation is made on a large MOX fuel fast reactor's capability of burning long lived fission product Tc-99, which dominates the long term radiotoxicity of the high level radioactive waste. The excess neutrons generated in the fast reactor core are utilized to transmute Tc-99 to stable isotopes due to neutron capture reaction. The fission product target assemblies which consist of Tc-99 are charged to the reactor core periphery. The fission product target neutrons are moderated to a great deal to pursue the possibility of enhancing the transmutation rate. Any impacts of loading the fission product target assemblies on the core nuclear performances are assessed. A long term Tc-99 accumulation scenario is considered in the mix of fission product burner fast reactor and non-burner LWRs. (author)

  7. FREVAP-6, Metal Fission Products Release from HTGR Fuel Elements

    International Nuclear Information System (INIS)

    Pierce, V.H.

    2005-01-01

    1 - Description of problem or function: The FREVAP type of code for estimating the release of longer-lived metallic fission products from HTGR fuel elements has been developed to take into account the combined effects of the retention of metallic fission products by fuel particles and the rather strong absorption of these fission products by the graphite of the fuel elements. Release calculations are made on the basis that the loss of fission product nuclides such as strontium, cesium, and barium is determined by their evaporation from the graphite surfaces and their transpiration induced by the flowing helium coolant. The code is devised so that changes of fission rate (fuel element power), fuel temperature, and graphite temperature may be incorporated into the calculation. Temperature is quite important in determining release because, in general, both release from fuel particles and loss by evaporation (transpiration) vary exponentially with the reciprocal of the absolute temperature. NESC0301/02: This version differs from the previous one in the following points: The source and output files were converted from BCD to ASCII coding. 2 - Method of solution: A problem is defined as having a one-dimensional segment made up of three parts - (1) the fission product source (fuel particles) in series with, (2) a non-source and absorption part (element graphite) and (3) a surface for evaporation to the coolant (graphite-helium interface). More than one segment may be connected (possibly segments stacked axially) by way of the coolant. At any given segment, a continuity equation is solved assuming equilibrium between the source term, absorption term, evaporation at coolant interface and the partial pressure of the fission product isotope in the coolant. 3 - Restrictions on the complexity of the problem - Maxima of: 5 isotopes; 10 time intervals for time-dependent variable; 49 segments (times number of isotopes); 5 different output print time-steps

  8. Uranium production from low grade Swedish shale

    International Nuclear Information System (INIS)

    Carlsson, O.

    1977-01-01

    In view of the present nuclear programmes a steep increase in uranium demand is foreseen which will pose serious problems for the uranium industry. The annual additions to uranium ore reserves must almost triple within the next 15 years in order to support the required production rates. Although there are good prospects for the discovery of further conventional deposits of uranium there is a growing interest in low grade uranium deposits. Large quantities of uranium exist in black shales, phosphates, granites, sea water and other unconventional sources. There are however factors which limit the utilization of these low grade materials. These factors include the extraction costs, the environmental constrains on mining and milling of huge amounts of ore, the development of technologies for the beneficiation of uranium and, in the case of very low grade materials, the energy balance. The availability of by-product uranium is limited by the production rate of the main product. The limitations differ very much according to types of ores, mining and milling methods and the surroundings. As an illustration a description is given of the Swedish Ranstad uranium shale project, its potential, constraints and technical solutions

  9. Imprints left by natural radioactivity in geological materials: uranium fission tracks and thermoluminescence applications in earth sciences

    International Nuclear Information System (INIS)

    Broquet, P.; Chambaudet, A.; Rebetez, M.; Charlet, J.M.

    1994-01-01

    In a rock, all minerals which contain uranium are host to a number of spontaneous fission phenomena forming a single damaged area called a ''latent track'', observations of which may lead to dating, uranium mapping and finding paleo-geo-thermometers (thermal history, used in oil exploration). The radioactive elements during the decay process release energy which is trapped as electrons into the physical or chemical defects of the crystalline lattice; this energy can be later released by heating the mineral (thermic stimulated luminescence); the thermoluminescence is characterized by a glow which spectrum constitutes a typical feature of the mineral, its crystallization conditions and the subsequent evolution of the material. Natural and induced glow curve may be produced. 6 figs., 52 refs

  10. Spray removal of fission products in PWR containments

    International Nuclear Information System (INIS)

    Grist, D.R.

    1982-11-01

    Models and parameters for assessing the rate and extent of removal of various fission product species are described. A range of droplet sizes and of spray additive options is considered and removal of vapour phase inorganic iodine species, of organic iodides and of aerosols containing fission products is discussed. Aerosol removal is assessed in terms of contributing removal mechanisms and the removal rate modelled as a function of the radius of the aerosol particulate species. (author)

  11. Uranium resources, production and demand

    International Nuclear Information System (INIS)

    1988-01-01

    Nuclear power-generating capacity will continue to expand, albeit at a slower pace than during the past fifteen years. This expansion must be matched by an adequately increasing supply of uranium. This report compares uranium supply and demand data in free market countries with the nuclear industry's natural uranium requirements up to the year 2000. It also reviews the status of uranium exploration, resources and production in 46 countries

  12. Proposal to represent neutron absorption by fission products by a single pseudo-fragment

    International Nuclear Information System (INIS)

    Tsibulya, A.M.; Kochetkov, A.L.; Kravchenko, I.V.; Nikolaev, M.N.

    1991-01-01

    The concentration of fission products during reactor operation is analyzed. The dependence of a composite fission product capture cross-section as a function of time and on the nature of the A of the fissile nuclide are investigated, and the neutron radiative capture in fission products of a thermal reactor is evaluated. It is concluded that neutron absorption by fission products can be described by pseudo-fragments. (author). 18 refs, 2 figs, 3 tabs

  13. Fission product model for lattice calculation of high conversion boiling water reactor

    International Nuclear Information System (INIS)

    Iijima, S.; Yoshida, T.; Yamamoto, T.

    1988-01-01

    A high precision fission product model for boiling water reactor (BWR) lattice calculation was developed, which consists of 45 nuclides to be treated explicitly and one nonsaturating pseudo nuclide. This model is applied to a high conversion BWR lattice calculation code. From a study based on a three-energy-group calculation of fission product poisoning due to full fission products and explicitly treated nuclides, the multigroup capture cross sections and the effective fission yields of the pseudo nuclide are determined, which do not depend on fuel types or reactor operating conditions for a good approximation. Apart from nuclear data uncertainties, the model and the derived pseudo nuclide constants would predict the fission product reactivity within an error of 0.1% Δk at high burnup

  14. Yields of products from thermal-neutron induced fission of 235U

    International Nuclear Information System (INIS)

    Rudstam, G.; Aagaard, P.; Zwicky, H.U.

    1985-01-01

    Methods for fission yield determinations at an ISOL-system connected to a nuclear reactor have been developed. The present report contains detailed descriptions both of the experimental techniques and of the method used to correct the experimental yields for the decay of short-lived nuclear species in the delay between production and measurement. The methods have been applied to the determination of the fission yields of 40 fission products including 2 isometric pairs in the light mass region and those of 99 fission products including 25 isometric pairs or triplets in the heavy mass region. For 64 cases this is the first determination published. (author)

  15. Chemistry of fission product iodine under nuclear reactor accident conditions

    International Nuclear Information System (INIS)

    Malinauskas, A.P.; Bell, J.T.

    1986-01-01

    The radioisotopes of iodine are generally acknowledged to be the species whose release into the biosphere as a result of a nuclear reactor accident is of the greatest concern. In the course of its release, the fission product is subjected to differing chemical environments; these can alter the physicochemical form of the fission product and thus modify the manner and extent to which release occurs. Both the chemical environments which are characteristic of reactor accidents and their effect in determining physical and chemical form of fission product iodine have been studied extensively, and are reviewed in this report. 76 refs

  16. Methodology and application of the WIMS-D4M fission product data

    International Nuclear Information System (INIS)

    Mo, S.C.

    1995-01-01

    The WIMS-D4 code has been modified (WIMS-D4m) to generate burn-up dependent microscopic cross sections for use in full core depletion calculations. The calculation of neutron absorption by fission products can be obtained from a reduced fission-product-chain model that includes the 135 Xe and 149 Sm chains, and a lumped fission product to account for the absorption by fission products not explicitly treated. Burn-up calculations were performed for the ANS MEU core using WIMS and EPRI-CELL cross sections. The calculated eigenvalues and material loadings are in good agreements

  17. Simulation of COMEDIE Fission Product Plateout Experiment Using GAMMA-FP

    International Nuclear Information System (INIS)

    Tak, Nam-il; Yoon, Churl

    2014-01-01

    FThis phenomenon is particularly important under a VHTR design with vented low pressure confinement (VLPC), because the vent allows the prompt release of fission products accumulated within the primary circuit to environment during an initial blow-down phase after pipe break accidents. In order to analyze the fission product plateout, an numerical model was developed by Yoo et al. and incorporated into the GAMMA-FP code in the past. The GAMMA-FP model was validated against two experiment data, i.e., VAMPYR-1 and OGL, during the development phase. One of the well-known experiments for fission product plateout is the COMEDIE experiment. In this work, the COMEDIE experiment has been simulated using the GAMMA-FP code to investigate the reliability and applicability of the plateout model of GAMMA-FP. The COMEDIE experiment for fission product plateout was simulated using the GAMMA-FP code in this work. A good agreement was achieved between the measured and predicted plateout activities. The existing solution scheme was modified to allow larger time step size for fission product analysis in order to speed-up the computational time. Nevertheless, the modification of the existing numerical model of GAMMA-FP is necessary when a simulation capability of a long duration of plateout period (e.g., 60 years) is targeted

  18. The universal library of fission products and delayed neutron group yields

    International Nuclear Information System (INIS)

    Koldobskiy, A.B.; Zhivun, V.M.

    1997-01-01

    A new fission product yield library based on the Semiempirical method for the estimation of their mass and charge distribution is described. Contrary to other compilations, this library can be used with all possible excitation energies of fissionable actinides. The library of delayed neutron group yields, based on the fission product yield compilation, is described as well. (author). 15 refs, 4 tabs

  19. Role of organic matter in the Proterozoic Oklo natural fission reactors, Gabon, Africa

    International Nuclear Information System (INIS)

    Nagy, B.; Rigali, M.J.; Gauthier-Lafaye, F.; Holliger, P.; Mossman, D.J.; Leventhal, J.S.

    1993-01-01

    Of the sixteen known Oklo and the Bangombe natural fission reactors (hydrothermally altered elastic sedimentary rocks that contain abundant uraninite and authigenic clay minerals), reactors 1 to 6 at Oklo contain only traces of organic matter, but the others are rich in organic substances. Reactors 7 to 9 are the subjects of this study. These organic-rich reactors may serve as time-tested analogues for anthropogenic nuclear-waste containment strategies. Organic matter helped to concentrate quantities of uranium sufficient to initiate the nuclear chain reactions. Liquid bitumen was generated from organic matter by hydrothermal reactions during nuclear criticality. The bitumen soon became a solid, consisting of polycyclic aromatic hydrocarbons and an intimate mixture of cryptocrystalline graphite, which enclosed and immobilized uraninite and the fission-generated isotopes entrapped in uraninite. This mechanism prevented major loss of uranium and fission products from the natural nuclear reactors for 1.2 b.y. 24 refs., 4 figs

  20. Control of a laser inertial confinement fusion-fission power plant

    Science.gov (United States)

    Moses, Edward I.; Latkowski, Jeffery F.; Kramer, Kevin J.

    2015-10-27

    A laser inertial-confinement fusion-fission energy power plant is described. The fusion-fission hybrid system uses inertial confinement fusion to produce neutrons from a fusion reaction of deuterium and tritium. The fusion neutrons drive a sub-critical blanket of fissile or fertile fuel. A coolant circulated through the fuel extracts heat from the fuel that is used to generate electricity. The inertial confinement fusion reaction can be implemented using central hot spot or fast ignition fusion, and direct or indirect drive. The fusion neutrons result in ultra-deep burn-up of the fuel in the fission blanket, thus enabling the burning of nuclear waste. Fuels include depleted uranium, natural uranium, enriched uranium, spent nuclear fuel, thorium, and weapons grade plutonium. LIFE engines can meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the highly undesirable stockpiles of depleted uranium, spent nuclear fuel and excess weapons materials.

  1. Retrospective - the beginnings of the uranium industry

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This article is a historical perspective of the uranium industry, from the discovery of uranium in 1789 to the discovery of fission in 1939. It is the first in a series of articles. In this part of the series, the initial discovery of uranium is mentioned. Early ore discoveries, especially in the USA, are also noted, and the market conditions at the end of the 19th century are reviewed. Shortly after the discovery of radium in 1898 and natural radioactivity, the connection between uranium and radium was noted, and this is outlined in the article. Due to the intimate relationship between the two elements, radium product and radium markets are also reviewed

  2. Separation of fission 99Mo by alpha-benzoin oxime precipitation in nitric medium

    International Nuclear Information System (INIS)

    Yamaura, Mitiko; Freitas, Antonio A.; Egute, Nayara dos S.; Camilo, Ruth L.; Araujo, Izilda C.; Forbicini, Christina A.L.G. de O.

    2011-01-01

    Since 2009, the production of generators 99 Mo/ 99 mTc suffers a crisis of global supply due to technical problems of the two reactors which account for 64% of world production of fission 99 Mo. By the project of Brazilian Multipurpose Reactor (RMB), the Brazilian government invests in the construction of the first multipurpose reactor suitable for the domestic production of 99 Mo from LEU targets in order to supply of fission 99 Mo in the coming decades. The IPEN started the research of the technology and production of fission 99 Mo from acid and alkaline dissolutions of Low Enriched Uranium (LEU) targets as well as other used radioisotopes in nuclear medicine. This work is part of the research of the technology of the fission 99 Mo from acid dissolution of the LEU targets that is being developed at the IPEN. In this study the separation of the Mo by precipitation with alpha-benzoin oxime in nitric medium and the recovery by dissolution were investigated. The precipitation studies were performed by batch assays with nitric solution of Mo(VI), containing 99 Mo tracer, and uranyl ions. Influence of concentration of permanganate from 0.03 to 2.5%, dissolution temperature at 30 deg C and 150 deg C and the uranium concentration from 74 g.L -1 to 115 g.L -1 was studied. Results indicated that the precipitation of Mo with alpha-benzoin oxime from nitric medium is highly efficient, and its recovery by dissolution with basic solution of H 2 O 2 gave a high yield. (author)

  3. Characterization of wastes from fission 99 Mo production

    International Nuclear Information System (INIS)

    Endo, L.S.; Dellamano, J.C.

    1992-07-01

    This work is a preliminary study on waste-streams generated in a fission 99 Mo production plant, their characterization and quantification. The study is based on a plant whose 99 Mo production process is the alkaline dissolution of U-target. The target is made of 1 g of enriched 235 U, therefore most of radionuclides present in the waste-streams are fission products. All the radionuclides inventories were estimated based on ORIGEN-2 Code. The characterization was done as a primary stage for the establishment of waste management plan, which should be subject for further study. (author)

  4. Fission product detection by means of photovoltaic cells

    International Nuclear Information System (INIS)

    Liatard, E.; Akrouf, S.; Bruandet, J.F.; Fontenille, A.; Glasser, F.; Stassi, P.; Tsan Ung Chan

    1988-01-01

    The response of photovoltaic cells to heavy ions and fission products have been tested in-beam. Their main advantages are their extremely low price, their low sensitivity to energetic light ions with respect to fission products, and the possibility to cut and fit them together to any shape without dead zone. The time output signals of a charge sensitive preamplifier connected to these cells allows fast coincidences. A resolution of 12 ns (FWHM) has been measured between two cells. (orig.)

  5. Uranium 1999. Resources, production and demand

    International Nuclear Information System (INIS)

    2000-01-01

    In recent years, the world uranium market has been characterised by an imbalance between demand and supply and persistently depressed uranium prices. World uranium production currently satisfies between 55 and 60 per cent of the total reactor-related requirements, while the rest of the demand is met by secondary sources including the conversion of excess defence material and stockpiles, primarily from Eastern Europe. Although the future availability of these secondary sources remains unclear, projected low-cost production capability is expected to satisfy a considerable part of demand through to 2015. Information in this report provides insights into changes expected in uranium supply and demand over the next 15 years. The 'Red Book', jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is the foremost world reference on uranium. It is based on official information from 49 countries and includes compilations of statistics on resources, exploration, production and demand as of 1 January 1999. It provides substantial new information from all of the major uranium producing centres in Africa, Australia, Eastern Europe, North America and the New Independent States. It also contains an international expert analysis of industry statistics and world-wide projections of nuclear energy growth, uranium requirements and uranium supply. (authors)

  6. Binary and ternary fission yields induced by 12C and 20Ne ions on 238U targets

    International Nuclear Information System (INIS)

    Otto, R.J.

    1974-01-01

    Evidence for ternary fission of 250 Cf* and 258 No* compound nuclei has been found. Relative cross section data for nuclides with masses between 24 Na and 161 Tb have been determined for 12 C bombardments of natural uranium at laboratory energies of 122 MeV, 113 MeV and 105 MeV. Relative cross section data for 8 nuclides between 24 Na and 66 Ni were sought for 20 Ne bombardments of natural uranium at 150 MeV laboratory energies. The binary fission fragment mass distribution for 238 U( 12 C,f) was determined by analysis of fission fragment recoil collection foils using radiochemical techniques and high resolution gamma ray spectroscopy. The results indicated the existence of a ternary fission branch similar to mass distributions obtained for He induced fission of Th, U, and Pu nuclei at intermediate energies. Comparison of the data with He induced ternary fission data obtained previously in this laboratory indicated an increase in the ternary fission probability with increasing Z 2 /A of the compound nucleus and with excitation energy. A shift of the binary-ternary fission product intersection point to lower mass numbers with increasing Z 2 /A and excitation energy of the compound nucleus was also observed. (Diss. Abstr. Int., B)

  7. Measurements of actinide-fission product yields in Caliban and Prospero metallic core reactor fission neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, P.; Authier, N. [CEA, Centre de Valduc, 21120 Is-sur-Tille (France); Laurec, J.; Bauge, E.; Granier, T. [CEA, Centre DIF, 91297 Arpajon (France)

    2011-07-01

    In the 1970's and early 1980's, an experimental program was performed on the facilities of the CEA Valduc Research Center to measure several actinide-fission product yields. Experiments were, in particular, completed on the Caliban and Prospero metallic core reactors to study fission-neutron-induced reactions on {sup 233}U, {sup 235}U, and {sup 239}Pu. Thick actinide samples were irradiated and the number of nuclei of each fission product was determined by gamma spectrometry. Fission chambers were irradiated simultaneously to measure the numbers of fissions in thin deposits of the same actinides. The masses of the thick samples and the thin deposits were determined by mass spectrometry and alpha spectrometry. The results of these experiments will be fully presented in this paper for the first time. A description of the Caliban and Prospero reactors, their characteristics and performances, and explanations about the experimental approach will also be given in the article. A recent work has been completed to analyze and reinterpret these measurements and particularly to evaluate the associated uncertainties. In this context, calculations have also been carried out with the Monte Carlo transport code Tripoli-4, using the published benchmarked Caliban description and a three-dimensional model of Prospero, to determine the average neutron energy causing fission. Simulation results will be discussed in this paper. Finally, new fission yield measurements will be proposed on Caliban and Prospero reactors to strengthen the results of the first experiments. (authors)

  8. LEU{sub b}ased Fission Mo-99 Process with Reduced Solid Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seungkon; Lee, Suseung; Jung, Sunghee; Hong, Soonbog; Jang, Kyungduk; Choi, Sang Mu; Lee, Jun Sig; Lim, Incheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    {sup 99m} Tc emits 140 keV of very low gamma-ray radiation energy, as low as conventional diagnostic X-ray, and has short half-life of 6.0058 hours. Therefore, as radioactive tracer, {sup 99m} Tc provides high quality diagnostic images but keeps total patient radiation exposure low. Depending on the tagging pharmaceuticals and procedures, {sup 99m} Tc can be applied for the diagnostics of various target organs and diseases: brain, myocardium, thyroid, lungs, liver, gallbladder, kidneys, skeleton, blood and tumors. More than 95% of {sup 99}Mo is produced through fission of {sup 235}U worldwide because, {sup 99m}o generated from the fission (fission {sup 99}Mo) exhibits very high specific activity (<100 Ci/g). Over 90% of fission {sup 99}Mo producers have been used highly enriched uranium (HEU) targets so far. However, the IAEA recommends the use of low enriched uranium (LEU) to the {sup 99}Mo producers for nonproliferation reason. These days, worldwide {sup 99}Mo supply is not only insufficient but also unstable. Because, most of the main {sup 99}Mo production reactors are about 50 years old and suffered from frequent and unscheduled shutdown. Planned weekly productivity of 2000 Ci fission {sup 99}Mo, in a 6-day reference, will cover 100% domestic demand of Korea, as well as 20% of international market. It is expected to replace 4.3 million USD ($800/Ci) of {sup 99}Mo import for domestic market while exporting 82.8 million USD for world market, annually.

  9. Transmutation of fission products and actinide waste at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Daemen, L.L.; Pitcher, E.J.; Russell, G.J. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    The authors studied the neutronics of an ATW system for the transmutation of the fission products ({sup 99}Tc in particular) and the type of actinide waste stored in several tanks at Hanford. The heart of the system is a highly-efficient neutron production target. It is surrounded by a blanket containing a moderator/reflector material, as well as the products to be transmuted. The fission products are injected into the blanket in the form of an aqueous solution in heavy water, whereas an aqueous actinides slurry is circulated in the outer part of the blanket. For the sake of definiteness, the authors focussed on {sup 99}Tc (the most difficult fission product to transmute), and {sup 239}Pu, {sup 237}Np, and {sup 241}Am. Because of the low thermal neutron absorption cross-section of {sup 99}Tc, considerable care and effort must be devoted to the design of a very efficient neutron source.

  10. Uranium resources, production and demand 1993

    International Nuclear Information System (INIS)

    1994-10-01

    This book is the Japanese edition of 'Uranium Resources, Production and Demand, 1993' published by OECD/NEA-IAEA in 1994. It contains data on uranium exploration activities, resources and production for about 50 countries. (K.I.)

  11. 75 years ago. The discovery of nuclear fission during the neutron irradiation of uranium on 17 December 1938 in Berlin

    International Nuclear Information System (INIS)

    Kuczera, Bernhard

    2013-01-01

    A ground-breaking, scientific discovery made in the Berlin experiments of the year 1938 on neutron irradiation of uranium, was that atom nuclei can be fissured and, during the fission energy, so-called nuclear energy, is released. If further U-235 atoms are in the immediate vicinity, the released neutrons can trigger a chain reaction of the nuclear fission. The story of this ground-breaking discovery that led to the worldwide civil utilisation of nuclear energy is outlined here. The discovery of neutrons and their implementation in radiation experiments occurred in the 1930s. The research work followed the model of the Stockholm citizen Niels Bohr on the configuration of an atom. In 1930, Walther Bothe reported on the occurrence of a high-energy radiation when beryllium was irradiated with alpha-particles. James Chadwick could prove experimentally in 1932 that this is a current of high-energy, electrically neutral particles. He called these particles neutrons. In Berlin, the radio-chemist Otto Hahn is the Director at the Kaiser-Wilhelm-Institute for Chemistry and head of the chemical-radioactive department. In the years 1935 to 1938, the radiation experiments of uranium with neutrons were at the centre of the research in Berlin. In October 1938, Hahn and Strassmann responded with their own experiments to the scientific challenge of Irene Curie and Paul Savitch of 3.5-hours of activity when uranium was radiated with neutrons. The decisive discovery for the neutron radiation of uranium was made by Hahn and Strassmann on 17 December 1938. From the results of different experiments, they conclude: 'Our radium isotopes have the properties of barium.' On 19 December, Hahn informs Lise Meitner and speaking on the issue of 'Where does the barium come from?' addresses a possible 'bursting' of the uranium nucleus. That is Hahn's 'Heureka.' moment: He recognises that the neutron radiation does not only effect radiochemical transformations, but can also cause the uranium

  12. Finite element simulation of fission gas release and swelling in UO2 fuel pellets

    International Nuclear Information System (INIS)

    Denis, Alicia C.

    1999-01-01

    A fission gas release model is presented, which solves the atomic diffusion problem with xenon and krypton elements tramps produced by uranium fission during UO 2 nuclear fuel irradiation. The model considers intra and intergranular precipitation bubbles, its re dissolution owing to highly energetic fission products impact, interconnection of intergranular bubbles and gas sweeping by grain border in movement because of grain growth. In the model, the existence of a thermal gradient in the fuel pellet is considered, as well as temporal variations of fission rate owing to changes in the operation lineal power. The diffusion equation is solved by the finite element method and results of gas release and swelling calculation owing to gas fission are compared with experimental data. (author)

  13. Comparative studies of the relation costs/benefits of the production methods of 99Mo: fission of 235U and neutron capture reaction on 98Mo

    International Nuclear Information System (INIS)

    Takahashi, Sergio Yukio

    2004-01-01

    This work analyses the benefits and costs that are the results of the production of Technetium generators, using 99 Mo produced by two different ways. For this analysis, the production process of 99 Mo, nowadays imported, obtained through the fission of uranium. The second process is the gel generator that is totally national, developed by researcher at IPEN. The self-sustained costs were evaluated for both production processes. The conclusion was that although positive and negative aspects appear in both processes, they must remain: Fission Mo will supply the generators with activities higher than 1.85x10 10 Bq and the gel generator will supply activities up to 1.85x10 10 Bq. This limitation can be overcome if the power of the Reactor is upgraded and if the irradiation time covers the 3 shifts. (author)

  14. Use of dwell time concept in fission product inventory assessment for CANDU reactors

    International Nuclear Information System (INIS)

    Bae, C.J.; Choi, J.H.; Hwang, H.R.; Seo, J.T.

    2003-01-01

    A realistic approach in calculating the initial fission product inventory within the CANFLEX-NU fuel has been assessed for its applicability to the single channel event safety analysis for CANDU reactors. This approach is based on the dwell time concept in which the accident is assumed to occur at the dwell time when the summation of fission product inventory for all isotopes becomes largest. However, in the current conservative analysis, the maximum total inventory and the corresponding gap inventory for each isotope are used as the initial fission product inventories regardless of the accident initiation time. The fission product inventory analysis has been performed using ELESTRES code considering power histories and burnup of the fuel bundles in the limiting channel. The analysis results showed that the total fission product inventory is found to be largest at 20% dwell time. Therefore, the fission product inventory at 20% dwell time can be used as the initial condition for the single channel event for the CANDU 6 reactors. (author)

  15. Chemistry of fission products for accident analysis

    International Nuclear Information System (INIS)

    Potter, P.E.

    1985-01-01

    Current knowledge concerning the chemical state of the fission product elements during the development of accidents in water reactor systems is reviewed in this paper. The fission product elements which have been considered are Cs, I, Te, Sr and Ba but aspects of the behavior of Mo, Ru and the lanthanides are also discussed. Some features of the reactions of the various species of these elements with other components of the reactor systems are described. The importance of having an adequate knowledge of thermodynamic data and phase equilibria of relatively simple systems in order to interpret experimental observations on complex multi-component systems is stressed

  16. Heat and fission product transport in molten core material pool with crust

    International Nuclear Information System (INIS)

    Yun, J.I.; Suh, K.Y.; Kang, C.S.

    2005-01-01

    Heat transfer and fluid flow in a molten pool are influenced by internal volumetric heat generated from the radioactive decay of fission product species retained in the reactor vessel during a severe accident. The pool superheat is determined based on the overall energy balance that equates the heat production rate to the heat loss rate. Decay heat of fission products in the pool is estimated by product of the mass concentration and energy conversion factor of each fission product. Twenty-nine elements are chosen and classified by their chemical properties to calculate heat generation rate in the pool. The mass concentration of a fission product is obtained from released fraction and the tabular output of the ORIGEN 2 code. The initial core and pool inventories at each time can also be estimated using ORIGEN 2. The released fraction of each fission product is calculated based on the bubble dynamics and mass transport. Numerical analysis is performed for heat and fission product transport in a molten core material pool during the Three Mile Island Unit 2 (TMI-2) accident. The pool is assumed to be a partially filled hemisphere, whose change in geometry is neglected during the numerical calculation. Calculated results indicate that the peak temperature in the molten pool is significantly lowered, since a substantial amount of the volatile fission products is released from the molten pool during progression of the accident. The results may directly be applied to the existing severe accident analysis codes to more mechanistically determine the thermal load to the reactor vessel lower head during the in-vessel retention

  17. Effects of hyperstoichiometry and fission products on the electrochemical reactivity of UO2 nuclear fuel

    International Nuclear Information System (INIS)

    Betteridge, J.S.; Scott, N.A.M.; Shoesmith, D.W.; Bahen, L.E.; Hocking, W.H.; Lucuta, P.G.

    1997-03-01

    The effects of hyperstoichiometry and fission products on the electrochemical reactivity Of UO 2 nuclear fuel have been systematically investigated using cyclic voltammetry and the O 2 reduction reaction. Significant constraints are placed on the active-site model for O 2 reduction by the modest impact of bulk hyperstoichiometry. Formation of the U 4 O 9 derivative phase was associated with a marked increase in transient surface oxidation/reduction processes, which probably involve localized attack and might be fostered by tensile stresses induced during oxidation. Electrocatalytic reduction Of O 2 on simulated nuclear fuel (SIMFUEL) has been determined to increase progressively with nominal burnup and pronounced enhancement of H 2 O reduction has been observed as well. Substitution of uranium by lower-valence (simulated) fission products, which was formerly considered the probable cause for this behaviour, has now been shown to merely provide good electrical conductivity. Instead, the enhanced reduction kinetics for O 2 and H 2 O on SIMFUEL can be fully accounted for by noble metals, which segregate to the UO 2 grain boundaries as micron-sized particles, despite their low effective surface area. Apparent convergence of the electrochemical properties Of UO 2 and SIMFUEL through natural corrosion likely reflects evolution toward a common active surface. (author)

  18. Irradiation effects of the zirconium oxidation and the uranium diffusion in zirconia; Effets d'irradiation sur l'oxydation du zirconium et la diffusion de l'uranium dans la zircone

    Energy Technology Data Exchange (ETDEWEB)

    Bererd, N

    2003-07-01

    The context of this study is the direct storage of spent fuel assemblies after operation in reactor. In order to obtain data on the capacities of the can as the uranium diffusion barrier, a fundamental study has been carried out for modelling the internal cladding surface under and without irradiation. The behaviour of zirconium in reactor conditions has at first been studied. A thin uranium target enriched with fissile isotope has been put on a zirconium sample, the set being irradiated by a thermal neutrons flux leading to the fission of the deposited uranium. The energetic history of the formed fission products has revealed two steps: 1)the zirconium oxidation and 2)the diffusion of uranium in the zirconia formed at 480 degrees C. A diffusion coefficient under irradiation has been measured. Its value is 10{sup -15} cm{sup 2}.s{sup -1}. In order to be able to reveal clearly the effect of the irradiation by the fission products on the zirconium oxidation, measurements of thermal oxidation and under {sup 129}Xe irradiation have been carried out. They have shown that the oxidation is strongly accelerated by the irradiation and that the temperature is negligible until 480 degrees C. On the other hand, the thermal diffusion of the uranium in zirconium and in zirconia has been studied by coupling ion implantation and Rutherford backscattering spectroscopy. This study shows that the uranium diffuses in zirconium and is trapped in zirconia in a UO{sub 3} shape. (O.M.)

  19. NEANDC specialists meeting on yields and decay data of fission product nuclides

    International Nuclear Information System (INIS)

    Chrien, R.E.; Burrows, T.W.

    1983-01-01

    Separate abstracts were prepared for the 29 papers presented. Workshop reports on decay heat, fission yields, beta- and gamma-ray spectroscopy, and delayed neutrons are included. An appendix contains a survey of the most recent compilations and evaluations containing fission product yield, fission product decay data, and delayed neutron yield information

  20. Management of radioactive waste from 99Mo production by nuclear fission

    International Nuclear Information System (INIS)

    Rego, Maria Eugenia de Melo

    2013-01-01

    Brazil intends to build a facility for the 99 Mo production through 235 U fission, once this radioisotope is largely used in nuclear medicine. This study aimed at estimating the physical, chemical and radiological characteristics of radioactive waste expected to be generated in that facility, and to provide theoretical subsides that can be used on the definition of a proper waste management system. Two production scenarios were established and the radioisotope inventories of the wastes were calculated by Scale®. From the chemical processing of the uranium targets the wastes were characterized on their chemical and radiological features. MicroShield® was used to determine the activity concentrations up to three months of 99 Mo production. In addition, this work presents dose rate calculation for several sizes of shielding and different amount of wastes, collected in a proper package for in-site transportation. Radionuclides responsible for higher doses were identified in order to facilitate choosing the most appropriate method for managing the wastes after their chemical separation and before their storage. These results are part of what is expected on radioactive wastes at a 99 Mo production facility and might help on the development of the waste management planning for that facility. (author)

  1. On the Potential of Nuclear Fission Energy for Effective Reduction of Carbon Emission under the Constraint of Uranium Resources Use without Spent Fuel Reprocessing

    International Nuclear Information System (INIS)

    Knapp, V.; Pevec, D.; Matijevic, M.

    2010-01-01

    Urgency to stop further increase of greenhouse gases emissions and reverse the trends, as stated in the Fourth Intergovernmental Panel on Climate Change (IPPC) Report and in Copenhagen discussions, limits the realistic choice of energy technologies to those available now or in the near future of few decades. In the coming fifty years neither nuclear fusion nor carbon capture and storage (CCS) can be expected to give a significant contribution to world energy production. Two perspective intermittent sources such as wind and solar together with nuclear fission energy covering the base load consumption appears to be a combination with a potential to produce a large share of carbon free energy in the total world energy production. This contribution considers the issues, associated with required large scale deployment of nuclear fission energy. A serious question associated with nuclear energy is nuclear proliferation. Spread of uranium enrichment and spent fuel reprocessing installations in many new countries constructing nuclear reactors would be a major concern in present political environment. We investigate whether uranium resources would be sufficient to support nuclear build-up in next 50-60 years sufficiently large to significantly reduce carbon emission without reprocessing of spent nuclear fuel. A positive answer would mean that 50-60 years can be available to develop effective international control of nuclear fuel cycle installations. Our results show that a maximum nuclear build-up which would consume currently estimated uranium resources by 2065 without reprocessing could reduce by 2065 carbon emission by 39.6% of the total reduction needed to bring the WEO 2009 Reference Scenario prediction of total GHG emissions in 2065 to the level of the WEO 450 Scenario limiting global temperature increase to 2 degrees of C. The less demanding strategy of the nuclear replacement of all non-CCS coal power plants retiring during the 2025-2065 period would reduce emission

  2. A new technique to measure fission-product diffusion coefficients in UO2 fuel

    International Nuclear Information System (INIS)

    Hocking, W.H.; Verrall, R.A.; Bushby, S.J.

    1999-01-01

    This paper describes a new out-reactor technique for the measurement of fission-product diffusion rates in UO 2 . The technique accurately simulates in-reactor fission-fragment effects: a thermal diffusion that is due to localized mixing in the fission track, radiation-enhanced diffusion that is due to point-defect creation by fission fragments, and bubble resolution. The technique utilizes heavy-ion accelerators - low energy (40 keV to 1 MeV) for fission-product implantation, high energy (72 MeV) to create fission-fragment damage effects, and secondary ion mass spectrometry (SIMS) for measuring the depth profile of the implanted species. Preliminary results are presented from annealing tests (not in the 72 MeV ion flux) at 1465 deg. C and 1650 deg. C at low and high concentrations of fission products. (author)

  3. Chemical reactions of fission products with ethylene using the gas jet technique

    International Nuclear Information System (INIS)

    Contis, E.T.; Rengan, Krish; Griffin, Henry C.

    1994-01-01

    An understanding of the nature of the chemical reactions taking place between fission products and their carrier gases, and the designing of a fast separation procedure were the purposes of this investigation. Chemical reactions of short-lived (less than one minute half-life) fission products with carrier gases lead to various chemical species which can be separated in the gas phase. The Gas Jet Facility at the Ford Nuclear Reactor was used to study the yields of volatile selenium and bromine fission products of 235 U using a semi-automatic batch solvent extraction technique. Heptane and water were used as organic and inorganic solvents. A carrier gas mixture of ethylene to pre-purified nitrogen (1 : 3) was used to sweep the fission products from the target to the chemistry area for analysis. The results indicated that the volatile selenium products generated by the interaction of selenium fission fragments with ethylene were predominantly organic in nature (84%), possibly organoselenides. The selenium values were used to resolve the fractions of the bromine nuclides, which come from two major sources, viz., directly from fission and from the beta-decay of selenium. The data showed that the fractions of independent bromine fission products in the organic phase were much lower compared to selenium; the bromine values range from 10 to 22% and varied with mass number. Results indicated that the bromine products were inorganic in nature, as possibly hydrogen chloride. ((orig.))

  4. Solvent extraction of some fission products using tetracycline as a complexing agent : dependence on the ph of the aqueous phase and on the nature of some inorganic anions

    International Nuclear Information System (INIS)

    Cunha, I.I.L.; Nastasi, M.J.C.

    1982-10-01

    The behavior of tetracycline as a complexing agent in solvent extraction studies is presented. The extraction curves for the fission products 90 Sr, 140 Ba, 99 Mo, sup(99m)Tc, 95 Zr, 95 Nb, 103 Ru and also for U have been determined for the extraction system tetracycline-benzyl alcohol. The extraction dependence on the pH of the aqueous phase as well as on the kind of electrolyte present was examined. As a practical application, the possiblity of using the tetracycline-benzyl alcohol system for separation of the fission products present in a mixture of them, as well as for the separation of uranium from those elements, was tested. (Author) [pt

  5. Uranium 2011 resources, production and demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris

    2012-01-01

    In the wake of the Fukushima Daiichi nuclear power plant accident, questions are being raised about the future of the uranium market, including as regards the number of reactors expected to be built in the coming years, the amount of uranium required to meet forward demand, the adequacy of identified uranium resources to meet that demand and the ability of the sector to meet reactor requirements in a challenging investment climate. This 24th edition of the “Red Book”, a recognised world reference on uranium jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, provides analyses and information from 42 producing and consuming countries in order to address these and other questions. It offers a comprehensive review of world uranium supply and demand as well as data on global uranium exploration, resources, production and reactor-related requirements. It also provides substantive new information on established uranium production centres around the world and in countri...

  6. Development of glass ceramics for the incorporation of fission products

    International Nuclear Information System (INIS)

    De, A.K.; Luckscheiter, B.; Lutze, W.; Malow, G.; Schiewer, E.

    1976-01-01

    Spontaneous devitrification of fission-product-containing borosilicate glasses can be avoided by controlled crystallization after melting. Glass ceramics have been developed from a vitrified simulated waste and further improvement of product properties was achieved. In particular perovskite, h-celsian, diopside and eucryptite glass ceramics were prepared. These contained leach resistant host phases which exhibited considerable enrichment of long-lived fission products. All products showed increased impact resistance, but the thermal expansion was only slightly improved

  7. From nuclear fission to nuclear energy

    International Nuclear Information System (INIS)

    Pocock, R.F.

    1988-01-01

    Otto Hahn, a German chemist, demonstrated the fission of the uranium nucleus in December 1938. Ten months later, basic physical theory had been modified to account for this phenomenon. It is suggested here that this great advance in radio-chemistry and physics was influenced considerably by political considerations. By the outbreak of the European War in September 1939, all the major scientific principles involved in the production of atomic weapons were well-known and were available in all industrial countries. (author)

  8. The influence of cladding on fission gas release from irradiated U-Mo monolithic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Burkes, Douglas E., E-mail: Douglas.Burkes@pnnl.gov; Casella, Amanda J.; Casella, Andrew M.

    2017-04-01

    The monolithic uranium-molybdenum (U-Mo) alloy has been proposed as a fuel design capable of converting the world's highest power research reactors from use of high enriched uranium to low enriched uranium. However, a zirconium (Zr) diffusion barrier must be used to eliminate interactions that form between the U-Mo monolith and aluminum alloy 6061 (AA6061) cladding during fabrication and are enhanced during irradiation. One aspect of fuel development and qualification is to demonstrate an appropriate understanding of the extent of fission product release from the fuel under anticipated service environments. An exothermic reaction has previously been observed between the AA6061 cladding and Zr diffusion layer. In this paper, two fuel segments with different irradiation history were subjected to specified thermal profiles under a controlled atmosphere using a thermogravimetric/differential thermal analyzer coupled with a mass spectrometer inside a hot cell. Samples from each segment were tested with cladding and without cladding to investigate the effect, if any, that the exothermic reaction has on fission gas release mechanisms. Measurements revealed there is an instantaneous effect of the cladding/Zr exothermic reaction, but not necessarily a cumulative effect above approximately 973 K (700 °C). The mechanisms responsible for fission gas release events are discussed. - Highlights: •Complementary fission gas release events are reported for U-Mo fuel with and without cladding. •Exothermic reaction between Zr diffusion layer and cladding influences fission gas release. •Mechanisms responsible for fission gas release are similar, but with varying timing and magnitude. •Behavior of samples is similar after 800 °C signaling the onset of superlattice destabilization.

  9. NEANDC specialists meeting on yields and decay data of fission product nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Chrien, R.E.; Burrows, T.W. (eds.)

    1983-01-01

    Separate abstracts were prepared for the 29 papers presented. Workshop reports on decay heat, fission yields, beta- and gamma-ray spectroscopy, and delayed neutrons are included. An appendix contains a survey of the most recent compilations and evaluations containing fission product yield, fission product decay data, and delayed neutron yield information. (WHK)

  10. Reactivity effects of fission product decay in PWRs

    International Nuclear Information System (INIS)

    Aragones, J.M.; Ahnert, C.

    1988-01-01

    The purpose of the work reported in this paper is to analyze the effects of fission product chains with radioactive decay on the reactivity in pressurized water reactor (PWR) cores, calculating their accumulation and absorption rates along fuel burnup at continuous operation and after shutdown periods extending from 1 day to a few months. The authors PWR version of the WIMS-D4 code is first used to obtain the individual number densities, absorption rates, and averaged cross sections for every nuclide of the fission product chains with significant decay rates, as a function of fuel burnup at continuous irradiation. Next, by an auxiliary ad hoc code, these data, have been processed together with the required one for fissile nuclides and boron, also taken from WIMS at each burnup step, to calculate the average or effective values relevant for the analysis and the decay and change in overall absorption after several shutdown times. (1) The reactivity effect of fission product decay changes significantly with the shutdown time. The maximum absorption increase by decay is reached in ∼ 10 days' shutdown. (2) The dependence with fuel type, enrichment, and burnup is slight, but the change with previous power density is nearly linear, which might be significant after coast-down in previous cycles. (3) For long shutdown periods, the overall reactivity effect of decay in the three fission product chains considered is much less than if only the samarium peak due to 149 Nd is considered

  11. Uranium 2007: resources, production and demand

    International Nuclear Information System (INIS)

    2008-01-01

    With several countries building nuclear power plants and many more considering the use of nuclear power to produce electricity in order to meet rising demand, the uranium industry has become the focus of considerable attention. In response to rising demand and declining inventories, uranium prices have increased dramatically in recent years. As a result, the uranium industry is undergoing a significant revival, bringing to an end a period of over 20 years of under investment. The ''Red Book'', jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on official information received from 40 countries. This 22. edition provides a comprehensive review of world uranium supply and demand as of 1. January 2007, as well as data on global uranium exploration, resources, production and reactor-related requirements. It provides substantive new information from major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2030 are also featured, along with an analysis of long-term uranium supply and demand issues. (author)

  12. Uranium 2007: resources, production and demand

    International Nuclear Information System (INIS)

    2008-01-01

    With several countries building nuclear power plants and many more considering the use of nuclear power to produce electricity in order to meet rising demand, the uranium industry has become the focus of considerable attention. In response to rising demand and declining inventories, uranium prices have increased dramatically in recent years. As a result, the uranium industry is undergoing a significant revival, bringing to an end a period of over 20 years of under investment. The ''Red Book'', jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on official information received from 40 countries. This second edition provides a comprehensive review of world uranium supply and demand as of first January 2007, as well as data on global uranium exploration, resources, production and reactor-related requirements. It provides substantive new information from major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2030 are also featured, along with an analysis of long-term uranium supply and demand issues. (author)

  13. Comparison of fission product release predictions using PARFUME with results from the AGR-1 irradiation experiment

    International Nuclear Information System (INIS)

    Collin, Blaise P.; Petti, David A.; Demkowicz, Paul A.; Maki, John T.

    2014-01-01

    The PARFUME (PARticle FUel ModEl) code was used to predict fission product release from tristructural isotropic (TRISO) coated fuel particles and compacts during the first irradiation experiment (AGR-1) of the Advanced Gas Reactor Fuel Development and Qualification program. The PARFUME model for the AGR-1 experiment used the fuel compact volume average temperature for each of the 620 days of irradiation to calculate the release of fission products silver, cesium, and strontium from a representative particle for a select number of AGR-1 compacts. Post-irradiation examination (PIE) measurements provided data on release of fission products from fuel compacts and fuel particles, and retention of fission products in the compacts outside of the silicon carbide (SiC) layer. PARFUME-predicted fractional release of these fission products was determined and compared to the PIE measurements. Results show an overall over-prediction of the fractional release of cesium by PARFUME. For particles with failed SiC layers, the over-prediction is by a factor of about two, corresponding to an over-estimation of the diffusivity in uranium oxycarbide (UCO) by a factor of about 100. For intact particles, whose release is much lower, the over-prediction is by an average of about an order of magnitude, which could additionally be attributed to an over-estimated diffusivity in SiC by about 30%. The release of strontium from intact particles is also over-estimated by PARFUME, which also points towards an over-estimated diffusivity of strontium in either SiC or UCO, or possibly both. The measured strontium fractional release from intact particles varied considerably from compact to compact, making it difficult to assess the effective over-estimation of the diffusivities. Furthermore, the release of strontium from particles with failed SiC is difficult to observe experimentally due to the release from intact particles, preventing any conclusions to be made on the accuracy or validity of the

  14. Balanced program plan. Volume XI. Fission analysis for biomedical and environmental research

    International Nuclear Information System (INIS)

    Foster, R.F.

    1976-06-01

    Factors involved in the formulation of an ERDA-sponsored program for health and environmental research in connection with the fission fuel cycle are discussed under the following section headings: major issues associated with the use of nuclear power; fission fuel cycle technology: milling, UF 6 production, uranium enrichment, plutonium fuel fabrication, power production (reactors), fuel reprocessing, waste management, fuel and waste transportation; problem definition: characterization, measurement and monitoring, transport processes, health effects, ecological processes and effects, and integrated assessment; budget; characterization, measuring and monitoring program units; transport processes program units; health effects program units; ecological processes and effects program units; and integrated assessment program units

  15. Argentinian uranium production

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    A profit-making process for the exploitation of low grade uranium is presented. The process of lixiviation will be used, which will make it possible to obtain a final product whose humidity level will not exceed 10% and whose uranium oxide content will be no less than 68%. The operations of the plant are described. The plant can produce between 100 and 150 t of U 3 O 8 /yr in the form of yellow cake

  16. Vitrification processes for fission product solutions

    International Nuclear Information System (INIS)

    Bonniaud, R.; Jouan, A.; Moncouyoux, J.P.; Sombret, C.

    1982-10-01

    The different processes for fission product vitrification in the world are reviewed. Continuous or discontinuous processes, induction or arc heating, in can melting or casting, tests with radioactive or simulated wastes and industrial realizations are described [fr

  17. Uranium production, the United States perspective

    International Nuclear Information System (INIS)

    Glasier, G.E.

    1984-06-01

    U.S. uranium production appears to be headed for a level of approximately one quarter of the peak production of the early 1980's. In a free world market the majority of the U.S. production capability is noncompetitive and unnecessary to supply the free world's demand. Those world producers which can produce into the competitive uranium market of the present and the foreseeable future will be sufficient to supply the uranium needs of the world for the next ten to fifteen years. Thus, the U.S. production industry once the leading producer in the world will not regain nor approach that status in the foreseeable future

  18. World uranium: resources, production and demand

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The OECD Nuclear Energy Agency recently announced the publication of a new edition of its report on Uranium resources, production and demand which has been published periodically since 1965, jointly with the International Atomic Energy Agency. In addition to bringing uranium resources and production estimates up-to-date, the new edition offers a more comprehensive treatment of exploration activity and uranium availability, and includes a greater number of countries within the scope of the survey. Information on uranium demand has also been revised, in the light of more recent forecasts of the growth of nuclear power. Finally, a comparison is made between uranium availability and requirements, and the implications of this comparison analysed. The main findings and conclusions of the report are summarized here. (author)

  19. Fission product chemistry in severe nuclear reactor accidents

    International Nuclear Information System (INIS)

    Nichols, A.L.

    1990-09-01

    A specialist's meeting was held at JRC-Ispra from 15 to 17 January 1990 to review the current understanding of fission-product chemistry during severe accidents in light water reactors. Discussions focussed on the important chemical phenomena that could occur across the wide range of conditions of a damaged nuclear plant. Recommendations for future chemistry work were made covering the following areas: (a) fuel degradation and fission-product release, (b) transport and attenuation processes in the reactor coolant system, (c) containment chemistry (iodine behaviour and core-concrete interactions)

  20. Upper-bound fission product release assessment for large break LOCA in CANFLEX bundle reactor core

    International Nuclear Information System (INIS)

    Oh, Duk Ju; Lee, Kang Moon

    1996-07-01

    Quarter-core gap inventory assessment for CANDU-6 reactor core loaded with CANFLEX fuel bundles has been performed as one of the licensing safety analyses required for 24 natural uranium CANFLEX bundle irradiation in CANDU-6 reactor. The quarter-core gap inventory for the CANFLEX bundle core is 5 - 10 times lower than that for the standard bundle core, depending on the half-life of the isotope. The lower gap inventory of the CANFLEX bundle core is attributed to the lower linear power of the CANFLEX bundle compared with the standard bundle. However, the whole core total inventories for both the CANFLEX and standard bundle cores are nearly the same. The 6 - 8 times lower upper-bound fission product releases of the CANFLEX bundle core for large break LOCA than those of the standard bundle core imply that the loading of 24 natural uranium CANFLEX bundles would improve the predicted consequences of the postulated accident described in the Wolsung 2 safety report. 2 tabs., 6 figs., 3 refs. (Author)

  1. LOFC fission product release and circulating activity calculations for gas-cooled reactors

    International Nuclear Information System (INIS)

    Apperson, C.E. Jr.; Carruthers, L.M.; Lee, C.E.

    1977-01-01

    The inventories of fission products in a gas-cooled reactor under accident and normal steady state conditions are time and temperature dependent. To obtain a reasonable estimate of these inventories it is necessary to consider fuel failure, a temperature dependent variable, and radioactive decay, a time dependent variable. Using arbitrary radioactive decay chains and published fuel failure models for the High Temperature Gas-Cooled Reactor (HTGR), methods have been developed to evaluate the release of fission products during the Loss of Forced Circulation (LOFC) accident and the circulating and plateout fission product inventories during steady state non-accident operation. The LARC-2 model presented here neglects the time delays in the release from the HTGR due to diffusion of fission products from particles in the fuel rod through the graphite matrix. It also neglects the adsorption and evaporation process of metallics at the fuel rod-graphite and graphite-coolant hole interfaces. Any time delay due to the finite time of transport of fission products by convection through the coolant to the outside of the prestressed concrete reactor vessel (PCRV) is also neglected. This model assumes that all fission products released from fuel particles are immediately deposited outside the PCRV with no time delay

  2. New information on world uranium resource, production, supply and demand

    International Nuclear Information System (INIS)

    Zhang Jianguo; Meng Jin

    2006-01-01

    New information on world uranium resource, production, supply and demand is introduced. Up to now, explored uranium resources at production cost < USD 40/kg U has 2523257 t uranium; production cost < USD 80/kg U has 5911514 t uranium; production cost < USD130/kg U has 11280488 t uranium; and cost range unassigned has 3102000 t uranium. At moment, the demand uranium of each year is about 67000 t U. After 2020, world uranium demand will rise well above 100000 t per annum with sharp revival of nuclear power plants. With three kinds of economic growth the cumulative requirement of the uranium in low demand case, middle demand case and high demand case from 2000 to 2050 is 3390000, 5394100 and 7577300 t respectively. In the world market uranium price rises from 20 years lowest 18.2 USD/kg U to 75.4 USD/kg U. In 2003, global uranium product is about 35385 t U, and 2004, global uranium product is about 40475 t U. In 2004's world uranium production underground mining, open pit, in situ, by product, and combination account for 39%, 27%, 19%, 11% and 4% respectively. (authors)

  3. Potentials of fissioning plasmas

    International Nuclear Information System (INIS)

    Karlheinz, Thom.

    1979-01-01

    Successful experiments with the nuclear pumping of lasers have demonstrated that in gaseous medium the kinetic energy of fission fragments can be converted directly into non-equilibrium optical radiation. This confirms the concept that the fissioning medium in a gas-phase nuclear reactor shows an internal structure such as a plasma in nearly thermal equilibrium varying up to a state of extreme-non-equilibrium. The accompanying variations of temperatures, pressure and radiative spectrum suggest wide ranges of applications. For example, in the gas-phase fission reactor concept enriched uranium hexafluoride or an uranium plasma replaces conventional fuel elements and permits operation above the melting point of solid materials. This potential has been motivation for the US National Aeronautics and Space Administration (NASA) to conduct relevant research for high specific impulse propulsion in space. The need to separate the high temperature gaseous fuel from the surfaces of a containing vessel and to protect them against thermal radiation has led to the concept of an externally moderated reactor in which the fissioning gaseous material is suspended by fluid dynamic means and the flow of opaque buffer gas removes the power. The gaseous nuclear fuel can slowly be circulated through the reactor for continuous on-site reprocessing including the annihilation of transuranium actinides at fission when being fed back into the reactor. An equilibrium of the generation and destruction of such actinides at fission when being fed back into the reactor. An equilibrium of the generation and destruction of such actinides can thus be achieved. These characteristics and the unique radiative properties led to the expectation that the gas-phase fission reactor could feature improved safety, safeguarding and economy, in addition to new technologies such as processing, photochemistry and the transmission of power over large distances in space

  4. World uranium production and demand: A review

    International Nuclear Information System (INIS)

    Tauchid, M.; Mueller Kahle, E.

    1993-01-01

    Despite the growing public concern on the use of nuclear energy, nuclear power generation capacity in the world is expected to follow a modest, but positive growth at least during the next two decades. Uranium production needed to fuel these reactors has been below demand since 1985. The WOCA production figure for 1991 is in the order of 27,000 tonnes U which is 39% below the peak production of 1980. With the exception of Australia, all other countries produced less uranium than in the previous year. It is expected that the production figure for 1992 will shrink even further to about 23,000 tonnes U. In-situ leaching uranium production contributed about 16% to the 1991 world production figure, most of which came from Eastern Europe and Central Asia. With the closing of a number of production facilities the relative contribution of in-situ leaching to the world uranium production is expected to grow. Only about 60% of WOCA's reactor related uranium demand for 1991 was supplied from its own production. The remaining 40% was filled from existing inventories and imports from the Russian Federation and China. The estimated gap between the world uranium production and reactor related demand for 1991 is in the order 10,900 tones U or 19.7%. The cumulative requirement for the world reactor related demand to the year 2010 has been estimated to be about 1,270,000 tonnes U. (author). 6 refs, 10 figs

  5. Fuel performance and fission product behaviour in gas cooled reactors

    International Nuclear Information System (INIS)

    1997-11-01

    The Co-ordinated Research Programme (CRP) on Validation of Predictive Methods for Fuel and Fission Product Behaviour was organized within the frame of the International Working Group on Gas Cooled Reactors. This International Working Group serves as a forum for exchange of information on national programmes, provides advice to the IAEA on international co-operative activities in advanced technologies of gas cooled reactors (GCRs), and supports the conduct of these activities. The objectives of this CRP were to review and document the status of the experimental data base and of the predictive methods for GCR fuel performance and fission product behaviour; and to verify and validate methodologies for the prediction of fuel performance and fission product transport

  6. Uranium supply/demand projections to 2030 in the OECD/NEA-IAEA ''Red Book''. Nuclear growth projections, global uranium exploration, uranium resources, uranium production and production capacity

    International Nuclear Information System (INIS)

    Vance, Robert

    2009-01-01

    World demand for electricity is expected to continue to grow rapidly over the next several decades to meet the needs of an increasing population and economic growth. The recognition by many governments that nuclear power can produce competitively priced, base load electricity that is essentially free of greenhouse gas emissions, combined with the role that nuclear can play in enhancing security of energy supplies, has increased the prospects for growth in nuclear generating capacity. Since the mid-1960s, with the co-operation of their member countries and states, the OECD Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA) have jointly prepared periodic updates (currently every 2 years) on world uranium resources, production and demand. These updates have been published by the OECD/NEA in what is commonly known as the ''Red Book''. The 2007 edition replaces the 2005 edition and reflects information current as of 1 st January 2007. Uranium 2007: Resources, Production and Demand presents, in addition to updated resource figures, the results of a recent review of world uranium market fundamentals and provides a statistical profile of the world uranium industry. It contains official data provided by 40 countries (and one Country Report prepared by the IAEA Secretariat) on uranium exploration, resources, production and reactor-related requirements. Projections of nuclear generating capacity and reactor-related uranium requirements to 2030 as well as a discussion of long-term uranium supply and demand issues are also presented. (orig.)

  7. Evaluation and compilation of fission product yields 1993

    International Nuclear Information System (INIS)

    England, T.R.; Rider, B.F.

    1995-01-01

    This document is the latest in a series of compilations of fission yield data. Fission yield measurements reported in the open literature and calculated charge distributions have been used to produce a recommended set of yields for the fission products. The original data with reference sources, and the recommended yields axe presented in tabular form. These include many nuclides which fission by neutrons at several energies. These energies include thermal energies (T), fission spectrum energies (F), 14 meV High Energy (H or HE), and spontaneous fission (S), in six sets of ten each. Set A includes U235T, U235F, U235HE, U238F, U238HE, Pu239T, Pu239F, Pu241T, U233T, Th232F. Set B includes U233F, U233HE, U236F, Pu239H, Pu240F, Pu241F, Pu242F, Th232H, Np237F, Cf252S. Set C includes U234F, U237F, Pu240H, U234HE, U236HE, Pu238F, Am241F, Am243F, Np238F, Cm242F. Set D includes Th227T, Th229T, Pa231F, Am241T, Am241H, Am242MT, Cm245T, Cf249T, Cf251T, Es254T. Set E includes Cf250S, Cm244S, Cm248S, Es253S, Fm254S, Fm255T, Fm256S, Np237H, U232T, U238S. Set F includes Cm243T, Cm246S, Cm243F, Cm244F, Cm246F, Cm248F, Pu242H, Np237T, Pu240T, and Pu242T to complete fission product yield evaluations for 60 fissioning systems in all. This report also serves as the primary documentation for the second evaluation of yields in ENDF/B-VI released in 1993

  8. Evaluation and compilation of fission product yields 1993

    Energy Technology Data Exchange (ETDEWEB)

    England, T.R.; Rider, B.F.

    1995-12-31

    This document is the latest in a series of compilations of fission yield data. Fission yield measurements reported in the open literature and calculated charge distributions have been used to produce a recommended set of yields for the fission products. The original data with reference sources, and the recommended yields axe presented in tabular form. These include many nuclides which fission by neutrons at several energies. These energies include thermal energies (T), fission spectrum energies (F), 14 meV High Energy (H or HE), and spontaneous fission (S), in six sets of ten each. Set A includes U235T, U235F, U235HE, U238F, U238HE, Pu239T, Pu239F, Pu241T, U233T, Th232F. Set B includes U233F, U233HE, U236F, Pu239H, Pu240F, Pu241F, Pu242F, Th232H, Np237F, Cf252S. Set C includes U234F, U237F, Pu240H, U234HE, U236HE, Pu238F, Am241F, Am243F, Np238F, Cm242F. Set D includes Th227T, Th229T, Pa231F, Am241T, Am241H, Am242MT, Cm245T, Cf249T, Cf251T, Es254T. Set E includes Cf250S, Cm244S, Cm248S, Es253S, Fm254S, Fm255T, Fm256S, Np237H, U232T, U238S. Set F includes Cm243T, Cm246S, Cm243F, Cm244F, Cm246F, Cm248F, Pu242H, Np237T, Pu240T, and Pu242T to complete fission product yield evaluations for 60 fissioning systems in all. This report also serves as the primary documentation for the second evaluation of yields in ENDF/B-VI released in 1993.

  9. Behaviour of fission products in PWR primary coolant and defected fuel rods evaluation

    International Nuclear Information System (INIS)

    Bourgeois, P.; Stora, J.P.

    1979-01-01

    The activity surveillance of the PWR primary coolant by γ spectometry gives some informations on fuel failures. The activity of different nuclides e.g. Xenons, Kryptons, Iodines, can be correlated with the number of the defected fuel rods. Therefore the precharacterization with eventually a prelocalization of the related fuel assemblies direct the sipping-test and allows a saving of time during refueling. A model is proposed to calculate the number of the defected rods from the activity measurements of the primary coolant. A semi-empirical model of the release of the fission products has been built from the activity measurements of the primary coolant in a 900 MWe PWR. This model allows to calculate the number of the defected rods and also a typical parameter of the mean damage. Fission product release is described by three stages: release from uranium dioxide, transport across the gas gap and behaviour in the primary coolant. The model of release from the oxide considers a diffusion process in the grains with trapping. The release then occurs either directly to free surfaces or with a delay due to a transit into closed porosity of the oxide. The amount released is the same for iodine and rare gas. With the gas gap transit is associated a transport time and a probability of trapping for the iodines. In the primary coolant the purification and the radioactive decay are considered. (orig.)

  10. Minimization of the fission product waste by using thorium based fuel instead of uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Galahom, A. Abdelghafar, E-mail: Agalahom@yahoo.com

    2017-04-01

    This research discusses the neutronic characteristics of VVER-1200 assembly fueled with five different fuel types based on thorium. These types of fuel based on mixing thorium as a fertile material with different fissile materials. The neutronic characteristics of these fuels are investigated by comparing their neutronic characteristics with the conventional uranium dioxide fuel using the MCNPX code. The objective of this study is to reduce the production of long-lived actinides, get rid of plutonium component and to improve the fuel cycle economy while maintaining acceptable values of the neutronic safety parameters such as moderator temperature coefficient, Doppler coefficient and effective delayed neutrons (β). The thorium based fuel has a more negative Doppler coefficient than uranium dioxide fuel. The moderator temperature coefficient (MTC) has been calculated for the different proposed fuels. Also, the fissile inventory ratio has been calculated at different burnup step. The use of Th-232 as a fertile material instead of U-238 in a nuclear fuel is the most promising fuel in VVER-1200 as it is the ideal solution to avoid the production of more plutonium components and long-lived minor actinides. The reactor grade plutonium accumulated in light water reactor with burnup can be recycled by mixing it with Th-232 to fuel the VVER-1200 assembly. The concentrations of Xe-135 and Sm-151 have been investigated, due to their high thermal neutron absorption cross section.

  11. Proton-fission for the accelerator production of Mo-99

    International Nuclear Information System (INIS)

    Lagunas-Solar, M.C.; Jungerman, J.A.; Castaneda, C.M.

    1993-01-01

    The production of Mo-99 (66.0 h) via de U-238(p,f) Mo-99 fission reaction is proposed as a non-reactor source of this essential precursor of 6.6-h Tc-99m, an isotope of wide use of diagnostic nuclear medicine applications. Measurements of the total excitation function for the U-238(p,f) reaction indicated a maximum and fairly constant cross section of 1.4 barns at > 30 MeV. Combining the advances of high-current (mA) H-accelerators with dual beam (dual target) operation, and assuming a 5% fission yield, estimates of Mo-99 reaches 5 to 14 Ci/h at 1 mA. The proton fission production of Mo-99 appears to more advantageous than the reactor produced via evaporation neutron-induced fission. An accelerator method could allow securing ample supply of Mo-99 independently of the current scarce reactor operation, while also simplifying the associated waste management problems as well as some of the environmental concerns

  12. Depleted uranium in the environment - an issue of concern?

    International Nuclear Information System (INIS)

    Stegnar, P.; Benedik, Lj.

    2002-01-01

    Natural uranium (U) occurs in soils in typical concentrations of a few parts per milion. U-238 is the most abundant isotope in natural uranium (fraction by weight in natural uranium is 99.28%) and decays into other radioactive elements. A radioactive waste product of uranium enrichment is known as 'depleted uranium' (DU) which is basically natural uranium in which the fissionable U-235 isotopic content has been reduced from 0.71% to 0.2-0.3%. It is practically pure alpha emitter, only selected (in=growth) daughter products are gammaand beta emitters. Comparison of radioactivity shows that the total activity in 1mg of natural uranium is 25.28 Bq and in1 mg of DU is 14.80 Bq. The radioactivity of DU is 60% of that of natural uranium. Currently in the USA alone, there are about 600.000 tonnes of DU in storage. DU is cheap and it is available in large quantities. It is widely used as ballast or counterbalances in ships and aircrafts, as radiation shielding and in non-nuclear civil applications requiring hugh density material. (author)

  13. Fission 2009 4. International Workshop on Nuclear Fission and Fission Product Spectroscopy - Compilation of slides

    International Nuclear Information System (INIS)

    2009-01-01

    This conference is dedicated to the last achievements in experimental and theoretical aspects of the nuclear fission process. The topics include: mass, charge and energy distribution, dynamical aspect of the fission process, nuclear data evaluation, quasi-fission and fission lifetime in super heavy elements, fission fragment spectroscopy, cross-section and fission barrier, and neutron and gamma emission. This document gathers the program of the conference and the slides of the presentations

  14. Uranium production and the environment in Kazakhstan

    International Nuclear Information System (INIS)

    Fyodorov, G.V.

    2002-01-01

    The production of uranium from open-pit and underground mines in Kazakhstan has terminated. Currently, uranium is extracted in Kazakhstan only by the In Situ Leaching (ISL) method. This method has a number of economical and ecological advantages. During a short period in the 70s-80s, Kazakhstan created a firm basis for developing uranium extraction by the ISL method. Now more than half of the world's uranium reserves amenable to the ISL method are located in Kazakhstan. By 2005, a significant increase in uranium production is planned. Thereby, Kazakhstan has the ability to grow into a world leader in uranium extraction through a lower cost and low environmental impact operations using the ISL method. (author)

  15. Uranium 2016: Resources, Production and Demand

    International Nuclear Information System (INIS)

    2016-01-01

    Uranium is the raw material used to produce fuel for long-lived nuclear power facilities, necessary for the generation of significant amounts of base-load low-carbon electricity for decades to come. Although a valuable commodity, declining market prices for uranium in recent years, driven by uncertainties concerning evolutions in the use of nuclear power, have led to the postponement of mine development plans in a number of countries and to some questions being raised about future uranium supply. This 26. edition of the 'Red Book', a recognised world reference on uranium jointly prepared by the Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA), provides analyses and information from 49 producing and consuming countries in order to address these and other questions. The present edition provides the most recent review of world uranium market fundamentals and presents data on global uranium exploration, resources, production and reactor-related requirements. It offers updated information on established uranium production centres and mine development plans, as well as projections of nuclear generating capacity and reactor-related requirements through 2035, in order to address long-term uranium supply and demand issues. (authors)

  16. Preliminary analysis about reducing production costs in uranium mining and metallurgy at Fuzhou uranium mine

    International Nuclear Information System (INIS)

    Wu Sanmao

    1999-01-01

    The production costs in uranium ming and metallurgy have been analyzed quantitatively term by term according to present production situation for The Uranium Mining and Metallurgy Corp, which is part of Fuzhou Uranium Mine. The principal factors influencing on the production costs and the main means reducing the production costs have been found

  17. Fission product inventory calculation by a CASMO/ORIGEN coupling program

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Heon; Kim, Jong Kyung [Hanyang University, Seoul (Korea, Republic of); Choi, Hang Bok; Roh, Gyu Hong; Jung, In Ha [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A CASMO/ORIGEN coupling utility program was developed to predict the composition of all the fission products in spent PWR fuels. The coupling program reads the CASMO output file, modifies the ORIGEN cross section library and reconstructs the ORIGEN input file at each depletion step. In ORIGEN, the burnup equation is solved for actinides and fission products based on the fission reaction rates and depletion flux of CASMO. A sample calculation has been performed using a 14 x 14 PWR fuel assembly and the results are given in this paper. 3 refs., 1 fig., 1 tab. (Author)

  18. Fission product inventory calculation by a CASMO/ORIGEN coupling program

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Heon; Kim, Jong Kyung [Hanyang University, Seoul (Korea, Republic of); Choi, Hang Bok; Roh, Gyu Hong; Jung, In Ha [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    A CASMO/ORIGEN coupling utility program was developed to predict the composition of all the fission products in spent PWR fuels. The coupling program reads the CASMO output file, modifies the ORIGEN cross section library and reconstructs the ORIGEN input file at each depletion step. In ORIGEN, the burnup equation is solved for actinides and fission products based on the fission reaction rates and depletion flux of CASMO. A sample calculation has been performed using a 14 x 14 PWR fuel assembly and the results are given in this paper. 3 refs., 1 fig., 1 tab. (Author)

  19. Geochemical properties and nuclear chemical characteristics of Oklo natural fission reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hidaka, Hiroshi [Hiroshima Univ., Higashi-Hiroshima (Japan). Faculty of Science

    1997-07-01

    There are six uranium deposits in the Gabonese Republic in the cnetral Africa. `Fission reactor zone`, the fission chain reactions generated about 200 billion years ago, was existed in a part of them. CEA begun geochemical researches of Oklo deposits etc. in 1991. The geochemical and nuclear chemical properties of Oklo were reviewed from the results of researches. Oklo deposits is consisted of main five sedimentary faces such as sandstone (FA), Black Shale formation (FB), mudstone (FC), tuff (FD) and volcaniclastic sandstone (FE) from the bottom on the base rock of granite in the Precambrian era. Uranium is enriched in the upper part of FA layer and the under part of FB layer. {sup 235}U/{sup 238}U, U content, fission proportion, duration time, neutron fluence, temperature, restitution factor of {sup 235}U and epithermal index ({gamma}) were investigated and compared. The geochemical properties of Oklo are as followed: large enrich of uranium, the abundance ratio of {sup 235}U as same as that of enriched uranium, interaction of natural water and small rear earth elements. These factors made casually Oklo fission reactor. (S.Y.)

  20. World uranium resources, production and demand

    International Nuclear Information System (INIS)

    Lindholm, I.

    1988-01-01

    Reasonably assured resources of uranium in WOCA (World Outside the Centrally Planned Economies Area) countries recoverable at less than US $80/kg U increased by about 9% between 1983 and 1985 and currently stand at 1.5 million tonnes. Uranium also exists in significant quantities in higher cost resources or in less known resources. However, the annual exploration expenditure is less than 20% that of the 1979 level. Uranium production in WOCA countries was higher than consumption during the period 1965 to 1984 and considerable stocks were accumulated. However, the production figures for 1985 were estimated to be slightly less than those of consumption. Production from centres now on stand-by or new centres will probably be necessary around 1990. Analysis of the longer term production possibilities indicates that uranium supplies will probably not be constrained by an ultimate resource adequacy. Constraints, if any, are more likely to be of political nature. (author). 11 figs, 1 tab