WorldWideScience

Sample records for fission product decay

  1. Reactivity effects of fission product decay in PWRs

    International Nuclear Information System (INIS)

    Aragones, J.M.; Ahnert, C.

    1988-01-01

    The purpose of the work reported in this paper is to analyze the effects of fission product chains with radioactive decay on the reactivity in pressurized water reactor (PWR) cores, calculating their accumulation and absorption rates along fuel burnup at continuous operation and after shutdown periods extending from 1 day to a few months. The authors PWR version of the WIMS-D4 code is first used to obtain the individual number densities, absorption rates, and averaged cross sections for every nuclide of the fission product chains with significant decay rates, as a function of fuel burnup at continuous irradiation. Next, by an auxiliary ad hoc code, these data, have been processed together with the required one for fissile nuclides and boron, also taken from WIMS at each burnup step, to calculate the average or effective values relevant for the analysis and the decay and change in overall absorption after several shutdown times. (1) The reactivity effect of fission product decay changes significantly with the shutdown time. The maximum absorption increase by decay is reached in ∼ 10 days' shutdown. (2) The dependence with fuel type, enrichment, and burnup is slight, but the change with previous power density is nearly linear, which might be significant after coast-down in previous cycles. (3) For long shutdown periods, the overall reactivity effect of decay in the three fission product chains considered is much less than if only the samarium peak due to 149 Nd is considered

  2. Properties of Fission-Product decay heat from Minor-Actinide fissioning systems

    International Nuclear Information System (INIS)

    Oyamatsu, Kazuhiro; Mori, Hideki

    2000-01-01

    The aggregate Fission-Product (FP) decay heat after a pulse fission is examined for Minor Actinide (MA) fissiles 237 Np, 241 Am, 243 Am, 242 Cm and 244 Cm. We find that the MA decay heat is comparable but smaller than that of 235 U except for cooling times at about 10 8 s (approx. = 3 y). At these cooling times, either the β or γ component of the FP decay heat for these MA's is substantially larger than the one for 235 U. This difference is found to originate from the cumulative fission yield of 106 Ru (T 1/2 = 3.2x10 7 s). This nuclide is the parent of 106 Rh (T 1/2 = 29.8 s) which is the dominant source of the decay heat at 10 8 s (approx. = 3 y). The fission yield is nearly an increasing function of the fissile mass number so that the FP decay heat is the largest for 244 Cm among the MA's at the cooling time. (author)

  3. NEANDC specialists meeting on yields and decay data of fission product nuclides

    International Nuclear Information System (INIS)

    Chrien, R.E.; Burrows, T.W.

    1983-01-01

    Separate abstracts were prepared for the 29 papers presented. Workshop reports on decay heat, fission yields, beta- and gamma-ray spectroscopy, and delayed neutrons are included. An appendix contains a survey of the most recent compilations and evaluations containing fission product yield, fission product decay data, and delayed neutron yield information

  4. NEANDC specialists meeting on yields and decay data of fission product nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Chrien, R.E.; Burrows, T.W. (eds.)

    1983-01-01

    Separate abstracts were prepared for the 29 papers presented. Workshop reports on decay heat, fission yields, beta- and gamma-ray spectroscopy, and delayed neutrons are included. An appendix contains a survey of the most recent compilations and evaluations containing fission product yield, fission product decay data, and delayed neutron yield information. (WHK)

  5. Sensitivity and uncertainty analysis for fission product decay heat calculations

    International Nuclear Information System (INIS)

    Rebah, J.; Lee, Y.K.; Nimal, J.C.; Nimal, B.; Luneville, L.; Duchemin, B.

    1994-01-01

    The calculated uncertainty in decay heat due to the uncertainty in basic nuclear data given in the CEA86 Library, is presented. Uncertainties in summation calculation arise from several sources: fission product yields, half-lives and average decay energies. The correlation between basic data is taken into account. The uncertainty analysis were obtained for thermal-neutron-induced fission of U235 and Pu239 in the case of burst fission and irradiation time. The calculated decay heat in this study is compared with experimental results and with new calculation using the JEF2 Library. (from authors) 6 figs., 19 refs

  6. ENDF/B fission product decay data

    International Nuclear Information System (INIS)

    Rose, P.F.; Burrows, T.W.

    1976-08-01

    The fission product data have been organized by A-chains in order of ascending A from A = 72 to A = 167. The heading page is followed by more detailed information on the individual members of the chain in order of increasing Z and decreasing metastable state. The detailed information for each member includes the ENDF/B-IV File 1 comments and references if available and applicable to the decay data. Following the comments is a decay scheme of the nuclide tabulating the quantities T/sub 1 / 2 /, Q, branching ratio (BR), (E/sub γ/), (E/sub β/), and (E/sub α/). Uncertainties are given if available in the file. Independent fission yields are given, as well as thermal cross sections and resonance integrals as obtained from ENDF/B-IV. All energies listed in this publication are in keV, and all branching ratios (BR) sum to unity. If there are spectra in the decay data file, the decay scheme is followed by tables of photon, particle, and characteristic radiation. For cases in which the multipolarities could be obtained from the file the tables also contain information on x-rays, conversion electrons, and Auger electrons. Associated with the photon and particle radiation tables are the appropriate average energies per decay for each type of radiation, including neutrino radiation

  7. FISPRO: a simplified computer program for general fission product formation and decay calculations

    International Nuclear Information System (INIS)

    Jiacoletti, R.J.; Bailey, P.G.

    1979-08-01

    This report describes a computer program that solves a general form of the fission product formation and decay equations over given time steps for arbitrary decay chains composed of up to three nuclides. All fission product data and operational history data are input through user-defined input files. The program is very useful in the calculation of fission product activities of specific nuclides for various reactor operational histories and accident consequence calculations

  8. An application program for fission product decay heat calculations

    International Nuclear Information System (INIS)

    Pham, Ngoc Son; Katakura, Jun-ichi

    2007-10-01

    The precise knowledge of decay heat is one of the most important factors in safety design and operation of nuclear power facilities. Furthermore, decay heat data also play an important role in design of fuel discharges, fuel storage and transport flasks, and in spent fuel management and processing. In this study, a new application program, called DHP (Decay Heat Power program), has been developed for exact decay heat summation calculations, uncertainty analysis, and for determination of the individual contribution of each fission product. The analytical methods were applied in the program without any simplification or approximation, in which all of linear and non-linear decay chains, and 12 decay modes, including ground state and meta-stable states, are automatically identified, and processed by using a decay data library and a fission yield data file, both in ENDF/B-VI format. The window interface of the program is designed with optional properties which is very easy for users to run the code. (author)

  9. Status of decay data of fission products

    International Nuclear Information System (INIS)

    Blachot, J.

    1978-01-01

    Fission products (F.P.) are neutron rich isotopes ranging from Zn to Tm. The status of decay data of F.P. was described at the Bologna Panel 1973 by Rudstam. Since then, FPND have improved in general, but still much is valid of what Rudstam said about the accuracies of FPND. The lack of decay data for the short lived F.P. has been considerably reduced, and some of the short lived F.P. have now well studied decay data. The present status of decay data is given in this review, which is composed of six sections. In the first one, the principal new facilities used in decay data measurements are reviewed. The second part is devoted to the total decay energy (Q). In the third Section, the half lives are treated. In the fourth and fifth Sections, beta and gamma energies and intensities, and also average values are discussed. Finally, the last Section considers the different files and compilations devoted to the decay of F.P

  10. Search for spontaneous fission of 226Ra and systematics of the spontaneous fission, α-decay and cluster decay probabilities

    International Nuclear Information System (INIS)

    Mikheev, V.L.; Tret'yakova, S.P.; Golovchenko, A.N.; Timofeeva, O.V.; Hussonnois, M.; Le Naour, C.

    1998-01-01

    The low limit of the 226 Ra spontaneous fission half-life corresponding to T 1/2 ≥ 4 · 10 18 years is measured. The 226 Ra spontaneous fission probability proved to be about 50 times less than the value expected from the known systematics, connecting the ratios of theα-decay and spontaneous fission probabilities with the fissility parameter Z 2 /A. It is shown that the probabilities of spontaneous fission, α-decay and cluster decay can be systematized in the same way according to the difference between the decay products Coulomb energy near the scission point and decay energy Q

  11. Fission yield covariance generation and uncertainty propagation through fission pulse decay heat calculation

    International Nuclear Information System (INIS)

    Fiorito, L.; Diez, C.J.; Cabellos, O.; Stankovskiy, A.; Van den Eynde, G.; Labeau, P.E.

    2014-01-01

    Highlights: • Fission yield data and uncertainty comparison between major nuclear data libraries. • Fission yield covariance generation through Bayesian technique. • Study of the effect of fission yield correlations on decay heat calculations. • Covariance information contribute to reduce fission pulse decay heat uncertainty. - Abstract: Fission product yields are fundamental parameters in burnup/activation calculations and the impact of their uncertainties was widely studied in the past. Evaluations of these uncertainties were released, still without covariance data. Therefore, the nuclear community expressed the need of full fission yield covariance matrices to be able to produce inventory calculation results that take into account the complete uncertainty data. State-of-the-art fission yield data and methodologies for fission yield covariance generation were researched in this work. Covariance matrices were generated and compared to the original data stored in the library. Then, we focused on the effect of fission yield covariance information on fission pulse decay heat results for thermal fission of 235 U. Calculations were carried out using different libraries and codes (ACAB and ALEPH-2) after introducing the new covariance values. Results were compared with those obtained with the uncertainty data currently provided by the libraries. The uncertainty quantification was performed first with Monte Carlo sampling and then compared with linear perturbation. Indeed, correlations between fission yields strongly affect the uncertainty of decay heat. Eventually, a sensitivity analysis of fission product yields to fission pulse decay heat was performed in order to provide a full set of the most sensitive nuclides for such a calculation

  12. Uncertainties in fission-product decay-heat calculations

    Energy Technology Data Exchange (ETDEWEB)

    Oyamatsu, K.; Ohta, H.; Miyazono, T.; Tasaka, K. [Nagoya Univ. (Japan)

    1997-03-01

    The present precision of the aggregate decay heat calculations is studied quantitatively for 50 fissioning systems. In this evaluation, nuclear data and their uncertainty data are taken from ENDF/B-VI nuclear data library and those which are not available in this library are supplemented by a theoretical consideration. An approximate method is proposed to simplify the evaluation of the uncertainties in the aggregate decay heat calculations so that we can point out easily nuclei which cause large uncertainties in the calculated decay heat values. In this paper, we attempt to clarify the justification of the approximation which was not very clear at the early stage of the study. We find that the aggregate decay heat uncertainties for minor actinides such as Am and Cm isotopes are 3-5 times as large as those for {sup 235}U and {sup 239}Pu. The recommended values by Atomic Energy Society of Japan (AESJ) were given for 3 major fissioning systems, {sup 235}U(t), {sup 239}Pu(t) and {sup 238}U(f). The present results are consistent with the AESJ values for these systems although the two evaluations used different nuclear data libraries and approximations. Therefore, the present results can also be considered to supplement the uncertainty values for the remaining 17 fissioning systems in JNDC2, which were not treated in the AESJ evaluation. Furthermore, we attempt to list nuclear data which cause large uncertainties in decay heat calculations for the future revision of decay and yield data libraries. (author)

  13. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, M.

    1984-09-01

    This is the tenth issue of a report series on Fission Product Data, which informs us about all the activities in this field, which are planned, ongoing, or have recently been completed. The types of activities included are measurements, compilations and evaluations of: fission product yields (neutron induced and spontaneous fission), neutron reaction cross sections of fission products, data related to the radioactive decay of fission products, delayed neutron data of fission products, lumped fission product data (decay heat, absorption, etc.). There is also a section with recent references relative to fission product nuclear data

  14. An evaluation of nodalization/decay heat/ volatile fission product release models in ISAAC code

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yong Mann; Park, Soo Yong; Kim, Dong Ha

    2003-03-01

    An ISAAC computer code, which was developed for a Level-2 PSA during 1995, has developed mainly with fundamental models for CANDU-specific severe accident progression and also the accident-analyzing experiences are limited to Level-2 PSA purposes. Hence the system nodalization model, decay model and volatile fission product release model, which are known to affect fission product behavior directly or indirectly, are evaluated to both enhance understanding for basic models and accumulate accident-analyzing experiences. As a research strategy, sensitivity studies of model parameters and sensitivity coefficients are performed. According to the results from core nodalization sensitivity study, an original 3x3 nodalization (per loop) method which groups horizontal fuel channels into 12 representative channels, is evaluated to be sufficient for an optimal scheme because detailed nodalization methods have no large effect on fuel thermal-hydraulic behavior, total accident progression and fission product behavior. As ANSI/ANS standard model for decay heat prediction after reactor trip has no needs for further model evaluation due to both wide application on accident analysis codes and good comparison results with the ORIGEN code, ISAAC calculational results of decay heat are used as they are. In addition, fission product revaporization in a containment which is caused by the embedded decay heat, is demonstrated. The results for the volatile fission product release model are analyzed. In case of early release, the IDCOR model with an in-vessel Te release option shows the most conservative results and for the late release case, NUREG-0772 model shows the most conservative results. Considering both early and late release, the IDCOR model with an in-vessel Te bound option shows mitigated conservative results.

  15. Libraries of decay data and fission product yields in the ABBN-93 constant set

    International Nuclear Information System (INIS)

    Zabrodskaya, S.V.; Nikolaev, M.N.; Tsibulya, A.M.

    2001-01-01

    This paper describes three new libraries in the Abb. constant set which are essential for calculating radioactivity: basic decay data, radioactive decay photon spectra and fission product yields. (author)

  16. An automated system for selective fission product separations; decays of 113-115Pd

    International Nuclear Information System (INIS)

    Meikrantz, D.H.; Gehrke, R.J.; McIsaac, L.D.; Baker, J.D.; Greenwood, R.C.

    1981-01-01

    A microcomputer controlled radiochemical separation system has been developed for the isolation and study of fission products with half-lives of approx. >= 10 s. The system is based upon solvent extraction with three centrifugal contactors coupled in series, which provides both rapid and highly efficient separations with large decontamination factors. This automated system was utilized to study the radioactive decays of 113-115 Pd via solvent extraction of the Pd-dimethylglyoxime complex from 252 Cf fission products. As a result of this effort, γ-rays associated with the decay of approx. equal to 90-s sup(113,113m)Pd, 149-s 114 Pd and 47-s 115 Pd have been identified. The isotopic assignments to each of these Pd radioactivities have been confirmed from observation of the growth and decay curves of their respective Ag daughters. In addition, previously unreported Ag γ-rays have been assigned; one to the decay of 69-s 113 Ag, and two to the decay of 19-s 115 Ag. (orig.)

  17. FITPULS: a code for obtaining analytic fits to aggregate fission-product decay-energy spectra

    International Nuclear Information System (INIS)

    LaBauve, R.J.; George, D.C.; England, T.R.

    1980-03-01

    The operation and input to the FITPULS code, recently updated to utilize interactive graphics, are described. The code is designed to retrieve data from a library containing aggregate fine-group spectra (150 energy groups) from fission products, collapse the data to few groups (up to 25), and fit the resulting spectra along the cooling time axis with a linear combination of exponential functions. Also given in this report are useful results for aggregate gamma and beta spectra from the decay of fission products released from 235 U irradiated with a pulse (10 -4 s irradiation time) of thermal neutrons. These fits are given in 22 energy groups that are the first 22 groups of the LASL 25-group decay-energy group structure, and the data are expressed both as MeV per fission second and particles per fission second; these pulse functions are readily folded into finite fission histories. 65 figures, 11 tables

  18. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, G.

    1976-05-01

    The purpose of this series is to inform scientists working on Fission Product Nuclear Data, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. This report consists of reproductions of essentially unaltered original contributions which the authors have sent to IAEA/NDS. The types of activities being included in this report are measurements, compilations and evaluations of: fission product yields; neutron cross-section data of fission products; data related to β-, γ-decay of fission products; delayed neutron data; and fission product decay-heat

  19. Uncertainty of decay heat calculations originating from errors in the nuclear data and the yields of individual fission products

    International Nuclear Information System (INIS)

    Rudstam, G.

    1979-01-01

    The calculation of the abundance pattern of the fission products with due account taken of feeding from the fission of 235 U, 238 U, and 239 Pu, from the decay of parent nuclei, from neutron capture, and from delayed-neutron emission is described. By means of the abundances and the average beta and gamma energies the decay heat in nuclear fuel is evaluated along with its error derived from the uncertainties of fission yields and nuclear properties of the inddividual fission products. (author)

  20. Uncertainties on decay heat power due to fission product data uncertainties; Incertitudes sur la puissance residuelle dues aux incertitudes sur les donnees de produits de fission

    Energy Technology Data Exchange (ETDEWEB)

    Rebah, J

    1998-08-01

    Following a reactor shutdown, after the fission process has completely faded out, a significant quantity of energy known as 'decay heat' continues to be generated in the core. The knowledge with a good precision of the decay heat released in a fuel after reactor shutdown is necessary for: residual heat removal for normal operation or emergency shutdown condition, the design of cooling systems and spent fuel handling. By the summation calculations method, the decay heat is equal to the sum of the energies released by individual fission products. Under taking into account all nuclides that contribute significantly to the total decay heat, the results from summation method are comparable with the measured ones. Without the complete covariance information of nuclear data, the published uncertainty analyses of fission products decay heat summation calculation give underestimated errors through the variance/covariance analysis in consideration of correlation between the basic nuclear data, we calculate in this work the uncertainties on the decay heat associated with the summation calculations. Contribution to the total error of decay heat comes from uncertainties in three terms: fission yields, half-lives and average beta and gamma decay energy. (author)

  1. Energy distribution of antineutrinos originating from the decay of fission products in a nuclear reactor

    International Nuclear Information System (INIS)

    Rudstam, G.; Aleklett, K.

    1979-01-01

    The energy spectrum of antineutrinos around a nuclear reactor has been derived by summing contributions from individual fission products. The resulting spectrum is weaker at energies above approx. 8 MeV than earlier published antineutrino spectra. The reason may be connected to the strong feeding of high-lying daughter states in the beta decay of fission products with high disintegration energies

  2. The use of averages and other summation quantities in the testing of evaluated fission product yield and decay data. Applications to ENDF/B(IV)

    International Nuclear Information System (INIS)

    Walker, W.H.

    1976-01-01

    Averages of some fission product properties can be obtained by multiplying the fission product yield for each fission product by the value of the property (e.g. mass, atomic number, mass defect) for that fission product and summing all significant contributions. These averages can be used to test the reliability of the yield set or provide useful data for reactor calculations. The report gives the derivation of these averages and discusses their application using the ENDF/B(IV) fission product library. The following quantities are treated here: the number of fission products per fission ΣYsub(i); the average mass number and the average number of neutrons per fission; the average atomic number of the stable fission products and the average number of β-decays per fission; the average mass defect of the stable fission products and the total energy release per fission; the average decay energy per fission (beta, gamma and anti-neutrino); the average β-decay energy per fission; individual and group-averaged delayed neutron emission; the total yield for each fission product element. Wherever it is meaningful to do so, a sum is subdivided into its light and heavy mass components. The most significant differences between calculated values based on ENDF/B(IV) and measurements are the β and γ decay energies for 235 U thermal fission and delayed neutron yields for other fissile nuclides, most notably 238 U. (author)

  3. Approximation of the decay of fission and activation product mixtures

    International Nuclear Information System (INIS)

    Henderson, R.W.

    1991-01-01

    The decay of the exposure rate from a mixture of fission and activation products is a complex function of time. The exact solution of the problem involves the solution of more than 150 tenth order Bateman equations. An approximation of this function is required for the practical solution of problems involving multiple integrations of this function. Historically this has been a power function, or a series of power functions, of time. The approach selected here has been to approximate the decay with a sum of exponential functions. This produces a continuous, single valued function, that can be made to approximate the given decay scheme to any desired degree of closeness. Further, the integral of the sum is easily calculated over any period. 3 refs

  4. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, G.

    1975-01-01

    This is the first issue of a report series on Fission Product Nuclear Data (FPND), published every six months by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). Its purpose is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The types of activities being included in this report are measurements, compilations and evaluations of: fission product yields; neutron cross-section data of fission products; data related to β-, γ-decay of fission products; delayed neutron data; and fission product decay-heat. The present issue includes contributions which were received by NDS before 1 November 1975

  5. JNDC nuclear data library of fission products

    International Nuclear Information System (INIS)

    Tasaka, Kanji; Ihara, Hitoshi; Akiyama, Masatsugu; Yoshida, Tadashi; Matumoto, Zyun-itiro; Nakasima, Ryuzo

    1983-10-01

    The JNDC (Japanese Nuclear Data Committee) FP (Fission Product) nuclear data library for 1172 fission products is described in this report. The gross theory of beta decay has been used extensively for estimating unknown decay data and also some of known decay data with poor accuracy. The calculated decay powers of fission products using the present library show excellent agreement with the latest measurements at ORNL (Oak Ridge National Laboratory), LANL (Los Alamos National Laboratory) and UTT (University of Tokyo, Tokai) for cooling times shorter than 10 3 s after irradiation. The calculated decay powers by the existing libraries showed systematic deviations at short cooling times; the calculated beta and gamma decay powers after burst fission were smaller than the experimental results for cooling times shorter than 10 s, and in the cooling time range 10 to 10 3 s the beta-decay power was larger than the measured values and the gamma decay power smaller than the measured results. The present JNDC FP nuclear data library resolved these discrepancies in the short cooling time ranges. The decay power of fission products has been calculated for ten fission types and the results have been fitted by an analytical function with 31 exponentials. This permits the easy application of the present results of decay power calculations to a LOCA (Loss-of-Coolant Accident) analysis of a light water reactor and so on. (author)

  6. Measurement of the fission yields of selected prompt and decay fission product gamma-rays of spontaneously fissioning 252Cf and 244Cm

    International Nuclear Information System (INIS)

    Reber, E.L.; Gehrke, R.J.; Aryaeinejad, R.; Hartwell, J.K.

    2005-01-01

    Gamma-ray spectrometry measurements have been made of the fission yields of selected γ -rays emitted by the spontaneously fissioning isotopes 252 Cf and 244 Cm. The measured γ-rays were selected based on their relative abundance in the spectrum and their freedom from interference or, in a few instances, ease of interference correction. From these data and the cumulative and independent yield data of England and Rider, those γ-rays that are primarily produced by radioactive decay, as opposed to direct yield, were converted into the decays per spontaneous fission expressed in percent and compared to cumulative yield values of England and Rider. For those γ-rays whose production is dominated by direct (independent) yield, the ratio of γ-rays per spontaneous fission is reported. The γ-ray yield can be compared to the independent yield values of England and Rider when 100% of the direct feeding passes through the γ-ray. In those cases where both cumulative and independent yields contribute to the observed γ-ray emission rate, a direct comparison is not possible but a method to quantify the contribution from each is proposed. (author)

  7. Influence of fission product transport on delayed neutron precursors and decay heat sources in LMFBR accidents

    International Nuclear Information System (INIS)

    Apperson, C.E. Jr.

    1981-01-01

    A method is presented for studying the influence of fission product transpot on delayed neutron precursors and decay heat sources during Liquid Metal Fast Breeder Reactor (LMFBR) unprotected accidents. The model represents the LMFBR core as a closed homogeneous cell. Thermodynamic phase equilibrium theory is used to predict fission product mobility. Reactor kinetics behavior is analyzed by an extension of point kinetics theory. Group dependent delayed neutron precursor and decay heat source retention factors, which represent the fraction of each group retained in the fuel, are developed to link the kinetics and thermodynamics analysis. Application of the method to a highly simplified model of an unprotected loss-of-flow accident shows a time delay on the order of 10 ms is introduced in the predisassembly power history if fission product motion is considered when compared to the traditional transient solution. The post-transient influence of fission product transport calculated by the present model is a 24 percent reduction in the decay heat level in the fuel material which is similar to traditional approximations. Isotopes of the noble gases, Kr and Xe, and the elements I and Br are shown to be very mobile and are responsible for a major part of the observed effects. Isotopes of the elements Cs, Se, Rb, and Te were found to be moderately mobile and contribute to a lesser extent to the observed phenomena. These results obtained from the application of the described model confirm the initial hypothesis that sufficient fission product transport can occur to influence a transient. For these reasons, it is concluded that extension of this model into a multi-cell transient analysis code is warranted

  8. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, M.

    1981-06-01

    This is the seventh issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The present issue contains also a section with some recent references relative to fission product nuclear data, which were not covered by the contributions submitted. The types of activities being included in this report are measurements, compilations and evaluations of: fission product yields (neutron induced and spontaneous fission); neutron reaction cross sections of fission products; data related to the radioactive decay of fission products; delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The sixth issue of this series has been published in June 1980 as INDC(NDS)-113/G+P. The present issue includes contributions which were received by NDS between 1 August 1980 and 25 May 1981

  9. [Fission product yields of 60 fissioning reactions]. Final report

    International Nuclear Information System (INIS)

    Rider, B.F.

    1995-01-01

    In keeping with the statement of work, I have examined the fission product yields of 60 fissioning reactions. In co-authorship with the UTR (University Technical Representative) Talmadge R. England ''Evaluation and Compilation of Fission Product Yields 1993,'' LA-UR-94-3106(ENDF-349) October, (1994) was published. This is an evaluated set of fission product Yields for use in calculation of decay heat curves with improved accuracy has been prepared. These evaluated yields are based on all known experimental data through 1992. Unmeasured fission product yields are calculated from charge distribution, pairing effects, and isomeric state models developed at Los Alamos National Laboratory. The current evaluation has been distributed as the ENDF/B-VI fission product yield data set

  10. On Error Analysis of ORIGEN Decay Data Library Based on ENDF/B-VII.1 via Decay Heat Estimation after a Fission Event

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Heon; Gil, Choong-Sup; Lee, Young-Ouk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The method is strongly dependent on the available nuclear structure data, i.e., fission product yield data and decay data. Consequently, the improvements in the nuclear structure data could have guaranteed more reliable decay heat estimation for short cooling times after fission. The SCALE-6.1.3 code package includes the ENDF/B-VII.0-based fission product yield data and ENDF/B-VII.1-based decay data libraries for the ORIGEN-S code. The generation and validation of the new ORIGEN-S yield data libraries based on the recently available fission product yield data such as ENDF/B-VII.1, JEFF-3.1.1, JENDL/FPY-2011, and JENDL-4.0 have been presented in the previous study. According to the study, the yield data library in the SCALE-6.1.3 could be regarded as the latest one because it resulted in almost the same outcomes as the ENDF/B-VII.1. A research project on the production of the nuclear structure data for decay heat estimation of nuclear fuel has been carried out in Korea Atomic Energy Research Institute (KAERI). The data errors contained in the ORIGEN-S decay data library of SCALE-6.1.3 have been clearly identified by their changing variables. Also, the impacts of the decay data errors have been analyzed by estimating the decay heats for the fission product nuclides and their daughters after {sup 235}U thermal-neutron fission. Although the impacts of decay data errors are quite small, it reminds us the possible importance of decay data when estimating the decay heat for short cooling times after a fission event.

  11. An assessment of fission product data for decay power calculation in fast reactors

    International Nuclear Information System (INIS)

    Sridharan, M.S.; Murthy, K.P.N.

    1987-01-01

    A review of our present capability at IGC, Kalpakkam to predict fission product decay power in fast reactors is presented. This is accomplished by comparing our summation calculations with the calculations of others and the reported experimental measurements. Our calculations are based on Chandy code developed at our Centre. The fission product data base of Chandy is essentially drawn from the yield data compiled by Crouch (1977) and the data on halflives etc. compiled by Tobias (1973). In general, we find good agreement amongst the different calculations (within ±5%) and our calculations also compare well with experimental measurements of AKIAMA et al and MURPHY et al

  12. Progress in fission product nuclear data. No. 13

    International Nuclear Information System (INIS)

    Lammer, M.

    1990-11-01

    This is the 13th issue of a report series published by the Nuclear Data Section of the IAEA. The types of activities included are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission), neutron reaction cross-sections of fission products, data related to the radioactive decay of fission products, delayed neutron data of fission products and bumped fission product data (decay heat, absorption, etc.). The first part of the report consists of unaltered original data which the authors have sent to IAEA/NDS. The second part contains some recent references relative to fission product nuclear data, which were not covered by the contributions submitted, and selected papers from conferences. Part 3 contains requirements for further measurements

  13. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, M.

    1983-08-01

    This is the ninth issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS. The present issue contains also a section with some recent references relative to fission product nuclear data, which were not covered by the contributions submitted. The types of activities being included in this report are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission); Neutron reaction cross sections of fission products; Data related to the radioactive decay of fission products; Delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The eighth issue of this series has been published in July 1982 as INDC(NDS)-130. The present issue includes contributions which were received by NDS between 1 August 1982 and 25 June 1983

  14. JEFF-3T. Decay data and fission yield libraries

    International Nuclear Information System (INIS)

    Bersillon, O.; Blachot, J.; Dean, C.J.; Mills, R.W.; Nichols, A.L.; Nouri, A.

    2002-01-01

    Comprehensive decay-data and fission-yield libraries provide important input to a wide range of nuclear physics codes for nuclear applications. A new initiative has begun under the auspices of the NEA/OECD to generate improved data sets that will constitute the JEFF-3 libraries in ENDF-6 format, primarily for nuclear power, fuel reprocessing and waste management needs. Various sources of decay data have been accessed in order to assemble these files: NUBASE, ENSDF, UKPADD-6 and UKHEDD-2. Efforts have also focused on the evaluation of decay data for a number of important short-lived fission products, so that artificial adjustments to some of the relevant decay data and fission yields are not required to accommodate a previous lack of such data. Fission yields were adopted from UK evaluations recently undertaken to create the UKFY3 library. Decay-data files for 3 755 nuclides have been prepared, including sets of data for the stable nuclides (i.e. mass, natural abundance, spin and parity). Problems in the assignment of ENDF material numbers were addressed, while format and consistency tests were made using CHECKR and FIZCON, respectively. The assembly processes are discussed and reviewed, and the contents of the JEFF-3T starter libraries are described. (author)

  15. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, M.

    1982-07-01

    This is the eighth issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS. Therefore, the IAEA cannot be held responsible for the information contained nor for any consequences resulting from the use of this information. The present issue contains also a section with some recent references relative to fission product nuclear data, which were not covered by the contributions submitted. The types of activities being included in this report are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission); Neutron reaction cross sections of fission products; Data related to the radioactive decay of fission products; Delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The seventh issue of this series has been published in July 1981 as INDC(NDS)-116. The present issue includes contributions which were received by NDS between 1 August 1981 and 15 June 1982

  16. Progress in fission product nuclear data. Information about activities in the field of measurements and compilations/evaluations of fission product nuclear data (FPND)

    International Nuclear Information System (INIS)

    Lammer, G.

    1978-07-01

    This is the fourth issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS. The types of activities being included in this report are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission); neutron reaction cross sections of fission products; data related to the radioactive decay of fission products; delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.)

  17. Fission-product yields for thermal-neutron fission of curium-243

    International Nuclear Information System (INIS)

    Breederland, D.G.

    1982-01-01

    Cumulative fission yields for 25 gamma rays emitted during the decay of 23 fission products produced by thermal-neutron fission of 243 Cm have been determined. Using Ge(Li) spectroscopy, 33 successive pulse-height spectra of gamma rays emitted from a 77-ng sample of 243 Cm over a period of approximately two and one-half months were analyzed. Reduction of these spectra resulted in the identification and matching of gamma-ray energies and half-lives to specific radionuclides. Using these results, 23 cumulative fission-product yields were calculated. Only those radionuclides having half-lives between 6 hours and 65 days were observed. Prior to this experiment, no fission-product yields had been recorded for 243 Cm

  18. CINDER, Depletion and Decay Chain Calculation for Fission Products in Thermal Reactors

    International Nuclear Information System (INIS)

    England, T.R.; Gorrell, T.C.; Hightower, J.H.

    2001-01-01

    1 - Description of problem or function: CINDER is a four-group, one- point depletion and fission product program based on the evaluation of a general analytical solution of nuclides coupled in any linear sequence of radioactive decays and neutron absorptions in a specified neutron flux spectrum. The desired depletion and fission product chains and all physical data are specified by the problem originator. The program computes individual nuclide number densities, activities, nine energy-group disintegration rates, and macroscopic and barns/fission poisons at each time-step as well as selected summaries of these data. 2 - Method of solution: Time-dependent variations in nuclide cross sections and neutron fluxes are approximated by a user-specified sequential set of values which are considered constant during the duration of the user-specified associated time-increments. When a nuclide concentration is independent of the concentration of any of its progeny, it is possible to resolve the couplings so as to obtain nuclides fed by a single parent. These chains are referred to as linear. 3 - Restrictions on the complexity of the problem: The program is limited to 500 total nuclides formed in up to 240 chains of 20 or fewer nuclides each. Up to 10 nuclides may act as fission product sources, contributing to power, and as many as 99 time-steps of arbitrary length are permitted. All stable nuclides must have a cross section if zero power time-increments are anticipated

  19. Measurement of Fission Product Yields from Fast-Neutron Fission

    Science.gov (United States)

    Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Henderson, R.; Kenneally, J.; Macri, R.; McNabb, D.; Ryan, C.; Sheets, S.; Stoyer, M. A.; Tonchev, A. P.; Bhatia, C.; Bhike, M.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.

    2014-09-01

    One of the aims of the Stockpile Stewardship Program is a reduction of the uncertainties on fission data used for analyzing nuclear test data [1,2]. Fission products such as 147Nd are convenient for determining fission yields because of their relatively high yield per fission (about 2%) and long half-life (10.98 days). A scientific program for measuring fission product yields from 235U,238U and 239Pu targets as a function of bombarding neutron energy (0.1 to 15 MeV) is currently underway using monoenergetic neutron beams produced at the 10 MV Tandem Accelerator at TUNL. Dual-fission chambers are used to determine the rate of fission in targets during activation. Activated targets are counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. To date, data have been collected at neutron bombarding energies 4.6, 9.0, 14.5 and 14.8 MeV. Experimental methods and data reduction techniques are discussed, and some preliminary results are presented.

  20. A revised ANS standard for decay heat from fission products

    International Nuclear Information System (INIS)

    Schrock, V.E.

    1978-01-01

    The draft ANS 5.1 standard on decay heat was published in 1971 and given minor revision in 1973. Its basis was the best estimate working curve developed by K. Shure in 1961. Liberal uncertainties were assigned to the standard values because of lack of data for short cooling times and large discrepancies among experimental data. Research carried out over the past few years has greatly improved the knowledge of this phenomenon and a major revision of the standard has been completed. Very accurate determination of the decay heat is now possible, expecially within the first 10 4 seconds, where the influence of neutron capture in fission products may be treated as a small correction to the idealized zero capture case. The new standard accounts for differences among fuel nuclides. It covers cooling time to 10 9 seconds, but provides only an ''upper bound'' on the capture correction in the interval 10 4 9 seconds. (author)

  1. Yields of fission products produced by thermal-neutron fission of 245Cm

    International Nuclear Information System (INIS)

    Dickens, J.K.; McConnell, J.W.

    1981-01-01

    Absolute yields have been determined for 105 gamma rays emitted in the decay of 95 fission products representing 54 mass chains created during thermal-neutron fission of 245 Cm. These results include 17 mass chains for which no prior yield data exist. Using a Ge(Li) detector, spectra were obtained of gamma rays between 30 sec and 0.3 yr after very short irradiations of thermal neutrons on a 1 μg sample of 245 Cm. On the basis of measured gamma-ray yields and known nuclear data, total chain mass yields and relative uncertainties were obtained for 51 masses between 84 and 156. The absolute overall normalization uncertainty is 239 Pu and for 252 Cf(s.f.); the influences of the closed shells Z=50, N=82 are not as marked as for thermal-neutron fission of 239 Pu but much more apparent than for 252 Cf(s.f.). Information on the charge distribution along several isobaric mass chains was obtained by determining fractional yields for 12 fission products. The charge distribution width parameter, based upon data for the heavy masses, A=128 to 140, is independent of mass to within the uncertainties of the measurements. Gamma-ray assignments were made for decay of short-lived fission products for which absolute gamma-ray transition probabilities are either not known or in doubt. Absolute gamma-ray transition probabilities were determined as (51 +- 8)% for the 374-keV gamma ray from decay of 110 Rh, (35 +- 7)% for the 1096-keV gamma ray from decay of 133 Sb, and (21.2 +- 1.2)% for the 255-keV gamma ray from decay of 142 Ba

  2. Fission decay properties of nuclear giant multipole resonances

    International Nuclear Information System (INIS)

    Dias, H.; Arruda Neto, J.D.T.; Hussein, M.S.; Carlson, B.V.

    1986-05-01

    The statistical fission decay properties of the giant dipole, quadrupole and monopole resonances in 236 U are investigated with the aid of the Hauser-Feshbach model. It is found, contrary to several recent claims, that the GQR fission decay probability is as large as that of the GDR, at energies higher than the fission barrier. At energies close to the f.b., the GQR fission probability is found to be appreciably larger than that of the GDR. The GMR fission probability follows closely that of the GQR. (Author) [pt

  3. RIBD-IRT, Isotope Buildup and Isotope Decay from Fission Source

    International Nuclear Information System (INIS)

    1990-01-01

    1 - Description of problem or function: RIBD-IRT calculates isotopic concentrations resulting from two fission sources with normal down- chain decay by beta emission and isomeric transfers and inter-chain coupling resulting from (n,gamma) reactions. Calculations can be made to follow an irradiation history through an unlimited number of step changes of unrestricted duration and variability including shutdown periods, restarts at different power levels and/or any other level changes. In addition, the program permits to track and modify the concentration of individual elements as they decay with time following reactor shutdown. Tracking individual elements enables one to estimate time-dependent source terms for a hypothetical LOCA based on known or postulated fission product release mechanisms. 2 - Method of solution: RIBD-IRT is a grid processor. It organizes the various members described by the fission product library data into a grid with the various linkages established from chain branching data, yield data, and neutron capture cross sections with their branching ratios. Radioactive decay includes not only the simple member-to-member cascade but also the more complex forms where branching may be partially or completely skip one or two intervening members

  4. BIPAL - a data library for computing the burnup of fissionable isotopes and products of their decay

    International Nuclear Information System (INIS)

    Kralovcova, E.; Hep, J.; Valenta, V.

    1978-01-01

    The BIPAL databank contains data on 100 heavy metal isotopes starting with 206 Tl and finishing with 253 Es. Four are stable, the others are unstable. The following data are currently stored in the databank: the serial number and name of isotopes, decay modes and, for stable isotopes, the isotopic abundance (%), numbers of P decays and Q captures, numbers of corresponding final products, branching ratios, half-lives and their units, decay constants, thermal neutron captures, and fission cross sections, and other data (mainly alpha, beta and gamma intensities). The description of data and a printout of the BIPAL library are presented. (J.B.)

  5. TMI-2 decay power: LASL fission-product and actinide decay power calculations for the President's Commission at Three Mile Island

    International Nuclear Information System (INIS)

    England, T.R.; Wilson, W.B.

    1979-10-01

    Fission-product and actinide decay heating, gas content, curies, and detailed contributions of the most important nuclide contributors were supplied in a series of letters following requests from the Presidential Commission on the Accident at Three Mile Island. In addition, similar data assuming different irradiation (power) histories were requested for purposes of comparison. This report consolidates the tabular and graphical data supplied and explains its basis

  6. Progress in fission product nuclear data. No. 14

    International Nuclear Information System (INIS)

    Lammer, M.

    1994-06-01

    This is the 14th issue of a report series on Fission Product Nuclear Data published by the Nuclear Data Section of the IAEA. The types of activities included are measurements, compilations and evaluations of fission product yields, neutron reaction cross sections of fission products, data related to the radioactive decay of fission products, delayed neutron data from neutron induced and spontaneous fission, lumped fission product data. The first part of the report consists of unaltered original contributions which the authors have sent to IAEA/NDS. The second part contains some recent references relative to fission product nuclear data, which were not covered by the contributions submitted, and selected papers from conferences. The third part contains requirements for further measurements

  7. Tables and figures from JNDC Nuclear Data Library of fission products, version 2

    International Nuclear Information System (INIS)

    Ihara, Hitoshi

    1989-11-01

    The content of JNDC (Japanese Nuclear Data Committee) FP (Fission Product) Nuclear Data Library version 2 for 1227 fission products is presented in the form of tables and figures. The library is inclusive of evaluated decay data such as decay constant, Q-value, average energies of beta, gamma and internal conversion electron, spin-parity, branching ratio of each decay mode and fission yield. The neutron capture cross-sections are also contained for 166 nuclides. The mass number of the fission product nuclides ranges from A = 66 to A = 172. (author)

  8. NEACRP thermal fission product benchmark

    International Nuclear Information System (INIS)

    Halsall, M.J.; Taubman, C.J.

    1989-09-01

    The objective of the thermal fission product benchmark was to compare the range of fission product data in use at the present time. A simple homogeneous problem was set with 200 atoms H/1 atom U235, to be burnt up to 1000 days and then decay for 1000 days. The problem was repeated with 200 atoms H/1 atom Pu239, 20 atoms H/1 atom U235 and 20 atoms H/1 atom Pu239. There were ten participants and the submissions received are detailed in this report. (author)

  9. Beta decay heat following U-235, U-238 and Pu-239 neutron fission

    Science.gov (United States)

    Li, Shengjie

    1997-09-01

    This is an experimental study of beta-particle decay heat from 235U, 239Pu and 238U aggregate fission products over delay times 0.4-40,000 seconds. The experimental results below 2s for 235U and 239Pu, and below 20s for 238U, are the first such results reported. The experiments were conducted at the UMASS Lowell 5.5-MV Van de Graaff accelerator and 1-MW swimming-pool research reactor. Thermalized neutrons from the 7Li(p,n)7Be reaction induced fission in 238U and 239Pu, and fast neutrons produced in the reactor initiated fission in 238U. A helium-jet/tape-transport system rapidly transferred fission fragments from a fission chamber to a low background counting area. Delay times after fission were selected by varying the tape speed or the position of the spray point relative to the beta spectrometer that employed a thin-scintillator-disk gating technique to separate beta-particles from accompanying gamma-rays. Beta and gamma sources were both used in energy calibration. Based on low-energy(energies 0-10 MeV. Measured beta spectra were unfolded for their energy distributions by the program FERD, and then compared to other measurements and summation calculations based on ENDF/B-VI fission-product data performed on the LANL Cray computer. Measurements of the beta activity as a function of decay time furnished a relative normalization. Results for the beta decay heat are presented and compared with other experimental data and the summation calculations.

  10. TMI-2 decay power: LASL fission-product and actinide decay power calculations for the President's Commission at Three Mile Island

    Energy Technology Data Exchange (ETDEWEB)

    England, T.R.; Wilson, W.B.

    1979-10-01

    Fission-product and actinide decay heating, gas content, curies, and detailed contributions of the most important nuclide contributors were supplied in a series of letters following requests from the Presidential Commission on the Accident at Three Mile Island. In addition, similar data assuming different irradiation (power) histories were requested for purposes of comparison. This report consolidates the tabular and graphical data supplied and explains its basis.

  11. ENDF/B-5 Fission Products Library 1979

    International Nuclear Information System (INIS)

    Schwerer, O.; Lemmel, H.D.

    1981-10-01

    This document summarizes contents and documentation of the 1979 version of the Fission Products File of the ENDF/B Library maintained by the National Nuclear Data Center (NNDC) at the Brookhaven National Laboratory, USA. This file contains numerical neutron reaction data and decay data for 877 fission product nuclides. The entire file or selective retrievals from it can be obtained on magnetic tape from the IAEA Nuclear Data Section. (author)

  12. RSAC, Gamma Doses, Inhalation and Ingestion Doses, Fission Products Inventory after Fission Products Release

    International Nuclear Information System (INIS)

    Richardson, L.C.

    1967-01-01

    1 - Description of problem or function: RSAC generates a fission product inventory from a given set of reactor operating conditions and then computes the external gamma dose, the deposition gamma dose, and the inhalation-ingestion dose to critical body organs as a result of exposure to these fission products. Program output includes reactor operating history, fission product inventory, dosages, and ingestion parameters. 2 - Method of solution: The fission product inventory generated by the reactor operating conditions and the inventory remaining at various times after release are computed using the equations of W. Rubinson in Journal of Chemical Physics, Vol. 17, pages 542-547, June 1949. The external gamma dose and the deposition gamma dose are calculated by determining disintegration rates as a function of space and time, then integrating using Hermite's numerical techniques for the spatial dependence. The inhalation-ingestion dose is determined by the type and quantity of activity inhaled and the biological rate of decay following inhalation. These quantities are integrated with respect to time to obtain the dosage. The ingestion dose is related to the inhalation dose by an input constant

  13. TMI-2 decay power: LASL fission-product and actinide decay power calculations for the President's commission on the accident at Three Mile Island

    International Nuclear Information System (INIS)

    England, T.R.; Wilson, W.B.

    1980-03-01

    Fission-product and actinide decay heating, gas content, curies, and detailed contributions of the most important nuclide contributors were supplied in a series of letters following requests from the Presidential Commission on the Accident at Three Mile Island. In addition, similar data assuming different irradiation (power) histories were requested for purposes of comparison. This report consolidates the tabular and graphical data supplied and explains its basis

  14. Beta and gamma decay heat evaluation for the thermal fission of 235U

    International Nuclear Information System (INIS)

    Schenter, G.K.; Schmittroth, F.

    1979-01-01

    Beta and gamma fission product decay heat curves are evaluated for the thermal fission of 235 U. Experimental data that include beta, gamma, and total measurements are combined with summation calculations based on ENDF/B in a consistent evaluation. Least-squares methods are used that take proper account of data uncertainties and correlations. 4 figures, 2 tables

  15. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    Directory of Open Access Journals (Sweden)

    Porta A.

    2016-01-01

    Full Text Available Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland using Total Absorption Spectroscopy (TAS. TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  16. RSAC-6, Gamma doses, inhalation and ingestion doses, fission products inventory after fission products release

    International Nuclear Information System (INIS)

    Wenzel, Douglas R.; Schrader, Brad J.

    2007-01-01

    1 - Description of program or function: RSAC-6 is the latest version of the program RSAC (Radiological Safety Analysis Computer Program). It calculates the consequences of a release of radionuclides to the atmosphere. Using a personal computer, a user can generate a fission product inventory; decay and in-grow the inventory during transport through processes, facilities, and the environment; model the downwind dispersion of the activity; and calculate doses to downwind individuals. Internal dose from the inhalation and ingestion pathways is calculated. External dose from ground surface and plume gamma pathways is calculated. New and exciting updates to the program include the ability to evaluate a release to an enclosed room, resuspension of deposited activity and evaluation of a release up to 1 meter from the release point. Enhanced tools are included for dry deposition, building wake, occupancy factors, respirable fraction, AMAD adjustment, updated and enhanced radionuclide inventory and inclusion of the dose-conversion factors from FOR 11 and 12. 2 - Methods: RSAC6 calculates meteorological dispersion in the atmosphere using Gaussian plume diffusion for Pasquill-Gifford, Hilmeier-Gifford and Markee models. A unique capability is the ability to model Class F fumigation conditions, the meteorological condition that causes the highest ground level concentrations from an elevated release. Doses may be calculated for various pathways including inhalation, ingestion, ground surface, air immersion, water immersion pathways. Dose calculations may be made for either acute or chronic releases. Internal doses (inhalation and ingestion) are calculated using the ICRP-30 model with dose conversion factors from FOR 11. External factors are calculated using FOR 12. 3 - Unusual Features: RSAC6 calculates complete progeny in-growth and decay during all accident phases. The calculation of fission product inventories in particularly useful in the analysis of accidents where the

  17. Fission-product releases from a PHWR terminal debris bed

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.J.; Bailey, D.G., E-mail: morgan.brown@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    During an unmitigated severe accident in a pressurized heavy water reactor (PHWR) with horizontal fuel channels, the core may disassemble and relocate to the bottom of the calandria vessel. The resulting heterogeneous in-vessel terminal debris bed (TDB) would likely be quenched by any remaining moderator, and some of the decay heat would be conducted through the calandria vessel shell to the surrounding reactor vault or shield tank water. As the moderator boiled off, the solid debris bed would transform into a more homogeneous molten corium pool located between top and bottom crusts. Until recently, the severe accident code MAAP-CANDU assumed that unreleased volatile and semi-volatile fission products remained in the TDB until after calandria vessel failure, due to low diffusivity through the top crust and the lack of gases or steam to flush released fission products from the debris. However, national and international experimental results indicate this assumption is unlikely; instead, high- and medium-volatility fission products would be released from a molten debris pool, and their volatility and transport should be taken into account in TDB modelling. The resulting change in the distribution of fission products within the reactor and containment, and the associated decay heat, can have significant effects upon the progression of the accident and fission-product releases to the environment. This article describes a postulated PHWR severe accident progression to generate a TDB and the effects of fission-product releases from the terminal debris, using the simple release model in the MAAP-CANDU severe accident code. It also provides insights from various experimental programs related to fission-product releases from core debris, and their applicability to the MAAP-CANDU TDB model. (author)

  18. Fission product yield evaluation for the USA evaluated nuclear data files

    International Nuclear Information System (INIS)

    Rider, B.F.; England, T.R.

    1994-01-01

    An evaluated set of fission product yields for use in calculation of decay heat curves with improved accuracy has been prepared. These evaluated yields are based on all known experimental data through 1992. Unmeasured fission product yields are calculated from charge distribution, pairing effects, and isomeric state models developed at Los Alamos National Laboratory. The current evaluation has been distributed as the ENDF/B-VI fission product yield data set

  19. Volatilization and reaction of fission products in flowing steam

    International Nuclear Information System (INIS)

    Johnson, I.; Steidl, D.V.; Johnson, C.E.

    1985-01-01

    The principal risk to the public from nuclear power plants derives from the highly radioactive atoms (fission products) generated as energy is produced in the nuclear fuel. The revolatilization of fission products from reactor system surfaces due to self-heating by radioactive decay has become a complicating factor in the source-term redefinition effort. It has had a major impact on calculations of fission product distributions in accident safety analyses. The focus of this research effort was to investigate the volatilization and transport of fission products and control rod materials in a flowing gaseous steam-hydrogen mixture. Fission product and control rod materials in various combinations were studied including CsI, CsOH, TeO 2 , SrO, Ag, In, Cd and Mn. The vaporization behavior of the deposits were characterized with respect to vaporization rates, chemical species and downstream transport behavior

  20. ENDF/B-5 Fission Products Library. Rev. 2

    International Nuclear Information System (INIS)

    Schwerer, O.; Pronyaev, V.G.; Lemmel, H.D.

    1984-07-01

    This document summarizes contents and documentation of the 1984 version of the Fission Products Nuclear Data File of the ENDF/B-5 Library (Rev. 2) maintained by the National Nuclear Data Center (NNDC) at the Brookhaven National Laboratory, USA. This file contains numerical neutron reaction data and decay data for 877 fission product nuclides. The entire file or selective retrievals from it can be obtained on magnetic tape from the IAEA Nuclear Data Section. (author)

  1. Realistic fission models, new beta-decay half-lives and the r-process in neutron star mergers

    International Nuclear Information System (INIS)

    Shibagaki, S.; Kajino, T.; Chiba, S.; Lorusso, G.; Nishimura, S.; Mathews, G. J.

    2014-01-01

    Almost half of heavy nuclei beyond iron are considered to be produced by rapid neutron capture process (r-process). This process occurs in the neutron-rich environment such as core-collapse supernovae or neutron star mergers, but the main production site is still unknown. In the r-process of neutron star mergers, nuclear fission reactions play an important role. Also beta-decay half-lives of magic nuclei are crucial for the r-process. We have carried out r-process nucleosynthesis calculations based upon new theoretical estimates of fission fragment distributions and new beta-decay half-lives for N=82 nuclei measured at RIBF-RIKEN. We investigate the effect of nuclear fission on abundance patterns in the matter ejected from neutron star mergers with two different fission fragment mass distributions. We also discuss how the new experimental beta-decay half-lives affect the r-process

  2. LOFC fission product release and circulating activity calculations for gas-cooled reactors

    International Nuclear Information System (INIS)

    Apperson, C.E. Jr.; Carruthers, L.M.; Lee, C.E.

    1977-01-01

    The inventories of fission products in a gas-cooled reactor under accident and normal steady state conditions are time and temperature dependent. To obtain a reasonable estimate of these inventories it is necessary to consider fuel failure, a temperature dependent variable, and radioactive decay, a time dependent variable. Using arbitrary radioactive decay chains and published fuel failure models for the High Temperature Gas-Cooled Reactor (HTGR), methods have been developed to evaluate the release of fission products during the Loss of Forced Circulation (LOFC) accident and the circulating and plateout fission product inventories during steady state non-accident operation. The LARC-2 model presented here neglects the time delays in the release from the HTGR due to diffusion of fission products from particles in the fuel rod through the graphite matrix. It also neglects the adsorption and evaporation process of metallics at the fuel rod-graphite and graphite-coolant hole interfaces. Any time delay due to the finite time of transport of fission products by convection through the coolant to the outside of the prestressed concrete reactor vessel (PCRV) is also neglected. This model assumes that all fission products released from fuel particles are immediately deposited outside the PCRV with no time delay

  3. User's manual for computer code RIBD-II, a fission product inventory code

    International Nuclear Information System (INIS)

    Marr, D.R.

    1975-01-01

    The computer code RIBD-II is used to calculate inventories, activities, decay powers, and energy releases for the fission products generated in a fuel irradiation. Changes from the earlier RIBD code are: the expansion to include up to 850 fission product isotopes, input in the user-oriented NAMELIST format, and run-time choice of fuels from an extensively enlarged library of nuclear data. The library that is included in the code package contains yield data for 818 fission product isotopes for each of fourteen different fissionable isotopes, together with fission product transmutation cross sections for fast and thermal systems. Calculational algorithms are little changed from those in RIBD. (U.S.)

  4. Yields of fission products produced by thermal-neutron fission of 229Th

    International Nuclear Information System (INIS)

    Dickens, J.K.; McConnell, J.W.

    1983-01-01

    Absolute yields have been determined for 47 gamma rays emitted in the decay of 37 fission products representing 25 mass chains created during thermal-neutron fission of 229 Th. Using a Ge(Li) detector, spectra were obtained of gamma rays emitted between 15 min and 0.4 yr after very short irradiations by thermal neutrons of a 15-μg sample of 229 Th. On the basis of measured gamma-ray yields and known nuclear data, yields for cumulative production of 37 fission products were deduced. The absolute overall normalization uncertainty is 235 U, we postulate a simple functional dependence sigma = sigma(Z/sub p/), and using this dependence obtain values of Z/sub p/(A) for 15 mass chains created during fission of 229 Th. Values of Z/sub p/(A) were estimated for other mass chains based upon results of a recent study of Z/sub p/(A). Charge distributions determined using the deduced mass distribution and the deduced sets of Z/sub p/(A) and sigma(Z/sub p/) are in very good agreement with recent measurements, exhibiting a pronounced even-odd effect in elemental yields. These results may be used to predict unmeasured yields for 229 Th fission

  5. Angular momentum distribution of primary fission fragments by measurement of the relative yield of isomeric fission products

    International Nuclear Information System (INIS)

    Dornhoefer, H.

    1980-01-01

    The fission products 132 I and 136 I produced in the fission reactions 238 U(α,f) and 238 U(d,f) were spectroscoped using a gas transport system. Thereby was taken advantage of the fact that at the transport with pure helium without aerosols only iodine activities were collected in a membrane filter. The relative independent yields of the isomeric fission products of 132 I and 136 I were determined for different excitation energies. Thereby was taken advantage of the fact that the transport yield of the gas transport system for 136 I directly produced from the fission was greater than for iodine indirectly produced by β-decay. (orig./HSI) [de

  6. Cluster decay analysis and related structure effects of fissionable ...

    Indian Academy of Sciences (India)

    2015-08-01

    Aug 1, 2015 ... Collective clusterization approach of dynamical cluster decay model (DCM) has been ... fusion–fission process resulting in the emission of symmetric and/or ... represents the relative separation distance between two fragments or clusters ... decay constant λ or decay half-life T1/2 is defined as λ = (ln 2/T1/2) ...

  7. Yields of products from thermal-neutron induced fission of 235U

    International Nuclear Information System (INIS)

    Rudstam, G.; Aagaard, P.; Zwicky, H.U.

    1985-01-01

    Methods for fission yield determinations at an ISOL-system connected to a nuclear reactor have been developed. The present report contains detailed descriptions both of the experimental techniques and of the method used to correct the experimental yields for the decay of short-lived nuclear species in the delay between production and measurement. The methods have been applied to the determination of the fission yields of 40 fission products including 2 isometric pairs in the light mass region and those of 99 fission products including 25 isometric pairs or triplets in the heavy mass region. For 64 cases this is the first determination published. (author)

  8. Heat and fission product transport in molten core material pool with crust

    International Nuclear Information System (INIS)

    Yun, J.I.; Suh, K.Y.; Kang, C.S.

    2005-01-01

    Heat transfer and fluid flow in a molten pool are influenced by internal volumetric heat generated from the radioactive decay of fission product species retained in the reactor vessel during a severe accident. The pool superheat is determined based on the overall energy balance that equates the heat production rate to the heat loss rate. Decay heat of fission products in the pool is estimated by product of the mass concentration and energy conversion factor of each fission product. Twenty-nine elements are chosen and classified by their chemical properties to calculate heat generation rate in the pool. The mass concentration of a fission product is obtained from released fraction and the tabular output of the ORIGEN 2 code. The initial core and pool inventories at each time can also be estimated using ORIGEN 2. The released fraction of each fission product is calculated based on the bubble dynamics and mass transport. Numerical analysis is performed for heat and fission product transport in a molten core material pool during the Three Mile Island Unit 2 (TMI-2) accident. The pool is assumed to be a partially filled hemisphere, whose change in geometry is neglected during the numerical calculation. Calculated results indicate that the peak temperature in the molten pool is significantly lowered, since a substantial amount of the volatile fission products is released from the molten pool during progression of the accident. The results may directly be applied to the existing severe accident analysis codes to more mechanistically determine the thermal load to the reactor vessel lower head during the in-vessel retention

  9. Heat and Fission Product Transport in a Molten U-Zr-O Pool With Crust

    International Nuclear Information System (INIS)

    Yun, J.I.; Suh, K.Y.; Kang, C.S.

    2002-01-01

    Heat transfer and fluid flow in a molten pool are influenced by internal volumetric heat generated from the radioactive decay of fission product species retained in the pool. The pool superheat is determined based on the overall energy balance that equates the heat production rate to the heat loss rate. Decay heat of fission products in the pool was estimated by product of the mass concentration and energy conversion factor of each fission product. For the calculation of heat generation rate in the pool, twenty-nine elements were chosen and classified by their chemical properties. The mass concentration of a fission product is obtained from released fraction and the tabular output of the ORIGEN 2 code. The initial core and pool inventories at each time can also be estimated using ORIGEN 2. The released fraction of each fission product is calculated based on the bubble dynamics and mass transport. Numerical analysis was performed for the TMI-2 accident. The pool is assumed to be a partially filled hemispherical geometry and the change of pool geometry during the numerical calculation was neglected. Results of the numerical calculation revealed that the peak temperature of the molten pool significantly decreased and most of the volatile fission products were released from the molten pool during the accident. (authors)

  10. Decay and fission of the oriented nuclei

    CERN Document Server

    Kadmenskij, S G

    2002-01-01

    The fragment angular distributions for binary decay of oriented spherical and deformed nuclei with taking into account the correct transformational properties of wave functions under time inversion have been investigated. It has been shown that for description of fragment angular distributions the adiabatic approximation for collective rotational nuclear degrees of freedom is not correct. It has been demonstrated that this approximation is valid for description of spontaneous and induced low-energy nuclear fission. The dependence of partial fission widths on the orientation of the internal axes spins, projections of spins, and relative angular moments of fission fragments has been analyzed. It has been shown that the adiabatic approximation results in coherent interference of wave functions of fragments relative movement. This interference forms fragments the universal angular distributions of fission fragments for oriented nuclei. For these distributions the deviations from A. Bohr's formula have been invest...

  11. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    International Nuclear Information System (INIS)

    Palmiotti, G.

    2011-01-01

    The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 418 nuclides; (2) Covariance uncertainty data for 185 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He, Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions at higher energies for isotopes of F, Cl, K, Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides 235,238U and 239Pu at this point, except for delayed neutron data, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es, Fm, and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on 239Pu; and (9) A new Decay Data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide

  12. Preparation of a primary target for the production of fission products in a nuclear reactor

    International Nuclear Information System (INIS)

    Arino, H.; Cosolito, F.J.; George, K.D.; Thornton, A.K.

    1976-01-01

    A primary target for the production of fission products in a nuclear reactor, such as uranium or plutonium fission products, is comprised of an enclosed, cylindrical vessel, preferably comprised of stainless steel, having a thin, continuous, uniform layer of fissionable material, integrally bonded to its inner walls and a port permitting access to the interior of the vessel. A process is also provided for depositing uranium material on to the inner walls of the vessel. Upon irradiation of the target with neutrons from a nuclear reactor, radioactive fission products, such as molybdenum-99, are formed, and thereafter separated from the target by the introduction of an acidic solution through the port to dissolve the irradiated inner layer. The irradiation and dissolution are thus effected in the same vessel without the necessity of transferring the fissionable material and fission products to a separate chemical reactor. Subsequently, the desired isotopes are extracted and purified. Molybdenum-99 decays to technetium-99m which is a valuable medical diagnostic radioisotope. 3 claims, 1 drawing figure

  13. Fission products collecting devices

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshi

    1979-01-01

    Purpose: To enable fission products trap with no contamination to coolants and cover gas by the provision of a fission products trap above the upper part of a nuclear power plant. Constitution: Upon fuel failures in a reactor core, nuclear fission products leak into coolants and move along the flow of the coolants to the coolants above the reactor core. The fission products are collected in a trap container and guided along a pipeline into fission products detector. The fission products detector monitors the concentration of the fission products and opens the downstream valve of the detector when a predetermined concentration of the fission products is detected to introduce the fission products into a waste gas processing device and release them through the exhaust pipe. (Seki, T.)

  14. Map of calculated radioactivity of fission product, (4)

    International Nuclear Information System (INIS)

    Takeda, Tsuneo

    1978-07-01

    The overall radioactivities of fission products depending on irradiation time and cooling time were calculated for 18 different neutron fluxes, which are presented in contour maps and tables. Irradiation condition etc. are the followings: neutron flux (n sub(th)) 1 x 10 12 - 6.8 x 10 14 n/cm 2 /sec, uranium quantity 1 mole (6 x 10 23 atoms, ca. 271 g UO 2 ), U-235 enrichment 2.7%, irradiation time 60. - 6 x 10 7 sec (1 min - 1.9 y), cooling time 0. and 60. - 6 x 10 7 sec (1 min - 1.9 y). The enrichment value represents those for LWRs. To calculate the overall radioactivities, 595 fission product nuclides were introduced. Overall radioactivities calculations were made for 68,000 combinations of irradiation time, cooling time and neutron flux. The many complex decay chains of fission products were treated with CODAC-No.6 computer code. (author)

  15. Fission-product yields for thermal-neutron fission of 243Cm determined from measurements with a high-resolution low-energy germanium gamma-ray detector

    International Nuclear Information System (INIS)

    Merriman, L.D.

    1984-04-01

    Cumulative fission-product yields have been determined for 13 gamma rays emitted during the decay of 12 fission products created by thermal-neutron fission of 243 Cm. A high-resolution low-energy germanium detector was used to measure the pulse-height spectra of gamma rays emitted from a 77-nanogram sample of 243 Cm after the sample had been irradiated by thermal neutrons. Analysis of the data resulted in the identification and matching of gamma-ray energies and half-lives to individual radioisotopes. From these results, 12 cumulative fission product yields were deduced for radionuclides with half-lives between 4.2 min and 84.2 min. 7 references

  16. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, M. B. [Los Alamos National Laboratory (LANL); Herman, Micheal W [Brookhaven National Laboratory (BNL); Oblozinsky, Pavel [Brookhaven National Laboratory (BNL); Dunn, Michael E [ORNL; Danon, Y. [Rensselaer Polytechnic Institute (RPI); Kahler, A. [Los Alamos National Laboratory (LANL); Smith, Donald L. [Argonne National Laboratory (ANL); Pritychenko, B [Brookhaven National Laboratory (BNL); Arbanas, Goran [ORNL; Arcilla, r [Brookhaven National Laboratory (BNL); Brewer, R [Los Alamos National Laboratory (LANL); Brown, D A [Brookhaven National Laboratory (BNL); Capote, R. [International Atomic Energy Agency (IAEA); Carlson, A. D. [National Institute of Standards and Technology (NIST); Cho, Y S [Korea Atomic Energy Research Institute; Derrien, Herve [ORNL; Guber, Klaus H [ORNL; Hale, G. M. [Los Alamos National Laboratory (LANL); Hoblit, S [Brookhaven National Laboratory (BNL); Holloway, Shannon T. [Los Alamos National Laboratory (LANL); Johnson, T D [Brookhaven National Laboratory (BNL); Kawano, T. [Los Alamos National Laboratory (LANL); Kiedrowski, B C [Los Alamos National Laboratory (LANL); Kim, H [Korea Atomic Energy Research Institute; Kunieda, S [Los Alamos National Laboratory (LANL); Larson, Nancy M [ORNL; Leal, Luiz C [ORNL; Lestone, J P [Los Alamos National Laboratory (LANL); Little, R C [Los Alamos National Laboratory (LANL); Mccutchan, E A [Brookhaven National Laboratory (BNL); Macfarlane, R E [Los Alamos National Laboratory (LANL); MacInnes, M [Los Alamos National Laboratory (LANL); Matton, C M [Lawrence Livermore National Laboratory (LLNL); Mcknight, R D [Argonne National Laboratory (ANL); Mughabghab, S F [Brookhaven National Laboratory (BNL); Nobre, G P [Brookhaven National Laboratory (BNL); Palmiotti, G [Idaho National Laboratory (INL); Palumbo, A [Brookhaven National Laboratory (BNL); Pigni, Marco T [ORNL; Pronyaev, V. G. [Institute of Physics and Power Engineering (IPPE), Obninsk, Russia; Sayer, Royce O [ORNL; Sonzogni, A A [Brookhaven National Laboratory (BNL); Summers, N C [Lawrence Livermore National Laboratory (LLNL); Talou, P [Los Alamos National Laboratory (LANL); Thompson, I J [Lawrence Livermore National Laboratory (LLNL); Trkov, A. [Jozef Stefan Institute, Slovenia; Vogt, R L [Lawrence Livermore National Laboratory (LLNL); Van der Marck, S S [Nucl Res & Consultancy Grp, Petten, Netherlands; Wallner, A [University of Vienna, Austria; White, M C [Los Alamos National Laboratory (LANL); Wiarda, Dorothea [ORNL; Young, P C [Los Alamos National Laboratory (LANL)

    2011-01-01

    The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 423 nuclides; (2) Covariance uncertainty data for 190 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He; Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions for isotopes of Cl; K; Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides (235,238)U and (239)Pu at this point, except for delayed neutron data and covariances, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es; Fm; and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on (239)Pu; and (9) A new decay data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide

  17. Decay heat from products of 235U thermal fission by fast-response boil-off calorimetry

    International Nuclear Information System (INIS)

    Yarnell, J.L.; Bendt, P.J.

    1977-09-01

    A cryogenic boil-off calorimeter was used to measure the decay heat from the products of thermal-neutron-induced fission of 235 U. Data are presented for cooling times between 10 and 10 5 s following a 2 x 10 4 s irradiation at constant thermal-neutron flux. The experimental uncertainty (1 sigma) in these measurements was approximately 2 percent, except at the shortest cooling times where it rose to approximately 4 percent. The beta and gamma energy from an irradiated 235 U sample was absorbed in a thermally isolated 52-kg copper block that was held at 4 K by an internal liquid helium reservoir. The absorbed energy evaporated liquid helium from the reservoir and a hot-film anemometer flowmeter recorded the evolution rate of the boil-off gas. The decay heat was calculated from the gas-flow rate using the heat of vaporization of helium. The calorimeter had a thermal time constant of 0.85 s. The energy loss caused by gamma leakage from the absorber was less than or equal to 3 percent; a correction was made by Monte Carlo calculations based on experimentally determined gamma spectra. The data agree within the combined uncertainties with summation calculations using the ENDF/B-IV data base. The experimental data were combined with summation calculations to give the decay heat for infinite (10 13 s) irradiation

  18. Studies on the separation of rare earth elements and the nuclear decay properties of short lived rare-earth nuclides in U-235 fission products

    International Nuclear Information System (INIS)

    Ohyoshi, Akira; Ohyoshi, Emiko.

    1980-01-01

    The effect of a complex-forming agent, with which rare earths consecutively form the complexes, on the separation of a pair of adjacent rare earths by electromigration has been investigated. The relation between the separation factor for two complexes and the ligand-ion concentration was examined in the separation of La-Ce and Ce-Pr pairs with nitrilotriacetic acid. Rare earths were able to be isolated rapidly at the optimum ligand-ion concentration in lower one, and this method was applied to study the nuclear decay properties of the short lived isotopes of La, Ce, Pr, Nd and Yt formed in the fission of U-235. This method permits the direct measurement of the decay of La-144 without the interference from the radiation of other fission products. The gamma-ray spectrum of La-144 was measured with a high resolution Ge(Li) detector, and the gamma-transition was observed. From the decay plots of two strong photopeaks, the half-life of La-144 was determined. In the case of Ce fraction, the photopeaks assigned to respective isotopes were observed. In the studies on the decay properties of Pr-148 and Pr-149, the decay plot of the strong photopeak showed good linearity, and the accurate half-life of Pr-148 was determined. Similarly, the half-life of Pr-149 was longer than the previously reported value. (Kako, I.)

  19. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, M.B.; Herman, M.; Author(s): Chadwick,M.B.; Herman,M.; Oblozinsky,P.; Dunn,M.E.; Danon,Y.; Kahler,A.C.; Smith,D.L.; Pritychenko,B.; Arbanas,G.; Arcilla,R.; Brewer,R.; Brown,D.A.; Capote,R.; Carlson,A.D.; Cho,Y.S.; Derrien,H.; Guber,K.; Hale,G.M.; Hoblit,S.; Holloway,S.: Johnson,T.D.; Kawano,T.; Kiedrowski,B.C.; Kim,H.; Kunieda,S.; Larson,N.M.; Leal,L.; Lestone,J.P.; Little,R.C.; McCutchan,E.A.; MacFarlane,R.E.; MacInnes,M.; Mattoon,C.M.; McKnight,R.D.; Mughabghab,S.F.; Nobre,G.P.A.; Palmiotti,G.; Palumbo,A.; Pigni,M.T.; Pronyaev,V.G.; Sayer,R.O.; Sonzogni,A.A.; Summers,N.C.; Talou,P.; Thompson,I.J.; Trkov,A.; Vogt,R.L.; van der Marck,S.C.; Wallner,A.; White,M.C.; Wiarda,D.; Young,P.G.

    2011-12-01

    The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 423 nuclides; (2) Covariance uncertainty data for 190 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He, Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions for isotopes of Cl, K, Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides {sup 235,238}U and {sup 239}Pu at this point, except for delayed neutron data and covariances, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es, Fm, and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on {sup 239}Pu; and (9) A new decay data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0

  20. Analysis of fission product release from HTGR core during transient temperature excursion

    International Nuclear Information System (INIS)

    Saito, Takao; Yamatoya, Naotoshi; Onuma, Mamoru

    1978-01-01

    The computer program ''FRANC'' was developed to calculate the release activity of fission products from a high-temperature gas cooled reactor (HTGR) core during transient temperature excursions such as a hypothetical loss of forced circulation combined with design basis depressurization. The program utilizes a segmented cylindrical core spatial model with the associated values of the prior fuel irradiation history and temperature conditions. The fission product transport and decay chain behavior is expressed by a set of differential equations. This set of equations describes the entire core inventory of fission products by means of calculated parameters based on the detailed spatial core conditions. The program determines the time-dependent amounts of fission product nuclides escaping from the core into the coolant. Coded in Continuous System Simulation Language (CSSL) with double precision, FRANC showed appropriate results for both short- and long-lived fission product nuclides. The sample calculation conducted by applying the program to a large HTGR indicated that it would take about one hour for noble gases and volatile nuclides to be released to the coolant, and several hours for metalic nuclides. (auth.)

  1. Delayed fission

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukawa, Yuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-07-01

    Delayed fission is a nuclear decay process that couples {beta} decay and fission. In the delayed fission process, a parent nucleus undergoes {beta} decay and thereby populates excited states in the daughter. If these states are of energies comparable to or greater than the fission barrier of the daughter, then fission may compete with other decay modes of the excited states in the daughter. In this paper, mechanism and some experiments of the delayed fission will be discussed. (author)

  2. Fission yields data generation and benchmarks of decay heat estimation of a nuclear fuel

    Science.gov (United States)

    Gil, Choong-Sup; Kim, Do Heon; Yoo, Jae Kwon; Lee, Jounghwa

    2017-09-01

    Fission yields data with the ENDF-6 format of 235U, 239Pu, and several actinides dependent on incident neutron energies have been generated using the GEF code. In addition, fission yields data libraries of ORIGEN-S, -ARP modules in the SCALE code, have been generated with the new data. The decay heats by ORIGEN-S using the new fission yields data have been calculated and compared with the measured data for validation in this study. The fission yields data ORIGEN-S libraries based on ENDF/B-VII.1, JEFF-3.1.1, and JENDL/FPY-2011 have also been generated, and decay heats were calculated using the ORIGEN-S libraries for analyses and comparisons.

  3. Yields of fission products produced by thermal-neutron fission of 249Cf

    International Nuclear Information System (INIS)

    Dickens, J.K.; McConnell, J.W.

    1981-01-01

    Absolute yields have been determined for 107 gamma rays emitted in the decay of 97 fission products representing 54 mass chains created during thermal-neutron fission of 249 Cf. These results include 14 mass chains for which no prior yield data exist. Using a Ge(Li) detector, spectra were obtained of gamma rays emanating from a 0.4 μg sample of 249 Cf between 45 s and 0.4 yr after very short irradiations of the 249 Cf by thermal neutrons. On the basis of measured gamma-ray yields and known nuclear data, total chain mass yields and relative uncertainties were obtained for 51 masses between 89 and 156. The absolute overall normalization uncertainty is approx.8%. The measured A-chain cumulative yields make up 77% of the total light mass (A 249 Cf

  4. JNDC FP decay data file

    International Nuclear Information System (INIS)

    Yamamoto, Tohru; Akiyama, Masatsugu

    1981-02-01

    The decay data file for fission product nuclides (FP DECAY DATA FILE) has been prepared for summation calculation of the decay heat of fission products. The average energies released in β- and γ-transitions have been calculated with computer code PROFP. The calculated results and necessary information have been arranged in tabular form together with the estimated results for 470 nuclides of which decay data are not available experimentally. (author)

  5. Fission decay properties of ultra neutron-rich uranium isotopes

    Indian Academy of Sciences (India)

    in the chain of neutron-rich uranium isotopes is examined here. The neutron ... mean field theory, this nucleus is shown to undergo exotic decay mode of thermal neu- .... For 250U with a fission barrier of 4.3 MeV [5], we obtain the value of.

  6. Chemical reactions of fission products with ethylene using the gas jet technique

    International Nuclear Information System (INIS)

    Contis, E.T.; Rengan, Krish; Griffin, Henry C.

    1994-01-01

    An understanding of the nature of the chemical reactions taking place between fission products and their carrier gases, and the designing of a fast separation procedure were the purposes of this investigation. Chemical reactions of short-lived (less than one minute half-life) fission products with carrier gases lead to various chemical species which can be separated in the gas phase. The Gas Jet Facility at the Ford Nuclear Reactor was used to study the yields of volatile selenium and bromine fission products of 235 U using a semi-automatic batch solvent extraction technique. Heptane and water were used as organic and inorganic solvents. A carrier gas mixture of ethylene to pre-purified nitrogen (1 : 3) was used to sweep the fission products from the target to the chemistry area for analysis. The results indicated that the volatile selenium products generated by the interaction of selenium fission fragments with ethylene were predominantly organic in nature (84%), possibly organoselenides. The selenium values were used to resolve the fractions of the bromine nuclides, which come from two major sources, viz., directly from fission and from the beta-decay of selenium. The data showed that the fractions of independent bromine fission products in the organic phase were much lower compared to selenium; the bromine values range from 10 to 22% and varied with mass number. Results indicated that the bromine products were inorganic in nature, as possibly hydrogen chloride. ((orig.))

  7. Study on decay of rare earth nuclei produced by fission

    Energy Technology Data Exchange (ETDEWEB)

    Kawade, Kiyoshi; Yamamoto, Hiroshi; Shibata, Michihiro; Asai, Masato [Nagoya Univ. (Japan); Tsukada, Kazuaki; Osa, Akihiko; Shinohara, Nobuo; Iimura, Hideki

    1996-01-01

    JAERI-ISOL utilizes charge particle induced fission by proton and heavy proton produced by the tandem type accelerator (JAERI). To study the decay mechanism and nuclei structure of neutron and excess nuclei produced by actinoid fission, JAERI-ISOL was improved by developing the multilayer target tank. So that, the intensity of mass separated ion beam increased enough to use. New 76.6 KeV {gamma}-ray with about 10s of half life was found in the preliminary experiment. (S.Y.)

  8. Fission-product energy release for times following thermal-neutron fission of 235U between 2 and 14000 seconds

    International Nuclear Information System (INIS)

    Dickens, J.K.; Emery, J.F.; Love, T.A.; McConnell, J.W.; Northcutt, K.J.; Peelle, R.W.; Weaver, H.

    1977-10-01

    Fission-product decay energy-releases rates were measured for thermal-neutron fission of 235 U. Samples of mass 1 to 10 μg were irradiated for 1 to 100 sec by use of the fast pneumatic-tube facility at the Oak Ridge Research Reactor. The resulting beta- and gamma-ray emissions were counted for times-after-fission between 2 and 14,000 seconds. The data were obtained for beta and gamma rays separately as spectral distributions, N(E/sub γ/) vs E/sub γ/ and N(E/sub beta/) vs E/sub β/. For the gamma-ray data the spectra were obtained by using a NaI detector, while for the beta-ray data the spectra were obtained by using an NE-110 detector with an anticoincidence mantle. The raw data were unfolded to provide spectral distributions of modest resolution. These were integrated over E/sub γ/ and E/sub β/ to provide total yield and energy integrals as a function of time after fission. Results are low compared to the present 1973 ANS Decay-heat standard. A complete description of the experimental apparatus and data-reduction techniques is presented. The final integral data are given in tabular and graphical form and are compared with published data. 41 figures, 13 tables

  9. Study of the Fission Decay of Heavy Hypernuclei

    CERN Multimedia

    2002-01-01

    The purpose of the original experiment PS177 was to produce heavy hypernuclei using the annihilation at rest of antiprotons in heavy targets, and to measure their lifetime. \\\\ \\\\ Lambda hyperons can be produced, within a nucleus, in a 2-step process: p@*~@A~K&bar.K~+~X; &bar.KN~@A~@L@p; or in a direct 3-body interaction: @*NN~@A~K|+@L. In the first case, the kinematical conditions favour recoilless lambda with, consequently, a higher probability of attachment to the nucleus. In a heavy nucleus the lambda-hyperon decays weakly according to: @LN~@A~NN, and the &prop.170~MeV energy released induces fission.\\\\ \\\\ The identification of the hypernuclei and their lifetime measurements were performed through the detection of delayed fission using the recoil-distance-method (suitable for lifetimes in the expected region @=10|-|1|0s). The fission fragments were detected by parallel-plate avalanche counters. \\\\ \\\\ The new proposal aims at i) increasing the accuracy of the measured lifetimes, ii) having a str...

  10. Time evolution of the fission-decay width under the influence of dissipation

    International Nuclear Information System (INIS)

    Jurado, B.; Schmidt, K.H.; Benlliure, J.

    2002-12-01

    Different analytical approximations to the time-dependent fission-decay width used to extract the influence of dissipation on the fission process are critically examined. Calculations with a new, highly realistic analytical approximation to the exact solution of the Fokker-Planck equation sheds doubts on previous conclusions on the dissipation strength made on the basis of less realistic approximations. (orig.)

  11. Measurements of fission product yield in the neutron-induced fission of 238U with average energies of 9.35 MeV and 12.52 MeV

    Science.gov (United States)

    Mukerji, Sadhana; Krishnani, Pritam Das; Shivashankar, Byrapura Siddaramaiah; Mulik, Vikas Kaluram; Suryanarayana, Saraswatula Venkat; Naik, Haladhara; Goswami, Ashok

    2014-07-01

    The yields of various fission products in the neutron-induced fission of 238U with the flux-weightedaveraged neutron energies of 9.35 MeV and 12.52 MeV were determined by using an off-line gammaray spectroscopic technique. The neutrons were generated using the 7Li(p, n) reaction at Bhabha Atomic Research Centre-Tata Institute of Fundamental Research Pelletron facility, Mumbai. The gamma- ray activities of the fission products were counted in a highly-shielded HPGe detector over a period of several weeks to identify the decaying fission products. At both the neutron energies, the fission-yield values are reported for twelve fission product. The results obtained from the present work have been compared with the similar data for mono-energetic neutrons of comparable energy from the literature and are found to be in good agreement. The peak-to-valley (P/V) ratios were calculated from the fission-yield data and were found to decreases for neutron energy from 9.35 to 12.52 MeV, which indicates the role of excitation energy. The effect of the nuclear structure on the fission product-yield is discussed.

  12. Reactions of newly formed fission products in the gas phase

    International Nuclear Information System (INIS)

    Strickert, R.G.

    1976-01-01

    A dynamic gas-flow system was constructed which stopped fission products in the gas phase and rapidly separated (in less than 2 sec) volatile compounds from non-volatile ones. The filter assembly designed and used was shown to stop essentially all non-volatile fission products. Between 5 percent and 20 percent of tellurium fission-product isotopes reacted with several hydrocarbon gases to form volatile compounds, which passed through the filter. With carbon monoxide gas, volatile tellurium compound(s) (probably TeCO) were also formed with similar efficiencies. The upper limits for the yields of volatile compounds formed between CO and tin and antimony fission products were shown to be less than 0.3 percent, so tellurium nuclides, not their precursors, reacted with CO. It was found that CO reacted preferentially with independently produced tellurium atoms; the reaction efficiency of beta-produced atoms was only 27 +- 3 percent of that of the independently formed atoms. The selectivity, which was independent of the over-all reaction efficiency, was shown to be due to reaction of independently formed atoms in the gas phase. The gas phase reactions are believed to occur mainly at thermal energies because of the independence of the yield upon argon moderator mole-fraction (up to 80 percent). It was shown in some experiments that about one-half of the TeCO decomposed in passing through a filter and that an appreciable fraction (approximately 20 percent) of the tellurium atoms deposited on the filter reacted agin with CO. Other tellurium atoms on the filter surface (those formed by beta decay and those formed independently but not reacting in the gas phase) also reacted with CO, but probably somewhat less efficiently than atoms formed by TeCO decomposition. No evidence was found for formation of TeCO as a direct result of beta-decay

  13. Fission product release in conditions of a spent fuel pool severe accident

    International Nuclear Information System (INIS)

    Ohai, Dumitru

    2007-01-01

    Full text: Depending on the residence time, fuel burnup, and fuel rack configuration, there may be sufficient decay heat for the fuel clad to heat up, swell, and burst in case of a loss of pool water. Initiating event categories can be: loss of offsite power from events initiated by severe weather, internal fire, loss of pool cooling, loss of coolant inventory, seismic event, aircraft impact, tornado, missile attack. The breach in the clad releases the radioactive gases present in the gap between the fuel and clad, what is called 'gap release'. If the fuel continues to heat up, the zirconium clad will reach the point of rapid oxidation in air. This reaction of zirconium and air, or zirconium and steam is exothermic. The energy released from the reaction, combined with the fuel's decay energy, can cause the reaction to become self-sustaining and ignite the zirconium. The increase in heat from the oxidation reaction can also raise the temperature in adjacent fuel assemblies and propagate the oxidation reaction. Simultaneously, the sintered UO 2 pellets resulting from pins destroying are oxidized. Due to the self-disintegration of pellets by oxidation, fission gases and low volatile fission products are released. The release rate, the chemical nature and the amount of fission products depend on powder granulation distribution and environmental conditions. The zirconium burning and pellets self-disintegration will result in a significant release of spent fuel fission products that will be dispersed from the reactor site. (author)

  14. Measurements of fission product yield in the neutron-induced fission of {sup 238}U with average energies of 9.35 MeV and 12.52 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Mukerji, Sadhana; Krishnani, Pritam Das; Suryanarayana, Saraswatula Venkat; Naik, Haladhara; Goswami, Ashok [Bhabha Atomic Research Centre, Mumbai (India); Shivashankar, Byrapura Siddaramaiah [Manipal University, Manipal (India); Mulik, Vikas Kaluram [University of Pune, Pune (India)

    2014-07-15

    The yields of various fission products in the neutron-induced fission of {sup 238}U with the flux-weighted averaged neutron energies of 9.35 MeV and 12.52 MeV were determined by using an off-line gamma ray spectroscopic technique. The neutrons were generated using the {sup 7}Li(p, n) reaction at Bhabha Atomic Research Centre-Tata Institute of Fundamental Research Pelletron facility, Mumbai. The gamma- ray activities of the fission products were counted in a highly-shielded HPGe detector over a period of several weeks to identify the decaying fission products. At both the neutron energies, the fission-yield values are reported for twelve fission product. The results obtained from the present work have been compared with the similar data for mono-energetic neutrons of comparable energy from the literature and are found to be in good agreement. The peak-to-valley (P/V) ratios were calculated from the fission-yield data and were found to decreases for neutron energy from 9.35 to 12.52 MeV, which indicates the role of excitation energy. The effect of the nuclear structure on the fission product-yield is discussed.

  15. Beta decay of the fission product 125Sb and a new complete evaluation of absolute gamma ray transition intensities

    Science.gov (United States)

    Rajput, M. U.; Ali, N.; Hussain, S.; Mujahid, S. A.; MacMahon, D.

    2012-04-01

    The radionuclide 125Sb is a long-lived fission product, which decays to 125Te by negative beta emission with a half-life of 1008 day. The beta decay is followed by the emission of several gamma radiations, ranging from low to medium energy, that can suitably be used for high-resolution detector calibrations, decay heat calculations and in many other applications. In this work, the beta decay of 125Sb has been studied in detail. The complete published experimental data of relative gamma ray intensities in the beta decay of the radionuclide 125Sb has been compiled. The consistency analysis was performed and discrepancies found at several gamma ray energies. Evaluation of the discrepant data was carried out using Normalized Residual and RAJEVAL methods. The decay scheme balance was carried out using beta branching ratios, internal conversion coefficients, populating and depopulating gamma transitions to 125Te levels. The work has resulted in the consistent conversion factor equal to 29.59(13) %, and determined a new evaluated set of the absolute gamma ray emission probabilities. The work has also shown 22.99% of the delayed intensity fraction as outgoing from the 58 d isomeric 144 keV energy level and 77.01% of the prompt intensity fraction reaching to the ground state from the other excited states. The results are discussed and compared with previous evaluations. The present work includes additional experimental data sets which were not included in the previous evaluations. A new set of recommended relative and absolute gamma ray emission probabilities is presented.

  16. Beta decay of the fission product 125Sb and a new complete evaluation of absolute gamma ray transition intensities

    International Nuclear Information System (INIS)

    Rajput, M.U.; Ali, N.; Hussain, S.; Mujahid, S.A.; MacMahon, D.

    2012-01-01

    The radionuclide 125 Sb is a long-lived fission product, which decays to 125 Te by negative beta emission with a half-life of 1008 day. The beta decay is followed by the emission of several gamma radiations, ranging from low to medium energy, that can suitably be used for high-resolution detector calibrations, decay heat calculations and in many other applications. In this work, the beta decay of 125 Sb has been studied in detail. The complete published experimental data of relative gamma ray intensities in the beta decay of the radionuclide 125 Sb has been compiled. The consistency analysis was performed and discrepancies found at several gamma ray energies. Evaluation of the discrepant data was carried out using Normalized Residual and RAJEVAL methods. The decay scheme balance was carried out using beta branching ratios, internal conversion coefficients, populating and depopulating gamma transitions to 125 Te levels. The work has resulted in the consistent conversion factor equal to 29.59(13) %, and determined a new evaluated set of the absolute gamma ray emission probabilities. The work has also shown 22.99% of the delayed intensity fraction as outgoing from the 58 d isomeric 144 keV energy level and 77.01% of the prompt intensity fraction reaching to the ground state from the other excited states. The results are discussed and compared with previous evaluations. The present work includes additional experimental data sets which were not included in the previous evaluations. A new set of recommended relative and absolute gamma ray emission probabilities is presented.

  17. Beta and gamma decay heat measurements between 0.1s--50,000s for neutron fission of 235U, 238U and 239Pu. Final report, June 1, 1992--December 31, 1996

    International Nuclear Information System (INIS)

    Schier, W.A.; Couchell, G.P.

    1996-01-01

    This is a final reporting on the composition of separate beta and gamma decay heat measurements following neutron fission of 235 U and 238 U and 239 Pu and on cumulative and independent yield measurements of fission products of 235 U and 238 U. What made these studies unique was the very short time of 0.1 s after fission that could be achieved by incorporating the helium jet and tape transport system as the technique for transporting fission fragments from the neutron environment of the fission chamber to the low-background environment of the counting area. This capability allowed for the first time decay heat measurements to extend nearly two decades lower on the logarithmic delay time scale, a region where no comprehensive aggregate decay heat measurements had extended to. This short delay time capability also allowed the measurement of individual fission products with half lives as short as 0.2s. The purpose of such studies was to provide tests both at the aggregate level and at the individual nuclide level of the nation's evaluated nuclear data file associated with fission, ENDF/B-VI. The results of these tests are in general quite encouraging indicating this data base generally predicts correctly the aggregate beta and aggregate gamma decay heat as a function of delay time for 235 U, 238 U and 239 Pu. Agreement with the measured individual nuclide cumulative and independent yields for fission products of 235 U and 238 U was also quite good although the present measurements suggest needed improvements in several individual cases

  18. Yields of products from thermal-neutron induced fission of 235U

    International Nuclear Information System (INIS)

    Aagaard, P.; Rudstam, G.; Zwicky, H.U.

    1982-01-01

    Methods for fission yield determinations at an ISOL-system connected nuclear reactor have been developed. The present report contains detailed descriptions both of the experimental techniques and of the method used to correct the experimental yields for the decay of short-lived nuclear species in the delay between production and measurement. (Authors)

  19. The nuclear fission

    International Nuclear Information System (INIS)

    Fiorentino, J.

    1983-01-01

    The nuclear fission process considering initially the formation of compound nucleus and finishing with radioactive decay of fission products is studied. The process is divided in three parts which consist of the events associated to the nucleus of intermediate transitional state, the scission configuration, and the phenomenum of post scission. (M.C.K.) [pt

  20. Sensitivity analysis of the effect of various key parameters on fission product concentration (mass number 120 to 126)

    International Nuclear Information System (INIS)

    Sola, A.

    1978-01-01

    An analytical sensitivity analysis has been made of the effect of various parameters on the evaluation of fission product concentration. Such parameters include cross sections, decay constants, branching ratios, fission yields, flux and time. The formulae are applied to isotopes of the Tin, Antimony and Tellurium series. The agreement between analytically obtained data and that derived from a computer evaluated model is good, suggesting that the analytical representation includes all the important parameters useful to the evaluation of the fission product concentrations

  1. Sensibility analysis of the effect of various key parameters on fission product concentration (Mass Number 133 to 138)

    International Nuclear Information System (INIS)

    Sola, A.

    1978-01-01

    An analytical sensitivity analysis has been made of the effect of various parameters on the evaluation of fission product concentration. Such parameters include cross-sections, decay constants, branching ratios, fission yields, flux and time. The formulae are applied to isotopes of the iodine, xenon, caesium and barium series. The agreement between analytically obtained data and that derived from a computer-evaluated model is good, suggesting that the analytical representation includes all the important parameters useful to the evaluation of the fission product concentrations

  2. Computer program FPIP-REV calculates fission product inventory for U-235 fission

    Science.gov (United States)

    Brown, W. S.; Call, D. W.

    1967-01-01

    Computer program calculates fission product inventories and source strengths associated with the operation of U-235 fueled nuclear power reactor. It utilizes a fission-product nuclide library of 254 nuclides, and calculates the time dependent behavior of the fission product nuclides formed by fissioning of U-235.

  3. Final report: Accelerated beta decay for disposal of fission fragment wastes

    International Nuclear Information System (INIS)

    Reiss, Howard R.

    2000-01-01

    The fundamental theory of the interaction of intense, low-frequency electromagnetic fields with certain radioactive nuclei has been fully formulated. The nuclei are of the type that exists in high-level radioactive wastes that are end products of the production of energy from nuclear fission. The basic physical mechanisms that underlie the coupling of the applied field to the nucleus have been identified. Both the basic theory and numerical predictions that stem from it support the conclusion that high-level radioactive wastes can be disposed of by substantially accelerating the rate of radioactive decay. Some old experiments on the acceleration of this type of radioactivity, with results that were not understood at the time, have been re-examined. Their interpretation is now clear, and the experiments are found to be in agreement with the theory

  4. Fission product yields

    International Nuclear Information System (INIS)

    Valenta, V.; Hep, J.

    1978-01-01

    Data are summed up necessary for determining the yields of individual fission products from different fissionable nuclides. Fractional independent yields, cumulative and isobaric yields are presented here for the thermal fission of 235 U, 239 Pu, 241 Pu and for fast fission (approximately 1 MeV) of 235 U, 238 U, 239 Pu, 241 Pu; these values are included into the 5th version of the YIELDS library, supplementing the BIBFP library. A comparison is made of experimental data and possible improvements of calculational methods are suggested. (author)

  5. Metastable decay of photoionized niobium clusters: Evaporation vs fission fragmentation

    International Nuclear Information System (INIS)

    Cole, S.K.; Liu, K.; Riley, S.J.

    1986-01-01

    The metastable decay of photoionized niobium clusters (Nb/sub n/ + ) has been observed in a newly constructed cluster beam machine. The decay manifests itself in the time-of-flight (TOF) mass spectrum as an asymmetric broadening of daughter ion peaks. Pulsed ion extraction has been used to measure the decay rate constants and to establish the mechanism of the fragmentation, evaporation and/or fission of the photoionized clusters. It is found that within the experimental time window evaporation dominates for the smaller clusters (n 6 sec -1 . The average kinetic energy release is also determined and is found to be on the order of 5 MeV. 8 refs., 3 figs., 1 tab

  6. Fission-product source terms

    International Nuclear Information System (INIS)

    Lorenz, R.A.

    1981-01-01

    This presentation consists of a review of fission-product source terms for light water reactor (LWR) fuel. A source term is the quantity of fission products released under specified conditions that can be used to calculate the consequences of the release. The source term usually defines release from breached fuel-rod cladding but could also describe release from the primary coolant system, the reactor containment shell, or the site boundary. The source term would be different for each locality, and the chemical and physical forms of the fission products could also differ

  7. Fission product behaviour in severe accidents

    International Nuclear Information System (INIS)

    Jokiniemi, J.; Auvinen, A.; Maekynen, J.; Valmari, T.

    1998-01-01

    The understanding of fission product (FP) behaviour in severe accidents is important for source term assessment and accident mitigation measures. For example in accident management the operator needs to know the effect of different actions on the behaviour and release of fission products. At VTT fission product behaviour have been studied in different national and international projects. In this presentation the results of projects in EU funded 4th framework programme Nuclear Fission Safety 1994-1998 are reported. The projects are: fission product vapour/aerosol chemistry in the primary circuit (FI4SCT960020), aerosol physics in containment (FI4SCT950016), revaporisation of test samples from Phebus fission products (FI4SCT960019) and assessment of models for fission product revaporisation (FI4SCT960044). Also results from the national project 'aerosol experiments in the Victoria facility' funded by IVO PE and VTT Energy are reported

  8. Ex-vessel water-level and fission-product monitoring for LWR

    International Nuclear Information System (INIS)

    DeVolpi, A.; Markoff, D.

    1988-01-01

    Given that the need for direct measurement of reactor coolant inventory under operational or abnormal conditions remains unsatisfied, a high-energy gamma-ray detection system is described for ex-vessel monitoring. The system has been modeled to predict response in a PWR, and the model has been validated with a LOFT LOCA sequence. The apparatus, situated outside the pressure vessel, would give relative water level and density over the entire vessel height and distinguish differing levels in the downcomer and core. It would also have significant sensitivity after power shutdown because of high-energy gamma rays from photoneutron capture, the photoneutrons being the result of fission-product decay in the core. Fission-products released to the coolant and accumulated in the top of a PWR vessel would also be theoretically detectable

  9. Nuclear decay data measurements at the INEL ISOL facility

    International Nuclear Information System (INIS)

    Greenwood, R.C.; Helmer, R.G.; Putnam, M.H.; Struttmann, D.A.; Watts, K.D.

    1991-01-01

    In recent years, the use of the mass separation technique coupled on-line to a source of fission product nuclides has provided a wealth of new information on the nuclear decay properties of such nuclides. In addition to their relevance in basic studies of nuclear properties of neutron-rich nuclei, the fission product nuclides as a group, because of their intimate link with energy production in fission reactors, occupy a unique position in the field of applied nuclear decay data. Further, in addition to their critical role in nuclear reactor technology (decay heat source term, environmental concerns, etc.), such data have important applications in astrophysical calculations involving the rapid neutron capture process (r-process) of elemental synthesis in stellar environments. The scope of the nuclear decay data measurements being undertaken using the Idaho National Engineering Laboratory's (INEL) isotope separation on-line (ISOL) facility is focused on a systematic study of the gross nuclear decay properties of short-lived fission product isotopes, i.e., ground-state half-lives, beta-decay energies and beta-decay feeding (or beta-strength) distributions. In this paper, the authors discuss the results of new measurements of beta-decay energies and feeding distributions

  10. Code Development on Fission Product Behavior under Severe Accident-Validation of Aerosol Sedimentation

    International Nuclear Information System (INIS)

    Ha, Kwang Soon; Kim, Sung Il; Jang, Jin Sung; Kim, Dong Ha

    2016-01-01

    aerosol decay masses between the developed fission product module and MELCOR code. These discrepancies come from model differences of the aerosol sedimentation and steam condensation. The fission product module will be updated on the species release from the gap between the fuel and cladding, decay heat evaluation, aerosol size tracking, etc.

  11. Code Development on Fission Product Behavior under Severe Accident-Validation of Aerosol Sedimentation

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Kwang Soon; Kim, Sung Il; Jang, Jin Sung; Kim, Dong Ha [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    aerosol decay masses between the developed fission product module and MELCOR code. These discrepancies come from model differences of the aerosol sedimentation and steam condensation. The fission product module will be updated on the species release from the gap between the fuel and cladding, decay heat evaluation, aerosol size tracking, etc.

  12. Device for measuring fission product density

    International Nuclear Information System (INIS)

    Kaneda, Mitsunori.

    1980-01-01

    Purpose: To determine the fission product density of xenon or the like and enable measurement of real time of fission product density in a reactor by calculating the disintegration and annihilation of the fission product on the basis of neutron detected output. Constitution: The neutron flux in a reactor is detected by a detector, and applied to first and second density calculators. Second fission product density signal of xenon or the like outputted from first device is again inputted to the device to form an annihilation signal due to disintegration to determine the present density of the second fission product of xenon or the like corresponding to the decrease of the neutron due to the poison of xeron or the like. Similarly, second device determines the first fission product density of iodine or the like. (Sekiya, K.)

  13. FPDCYS and FPSPEC: computer programs for calculating fission-product beta and gamma multigroup spectra from ENDF/B-IV data

    International Nuclear Information System (INIS)

    Stamatelatos, M.G.; England, T.R.

    1977-05-01

    FPDCYS and FPSPEC are two FORTRAN computer programs used at the Los Alamos Scientific Laboratory (LASL), in conjunction with the CINDER-10 program, for calculating cumulative fission-product beta and/or gamma multigroup spectra in arbitrary energy structures, and for arbitrary neutron irradiation periods and cooling times. FPDCYS processes ENDF/B-IV fission-product decay energy data to generate multigroup beta and gamma spectra from individual ENDF/B-IV fission-product nuclides. FPSPEC further uses these spectra and the corresponding nuclide activities calculated by the CINDER-10 code to produce cumulative beta and gamma spectra in the same energy grids in which FPDCYS generates individual isotope decay spectra. The code system consisting of CINDER-10, FPDCYS, and FPSPEC has been used for comparisons with experimental spectra and continues to be used at LASL for generating spectra in special user-oriented group structures. 3 figures

  14. Microscopic description of the competition between spontaneous fission and α -decay in neutron-rich Ra, U and Pu nuclei

    International Nuclear Information System (INIS)

    Rodríguez-Guzmán, R; Robledo, L M

    2017-01-01

    Constrained mean-field calculations, based on the Gogny-D1M energy density functional, have been carried out to describe fission in Ra, U and Pu nuclei with neutron number 144 ≤ N ≤ 176. Fission paths, collective masses and zero-point quantum vibrational and rotational corrections are used to compute the spontaneous fission half-lives. We also pay attention to isomeric states along the considered fission paths. Alpha decay half-lives have also been computed using a parametrization of the Viola-Seaborg formula. Though there exists a strong variance of the predicted fission rates with respect to the details involved in their computation a robust trend is obtained indicating, that with increasing neutron number fission dominates over α -decay. Our results also suggest that a dynamical treatment of pairing correlations is required within the microscopic studies of the fission process in heavy nuclear systems. (paper)

  15. Equilibrium Temperature Profiles within Fission Product Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Michael D. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-01

    We studied waste form strategies for advanced fuel cycle schemes. Several options were considered for three waste streams with the following fission products: cesium and strontium, transition metals, and lanthanides. These three waste streams may be combined or disposed separately. The decay of several isotopes will generate heat that must be accommodated by the waste form, and this heat will affect the waste loadings. To help make an informed decision on the best option, we present computational data on the equilibrium temperature of glass waste forms containing a combination of these three streams.

  16. Fission product detection

    International Nuclear Information System (INIS)

    Liatard, E.; Akrouf, S.; Bruandet, J.F

    1987-01-01

    The response of photovoltaic cells to heavy ions and fission products have been tested on beam. Their main advantages are their extremely low price, their low sensitivity to energetic light ions with respect to fission products, and the possibility to cut and fit them together to any shape without dead zone. The time output signals of a charge sensitive preamplifier connected to these cells allows fast coincidences. A resolution of 12ns (F.W.H.M.) have been measured between two cells [fr

  17. Extraction chromatography of fission products

    International Nuclear Information System (INIS)

    Bonnevie-Svendsen, M.; Goon, K.

    1978-01-01

    Various cases of using extraction chromatography during analysis of fission products are reviewed. The use of the extraction chromatography method is considered while analysing reprocessed products of nuclear fuel for quantitative radiochemical analysis and control of fission product and actinoide separation during extraction and their chemical state in production solutions. The method is used to obtain pure fractions of typical burnup monitors (neodymium, molybdenum, cerium, cesium, europium, lanthanides) during determination of nuclear fuel burnup degree. While studying the nature of nuclear reactions the method is used to separate quickly short-life isotopes, to purify β-radiator fractions before measuring their half-life periods, to enrich isotopes forming with low output during fission. Examples of using extraction chromatography are given to separate long half-life or stable fission products from spent solutions, to control environment object contamination

  18. Library of data for fission products

    International Nuclear Information System (INIS)

    Blachot, Jean; Devillers, Christian; Tourreil, Roland de; Nimal, Bernadette; Fiche, Charles; Noel, J.-P.

    1975-10-01

    This is the fourth version of the CEA fission products nuclear data library. The third one has been previously published in CEA-N--1526. Data for 635 nuclides ranging from mass A=71 up to A=170 are arranged in increasing order of atomic number. Data are presented in two tables: the first one gives for each nuclide, the half-life, the Q-values and branching ratios for the various decay modes, the energies and intensities of the β - , β + and isomeric transitions and of gamma rays; the second one gives an ordered list of all gamma ray energies, with associated nuclide, half-life and intensity. Bibliographic references and, for most of the data, uncertainties are provided [fr

  19. Freedom: a transient fission-product release model for radioactive and stable species

    International Nuclear Information System (INIS)

    Macdonald, L.D.; Lewis, B.J.; Iglesias, F.C.

    1989-05-01

    A microstructure-dependent fission-gas release and swelling model (FREEDOM) has been developed for UO 2 fuel. The model describes the transient release behaviour for both the radioactive and stable fission-product species. The model can be applied over the full range of operating conditions, as well as for accident conditions that result in high fuel temperatures. The model accounts for lattice diffusion and grain-boundary sweeping of fusion products to the grain boundaries, where the fission gases accumulate in grain-face bubbles as a result of vacancy diffusion. Release of fission-gas to the free void of the fuel element occurs through the interlinkage of bubbles and cracks on the grain boundaries. This treatment also accounts for radioactive chain decay and neutron-induced transmutation effects. These phenomena are described by mass balance equations which are numerically solved using a moving-boundary, finite-element method with mesh refinement. The effects of grain-face bubbles on fuel swelling and fuel thermal conductivity are included in the ELESIM fuel performance code. FREEDOM has an accuracy of better than 1% when assessed against an analytic solution for diffusional release. The code is being evaluated against a fuel performance database for stable gas release, and against sweep-gas and in-cell fission-product release experiments at Chalk River for active species

  20. Excitation of giant resonances through inelastic scattering of 170 at 84 MeV/u. Fission decay of giant resonances

    International Nuclear Information System (INIS)

    Cabot, C.; Barrette, J.; Mark, S.K.; Turcotte, R.; Xing, J.; Van der Woude, A.; Van Den Berg, A. M.

    1991-01-01

    Inelastic scattering of 84 MeV/u 17 0 projectiles have been used to excite the giant resonances (GR) in various nuclei ranging from A=60 to A=232. For the isoscalar giant quadrupole resonance (ISGQR), the energy and width of the resonance, as well as the EWSR obtained from the measured cross sections, are in agreement with the known systematics for A>40. The observed GMR strengths are close to 100% EWRS and are consistent with other recent experimental results using heavy ion projectiles. These results lead to a somewhat different picture than that provided by previous studies using light projectiles. Strength is also observed at high excitation energy. The analysis of these resonances is in progress. Our study of the fission decay of GR in 232 Th leads to a somewhat different conclusion than previously deduced from data obtained with light ion projectiles, where no evidence for the fission decay of the ISGQR has been found. In the present work, due to the very good peak-to-continuum ratio, a structure is observed in the fission coincidence spectrum around 10 MeV which can be attributed to the fission decay of giant resonances. The measured fission probability is consistent with a statistical decay of the ISGQR. 10 figs

  1. A Covariance Generation Methodology for Fission Product Yields

    Directory of Open Access Journals (Sweden)

    Terranova N.

    2016-01-01

    Full Text Available Recent safety and economical concerns for modern nuclear reactor applications have fed an outstanding interest in basic nuclear data evaluation improvement and completion. It has been immediately clear that the accuracy of our predictive simulation models was strongly affected by our knowledge on input data. Therefore strong efforts have been made to improve nuclear data and to generate complete and reliable uncertainty information able to yield proper uncertainty propagation on integral reactor parameters. Since in modern nuclear data banks (such as JEFF-3.1.1 and ENDF/BVII.1 no correlations for fission yields are given, in the present work we propose a covariance generation methodology for fission product yields. The main goal is to reproduce the existing European library and to add covariance information to allow proper uncertainty propagation in depletion and decay heat calculations. To do so, we adopted the Generalized Least Square Method (GLSM implemented in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation, developed at CEA-Cadarache. Theoretical values employed in the Bayesian parameter adjustment are delivered thanks to a convolution of different models, representing several quantities in fission yield calculations: the Brosa fission modes for pre-neutron mass distribution, a simplified Gaussian model for prompt neutron emission probability, theWahl systematics for charge distribution and the Madland-England model for the isomeric ratio. Some results will be presented for the thermal fission of U-235, Pu-239 and Pu-241.

  2. Investigation of short-living fission products from the spontaneous fission of Cf-252

    International Nuclear Information System (INIS)

    Klonk, H.

    1976-01-01

    In this paper, a method of separating and measuring fission products of Cf-252 is presented. The measurement was achieved by means of γ-spectrometry and thus provides a quantitative analysis with a good separation of the fission products with respect to both atomic number Z and mass number A. The separation of the fission products from the fission source was achieved by means of solid traps. An automatic changing apparatus made it possible to keep irradiation and measuring times short, so even very short-lived fission products could be registered. The quantitative evaluation of primary fission products was made possible by correction according to Bateman equations. With that, the yields of single nuclides and the dispersion of charge can be determined. (orig./WL) [de

  3. The new isotope 270110 and its decay products 266Hs and 262Sg

    International Nuclear Information System (INIS)

    Hofmann, S.; Hessberger, F.P.; Ackermann, D.

    2000-11-01

    The even-even nucleus 270 110 was synthesized using the reaction 64 Ni + 207 Pb. A total of eight α-decay chains was measured during an irradiation time of seven days. Decay data were obtained for the ground-state and a high spin K isomer. The new nuclei 266 Hs and 262 Sg were identified as daughter products after α decay. Spontaneous fission of 262 Sg terminates the decay chain. The measured data are in agreement with calculations using the macroscopic-microscopic model and with self-consistent HFB calculations with Skyrme-Sly4 interaction. (orig.)

  4. Fission Product Library and Resource

    Energy Technology Data Exchange (ETDEWEB)

    Burke, J. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Padgett, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-29

    Fission product yields can be extracted from an irradiated sample by performing gamma ray spectroscopy on the whole sample post irradiation. There are several pitfalls to avoid when trying to determine a specific isotope's fission product yield.

  5. Study of short-lived fission products with the aid of an isotope separator connected to reactor R2-0

    International Nuclear Information System (INIS)

    Rudstam, G.

    1976-01-01

    This report constitutes a final report on project 74-3289 together with a preliminary report for project 75-3332. These projects have been included in the budget years 1974/75 and 1975/76 as a contribution to the operating costs of reactor R2-0 at Studsvik. The reactor was used for experimental studies on short-lived fission products with OSIRIS isotope-separator equipment. The scientific programme is very broad. It comprises, in the first place, characterisation of fission products (a study of their excitation levels, measurement of decay properties such as half-life and emission of delayed neutrons, determination of neutron energy spectrum, determination of total decay energy, etc.). An important application of this field of research is the determination of decay heat in nuclear fuel. The programme thus comprises research of a fundamental character and applied research. (H.E.G.)

  6. Extensions to COGEND for ENDF/B-V output of spontaneous fission decay data

    International Nuclear Information System (INIS)

    Tobias, A.

    1978-06-01

    The computer code COGEND, used to produce ENDF/B-IV or -V format nuclear decay scheme data, has been modified in order to extend its range of application. Details are given of the additional facilities which permit the handling of spontaneous fission decay data including any associated continuous spectra. In order to accommodate these additional features it is necessary to increase the core region by 4 kilobytes. (author)

  7. JEF-2.2 radioactive decay data

    International Nuclear Information System (INIS)

    1994-08-01

    This work deals with the JEF-2.2 radioactive decay data and is divided into four tables. The first table presents the origin of the JEF-2.2 radioactive decay data and subsequent modifications. The second one is a summary of the JEF-2.2 radioactive decay data file. The third one describes the JEF-2.2 fission products and the main decay and fission yield data. The last one consists of the main decay parameters from the JEF-2.2, ENDF/B-VI and JNDC-2.0 libraries. (O.L.). 100 figs., 4 tabs

  8. Attachment of gaseous fission products to aerosols

    International Nuclear Information System (INIS)

    Skyrme, G.

    1985-01-01

    Accidents may occur in which the integrity of fuel cladding is breached and volatile fission products are released to the containment atmosphere. In order to assess the magnitude of the subsequent radiological hazard it is necessary to know the transport behaviour of such fission products. It is frequently assumed that the fission products remain in the gaseous phase. There is a possibility, however, that they may attach themselves to particles and hence substantially modify their transport properties. This paper provides a theoretical assessment of the conditions under which gaseous fission products may be attached to aerosol particles. Specific topics discussed are: the mass transfer of a gaseous fission product to an isolated aerosol particle in an infinite medium; the rate at which the concentration of fission products in the gas phase diminishes within a container as a result of deposition on a population of particles; and the distribution of deposited fission product between different particle sizes in a log-normal distribution. It is shown that, for a given mass, small particles are more efficient for fission product attachment, and that only small concentrations of such particles may be necessary to achieve rapid attachment. Conditions under which gaseous fission products are not attached to particles are also considered, viz, the competing processes of deposition onto the containment walls and onto aerosol particles, and the possibility of the removal of aerosols from the containment by various deposition processes, or agglomeration, before attachment takes place. (author)

  9. Fission product data for thermal reactors. Final report. Part I. A data set for EPRI-CINDER using ENDF/B-IV

    International Nuclear Information System (INIS)

    England, T.R.; Wilson, W.B.; Stamatelatos, M.G.

    1976-12-01

    A four-group fission-product neutron absorption library, appropriate for use in thermal reactors, is described. All decay parameters are taken from ENDF/B-IV. The absorption cross sections are also processed from ENDF/B-IV files, first into a 154-group set and subsequently collapsed into the 4-group set described in this report. The decay and cross section data were used to form 84 linear chains in the CINDER code format. These chains contain all significant fission products having half-lives exceeding 4 hours--a total of 186 nuclides. A 12-chain set containing one pseudo-chain for use in spatial depletion calculations is described. This set accurately reproduces the aggregate absorption buildup of the 84 chains. This report describes the chains and processed data, results of comparison calculations for various fuels, and a comparison of calculated temporal fission-product absorption buildup with corresponding results from a long-term fuel irradiation and cooling integral experiment

  10. Fission product data for thermal reactors. Final report. Part 2. Users manual for EPRI-CINDER code and data

    International Nuclear Information System (INIS)

    England, T.R.; Wilson, W.B.; Stamatelatos, M.G.

    1976-12-01

    A four-group fission-product absorption chain library using ENDF/B-IV decay data and cross sections processed with a typical light water reactor spectrum for a modified version of the original CINDER code has been developed as described in Part 1. CINDER is a general point-depletion and fission product code based on an analytical solution of the equations describing nuclides coupled in any linear sequence of radioactive decays and neutron absorptions. The basic code has been in wide use for a number of years. Previously, the user was required to specify all physical data. This report describes the chain library in detail and a modified version of the basic CINDER code (EPRI-CINDER) that is still compatible with existing libraries

  11. Cement As a Waste Form for Nuclear Fission Products: The Case of (90)Sr and Its Daughters.

    Science.gov (United States)

    Dezerald, Lucile; Kohanoff, Jorge J; Correa, Alfredo A; Caro, Alfredo; Pellenq, Roland J-M; Ulm, Franz J; Saúl, Andrés

    2015-11-17

    One of the main challenges faced by the nuclear industry is the long-term confinement of nuclear waste. Because it is inexpensive and easy to manufacture, cement is the material of choice to store large volumes of radioactive materials, in particular the low-level medium-lived fission products. It is therefore of utmost importance to assess the chemical and structural stability of cement containing radioactive species. Here, we use ab initio calculations based on density functional theory (DFT) to study the effects of (90)Sr insertion and decay in C-S-H (calcium-silicate-hydrate) in order to test the ability of cement to trap and hold this radioactive fission product and to investigate the consequences of its β-decay on the cement paste structure. We show that (90)Sr is stable when it substitutes the Ca(2+) ions in C-S-H, and so is its daughter nucleus (90)Y after β-decay. Interestingly, (90)Zr, daughter of (90)Y and final product in the decay sequence, is found to be unstable compared to the bulk phase of the element at zero K but stable when compared to the solvated ion in water. Therefore, cement appears as a suitable waste form for (90)Sr storage.

  12. Fission-product release during accidents

    International Nuclear Information System (INIS)

    Hunt, C.E.L.; Cox, D.S.

    1991-09-01

    One of the aims when managing a reactor accident is to minimize the release of radioactive fission products. Release is dependent not only on the temperature, but also on the partial pressure of oxygen. Strongly oxidizing atmospheres, such as those that occurred during the Chernobyl accident, released semi-volatile elements like ruthenium, which has volatile oxides. At low temperatures, UO 2 oxidization to U 3 O 8 can result in extensive breakup of the fuel, resulting in the release of non-volatile fission products as aerosols. Under less oxidizing conditions, when hydrogen accumulates from the zirconium-water reaction, the resulting low oxygen partial pressure can significantly reduce these reactions. At TMI-2, only the noble gases and volatile fission products were released in significant quantities. A knowledge of the effect of atmosphere as well as temperature on the release of fission products from damaged reactor cores is therefore a useful, if not necessary, component of information required for accident management

  13. Decay and Fission Hindrance of Two- and Four-Quasiparticle K Isomers in ^{254}Rf.

    Science.gov (United States)

    David, H M; Chen, J; Seweryniak, D; Kondev, F G; Gates, J M; Gregorich, K E; Ahmad, I; Albers, M; Alcorta, M; Back, B B; Baartman, B; Bertone, P F; Bernstein, L A; Campbell, C M; Carpenter, M P; Chiara, C J; Clark, R M; Cromaz, M; Doherty, D T; Dracoulis, G D; Esker, N E; Fallon, P; Gothe, O R; Greene, J P; Greenlees, P T; Hartley, D J; Hauschild, K; Hoffman, C R; Hota, S S; Janssens, R V F; Khoo, T L; Konki, J; Kwarsick, J T; Lauritsen, T; Macchiavelli, A O; Mudder, P R; Nair, C; Qiu, Y; Rissanen, J; Rogers, A M; Ruotsalainen, P; Savard, G; Stolze, S; Wiens, A; Zhu, S

    2015-09-25

    Two isomers decaying by electromagnetic transitions with half-lives of 4.7(1.1) and 247(73) μs have been discovered in the heavy ^{254}Rf nucleus. The observation of the shorter-lived isomer was made possible by a novel application of a digital data acquisition system. The isomers were interpreted as the K^{π}=8^{-}, ν^{2}(7/2^{+}[624],9/2^{-}[734]) two-quasineutron and the K^{π}=16^{+}, 8^{-}ν^{2}(7/2^{+}[624],9/2^{-}[734])⊗8^{-}π^{2}(7/2^{-}[514],9/2^{+}[624]) four-quasiparticle configurations, respectively. Surprisingly, the lifetime of the two-quasiparticle isomer is more than 4 orders of magnitude shorter than what has been observed for analogous isomers in the lighter N=150 isotones. The four-quasiparticle isomer is longer lived than the ^{254}Rf ground state that decays exclusively by spontaneous fission with a half-life of 23.2(1.1) μs. The absence of sizable fission branches from either of the isomers implies unprecedented fission hindrance relative to the ground state.

  14. Dynamical decay of nuclei at high temperature: competition between particle emission and fission decay

    International Nuclear Information System (INIS)

    Delagrange, H.; Gregoire, C.; Scheuter, F.; Abe, Y.

    1985-06-01

    A generalized diffusion equation is propounded to follow the time evolution of an excited nucleus towards fission including along the particle decay. This theoretical model is built in order to try to analyse the anomalous behaviour of particle emission observed in many experimental data for heavy-ion induced reactions. Some calculations for the systems 194 Hg, 170 Yb and 248 Cf are presented. A possible extension of this generalized formalism is suggested to deal more consistently with the experimental data. 52 refs. 10 figs.

  15. Sensibility analysis of the effect of various key parameters on fission product concentration mass number 127 to 132 and Xe - 133 m)

    International Nuclear Information System (INIS)

    Sola, A.

    1978-01-01

    An analytical sensitivity analysis has been made of the effect' of various parameters on the evaluation of fission product concentration. Such parameters include cross sections, decay constants, branching ratios, fission yields, flux and time. The formulae are applied to isotopes of the Antimony, Tellurium, Iodine and Xenon series. The agreement between analytically obtained data and that derived from a computer evaluated model is good, suggesting that the analytical representation includes all the important parameters useful to the evaluation of the fission product concentrations

  16. Study of the desintegration of short-life fission products. Application to the mass distribution in the fission of 238U and 233U induced by 14MeV neutrons

    International Nuclear Information System (INIS)

    Cavallini, Pierre.

    1975-01-01

    Nuclear spectrometry of short-life fission products was investigated, together with direct applications to the study of mass and charge distribution in fission reactions. It is shown that, by choosing judiciously the target in which the fission product is created and owing to the differences in stabilities and evaporation temperatures of the compounds obtained, it is possible to separate some elements. For example, niobium was separated by heating after irradiation of a mixture of UC and RuCl 3 , and sublimation in a tube with temperature gradient. It was thus possible to study the 99 Nb isotope. Other classical chemical separation processes were used for yttrium and strontium. The half-lifes beta and gamma spectra, decay schemes of 93 Sr, 94 Y and 95 Y were studied. It was shown how to obtain mass distribution in fission using a nondestructive gamma analysis method. As an application, results obtained in the fission of 233 U and 238 U at 14 MeV are given [fr

  17. HYPERFUSE: a novel inertial confinement system utilizing hypervelocity projectiles for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs or 90 Sr. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n, 2n), (n, α), etc.) that convert the long lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product

  18. Chemical Production using Fission Fragments

    International Nuclear Information System (INIS)

    Dawson, J. K.; Moseley, F.

    1960-01-01

    Some reactor design considerations of the use of fission recoil fragment energy for the production of chemicals of industrial importance have been discussed previously in a paper given at the Second United Nations International Conference on the Peaceful Uses of Atomic Energy [A/Conf. 15/P.76]. The present paper summarizes more recent progress made on this topic at AERE, Harwell. The range-energy relationship for fission fragments is discussed in the context of the choice of fuel system for a chemical production reactor, and the experimental observation of a variation of chemical effect along the length of a fission fragment track is described for the irradiation of nitrogen-oxygen mixtures. Recent results are given on the effect of fission fragments on carbon monoxide-hydrogen gas mixtures and on water vapour. No system investigated to date shows any outstanding promise for large-scale chemical production. (author) [fr

  19. Behavior of solid fission products in irradiated fuel

    International Nuclear Information System (INIS)

    Song, Ung Sup; Jung, Yang Hong; Kim, Hee Moon; Yoo, Byun Gok; Kim, Do Sik; Choo, Yong Sun; Hong, Kwon Pyo

    2004-01-01

    Many fission products are generated by fission events in UO 2 fuel under irradiation in nuclear reactor. Concentration of each fission product is changed by conditions of neutron energy spectrum, fissile material, critical thermal power, irradiation period and cooling time. Volatile materials such as Cs and I, the fission products, degrade nuclear fuel rod by the decrease of thermal conductivity in pellet and the stress corrosion cracking in cladding. Metal fission products (white inclusion) make pellet be swelled and decrease volume of pellet by densification. It seems that metal fission products are filled in the pore in pellet and placed between UO 2 lattices as interstitial. In addition, metal oxide state may change structural lattice volume. Considering behavior of fission products mentioned above, concentration of them is important. Fission products could be classified as bellows; solid solution in matrix : Sr, Zr, Nb, Y, La, Ce, Pr, Nd, Pm, Sm - metal precipitates : Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sb, Te - oxide precipitates : Ba, Zr, Nb, Mo, (Rb, Cs, Te) - volatile and gases : Kr, Xe, Br, I, (Rb, Cs, Te)

  20. Recovery and use of fission product noble metals

    International Nuclear Information System (INIS)

    Jensen, G.A.; Rohmann, C.A.; Perrigo, L.D.

    1980-06-01

    Noble metals in fission products are of strategic value. Market prices for noble metals are rising more rapidly than recovery costs. A promising concept has been developed for recovery of noble metals from fission product waste. Although the assessment was made only for the three noble metal fission products (Rh, Pd, Ru), there are other fission products and actinides which have potential value

  1. An on-line mass-separator for thermically ionisable fission products: OSTIS

    International Nuclear Information System (INIS)

    Wuensch, K.-D.

    1978-01-01

    A mass separator has been designed and built for the installed at an external neutron guide tube (flux approximately 10 9 nsub(th)/s cm 2 ) of the High Flux Reactor of the Institute Laue-Langevin in Grenoble. The ion source consists of a high temperature oven containing fissile target material (approximately 2 g 235 U) embedded in porous carbon. Fission products formed in the target are thermalised in the carbon where only the alkali fission products diffuse quickly to the extraction hole. There only Rb and Cs are thermally ionized. Accelerated to 20 kV, these ions pass through a deflecting magnetic field (rhosub(m) approximately 215 mm, rho=77.5 0 ) for mass analysis and an electrostatic quadrupole to form a 5 mm diameter spot about 1 m outside the concrete shielding. Intensities of some 10 6 atoms per second were reached. The system allows all types of nuclear spectroscopy of Rb, Cs and their β-decay chain daughters as well as the measurement of yields and fission neutrons. It has been in nearly continuous operation for more than two years in Grenoble and first results are reported. (Auth.)

  2. Induced nuclear beta decay

    International Nuclear Information System (INIS)

    Reiss, H.R.

    1986-01-01

    Certain nuclear beta decay transitions normally inhibited by angular momentum or parity considerations can be induced to occur by the application of an electromagnetic field. Such decays can be useful in the controlled production of power, and in fission waste disposal

  3. The effect of load factor on fission product decay heat from discharged reactor fuel

    International Nuclear Information System (INIS)

    Davies, B.S.J.

    1978-07-01

    A sum-of-exponentials expression representing the decay heat power following a burst thermal irradiation of 235 U has been used to investigate the effect of load factor during irradiation on subsequent decay heat production. A sequence of random numbers was used to indicate reactor 'on' and 'off' periods for irradiations which continued for a total of 1500 days at power and were followed by 100 days cooling. It was found that for these conditions decay heat is almost proportional to load factor. Estimates of decay heat uncertainty arising from the random irradiation pattern are also given. (author)

  4. The use of recoil for the separation of uranium fission products; Utilisation du recul pour la separation des produits de fission de l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Henry, R; Herczec, C [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    The recoil distance of fission fragments in U{sub 3}O{sub 8} is about 8 microns. By using highly diluted suspensions of uranium oxide particles having dimension much smaller than this figure (mean diameter 0,5 micron), we were able to study the re-adsorption of fission products on uranium oxide. Separation results have been studied as a function of the nature of the irradiation medium (solid or liquid) and the separation medium, of particle size and of concentration of particles in the dispersing medium. Decay curves can be used to discriminate between {sup 239}Np and mixed fission products. Most of the {sup 239}Np is found in the U{sub 3}O{sub 8} particles. The location of fission products in solid dispersing media has been determined, fission products being found always inside the dispersing medium particles. The results obtained can be applied to the rapid separation of short-lived fission products from a uranium-free starting material. (author) [French] Le parcours de recul des fragments de fission est en moyenne de 8 microns dans l'U{sub 3}O{sub 8}. En prenant des suspensions d'oxyde d'uranium dont les particules, tres diluees, ont des dimensions nettement inferieures a cette valeur (diametre moyen 0,5 micron), on a pu etudier directement la readsorption des produits de fission sur l'oxyde d'uranium. Les resultats de separation ont ete etudies en fonction de la nature du milieu d'irradiation (solide ou liquide) et du milieu de separation, de la taille des particules d'oxyde et de leur concentration dans le milieu dispersant. Les courbes de decroissance permettent de determiner la perturbation apportee dans les mesures par le {sup 239}Np qui reste en majorite dans les grains d'U{sub 3}O{sub 8}. On a determine enfin l'emplacement des produits de fission dans le cas des melanges solides; ils se trouvent toujours a l'interieur des grains du milieu recepteur. Les resultats obtenus permettent d'envisager la separation rapide de produits de fission a periode courte a

  5. On the safety of conceptual fusion-fission hybrid reactors

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Okrent, D.; Badham, V.; Caspi, S.; Chan, C.K.; Ferrell, W.J.; Frederking, T.H.K.; Grzesik, J.; Lee, J.Y.; McKone, T.E.; Pomraning, G.C.; Ullman, A.Z.; Ting, T.D.; Kim, Y.I.

    1979-01-01

    A preliminary examination of some potential safety questions for conceptual fusion-fission hybrid reactors is presented in this paper. The study and subsequent analysis was largely based upon one design, a conceptual mirror fusion-fission reactor, operating on the deuterium-tritium plasma fusion fuel cycle and the uranium-plutonium fission fuel cycle. The major potential hazards were found to be: (a) fission products, (b) actinide elements, (c) induced radioactivity, and (d) tritium. As a result of these studies, it appears that highly reliable and even redundent decay heat removal must be provided. Loss of the ability to remove decay heat results in melting of fuel, with ultimate release of fission products and actinides to the containment. In addition, the studies indicate that blankets can be designed which will remain subcritical under extensive changes in both composition and geometry. Magnet safety and the effects of magnetic fields on thermal parameters were also considered. (Auth.)

  6. Process for the extraction of fission products

    International Nuclear Information System (INIS)

    Anav, M.; Chesne, A.; Leseur, A.; Miquel, P.; Pascard, R.

    1979-01-01

    A process is described for the extraction of fission products contained in irradiated nuclear fuel elements which have been subject to a temperature of at least 1200 0 C during their irradiation prior to dissolving the fuel by the wet process. After mechanically treating the elements in order to decan and/or cut them they are brought into contact with water in order to pass the fission products into aqueous solution. The treated elements are then separated from the thus obtained aqueous solution. At least one of the fission products is then recovered from the aqueous solution. The fission products are iodine, cesium, rubidium and tritium

  7. Hyper fuse: a novel inertial confinement system utilizing hypervelocity projectiles for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1979-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with a target in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs or 90 Sr. The 14 MeV fusion neutrons released during the pellet burn cause transmutation reactions [e.g., (n, 2n), (n, α), etc.] that convert the long lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product

  8. Fission products in glasses. Pt. 2

    International Nuclear Information System (INIS)

    De, A.K.; Luckscheiter, B.; Malow, G.; Schiewer, E.

    1977-09-01

    Glass ceramics of different composition with high leach and impact resistance can be produced for fission product solidification. In contrast to commercial glass products, they consist of a number of crystalline phases and a residual glass phase. The major crystalline phase allows a classification into celsian, diopside, encryptite, and perovskite ceramics. They all are of special importance as host phases for long-lived fission products. The paper reports on relations between product composition and melting properties, viscosity, crystallization properties, and fixation capability for fission products. Further investigations deal with dimensional stability, impact resistance, thermal expansion, and thermal conductivity. The properties of the ceramics are compared with those of the basic products. The problems still to be solved with regard to further improvement and application of these products are discussed. (RB) [de

  9. Fission products control by gamma spectrometry in purex process solutions

    International Nuclear Information System (INIS)

    Goncalves, Maria Augusta

    1982-01-01

    This paper deals with a radiometric method for fission products analysisby gamma spectrometry. This method will be applied for fission productscontrol at the irradiated material processing facility, under construction inthe Instituto de Pesquisas Energeticas e Nucleares, SP, Brazil. Countinggeometry was defined taking into account the activities of process solutionsto be analysed, the remotely operated aliquotation device of analytical celland the available detection system. Natural and 19,91% enriched uraniumsamples were irradiated at IEAR-1 reactor in order to simulate thecomposition of Purex process solutions. After a short decay time, the sampleswere dissolved with HNO 3 and then, conditioned in standard flasks withdefined geometry. The spectra were obtained by a Ge(Li) semiconductordetector and analysed by the GELIGAM software system, losing a floppy-diskconnected to a PDP-11/05 computer. Libraries were prepared and calibrationswere made with standard sources to fit the programs to the analysis offission products in irradiated uranium solutions. It was possible to choosethe best program to be used in routine analysis with the obtained data.(author)

  10. Needs and accuracy requirements for fission product nuclear data in the physics design of power reactor cores

    International Nuclear Information System (INIS)

    Rowlands, J.L.

    1978-01-01

    The fission product nuclear data accuracy requirements for fast and thermal reactor core performance predictions were reviewed by Tyror at the Bologna FPND Meeting. The status of the data was assessed at the Meeting and it was concluded that the requirements of thermal reactors were largely met, and the yield data requirements of fast reactors, but not the cross section requirements, were met. However, the World Request List for Nuclear Data (WRENDA) contains a number of requests for fission product capture cross sections in the energy range of interest for thermal reactors. Recent reports indicate that the fast reactor reactivity requirements might have been met by integral measurements made in zero power critical assemblies. However, there are requests for the differential cross sections of the individual isotopes to be determined in addition to the integral data requirements. The fast reactor requirements are reviewed, taking into account some more recent studies of the effects of fission products. The sodium void reactivity effect depends on the fission product cross sections in a different way to the fission product reactivity effect in a normal core. This requirement might call for different types of measurement. There is currently an interest in high burnup fuel cycles and alternative fuel cycles. These might require more accurate fission product data, data for individual isotopes and data for capture products. Recent calculations of the time dependence of fission product reactivity effects show that this is dependent upon the data set used and there are significant uncertainties. Some recent thermal reactor studies on approximations in the treatment of decay chains and the importance of xenon and samarium poisoning are also summarized. (author)

  11. Thermochromatographic investigations of fission product transport and chemistry

    International Nuclear Information System (INIS)

    Growcock, F.B.; Aronson, S.; Friedlander, M.; Skalyo, J. Jr.; Hosseini, A.; Taylor, R.D.

    1978-01-01

    A thermochromatographic technique has been developed to investigate the chemical states of fission products from irradiated fuel as well as in fission product simulation studies. Some recent work on iodine transport and on release of fission products from irradiated fuel kernels will be discussed

  12. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from a LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs, 90 Sr, 129 I, 99 Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R = 1.0 to 3.0) requirements. These studies also indicate that masses on the order of 1.0 g at densities of rho greater than or equal to 500.0 g/cm 3 are required for a practical fusion-based fission product transmutation system

  13. Fission-product retention in HTGR fuels

    International Nuclear Information System (INIS)

    Homan, F.J.; Kania, M.J.; Tiegs, T.N.

    1982-01-01

    Retention data for gaseous and metallic fission products are presented for both Triso-coated and Biso-coated HTGR fuel particles. Performance trends are established that relate fission product retention to operating parameters, such as temperature, burnup, and neutron exposure. It is concluded that Biso-coated particles are not adequately retentive of fission gas or metallic cesium, and Triso-coated particles which retain cesium still lose silver. Design implications related to these performance trends are identified and discussed

  14. ENDF/B-IV fission-product files: summary of major nuclide data

    International Nuclear Information System (INIS)

    England, T.R.; Schenter, R.E.

    1975-09-01

    The major fission-product parameters [sigma/sub th/, RI, tau/sub 1/2/, E-bar/sub β/, E-bar/sub γ/, E-bar/sub α/, decay and (n,γ) branching, Q, and AWR] abstracted from ENDF/B-IV files for 824 nuclides are summarized. These data are most often requested by users concerned with reactor design, reactor safety, dose, and other sundry studies. The few known file errors are corrected to date. Tabular data are listed by increasing mass number

  15. Application of least-squares method to decay heat evaluation

    International Nuclear Information System (INIS)

    Schmittroth, F.; Schenter, R.E.

    1976-01-01

    Generalized least-squares methods are applied to decay-heat experiments and summation calculations to arrive at evaluated values and uncertainties for the fission-product decay-heat from the thermal fission of 235 U. Emphasis is placed on a proper treatment of both statistical and correlated uncertainties in the least-squares method

  16. Dosimetric measurement of the disintegration rate of fission products

    International Nuclear Information System (INIS)

    Solymosi, J.; Nagy, L.G.; Zagyvai, P.

    1992-01-01

    Investigations on the disintegration rate of fission products of 238 U and 239 Pu are presented. The intensity of the β-and γ-radiation of fission products were measured continously in an interval of 1-1300 hours following the fission, offering the possibility for determining the general and specific characteristics of the individual fission products. A universal measuring procedure was elaborated for the rapid in situ determination of the dosimetric features of fission products, which is suitable for the accurate evaluation and prediction of external absorbed dose even in case of fission products of various origin and unknown composition. (author) 6 refs.; 7 figs.; 1 tab

  17. Exact Solution of Fractional Diffusion Model with Source Term used in Study of Concentration of Fission Product in Uranium Dioxide Particle

    International Nuclear Information System (INIS)

    Fang Chao; Cao Jianzhu; Sun Lifeng

    2011-01-01

    The exact solution of fractional diffusion model with a location-independent source term used in the study of the concentration of fission product in spherical uranium dioxide (UO 2 ) particle is built. The adsorption effect of the fission product on the surface of the UO 2 particle and the delayed decay effect are also considered. The solution is given in terms of Mittag-Leffler function with finite Hankel integral transformation and Laplace transformation. At last, the reduced forms of the solution under some special physical conditions, which is used in nuclear engineering, are obtained and corresponding remarks are given to provide significant exact results to the concentration analysis of nuclear fission products in nuclear reactor. (nuclear physics)

  18. Fission product induced swelling of U–Mo alloy fuel

    International Nuclear Information System (INIS)

    Kim, Yeon Soo; Hofman, G.L.

    2011-01-01

    Highlights: ► We measured fuel swelling of U–Mo alloy by fission products at temperatures below 250 °C. ► We quantified the swelling portion of U–Mo by fission gas bubbles. ► We developed an empirical model as a function of fission density. - Abstract: Fuel swelling of U–Mo alloy was modeled using the measured data from samples irradiated up to a fission density of ∼7 × 10 27 fissions/m 3 at temperatures below ∼250 °C. The overall fuel swelling was measured from U–Mo foils with as-fabricated thickness of 250 μm. Volume fractions occupied by fission gas bubbles were measured and fuel swelling caused by the fission gas bubbles was quantified. The portion of fuel swelling by solid fission products including solid and liquid fission products as well as fission gas atoms not enclosed in the fission gas bubbles is estimated by subtracting the portion of fuel swelling by gas bubbles from the overall fuel swelling. Empirical correlations for overall fuel swelling, swelling by gas bubbles, and swelling by solid fission products were obtained in terms of fission density.

  19. Recent Results from Lohengrin on Fission Yields and Related Decay Properties

    Science.gov (United States)

    Serot, O.; Amouroux, C.; Bidaud, A.; Capellan, N.; Chabod, S.; Ebran, A.; Faust, H.; Kessedjian, G.; Köester, U.; Letourneau, A.; Litaize, O.; Martin, F.; Materna, T.; Mathieu, L.; Panebianco, S.; Regis, J.-M.; Rudigier, M.; Sage, C.; Urban, W.

    2014-05-01

    The Lohengrin mass spectrometer is one of the 40 instruments built around the reactor of the Institute Laue-Langevin (France) which delivers a very intense thermal neutron flux. Usually, Lohengrin was combined with a high-resolution ionization chamber in order to obtain good nuclear charge discrimination within a mass line, yielding an accurate isotopic yield determination. Unfortunately, this experimental procedure can only be applied for fission products with a nuclear charge less than about 42, i.e. in the light fission fragment region. Since 2008, a large collaboration has started with the aim of studying various fission aspects, mainly in the heavy fragment region. For that, a new experimental setup which allows isotopic identification by γ-ray spectrometry has been developed and validated. This technique was applied on the 239Pu(nth,f) reaction where about 65 fission product yields were measured with an uncertainty that has been reduced on average by a factor of 2 compared with what was that previously available in nuclear data libraries. The same γ-ray spectrometric technique is currently being applied to the study of the 233U(nth,f) reaction. Our aim is to deduce charge and mass distributions of the fission products and to complete the experimental data that exist mainly for light fission fragments. The measurement of 41 mass yields from the 241Am(2nth,f) reaction has been also performed. In addition to these activities on fission yield measurements, various new nanosecond isomers were discovered. Their presence can be revealed from a strong deformed ionic charge distribution compared to a 'normal' Gaussian shape. Finally, a new neutron long-counter detector designed to have a detection efficiency independent of the detected neutron energy has been built. Combining this neutron device with a Germanium detector and a beta-ray detector array allowed us to measure the beta-delayed neutron emission probability Pn of some important fission products for reactor

  20. Fission fragment distributions within dynamical approach

    Energy Technology Data Exchange (ETDEWEB)

    Mazurek, K. [Institute of Nuclear, Physics Polish Academy of Sciences, Krakow (Poland); Nadtochy, P.N. [Omsk State Technical University, Omsk (Russian Federation); Ryabov, E.G.; Adeev, G.D. [Omsk State University, Physics Department, Omsk (Russian Federation)

    2017-04-15

    The review covers recent developments and achievements in the dynamical description of fission process at high excitation energy. It is shown that the dynamical approach based on multidimensional Langevin equations combined with the statistical description of nuclear decay by particles evaporation is capable of fairly well describing the formation of fission fragment mass-energy, charge, and angular distributions of fission fragments in coincidence with the pre- and post-scission particle emission. The final yields of fission and evaporation residues channels products could be obtained. The detailed description of fission dynamics allows studying different stages of fission process, indicating the most important ingredients governing fission process and studying in detail such fundamental nuclear properties as nuclear viscosity and fission timescale. The tasks and perspectives of multidimensional dynamical approach are also discussed. (orig.)

  1. Simulation of Fission Product Liftoff Behavior During Depressurization Transients

    International Nuclear Information System (INIS)

    Tak, Nam-il; Yoon, Churl; Lee, Sung Nam

    2016-01-01

    As one of crucial technologies for the NHDD project, the development of the GAMMA-FP code is on-going. The GAMMA-FP code is targeted for fission product transport analysis under accident conditions. A well-known experiment named COMEDIE considered two important phenomena, i.e., fission product plateout and liftoff, for fission product transport within the primary circuit of a prismatic high temperature gas cooled reactor. The accumulated fission products on the structural material via the plateout can be liftoff during a blowdown phase after a pipe break accident. Since the fission product liftoff can increase a radioactivity risk, it is important to predict the amount of fission product liftoff during depressurization accidents. In this work, a model for fission product liftoff is implemented into the GAMMA-FP code and the GAMMA-FP code with the implemented model is validated using the COMEDIE blowdown test data. The results of GAMMA-FP show that the GAMMA-FP code can reliably simulate a pressure transient during blowdown phase after a pipe break accident. In addition, a reasonable amount of fission product liftoff was predicted by the GAMMA-FP code. The maximum difference between the measured and predicted liftoff fraction was less than a factor of 10. More in-depth study is required to increase the accuracy of prediction for a fission product liftoff

  2. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs, 90 Sr, 129 I, 99 Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R=1.0 to 3.0) requirements

  3. Fission 99Mo production technology

    International Nuclear Information System (INIS)

    Miao Zengxing; Luo Zhifu; Ma Huimin; Liang Yufu; Yu Ningwen

    2003-01-01

    This paper describes a production technology of fission 99 Mo in the Department Isotope, CIAE. The irradiation target is tubular U-Al alloy containing highly enriched uranium. The target is irradiated in the swimming pool reactor core. The neutron flux is about 4x10 13 /cm 2 .sec. The production scale is 3.7-7.4 TBq (100-200Ci) of fission 99 Mo per batch. Total recovery of 99 Mo is more than 70%. The production practice proves that the process and equipment are safe and reliable. (author)

  4. Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons

    Science.gov (United States)

    Bhatia, C.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.; Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rundberg, R. S.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Macri, R.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.

    2014-09-01

    A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.

  5. Modeling Fission Product Sorption in Graphite Structures

    International Nuclear Information System (INIS)

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-01-01

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high-temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products

  6. Analysis of effects of updated decay and fission yield data on ORIGEN 2 results

    International Nuclear Information System (INIS)

    Daniel, P.R.

    1993-01-01

    Work has been performed to improve the accuracy of ORIGEN2 results by updating both the decay library and the fission yield data in the cross-section library. This effort was performed under the auspices of Oak Ridge National Laboratory (ORNL) to ensure that ORIGEN2 uses the most up-to-date data. The impact of the new data was then quantitatively evaluated by solving a set of standard light water reactor (LWR) problems solved with ORIGEN2. The ORIGEN code, developed at ORNL in the late 1960's, is a point depletion code used to determine the composition and characteristics of spent fuel. The results from calculations performed with the code often form the basis for the study and design of reprocessing plants, spent-fuel shipping casks, waste treatment systems, and disposal facilities. The decay data were updated using data from ENDF/B-VI; fission yield data were updated using data from ENDF/B-V. The impact of these new data was then evaluated

  7. Fission-product SiC reaction in HTGR fuel

    International Nuclear Information System (INIS)

    Montgomery, F.

    1981-01-01

    The primary barrier to release of fission product from any of the fuel types into the primary circuit of the HTGR are the coatings on the fuel particles. Both pyrolytic carbon and silicon carbide coatings are very effective in retaining fission gases under normal operating conditions. One of the possible performance limitations which has been observed in irradiation tests of TRISO fuel is chemical interaction of the SiC layer with fission products. This reaction reduces the thickness of the SiC layer in TRISO particles and can lead to release of fission products from the particles if the SiC layer is completely penetrated. The experimental section of this report describes the results of work at General Atomic concerning the reaction of fission products with silicon carbide. The discussion section describes data obtained by various laboratories and includes (1) a description of the fission products which have been found to react with SiC; (2) a description of the kinetics of silicon carbide thinning caused by fission product reaction during out-of-pile thermal gradient heating and the application of these kinetics to in-pile irradiation; and (3) a comparison of silicon carbide thinning in LEU and HEU fuels

  8. Method of fission product beta spectra measurements for predicting reactor anti-neutrino emission

    Energy Technology Data Exchange (ETDEWEB)

    Asner, D.M.; Burns, K.; Campbell, L.W.; Greenfield, B.; Kos, M.S., E-mail: markskos@gmail.com; Orrell, J.L.; Schram, M.; VanDevender, B.; Wood, L.S.; Wootan, D.W.

    2015-03-11

    The nuclear fission process that occurs in the core of nuclear reactors results in unstable, neutron-rich fission products that subsequently beta decay and emit electron antineutrinos. These reactor neutrinos have served neutrino physics research from the initial discovery of the neutrino to today's precision measurements of neutrino mixing angles. The prediction of the absolute flux and energy spectrum of the emitted reactor neutrinos hinges upon a series of seminal papers based on measurements performed in the 1970s and 1980s. The steadily improving reactor neutrino measurement techniques and recent reconsiderations of the agreement between the predicted and observed reactor neutrino flux motivates revisiting the underlying beta spectra measurements. A method is proposed to use an accelerator proton beam delivered to an engineered target to yield a neutron field tailored to reproduce the neutron energy spectrum present in the core of an operating nuclear reactor. Foils of the primary reactor fissionable isotopes placed in this tailored neutron flux will ultimately emit beta particles from the resultant fission products. Measurement of these beta particles in a time projection chamber with a perpendicular magnetic field provides a distinctive set of systematic considerations for comparison to the original seminal beta spectra measurements. Ancillary measurements such as gamma-ray emission and post-irradiation radiochemical analysis will further constrain the absolute normalization of beta emissions per fission. The requirements for unfolding the beta spectra measured with this method into a predicted reactor neutrino spectrum are explored.

  9. An analysis of the additional fission product release phenomena

    International Nuclear Information System (INIS)

    Takeda, Tsuneo; Nagai, Hitoshi

    1978-09-01

    The additional fission product release behavior through a defect hole on the cladding of fuel rods has been studied qualitatively with a computer program CODAC-ARFP. The additional fission product release phenomena are described as qualitative evaluation. The additional fission product release behavior in coolant temperature and pressure fluctuations and in reactor start-up and shut-down depends on coolant water flow behavior into and from the free space of fuel rods through a defect hole. Based on the results of evaluations, the experimental results with an inpile water loop OWL-1 are described in detail. The estimation methods of fission product quantity in the free space and fission product release ratio (quantity released into the coolant/quantity in the free space before beginning of release) are necessary for analysis of the fission product release behavior; the estimation method of water flow through a defect hole is also necessary. In development of the above estimation methods, outpile and capsule experiments supporting the additional fission product release experiments are required. (author)

  10. Development of fission Mo-99 production technology

    International Nuclear Information System (INIS)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2000-05-01

    Fission Mo-99 is the only parent nuclide of Tc-99m, an extremely useful tool for mdeical diagnosis, with an estimated usage of greater than 80% of nuclear medicine applicatons. HEU and LEU targets to optimize in HANARO irradiation condition suggested and designed for domestic production of fission Mo-99. The optimum process conditions are established in each unit process to meet quality requirements of fission Mo-99 products, and the results of performance test in combined process show Mo separation and purification yield of the above 97%. The concept of Tc generator production process is established, and the result of performance test show Tc production yield of 98.4% in Tc generator procuction process. The drafts is prepared for cooperation of technical cooperation and business investment with foreign country. Evaluation on economic feasibility is accompanied for fission Mo-99 and Tc-99m generator production

  11. Development of fission Mo-99 production technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2000-05-01

    Fission Mo-99 is the only parent nuclide of Tc-99m, an extremely useful tool for mdeical diagnosis, with an estimated usage of greater than 80% of nuclear medicine applicatons. HEU and LEU targets to optimize in HANARO irradiation condition suggested and designed for domestic production of fission Mo-99. The optimum process conditions are established in each unit process to meet quality requirements of fission Mo-99 products, and the results of performance test in combined process show Mo separation and purification yield of the above 97%. The concept of Tc generator production process is established, and the result of performance test show Tc production yield of 98.4% in Tc generator procuction process. The drafts is prepared for cooperation of technical cooperation and business investment with foreign country. Evaluation on economic feasibility is accompanied for fission Mo-99 and Tc-99m generator production.

  12. ENDF/B-5. Fission Product Yields File

    International Nuclear Information System (INIS)

    Schwerer, O.

    1985-10-01

    The ENDF/B-5 Fission Product Yields File contains a complete set of independent and cumulative fission product yields, representing the final data from ENDF/B-5 as received at the IAEA Nuclear Data Section in June 1985. Yields for 11 fissioning nuclides at one or more neutron incident energies are included. The data are available costfree on magnetic tape from the IAEA Nuclear Data Section. (author). 4 refs

  13. Study of ternary and quaternary spontaneous fission of 252Cf with the NESSI detector

    International Nuclear Information System (INIS)

    Tishchenko, V.G.; Jahnke, U.; Herbach, C.M.; Hilscher, D.

    2002-11-01

    Ternary and quaternary spontaneous decay of 252 Cf was studied with the NESSI detector, a combination of two 4π detectors for charged particles, neutrons and γ-rays. The applied method of particle identification by measuring the energies and relative time-of-flights of the decay products is shown to be very effective for the study of rare decay modes. The energy and angular distributions of the decay products, the associated neutron multiplicities, the total energy of the prompt γ-radiation as well as correlations between the various observables were measured for the first time in a single full-scale experiment. The characteristics of ternary fission known from previous investigations are confirmed in the frame of a methodically independent experiment. Preliminary estimates of the quaternary fission yield are presented. An attempt is made to determine the mechanism of quaternary fission. (orig.)

  14. Model for fission-product calculations

    International Nuclear Information System (INIS)

    Smith, A.B.

    1984-01-01

    Many fission-product cross sections remain unmeasurable thus considerable reliance must be placed upon calculational interpolation and extrapolation from the few available measured cross sections. The vehicle, particularly for the lighter fission products, is the conventional optical-statistical model. The applied goals generally are: capture cross sections to 7 to 10% accuracies and inelastic-scattering cross sections to 25 to 50%. Comparisons of recent evaluations and experimental results indicate that these goals too often are far from being met, particularly in the area of inelastic scattering, and some of the evaluated fission-product cross sections are simply physically unreasonable. It is difficult to avoid the conclusion that the models employed in many of the evaluations are inappropriate and/or inappropriately used. In order to alleviate the above unfortunate situations, a regional optical-statistical (OM) model was sought with the goal of quantitative prediction of the cross sections of the lighter-mass (Z = 30-51) fission products. The first step toward that goal was the establishment of a reliable experimental data base consisting of energy-averaged neutron total and differential-scattering cross sections. The second step was the deduction of a regional model from the experimental data. It was assumed that a spherical OM is appropriate: a reasonable and practical assumption. The resulting OM then was verified against the measured data base. Finally, the physical character of the regional model is examined

  15. Systematics of Fission-Product Yields

    International Nuclear Information System (INIS)

    Wahl, A.C.

    2002-01-01

    Empirical equations representing systematics of fission-product yields have been derived from experimental data. The systematics give some insight into nuclear-structure effects on yields, and the equations allow estimation of yields from fission of any nuclide with atomic number Z F = 90 thru 98, mass number A F = 230 thru 252, and precursor excitation energy (projectile kinetic plus binding energies) PE = 0 thru ∼200 MeV--the ranges of these quantities for the fissioning nuclei investigated. Calculations can be made with the computer program CYFP. Estimates of uncertainties in the yield estimates are given by equations, also in CYFP, and range from ∼ 15% for the highest yield values to several orders of magnitude for very small yield values. A summation method is used to calculate weighted average parameter values for fast-neutron (∼ fission spectrum) induced fission reactions

  16. Systematics of Fission-Product Yields

    Energy Technology Data Exchange (ETDEWEB)

    A.C. Wahl

    2002-05-01

    Empirical equations representing systematics of fission-product yields have been derived from experimental data. The systematics give some insight into nuclear-structure effects on yields, and the equations allow estimation of yields from fission of any nuclide with atomic number Z{sub F} = 90 thru 98, mass number A{sub F} = 230 thru 252, and precursor excitation energy (projectile kinetic plus binding energies) PE = 0 thru {approx}200 MeV--the ranges of these quantities for the fissioning nuclei investigated. Calculations can be made with the computer program CYFP. Estimates of uncertainties in the yield estimates are given by equations, also in CYFP, and range from {approx} 15% for the highest yield values to several orders of magnitude for very small yield values. A summation method is used to calculate weighted average parameter values for fast-neutron ({approx} fission spectrum) induced fission reactions.

  17. The role of fission products in whole core accidents

    Energy Technology Data Exchange (ETDEWEB)

    Baker, A R [FRSD, UKAEA, RNPDE, Risley, Warrington (United Kingdom); Teague, H J [SRD, UKAEA, Culcheth, Warrington (United Kingdom)

    1977-07-01

    The review of the role of fission products in whole-core accidents falls into two parts. Firstly, there is a discussion of the hypothetical accidents usually considered in the UK and how they are dealt with. Secondly, there is a discussion of individual topics where fission products are known to be important or might be so. There is a brief discussion of the UK work on the establishment of an equation of state for unirradiated fuel and how this might be extended to incorporate fission product effects. The main issue is the contribution of fission products to the effective vapour pressure and the experimental programme on the pulsed reactor VIPER investigates this. Fission products may influence the probability of occurrence and the severity of MFCIs. Finally, the fission product effects in the pre-disassembly, disassembly and recriticality stages of an accident are discussed. (author)

  18. Impact of fuel chemistry on fission product behaviour

    International Nuclear Information System (INIS)

    Poortmans, C.; Van Uffelen, P.; Van den Berghe, S.

    1999-01-01

    The report contains a series of papers presented at SCK-CEN's workshop on the impact of fuel chemistry on fission product behaviour. Contributing authors discuss different processes affecting the behaviour of fission products in different types of spent nuclear fuel. In addition, a number of papers discusses the behaviour of actinides and fission products released from spent fuel and vitrified high-level waste in geological disposal conditions

  19. Fission product and aerosol behaviour within the containment

    International Nuclear Information System (INIS)

    Beard, A.M.; Benson, C.G.; Bowsher, B.R.; Dickinson, S.; Nichols, A.L.

    1990-04-01

    Experimental studies have been undertaken to characterise the behaviour of fission products in the containment of a pressurised water reactor during a severe accident. The following aspects of fission product transport have been studied: (a) aerosol nucleation, (b) vapour transport processes, (c) chemical forms of high-temperature vapours, (d) interaction of fission product vapours with aerosols generated from within the reactor core, (e) resuspension processes, (f) chemistry in the containment. Chemical effects have been shown to be important in defining and quantifying fission product source terms in a wide range of accident sequences. Both the chemical forms of the fission product vapours and their interactions with reactor materials aerosols could have a major effect on the magnitude and physicochemical forms of the radioactive emission from a severe reactor accident. Only the main conclusions are presented in this summary document; detailed technical aspects of the work are described in separate reports listed in the annex

  20. Calculated apparent yields of rare gas fission products

    International Nuclear Information System (INIS)

    Delucchi, A.A.

    1975-01-01

    The apparent fission yield of the rare gas fission products from four mass chains is calculated as a function of separation time for six different fissioning systems. A plot of the calculated fission yield along with a one standard deviation error band is given for each rare gas fission product and for each fissioning system. Those parameters in the calculation that were major contributors to the calculated standard deviation at each separation time were identified and the results presented on a separate plot. To extend the usefulness of these calculations as new and better values for the input parameters become available, a third plot was generated for each system which shows how sensitive the derived fission yield is to a change in any given parameter used in the calculation. (U.S.)

  1. Photofission observations in reactor environments using selected fission-product yields

    International Nuclear Information System (INIS)

    Gold, R.; Ruddy, F.H.; Roberts, J.H.

    1982-01-01

    A new method for the observation of photofission in reactor environments is advanced. It is based on the in-situ observation of fission product yield. In fact, at a given in-situ reactor location, the fission product yield is simply a weighted linear combination of the photofission product yield, Y/sub gamma/, and the neutron induced fission product yield, Y/sub n. The weight factors arising in this linear combination are the photofission fraction and neutron induced fission fraction, respectively. This method can be readily implemented with established techniques for measuring in-situ reactor fission product yield. For example, one can use the method based on simultaneous irradiation of radiometric (RM) and solid state track recorder (SSTR) fission monitors. The sensitivity and accuracy and current knowledge of fission product yields. Unique advantages of this method for reactor applications are emphasized

  2. Separation of short-lived fission products

    International Nuclear Information System (INIS)

    Tamai, Tadaharu; Ohyoshi, Emiko; Ohyoshi, Akira; Kiso, Yoshiyuki; Shinagawa, Mutsuaki.

    1976-01-01

    A rbief review is presented on the various methods of separation available for both gaseous and liquid states, for the separation of short-lived fission products formed by binary fission of neutron irradiated uranium. The means available for gaseous state are the hot atom reaction, the hydride method and on-line mass separation. For liquid state, use can be made of precipitation, ionic or atomic exchange, solvent extraction and paper electrophoresis. Particular reference is made to electrophoretic separation of ions produced by fission in aqueous solution of uranium. The principle of electrophoretic separation and the procedures for separating the element of interest from the other fission products are outlined, with reference made to the results obtained with the method by the present authors. The elements in question are alkalines, alkaline earths, rare earths, halogens, selenium and

  3. Thermodynamic analysis of volatile organometallic fission products

    International Nuclear Information System (INIS)

    Auxier II, J.D.; Hall, H.L.; Cressy, Derek

    2016-01-01

    The ability to perform rapid separations in a post nuclear weapon detonation scenario is an important aspect of national security. In the past, separations of fission products have been performed using solvent extraction, precipitation, etc. The focus of this work is to explore the feasibility of using thermochromatography, a technique largely employed in superheavy element chemistry, to expedite the separation of fission products from fuel components. A series of fission product complexes were synthesized and the thermodynamic parameters were measured using TGA/DSC methods. Once measured, these parameters were used to predict their retention times using thermochromatography. (author)

  4. Calculation for fission decay from heavy ion reactions at intermediate energies

    International Nuclear Information System (INIS)

    Blaich, T.; Begemann-Blaich, M.; Fowler, M.M.; Wilhelmy, J.B.; Britt, H.C.; Fields, D.J.; Hansen, L.F.; Namboodiri, M.N.; Sangster, T.C.; Fraenkel, Z.

    1992-01-01

    A detailed deexcitation calculation is presented for target residues resulting from intermediate-energy heavy ion reactions. The model involves an intranuclear cascade, subsequent fast nucleon emission, and final decay by statistical evaporation including fission. Results are compared to data from bombardments with Fe and Nb projectiles on targets of Ta, Au, and Th at 100 MeV/nucleon. The majority of observable features are reproduced with this simple approach, making obvious the need for involving new physical phenomena associated with multifragmentation or other collective dissipation mechanisms

  5. Fission products and nuclear fuel behaviour under severe accident conditions part 3: Speciation of fission products in the VERDON-1 sample

    Science.gov (United States)

    Le Gall, C.; Geiger, E.; Gallais-During, A.; Pontillon, Y.; Lamontagne, J.; Hanus, E.; Ducros, G.

    2017-11-01

    Qualitative and quantitative analyses on the VERDON-1 sample made it possible to obtain valuable information on fission product behaviour in the fuel during the test. A promising methodology based on the quantitative results of post-test characterisations has been implemented to assess the release fraction of non γ-emitter fission products. The order of magnitude of the estimated release fractions for each fission product was consistent with their class of volatility.

  6. Transport properties of fission product vapors

    International Nuclear Information System (INIS)

    Im, K.H.; Ahluwalia, R.K.

    1983-07-01

    Kinetic theory of gases is used to calculate the transport properties of fission product vapors in a steam and hydrogen environment. Provided in tabular form is diffusivity of steam and hydrogen, viscosity and thermal conductivity of the gaseous mixture, and diffusivity of cesium iodide, cesium hydroxide, diatomic tellurium and tellurium dioxide. These transport properties are required in determining the thermal-hydraulics of and fission product transport in light water reactors

  7. Behaviour of short-lived fission products within operating UO2 fuel elements

    International Nuclear Information System (INIS)

    Hastings, I.J.; Hunt, C.E.L.; Lipsett, J.J.

    1983-01-01

    We have carried out experiments using a ''sweep gas'' technique to determine the behaviour of short-lived fission products within operating, intact UO 2 fuel elements. The Zircaloy-4-clad elements were 500 mm long and contained fuel of density 10.65-10.71 Mg/m 3 . A He-2% H 2 carrier gas swept gaseous or volatile fission products out of the operating fuel element past a gamma spectrometer for measurement. In tests at linear powers of 45 and 60 kW/m to maximum burnups of 70 MW.h/kg U, the species measured directly at the spectrometer were generally the short-lived xenons and kryptons. We did not observe iodine or bromine during normal operation. However, we have deduced the behaviour of I-133 and I-135 from the decay of Xe-133 and Xe-135 during reactor shutdowns. Plots of R/B (released/born) against lambda (decay constant) or effective lambda for all isotopes observed at 45 and 60 kW/m show that a line of slope -0.5, corresponding with diffusion kinetics, is a good fit to the measured xenon and krypton data. Our inferred release of iodine fits the same line. From this we can extrapolate to an R/B for I-131 of about 5x10 -3 . The ANS 5.4 release correlation gives calculated results in good agreement with our measurements. (author)

  8. Correlation of recent fission product release data

    International Nuclear Information System (INIS)

    Kress, T.S.; Lorenz, R.A.; Nakamura, T.; Osborne, M.F.

    1989-01-01

    For the calculation of source terms associated with severe accidents, it is necessary to model the release of fission products from fuel as it heats and melts. Perhaps the most definitive model for fission product release is that of the FASTGRASS computer code developed at Argonne National Laboratory. There is persuasive evidence that these processes, as well as additional chemical and gas phase mass transport processes, are important in the release of fission products from fuel. Nevertheless, it has been found convenient to have simplified fission product release correlations that may not be as definitive as models like FASTGRASS but which attempt in some simple way to capture the essence of the mechanisms. One of the most widely used such correlation is called CORSOR-M which is the present fission product/aerosol release model used in the NRC Source Term Code Package. CORSOR has been criticized as having too much uncertainty in the calculated releases and as not accurately reproducing some experimental data. It is currently believed that these discrepancies between CORSOR and the more recent data have resulted because of the better time resolution of the more recent data compared to the data base that went into the CORSOR correlation. This document discusses a simple correlational model for use in connection with NUREG risk uncertainty exercises. 8 refs., 4 figs., 1 tab

  9. The behavior of fission products during nuclear rocket reactor tests

    International Nuclear Information System (INIS)

    Bokor, P.C.; Kirk, W.L.; Bohl, R.J.

    1991-01-01

    Fission product release from nuclear rocket propulsion reactor fuel is an important consideration for nuclear rocket development and application. Fission product data from the last six reactors of the Rover program are collected in this paper to provide as basis for addressing development and testing issues. Fission product loss from the fuel will depend on fuel composition and reactor design and operating parameters. During ground testing, fission products can be contained downstream of the reactor. The last Rover reactor tested, the Nuclear Furnance, was mated to an effluent clean-up system that was effective in preventing the discharge of fission products into the atmosphere

  10. Fuel morphology effects on fission product release

    International Nuclear Information System (INIS)

    Osetek, D.J.; Hartwell, J.K.; Cronenberg, A.W.

    1986-01-01

    Results are presented of fission product release behavior observed during four severe fuel damage tests on bundles of UO 2 fuel rods. Transient temperatures up to fuel melting were obtained in the tests that included both rapid and slow cooldown, low and high (36 GWd/t) burnup fuel and the addition of Ag-In-Cd control rods. Release fractions of major fission product species and release rates of noble gas species are reported. Significant differences in release behavior are discussed between heatup and cooldown periods, low and high burnup fuel and long- and short-lived fission products. Explanations for the observed differences are offered that relate fuel morphology changes to the releases

  11. ELSA: A simplified code for fission product release calculations

    International Nuclear Information System (INIS)

    Manenc, H.; Notley, M.J.

    1996-01-01

    During a light water reactor severe accident, fission products are released from the overheated core as it progressively degrades. A new computer module named ELSA is being developed to calculate fission product release. The authors approach is to model the key phenomena, as opposed to more complete mechanistic approaches. Here they present the main features of the module. Different release mechanisms have been identified and are modeled in ELSA, depending on fission product volatility: diffusion seems to govern the release of the highly volatile species if fuel oxidation is properly accounted for, whereas mass transport governs that of lower volatility fission products and fuel volatilization that of the practically involatile species

  12. Neutron emission and fragment yield in high-energy fission

    International Nuclear Information System (INIS)

    Grudzevich, O. T.; Klinov, D. A.

    2013-01-01

    The KRIS special library of spectra and emission probabilities in the decays of 1500 nuclei excited up to energies between 150 and 250 MeV was developed for correctly taking into account the decay of highly excited nuclei appearing as fission fragments. The emission of neutrons, protons, and photons was taken into account. Neutron emission fromprimary fragments was found to have a substantial effect on the formation of yields of postneutron nuclei. The library was tested by comparing the calculated and measured yields of products originating from the fission of nuclei that was induced by high-energy protons. The method for calculating these yields was tested on the basis of experimental data on the thermal-neutroninduced fission of 235 U nuclei

  13. Simulation of fission products behavior in severe accidents for advanced passive PWR

    International Nuclear Information System (INIS)

    Tong, L.L.; Huang, G.F.; Cao, X.W.

    2015-01-01

    Highlights: • A fission product analysis model based on thermal hydraulic module is developed. • An assessment method for fission product release and transport is constructed. • Fission products behavior during three modes of containment response is investigated. • Source term results for the three modes of containment response are obtained. - Abstract: Fission product behavior for common Pressurized Water Reactor (PWR) has been studied for many years, and some analytical tools have developed. However, studies specifically on the behavior of fission products related to advanced passive PWR is scarce. In the current study, design characteristics of advanced passive PWR influencing fission product behavior are investigated. An integrated fission products analysis model based on a thermal hydraulic module is developed, and the assessment method for fission products release and transport for advanced passive PWR is constructed. Three modes of containment response are simulated, including intact containment, containment bypass and containment overpressure failure. Fission products release from the core and corium, fission products transport and deposition in the Reactor Coolant System (RCS), fission products transport and deposition in the containment considering fission products retention in the in-containment refueling water storage tank (IRWST) and in the secondary side of steam generators (SGs) are simulated. Source term results of intact containment, containment bypass and containment overpressure failure are obtained, which can be utilized to evaluate the radiological consequences

  14. Decay and Transmutation of Nuclides

    CERN Document Server

    Aarnio, Pertti A

    1999-01-01

    We present a computer code DeTra which solves analytically the Bateman equations governing the decay, build-up and transmutation of radionuclides. The complexity of the chains and the number of nuclides are not limited. The nuclide production terms considered include transmutation of the nuclides inside the chain, external production, and fission. Time dependent calculations are possible since all the production terms can be re-defined for each irradiation step. The number of irradiation steps and output times is unlimited. DeTra is thus able to solve any decay and transmutation problem as long as the nuclear data i.e. decay data and production rates, or cross sections, are known.

  15. Comparison of yield and decay data among JNDC2, ENDF/B-VI and JEF2.2

    Energy Technology Data Exchange (ETDEWEB)

    Oyamatsu, Kazuhiro; Sagisaka, Mitsuyuki; Miyazono, Toshimitsu [Nagoya Univ. (Japan)

    1997-03-01

    Fission yields and decay data for fission product summation calculations are compared among JNDC2 and ENDF/B-VI and JEF2.2. Special attention is paid to the summation calculation of the total delayed neutrons per fission because it requires the data of the most unstable nuclides among all fission products. The cumulative fission yields of delayed neutron precursors are found to be appreciably different among the libraries even though values of the independent fission yields and the total number of delayed neutrons are chosen to be in fair agreement with each other. This suggests that there still exist large uncertainties in delayed neutron emission probabilities (or decay chains) for the precursors far from the stability line. (author)

  16. Compilations and evaluations of nuclear structure and decay date

    International Nuclear Information System (INIS)

    Lorenz, A.

    The material contained in this compilation is sorted according to eight subject categories: 1. General Compilations; 2. Basic Isotopic Properties; 3. Nuclear Structure Properties; 4. Nuclear Decay Processes: Half-lives, Energies and Spectra; 5. Nuclear Decay Processes: Gamma-rays; 6. Nuclear Decay Processes: Fission Products; 7. Nuclear Decay Processes: (Others); 8. Atomic Processes

  17. Separation of fission Molybdenum for production of technetium generator

    International Nuclear Information System (INIS)

    Bayat, L.; Shaham, V.; Davarkha, R.

    2002-01-01

    There are two basically different methods for Mo-99 productions: Activation of Mo-99 contained at about 24% in natural isotopic mixtures. Mo-98 enriched targets are irradiated in high-flux reactors in order to achieve the highest possible specific activity of the product. Idolisation of fission molybdenum from irradiated nuclear fuel targets which have undergone short-term cooling. Maximum fission yield can be attained by irradiation of uranium-235 with the highest possible enrichment. On account of its approximately 1000 times higher specific activity. Fission molybdenum has almost replaced worldwide the product fabricated by activation. However, fission molybdenum-99 production has as its prerequisite a suitably advanced technology by which the production process taking place under high activity conditions can be controlled. An integral part of the process consist in the retention of the fission gases the recycling of non-consumed fuel and the treatment of the waste streams arising. This publication will deal with the individual steps in the process

  18. Characteristics of fission product release from a molten pool

    International Nuclear Information System (INIS)

    Yun, J.I.; Suh, K.Y.; Kang, C.S.

    2001-01-01

    The volatile fission products are released from the debris pool, while the less volatile fission products tend to remain as condensed phases because of their low vapor pressure. The release of noble gases and the volatile fission products is dominated by bubble dynamics. The release of the less volatile fission products from the pool can be analyzed based on mass transport through a liquid with the convection flow. The physico-numerical models were orchestrated from existing submodels in various disciplines of engineering to estimate the released fraction of fission products from a molten pool. It was assumed that the pool has partially filled hemispherical geometry. For the high pool pressure, the diameter of the bubbles at detachment was calculated utilizing the Cole and Shulman correlation with the effect of system pressure. Sensitivity analyses were performed and results of the numerical calculations were compared with analysis results for the TMI-2 accident. (author)

  19. Nuclear fission and neutron-induced fission cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    James, G.D.; Lynn, J.E.; Michaudon, A.; Rowlands, J.; de Saussure, G.

    1981-01-01

    A general presentation of current knowledge of the fission process is given with emphasis on the low energy fission of actinide nuclei and neutron induced fission. The need for and the required accuracy of fission cross section data in nuclear energy programs are discussed. A summary is given of the steps involved in fission cross section measurement and the range of available techniques. Methods of fission detection are described with emphasis on energy dependent changed and detector efficiency. Examples of cross section measurements are given and data reduction is discussed. The calculation of fission cross sections is discussed and relevant nuclear theory including the formation and decay of compound nuclei and energy level density is introduced. A description of a practical computation of fission cross sections is given.

  20. Nuclear fission and fission-product spectroscopy: 3. International workshop on nuclear fission and fission-product spectroscopy

    International Nuclear Information System (INIS)

    Goutte, Heloise; Fioni, Gabriele; Faust, Herbert; Goutte, Dominique

    2005-01-01

    The present book contains the proceedings of the third workshop in a series of workshops previously held in Seyssins in 1994 and 1998. The meeting was jointly organized by different divisions of CEA and two major international laboratories. In the opening address, Prof. B. Bigot, the French High Commissioner for Atomic Energy, outlined France's energy policy for the next few decades. He emphasized the continuing progress of nuclear fission in both technical and economic terms, allowing it to contribute to the energy needs of the planet even more in the future than it does today. Such progress implies a very strong link between fundamental and applied research based on experimental and theoretical approaches. The workshop gathered the different nuclear communities studying the fission process, including topics as the following: - nuclear fission experiments, - spectroscopy of neutron rich nuclei, - fission data evaluation, - theoretical aspects of nuclear fission, - and innovative nuclear systems and new facilities. The scientific program was suggested by an International Advisory Committee. About 100 scientists from 13 different countries attended the conference in the friendly working atmosphere of the Castle of Cadarache in the heart of the Provence. The proceedings of the workshop were divided into 11 sections addressing the following subject matters: 1. Cross sections and resonances (5 papers); 2. Fission at higher energies - I (5 papers); 3. Fission: mass and charge yields (4 papers); 4. Light particles and cluster emission (4 papers); 5. Spectroscopy of neutron rich nuclei (5 papers); 6. Resonances, barriers, and fission times (5 papers); 7. Fragment excitation and neutron emission (4 papers); 8. Mass and energy distributions (4 papers); 9. Needs for nuclear data and new facilities - I (4 papers); 10. Angular momenta and fission at higher Energies - II (3 papers); 11. New facilities - II (2 papers). A poster session of 8 presentations completed the workshop

  1. Comparison of predicted and measured fission product behaviour in the Fort St. Vrain HTGR during the first three cycles of operation

    International Nuclear Information System (INIS)

    Hanson, D.L.; Jovanovic, V.; Burnette, R.D.

    1985-01-01

    The 330 MW(e) Fort St. Vrain (M) High Temperature Gas-Cooled Reactor (HTGR) is fueled with (Th,U)C 2 /ThC 2 TRISO-coated fuel particles contained in prismatic graphite fuel elements. Fission product release from the reactor core has been monitored during the first three cycles of operation. In order to assess the validity of the design methods used to predict fission product source terms for HTGRs, fission product release from the reactor core has been predicted by the reference design methods and compared with reactor surveillance measurements and with the results of postirradiation examination (PIE) of spent FSV fuel elements. Overall, the predictive methods have been shown to be conservative: the predicted fission gas release at the end of Cycle 3 is about five times higher than observed. The dominant source of fission gas release is as-manufactured, heavy-metal contamination; in-service failure of the coated fuel particles appears to be negligible, which is consistent with the PIE of spent fuel elements removed during the first two refuelings. The predicted releases of fission metals are insignificant compared to the release and subsequent decay of their gaseous precursors, which is consistent with plateout probe measurements. (author)

  2. Determination of the fission products yields, lanthanide and yttrium, in the fission of 238U with neutrons of fission spectra

    International Nuclear Information System (INIS)

    Nicoli, I.G.

    1981-06-01

    A radiochemical investigation is performed to measure the cumulative fission product yields of several lantanides and yttrium nuclides in the 238 U by fission neutron spectra. Natural and depleted uranium are irradiated under the same experimental conditions in order to find a way to subtract the contribution of the 235 U fission. 235 U percentage in the natural uranium was 3.5 times higher than in the depleted uranium. Uranium oxides samples are irradiated inside the core of the Argonaut Reactor, at the Instituto de Engenharia Nuclear, and the lantanides and yttrium are chemically separated. The fission products gamma activities were detected, counted and analysed in a system constituted by a high resolution Ge(Li) detector, 4096 multichannel analyser and a PDP-11 computer. Cumulative yields for fission products with half-lives between 1 to 33 hours are measured: 93 Y, 141 La, 142 La, 143 Ce and 149 Nd. The chain total yields are calculated. The cumulative fission yields measured for 93 Y, 141 La, 142 La, 143 Ce and 149 Nd are 4,49%, 4,54%, 4,95%, 4,16% and 1,37% respectively and they are in good agreement with the values found in the literature. (Author) [pt

  3. Gas-phase transport of fission products

    International Nuclear Information System (INIS)

    Tang, I.N.; Munkelwitz, H.R.

    1982-01-01

    The paper presents the results of an experimental investigation to show the importance of nuclear aerosol formation as a mechanism for semi-volatile fission product transport under certain postulated HTGR accident conditions. Simulated fission product Sr and Ba as oxides are impregnated in H451 graphite and released at elevated temperatures into a dry helium flow. In the presence of graphite, the oxides are quantitatively reduced to metals, which subsequently vaporize at temperatures much lower than required for the oxides alone to vaporize in the absence of graphite. A substantial fraction of the released material is associated with particulate matter, which is collected on filters located downstream at ambient temperatures. Increasing carrier-gas flow rate greatly enhances the extent of particulate transport. The release and transport of simulated fission product Ag as metal are also investigated. Electron microscopic examinations of the collected Sr and Ag aerosols show large agglomerates composed of primary particles roughly 0.06 to 0.08 μm in diameter

  4. An analytic solution to the time-dependent first-daughter fission-product plateout problem for multi-region isothermal slug flow

    International Nuclear Information System (INIS)

    Durkee, J.W. Jr.; Lee, C.E.

    1985-01-01

    The time-dependent, axisymmetric, isothermal slug flow convective-diffusion equation with radioactive decay is solved analytically to predict the behavior of a first-daughter fission-product undergoing gaseous transport through multiple materials in a cylindrical pipe. The integration coefficients are determined using the Davidon variable metric minimization method. The behavior of fission-product material deposited on the conduit wall is described by a standard mass-transfer model. The time-dependent plateout rate behavior, determined previously for parent fission-product deposition, is again evident for daughter product plateout. Dominance of the daughter plateout by parent deposition characteristics is apparent. The determination of the daughter wall mass-transfer and diffusion coefficient using a least-squares analysis of measured data depends upon a reasonably low ratio of parent/daughter half-lives. This is illustrated with 137 Cs/ 137 Ba(=2x10 5 ) and 140 Ba/ 140 La(=7.6), where for 137 Cs/ 137 Ba the solution sensitivity to the 137 Ba deposition parameters is small and for 140 Ba/ 140 La a reasonable solution is readily obtained. (author)

  5. Transport of fission products in matrix and graphite

    International Nuclear Information System (INIS)

    Hoinkis, E.

    1983-06-01

    In the past years new experimental methods were applied to or developed for the investigation of fission product transport in graphitic materials and to characterization of the materials. Models for fission product transport and computer codes for the calculation of core release rates were improved. Many data became available from analysis of concentration profiles in HTR-fuel elements. New work on the effect on diffusion of graphite corrosion, fast neutron flux and fluence, heat treatment, chemical interactions and helium pressure was reported on recently or was in progress in several laboratories. It seemed to be the right time to discuss the status of transport of metallic fission products in general, and in particular the relationship between structural and transport properties. Following a suggestion a Colloquium was organized at the HMI Berlin. Interdisciplinary discussions were stimulated by only inviting a limited number of participants who work in different fields of graphite and fission product transport research. (orig./RW)

  6. Migration of fission products in UO2. Final report

    International Nuclear Information System (INIS)

    Prussin, S.G.; Olander, D.R.

    1995-01-01

    Results of an experimental and calculational effort to examine the fundamental mechanisms of fission product migration in and release from polycrystalline uranium dioxide are reported. The experiments were designed to provide diffusion parameters for the representative fission products tellurium, iodine, xenon, molybdenum and ruthenium under both reducing and oxidizing conditions. The calculational effort applied a new model of fission product release from reactor fuel that incorporates grain growth as well as grain boundary and lattice diffusion

  7. Rapid monitoring of gaseous fission products in BWRs using a portable spectrometer

    International Nuclear Information System (INIS)

    Yeh, Wei-Wen; Lee, Cheng-Jong; Chen, Chen-Yi; Chung, Chien

    1996-01-01

    Rapid, quantitative determination of gaseous radionuclides is the most difficult task in the field of environmental monitoring for radiation. Although the identification of each gaseous radionuclide is relatively straightforward using its decayed gamma ray as an index, the quantitative measurement is hampered by the time-consuming sample collection procedures, in particular for the radioactive noble gaseous fission products of krypton and xenon. In this work, a field gamma-ray spectrometer consisting of a high-purity germanium detector, portable multichannel anlayzer, and a notebook computer was used to conduct rapid scanning of radioactive krypton and xenon in the air around a nuclear facility

  8. Regulatory simplification of fission product chemistry

    International Nuclear Information System (INIS)

    Read, J.B.J.; Soffer, L.

    1986-01-01

    The requirements for design provisions intended to limit fission product escape during reactor accidents have been based since 1962 upon a small number of simply-stated assumptions. These assumptions permeate current reactor regulation, but are too simple to deal with the complex processes that can reasonably be expected to occur during real accidents. Potential chemical processes of fission products in severe accidents are compared with existing plant safety features designed to minimize off-site consequences, and the possibility of a new set of simply-stated assumptions to replace the 1982 set is discussed

  9. Study on the calculation method of source term from fission products

    International Nuclear Information System (INIS)

    Zhou Jing; Gong Quan; Qiu Haifeng

    2014-01-01

    As a major part of radioactive nuclides, fission products play an important role in nuclear power plant design. The paper analyzes the calculation model of core activity inventory, the model of fission products releasing from the pellets to RCS, the balance model of fission products in RCS, and then proves them by calculation of the typical pressurized water reactor. The model is proved applicable for calculating fission products of pressurized water reactors. (authors)

  10. Fission product yield measurements using monoenergetic photon beams

    Science.gov (United States)

    Krishichayan; Bhike, M.; Tonchev, A. P.; Tornow, W.

    2017-09-01

    Measurements of fission products yields (FPYs) are an important source of information on the fission process. During the past couple of years, a TUNL-LANL-LLNL collaboration has provided data on the FPYs from quasi monoenergetic neutron-induced fission on 235U, 238U, and 239Pu and has revealed an unexpected energy dependence of both asymmetric fission fragments at energies below 4 MeV. This peculiar FPY energy dependence was more pronounced in neutron-induced fission of 239Pu. In an effort to understand and compare the effect of the incoming probe on the FPY distribution, we have carried out monoenergetic photon-induced fission experiments on the same 235U, 238U, and 239Pu targets. Monoenergetic photon beams of Eγ = 13.0 MeV were provided by the HIγS facility, the world's most intense γ-ray source. In order to determine the total number of fission events, a dual-fission chamber was used during the irradiation. These irradiated samples were counted at the TUNL's low-background γ-ray counting facility using high efficient HPGe detectors over a period of 10 weeks. Here we report on our first ever photofission product yield measurements obtained with monoenegetic photon beams. These results are compared with neutron-induced FPY data.

  11. Fission product yield measurements using monoenergetic photon beams

    Directory of Open Access Journals (Sweden)

    Krishichayan

    2017-01-01

    Full Text Available Measurements of fission products yields (FPYs are an important source of information on the fission process. During the past couple of years, a TUNL-LANL-LLNL collaboration has provided data on the FPYs from quasi monoenergetic neutron-induced fission on 235U, 238U, and 239Pu and has revealed an unexpected energy dependence of both asymmetric fission fragments at energies below 4 MeV. This peculiar FPY energy dependence was more pronounced in neutron-induced fission of 239Pu. In an effort to understand and compare the effect of the incoming probe on the FPY distribution, we have carried out monoenergetic photon-induced fission experiments on the same 235U, 238U, and 239Pu targets. Monoenergetic photon beams of Eγ = 13.0 MeV were provided by the HIγS facility, the world's most intense γ-ray source. In order to determine the total number of fission events, a dual-fission chamber was used during the irradiation. These irradiated samples were counted at the TUNL's low-background γ-ray counting facility using high efficient HPGe detectors over a period of 10 weeks. Here we report on our first ever photofission product yield measurements obtained with monoenegetic photon beams. These results are compared with neutron-induced FPY data.

  12. Lifetime measurements and decay spectroscopy of 132I

    Directory of Open Access Journals (Sweden)

    Bhattacharyya S.

    2014-03-01

    Full Text Available The low-lying states of odd-odd 132I, the 3p-3h nucleus with respect to the doubly magic 132Sn, have been characterized from decay spectroscopy. The neutron rich Iodine and Tellurium isotopes have been produced as fission product of alpha-induced fission of 235U and radiochemically separated. The life-time of the first excited state of 132I have been precisely measured using LaBr3(Ce scintillators from the decay of 132Te. The IT decay of the high spin isomer (8- in 132I has been measured with a Low Energy Photon Spectrometer (LEPS of segmented planar Ge detector.

  13. Fission Product Data Measured at Los Alamos for Fission Spectrum and Thermal Neutrons on 239Pu, 235U, 238U

    International Nuclear Information System (INIS)

    Selby, H.D.; Mac Innes, M.R.; Barr, D.W.; Keksis, A.L.; Meade, R.A.; Burns, C.J.; Chadwick, M.B.; Wallstrom, T.C.

    2010-01-01

    We describe measurements of fission product data at Los Alamos that are important for determining the number of fissions that have occurred when neutrons are incident on plutonium and uranium isotopes. The fission-spectrum measurements were made using a fission chamber designed by the National Institute for Standards and Technology (NIST) in the BIG TEN critical assembly, as part of the Inter-laboratory Liquid Metal Fast Breeder Reactor (LMFBR) Reaction Rate (ILRR) collaboration. The thermal measurements were made at Los Alamos' Omega West Reactor. A related set of measurements were made of fission-product ratios (so-called R-values) in neutron environments provided by a number of Los Alamos critical assemblies that range from having average energies causing fission of 400-600 keV (BIG TEN and the outer regions of the Flattop-25 assembly) to higher energies (1.4-1.9 MeV) in the Jezebel, and in the central regions of the Flattop-25 and Flattop-Pu, critical assemblies. From these data we determine ratios of fission product yields in different fuel and neutron environments (Q-values) and fission product yields in fission spectrum neutron environments for 99 Mo, 95 Zr, 137 Cs, 140 Ba, 141,143 Ce, and 147 Nd. Modest incident-energy dependence exists for the 147 Nd fission product yield; this is discussed in the context of models for fission that include thermal and dynamical effects. The fission product data agree with measurements by Maeck and other authors using mass-spectrometry methods, and with the ILRR collaboration results that used gamma spectroscopy for quantifying fission products. We note that the measurements also contradict earlier 1950s historical Los Alamos estimates by ∼5-7%, most likely owing to self-shielding corrections not made in the early thermal measurements. Our experimental results provide a confirmation of the England-Rider ENDF/B-VI evaluated fission-spectrum fission product yields that were carried over to the ENDF/B-VII.0 library, except

  14. Microprobe study of fission product behavior in high-burnup HTR fuels

    International Nuclear Information System (INIS)

    Kleykamp, H.

    Electron microprobe analysis of irradiated coated particles with high burnup (greater than 50 percent fima) gives detailed information on the chemical state and the transport behavior of the fission products in UO 2 and UC 2 kernels and in the coatings. In oxide fuel kernels, metallic inclusions and ceramic precipitations are observed. The solubility behavior of the fission products in the fuel matrix has been investigated. Fission product inclusions could not be detected in carbide fuel kernels; post irradiation annealed UC 2 kernels, however, give information on the element combinations of some fission product phases. Corresponding to the chemical state in the kernel, Cs, Sr, Ba, Pd, Te and the rare earths are released easily and diffuse through the entire pyrocarbon coating. These fission products can be retained by a silicon carbide layer. The initial stage of a corrosive attack of the SiC coating by the fission products is evidenced

  15. Evaluation of Cross-Section Sensitivities in Computing Burnup Credit Fission Product Concentrations

    International Nuclear Information System (INIS)

    Gauld, I.C.

    2005-01-01

    U.S. Nuclear Regulatory Commission Interim Staff Guidance 8 (ISG-8) for burnup credit covers actinides only, a position based primarily on the lack of definitive critical experiments and adequate radiochemical assay data that can be used to quantify the uncertainty associated with fission product credit. The accuracy of fission product neutron cross sections is paramount to the accuracy of criticality analyses that credit fission products in two respects: (1) the microscopic cross sections determine the reactivity worth of the fission products in spent fuel and (2) the cross sections determine the reaction rates during irradiation and thus influence the accuracy of predicted final concentrations of the fission products in the spent fuel. This report evaluates and quantifies the importance of the fission product cross sections in predicting concentrations of fission products proposed for use in burnup credit. The study includes an assessment of the major fission products in burnup credit and their production precursors. Finally, the cross-section importances, or sensitivities, are combined with the importance of each major fission product to the system eigenvalue (k eff ) to determine the net importance of cross sections to k eff . The importances established the following fission products, listed in descending order of priority, that are most likely to benefit burnup credit when their cross-section uncertainties are reduced: 151 Sm, 103 Rh, 155 Eu, 150 Sm, 152 Sm, 153 Eu, 154 Eu, and 143 Nd

  16. Attachment behavior of fission products to solution aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Takamiya, Koichi; Tanaka, Toru; Nitta, Shinnosuke; Itosu, Satoshi; Sekimoto, Shun; Oki, Yuichi; Ohtsuki, Tsutomu [Research Reactor Institute, Kyoto University, Osaka (Japan)

    2016-12-15

    Various characteristics such as size distribution, chemical component and radioactivity have been analyzed for radioactive aerosols released from Fukushima Daiichi Nuclear Power Plant. Measured results for radioactive aerosols suggest that the potential transport medium for radioactive cesium was non-sea-salt sulfate. This result indicates that cesium isotopes would preferentially attach with sulfate compounds. In the present work the attachment behavior of fission products to aqueous solution aerosols of sodium salts has been studied using a generation system of solution aerosols and spontaneous fission source of {sup 248}Cm. Attachment ratios of fission products to the solution aerosols were compared among the aerosols generated by different solutions of sodium salt. A significant difference according as a solute of solution aerosols was found in the attachment behavior. The present results suggest the existence of chemical effects in the attachment behavior of fission products to solution aerosols.

  17. Apparatus for measuring the release of fission gases and other fission products by degassing

    Energy Technology Data Exchange (ETDEWEB)

    Stradal, Karl Alfred

    1970-10-15

    In gas-cooled high-temperature reactors, the fuel is, in general, inserted in the fuel elements in the form of small particles, which are, for example, coated with pyrolytic carbon. The purpose of this coating is to keep the fission products separate from the coolant gas. The further development of these coated particles makes it necessary to check the retention capacity. One possible method of doing this is the degassing test after irradiation in the reactor. An apparatus is described below, which was developed and installed in order to measure to a higher degree of sensitivity and in serial measurements the release of fission gases and sparingly volatile fission products.

  18. Calculation and Evaluation of Fission Yields and Capture Cross Sections Leading to the Production of Therapeutic Radionuclide by Means of Nuclear Reactors

    International Nuclear Information System (INIS)

    Sublet, J.C.

    2009-01-01

    Much progress has been made in nuclear medicine that involves the use of radionuclides for both diagnosis and therapy. Because of this qualitative and quantitative growth, the adoption of a set of established radionuclides for various applications, the methods of nuclide production need to be addressed and consideration given to other, emerging radionuclides that are judged to be developing in importance. The methods involved are characterized by the transmutation of isotopes by neutron-induced reactions and decays. Therefore, newly evaluated cross sections, fission yields and decay characteristics of relevance to the reactor production of those therapeutic radionuclides have been reviewed. Considerations of the decay schemes of all the nuclides involved are also included. (author)

  19. Development of fission Mo-99 production technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2001-05-01

    This R and D project is planed to supply domestic demands of Mo-99 through fission route, and consequently this project will be expected to rise up utilization of HANARO and KAERI's capability for marketing extension into domestic and oversea radiopharmaceutical market. HEU and LEU target types are decided and designed for fission Mo-99 production in domestic. Experimental study of target fabrication technology was performed and developed processing equipments. And conceptual design of target loading/unloading in/from HANARO device are performed. Tracer test of Mo-99 separation and purification process was performed, test results reach to Mo-99 recovery yield above 80% and decontamination factor above 1600. Combined Mo-99 separation and purification process was decided for hot test scheduled from next year, and performance test was performed. Conceptual design for modification of existing hot cell for fission Mo-99 production facility was performed and will be used for detail design. Assumption for the comparison of LEU and HEU target in fission Mo-99 production process were suggested and compared of merits and demerits in view of fabrication technology and economy feasibility.

  20. Development of fission Mo-99 production technology

    International Nuclear Information System (INIS)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2001-05-01

    This R and D project is planed to supply domestic demands of Mo-99 through fission route, and consequently this project will be expected to rise up utilization of HANARO and KAERI's capability for marketing extension into domestic and oversea radiopharmaceutical market. HEU and LEU target types are decided and designed for fission Mo-99 production in domestic. Experimental study of target fabrication technology was performed and developed processing equipments. And conceptual design of target loading/unloading in/from HANARO device are performed. Tracer test of Mo-99 separation and purification process was performed, test results reach to Mo-99 recovery yield above 80% and decontamination factor above 1600. Combined Mo-99 separation and purification process was decided for hot test scheduled from next year, and performance test was performed. Conceptual design for modification of existing hot cell for fission Mo-99 production facility was performed and will be used for detail design. Assumption for the comparison of LEU and HEU target in fission Mo-99 production process were suggested and compared of merits and demerits in view of fabrication technology and economy feasibility

  1. Monte Carlo simulation of fission yields, kinetic energy, fission neutron spectrum and decay γ-ray spectrum for 232Th(n,f) reaction induced by 3H(d,n) 4He neutron source

    International Nuclear Information System (INIS)

    Zheng Wei; Zeen Yao; Changlin Lan; Yan Yan; Yunjian Shi; Siqi Yan; Jie Wang; Junrun Wang; Jingen Chen; Chinese Academy of Sciences, Shanghai

    2015-01-01

    Monte Carlo transport code Geant4 has been successfully utilised to study of neutron-induced fission reaction for 232 Th in the transport neutrons generated from 3 H(d,n) 4 He neutron source. The purpose of this work is to examine the applicability of Monte Carlo simulations for the computation of fission reaction process. For this, Monte Carlo simulates and calculates the characteristics of fission reaction process of 232 Th(n,f), such as the fission yields distribution, kinetic energy distribution, fission neutron spectrum and decay γ-ray spectrum. This is the first time to simulate the process of neutron-induced fission reaction using Geant4 code. Typical computational results of neutron-induced fission reaction of 232 Th(n,f) reaction are presented. The computational results are compared with the previous experimental data and evaluated nuclear data to confirm the certain physical process model in Geant4 of scientific rationality. (author)

  2. Fission product release mechanisms and groupings

    International Nuclear Information System (INIS)

    Iglesia, F.C.; Brito, A.C.; Liu, Y.

    1995-01-01

    During CANDU postulated accidents the reactor fuel is estimated to be exposed to a variety of conditions. These conditions are dynamic and, during the course of an accident, the fuel may experience a wide range of temperatures and conditions from highly oxidizing to mildly reducing environments. The exposure of the reactor fuel to these environments and temperatures may affect its stoichiometry and release performance. In this paper a review of the important fission product release mechanisms is presented, the results of three out-of-pile experimental programs are summarized, and fission product release groups, for both oxidizing and reducing conditions are proposed. (author)

  3. Transmutation of fission products through accelerator

    International Nuclear Information System (INIS)

    Nakamura, H.; Tani, S.; Takahashi, T.; Yamamura, O.

    1995-01-01

    The transmutation of fission products through particle accelerators has been studied under the OMEGA program. The photonuclear reaction has also been investigated to be applied to transmuting long-lived fission products, such as Cesium and Strontium, which have difficulties on reaction with neutrons due to its so small cross section. It is applicable for the transmutation if the energy balance can be improved with a monochromatic gamma rays in the range of the Giant Dipole Resonance generated through an excellent high current electron linear accelerator. The feasibility studies are being conducted on the transmutation system using it through an electron accelerator. (authors)

  4. Plutonium and surrogate fission products in a composite ceramic waste form

    International Nuclear Information System (INIS)

    Esh, D. W.; Frank, S. M.; Goff, K. M.; Johnson, S. G.; Moschetti, T. L.; O'Holleran, T.

    1999-01-01

    Argonne National Laboratory is developing a ceramic waste form to immobilize salt containing fission products and transuranic elements. Preliminary results have been presented for ceramic waste forms containing surrogate fission products such as cesium and the lanthanides. In this work results from scanning electron microscopy/energy dispersive spectroscopy and x-ray diffraction are presented in greater detail for ceramic waste forms containing surrogate fission products. Additionally, results for waste forms containing plutonium and surrogate fission products are presented. Most of the surrogate fission products appear to be silicates or aluminosilicates whereas the plutonium is usually found in an oxide form. There is also evidence for the presence of plutonium within the sodalite phase although the chemical speciation of the plutonium is not known

  5. REGENERATION OF FISSION-PRODUCT-CONTAINING MAGNESIUM-THORIUM ALLOYS

    Science.gov (United States)

    Chiotti, P.

    1964-02-01

    A process of regenerating a magnesium-thorium alloy contaminated with fission products, protactinium, and uranium is presented. A molten mixture of KCl--LiCl-MgCl/sub 2/ is added to the molten alloy whereby the alkali, alkaline parth, and rare earth fission products (including yttrium) and some of the thorium and uranium are chlorinated and

  6. Decay Curves and Half-Lives of Gamma-Emitting States from a Study of Prompt Fission Gamma Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Albinsson, H [Chalmers Univ. of Technology, Goeteborg (SE)

    1971-04-15

    Measurements were made on the time distributions of the prompt gamma radiation emitted from fragments in the thermal-neutron induced fission of 235U. The gamma radiation emitted during different time intervals after the fission event was studied with the help of a collimator, the position of which was changed along the path of the fragments. In this way decay curves were obtained from which half-lives could be estimated. Time components with half-lives of 7.5, 18 and 60 ps were found and their relative intensities were calculated. Half-lives and associated intensities are in good agreement with earlier data from uranium and californium fission. Problems involved in this type of study are discussed. The collimator technique has proved to be effective for determination of half lives down to less than 10 ps

  7. Calculating the mass distribution of heavy nucleus fission product by neutrons

    International Nuclear Information System (INIS)

    Gudkov, A.N.; Koldobskij, A.B.; Kolobashkin, V.M.; Semenova, E.V.

    1981-01-01

    The technique of calculating the fission product mass yields by neutrons which are necessary for performing nucleus physical calculations in designing nuclear reactor cores is considered. The technique is based on the approximation of fission product mass distribution over the whole mass range by five Gauss functions. New analytical expressions for determining energy weights of used gaussians are proposed. The results of comparison of experimental data with calculated values for fission product mass obtained for reference processes in the capacity of which the fission reactions are chosen: 233 U, 235 U fission by thermal neutrons, 232 Th, 233 U, 235 U, 238 U by fission spectrum neutrons and 14 MeV neutrons and for 232 Th fission reactions by 11 MeV neutrons and 238 U by 7.7 MeV neutrons. On the basis of the analysis of results obtained the conclusion is drawn on a good agreement of fission product mass yield calculation values obtained using recommended values of mass distribution parameters with experimental data [ru

  8. Chemical immobilization of fission products reactive with nuclear reactor components

    International Nuclear Information System (INIS)

    Grossman, L.N.; Kaznoff, A.I.; Clukey, H.V.

    1975-01-01

    This invention teaches a method of immobilizing deleterious fission products produced in nuclear fuel materials during nuclear fission chain reactions through the use of additives. The additives are disposed with the nuclear fuel materials in controlled quantities to form new compositions preventing attack of reactor components, especially nuclear fuel cld, by the deleterious fission products. (Patent Office Record)

  9. Fission product release from fuel of water-cooled reactors

    International Nuclear Information System (INIS)

    Strupczewski, A.; Marks, P.; Klisinska, M.

    1997-01-01

    The report contains a review of theoretical models and experimental works of gaseous and volatile fission products from uranium dioxide fuel. The experimental results of activity release at low burnup and the model of fission gas behaviour at initial stage of fuel operational cycle are presented. Empirical models as well as measured results of transient fission products release rate in the temperature up to UO 2 melting point, with consideration of their chemical reactions with fuel and cladding, are collected. The theoretical and experimental data were used for calculations of gaseous and volatile fission products release, especially iodine and caesium, to the gas volume of WWER-1000 and WWER-440 type fuel rods at low and high burnup and their further release from defected rods at the assumed loss-of-coolant accident. (author)

  10. Analytical measurements of fission products during a severe nuclear accident

    Science.gov (United States)

    Doizi, D.; Reymond la Ruinaz, S.; Haykal, I.; Manceron, L.; Perrin, A.; Boudon, V.; Vander Auwera, J.; tchana, F. Kwabia; Faye, M.

    2018-01-01

    The Fukushima accident emphasized the fact that ways to monitor in real time the evolution of a nuclear reactor during a severe accident remain to be developed. No fission products were monitored during twelve days; only dose rates were measured, which is not sufficient to carry out an online diagnosis of the event. The first measurements were announced with little reliability for low volatile fission products. In order to improve the safety of nuclear plants and minimize the industrial, ecological and health consequences of a severe accident, it is necessary to develop new reliable measurement systems, operating at the earliest and closest to the emission source of fission products. Through the French program ANR « Projet d'Investissement d'Avenir », the aim of the DECA-PF project (diagnosis of core degradation from fission products measurements) is to monitor in real time the release of the major fission products (krypton, xenon, gaseous forms of iodine and ruthenium) outside the nuclear reactor containment. These products are released at different times during a nuclear accident and at different states of the nuclear core degradation. Thus, monitoring these fission products gives information on the situation inside the containment and helps to apply the Severe Accident Management procedures. Analytical techniques have been proposed and evaluated. The results are discussed here.

  11. Analytical measurements of fission products during a severe nuclear accident

    Directory of Open Access Journals (Sweden)

    Doizi D.

    2018-01-01

    Full Text Available The Fukushima accident emphasized the fact that ways to monitor in real time the evolution of a nuclear reactor during a severe accident remain to be developed. No fission products were monitored during twelve days; only dose rates were measured, which is not sufficient to carry out an online diagnosis of the event. The first measurements were announced with little reliability for low volatile fission products. In order to improve the safety of nuclear plants and minimize the industrial, ecological and health consequences of a severe accident, it is necessary to develop new reliable measurement systems, operating at the earliest and closest to the emission source of fission products. Through the French program ANR « Projet d’Investissement d’Avenir », the aim of the DECA-PF project (diagnosis of core degradation from fission products measurements is to monitor in real time the release of the major fission products (krypton, xenon, gaseous forms of iodine and ruthenium outside the nuclear reactor containment. These products are released at different times during a nuclear accident and at different states of the nuclear core degradation. Thus, monitoring these fission products gives information on the situation inside the containment and helps to apply the Severe Accident Management procedures. Analytical techniques have been proposed and evaluated. The results are discussed here.

  12. Development of Commercial-scale Fission Mo-99 Production System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Kon; Lee, Suseung; Hong, Soon-Bog; Jang, Kyung-Duk; Park, Ul Jael; Lee, Jun Sig [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    These days, worldwide {sup 99} Mo supply is not only insufficient but also unstable. Because, most of the main {sup 99}Mo production reactors are more than years old and suffered from frequent and unscheduled shutdown. Therefore, movement to replace old reactors to keep stable supply is now active. Under these conditions, KAERI (Korea Atomic Energy Research Institute) is developing LEU-based fission {sup 99}Mo production process which is connected to the new research reactor (Kijang New Research Reactor, KJRR), which is being constructed in Gijang, Busan, Korea. Historically, the most fission {sup 99}Mo producers have been used highly enriched uranium (HEU) targets so far. However, to reduce the use of HEU in private sector for non-proliferation, {sup 99}Mo producers are forced to convert their HEU-based process to use low enriched uranium (LEU) targets. Economic impact of a target conversion from HEU to LEU is significant. In this study, fission {sup 99}Mo process with non-irradiated LEU targets was presented except separation and purification steps. Pre- and post-irradiation tests of the fission {sup 99}Mo target will be done in 4th quarter of 2016. For the fission Mo production process development, hot experiments with irradiated LEU targets will be done in 4th quarter of 2016. Then, verification of the production process with quality control will be followed until the commercial production of fission {sup 99}Mo scheduled in 2019.

  13. Fission product removal from molten salt using zeolite

    International Nuclear Information System (INIS)

    Pereira, C.; Babcock, B.D.

    1996-01-01

    Spent nuclear fuel (SNF) can be treated in a molten salt electrorefiner for conversion into metal and mineral waste forms for geologic disposal. The fuel is dissolved in molten chloride salt. Non-transuranic fission products in the molten salt are ion-exchanged into zeolite A, which is subsequently mixed with glass and consolidated. Zeolite was found to be effective in removing fission product cations from the molten salt. Breakthrough of cesium and the alkaline earths occurred more rapidly than was observed for the rare earths. The effluent composition as a function of time is presented, as well as results for the distribution of fission products along the length of the column. Effects of temperature and salt flow rate are also discussed

  14. Fission Product Yield Study of 235U, 238U and 239Pu Using Dual-Fission Ionization Chambers

    Science.gov (United States)

    Bhatia, C.; Fallin, B.; Howell, C.; Tornow, W.; Gooden, M.; Kelley, J.; Arnold, C.; Bond, E.; Bredeweg, T.; Fowler, M.; Moody, W.; Rundberg, R.; Rusev, G.; Vieira, D.; Wilhelmy, J.; Becker, J.; Macri, R.; Ryan, C.; Sheets, S.; Stoyer, M.; Tonchev, A.

    2014-05-01

    To resolve long-standing differences between LANL and LLNL regarding the correct fission basis for analysis of nuclear test data [M.B. Chadwick et al., Nucl. Data Sheets 111, 2891 (2010); H. Selby et al., Nucl. Data Sheets 111, 2891 (2010)], a collaboration between TUNL/LANL/LLNL has been established to perform high-precision measurements of neutron induced fission product yields. The main goal is to make a definitive statement about the energy dependence of the fission yields to an accuracy better than 2-3% between 1 and 15 MeV, where experimental data are very scarce. At TUNL, we have completed the design, fabrication and testing of three dual-fission chambers dedicated to 235U, 238U, and 239Pu. The dual-fission chambers were used to make measurements of the fission product activity relative to the total fission rate, as well as for high-precision absolute fission yield measurements. The activation method was employed, utilizing the mono-energetic neutron beams available at TUNL. Neutrons of 4.6, 9.0, and 14.5 MeV were produced via the 2H(d,n)3He reaction, and for neutrons at 14.8 MeV, the 3H(d,n)4He reaction was used. After activation, the induced γ-ray activity of the fission products was measured for two months using high-resolution HPGe detectors in a low-background environment. Results for the yield of seven fission fragments of 235U, 238U, and 239Pu and a comparison to available data at other energies are reported. For the first time results are available for neutron energies between 2 and 14 MeV.

  15. Trapping technology for gaseous fission products from voloxidation process

    International Nuclear Information System (INIS)

    Shin, Jin Myeong; Park, J. J.; Park, G. I.; Jung, I. H.; Lee, H. H.; Kim, G. H.; Yang, M. S.

    2005-05-01

    The objective of this report is to review the different technologies for trapping the gaseous wastes containing Cs, Ru, Tc, 14 C, Kr, Xe, I and 3 H from a voloxidation process. Based on literature reviews and KAERI's experimental results on the gaseous fission products trapping, appropriate trapping method for each fission product has been selected considering process reliability, simplicity, decontamination factor, availability, and disposal. Specifically, the most promising trapping method for each fission product has been proposed for the development of the INL off-gas trapping system. A fly ash filter is proposed as a trapping media for a cesium trapping unit. In addition, a calcium filter is proposed as a trapping media for ruthenium, technetium, and 14 C trapping unit. In case of I trapping unit, AgX is proposed. For Kr and Xe, adsorption on solid is proposed. SDBC (Styrene Divinyl Benzene Copolymer) is also proposed as a conversion media to HTO for 3 H. This report will be used as a useful means for analyzing the known trapping technologies and help selecting the appropriate trapping methods for trapping volatile and semi-volatile fission products, long-lived fission products, and major heat sources generated from a voloxidation process. It can also be used to design an off-gas treatment system

  16. Estimation of penetration depth of fission products in cladding Hull

    International Nuclear Information System (INIS)

    Kim, Hee Moon; Jung, Yang Hong; Yoo, Byong Ok; Choo, Yong Sun; Hong, Kwon Pyo

    2005-01-01

    A disposal and a reprocessing for spent fuel rod with high burnup need de-cladding procedure. Pellet in this rod has been separated from a cladding hull to reduce a radioactivity of hull by chemical and mechanical methods. But fission products and actinides(U,Pu) still remain inside of cladding hull by chemical bonding and fission spike, which is called as 'contamination'. More specific removal of this contamination would have been considered. In this study, the sorts of fission products and penetration depth in hull were observed by EPMA test. To analyze this behavior, SRIM 2000 code was also used as energies of fission products and an oxide thickness of hull

  17. Development of fission Mo production technology

    International Nuclear Information System (INIS)

    Kim, B. K.; Park, K. B.; Jun, B. J.; Park, J. H.; Choung, W. M.; Lee, K. I.; Woo, M. S.; Whang, D. S.; Kim, Y. K.; Yoo, J. H.; Sohn, D. S.; Lee, Y. W.; Na, S. H.; Koo, Y. H.; Hwang, D. H.; Joo, P. K.

    1997-08-01

    The feasibility study is accomplished in this project for the development of fission moly production. The KAERI process proposed for development in KAERI is discussed together with those of the American Cintichem and Russian IPPE, each of which would be plausible for introduction whenever the indigenous development is not much feasible. For the conceptual design of the KAERI irradiation target, analysis method is set up and some preliminary analysis is performed accordingly for the candidate design. To establish chemical process concepts for the afore-mentioned three processes, characteristics, operation conditions, and the management of the generated wastes are investigated. Basic requirements of hotcell facilities for chemical processing and a possible way of utilizing the existing hotcells are discussed in parallel with the counter-measures for the construction of new hotcell facilities. Various conditions of target irradiation for fission moly production in Hanaro are analyzed. Plan for introduction of the relevant technology introduction and for procurement of highly enriched uranium are considered. On the basis of assuming some conditions, the economic feasibility study for fission moly production is also overviewed. (author). 22 refs., 28 tabs., 24 figs

  18. Interaction of noble-metal fission products with pyrolytic silicon carbide

    International Nuclear Information System (INIS)

    Lauf, R.J.; Braski, D.N.

    1982-01-01

    Fuel particles for the High-Temperature Gas-Cooled Reactor (HTGR) contain layers of pyrolytic carbon and silicon carbide, which act as a miniature pressure vessel and form the primary fission product barrier. Of the many fission products formed during irradiation, the noble metals are of particular interest because they interact significantly with the SiC layer and their concentrations are somewhat higher in the low-enriched uranium fuels currently under consideration. To study fission product-SiC interactions, particles of UO 2 or UC 2 are doped with fission product elements before coating and are then held in a thermal gradient up to several thousand hours. Examination of the SiC coatings by TEM-AEM after annealing shows that silver behaves differently from the palladium group

  19. Fission product release mechanisms and groupings

    Energy Technology Data Exchange (ETDEWEB)

    Iglesia, F C; Brito, A C; Liu, Y [Ontario Hydro, Toronto, ON (Canada); and others

    1996-12-31

    During CANDU postulated accidents the reactor fuel is estimated to be exposed to a variety of conditions. These conditions are dynamic and, during the course of an accident, the fuel may experience a wide range of temperatures and conditions from highly oxidizing to mildly reducing environments. The exposure of the reactor fuel to these environments and temperatures may affect its stoichiometry and release performance. In this paper a review of the important fission product release mechanisms is presented, the results of three out-of-pile experimental programs are summarized, and fission product release groups, for both oxidizing and reducing conditions are proposed. (author) 92 refs., 6 tabs.

  20. Chemistry of actinides and fission products

    International Nuclear Information System (INIS)

    Pruett, D.J.; Sherrow, S.A.; Toth, L.M.

    1988-01-01

    This task is concerned primarily with the fundamental chemistry of the actinide and fission product elements. Special efforts are made to develop research programs in collaboration with researchers at universities and in industry who have need of national laboratory facilities. Specific areas currently under investigation include: (1) spectroscopy and photochemistry of actinides in low-temperature matrices; (2) small-angle scattering studies of hydrous actinide and fission product polymers in aqueous and nonaqueous solvents; (3) kinetic and thermodynamic studies of complexation reactions in aqueous and nonaqueous solutions; and (4) the development of inorganic ion exchange materials for actinide and lanthanide separations. Recent results from work in these areas are summarized here

  1. Decay properties of short-lived mass-separated fission products

    International Nuclear Information System (INIS)

    Lund, E.

    1977-01-01

    The present work describes determinations of total β-decay energies and studies of delayed neutron emission including the identification and half-life determinations of delayed neutron precursors and the measurement of neutron spectra. It also includes a short review of the OSIRIS on-line isotope separator facility. (Auth.)

  2. Event-by-Event Simulation of Induced Fission

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, R; Randrup, J

    2007-12-13

    We are developing a novel code that treats induced fission by statistical (or Monte-Carlo) simulation of individual decay chains. After its initial excitation, the fissionable compound nucleus may either deexcite by evaporation or undergo binary fission into a large number of fission channels each with different energetics involving both energy dissipation and deformed scission prefragments. After separation and Coulomb acceleration, each fission fragment undergoes a succession of individual (neutron) evaporations, leading to two bound but still excited fission products (that may further decay electromagnetically and, ultimately, weakly), as well as typically several neutrons. (The inclusion of other possible ejectiles is planned.) This kind of approach makes it possible to study more detailed observables than could be addressed with previous treatments which have tended to focus on average quantities. In particular, any type of correlation observable can readily be extracted from a generated set of events. With a view towards making the code practically useful in a variety of applications, emphasis is being put on making it numerically efficient so that large event samples can be generated quickly. In its present form, the code can generate one million full events in about 12 seconds on a MacBook laptop computer. The development of this qualitatively new tool is still at an early stage and quantitative reproduction of existing data should not be expected until a number of detailed refinement have been implemented.

  3. Event-by-Event Simulation of Induced Fission

    Science.gov (United States)

    Vogt, Ramona; Randrup, Jørgen

    2008-04-01

    We are developing a novel code that treats induced fission by statistical (or Monte-Carlo) simulation of individual decay chains. After its initial excitation, the fissionable compound nucleus may either de-excite by evaporation or undergo binary fission into a large number of fission channels each with different energetics involving both energy dissipation and deformed scission pre-fragments. After separation and Coulomb acceleration, each fission fragment undergoes a succession of individual (neutron) evaporations, leading to two bound but still excited fission products (that may further decay electromagnetically and, ultimately, weakly), as well as typically several neutrons. (The inclusion of other possible ejectiles is planned.) This kind of approach makes it possible to study more detailed observables than could be addressed with previous treatments which have tended to focus on average quantities. In particular, any type of correlation observable can readily be extracted from a generated set of events. With a view towards making the code practically useful in a variety of applications, emphasis is being put on making it numerically efficient so that large event samples can be generated quickly. In its present form, the code can generate one million full events in about 12 seconds on a MacBook laptop computer. The development of this qualitatively new tool is still at an early stage and quantitative reproduction of existing data should not be expected until a number of detailed refinement have been implemented.

  4. Event-by-Event Simulation of Induced Fission

    International Nuclear Information System (INIS)

    Vogt, Ramona; Randrup, Joergen

    2008-01-01

    We are developing a novel code that treats induced fission by statistical (or Monte-Carlo) simulation of individual decay chains. After its initial excitation, the fissionable compound nucleus may either de-excite by evaporation or undergo binary fission into a large number of fission channels each with different energetics involving both energy dissipation and deformed scission pre-fragments. After separation and Coulomb acceleration, each fission fragment undergoes a succession of individual (neutron) evaporations, leading to two bound but still excited fission products (that may further decay electromagnetically and, ultimately, weakly), as well as typically several neutrons. (The inclusion of other possible ejectiles is planned.) This kind of approach makes it possible to study more detailed observables than could be addressed with previous treatments which have tended to focus on average quantities. In particular, any type of correlation observable can readily be extracted from a generated set of events. With a view towards making the code practically useful in a variety of applications, emphasis is being put on making it numerically efficient so that large event samples can be generated quickly. In its present form, the code can generate one million full events in about 12 seconds on a MacBook laptop computer. The development of this qualitatively new tool is still at an early stage and quantitative reproduction of existing data should not be expected until a number of detailed refinement have been implemented

  5. Event-by-Event Simulation of Induced Fission

    International Nuclear Information System (INIS)

    Vogt, R; Randrup, J

    2007-01-01

    We are developing a novel code that treats induced fission by statistical (or Monte-Carlo) simulation of individual decay chains. After its initial excitation, the fissionable compound nucleus may either deexcite by evaporation or undergo binary fission into a large number of fission channels each with different energetics involving both energy dissipation and deformed scission prefragments. After separation and Coulomb acceleration, each fission fragment undergoes a succession of individual (neutron) evaporations, leading to two bound but still excited fission products (that may further decay electromagnetically and, ultimately, weakly), as well as typically several neutrons. (The inclusion of other possible ejectiles is planned.) This kind of approach makes it possible to study more detailed observables than could be addressed with previous treatments which have tended to focus on average quantities. In particular, any type of correlation observable can readily be extracted from a generated set of events. With a view towards making the code practically useful in a variety of applications, emphasis is being put on making it numerically efficient so that large event samples can be generated quickly. In its present form, the code can generate one million full events in about 12 seconds on a MacBook laptop computer. The development of this qualitatively new tool is still at an early stage and quantitative reproduction of existing data should not be expected until a number of detailed refinement have been implemented

  6. The file of evaluated decay data in ENDF/B

    International Nuclear Information System (INIS)

    Reich, C.W.

    1991-01-01

    One important application of nuclear decay data is the Evaluated Nuclear Data File/B (ENDF/B), the base of evaluated nuclear data used in reactor research and technology activities within the United States. The decay data in the Activation File (158 nuclides) and the Actinide File (108 nuclides) excellently represent the current status of this information. In particular, the half-lives and gamma and alpha emission probabilities, quantities that are so important for many applications, of the actinide nuclides represent a significant improvement over those in ENDF/B-V because of the inclusion of data produced by an International Atomic Energy Agency Coordinated Research Program. The Fission Product File contains experimental decay data on ∼510 nuclides, which is essentially all for which a meaningful number of data are available. For the first time, delayed-neutron spectra for the precursor nuclides are included. Some hint of problems in the fission product data base is provided by the gamma decay heat following a burst irradiation of 239 Pu

  7. Radioactive decay pattern of actinides present in waste from Mo-99 production

    Energy Technology Data Exchange (ETDEWEB)

    Hiromoto, Goro; Dellamano, José Claudio, E-mail: hiromoto@ipen.br, E-mail: jcdellam@ipen.br [Instituto de PesquisasEnergéticas e Nucleares (GRR/IPEN/CNEN-SP), São Paulo, SP (Brazil). Gerência de Rejeitos Radioativos

    2017-07-01

    Brazil is currently planning to produce {sup 99}Mo from fission of LEU targets to meet the present national demand of {sup 99m}Tc. The {sup 99}Mo activity planned at the end of irradiation is 5000 Ci (185 TBq) per weekly cycle, in order to meet the present demand of 1000 Ci (37 TBq) per week, after target cooling and processing. To predict the activities that will be handled in the waste treatment facility, the computational code SCALE 6.0 was used to simulate the irradiation of the uranium targets and the decay of radioactive products. This study presents the findings of this research, mainly focused on the actinides activity that will be present in the waste and the respective radioactive decay pattern over a period of one hundred thousand years. (author)

  8. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  9. Fission product behavior in the Molten Salt Reactor Experiment

    International Nuclear Information System (INIS)

    Compere, E.L.; Kirslis, S.S.; Bohlmann, E.G.; Blankenship, F.F.; Grimes, W.R.

    1975-10-01

    Essentially all the fission product data for numerous and varied samples taken during operation of the Molten Salt Reactor Experiment or as part of the examination of specimens removed after particular phases of operation are reported, together with the appropriate inventory or other basis of comparison, and relevant reactor parameters and conditions. Fission product behavior fell into distinct chemical groups. Evidence for fission product behavior during operation over a period of 26 months with 235 U fuel (more than 9000 effective full-power hours) was consistent with behavior during operation using 233 U fuel over a period of about 15 months (more than 5100 effective full-power hours)

  10. Delayed β ray spectrum of 235U fission fragments

    International Nuclear Information System (INIS)

    Pascholati, P.R.

    1973-01-01

    The time-dependent electron spectra of fission fragments from the thermal-neutron-induced fission of 235 U are calculated. The Gross theory of nuclear beta decay is used to obtain the decay constant and individual electron spectra. The mean energy per fission carried by the electrons and the number of electrons per fission are also calculated. Comparison of these calculated spectra to experimental ones shows good agreements. (Author) [pt

  11. BIG-10 fission product generation and reaction rates

    International Nuclear Information System (INIS)

    Rogers, J.W.

    1976-01-01

    Fission product generation rates for high quality fission foils and reaction rates of nonfission foils have been measured by gamma ray activation analyses. These foils were irradiated in the BIG-10 facility and the activities were measured by NaI counting techniques

  12. A review of U-235 decay heat measurements and calculations

    International Nuclear Information System (INIS)

    Walker, W.H.

    1979-08-01

    Recent scintillator measurements of fission product decay β and γ power, and calorimetric measurements of their sum are analyzed to obtain estimates of E sub(β) and E sub(γ), the β and γ components of the delayed energy per fission in a reactor. Calculations using the ENDF/B-4 fission product file are compared to the measured results and used to estimate the contributions to E sub(β) and E sub(γ) for decay times greater than 10 5 s. A value of E sub(ν), the anti-neutrino component, consistent with the measured component is also calculated. It is found that the decay heat measured in two calorimetric experiments (the sum of the β and γ components) is about 15 percent greater than the separately-measured energies (averages of five β and two γ measurements). Thus, depending on normalization, E sub(β) and E sub(γ) can vary widely. After all experimental uncertainties are taken into account the range of possible values has as lower limits the values calculated using ENDF/B-4, with upper limits about 40 percent greater. (author)

  13. Trapping technology for gaseous fission products from voloxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jin Myeong; Park, J. J.; Park, G. I.; Jung, I. H.; Lee, H. H.; Kim, G. H.; Yang, M. S

    2005-05-15

    The objective of this report is to review the different technologies for trapping the gaseous wastes containing Cs, Ru, Tc, {sup 14}C, Kr, Xe, I and {sup 3}H from a voloxidation process. Based on literature reviews and KAERI's experimental results on the gaseous fission products trapping, appropriate trapping method for each fission product has been selected considering process reliability, simplicity, decontamination factor, availability, and disposal. Specifically, the most promising trapping method for each fission product has been proposed for the development of the INL off-gas trapping system. A fly ash filter is proposed as a trapping media for a cesium trapping unit. In addition, a calcium filter is proposed as a trapping media for ruthenium, technetium, and {sup 14}C trapping unit. In case of I trapping unit, AgX is proposed. For Kr and Xe, adsorption on solid is proposed. SDBC (Styrene Divinyl Benzene Copolymer) is also proposed as a conversion media to HTO for {sup 3}H. This report will be used as a useful means for analyzing the known trapping technologies and help selecting the appropriate trapping methods for trapping volatile and semi-volatile fission products, long-lived fission products, and major heat sources generated from a voloxidation process. It can also be used to design an off-gas treatment system.

  14. An Evaluation of a Fission Product Inventory for CANDU Fuels

    International Nuclear Information System (INIS)

    Jung, Jong Yeob; Park, Joo Hwan

    2007-01-01

    Fission products are released by two processes when a single channel accident occurs. One is a 'prompt release' and the other is a 'delayed release'. Prompt release assumes that the gap inventory of the fuel elements is released by a fuel element failure at the time of an accident. Delayed release assumes that the inventories within the grain or at the grain boundary are released after a accident due to a diffusion through grains, an oxidation of the fuel and an interaction between the fuel and the Zircaloy sheath. Therefore, the calculation of a fission product inventory and its distribution in a fuel during a normal operating is the starting point for the assessment of a fission product release for single channel accidents. In this report, the fission product inventories and their distributions within s fuel under a normal operating condition are evaluated for three types of CANDU fuels such as the 37 element fuel, CANFLEX-NU and CANFLEX-RU fuel bundles in the 'limiting channel'. To accomplish the above mentioned purposes, the basic power histories for each type of CANDU fuel were produced and the fission product inventories were calculated by using the ELESTRES code

  15. Fission product released experiment of coated fuel particles

    Energy Technology Data Exchange (ETDEWEB)

    Shijiang, Xu; Bing, Yang; Chunhe, Tang; Junguo, Zhu; Jintao, Huang; Binzhong, Zhang [Inst. of Nucl. Energy Technology, Tsinghua Univ., Beijing (China); Jinghan, Luo [Inst. of Atomic Energy, Beijing (China)

    1992-01-15

    Four samples of coated fuel particles were irradiated in the Heavy-Water Research Reactor of the Institute of Atomic Energy. Each of them was divided into two groups and irradiated to the burn up of 0.394% fima and 0.788% fima in two static capsules, respectively. After irradiation and cooling, post irradiation annealing experiment was carried out, the release ratios of the fission product {sup 133}Xe and {sup 131}I were measured, they are in the order of 10{sup -6}{approx}10{sup -7}. The fission product release ratio of naked kernel was also measured under the same conditions as for the coated fuel particles, the ratio of the fission product release of the coated fuel particles and of the naked kernel was in the order of 10{sup -5}{approx}10{sup -4}.

  16. Detector for gaseous nuclear fission products

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro; Kubo, Katsumi.

    1979-01-01

    Purpose: To facilitate the fabrication of a precipitator type detector, as well as improve the reliability. Constitution: Gas to be measured flown in an anode is stored in a gas processing system. By applying a voltage between the anode and the cathode, if positively charged Rb or Cs which is the daughter products of gaseous fission products are present in the gas to be measured, the daughter products are successively deposited electrostatically to the cathode. The daughter products issue beta-rays and gamma-rays to ionize the argon gas at the anode, whereby ionizing current flows between both of the electrodes. Pulses are generated from the ionizing current, and presence or absence, as well as the amount of the gaseous fission products are determined by the value recorded for the number of the pulses to thereby detect failures in the nuclear fuel elements. After the completion of the detection, the inside of the anode is evacuated and the cathode is heated to evaporate and discharge the daughter products externally. This eliminates the effects of the former detection to the succeeding detection. (Moriyama, K.)

  17. Potential for large-scale uses for fission-product Xenon

    International Nuclear Information System (INIS)

    Rohrmann, C.A.

    1983-03-01

    Of all fission products in spent, low-enrichment-uranium power-reactor fuels, xenon is produced in the highest yield - nearly one cubic meter, STP, per metric ton. In aged fuels which may be considered for processing in the US, radioactive xenon isotopes approach the lowest limits of detection. The separation from accompanying radioactive 85 Kr is the essential problem; however, this is state-of-the-art technology which has been demonstrated on the pilot scale to yield xenon with pico-curie levels of 85 Kr contamination. If needed for special applications, such levels could be further reduced. Environmental considerations require the isolation of essentially all fission-product krypton during fuel processing. Economic restraints assure that the bulk of this krypton will need to be separated from the much-more-voluminous xenon fraction of the total amount of fission gas. Xenon may thus be discarded or made available for uses at probably very low cost. In contrast with many other fission products which have unique radioactive characteristics which make them useful as sources of heat, gamma and x-rays, and luminescence - as well as for medicinal diagnostics and therapeutics - fission-product xenon differs from naturally occurring xenon only in its isotopic composition which gives it a slightly hgiher atomic weight, because of the much higher concentrations of the 134 Xe and 136 Xe isotopes. Therefore, fission-product xenon can most likely find uses in applications which already exist but which can not be exploited most beneficially because of the high cost and scarcity of natural xenon. Unique uses would probably include applications in improved incandescent light illumination in place of krypton and in human anesthesia

  18. Application of dynamic pseudo fission products and actinides for accurate burnup calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E.; Leege, P.F.A. de [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.; Kloosterman, J.L.

    1996-09-01

    The introduction of pseudo fission products for accurate fine-group spectrum calculations during burnup is discussed. The calculation of the density of the pseudo nuclides is done before each spectrum calculation from the actual densities and their cross sections of all nuclides to be lumped into a pseudo fission product. As there are also many actinides formed in the fuel during its life cycle, a pseudo actinide with fission cross section is also introduced. From a realistic burnup calculation it is demonstrated that only a few fission products and actinides need to be included explicitly in a spectrum calculation. All other fission products and actinides can be accurately represented in the pseudo nuclides. (author)

  19. Nuclear structure and shapes from prompt gamma ray spectroscopy of fission products

    International Nuclear Information System (INIS)

    Ahmad, I.; Morss, L.R.; Durell, J.L.

    1996-01-01

    Many nuclear shape phenomena are predicted to occur in neutron-rich nuclei. The best source for the production of these nuclides is the spontaneous fission which produces practically hundreds of nuclides with yields of greater than 0.1 % per decay. Measurements of coincident gamma rays with large Ge arrays have recently been made to obtain information on nuclear structures and shapes of these neutron- rich nuclei. Among the important results that have been obtained from such measurements are octupole correlations in Ba isotopes, triaxial shapes in Ru nuclei, two-phonon vibrations in 106 Mo and level lifetimes and quadrupole moments in Nd isotopes and A=100 nuclei. These data have been used to test theoretical models

  20. Immobilization of fission products in phosphate ceramic waste forms

    International Nuclear Information System (INIS)

    Singh, D.

    1996-01-01

    The goal of this project is to develop and demonstrate the feasibility of a novel low-temperature solidification/stabilization (S/S) technology for immobilizing waste streams containing fission products such as cesium, strontium, and technetium in a chemically bonded phosphate ceramic. This technology can immobilize partitioned tank wastes and decontaminate waste streams containing volatile fission products

  1. Utilization of fast reactor excess neutrons for burning long-lived fission products

    International Nuclear Information System (INIS)

    Kawashima, K.; Kobayashi, K.; Kaneto, K.

    1995-01-01

    An evaluation is made on a large MOX fuel fast reactor's capability of burning long lived fission product Tc-99, which dominates the long term radiotoxicity of the high level radioactive waste. The excess neutrons generated in the fast reactor core are utilized to transmute Tc-99 to stable isotopes due to neutron capture reaction. The fission product target assemblies which consist of Tc-99 are charged to the reactor core periphery. The fission product target neutrons are moderated to a great deal to pursue the possibility of enhancing the transmutation rate. Any impacts of loading the fission product target assemblies on the core nuclear performances are assessed. A long term Tc-99 accumulation scenario is considered in the mix of fission product burner fast reactor and non-burner LWRs. (author)

  2. FREVAP-6, Metal Fission Products Release from HTGR Fuel Elements

    International Nuclear Information System (INIS)

    Pierce, V.H.

    2005-01-01

    1 - Description of problem or function: The FREVAP type of code for estimating the release of longer-lived metallic fission products from HTGR fuel elements has been developed to take into account the combined effects of the retention of metallic fission products by fuel particles and the rather strong absorption of these fission products by the graphite of the fuel elements. Release calculations are made on the basis that the loss of fission product nuclides such as strontium, cesium, and barium is determined by their evaporation from the graphite surfaces and their transpiration induced by the flowing helium coolant. The code is devised so that changes of fission rate (fuel element power), fuel temperature, and graphite temperature may be incorporated into the calculation. Temperature is quite important in determining release because, in general, both release from fuel particles and loss by evaporation (transpiration) vary exponentially with the reciprocal of the absolute temperature. NESC0301/02: This version differs from the previous one in the following points: The source and output files were converted from BCD to ASCII coding. 2 - Method of solution: A problem is defined as having a one-dimensional segment made up of three parts - (1) the fission product source (fuel particles) in series with, (2) a non-source and absorption part (element graphite) and (3) a surface for evaporation to the coolant (graphite-helium interface). More than one segment may be connected (possibly segments stacked axially) by way of the coolant. At any given segment, a continuity equation is solved assuming equilibrium between the source term, absorption term, evaporation at coolant interface and the partial pressure of the fission product isotope in the coolant. 3 - Restrictions on the complexity of the problem - Maxima of: 5 isotopes; 10 time intervals for time-dependent variable; 49 segments (times number of isotopes); 5 different output print time-steps

  3. Production of Fission Product 99Mo using High-Enriched Uranium Plates in Polish Nuclear Research Reactor MARIA: Technology and Neutronic Analysis

    Directory of Open Access Journals (Sweden)

    Jaroszewicz Janusz

    2014-07-01

    Full Text Available The main objective of 235U irradiation is to obtain the 99mTc isotope, which is widely used in the domain of medical diagnostics. The decisive factor determining its availability, despite its short lifetime, is a reaction of radioactive decay of 99Mo into 99mTc. One of the possible sources of molybdenum can be achieved in course of the 235U fission reaction. The paper presents activities and the calculation results obtained upon the feasibility study on irradiation of 235U targets for production of 99Mo in the MARIA research reactor. Neutronic calculations and analyses were performed to estimate the fission products activity for uranium plates irradiated in the reactor. Results of dummy targets irradiation as well as irradiation uranium plates have been presented. The new technology obtaining 99Mo is based on irradiation of high-enriched uranium plates in standard reactor fuel channel and calculation of the current fission power generation. Measurements of temperatures and the coolant flow in the molybdenum installation carried out in reactor SAREMA system give online information about the current fission power generated in uranium targets. The corrective factors were taken into account as the heat generation from gamma radiation from neighbouring fuel elements as well as heat exchange between channels and the reactor pool. The factors were determined by calibration measurements conducted with aluminium mock-up of uranium plates. Calculations of fuel channel by means of REBUS code with fine mesh structure and libraries calculated by means of WIMS-ANL code were performed.

  4. Spray removal of fission products in PWR containments

    International Nuclear Information System (INIS)

    Grist, D.R.

    1982-11-01

    Models and parameters for assessing the rate and extent of removal of various fission product species are described. A range of droplet sizes and of spray additive options is considered and removal of vapour phase inorganic iodine species, of organic iodides and of aerosols containing fission products is discussed. Aerosol removal is assessed in terms of contributing removal mechanisms and the removal rate modelled as a function of the radius of the aerosol particulate species. (author)

  5. Proposal to represent neutron absorption by fission products by a single pseudo-fragment

    International Nuclear Information System (INIS)

    Tsibulya, A.M.; Kochetkov, A.L.; Kravchenko, I.V.; Nikolaev, M.N.

    1991-01-01

    The concentration of fission products during reactor operation is analyzed. The dependence of a composite fission product capture cross-section as a function of time and on the nature of the A of the fissile nuclide are investigated, and the neutron radiative capture in fission products of a thermal reactor is evaluated. It is concluded that neutron absorption by fission products can be described by pseudo-fragments. (author). 18 refs, 2 figs, 3 tabs

  6. Fission product model for lattice calculation of high conversion boiling water reactor

    International Nuclear Information System (INIS)

    Iijima, S.; Yoshida, T.; Yamamoto, T.

    1988-01-01

    A high precision fission product model for boiling water reactor (BWR) lattice calculation was developed, which consists of 45 nuclides to be treated explicitly and one nonsaturating pseudo nuclide. This model is applied to a high conversion BWR lattice calculation code. From a study based on a three-energy-group calculation of fission product poisoning due to full fission products and explicitly treated nuclides, the multigroup capture cross sections and the effective fission yields of the pseudo nuclide are determined, which do not depend on fuel types or reactor operating conditions for a good approximation. Apart from nuclear data uncertainties, the model and the derived pseudo nuclide constants would predict the fission product reactivity within an error of 0.1% Δk at high burnup

  7. Chemistry of fission product iodine under nuclear reactor accident conditions

    International Nuclear Information System (INIS)

    Malinauskas, A.P.; Bell, J.T.

    1986-01-01

    The radioisotopes of iodine are generally acknowledged to be the species whose release into the biosphere as a result of a nuclear reactor accident is of the greatest concern. In the course of its release, the fission product is subjected to differing chemical environments; these can alter the physicochemical form of the fission product and thus modify the manner and extent to which release occurs. Both the chemical environments which are characteristic of reactor accidents and their effect in determining physical and chemical form of fission product iodine have been studied extensively, and are reviewed in this report. 76 refs

  8. Methodology and application of the WIMS-D4M fission product data

    International Nuclear Information System (INIS)

    Mo, S.C.

    1995-01-01

    The WIMS-D4 code has been modified (WIMS-D4m) to generate burn-up dependent microscopic cross sections for use in full core depletion calculations. The calculation of neutron absorption by fission products can be obtained from a reduced fission-product-chain model that includes the 135 Xe and 149 Sm chains, and a lumped fission product to account for the absorption by fission products not explicitly treated. Burn-up calculations were performed for the ANS MEU core using WIMS and EPRI-CELL cross sections. The calculated eigenvalues and material loadings are in good agreements

  9. Simulation of COMEDIE Fission Product Plateout Experiment Using GAMMA-FP

    International Nuclear Information System (INIS)

    Tak, Nam-il; Yoon, Churl

    2014-01-01

    FThis phenomenon is particularly important under a VHTR design with vented low pressure confinement (VLPC), because the vent allows the prompt release of fission products accumulated within the primary circuit to environment during an initial blow-down phase after pipe break accidents. In order to analyze the fission product plateout, an numerical model was developed by Yoo et al. and incorporated into the GAMMA-FP code in the past. The GAMMA-FP model was validated against two experiment data, i.e., VAMPYR-1 and OGL, during the development phase. One of the well-known experiments for fission product plateout is the COMEDIE experiment. In this work, the COMEDIE experiment has been simulated using the GAMMA-FP code to investigate the reliability and applicability of the plateout model of GAMMA-FP. The COMEDIE experiment for fission product plateout was simulated using the GAMMA-FP code in this work. A good agreement was achieved between the measured and predicted plateout activities. The existing solution scheme was modified to allow larger time step size for fission product analysis in order to speed-up the computational time. Nevertheless, the modification of the existing numerical model of GAMMA-FP is necessary when a simulation capability of a long duration of plateout period (e.g., 60 years) is targeted

  10. Microscopic beta and gamma data for decay-heat needs

    International Nuclear Information System (INIS)

    Dickens, J.K.

    1983-01-01

    Microscopic beta and gamma data for decay-heat needs are defined as absolute-intensity spectral distributions of beta and gamma rays following radioactive decay of radionuclides created by, or following, the fission process. Four well-known evaluated data files, namely the US ENDF/B-V, the UK UKFPDD-2, the French BDN (for fission products), and the Japanese JNDC Nuclear Data Library, are reviewed. Comments regarding the analyses of experimental data (particularly gamma-ray data) are given; the need for complete beta-ray spectral measurements is emphasized. Suggestions on goals for near-term future experimental measurements are presented. 34 references

  11. The universal library of fission products and delayed neutron group yields

    International Nuclear Information System (INIS)

    Koldobskiy, A.B.; Zhivun, V.M.

    1997-01-01

    A new fission product yield library based on the Semiempirical method for the estimation of their mass and charge distribution is described. Contrary to other compilations, this library can be used with all possible excitation energies of fissionable actinides. The library of delayed neutron group yields, based on the fission product yield compilation, is described as well. (author). 15 refs, 4 tabs

  12. Characterization of wastes from fission 99 Mo production

    International Nuclear Information System (INIS)

    Endo, L.S.; Dellamano, J.C.

    1992-07-01

    This work is a preliminary study on waste-streams generated in a fission 99 Mo production plant, their characterization and quantification. The study is based on a plant whose 99 Mo production process is the alkaline dissolution of U-target. The target is made of 1 g of enriched 235 U, therefore most of radionuclides present in the waste-streams are fission products. All the radionuclides inventories were estimated based on ORIGEN-2 Code. The characterization was done as a primary stage for the establishment of waste management plan, which should be subject for further study. (author)

  13. Fission product detection by means of photovoltaic cells

    International Nuclear Information System (INIS)

    Liatard, E.; Akrouf, S.; Bruandet, J.F.; Fontenille, A.; Glasser, F.; Stassi, P.; Tsan Ung Chan

    1988-01-01

    The response of photovoltaic cells to heavy ions and fission products have been tested in-beam. Their main advantages are their extremely low price, their low sensitivity to energetic light ions with respect to fission products, and the possibility to cut and fit them together to any shape without dead zone. The time output signals of a charge sensitive preamplifier connected to these cells allows fast coincidences. A resolution of 12 ns (FWHM) has been measured between two cells. (orig.)

  14. Theoretical Description of the Fission Process

    International Nuclear Information System (INIS)

    Nazarewicz, Witold

    2009-01-01

    Advanced theoretical methods and high-performance computers may finally unlock the secrets of nuclear fission, a fundamental nuclear decay that is of great relevance to society. In this work, we studied the phenomenon of spontaneous fission using the symmetry-unrestricted nuclear density functional theory (DFT). Our results show that many observed properties of fissioning nuclei can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. From the calculated collective potential and collective mass, we estimated spontaneous fission half-lives, and good agreement with experimental data was found. We also predicted a new phenomenon of trimodal spontaneous fission for some transfermium isotopes. Our calculations demonstrate that fission barriers of excited superheavy nuclei vary rapidly with particle number, pointing to the importance of shell effects even at large excitation energies. The results are consistent with recent experiments where superheavy elements were created by bombarding an actinide target with 48-calcium; yet even at high excitation energies, sizable fission barriers remained. Not only does this reveal clues about the conditions for creating new elements, it also provides a wider context for understanding other types of fission. Understanding of the fission process is crucial for many areas of science and technology. Fission governs existence of many transuranium elements, including the predicted long-lived superheavy species. In nuclear astrophysics, fission influences the formation of heavy elements on the final stages of the r-process in a very high neutron density environment. Fission applications are numerous. Improved understanding of the fission process will enable scientists to enhance the safety and reliability of the nation's nuclear stockpile and nuclear reactors. The deployment of a fleet of safe and efficient advanced reactors, which will also minimize radiotoxic

  15. Compilations and evaluations of nuclear structure and decay data

    International Nuclear Information System (INIS)

    Lorenz, A.

    1978-10-01

    This is the fourth issue of a report series on published and to-be-published compilations and evaluations of nuclear structure and decay (NSD) data. This compilation is published and distributed by the IAEA Nuclear Data Section every year. The material contained in this compilation is sorted according to eight subject categories: General compilations; basic isotopic properties; nuclear structure properties; nuclear decay processes, half-lives, energies and spectra; nuclear decay processes, gamma-rays; nuclear decay processes, fission products; nuclear decay processes (others); atomic processes

  16. Measurements of actinide-fission product yields in Caliban and Prospero metallic core reactor fission neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, P.; Authier, N. [CEA, Centre de Valduc, 21120 Is-sur-Tille (France); Laurec, J.; Bauge, E.; Granier, T. [CEA, Centre DIF, 91297 Arpajon (France)

    2011-07-01

    In the 1970's and early 1980's, an experimental program was performed on the facilities of the CEA Valduc Research Center to measure several actinide-fission product yields. Experiments were, in particular, completed on the Caliban and Prospero metallic core reactors to study fission-neutron-induced reactions on {sup 233}U, {sup 235}U, and {sup 239}Pu. Thick actinide samples were irradiated and the number of nuclei of each fission product was determined by gamma spectrometry. Fission chambers were irradiated simultaneously to measure the numbers of fissions in thin deposits of the same actinides. The masses of the thick samples and the thin deposits were determined by mass spectrometry and alpha spectrometry. The results of these experiments will be fully presented in this paper for the first time. A description of the Caliban and Prospero reactors, their characteristics and performances, and explanations about the experimental approach will also be given in the article. A recent work has been completed to analyze and reinterpret these measurements and particularly to evaluate the associated uncertainties. In this context, calculations have also been carried out with the Monte Carlo transport code Tripoli-4, using the published benchmarked Caliban description and a three-dimensional model of Prospero, to determine the average neutron energy causing fission. Simulation results will be discussed in this paper. Finally, new fission yield measurements will be proposed on Caliban and Prospero reactors to strengthen the results of the first experiments. (authors)

  17. Analysis of 137Cs in fission based neutron dosimetry

    International Nuclear Information System (INIS)

    Peltonen, T.

    1995-11-01

    137 Cs analysis is based on dissolving an irradiated fission dosimeter and chemically separating the cesium from the rest of the fission material. The samples consisted of uranium and neptunium in the form of metal or oxide. The uranium samples were dissolved in nitric acid and the neptunium samples in a mixture of nitric acid and chloric acid with addition of hydrogen peroxide. Cs was precipitated into a mixture of ammonium molyndophoshate and cellulose powder. A preparate for measurement was made from the precipitate and covered with polyethen plastic. Since other fission products than cesium were precipitated as well from the more recently irradiated samples, the activity measurements could not be carried out with a NaI(Tl) cavity crystal, but had to be made with a less efficient but more selective germanium semiconductor crystal. The method is well suited for 137 Cs determination, especially for older dosimeters where the more short-lived fission products have decayed. (orig.) (6 refs., 7 figs., 7 tabs.)

  18. Transmutation of fission products and actinide waste at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Daemen, L.L.; Pitcher, E.J.; Russell, G.J. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    The authors studied the neutronics of an ATW system for the transmutation of the fission products ({sup 99}Tc in particular) and the type of actinide waste stored in several tanks at Hanford. The heart of the system is a highly-efficient neutron production target. It is surrounded by a blanket containing a moderator/reflector material, as well as the products to be transmuted. The fission products are injected into the blanket in the form of an aqueous solution in heavy water, whereas an aqueous actinides slurry is circulated in the outer part of the blanket. For the sake of definiteness, the authors focussed on {sup 99}Tc (the most difficult fission product to transmute), and {sup 239}Pu, {sup 237}Np, and {sup 241}Am. Because of the low thermal neutron absorption cross-section of {sup 99}Tc, considerable care and effort must be devoted to the design of a very efficient neutron source.

  19. Release of fission products from irradiated aluminide fuel at high temperature

    International Nuclear Information System (INIS)

    Shibata, Toshikazu; Kanda, Keiji; Mishima, Kaichiro; Tamai, Tadaharu; Hayashi, Masatoshi; Snelgrove, James L.; Stahl, David; Matos, James E.; Travelli, Armando; Case, F. Neil; Posey, John C.

    1983-01-01

    Irradiated uranium aluminide fuel plates of 40% U-235 enrichment were heated for the determination of fission products released under flowing helium gas at temperatures up to and higher than the melting point of fuel cladding material. The release of fission products from the fuel plate at temperature below 500 deg. C was found negligible. The first rapid release of fission products was observed with the occurrence of blistering at 561±1 deg. C on the plates. The next release at 585. C might be caused by melting of the cladding material of 6061-Al alloy. The last release of fission product gases was occurred at the eutectic temperature of 640 deg. C of U-Al x . The released material was mostly xenon, but small amounts of iodine and cesium were observed. (author)

  20. Release of fission products from irradiated aluminide fuel at high temperature

    International Nuclear Information System (INIS)

    Shibata, T.; Kanda, K.; Mishima, K.

    1982-01-01

    Irradiated uranium aluminide fuel plates of 40% U-235 enrichment were heated for the determination of fission products released under flowing helium gas at temperatures up to and higher than the melting point of fuel-cladding material. The release of fission products from the fuel plate at temperature below 500 0 C was found negligible. The firist rapid release of fission products was observed with the occurrence of blistering at 561 +- 1 0 C on the plates. The next release at 585 0 C might be caused by melting of the cladding material of 6061-Al alloy. The last release of fission product gases was occurred at the eutectic temperature of 640 0 C of U-Al/sub x/. The released material was mostly xenon, but small amounts of iodine and cesium were observed

  1. Use of dwell time concept in fission product inventory assessment for CANDU reactors

    International Nuclear Information System (INIS)

    Bae, C.J.; Choi, J.H.; Hwang, H.R.; Seo, J.T.

    2003-01-01

    A realistic approach in calculating the initial fission product inventory within the CANFLEX-NU fuel has been assessed for its applicability to the single channel event safety analysis for CANDU reactors. This approach is based on the dwell time concept in which the accident is assumed to occur at the dwell time when the summation of fission product inventory for all isotopes becomes largest. However, in the current conservative analysis, the maximum total inventory and the corresponding gap inventory for each isotope are used as the initial fission product inventories regardless of the accident initiation time. The fission product inventory analysis has been performed using ELESTRES code considering power histories and burnup of the fuel bundles in the limiting channel. The analysis results showed that the total fission product inventory is found to be largest at 20% dwell time. Therefore, the fission product inventory at 20% dwell time can be used as the initial condition for the single channel event for the CANDU 6 reactors. (author)

  2. Chemistry of fission products for accident analysis

    International Nuclear Information System (INIS)

    Potter, P.E.

    1985-01-01

    Current knowledge concerning the chemical state of the fission product elements during the development of accidents in water reactor systems is reviewed in this paper. The fission product elements which have been considered are Cs, I, Te, Sr and Ba but aspects of the behavior of Mo, Ru and the lanthanides are also discussed. Some features of the reactions of the various species of these elements with other components of the reactor systems are described. The importance of having an adequate knowledge of thermodynamic data and phase equilibria of relatively simple systems in order to interpret experimental observations on complex multi-component systems is stressed

  3. Estimation of delayed neutron emission probability by using the gross theory of nuclear β-decay

    International Nuclear Information System (INIS)

    Tachibana, Takahiro

    1999-01-01

    The delayed neutron emission probabilities (P n -values) of fission products are necessary in the study of reactor physics; e.g. in the calculation of total delayed neutron yields and in the summation calculation of decay heat. In this report, the P n -values estimated by the gross theory for some fission products are compared with experiment, and it is found that, on the average, the semi-gross theory somewhat underestimates the experimental P n -values. A modification of the β-decay strength function is briefly discussed to get more reasonable P n -values. (author)

  4. A new technique to measure fission-product diffusion coefficients in UO2 fuel

    International Nuclear Information System (INIS)

    Hocking, W.H.; Verrall, R.A.; Bushby, S.J.

    1999-01-01

    This paper describes a new out-reactor technique for the measurement of fission-product diffusion rates in UO 2 . The technique accurately simulates in-reactor fission-fragment effects: a thermal diffusion that is due to localized mixing in the fission track, radiation-enhanced diffusion that is due to point-defect creation by fission fragments, and bubble resolution. The technique utilizes heavy-ion accelerators - low energy (40 keV to 1 MeV) for fission-product implantation, high energy (72 MeV) to create fission-fragment damage effects, and secondary ion mass spectrometry (SIMS) for measuring the depth profile of the implanted species. Preliminary results are presented from annealing tests (not in the 72 MeV ion flux) at 1465 deg. C and 1650 deg. C at low and high concentrations of fission products. (author)

  5. Development of glass ceramics for the incorporation of fission products

    International Nuclear Information System (INIS)

    De, A.K.; Luckscheiter, B.; Lutze, W.; Malow, G.; Schiewer, E.

    1976-01-01

    Spontaneous devitrification of fission-product-containing borosilicate glasses can be avoided by controlled crystallization after melting. Glass ceramics have been developed from a vitrified simulated waste and further improvement of product properties was achieved. In particular perovskite, h-celsian, diopside and eucryptite glass ceramics were prepared. These contained leach resistant host phases which exhibited considerable enrichment of long-lived fission products. All products showed increased impact resistance, but the thermal expansion was only slightly improved

  6. Vitrification processes for fission product solutions

    International Nuclear Information System (INIS)

    Bonniaud, R.; Jouan, A.; Moncouyoux, J.P.; Sombret, C.

    1982-10-01

    The different processes for fission product vitrification in the world are reviewed. Continuous or discontinuous processes, induction or arc heating, in can melting or casting, tests with radioactive or simulated wastes and industrial realizations are described [fr

  7. Beta-decay and decay heat. Summary report of consultants' meeting

    International Nuclear Information System (INIS)

    Nicols, A.L.

    2006-01-01

    Experts on decay data and decay heat calculations participated in a Consultants' Meeting organized at IAEA Headquarters on 12-14 December 2005. Debate focused on the validation of decay heat calculations as a function of cooling time for fuel irradiated in power reactors through comparisons with experimental benchmark data. Both the current understanding and quantification of mean beta and gamma decay energies were reviewed with respect to measurements and the Gross Theory of Beta Decay. Particular emphasis was placed on the known development of total absorption gamma-ray spectroscopy (TAGS), and detailed discussions took place to formulate the measurement requirements for mean beta and gamma data of individual radionuclides. This meeting was organized in cooperation with the OECD/NEA Working Party for Evaluation and Cooperation (WPEC). Proposals and recommendations were made to resolve particular difficulties, and an initial list of fission products was produced for TAGS studies. The discussions, conclusions and recommendations of the meeting are briefly described in this report. (author)

  8. Fission product chemistry in severe nuclear reactor accidents

    International Nuclear Information System (INIS)

    Nichols, A.L.

    1990-09-01

    A specialist's meeting was held at JRC-Ispra from 15 to 17 January 1990 to review the current understanding of fission-product chemistry during severe accidents in light water reactors. Discussions focussed on the important chemical phenomena that could occur across the wide range of conditions of a damaged nuclear plant. Recommendations for future chemistry work were made covering the following areas: (a) fuel degradation and fission-product release, (b) transport and attenuation processes in the reactor coolant system, (c) containment chemistry (iodine behaviour and core-concrete interactions)

  9. SOURCES-3A: A code for calculating (α, n), spontaneous fission, and delayed neutron sources and spectra

    International Nuclear Information System (INIS)

    Perry, R.T.; Wilson, W.B.; Charlton, W.S.

    1998-04-01

    In many systems, it is imperative to have accurate knowledge of all significant sources of neutrons due to the decay of radionuclides. These sources can include neutrons resulting from the spontaneous fission of actinides, the interaction of actinide decay α-particles in (α,n) reactions with low- or medium-Z nuclides, and/or delayed neutrons from the fission products of actinides. Numerous systems exist in which these neutron sources could be important. These include, but are not limited to, clean and spent nuclear fuel (UO 2 , ThO 2 , MOX, etc.), enrichment plant operations (UF 6 , PuF 4 , etc.), waste tank studies, waste products in borosilicate glass or glass-ceramic mixtures, and weapons-grade plutonium in storage containers. SOURCES-3A is a computer code that determines neutron production rates and spectra from (α,n) reactions, spontaneous fission, and delayed neutron emission due to the decay of radionuclides in homogeneous media (i.e., a mixture of α-emitting source material and low-Z target material) and in interface problems (i.e., a slab of α-emitting source material in contact with a slab of low-Z target material). The code is also capable of calculating the neutron production rates due to (α,n) reactions induced by a monoenergetic beam of α-particles incident on a slab of target material. Spontaneous fission spectra are calculated with evaluated half-life, spontaneous fission branching, and Watt spectrum parameters for 43 actinides. The (α,n) spectra are calculated using an assumed isotropic angular distribution in the center-of-mass system with a library of 89 nuclide decay α-particle spectra, 24 sets of measured and/or evaluated (α,n) cross sections and product nuclide level branching fractions, and functional α-particle stopping cross sections for Z < 106. The delayed neutron spectra are taken from an evaluated library of 105 precursors. The code outputs the magnitude and spectra of the resultant neutron source. It also provides an

  10. The potential for large scale uses for fission product xenon

    International Nuclear Information System (INIS)

    Rohrmann, C.A.

    1983-01-01

    Of all fission products in spent, low enrichment, uranium, power reactor fuels xenon is produced in the highest yield - nearly one cubic meter, STP, per metric ton. In aged fuels which may be considered for processing in the U.S. radioactive xenon isotopes approach the lowest limits of detection. The separation from accompanying radioactive 85 Kr is the essential problem; however, this is state of the art technology which has been demonstrated on the pilot scale to yield xenon with pico-curie levels of 85 Kr contamination. If needed for special applications, such levels could be further reduced. Environmental considerations require the isolation of essentially all fission product krypton during fuel processing. Economic restraints assure that the bulk of this krypton will need to be separated from the much more voluminous xenon fraction of the total amount of fission gas. Xenon may thus be discarded or made available for uses at probably very low cost. In contrast with many other fission products which have unique radioactive characteristics which make them useful as sources of heat, gamma and x-rays and luminescence as well as for medicinal diagnostics and therapeutics fission product xenon differs from naturally occurring xenon only in its isotopic composition which gives it a slightly higher atomic weight, because of the much higher concentrations of the 134 X and 136 Xe isotopes. Therefore, fission product xenon can most likely find uses in applications which already exist but which can not be exploited most beneficially because of the high cost and scarcity of natural xenon. Unique uses would probably include applications in improved incandescent light illumination in place of krypton and in human anesthesia

  11. Fuel performance and fission product behaviour in gas cooled reactors

    International Nuclear Information System (INIS)

    1997-11-01

    The Co-ordinated Research Programme (CRP) on Validation of Predictive Methods for Fuel and Fission Product Behaviour was organized within the frame of the International Working Group on Gas Cooled Reactors. This International Working Group serves as a forum for exchange of information on national programmes, provides advice to the IAEA on international co-operative activities in advanced technologies of gas cooled reactors (GCRs), and supports the conduct of these activities. The objectives of this CRP were to review and document the status of the experimental data base and of the predictive methods for GCR fuel performance and fission product behaviour; and to verify and validate methodologies for the prediction of fuel performance and fission product transport

  12. Calculation of the nuclear fission data based on the framework of the QMD + SDM

    International Nuclear Information System (INIS)

    Rong Jian; Iwamoto, O.; Fukahori, T.

    2002-01-01

    The quantum molecular dynamics (QMD), statistical decay model (SDM) and the statistical fission theory were used to analyze the mass distribution of the fission products, the prompt fission neutron spectrum (x(E)) and the prompt fission neutron multiplicities (ν-bar pf (E)) caused by the intermediate energy nucleon-induced fission. The semi-empirical formula of energy level density parameter used in the statistical process was also studied. Very few adjustable parameters were included in the present method. By some physical analysis, it can be thought that the present results are reasonable. The x(E) and ν-bar pf (E) can be obtained in the intermediate energy region by the present method

  13. Fission product range effects on HEU fissile gas monitoring for UF6 gas

    International Nuclear Information System (INIS)

    Munro, J.K. Jr.; Valentine, T.E.; Perez, R.B.

    1997-01-01

    The amount of 235 U in UF 6 flowing in a pipe can be monitored by counting gamma rays emitted from fission fragments carried along by the flowing gas. Neutron sources are mounted in an annular sleeve that is filled with moderator material and surrounds the pipe. This provides a source of thermal neutrons to produce the fission fragments. Those fragments that remain in the gas stream following fission are carried past a gamma detector. A typical fragment will be quite unstable, giving up energy as it decays to a more stable isotope with a significant amount of this energy being emitted in the form of gamma rays. A given fragment can emit several gamma rays over its lifetime. The gamma ray emission activity level of a distribution of fission fragments decreases with time. The monitoring system software uses models of these processes to interpret the gamma radiation counting data measured by the gamma detectors

  14. Evaluation and compilation of fission product yields 1993

    International Nuclear Information System (INIS)

    England, T.R.; Rider, B.F.

    1995-01-01

    This document is the latest in a series of compilations of fission yield data. Fission yield measurements reported in the open literature and calculated charge distributions have been used to produce a recommended set of yields for the fission products. The original data with reference sources, and the recommended yields axe presented in tabular form. These include many nuclides which fission by neutrons at several energies. These energies include thermal energies (T), fission spectrum energies (F), 14 meV High Energy (H or HE), and spontaneous fission (S), in six sets of ten each. Set A includes U235T, U235F, U235HE, U238F, U238HE, Pu239T, Pu239F, Pu241T, U233T, Th232F. Set B includes U233F, U233HE, U236F, Pu239H, Pu240F, Pu241F, Pu242F, Th232H, Np237F, Cf252S. Set C includes U234F, U237F, Pu240H, U234HE, U236HE, Pu238F, Am241F, Am243F, Np238F, Cm242F. Set D includes Th227T, Th229T, Pa231F, Am241T, Am241H, Am242MT, Cm245T, Cf249T, Cf251T, Es254T. Set E includes Cf250S, Cm244S, Cm248S, Es253S, Fm254S, Fm255T, Fm256S, Np237H, U232T, U238S. Set F includes Cm243T, Cm246S, Cm243F, Cm244F, Cm246F, Cm248F, Pu242H, Np237T, Pu240T, and Pu242T to complete fission product yield evaluations for 60 fissioning systems in all. This report also serves as the primary documentation for the second evaluation of yields in ENDF/B-VI released in 1993

  15. Evaluation and compilation of fission product yields 1993

    Energy Technology Data Exchange (ETDEWEB)

    England, T.R.; Rider, B.F.

    1995-12-31

    This document is the latest in a series of compilations of fission yield data. Fission yield measurements reported in the open literature and calculated charge distributions have been used to produce a recommended set of yields for the fission products. The original data with reference sources, and the recommended yields axe presented in tabular form. These include many nuclides which fission by neutrons at several energies. These energies include thermal energies (T), fission spectrum energies (F), 14 meV High Energy (H or HE), and spontaneous fission (S), in six sets of ten each. Set A includes U235T, U235F, U235HE, U238F, U238HE, Pu239T, Pu239F, Pu241T, U233T, Th232F. Set B includes U233F, U233HE, U236F, Pu239H, Pu240F, Pu241F, Pu242F, Th232H, Np237F, Cf252S. Set C includes U234F, U237F, Pu240H, U234HE, U236HE, Pu238F, Am241F, Am243F, Np238F, Cm242F. Set D includes Th227T, Th229T, Pa231F, Am241T, Am241H, Am242MT, Cm245T, Cf249T, Cf251T, Es254T. Set E includes Cf250S, Cm244S, Cm248S, Es253S, Fm254S, Fm255T, Fm256S, Np237H, U232T, U238S. Set F includes Cm243T, Cm246S, Cm243F, Cm244F, Cm246F, Cm248F, Pu242H, Np237T, Pu240T, and Pu242T to complete fission product yield evaluations for 60 fissioning systems in all. This report also serves as the primary documentation for the second evaluation of yields in ENDF/B-VI released in 1993.

  16. Proton-fission for the accelerator production of Mo-99

    International Nuclear Information System (INIS)

    Lagunas-Solar, M.C.; Jungerman, J.A.; Castaneda, C.M.

    1993-01-01

    The production of Mo-99 (66.0 h) via de U-238(p,f) Mo-99 fission reaction is proposed as a non-reactor source of this essential precursor of 6.6-h Tc-99m, an isotope of wide use of diagnostic nuclear medicine applications. Measurements of the total excitation function for the U-238(p,f) reaction indicated a maximum and fairly constant cross section of 1.4 barns at > 30 MeV. Combining the advances of high-current (mA) H-accelerators with dual beam (dual target) operation, and assuming a 5% fission yield, estimates of Mo-99 reaches 5 to 14 Ci/h at 1 mA. The proton fission production of Mo-99 appears to more advantageous than the reactor produced via evaporation neutron-induced fission. An accelerator method could allow securing ample supply of Mo-99 independently of the current scarce reactor operation, while also simplifying the associated waste management problems as well as some of the environmental concerns

  17. Recent advances in heavy-ion-induced fission

    International Nuclear Information System (INIS)

    Plasil, F.

    1984-01-01

    Three topics are discussed. The first deals with results that have been published recently on angular-momentum-dependent fission barriers. They are discussed because of the significance that we attach to them. We feel that, after a decade of study and controversy, we have arrived at a quantitative understanding of the competition between heavy-ion-induced fission and particle emission from compound nuclei at relatively low bombarding energies. The second topic concerns the extension of our heavy-ion-induced fission studies to higher energies. It is clear that in this regime the effects, both of fission following incomplete fusion and of extra-push requirements, need to be considered. Finally, discussed are our recent conclusions concerning the fissionlike decay of products from reactions between two 58 Ni nuclei at an incident energy, E/A, of 15.3 MeV, as well as the impact of our findings on the conclusions drawn from previous, similar measurements. 39 references

  18. Study of transfer induced fission and fusion-fission reactions for 28 Si + 232 Th system at 340 MeV

    International Nuclear Information System (INIS)

    Prete, G.; Rizzi, V.; Fioretto, E.; Cinausero, M.; Shetty, D.V.; Pesente, S.; Brondi, A.; La Rana, G.; Moro, R.; Vardaci, E.; Boiano, A.; Ordine, A.; Gelli, N.; Lucarelli, F.; Bortignon, P.F.; Saxena, A.; Nayak, B.K.; Biswas, D.C.; Choudhury, R.K.; Kapoor, R.S.

    2001-01-01

    Full text: Fission induced by nucleons transfer has been investigated in the reaction 28 Si + 232 Th at 340 MeV. Looking at the projectile-like-fragments (PLF), the fission yield increases as the transfer increases, but a decreases is observed for transfers with DZ . Light charged particles in coincidence with PLF and Fission have been detected with large solid angle and show an increasing multiplicity as the Z of PLF is reduced and a constant value when fission is requested. The present results indicate inhibition of transfer induced fission reaction for higher Z transfer and increasing probability for decay through charged particle evaporation. Fission is the dominant decay process in heavy reactions involving fissile systems but the dynamical evolution of the composite system is largely governed by the formation and decay mechanisms. Important insight into the formation and the survival probability of the heavy composite nuclei formed in heavy ion collisions can be gained by simultaneously investigate the fission process and light particle emission over a continuous range of excitation energy, angular momentum and fissility. This can be achieved by studying fission induced by transfer of nucleons between the interacting projectile and the target nucleus. In the present work, we have carried out measurements on multinucleon transfer induced fission reactions in 28 Si + 232 Th system at Elab = 340 MeV. The experiment has been performed at the Laboratori Nazionale di Legnaro (LNL) using the 8pLP detector in its final configuration with 257 DE-E telescopes. The backward detectors were used to measure both light charged particles and fission fragments. The projectile-like fragments were detected using separate DE-E telescopes around the grazing angle. Two neutron detectors were placed at a distance of 115.5 cm from the target to measure neutrons emitted in coincidence with fission fragments. Here we present the results of the data analysis of transfer induced fission

  19. Fission 2009 4. International Workshop on Nuclear Fission and Fission Product Spectroscopy - Compilation of slides

    International Nuclear Information System (INIS)

    2009-01-01

    This conference is dedicated to the last achievements in experimental and theoretical aspects of the nuclear fission process. The topics include: mass, charge and energy distribution, dynamical aspect of the fission process, nuclear data evaluation, quasi-fission and fission lifetime in super heavy elements, fission fragment spectroscopy, cross-section and fission barrier, and neutron and gamma emission. This document gathers the program of the conference and the slides of the presentations

  20. Fission product inventory calculation by a CASMO/ORIGEN coupling program

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Heon; Kim, Jong Kyung [Hanyang University, Seoul (Korea, Republic of); Choi, Hang Bok; Roh, Gyu Hong; Jung, In Ha [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A CASMO/ORIGEN coupling utility program was developed to predict the composition of all the fission products in spent PWR fuels. The coupling program reads the CASMO output file, modifies the ORIGEN cross section library and reconstructs the ORIGEN input file at each depletion step. In ORIGEN, the burnup equation is solved for actinides and fission products based on the fission reaction rates and depletion flux of CASMO. A sample calculation has been performed using a 14 x 14 PWR fuel assembly and the results are given in this paper. 3 refs., 1 fig., 1 tab. (Author)

  1. Fission product inventory calculation by a CASMO/ORIGEN coupling program

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Heon; Kim, Jong Kyung [Hanyang University, Seoul (Korea, Republic of); Choi, Hang Bok; Roh, Gyu Hong; Jung, In Ha [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    A CASMO/ORIGEN coupling utility program was developed to predict the composition of all the fission products in spent PWR fuels. The coupling program reads the CASMO output file, modifies the ORIGEN cross section library and reconstructs the ORIGEN input file at each depletion step. In ORIGEN, the burnup equation is solved for actinides and fission products based on the fission reaction rates and depletion flux of CASMO. A sample calculation has been performed using a 14 x 14 PWR fuel assembly and the results are given in this paper. 3 refs., 1 fig., 1 tab. (Author)

  2. Mo-99 production by fission and future projections

    International Nuclear Information System (INIS)

    Carranza, E.C.; Novello, A.; Bronca, M.; Cestau, D.; Bavaro, R.; Centurion, R.; Bravo, C.; Bronca, P.; Gualda, E.; Fraguas, F.; Giomi, A.; Ivaldi, L.

    2012-01-01

    Description of the I-131 and Mo-99 production process: The process starts with the irradiation of uranium-aluminum mini plates in the RA-3, Argentinean Reactor No.3, Ezeiza Atomic Center. In a nuclear reactor there is a constant flow of neutrons and when a neutron with proper energy impacts on a nucleus of U-235, it is absorbed at the same time generate an unstable configuration nuclear. For this reason, the nucleus formed is fission, getting two different atoms. Approximately 6% of the fissions produce Mo-99 and 3% produce I-131; the percentage remaining corresponds to formation of atoms without interest for use in medicine. In conclusion, the objective of the process developed in the Fission Plant, is starting from uranium mini plates, separate the Mo-99 and I-131 generated, the remaining elements formed. - Evolution of Mo-99 Production in the last 10 years: The Fission Mo-99 Plant Production begins routine production of Mo-99 in 1985, using targets made of uranium enriched at 90% U-235. In the 1990s, global concern regarding the use of highly enriched uranium, due to non-proliferation issues, caused the interruption of supply of nuclear material (HEU enriched at 90% of U-235). Following this, Argentina developed target based on low-enriched uranium (less than 20% U-235), becoming in 2002 the first country in the world to produce Mo-99 with LEU targets. From 2002 to date, the activity produced of Mo-99 has been tripled annually (author)

  3. Ceramic Hosts for Fission Products Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Peter C Kong

    2010-07-01

    Natural spinel, perovskite and zirconolite rank among the most leach resistant of mineral forms. They also have a strong affinity for a large number of other elements and including actinides. Specimens of natural perovskite and zirconolite were radioisotope dated and found to have survived at least 2 billion years of natural process while still remain their loading of uranium and thorium . Developers of the Synroc waste form recognized and exploited the capability of these minerals to securely immobilize TRU elements in high-level waste . However, the Synroc process requires a relatively uniform input and hot pressing equipment to produce the waste form. It is desirable to develop alternative approaches to fabricate these durable waste forms to immobilize the radioactive elements. One approach is using a high temperature process to synthesize these mineral host phases to incorporate the fission products in their crystalline structures. These mineral assemblages with immobilized fission products are then isolated in a durable high temperature glass for periods measured on a geologic time scale. This is a long term research concept and will begin with the laboratory synthesis of the pure spinel (MgAl2O4), perovskite (CaTiO3) and zirconolite (CaZrTi2O7) from their constituent oxides. High temperature furnace and/or thermal plasma will be used for the synthesis of these ceramic host phases. Nonradioactive strontium oxide will be doped into these ceramic phases to investigate the development of substitutional phases such as Mg1-xSrxAl2O4, Ca1-xSrxTiO3 and Ca1-xSrxZrTi2O7. X-ray diffraction will be used to establish the crystalline structures of the pure ceramic hosts and the substitution phases. Scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX) will be performed for product morphology and fission product surrogates distribution in the crystalline hosts. The range of strontium doping is planned to reach the full substitution of the divalent

  4. Analytical evaluation of fission product sensitivities

    International Nuclear Information System (INIS)

    Sola, A.

    1977-01-01

    Evaluating the concentration of a fission product produced in a reactor requires the knowledge of a fairly large number of variables. Sensitivity studies were made to ascertain the important variables. Analytical formulae were developed sufficiently simple to allow numerical computations. Some simplified formulas are also given and they are applied to the following isotopes: 80 Se, 82 Se, 81 Br, 82 Br, 82 Kr, 83 Kr, 84 Kr, 85 Kr, 86 Kr. Their sensitivities to capture cross sections, fission yields, ratios of activation cross sections, half-lives (during and after irradiation), branching ratios, as well as to the neutron flux and to the time are considered

  5. Fission product source term research at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Malinauskas, A.P.

    1985-01-01

    The purpose of this work is to describe some of the research being performed at ORNL in support of the effort to describe, as realistically as possible, fission product source terms for nuclear reactor accidents. In order to make this presentation manageable, only those studies directly concerned with fission product behavior, as opposed to thermal hydraulics, accident sequence progression, etc., will be discussed

  6. Chemical factors affecting fission product transport in severe LMFBR accidents

    International Nuclear Information System (INIS)

    Wichner, R.P.; Jolley, R.L.; Gat, U.; Rodgers, B.R.

    1984-10-01

    This study was performed as a part of a larger evaluation effort on LMFBR accident, source-term estimation. Purpose was to provide basic chemical information regarding fission product, sodium coolant, and structural material interactions required to perform estimation of fission product transport under LMFBR accident conditions. Emphasis was placed on conditions within the reactor vessel; containment vessel conditions are discussed only briefly

  7. Calculation of Beta Decay Half-Lives and Delayed Neutron Branching Ratio of Fission Fragments with Skyrme-QRPA

    Directory of Open Access Journals (Sweden)

    Minato Futoshi

    2016-01-01

    Full Text Available Nuclear β-decay and delayed neutron (DN emission is important for the r-process nucleosynthesis after the freeze-out, and stable and safe operation of nuclear reactors. Even though radioactive beam facilities have enabled us to measure β-decay and branching ratio of neutron-rich nuclei apart from the stability line in the nuclear chart, there are still a lot of nuclei which one cannot investigate experimentally. In particular, information on DN is rather scarce than that of T1/2. To predict T1/2 and the branching ratios of DN for next JENDL decay data, we have developed a method which comprises the quasiparticle-random-phase-approximation (QRPA and the Hauser-Feshbach statistical model (HFSM. In this work, we calculate fission fragments with T1/2 ≤ 50 sec. We obtain the rms deviation from experimental half-life of 3:71. Although the result is still worse than GT2 which has been adopted in JENDL decay data, DN spectra are newly calculated. We also discuss further subjects to be done in future for improving the present approach and making next generation of JENDL decay data.

  8. Fuel performance and fission product behaviour in gas cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Co-ordinated Research Programme (CRP) on Validation of Predictive Methods for Fuel and Fission Product Behaviour was organized within the frame of the International Working Group on Gas Cooled Reactors. This International Working Group serves as a forum for exchange of information on national programmes, provides advice to the IAEA on international co-operative activities in advanced technologies of gas cooled reactors (GCRs), and supports the conduct of these activities. The objectives of this CRP were to review and document the status of the experimental data base and of the predictive methods for GCR fuel performance and fission product behaviour; and to verify and validate methodologies for the prediction of fuel performance and fission product transport. Refs, figs, tabs.

  9. Update and evaluation of decay data for spent nuclear fuel analyses

    Science.gov (United States)

    Simeonov, Teodosi; Wemple, Charles

    2017-09-01

    Studsvik's approach to spent nuclear fuel analyses combines isotopic concentrations and multi-group cross-sections, calculated by the CASMO5 or HELIOS2 lattice transport codes, with core irradiation history data from the SIMULATE5 reactor core simulator and tabulated isotopic decay data. These data sources are used and processed by the code SNF to predict spent nuclear fuel characteristics. Recent advances in the generation procedure for the SNF decay data are presented. The SNF decay data includes basic data, such as decay constants, atomic masses and nuclide transmutation chains; radiation emission spectra for photons from radioactive decay, alpha-n reactions, bremsstrahlung, and spontaneous fission, electrons and alpha particles from radioactive decay, and neutrons from radioactive decay, spontaneous fission, and alpha-n reactions; decay heat production; and electro-atomic interaction data for bremsstrahlung production. These data are compiled from fundamental (ENDF, ENSDF, TENDL) and processed (ESTAR) sources for nearly 3700 nuclides. A rigorous evaluation procedure of internal consistency checks and comparisons to measurements and benchmarks, and code-to-code verifications is performed at the individual isotope level and using integral characteristics on a fuel assembly level (e.g., decay heat, radioactivity, neutron and gamma sources). Significant challenges are presented by the scope and complexity of the data processing, a dearth of relevant detailed measurements, and reliance on theoretical models for some data.

  10. Update and evaluation of decay data for spent nuclear fuel analyses

    Directory of Open Access Journals (Sweden)

    Simeonov Teodosi

    2017-01-01

    Full Text Available Studsvik’s approach to spent nuclear fuel analyses combines isotopic concentrations and multi-group cross-sections, calculated by the CASMO5 or HELIOS2 lattice transport codes, with core irradiation history data from the SIMULATE5 reactor core simulator and tabulated isotopic decay data. These data sources are used and processed by the code SNF to predict spent nuclear fuel characteristics. Recent advances in the generation procedure for the SNF decay data are presented. The SNF decay data includes basic data, such as decay constants, atomic masses and nuclide transmutation chains; radiation emission spectra for photons from radioactive decay, alpha-n reactions, bremsstrahlung, and spontaneous fission, electrons and alpha particles from radioactive decay, and neutrons from radioactive decay, spontaneous fission, and alpha-n reactions; decay heat production; and electro-atomic interaction data for bremsstrahlung production. These data are compiled from fundamental (ENDF, ENSDF, TENDL and processed (ESTAR sources for nearly 3700 nuclides. A rigorous evaluation procedure of internal consistency checks and comparisons to measurements and benchmarks, and code-to-code verifications is performed at the individual isotope level and using integral characteristics on a fuel assembly level (e.g., decay heat, radioactivity, neutron and gamma sources. Significant challenges are presented by the scope and complexity of the data processing, a dearth of relevant detailed measurements, and reliance on theoretical models for some data.

  11. Contingency of alpha decay in 287-306120 isotopes of SHE

    International Nuclear Information System (INIS)

    Carmel Vigila Bai, G.M.; Umai Parvathiy, J.

    2014-01-01

    In recent years the synthesis and identification of super heavy nuclei has a particular attention in the field of nuclear physics. Many theoretical calculations have been done to study the properties of even-Z Super heavy elements (SHE). Durate et al. applied the effective liquid drop model to predict the alpha decay, cluster emission and cold fission half-life values of nuclei on the region of super heavy elements, defined by 155 ≤ N ≤ 220 and 110 ≤ Z ≤ 135. In the case of super heavy elements spontaneous fission and alpha decay are the main decay modes. Super heavy nuclei which have relatively small alpha decay half times compared to spontaneous fission half lives will survive fission and thus can be detected in the laboratory through α-decay. The present paper aims to predict possibility of alpha decay in the element Z = 120 isotopes using CYE model and the spontaneous fission half lives are computed using the phenomenological formula

  12. Considerations on the influence of fission products in whole core accidents

    International Nuclear Information System (INIS)

    Meyer Heine, A.; Pattoret, A.; Schmitz, F.

    1977-01-01

    If the hypothetical Whole Core Accidents which are taken into account in reactor safety analysis can change from one country to another, there is nevertheless a general agreement over their description and main phases. Furthermore the important parameters have also been identified by every laboratory. During the development of such core accidents the role of the fission products in essential. It is not the purpose of this paper to give an exhaustive description of the phases which can be influenced by the fission products, we will try however to focus this study on the most important ones. In a second step we will discuss the equation of state of irradiated fuels; here again one principal preoccupation being to quantify the influence of fission products on reactor accidents. It is not our purpose to enter on the fundamental aspects of the equation of state. The studies and the experimental program launched at the CEA will then be described. Special attention will be directed towards the eventual role of fission products in molten fuel-coolant interactions (MFCls) or the events leading to the initiation of whole core accidents. This paper will be limited to oxide fuels. Whether the whole core accident is initiated by a reactivity defect or a coolant coast-down, one has to deal with four great categories of phenomena. Loss of flow: the power is around the nominal value, while the coolant flow has been reduced by a factor of 5 to 10. This induces boiling and clad weakening. Will the plenum pressure lead to a clad rupture? In case of a rupture, what will be the effect on the voiding of the channel? Transient over power: influence of gases from gaseous and volatile fission products on the fuel movements? MFCIs: Influence of the fission products in the mode of contact between fuel and coolant? Influence on the fuel characteristics. Sodium vapour bubble expansion: influence of the fission products on the heat transfer and eventual condensation of the bubble?

  13. Post-irradiation studies on knock-out and pseudo-recoil releases of fission products from fissioning UO2

    International Nuclear Information System (INIS)

    Yamagishi, S.; Tanifuji, T.

    1976-01-01

    By using post-irradiation techniques, in-pile releases of 133 Xe, sup(85m)Kr, 88 Kr, 87 Kr and 138 Xe from UO 2 fissioning at low temperatures below about 200 0 C are studied: these are analyzed into a time-dependent knock-out and time-independent pseudo-recoil releases. For the latter, a 'self knock-out' mechanism is proposed: when a fission fragment loses thoroughly its energy near the UO 2 surface and stops there, it will knock out the surface substances and accordingly the fragment (i.e. the fission product) will be released. The effective thickness of the layer where the self knock-out occurs is found to be approximately 7A. As for the knock-out release, the following is estimated from its dependence on various factors: the knock-out release of fission products occurs from the surface layer with the effective thickness of approximately 20A: the shape of UO 2 matrix knocked out by one fission fragment passing through the surface is equivalent to a cylinder approximately 32A diameter by approximately 27A thick, (i.e. the knock-out coefficient for UO 2 is approximately 660 uranium atoms per knock-out event). On the basis of the above estimations, the conclusions derived from the past in-pile studies of fission gas releases are evaluated. (Auth.)

  14. Fission product retention during faults involving steam generator tube rupture

    International Nuclear Information System (INIS)

    Rodliffe, R.S.

    1983-08-01

    In some PWR fault conditions, such as stuck open safety relief valve in the secondary circuit or main steam line break, the release of fission products to the atmosphere may be increased by the leakage of primary coolant into the secondary circuit following steam generator tube rupture. The release may be reduced by retention either within the primary circuit or within the affected steam generator unit (SGU). The mechanisms leading to retention are reviewed and quantified where possible. The parameters on which any analysis will be most critically dependent are identified. Fission product iodine and caesium may be retained in the secondary side of a SGU either by partition to retained water or by droplet deposition on surfaces and subsequent evaporation to dryness. Two extreme simplifications are considered: SGU 'dry', i.e. the secondary side is steam filled, and SGU 'wet', i.e. the tube bundle is covered with water. Consideration is given to: the distribution of fission products between gaseous and aerosol forms; mechanisms for droplet formation, deposition and resuspension; fission product retention during droplet or film evaporation primary coolant mixing and droplet scrubbing in a wet SGU; and the performance of moisture separators and steam driers. (author)

  15. Preparation of multigroup lumped fission product cross-sections from ENDF/B-VI for FBRs

    International Nuclear Information System (INIS)

    Devan, K.; Gopalakrishnan, V.; Mohanakrishnan, P.; Sridharan, M.S.

    1997-01-01

    Multigroup pseudo fission product cross-sections were computed from the American evaluated nuclear data library ENDF/B-VI, corresponding to various burnups of the proposed 500 MWe prototype fast breeder reactor (PFBR), in India. The data were derived from the cross-sections of 111 selected fission products that account for almost complete capture of fission products in an FBR. The dependence of burnup on the pseudo fission product cross-sections, and comparison with other data sets, viz. JNDC, ENDF/B-IV and ABBN, are discussed. (author)

  16. Decay properties of some neutron-rich praseodymium isotopes

    International Nuclear Information System (INIS)

    Skarnemark, G.; Aronsson, P.O.; Stender, E.; Trautmann, N.; Kaffrell, N.; Bjoernstad, T.; Kvale, E.; Skarestad, M.

    1976-01-01

    Neutron-rich Pr isotopes produced in the thermal neutron-induced fission of 235 U have been investigated by means of γ-γ coincidence experiments. The nuclides have been separated from the fission product mixture, using the fast chemical separation system SISAK in connection with a gas jet recoil transport system. The results include assignments of several new γ-ray energies and partial decay schemes for 147 Pr, 148 Pr, 149 Pr and 150 Pr. (orig.) [de

  17. Application of mercury cathode electrolysis to fission-product separation

    International Nuclear Information System (INIS)

    Besson, A.; Prigent, Y.; Van-Kote, F.

    1969-01-01

    A method involving controlled potential mercury cathode electrolysis has been developed to separate fission products. It allows the radiochemical determination of Ag, Cd, Pd, Rh, Ru, Sn, Te, Sb and Mo from solutions of fission products highly concentrated in mineral salts. The general procedure consists in three main steps: electrolytic amalgam generation, destruction of amalgams and ultimate purification of elements by other means. Electrolytic operations last about five hours. Chemical yields lie between 10 per cent and 70 per cent. (authors) [fr

  18. SACHET, Dynamic Fission Products Inventory in PWR Multiple Compartment System

    International Nuclear Information System (INIS)

    Kodaira, Hideki

    1990-01-01

    1 - Description of program or function: SACHET evaluates the dynamic fission product inventories in the multiple compartment system of pressurized water reactor (PWR) plants. 2 - Method of solution: SACHET utilizes a matrix of fission product core inventory which is previously calculated by the ORIGEN code. 3 - Restrictions on the complexity of the problem: Liquid wastes such as chemical waste and detergent waste are not included

  19. Solidification of residual fission-product solutions; laboratory studies; Solidification de solutions residuaires concentrees de produits de fission: etudes de laboratoire

    Energy Technology Data Exchange (ETDEWEB)

    Boniaud, R; Cohen, P; Sombret, C [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    This paper describes the results obtained, at laboratory scale, during the study of the incorporation of fission products into glasses and synthetic micas. The rate of leaching of fission products from the glass and their volatility during firing were measured. A hot cell was built to complete these results. (author) [French] Ce rapport resume le resultat des etudes faites en laboratoire (activite de l'ordre du millicurie) sur l'incorporation des produits de fission dans des verres et micas synthetiques. On a mesure le taux de lixiviation des produits de fission et leur volatilisation au cours de la cuisson. Une cellule chaude a ete installee pour completer ces resultats au moyen d'essais realises avec une activite superieure. (auteur)

  20. Separation of caesium-137 from fission products using phosphotungstic acid

    International Nuclear Information System (INIS)

    Murthy, T.S.; Balasubramaniam, K.R.; Ananthakrishnan, M.; Varma, R.N.

    1977-01-01

    Separation of caesium 137 from fission products using phosphotungstic acid is reported. Phosphotungstate caesium is precipitated as caesium from fission product waste solution in acid medium and subsequently purified. Separation of phosphate and tungstate ions has been done using a typical hydrous oxide like alumina. The exchange capacity of alumina for phosphate and tungstate ions, and the purity of the product are determined. Results are discussed. Based on the findings a procedure is recommended for caesium 137 separation. (A.K.)

  1. Continuous fission-product monitor system at Oyster Creek. Final report

    International Nuclear Information System (INIS)

    Collins, L.L.; Chulick, E.T.

    1980-10-01

    A continuous on-line fission product monitor has been installed at the Oyster Creek Nuclear Generating Station, Forked River, New Jersey. The on-line monitor is a minicomputer-controlled high-resolution gamma-ray spectrometer system. An intrinsic Ge detector scans a collimated sample line of coolant from one of the plant's recirculation loops. The minicomputer is a Nuclear Data 6620 system. Data were accumulated for the period from April 1979 through January 1980, the end of cycle 8 for the Oyster Creek plant. Accumulated spectra, an average of three a day, were stored on magnetic disk and subsequently analyzed for fisson products, Because of difficulties in measuring absolute detector efficiency, quantitative fission product concentrations in the coolant could not be determined. Data for iodine fission products are reported as a function of time. The data indicate the existence of fuel defects in the Oyster Creek core during cycle 8

  2. Delayed neutron spectra and their uncertainties in fission product summation calculations

    Energy Technology Data Exchange (ETDEWEB)

    Miyazono, T.; Sagisaka, M.; Ohta, H.; Oyamatsu, K.; Tamaki, M. [Nagoya Univ. (Japan)

    1997-03-01

    Uncertainties in delayed neutron summation calculations are evaluated with ENDF/B-VI for 50 fissioning systems. As the first step, uncertainty calculations are performed for the aggregate delayed neutron activity with the same approximate method as proposed previously for the decay heat uncertainty analyses. Typical uncertainty values are about 6-14% for {sup 238}U(F) and about 13-23% for {sup 243}Am(F) at cooling times 0.1-100 (s). These values are typically 2-3 times larger than those in decay heat at the same cooling times. For aggregate delayed neutron spectra, the uncertainties would be larger than those for the delayed neutron activity because much more information about the nuclear structure is still necessary. (author)

  3. Heavy Flavour Production and Decay at ATLAS

    CERN Document Server

    Jones, RWL; The ATLAS collaboration

    2013-01-01

    ATLAS is taking advantage of its large integrated luminosity band sophisticated muon and dimuon triggers to make competitive measurements of heavy flavour production and decay. Inclusive production and heavy flavour jet production is discussed before turning to charm and onium production. The production and decay of individual B hadron species is then addressed, including the current best measurement of the Λb lifetime. A much improved analysis of CP related quantities in Bs decays is presented, before turning to recent results and prospects for rare B decays.

  4. Characteristic relation for the mass and energy distribution of the nuclear fission products

    International Nuclear Information System (INIS)

    Alexandru, G.

    1977-01-01

    The dispersion relation for nuclear fission is written in the two part fragmentation approach which allows to obtain the characteristic relation for the mass and energy distribution of the nuclear fission products. One explains the resonance approximation in the mass distribution of the fission products taking into account the high order resonances too. (author)

  5. Convective-diffusive transport of fission products in the gap of a failed fuel element

    International Nuclear Information System (INIS)

    Lian, Z.W.; Carlucci, L.N.; Arimescu, V.I.

    1995-03-01

    A model is presented to describe the transport behaviour of gaseous fission products along the axial fuel-to-sheathe gap of a failed fuel element to the coolant system. The model is applicable to an element having failed under normal operating conditions or loss-of coolant-accident conditions. Because of the large differences in operating parameters, the transport characteristics of gaseous fission products in a failed element under these two operating conditions are significantly different. However, in both cases the transport process can be described by convection-diffusion caused by the continuous release of fission products from the fuel to the gap. Under normal operating conditions, the bulk-flow velocity is found to be negligible, due to the low release rate of fission products from fuel. The process can be well approximated by the diffusion of fission products in a stagnant gas-steam mixture. The effect of convection on the fission product transport, however, becomes significant under loss-of-coolant-accident conditions, where the release rates of fission products from fuel can be several orders of magnitude higher that that under normal operating conditions. The convection of the mixture in the gap not only contributes an additional flux to the gas-mixture transport, but also increases the gradient of fission products concentration across the opening, and therefore increases the diffusion flux to the coolant. As a result of the bulk flow, the transport of fission products along the gap is accelerated and the hold-up of short-lived isotopes in the gap is significantly reduced. Steam ingress through the opening into the gap is obstructed by the bulk flow, resulting in low steam concentrations in the gap under loss-of-coolant-accident conditions. (author). 6 refs., 8 figs

  6. The chemistry of fission products for accident analysis

    International Nuclear Information System (INIS)

    Potter, P.E.

    1985-01-01

    Current knowledge concerning the chemical state of the fission product elements during the development of accidents in water reactor systems is reviewed in this paper. The fission products elements which have been considered are Cs, I, Te, Sr and Ba but aspects of the behaviour of Mo, Ru and the lanthanides are also discussed. Some features of the reactions of the various species of these elements with other components of the reactor systems are described. The importance of having an adequate knowledge of thermodynamic data and phase equilibria of relatively simple systems in order to interpret experimental observations on complex multi-component systems is stressed

  7. Preliminary results utilizing high-energy fission product γ-rays to detect fissionable material in cargo

    Science.gov (United States)

    Slaughter, D. R.; Accatino, M. R.; Bernstein, A.; Church, J. A.; Descalle, M. A.; Gosnell, T. B.; Hall, J. M.; Loshak, A.; Manatt, D. R.; Mauger, G. J.; Moore, T. L.; Norman, E. B.; Pohl, B. A.; Pruet, J. A.; Petersen, D. C.; Walling, R. S.; Weirup, D. L.; Prussin, S. G.; McDowell, M.

    2005-12-01

    A concept for detecting the presence of special nuclear material (235U or 239Pu) concealed in intermodal cargo containers is described. It is based on interrogation with a pulsed beam of 7 MeV neutrons that produce fission events and their β-delayed neutron emission or β-delayed high-energy γ radiation between beam pulses provide the detection signature. Fission product β-delayed γ-rays above 3 MeV are nearly 10 times more abundant than β-delayed neutrons and are distinct from natural radioactivity and from nearly all of the induced activity in a normal cargo. Detector backgrounds and potential interferences with the fission signature radiation have been identified and quantified.

  8. Application of a Bayesian/generalised least-squares method to generate correlations between independent neutron fission yield data

    International Nuclear Information System (INIS)

    Fiorito, L.; Diez, C.; Cabellos, O.; Stankovskiy, A.; Van den Eynde, G.; Labeau, P.E.

    2014-01-01

    Fission product yields are fundamental parameters for several nuclear engineering calculations and in particular for burn-up/activation problems. The impact of their uncertainties was widely studied in the past and evaluations were released, although still incomplete. Recently, the nuclear community expressed the need for full fission yield covariance matrices to produce inventory calculation results that take into account the complete uncertainty data. In this work, we studied and applied a Bayesian/generalised least-squares method for covariance generation, and compared the generated uncertainties to the original data stored in the JEFF-3.1.2 library. Then, we focused on the effect of fission yield covariance information on fission pulse decay heat results for thermal fission of 235 U. Calculations were carried out using different codes (ACAB and ALEPH-2) after introducing the new covariance values. Results were compared with those obtained with the uncertainty data currently provided by the library. The uncertainty quantification was performed with the Monte Carlo sampling technique. Indeed, correlations between fission yields strongly affect the statistics of decay heat. (authors)

  9. Preparative electrophoresis of industrial fission product solutions

    International Nuclear Information System (INIS)

    Tret, Joel

    1971-07-01

    The aim of this work is to contribute to the development of the continuous electrophoresis technique while studying its application in the preparative electrophoresis of industrial fission product solutions. The apparatus described is original. It was built for the purposes of the investigation and proved very reliable in operation. The experimental conditions necessary to maintain and supervise the apparatus in a state of equilibrium are examined in detail; their stability is an important factor, indispensable to the correct performance of an experiment. By subjecting an industrial solution of fission products to preparative electrophoresis it is possible, according to the experimental conditions, to prepare carrier-free radioelements of radiochemical purity (from 5 to 7 radioelements): 137 Cs, 90 Sr, 141+144 Ce, 91 Y, 95 Nb, 95 Zr, 103+106 Ru. (author) [fr

  10. Decay power evaluation for licensing analysis

    International Nuclear Information System (INIS)

    Tran, H.; Schrock, V.E.

    1987-01-01

    The ANSI/ANS 5.1-1979 Standard on Decay Power in shutdown reactors has been available as the basis for accident analysis for the past 7 yr. The US Nuclear Regulatory Commission has made a commitment to use this standard in new licensing approaches and has approved a licensing model for boiling water. More sweeping changes in the licensing rules are currently under review that will involve the use of best-estimate models and a statistical evaluation of the uncertainty (95% confidence level) in the key results. The structure of the decay power standard is well suited for such applications because it provides a statistically meaningful uncertainty in the decay power from fission products. The normalized decay power is a function specific to each point in the reactor volume due to the fact that the fuel composition develops a spatial dependence as burnup proceeds and decay power depends on the mix of fissioning nuclides. For reactor safety calculations it is desirable to employ a single temporal decay power function for the whole core inasmuch as many variations of accident parameters are required. This is the usual approach in large system thermal-hydraulics codes. Such a single representative or generic curve for a specified total operating power history can be acceptable but at the expense of some increase in the uncertainty. In this paper, the author present a method of evaluating the additional uncertainty in the decay power associated with use of a generic curve

  11. Decay rate in a multi-dimensional fission problem

    Energy Technology Data Exchange (ETDEWEB)

    Brink, D M; Canto, L F

    1986-06-01

    The multi-dimensional diffusion approach of Zhang Jing Shang and Weidenmueller (1983 Phys. Rev. C28, 2190) is used to study a simplified model for induced fission. In this model it is shown that the coupling of the fission coordinate to the intrinsic degrees of freedom is equivalent to an extra friction and a mass correction in the corresponding one-dimensional problem.

  12. Amount and activity of fission products which will be obtainable in France in the immediate future taking into account the development of atomic energy; Quantite et activite des produits de fission abtenus en France dans les annees a venir compte tenu du developpement de l'energie atomique

    Energy Technology Data Exchange (ETDEWEB)

    Guirlet, J; Lavie, J M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    By using the Wigner and Way formula, the activity of the complex mixture of fission products produced in a pile may be estimated theoretically in advance. This study was carried out on the basis of forecasts, in the case of France for the production of electricity of atomic origin up to the year 1975. The uranium was assumed to be in the pile during periods of three months and six months. It is also possible to find the activity of a particular fission product and to give its decay rate. The element chosen is strontium for a three months' activation period. Each set of curves gives at any moment the total activity accumulated, and the characteristic activity of the fission products corresponding to a given half-life. (author) [French] En utilisant la formule de Wigner et Way, il est possible de prevoir theoriquement l'activite du melange complexe de produits de fission provenant d'une pile. L'etude a ete faite en tenant compte de previsions, en ce qui concerne la France, de la production d'electricite d'origine atomique jusqu'en 1975. On a suppose des temps de sejour en pile de l'uranium de trois mois et de six mois. Il est possible egalement de trouver l'activite d'un produit de fission particulier, et de donner sa decroissance. Le corps choisi est le strontium pour un temps d'activation de trois mois. Chaque ensemble de courbes donne a tout instant l'activite totale accumulee, et l'activite propre des produits de fission correspondant a une periode donnee. (auteur)

  13. TMI-2 [Three Mile Island] fission product inventory program: FY-85 status report

    International Nuclear Information System (INIS)

    Langer, S.; Croney, S.T.; Akers, D.W.; Russell, M.L.

    1986-11-01

    This report presents the status of the TMI-2 fission product inventory program through May 1985. The fission product inventory program is an assessment of the location of fission products distributed in the plant as a result of the TMI-2 accident. Included in this report are principal results of samples from the reactor building where most of the mobile fission products (i.e., radiocesium and iodine) are expected to be found. The data are now complete enough for most reactor components; therefore, it is possible to direct the balance of the examination and sampling program to areas and components where it is likely to be most productive. Those areas are the reactor core and the reactor building basement, with emphasis on the currently unsampled portions of the core

  14. Background and derivation of ANS-5.4 standard fission product release model. Technical report

    International Nuclear Information System (INIS)

    1982-01-01

    ANS Working Group 5.4 was established in 1974 to examine fission product releases from UO2 fuel. The scope of ANS-5.4 was narrowly defined to include the following: (1) Review available experimental data on release of volatile fission products from UO2 and mixed-oxide fuel; (2) Survey existing analytical models currently being applied to lightwater reactors; and (3) Develop a standard analytical model for volatile fission product release to the fuel rod void space. Place emphasis on obtaining a model for radioactive fission product releases to be used in assessing radiological consequences of postulated accidents

  15. Fission product vapour - aerosol interactions in the containment: simulant fuel studies

    International Nuclear Information System (INIS)

    Beard, A.M.; Benson, C.G.; Bowsher, B.R.

    1988-12-01

    Experiments have been conducted in the Falcon facility to study the interaction of fission product vapours released from simulant fuel samples with control rod aerosols. The aerosols generated from both the control rod and fuel sample were chemically distinct and had different deposition characteristics. Extensive interaction was observed between the fission product vapours and the control rod aerosol. The two dominant mechanisms were condensation of the vapours onto the aerosol, and chemical reactions between the two components; sorption phenomena were believed to be only of secondary importance. The interaction of fission product vapours and reactor materials aerosols could have a major impact on the transport characteristics of the radioactive emission from a degrading core. (author)

  16. Immobilization of fission products arising from pyrometallurgical reprocessing in chloride media

    Science.gov (United States)

    Leturcq, G.; Grandjean, A.; Rigaud, D.; Perouty, P.; Charlot, M.

    2005-12-01

    Spent nuclear fuel reprocessing to recover energy-producing elements such as uranium or plutonium can be performed by a pyrochemical process. In such method, the actinides and fission products are extracted by electrodeposition in a molten chloride medium. These processes generate chlorinated alkali salt flows contaminated by fission products, mainly Cs, Ba, Sr and rare earth elements constituting high-level waste. Two possible alternatives are investigated for managing this wasteform; a protocol is described for dechlorinating the fission products to allow vitrification, and mineral phases capable of immobilizing chlorides are listed to allow specification of a dedicated ceramic matrix suitable for containment of these chlorinated waste streams. The results of tests to synthesize chlorosilicate phases are also discussed.

  17. Modification of the fission product inventory program FISPIN

    International Nuclear Information System (INIS)

    Thomas, R.B.

    1977-05-01

    The fission product inventory program FISPIN calculates inventories of fission products, actinides and activation products, during and after irradiation in a nuclear reactor, estimates also being given for heat output and radioactive activity of the isotopes. The program has been developed further by making provision for the simulation of fuel reprocessing and in providing subroutines to make the program compatible with nuclear data in a slightly modified ENDF/B4 format. Continuous development of FISPIN over the years has however involved many program alterations and additions, and this has resulted in a generally untidy and cumbersome program. An attempt has therefore been made to improve the basic structure of the program. The subject is dealt with under the following headings: modularisation, direct access data, override facility, selective output, flowcharts, summary. (U.K.)

  18. Behavior of fission products released from severely damaged fuel during the PBF severe fuel damage tests

    International Nuclear Information System (INIS)

    Osetek, D.J.; Cronenberg, A.W.; Hagrman, D.L.; Broughton, J.M.; Rest, J.

    1984-01-01

    The results of fission product release behavior during the first two Power Burst Facility Severe Fuel Damage tests are presented. Measured fission product release is compared with calculated release using temperature dependent release rate correlations and FASTGRASS analysis. The test results indicate that release from fuel of the high volatility fission products (Xe, Kr, I, Cs, and Te) is strongly influenced by parameters other than fuel temperature; namely fuel/fission product morphology, fuel and cladding oxidation state, extent of fuel liquefaction, and quench induced fuel shattering. Fission product transport from the test fuel through the sample system was strongly influenced by chemical effects. Holdup of I and Cs was affected by fission product chemistry, and transport time while Te release was primarily influenced by the extent of zircaloy oxidation. Analysis demonstrates that such integral test data can be used to confirm physical, chemical, and mechanistic models of fission product behavior for severe accident conditions

  19. Investigation of exotic fission modes

    International Nuclear Information System (INIS)

    Poenaru, D. N.; Gherghescu, R. A.; Greiner, W.; Nagame, Y.; Hamilton, J. H.; Ramayya, A. V.

    2002-01-01

    Fission approach to the cluster radioactivities and α-decay has been systematically developed during the last two decades. A more complex process, the ternary fission, was observed since 1946 both in neutron-induced and spontaneous fission. We obtained interesting results concerning the binary fission saddle-point reflection asymmetric nuclear shapes, and we can explain how a possible nuclear quasimolecular state is formed during the 10 Be accompanied cold fission of 252 Cf. The equilibrium nuclear shapes in fission theory are usually determined by minimizing the deformation energy for a given surface equation. We developed a method allowing to obtain a very general saddle-point shape as a solution of a differential equation without an a priori introduction of a shape parametrization. In the approach based on a liquid drop model (LDM), saddle-point shapes are always reflection symmetric: the deformation energy increases with the mass-asymmetry parameter η = (A 1 - A 2 )/(A 1 + A 2 ). By adding the shell corrections to the LDM deformation energy, we obtained minima at a finite mass asymmetry for parent nuclei 238 U, 232,228 Th in agreement with experiments. This correction was calculated phenomenologically. A technique based on the fragment identification by using triple γ coincidences in the large arrays of Ge-detectors, like GAMMASPHERE, was employed at Vanderbilt University to discover new characteristics of the fission process, and new decay modes. The possibility of a whole family of new decay modes, the multicluster accompanied fission, was envisaged. Besides the fission into two or three fragments, a heavy or superheavy nucleus spontaneously breaks into four, five or six nuclei of which two are asymmetric or symmetric heavy fragments and the others are light clusters, e.g. α-particles, 10 Be, 14 C, or combinations of them. Examples were presented for the two-, three- and four cluster accompanied cold fission of 252 Cf and 262 Rf, in which the emitted

  20. A method for rapid estimation of internal dose to members of the public from inhalation of mixed fission products (based on the ICRP 1994 human respiratory tract model for radiological protection)

    International Nuclear Information System (INIS)

    Hou Jieli

    1999-01-01

    Based on the computing principle given in ICRP-30, a method had been given by the author for fast estimating internal dose from an intake of mixed fission products after nuclear accident. Following the ICRP-66 Human respiratory tract model published in 1994, the method was reconstructed. The doses of 1 Bq intake of mixed fission products (its AMAD = 1 μm, decay rate coefficient n = 0.2∼2.0) during the period of 1∼15 d after an accident were calculated. It is lower slightly based on ICRP 1994 respiratory tract model than that based on ICRP-30 model

  1. Integral measurement of fission products capture in fast breeder reactors

    International Nuclear Information System (INIS)

    Martin Deidier, Loick.

    1979-12-01

    For the SUPERPHENIX reactor project, it was necessary to know fission products capture with about 10% accuracy in the fast breeder reactor spectra. In this purpose, integral measurements have been carried out on the main separated products by different experimental technics (oscillation, activation and irradiation methods), but particularly on irradiated fuel pins from RAPSODIE and PHENIX reactors in order to directly obtain total effect of fission products. Same tendencies have been observed for both enriched uranium fuel and LMFBR characteristic plutonium fuel. All experimental results have been introduced in CARNAVAL cross section set [fr

  2. Study of hypernuclei fission

    International Nuclear Information System (INIS)

    Malek, F.

    1990-01-01

    This work is about PS177 experience made on LEAR machine at CERN in 1988. The annihilation reaction of anti protons on a target of Bismuth or Uranium is studied. Lambda particles are produced by this reaction, in the nucleus in 2% of cases 7.1 10 -3 hypernuclei by stopped antiproton in the target are produced. The prompt hypernucleus fission probability of uranium is 75% and that of Bismuth 10%. The mass distribution of fission fragments is symmetrical ((≡ the excitation energy of the nucleus is very high). If the nucleus hasn't fissioned, the non-mesonic lambda decay, gives it an energy of 100 MeV, what allows to fission later. This fission is delayed because the hypernucleus lifetime is 1.3 +0.25 -0.21 10 -10 sec for Bismuth [fr

  3. Method and apparatus for induced nuclear beta decay

    International Nuclear Information System (INIS)

    Reiss, H.

    1986-01-01

    This invention relates to a method and apparatus for inducing beta decay transition that are normally inhibited by angular momentum or parity considerations. According to one aspect of this invention a method of inducing nuclear beta decay transition comprises providing a medium which includes atomic nuclei that have forbidden beta decay transition in which the initial and final nuclear states do not have the same intrinsic parity or have total angular momenta which differ by more than one quantum unit of angular momentum, and applying to the medium an electromagnetic field which has an intensity sufficient to provide the angular momentum or intrinsic parity necessary to overcome the forbiddenness of the beta decay transition of the atomic nuclei, thereby to induce the beta decay transitions. According to another aspect of this invention an apparatus for inducing beta decay transition comprises a medium which includes atomic nuclei that have forbidden beta decay transitions in which the initial and final nuclear states do not have the same intrinsic parity or have total angular momenta which differ by more than one quantum unit of angular momentum, field producing means for producing an electromagnetic field in the medium and means for energising the field producing means to establish the field at an intensity sufficient to provide the angular momentum or intrinsic parity necessary to overcome the forbiddenness of the beta decay transitions of the atomic nuclei. The energy released in these induced nuclear transition is useful for the controlled production of power. The induced beta dacay transitions are also useful to reduce the halflives of long-lived fission product wastes from conventional nuclear fission power plants

  4. Nuclear decay data: some applications and needs

    International Nuclear Information System (INIS)

    Reich, C.W.

    1985-01-01

    Nuclear decay data have broad relevance to a number of basic scientific disciplines as well as to many areas of technology. In this paper we discuss selected applications where decay data are making, or promise to make, important contributions. The following specific illustrations are discussed: the large body of precise new actinide-nuclide decay data produced through the work of the recently concluded IAEA Coordinated Research Program on the Measurement and Evaluation of Transactinium Isotope Nuclear Decay Data; the use of actinide-nuclide half-lives as reference standards in nuclear-data measurements; and the relevance of short-lived fission-product decay data to basic physics and reactor technology and some of the problems and challenges that they present to both theory and experiment

  5. Fission product release from TRIGA-LEU reactor fuels

    International Nuclear Information System (INIS)

    Baldwin, N.L.; Foushee, F.C.; Greenwood, J.S.

    1980-01-01

    Due to present international concerns over nuclear proliferation, TRIGA reactor fuels will utilize only low-enriched uranium (LEU) (enrichment <20%). This requires increased total uranium loading per unit volume of fuel in order to maintain the appropriate fissile loading. Tests were conducted to determine the fractional release of gaseous and metallic fission products from typical uranium-zirconium hydride TRIGA fuels containing up to 45 wt-% uranium. These tests, performed in late 1977 and early 1978, were similar to those conducted earlier on TRIGA fuels with 8.5 wt-% U. Fission gas release measurements were made on prototypic specimens from room temperature to 1100 deg. C in the TRIGA King Furnace Facility. The fuel specimens were irradiated in the TRIGA reactor at a low power level. The fractional releases of the gaseous nuclides of krypton and xenon were measured under steady-state operating conditions. Clean helium was used to sweep the fission gases released during irradiation from the furnace into a standard gas collection trap for gamma counting. The results of these tests on TRIGA-LEU fuel agree well with data from the similar, earlier tests on TRIGA fuel. The correlation used to calculate the release of fission products from 8.5 wt-% U TRIGA fuel applies equally well for U contents up to 45 wt-%. (author)

  6. Recoil release of fission products from nuclear fuel

    International Nuclear Information System (INIS)

    Wise, C.

    1985-01-01

    An analytical approximation is developed for calculating recoil release from nuclear fuel into gas filled interspaces. This expression is evaluated for a number of interspace geometries and shown to be generally accurate to within about 10% by comparison with numerical calculations. The results are applied to situations of physical interest and it is demonstrated that recoil can be important when modelling fission product release from low temperature CAGR pin failures. Furthermore, recoil can contribute significantly in experiments on low temperature fission product release, particularly where oxidation enhancement of this release is measured by exposing the fuel to CO 2 . The calculations presented here are one way of allowing for this, other methods are suggested. (orig.)

  7. Fission product release from SLOWPOKE-2 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Harnden-Gillis, A M.C. [Queen` s Univ., Kingston, ON (Canada). Dept. of Physics

    1994-12-31

    Increasing radiation fields at several SLOWPOKE-2 reactors fuelled with highly enriched uranium aluminum alloy fuel have begun to interfere with the daily operation of these reactors. To investigate this phenomenon, samples of reactor container water and gas from the headspace were obtained at four SLOWPOKE-2 reactor facilities and examined by gamma ray spectroscopy methods. These radiation fields are due to the circulation of fission products within the reactor container vessel. The most likely source of the fission product release is an area of uranium-bearing material exposed to the coolant at the end weld line which originated at the time of fuel fabrication. The results of this study are compared with observations from an underwater visual examination of one core and the metallographic examination of archived fuel elements. 19 refs., 4 tabs., 8 figs.

  8. Report on the Behavior of Fission Products in the Co-decontamination Process

    International Nuclear Information System (INIS)

    Martin, Leigh Robert; Riddle, Catherine Lynn

    2015-01-01

    This document was prepared to meet FCT level 3 milestone M3FT-15IN0302042, 'Generate Zr, Ru, Mo and Tc data for the Co-decontamination Process.' This work was carried out under the auspices of the Lab-Scale Testing of Reference Processes FCT work package. This document reports preliminary work in identifying the behavior of important fission products in a Co-decontamination flowsheet. Current results show that Tc, in the presence of Zr alone, does not behave as the Argonne Model for Universal Solvent Extraction (AMUSE) code would predict. The Tc distribution is reproducibly lower than predicted, with Zr distributions remaining close to the AMUSE code prediction. In addition, it appears there may be an intricate relationship between multiple fission product metals, in different combinations, that will have a direct impact on U, Tc and other important fission products such as Zr, Mo, and Rh. More extensive testing is required to adequately predict flowsheet behavior for these variances within the fission products.

  9. The ASIND-MEPhI library of independent actinide fission product yields

    International Nuclear Information System (INIS)

    Bogomolova, E.S.; Grashin, A.F.; Efimenko, A.D.; Lukasevich, I.B.

    1997-01-01

    This data base of independent fission product yields has been set up at the Moscow Engineering Physics Institute on the basis of theoretical calculations within the framework of the super-nonequilibrium thermodynamic model. The database consists of independent yield sets for 1163 fission products in the wide range of fissile nuclides from thorium-229 to fermium-257 with excitation energies up to 20 MeV. The use of the theoretical model made it possible to raise the accuracy of prediction for poorly explored fission reactions. The number of yield sets is larger than in the ENDF/B. For example, photofission product yields are included in the ASIND-MEPhI database as virtual sets. (author). 14 refs, 17 figs, 2 tabs

  10. Behaviour of fission products in PWR primary coolant and defected fuel rods evaluation

    International Nuclear Information System (INIS)

    Bourgeois, P.; Stora, J.P.

    1979-01-01

    The activity surveillance of the PWR primary coolant by γ spectometry gives some informations on fuel failures. The activity of different nuclides e.g. Xenons, Kryptons, Iodines, can be correlated with the number of the defected fuel rods. Therefore the precharacterization with eventually a prelocalization of the related fuel assemblies direct the sipping-test and allows a saving of time during refueling. A model is proposed to calculate the number of the defected rods from the activity measurements of the primary coolant. A semi-empirical model of the release of the fission products has been built from the activity measurements of the primary coolant in a 900 MWe PWR. This model allows to calculate the number of the defected rods and also a typical parameter of the mean damage. Fission product release is described by three stages: release from uranium dioxide, transport across the gas gap and behaviour in the primary coolant. The model of release from the oxide considers a diffusion process in the grains with trapping. The release then occurs either directly to free surfaces or with a delay due to a transit into closed porosity of the oxide. The amount released is the same for iodine and rare gas. With the gas gap transit is associated a transport time and a probability of trapping for the iodines. In the primary coolant the purification and the radioactive decay are considered. (orig.)

  11. Production and validation of ORIGEN-S libraries from JEF2.2 and EAF3 data

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E. [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.; Kloosterman, J.L. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands)

    1995-12-01

    The data libraries for light elements, actinides and fission products of the ORIGEN-S code for depletion and transmutation calculations in the SCALE4.1 computer code system have been updated with respect to cross-section data, radioactive-decay data and fission-product yield data using JEF2.2 as the basic data source and EAF3 as an additional source. This required the fission-product library to be extended with 201 new fission-product nuclides or isomeric states. The effect of the update of different quantities involved is evaluated with a burnup benchmark. When ORIGEN-S is used as a stand-alone code, i.e without regular update of cross sections of the major nuclides due to changes in the neutron spectrum during burnup, the results show appreciable differences in actinide and fission-product densities due to the cross-section update. The effects of decay data and fission-product yield updates are generally small, but with noticeable exceptions. The update of fission and capture reaction energies gives a small but systematic change in actinide and fission-product concentration. (orig.).

  12. Fission of Polyanionic Metal Clusters

    Science.gov (United States)

    König, S.; Jankowski, A.; Marx, G.; Schweikhard, L.; Wolfram, M.

    2018-04-01

    Size-selected dianionic lead clusters Pbn2 -, n =34 - 56 , are stored in a Penning trap and studied with respect to their decay products upon photoexcitation. Contrary to the decay of other dianionic metal clusters, these lead clusters show a variety of decay channels. The mass spectra of the fragments are compared to the corresponding spectra of the monoanionic precursors. This comparison leads to the conclusion that, in the cluster size region below about n =48 , the fission reaction Pbn2 -→Pbn-10 -+Pb10- is the major decay process. Its disappearance at larger cluster sizes may be an indication of a nonmetal to metal transition. Recently, the pair of Pb10- and Pbn-10 - were observed as pronounced fragments in electron-attachment studies [S. König et al., Int. J. Mass Spectrom. 421, 129 (2017), 10.1016/j.ijms.2017.06.009]. The present findings suggest that this combination is the fingerprint of the decay of doubly charged lead clusters. With this assumption, the dianion clusters have been traced down to Pb212 -, whereas the smallest size for the direct observation was as high as n =28 .

  13. Half-lives for proton emission, alpha decay, cluster radioactivity, and cold fission processes calculated in a unified theoretical framework

    International Nuclear Information System (INIS)

    Duarte, S.B.; Tavares, O.A.P.; Guzman, F.; Dimarco, A.; Garcia, F.; Goncalves, M.

    2002-01-01

    Half-life values of spontaneous nuclear decay processes are presented in the framework of the Effective Liquid Drop Model (ELDM) using the combination of varying mass asymmetry shape description for the mass transfer with Werner-Wheeler's inertia coefficient V MAS /WW. The calculated half-lives of ground-state to ground-state transitions for the proton emission, alpha decay, cluster radioactivity, and cold fission processes are compared with experimental data. Results have shown that the ELDM is a very efficient model to describe these different decay processes in a same, unified theoretical framework. A Table listing the predicted half-life values, τ c is presented for all possible cases of spontaneous nuclear break-up such that -7.30 10 τ c [S] 10 (τ/τ c ) > -17.0, where τ is the total half-life of the parent nucleus. (author)

  14. Highlights from the IAEA coordinated research programme on fuel performance and fission product data

    International Nuclear Information System (INIS)

    Nabielek, H.; Schenk, W.; Verfondern, K.

    1996-01-01

    Seven countries are cooperating with the objectives (i) to document the status of the experimental data base and of the predictive methods for Gas-Cooled Reactor fuel performance and fission product behaviour; (ii) to verify and validate methods in fuel performance and fission product retention prediction. These countries are China, France, Germany, Japan, Russia, USA and the UK. Duration of the programme is 1993-96. The technology areas addressed in this IAEA Coordinated Research Programme are: Fuel design and manufacture, Normal operation fuel performance and fission product behaviour, Accident condition fuel performance and fission product behaviour, -core heatup, -fast transients, -oxidising conditions (water and air ingress), Plateout, re-entrainment of plateout, fission product behaviour in the reactor building, and Performance of advanced fuels. Work performed so far has generated a 300-page draft document with important information for normal operations (Germany, Japan, China, Russia) and accident conditions (USA, Japan, Germany, Russia) and, additionally, a special chapter on advanced fuels (Japan). (author)

  15. Fission product behaviour in the primary circuit of an HTR

    International Nuclear Information System (INIS)

    Decken, C.B. von der; Iniotakis, N.

    1981-01-01

    The knowledge of fission product behaviour in the primary circuit of a High Temperature Reactor (HTR) is an essential requirement for the estimations of the availability of the reactor plant in normal operation, of the hazards to personnel during inspection and repair and of the potential danger to the environment from severe accidents. On the basis of the theoretical and experimental results obtained at the ''Institute for Reactor Components'' of the KFA Juelich /1/,/2/ the transport- and deposition behaviour of the fission- and activation products in the primary circuit of the PNP-500 reference plant has been investigated thoroughly. Special work had been done to quantify the uncertainties of the investigations and to calculate or estimate the dose rate level at different components of the primary cooling circuit. The contamination and the dose rate level in the inspection gap in the reactor pressure vessel is discussed in detail. For these investigations in particular the surface structure and the composition of the material, the chemical state of the fission products in the cooling gas, the composition of the cooling gas and the influence of dust on the transport- and deposition behaviour of the fission products have been taken into account. The investigations have been limited to the nuclides Ag-110m; Cs-134 and Cs-137

  16. Vaporization of low-volatile fission products under severe CANDU reactor accident conditions

    International Nuclear Information System (INIS)

    Lewis, B.J.; Corse, B.J.; Thompson, W.T.; Kaye, M.H.; Iglesias, F.C.; Elder, P.; Dickson, R.; Liu, Z.

    1997-01-01

    An analytical model has been developed to describe the release behaviour of low-volatile fission products from uranium dioxide fuel under severe reactor accident conditions. The effect of the oxygen potential on the chemical form and volatility of fission products is determined by Gibbs-energy minimization. The release kinetics are calculated according to the rate-controlling step of diffusional transport in the fuel matrix or fission product vaporization from the fuel surface. The effect of fuel volatilization (i.e., matrix stripping) on the release behaviour is also considered. The model has been compared to data from an out-of-pile annealing experiment performed in steam at the Chalk River Laboratories. (author)

  17. Cross sections of the lumped fission products for the AMZ library

    International Nuclear Information System (INIS)

    Ono, S.; Corcueca, R.P.; Nascimento, J.A.

    1985-01-01

    The preparation of the lumped fission product cross section for the AMZ library is described. For this purpose 100 nuclides were selected. The cross sections for each nuclide were generated by the NJOY code with evaluated nuclear data from ENDF/B-V, complemented with ENDF/B-IV data. A comparison is performed between the data obtained and the lumped fission product cross section of JFS-II [pt

  18. Proceedings of the specialists' meeting on physics and engineering of fission and spallation, 1989

    International Nuclear Information System (INIS)

    Nakagome, Yoshihiro

    1990-07-01

    The third meeting was held on August 1, and the fourth meeting was held on December 12, 1989. The reports of the international conferences on 50 years research on nuclear fission in Germany and USA, and the reports on the nuclear data of fission-produced nuclei for evaluating reactor decay heat, the atomic mass formula considering proton-neutron interaction and unstable nuclei, research on short life fission fragments by on-line isotope separation process, the reactor physics on waste annihilation disposal and fuel breeding with an accelerator, the double differential cross section of back neutrons in nuclear spallation reaction, measurement of fission cross section and fission neutron spectra with fast neutrons, U-235 fission spectra by unfolding activation foil data and production mechanisms of intermediate mass fragments from hot nuclei-emission of complex and fission fragments for 84 Kr+ 27 Al at 10.6 MeV/u were made. (K.I.)

  19. Release of fission products from contaminated sodium fires

    International Nuclear Information System (INIS)

    Jordan, S.

    1976-01-01

    Leaks in the primary coolant system of a LMFBR and also serious incidents with tank rupture may entail the escape of fission products into the containment of the reactor. For incident analysis it is important to know the retention capability of sodium for the different fission products. The release of cesium and strontium from pools contaminated with 100 to 1000 ppM was investigated by experiments. The cesium content of airborne aerosols depends on oxygen concentration: at 21 percent oxygen concentration the Cs content of sodium-oxide aerosols is 3 times and at 0.5 percent 15 times as high as the initial Cs concentration in the pool. Strontium content of aerosols over burning contaminated sodium pools is 10 3 times smaller than the strontium pool concentration

  20. Tracking of fission products release during refueling operations

    International Nuclear Information System (INIS)

    Agarwal, Sharad; Prajapat, M.K.; Vyas, Shyam; Hussain, S.A.

    2001-01-01

    It has been always observed that the release of fission products increase during refueling operations. At RAPP-3 and 4 an attempt has been made to follow-up the change in fission products activity release at each stage of refueling operation and quantification of concentrations of various radionuclides. This exercise was also extended to refueling operation of the channels containing suspected failed fuel. A level of FPNG ( 133 Xe) was observed to increase by a factor of about 10-40 during refueling of failed channel as compared to healthy channel. It can be concluded that by monitoring FPNG levels in exhaust status of the healthiness of spent fuel can be found out. This report discusses in detail the experiment conducted for this purpose. (author)

  1. HAMCIND, Cell Burnup with Fission Products Poisoning

    International Nuclear Information System (INIS)

    Abe, Alfredo Y.; Dos Santos, Adimir

    2002-01-01

    1 - Description of program or function: HAMCIND is a cell burnup code based in a coupling between HAMMER-TECHNION and CINDER. The fission product poisoning is taken into account in an explicit fashion. 2 - Method of solution: The nonlinear coupled set of equations for the neutron transport and nuclide transmutation equations and nuclide transmutation equations in a unit cell is solved by HAMCIND in a quasi-static approach. The spectral transport equation is solved by HAMMER-TECHNION at the beginning of each time-step while the nuclide transmutation equations are solved by CINDER for every time-step. The HAMMER-TECHNION spectral calculations are performed taking into account the fission product contribution to the macroscopic cross sections (fast and thermal), in the inelastic scattering matrix and even in the thermal scattering matrices. 3 - Restrictions on the complexity of the problem: Restrictions and/or limitations for HAMCIND depend upon the local operating system

  2. Simulating fission product transients via the history-based local-parameter methodology

    International Nuclear Information System (INIS)

    Jenkins, D.A.; Rouben, B.; Salvatore, M.

    1993-01-01

    This paper describes the fission-product-calculation capacity of the history-based local-parameter methodology for evaluating lattice properties for use in core-tracking calculations in CANDU reactors. In addition to taking into account the individual past history of each bundles flux/power level, fuel temperature, and coolant density and temperature that the bundle has seen during its stay in the core, the latest refinement of the history-based method provides the capability of fission-product-drivers. It allows the bundle-specific concentrations of the three basic groups of saturating fission products to be calculated in steady state or following a power transient, including long shutdowns. The new capability is illustrated by simulating the startup period following a typical long-shutdown, starting from a snapshot in the Point Lepreau operating history. 9 refs., 7 tabs

  3. The release of fission products from uranium metal: a review

    International Nuclear Information System (INIS)

    Minshall, P.C.

    1989-03-01

    The literature on the release of fission products as gaseous species from irradiated uranium metal in oxidising atmospheres has been reviewed. Release of actinides and of fission products as spalled particulate were not considered. Data is given on the release in air, carbon dioxide, steam and mixtures of steam and air. The majority of data discussed lie between 800 and 1200 0 C though some results for xenon, krypton and iodine releases below 800 0 C are given. Two measures of fission product release are discussed: the release fraction, F(tot), which is the ratio of the total release to the initial inventory, and the fractional release, F(ox), which is the fraction released from the oxidised metal. The effect of burn-up, atmosphere and temperature on F(tot) and F(ox) is examined and the conditions under which the release fraction, F(tot) is proportional to the extent of oxidation discussed. (author)

  4. Mass-yield distributions of fission products from 20, 32, and 45 MeV proton-induced fission of 232Th

    Science.gov (United States)

    Naik, H.; Goswami, A.; Kim, G. N.; Kim, K.; Suryanarayana, S. V.

    2013-10-01

    The yields of various fission products in the 19.6, 32.2, and 44.8 MeV proton-induced fission of 232Th have been determined by recoil catcher and an off-line γ-ray spectrometric technique using the BARC-TIFR Pelletron in India and MC-50 cyclotron in Korea. The mass-yield distributions were obtained from the fission product yield using the charge distribution corrections. The peak-to-valley (P/V) ratio of the present work and that of literature data for 232Th(p,f) and 238U(p,f) were obtained from the mass yield distribution. The present and the existing literature data for 232Th(p,f), 232Th(n,f), and 232Th( γ,f) at various energies were compared with those for 238U(p,f), 238U(n,f), and 238U( γ,f) to examine the probable nuclear structure effect. The role of Th-anomaly on the peak-to-valley ratio in proton-, neutron-, and photon-induced fission of 232Th was discussed with the similar data in 238U. On the other hand, the fine structure in the mass yield distributions of the fissioning systems at various excitation energies has been explained from the point of standard I and II asymmetric mode of fission besides the probable role of even-odd effect, A/ Z ratio, and fissility parameter.

  5. Separation and utilization of fission products considering economic aspects

    International Nuclear Information System (INIS)

    Beer, M.; Gorski, B.; Hennrich, M.; Pfrepper, G.; Richter, M.

    1982-01-01

    The quantity of usable fission products which will be obtained by nuclear fission till the year 2000 is estimated on the basis of prognostics for the development of nuclear energy in the world considering especially the development in the U.S.S.R. and the CMEA. The possibilities of utilization of cesium as gamma-ray source are discussed, and the present fields of application of palladium and the development of its price on the world market are shown. The fields of application of technetium, which wasn't available as artificial element in a greater quantity till now, have to be developed. The economic estimations base on data of a project for the separation of fission products in connection with a reprocessing plant, which was developed in the U.S.A. in 1978. The data show, that it is possible to produce the platinum metals and cesium with profit, the same can be expected for technetium. (author)

  6. Measurements of isomeric yield ratios of fission products from proton-induced fission on natU and 232Th via direct ion counting

    Directory of Open Access Journals (Sweden)

    Rakopoulos Vasileios

    2017-01-01

    Full Text Available Independent isomeric yield ratios (IYR of 81Ge, 96Y, 97Y, 97Nb, 128Sn and 130Sn have been determined in the 25 MeV proton-induced fission of natU and 232Th. The measurements were performed at the Ion Guide Isotope Separator On-Line (IGISOL facility at the University of Jyväskylä. A direct ion counting measurement of the isomeric fission yield ratios was accomplished for the first time, registering the fission products in less than a second after their production. In addition, the IYRs of natU were measured by means of γ-spectroscopy in order to verify the consistency of the recently upgraded experimental setup. From the obtained results, indications of a dependence of the production rate on the fissioning system can be noticed. These data were compared with data available in the literature, whenever possible. Using the TALYS code and the experimentally obtained IYRs, we also deduced the average angular momentum of the fission fragments after scission.

  7. Energy production using fission fragment rockets

    International Nuclear Information System (INIS)

    Chapline, G.; Matsuda, Y.

    1991-08-01

    Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: Approximately twice as efficient if one can directly convert the fission fragment energy into electricity; by reducing the buildup of a fission fragment inventory in the reactor one could avoid a Chernobyl type disaster; and collecting the fission fragments outside the reactor could simplify the waste disposal problem. 6 refs., 4 figs., 2 tabs

  8. Fission track astrology of three Apollo 14 gas-rich breccias

    Science.gov (United States)

    Graf, H.; Shirck, J.; Sun, S.; Walker, R.

    1973-01-01

    The three Apollo 14 breccias 14301, 14313, and 14318 all show fission xenon due to the decay of Pu-244. To investigate possible in situ production of the fission gas, an analysis was made of the U-distribution in these three breccias. The major amount of the U lies in glass clasts and in matrix material and no more than 25% occurs in distinct high-U minerals. The U-distribution of each breccia is discussed in detail. Whitlockite grains in breccias 14301 and 14318 found with the U-mapping were etched and analyzed for fission tracks. The excess track densities are much smaller than indicated by the Xe-excess. Because of a preirradiation history documented by very high track densities in feldspar grains, however, it is impossible to attribute the excess tracks to the decay of Pu-244. A modified track method has been developed for measuring average U-concentrations in samples containing a heterogeneous distribution of U in the form of small high-U minerals. The method is briefly discussed, and results for the rocks 14301, 14313, 14318, 68815, 15595, and the soil 64421 are given.

  9. Decommissioning of the Fission Product Development Laboratory at Holifield National Laboratory

    International Nuclear Information System (INIS)

    Schaich, R.W.

    1975-01-01

    The decontamination of the Fission Product Development Laboratory was initiated in FY 1975 after 17 years of processing fission product waste streams to produce commercial quantities of 90 Sr, 137 Cs, 144 Ce, and 147 Pm. The objective of the decommissioning program is the removal of all radiation and contamination areas in the facility to a level which will be compatible with the environment in the foreseeable future

  10. Role of fission product in whole core accidents: research in the USA

    International Nuclear Information System (INIS)

    Jackson, J.F.; Deitrich, L.W.

    1977-01-01

    The techniques being developed in the United States for analyzing postulated whole-core accidents in LMFBRs are briefly reviewed. The key mechanistic analysis methods are discussed in detail. Important research projects in the area of fission product effects are examined. Some typical results on the role of fission products in whole-core accidents are presented

  11. Release and transport of fission product cesium in the TMI-2 accident

    International Nuclear Information System (INIS)

    Lorenz, R.A.; Collins, J.L.

    1986-01-01

    Approximately 50% of the fission product cesium was released from the overheated UO 2 fuel in the TMI-2 accident. Steam that boiled away from a water pool in the bottom of the reactor vessel transported the released fission products throughout the reactor coolant system (RCS). Some fission products passed directly through a leaking valve with steam and water into the containment structure, but most deposited on dry surfaces inside of the RCS before being dissolved or resuspended when the RCS was refilled with water. A cesium transport model was developed that extended measured cesium in the RCS back to the first day of the accident. The model revealed that ∼62% of the released 137 Cs deposited on dry surfaces inside of the RCS before being slowly leached and transported out of the RCS in leaked or letdown water. The leach rates from the model agreed reasonably well with those measured in the laboratory. The chemical behavior of cesium in the TMI-2 accident agreed with that observed in fission product release tests at Oak Ridge National Laboratory (ORNL)

  12. Status report on actinide and fission product transmutation studies

    International Nuclear Information System (INIS)

    1997-06-01

    The management of radioactive waste is one of the key issues in today's political and public discussions on nuclear energy. One of the fields that looks into the future possibilities of nuclear technology is the neutronic transmutation of actinides and of some most important fission products. Studies on transmutation of actinides are carried out in various countries and at an international level. This status report which gives an up-to-date general overview of current and planned research on transmutation of actinides and fission products in non-OECD countries, has been prepared by a Technical Committee meeting organized by the IAEA in September 1995. 168 refs, 16 figs, 34 tabs

  13. Irradiation effects and behaviour of fission products in zirconia and spinel

    International Nuclear Information System (INIS)

    Gentils, A.

    2003-10-01

    Crystalline oxides, such as zirconia (ZrO 2 ) and spinel (MgAl 2 O 4 ), are promising inert matrices for the transmutation of plutonium and minor actinides. This work deals with the study of the physico-chemical properties of these matrices, more specifically their behaviour under irradiation and their capacity to retain fission products. Irradiations at low energy and incorporation of stable analogs of fission products (Cs, I, Xe) into yttria-stabilized zirconia and magnesium-aluminate spinel single crystals were performed by using the ion implanter IRMA (CSNSM-Orsay). Irradiations at high energy were made on several heavy ion accelerators (GANIL-Caen, ISL-Berlin, HIL-Warsaw). The damage induced by irradiation and the release of fission products were monitored by in situ Rutherford Backscattering Spectrometry experiments. Transmission electron microscopy was also used in order to determine the nature of the damage induced by irradiation. The results show that irradiation of ZrO 2 and MgAl 2 O 4 with heavy ions (about hundred keV and about hundred MeV) induces a huge structural damage in crystalline matrices. Total disorder (amorphization) is however never reached in zirconia, contrary to what is observed in the case of spinel. The results also emphasize the essential role played by the concentration of implanted species on their retention capacity. A dramatic release of fission products was observed when the concentration exceeds a threshold of a few atomic percent. Irradiation of implanted samples with medium-energy noble-gas ions leads to an enhancement of the fission product release. The exfoliation of spinel crystals implanted at high concentration of Cs ions is observed after a thermal treatment at high temperature. (author)

  14. Research on in-pile release of fission products from coated particle fuels

    International Nuclear Information System (INIS)

    Fukuda, K.; Iwamoto, K.

    1985-01-01

    Coated particle fuels fabricated in accordance with VHTR (Very High Temperature gas-cooled Reactor) fuel design have been irradiated by both capsules and an in-pile gas loop (OGL-1), and data on the fission products release under irradiation were obtained for loose coated particles, fuel compacts and fuel rods in the temperature range between 800 deg. C and 1600 deg. C. For the fission gases, temperature- and time dependences of the fractional release(R/B) were measured. Relation between release and failure fraction of the coated particles was elucidated on the VHTR reference fuels. Also measured was tritium concentration in the helium coolant of OGL-1. In-pile release behavior of the metallic fission products was studied by measuring the activities of the fission products adsorbed in the graphite sleeves of the OGL-1 fuel rods and the graphite fuel container of the sweep gas capsules in the PIE. Investigation on palladium interaction with SiC coating layer was included. (author)

  15. Cold valleys in fusion and fission

    International Nuclear Information System (INIS)

    Misicu, S.

    2003-01-01

    The cold fission configuration after the preformation of the fragments resembles a short-lived dinuclear or quasi-molecular system. The most conceivable scission configuration is given by two fission fragments in touching with the symmetry axes aligned (pole-pole orientation). This conclusion was based on the simple argument that this configuration offers the optimal tunneling time, i.e. the difference between the Coulomb barrier and the decay energy Q is minimal. Other orientations are apparently precluded in cold spontaneous fission and should be regarded as quasi-fission doorways in the synthesis of superheavy elements by cold fusion. (orig.)

  16. Analytic solutions to linear, time-dependent fission product deposition models for isothermal laminar, slug, or multiregion flow conditions

    International Nuclear Information System (INIS)

    Durkee, J.W. Jr.

    1983-01-01

    The time-dependent convective-diffusion equation with radioactive decay is solved analytically in axisymmetric cylindrical geometry for laminar and slug velocity profiles under isothermal conditions. Concentration dependent diffusion is neglected. The laminar flow solution is derived using the method of separation of variables and Frobenius' technique for constructing a series expansion about a regular singular point. The slug flow multiregion solution is obtained using the method of separation of variables. The Davidon Variable Metric Minimization algorithm is used to compute the coupling coefficients. These solutions, which describe the transport of fission products in a flowing stream, are then used to determine the concentration of radioactive material deposited on a conduit wall using a standard mass transfer model. Fission product deposition measurements for five diffusion tubes in a Fort St. Vrain High-Temperature Gas-Cooled reactor plateout probe are analyzed. Using single region slug and laminar models, the wall mass transfer coefficients, diffusion coefficients, and inlet concentrations are determined using least squares analysis. The diffusion coefficients and inlet concentrations are consistent between tubes. The derived diffusion coefficients and wall mass transfer coefficients are in relative agreement with known literature values

  17. Transmutation analysis considering and explicit fission product treatment based on a coupled Hammer-Technion and Cinder-2 system

    International Nuclear Information System (INIS)

    Abe, A.Y.

    1989-01-01

    This work presents a study about neutron absorption in a typical PWR cell by considering an explicit treatment for the fission products. The proposed methodology to treat fission product neutron absorption in a lattice calculation combines the HAMMER-TECHNION and CINDER-2 codes. The fission product chain treatment considers nearly 99% of all original CINDER-2 neutron absorption chain treatment. Parallel to the explicit treatment, a cross section library in the HAMMER-TECHNION code multigroup structure for the fission products was generated using the ENDF/B-V fission product library and processed by NJOY and AMPX-II processing codes. The methodology validation was investigated against two available benchmarks and it was obtained excellent results for the K-Infinity (IAEA-TECDOC-233) as function of burnup and enrichment and for the aggregate quantity sup(σ)2200 in units of barns/fission cross sections (OKAZAKI and SOKOLOWSKI). This work contributed for a better understanding of the fission product neutron absorption in a typical PWR cell and showed that the explicit fission product treatment can be successfully achieved. Besides that the performance of the ENDF/B-V fission product library was accessed. (author)

  18. JEFF 3.1.2 - Joint evaluated nuclear data library for fission and fusion applications - February 2012 (DVD)

    International Nuclear Information System (INIS)

    2012-02-01

    The Joint Evaluated Fission and Fusion File (JEFF) project is a collaboration between NEA Data Bank member countries. The JEFF library combines the efforts of the JEFF and EFF/EAF Working Groups to produce a common sets of evaluated nuclear data, mainly for fission and fusion applications. The JEFF-3.1.2 version, released in February 2012, contains a number of different data types, including neutron and proton interaction data, radioactive decay data, fission yields, and thermal scattering law data. Currently, JEFF-3.1.2 data are available in ENDF-6 format (neutron library) from the Web. This new release is an update from JEFF-3.1.1 which concerns 115 material files from the general purpose incident neutron library which have been modified since JEFF-3.1.1. Modifications include: Hf isotopes: 6 new Hf evaluations have replaced previous ones; Gamma production data from neutron capture (MF=6 MT=102) has been added to 89 fission products (FP) evaluations; 47 of these FP have been replaced by ENDF-B/VII.0 evaluations, with gamma data added in this release. Corrections from JEFF-Beta feedback have been incorporated for 15 materials. Corrections that solve NJOY covariance processing problems and JANIS warnings have been made to 6 files. This DVD contains: - General purpose incident neutron data in ENDF-6 and ACE formats; - Activation data; - Thermal scattering data; - Incident proton data; - Radioactive decay data; - Neutron-induced fission yields data; - Spontaneous fission yields data

  19. Design considerations of fission and corrosion product in primary system of MONJU

    International Nuclear Information System (INIS)

    Yanagisawa, T.; Akagane, K.; Yamamoto, K.; Kawashima, K.

    1976-01-01

    General influence of fission and corrosion products in primary system on MONJU plant design is reviewed. Various research and development works are now in progress to decrease the generation rate, to remove the products more effectively and to develop the methods of evaluation the behaviour of radioactive products. The inventory and distribution of fission and corrosion products in the primary circuit of MONJU are given. The radiation levels on the primary components are estimated to be several roentgens per hour. (author)

  20. Adsorption of fission products on mediterranean mud; Adsorption des produits de fission sur des vases de mediterranee

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, P; Gailledreau, C [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    Partition coefficients of some fission products have been measured in sea water on mud taken from the bottom of the Mediterranean sea. A discussion follows on the behaviour of these radioisotopes. (author) [French] On a mesure les coefficients de partage dans l'eau de mer de quelques produits de fission a longue periode sur des echantillons de vase preleves en Mediterranee. Les valeurs trouvees sont elevees. Le comportement de ces isotopes radioactifs est discutee. (auteur)

  1. Fission product yield data for the transmutation of minor actinide nuclear waste

    International Nuclear Information System (INIS)

    2008-04-01

    A report issued by an international study group for the transmutation of nuclear waste using accelerator driven systems has highlighted the need for specific sets of nuclear data. These authoritative requirements include fission product yields at an intermediate incident neutron energy of up to 150 MeV. Before the start of the present CRP on fission product yield data for the transmutation of nuclear waste, only four types of evaluated fission yield data sets existed, namely for spontaneous fission, and for fission induced by thermal, fast (or fission) spectrum, and by 'high energy' (14-15 MeV) neutrons. A new type of evaluation for energy dependent neutron induced fission yields was required for this project. In view of the scarcity of experimental data, such an evaluation has to be based on systematics and theoretical model calculations. Unlike fission cross-sections, where nuclear models are being used successfully for the calculation of unmeasured cross-section ranges, such models or theories existed only for low energy fission yields. Hence the CRP participants entered a completely new field of research for which the progress and outcome were unpredictable. Clearly the ultimate goal of such an effort, namely an evaluation of energy dependent fission yields, could not be realized within the perceived lifetime of a CRP. The main emphasis of the CRP was on the development of adequate systematics and models for the calculation of energy dependent fission yields up to 150 MeV incident neutron energy. Several problems had to be solved, such as the correct choice of model parameters and multiplicity distributions of emitted neutrons, and the effect of multi-chance fission. Models and systematics have been tested for lower energy yields, but they failed to reproduce recent experimental data, particularly at higher energies, and the parameters had to be modified. Other models have been developed from the analysis of experimental data in order to derive systematic

  2. Description of two-proton radioactivity by the methods of the quantum theory of ternary fission

    International Nuclear Information System (INIS)

    Kadmenskij, S.G.

    2005-01-01

    Two-proton decay of spherical nuclei has been investigated on the base of the formalism of quantum mechanical theory of ternary fission. The suggested method of construction of partial two-proton-decay-width amplitudes and of asymptotics of the decaying nucleus wave functions allows to solve a problem of two-proton radioactivity description without the traditionally used in R-matrix approaches laborious sewing procedure for internal and external parent nucleus wave functions in three-body scheme. In the frame of diagonal approximation, the wave-function structure for Cooper pair of two emitted protons in parent nucleus was analyzed as well as the behavior of the wave function describing potential scattering of two-proton-decay products with taking into account decay channel coupling and properties of interaction potentials between these products [ru

  3. Fission product concentration evolution in sodium pool following a fuel subassembly failure in an LMFBR

    International Nuclear Information System (INIS)

    Natesan, K.; Velusamy, K.; Selvaraj, P.; Kasinathan, N.; Chellapandi, P.; Chetal, S.; Bhoje, S.

    2003-01-01

    During a fuel element failure in a liquid metal cooled fast breeder reactor, the fission products originating from the failed pins mix into the sodium pool. Delayed Neutron Detectors (DND) are provided in the sodium pool to detect such failures by way of detection of delayed neutrons emitted by the fission products. The transient evolution of fission product concentration is governed by the sodium flow distribution in the pool. Transient hydraulic analysis has been carried out using the CFD code PHOENICS to estimate fission product concentration evolution in hot pool. k- ε turbulence model and zero laminar diffusivity for the fission product concentration have been considered in the analysis. Times at which the failures of various fuel subassemblies (SA) are detected by the DND are obtained. It has been found that in order to effectively detect the failure of every fuel SA, a minimum of 8 DND in hot pool are essential

  4. HAC and fission reactors

    International Nuclear Information System (INIS)

    Fujiwara, I.; Moriyama, H.; Tachikawa, E.

    1984-01-01

    In the fission process, newly formed fission products undergo hot atom reactions due to their energetic recoil and abnormal positive charge. The hot atom reactions of the fission products are usually accompanied by secondary effects such as radiation damage, especially in condensed phase. For reactor safety it is valuable to know the chemical behaviour and the release behaviour of these radioactive fission products. Here, the authors study the chemical behaviour and the release behaviour of the fission products from the viewpoint of hot atom chemistry (HAC). They analyze the experimental results concerning fission product behaviour with the help of the theories in HAC and other neighboring fields such as radiation chemistry. (Auth.)

  5. Separation of fission products by the use of recoil; Separation des produits de fission par utilisation du recul

    Energy Technology Data Exchange (ETDEWEB)

    Henry, R; Beydon, J; Bardy, A [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    We have studied fission recoil in U{sub 3}O{sub 8} organic solvent mixtures. The organic phase chosen was first naphtalene then terphenyl. Graphite and activated carbon were also tried out as recoil media. We first verified that the fission fragments are ejected from the uranium oxide particles under our experimental conditions. The retention phenomenon observed is due to an adsorption occurring either during irradiation or during the chemical treatment. Using naphthalene or terphenyl, the individual separation of the fission products has made it possible to show the influence of the chemical nature of the recoil medium on the retention of each fission product. We put forward a hypothesis concerning this phenomenon: experiments carried out using 'scavengers', together with kinetic studies make it possible to explain the retention phenomenon and to choose the most favorable conditions for reducing this retention to a low value. The thermal recombination kinetics demonstrate the influence of the fission ion charge on the final value of the retention for a given temperature. The origins of this thermal recombination are discussed. (author) [French] On a etudie le recul de fission dans les melanges U{sub 3}0{sub 8}, phase organique. La phase organique choisie a ete le naphtalene puis le terphenyle. Le graphite et le charbon actif ont egalement ete essayes comme milieux de recul. On a d'abord determine que les fragments de fission sortent des particules d'oxyde d'uranium avec un rendement de 100 pour cent dans nos conditions experimentales. Le phenomene de retention observe est du a une adsorption ayant lieu pendant l'irradiation ou pendant le traitement chimique. Dans le naphtalene et le terphenyle, la separation individuelle des produits de fission a permis de mettre en evidence l'influence de la nature chimique du milieu de recul sur la retention de chaque produit de fission. On avance une hypothese sur ce phenomene: des experiences effectuees avec des 'scavengers

  6. Radiation research contracts: Distribution of fission products in the biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfeld, T [Vienna University, First Chemical Institute, Vienna (Austria)

    1959-04-15

    Protection against ionizing radiation given off in nuclear transformations is one of the foremost safety problems in all atomic energy operations. While every effort is being made to prevent reactors, processing plants and all other installations from releasing radioactive materials into the biosphere - air, water and earth - under any foreseeable conditions, small amounts of it are actually released into man's living space. Undoubtedly, this will continue to be so, at least for the time being. For example, low activity liquid wastes from some chemical processing plants are decontaminated in special processes, but traces of fission products remain in the liquids finally discharged on the ground or to nearby waterways. In some installations low and medium activity liquid wastes are even released on the ground or into swamps without prior decontamination. It is also to be expected that in accidents larger amounts of fission products may occasionally be released. To make the routine release of small amounts of fission products safe and to be able to estimate the possible effect of larger releases in accidents, a considerable amount of information is required

  7. Radiation research contracts: Distribution of fission products in the biosphere

    International Nuclear Information System (INIS)

    Schoenfeld, T.

    1959-01-01

    Protection against ionizing radiation given off in nuclear transformations is one of the foremost safety problems in all atomic energy operations. While every effort is being made to prevent reactors, processing plants and all other installations from releasing radioactive materials into the biosphere - air, water and earth - under any foreseeable conditions, small amounts of it are actually released into man's living space. Undoubtedly, this will continue to be so, at least for the time being. For example, low activity liquid wastes from some chemical processing plants are decontaminated in special processes, but traces of fission products remain in the liquids finally discharged on the ground or to nearby waterways. In some installations low and medium activity liquid wastes are even released on the ground or into swamps without prior decontamination. It is also to be expected that in accidents larger amounts of fission products may occasionally be released. To make the routine release of small amounts of fission products safe and to be able to estimate the possible effect of larger releases in accidents, a considerable amount of information is required

  8. Double beta decay of Uranium-238: Proton reactions of 238U in 5--12 MeV range. Final report, April 15, 1987--March 31, 1992

    International Nuclear Information System (INIS)

    Turkevich, A.; Economou, T.E.

    1993-01-01

    This report is in two parts. The first part reports on the experimental work determining the half-life for double beta decay of 238 U to 238 PU to be (2.0 ± 0.6) x 10 21 years. This is the first evidence for a third mode of decay of this heaviest naturally occurring nucleus. This rate is about 10 6 times slower than spontaneous fission, which itself is about 10 6 times slower than alpha decay. The implication of this double beta decay to neutrino masses depends on uncertain theoretical calculations of the rate for such a heavy nucleus. The second part reports on yields of principal fission products from 5.6, 7.3, 9.4, and 11.5 MeV proton interactions with 238 U. The yields at 11.5 MeV are similar to those from 14 MeV neutron fission of 238 U. At the same time, the production cross sections of 238 Np at the same energies are determined. This nuclide is produced as often as fission at the lowest energy but only 3.8% as often at the highest energy

  9. ENDF/B-6 fission-product yield sublibraries

    International Nuclear Information System (INIS)

    Lemmel, H.D.

    1994-01-01

    The contents and the documentation of the ENDF/B-6 fission-product yield sublibraries which were released in 1991 and updated in 1993, are summarized. Copies of the data libraries are available on magnetic tape of PC diskettes from the IAEA Nuclear Data Section, costfree upon request. (author). 1 tab

  10. Evaluation of fission product worth margins in PWR spent nuclear fuel burnup credit calculations

    International Nuclear Information System (INIS)

    Blomquist, R.N.; Finck, P.J.; Jammes, C.; Stenberg, C.G.

    1999-01-01

    Current criticality safety calculations for the transportation of irradiated LWR fuel make the very conservative assumption that the fuel is fresh. This results in a very substantial overprediction of the actual k eff of the transportation casks; in certain cases, this decreases the amount of spent fuel which can be loaded in a cask, and increases the cost of transporting the spent fuel to the repository. Accounting for the change of reactivity due to fuel depletion is usually referred to as ''burnup credit.'' The US DOE is currently funding a program aimed at establishing an actinide only burnup credit methodology (in this case, the calculated reactivity takes into account the buildup or depletion of a limited number of actinides). This work is undergoing NRC review. While this methodology is being validated on a significant experimental basis, it implicitly relies on additional margins: in particular, the absorption of neutrons by certain actinides and by all fission products is not taken into account. This provides an important additional margin and helps guarantee that the methodology is conservative provided these neglected absorption are known with reasonable accuracy. This report establishes the accuracy of fission product absorption rate calculations: (1) the analysis of European fission product worth experiments demonstrates that fission product cross-sections available in the US provide very good predictions of fission product worth; (2) this is confirmed by a direct comparison of European and US cross section evaluations; (3) accuracy of Spent Nuclear Fuel (SNF) fission product content predictions is established in a recent ORNL report where several SNF isotopic assays are analyzed; and (4) these data are then combined to establish in a conservative manner the fraction of the predicted total fission product absorption which can be guaranteed based on available experimental data

  11. Comparison of actinides and fission products recycling scheme with the normal plutonium recycling scheme in fast reactors

    Directory of Open Access Journals (Sweden)

    Salahuddin Asif

    2013-01-01

    Full Text Available Multiple recycling of actinides and non-volatile fission products in fast reactors through the dry re-fabrication/reprocessing atomics international reduction oxidation process has been studied as a possible way to reduce the long-term potential hazard of nuclear waste compared to that resulting from reprocessing in a wet PUREX process. Calculations have been made to compare the actinides and fission products recycling scheme with the normal plutonium recycling scheme in a fast reactor. For this purpose, the Karlsruhe version of isotope generation and depletion code, KORIGEN, has been modified accordingly. An entirely novel fission product yields library for fast reactors has been created which has replaced the old KORIGEN fission products library. For the purposes of this study, the standard 26 groups data set, KFKINR, developed at Forschungszentrum Karlsruhe, Germany, has been extended by the addition of the cross-sections of 13 important actinides and 68 most important fission products. It has been confirmed that these 68 fission products constitute about 95% of the total fission products yield and about 99.5% of the total absorption due to fission products in fast reactors. The amount of fissile material required to guarantee the criticality of the reactor during recycling schemes has also been investigated. Cumulative high active waste per ton of initial heavy metal is also calculated. Results show that the recycling of actinides and fission products in fast reactors through the atomics international reduction oxidation process results in a reduction of the potential hazard of radioactive waste.

  12. Experiments to determine the rate of beta energy release following fission of Pu239 andU235 in a fast reactor

    International Nuclear Information System (INIS)

    Murphy, M.F.; Taylor, W.H.; Sweet, D.W.; March, M.R.

    1979-02-01

    Measurements have been made of the rate of beta energy release from Pu239 and U235 fission fragments over a period of 107 seconds following a 105 second irradiation in the zero-power fast reactor Zebra. Results are compared with predictions using the UKFPDD-1 decay data file and two different sets of fission product yield data. (author)

  13. Half-lives for proton emission, alpha decay, cluster radioactivity, and cold fission processes calculated in a unified theoretical framework

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, S.B.; Tavares, O.A.P.; Guzman, F.; Dimarco, A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Garcia, F. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Universidade Estadual de Santa Cruz, Ilheus, BA (Brazil). Dept. de Ciencias Exatas e Tecnologicas; Rodriguez, O. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Instituto Superior de Ciencias e Tecnologia Nucleares, La Habana (Cuba); Goncalves, M. [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil)

    2002-01-01

    Half-life values of spontaneous nuclear decay processes are presented in the framework of the Effective Liquid Drop Model (ELDM) using the combination of varying mass asymmetry shape description for the mass transfer with Werner-Wheeler's inertia coefficient V{sub MAS}/WW. The calculated half-lives of ground-state to ground-state transitions for the proton emission, alpha decay, cluster radioactivity, and cold fission processes are compared with experimental data. Results have shown that the ELDM is a very efficient model to describe these different decay processes in a same, unified theoretical framework. A Table listing the predicted half-life values, {tau}{sub c} is presented for all possible cases of spontaneous nuclear break-up such that -7.30 <{approx_equal} log{sub 10} {tau}{sub c} [S] <{approx_equal} 27.50 and log {sub 10}({tau}/{tau}{sub c}) > -17.0, where {tau} is the total half-life of the parent nucleus. (author)

  14. Delayed fission of the 238U muonic atom

    International Nuclear Information System (INIS)

    Ganzorig, Dz.; Krogulski, T.; Kuznetsov, V.D.; Polikanov, S.M.; Sabirov, B.M.

    1975-01-01

    The time distributions of fission and muon free decay events with respect to the moment of the muon-stop event have been measured for double and triple coincidences between these three events. The triple-coincidence time distributions give an indication of the o-curence of two new effects: the delayed fission of muonic 238 U atom and conversion of muons from the fission fragments

  15. Gamma Radiation from Fission Fragments

    International Nuclear Information System (INIS)

    Higbie, Jack

    1969-10-01

    The gamma radiation from the fragments of the thermal neutron fission of 235 U has been investigated, and the preliminary data are presented here with suggestions for further lines of research and some possible interpretations of the data. The data have direct bearing on the fission process and the mode of fragment de-excitation. The parameters measured are the radiation decay curve for the time interval (1 - 7) x 10 -10 sec after fission, the photon yield, the total gamma ray energy yield, and the average photon energy. The last three quantities are measured as a function of the fragment mass

  16. Gamma Radiation from Fission Fragments

    Energy Technology Data Exchange (ETDEWEB)

    Higbie, Jack

    1969-10-15

    The gamma radiation from the fragments of the thermal neutron fission of {sup 235}U has been investigated, and the preliminary data are presented here with suggestions for further lines of research and some possible interpretations of the data. The data have direct bearing on the fission process and the mode of fragment de-excitation. The parameters measured are the radiation decay curve for the time interval (1 - 7) x 10{sup -10} sec after fission, the photon yield, the total gamma ray energy yield, and the average photon energy. The last three quantities are measured as a function of the fragment mass.

  17. Quantitative analysis of fission products by γ spectrography

    International Nuclear Information System (INIS)

    Malet, G.

    1962-01-01

    The activity of the fission products present in treated solutions of irradiated fuels is given as a function of the time of cooling and of the irradiation time. The variation of the ratio ( 144 Ce + 144 Pr activity)/ 137 Cs activity) as a function of these same parameters is also given. From these results a method is deduced giving the 'age' of the solution analyzed. By γ-scintillation spectrography it was possible to estimate the following elements individually: 141 Ce, 144 Ce + 144 Pr, 103 Ru, 106 Ru + 106 Rh, 137 Cs, 95 Zr + 95 Nb. Yield curves are given for the case of a single emitter. Of the various existing methods, that of the least squares was used for the quantitative analysis of the afore-mentioned fission products. The accuracy attained varies from 3 to 10%. (author) [fr

  18. Direct and preequilibrium effects in the fission-product mass range

    International Nuclear Information System (INIS)

    Gruppelaar, H.; Hogenbirk, A.

    1992-07-01

    Until recently inelastic scattering did not gain the proper attention in fission-product cross section evaluations. In many existing evaluations global spherical optical models have been used, neglecting direct and pre-equilibrium effects. There are also few experimental data relevant to inelastic scattering in fission products. This paper is focussed on the anomalously high inelastic scattering cross sections observed in even-mass nuclei near mass A=100 at low energies. Both more data and more refined theoretical analyses are required. A number of suggestions for relevant coupled-channel calculations is made. (author). 29 refs., 5 figs., 1 tab

  19. Transmutation of fission products in reactors and accelerator-driven systems

    International Nuclear Information System (INIS)

    Janssen, A.J.

    1994-01-01

    Energy flows and mass flows in several scenarios are considered. Economical and safety aspects of the transmutation scenarios are compared. It is difficult to find a sound motivation for the transmutation of fission products with accelerator-driven systems. If there would be any hesitation in transmuting fission products in nuclear reactors, there would be an even stronger hesitation to use accelerator-driven systems, mainly because of their lower energy efficiency and their poor cost effectiveness. The use of accelerator-driven systems could become a 'meaningful' option only if nuclear energy would be banished completely. (orig./HP)

  20. Compilations and evaluations of nuclear structure and decay data

    International Nuclear Information System (INIS)

    Lorenz, A.

    1977-03-01

    This is the second issue of a report series on published and to-be-published compilations and evaluations of nuclear structure and decay (NSD) data. This compilation of compilations and evaluations is designed to keep the nuclear scientific community informed of the availability of compiled or evaluated NSD data, and contains references to laboratory reports, journal articles and books containing selected compilations and evaluations. It excludes references to ''mass-chain'' evaluations normally published in the ''Nuclear Data Sheets'' and ''Nuclear Physics''. The material contained in this compilation is sorted according to eight subject categories: general compilations; basic isotopic properties; nuclear structure properties; nuclear decay processes; half-lives, energies and spectra; nuclear decay processes: gamma-rays; nuclear decay processes: fission products; nuclear decay processes: (others); atomic processes

  1. Fission rates measured using high-energy gamma-rays from short half-life fission products in fresh and spent nuclear fuel

    International Nuclear Information System (INIS)

    Kroehnert, H.

    2011-02-01

    In recent years, higher discharge burn-ups and initial fuel enrichments have led to more and more heterogeneous core configurations in light water reactors (LWRs), especially at the beginning of cycle when fresh fuel assemblies are loaded next to highly burnt ones. As this trend is expected to continue in the future, the Paul Scherrer Institute has, in collaboration with the Swiss Association of Nuclear Utilities, swissnuclear, launched the experimental programme LIFE(at)PROTEUS. The LIFE(at)PROTEUS programme aims to better characterise interfaces between burnt and fresh UO 2 fuel assemblies in modern LWRs. Thereby, a novel experimental database is to be made available for enabling the validation of neutronics calculations of strongly heterogeneous LWR core configurations. During the programme, mixed fresh and highly burnt UO 2 fuel lattices will be investigated in the zero-power research reactor PROTEUS. One of the main types of investigations will be to irradiate the fuel in PROTEUS and measure the resulting fission rate distributions across the interface between fresh and burnt fuel zones. The measurement of fission rates in burnt fuel re-irradiated in a zero-power reactor requires, however, the development of new experimental techniques which are able to discriminate against the high intrinsic activity of the fuel. The principal goal of the present research work has been to develop such a new measurement technique. The selected approach is based on the detection of high-energy gamma-ray lines above the intrinsic background (i.e. above 2200 keV), which are emitted by short-lived fission products freshly created in the fuel. The fission products 88 Kr, 142 La, 138 Cs, 84 Br, 89 Rb, 95 Y, 90m Rb and 90 Rb, with half-lives between 2.6 min and 2.8 h, have been identified as potential candidates. During the present research work, the gamma-ray activity of short-lived fission products has, for the first time, been measured and quantitatively evaluated for re

  2. Theoretical analysis of knock-out release of fission products from nuclear fuels

    International Nuclear Information System (INIS)

    Yamagishi, S.

    1975-01-01

    The knock-out release of fission products is studied theoretically. The general equations of knock-out release are derived, assuming that a fission fragment passing through the surface of nuclear fuels knocks out a local region of the surface with an effective thickness and an effective cross-sectional area. Using these equations, the knock-out release of fission gases is calculated for various cases. The conditions under which the knock-out coefficients (the average number of uranium atoms knocked out by one fission fragment) is obtainable are clarified by experiments on the knock-out release of fission gases. A method of determining the effective thickness and the effective cross-sectional area of a knock-out region is proposed. (Auth.)

  3. Mitigation of radon and thoron decay products by filtration

    International Nuclear Information System (INIS)

    Wang Jin; Meisenberg, Oliver; Chen Yongheng; Karg, Erwin; Tschiersch, Jochen

    2011-01-01

    Inhalation of indoor radon ( 222 Rn) and thoron ( 220 Rn) decay products is the most important source of exposure to ionizing radiation for the human respiratory tract. Decreasing ventilation rates due to energy saving reasons in new buildings suggest additional active mitigation techniques to reduce the exposure in homes with high radon and thoron concentrations but poor ventilation. Filtration techniques with HEPA filters and simple surgical mask material have been tested for their potential to reduce the indoor exposure in terms of the total effective dose for mixed radon and thoron indoor atmospheres. The tests were performed inside an experimental room providing stable conditions. Filtration (at filtration rates of 0.2 h -1 and larger) removes attached radon and thoron decay products effectively but indoor aerosol as well. Therefore the concentration of unattached decay products (which have a higher dose coefficient) may increase. The decrease of the attached decay product concentrations could be theoretically described by a slowly decreasing exponential process. For attached radon decay products, it exhibited a faster but weaker removal process compared to attached thoron decay products (- 70% for attached radon decay products and - 80% for attached thoron decay products at a filtration rate of 0.5 h -1 with an HEPA filter). The concentration of unattached thoron decay products increased distinctly during the filtration process (+ 300%) while that of unattached radon decay products rose only slightly though at a much higher level (+ 17%). In the theoretical description these observed differences could be attributed to the different half-lives of the nuclides. Considering both effects, reduced attached and increased unattached decay product concentrations, filtration could significantly decrease the total effective dose from thoron whereas the overall effect on radon dose is small. A permanent filtration is recommended because of the slow decrease of the

  4. Mass resolved angular distribution of fission products in 20Ne + 232Th reaction

    International Nuclear Information System (INIS)

    Tripathi, R.; Sodaye, S.; Sudarshan, K.; Kumar, Amit; Guin, R.

    2011-01-01

    Mass resolved angular distribution of fission products was measured in 20 Ne + 232 Th reaction at beam energy of 120 MeV. A preliminary analysis of the angular distribution data of fission products shows higher average anisotropy compared to that calculated using statistical theory. A signature of rise in anisotropy near symmetry, as reported in earlier studies in literature, is also seen. Further study is in progress to get more detailed information about the contribution from non-compound nucleus fission and dependence of angular anisotropy on asymmetry of mass division

  5. Progress in Establishment of Fission Mo Production Technology in Korea

    International Nuclear Information System (INIS)

    Lee, Jun Sig

    2013-01-01

    Research activities have been made in both the development of the fission Mo production process and the designing of the production facility that will be established at Kijang, Korea including a new research reactor in 2017. Progress in the process development for target preparation, target dissolution, Mo extraction, and purification has been made. It is also a great concern to minimize the radioactive wastes or at least to generate the wastes in readily treatable forms in the project. After series of cold experiments, the target dissolution and solution formulation for a column operation are optimized. Progress in the design of the production facility has been made. Two trains of hot cells including the waste storages have been proposed for the alternative operation of the facility. A radioisotope production facility is designed to locate next to the fission Mo production building to provide a simpler and easier handling pathway of the products

  6. Methods to Collect, Compile, and Analyze Observed Short-lived Fission Product Gamma Data

    Energy Technology Data Exchange (ETDEWEB)

    Finn, Erin C.; Metz, Lori A.; Payne, Rosara F.; Friese, Judah I.; Greenwood, Lawrence R.; Kephart, Jeremy D.; Pierson, Bruce D.; Ellis, Tere A.

    2011-09-29

    A unique set of fission product gamma spectra was collected at short times (4 minutes to 1 week) on various fissionable materials. Gamma spectra were collected from the neutron-induced fission of uranium, neptunium, and plutonium isotopes at thermal, epithermal, fission spectrum, and 14-MeV neutron energies. This report describes the experimental methods used to produce and collect the gamma data, defines the experimental parameters for each method, and demonstrates the consistency of the measurements.

  7. Fission product release as a function of chemistry and fuel morphology

    International Nuclear Information System (INIS)

    Hobbins, R.R.; Osetek, D.J.; Petti, D.A.; Hagrman, D.L.

    1989-01-01

    Analysis of the consequences of severe reactor accidents requires knowledge of the location and chemical form of fission products throughout the accident sequence. Two factors that strongly influence the location and chemical form of fission products are the chemistry within the core and the morphology of the fuel or fuel-bearing debris. This paper reviews the current understanding of the these factors garnered from integral and separate effect experiments and the TMI-2 accident, and provides perspective on the significance of contributing phenomena for the analysis of severe accidents, particularly during the in-vessel phase. Information has been obtained recently on phenomena affecting the release of fission products from fuel and the reactor vessel during the in-vessel melt progression phase of a severe accident. The influence of a number of these phenomena will be reviewed, including fuel chemistry, H 2 /H 2 O ratio, fuel liquefaction, molten pools, and debris beds. 13 refs., 1 fig., 1 tab

  8. Fission product release from nuclear fuel I. Physical modelling in the ASTEC code

    International Nuclear Information System (INIS)

    Brillant, G.; Marchetto, C.; Plumecocq, W.

    2013-01-01

    Highlights: • Physical modeling of FP and SM release in ASTEC is presented. • The release is described as solid state diffusion within fuel for high volatile FP. • The release is described as FP vaporisation for semi volatile FP. • The release is described as fuel vaporisation for low volatile FP. • ASTEC validation is presented in the second paper. - Abstract: This article is the first of a series of two articles dedicated to the mechanisms of fission product release from a degraded core as they are modelled in the ASTEC code. The ASTEC code aims at simulating severe accidents in nuclear reactors from the initiating event up to the radiological consequences on the environment. This code is used for several applications such as nuclear plant safety evaluation including probabilistic studies and emergency preparedness. To cope with the requirements of robustness and low calculation time, the code is based on a semi-empirical approach and only the main limiting phenomena that govern the release from intact rods and from debris beds are considered. For solid fuel, fission products are classified into three groups, depending on their degree of volatility. The kinetics of volatile fission products release depend on the rate-limiting process of solid-state diffusion through fuel grains. For semi-volatile fission products, the release from the open fuel porosities is assumed to be governed by vaporisation and mass transfer processes. The key phenomenon for the release of low volatile fission products is supposed to be fuel volatilisation. A similar approach is used for the release of fission products from a rubble bed. An in-depth validation of the code including both analytical and integral experiments is the subject of the second article

  9. Amount, disposal and relative toxicity of long-lived fission products and actinides in the radioactive wastes of the nuclear fuel cycles

    International Nuclear Information System (INIS)

    Haug, H.O.

    1975-11-01

    A review is presented on the magnitude of the long-term problems of radioactive wastes from the nuclear power industry of the FRG (and Western Europe). The production of long-lived fission products and actinides has been calculated for several fuel types of the uranium-plutonium and thorium-uranium fuel cycles and related to a prediction of the development and share of LWR, FBR and HTGR. The quantities and concentrations of actinides, the radioactivity and relative toxicity index of the wastes of reprocessing (and fuel refabrication) and their changes by radioactive decay are presented. The radiotoxicity of the nuclide inventory of the solidified high-level wastes have been compared with naturally occuring uranium ores. On the long term (>10 3 years) the radiotoxicity level of the total area of the final repository in deep geological formation does not result in a significantly higher radiotoxicity level than an uranium ore deposit of low uranium content. Also discussed have been the chemical separation of the actinides from high-level wastes and recycling in fission reactors. (orig.) [de

  10. The effect of stimulated fission products on the structure and the mechanical properties of zircaloy

    International Nuclear Information System (INIS)

    Holub, F.

    1982-01-01

    The objective of investigation was to study the long-term effects of individual simulated fission products on the mechanical properties and the structure of Zircaloy. Tensile Test specimens of Zircaloy were annealed with important simulated fission products at 350 0 C up to 10,000 hours and at higher temperatures (500, 700 0 C) up to 2,000 hours. The principal methods of investigation on annealed Zircaloy specimens were tension tests at room temperature and at 400 0 C, scanning electron microscopy and microprobe technique, X-ray diffraction, X-ray fluorescence, optical metallography. The action of fission products at normal temperatures of reactor operation will give rise to a small enhancement of strength and a small drop of ductility of the fuel cladding material only. At high fuel pin temperatures which may be realized under abnormal operation conditions, some of the fission products potentially will produce detrimental consequences on the integrity of fuel pins. The most effective fission products will be: lanthanum oxide, followed by the earth alkaline oxides and the other rare earth oxides, molybdenum, iodine and cadmium

  11. Exploratory study of fission product yield determination from photofission of 239Pu at 11 MeV with monoenergetic photons

    Science.gov (United States)

    Bhike, Megha; Tornow, W.; Krishichayan, Tonchev, A. P.

    2017-02-01

    Measurements of fission product yields play an important role for the understanding of fundamental aspects of the fission process. Recently, neutron-induced fission product-yield data of 239Pu at energies below 4 MeV revealed an unexpected energy dependence of certain fission fragments. In order to investigate whether this observation is prerogative to neutron-induced fission, a program has been initiated to measure fission product yields in photoinduced fission. Here we report on the first ever photofission product yield measurement with monoenergetic photons produced by Compton back-scattering of FEL photons. The experiment was performed at the High-Intensity Gamma-ray Source at Triangle Universities Nuclear Laboratory on 239Pu at Eγ=11 MeV. In this exploratory study the yield of eight fission products ranging from 91Sr to 143Ce has been obtained.

  12. Mass-yield distributions of fission products from 20, 32, and 45 MeV proton-induced fission of {sup 232}Th

    Energy Technology Data Exchange (ETDEWEB)

    Naik, H.; Goswami, A. [Bhabha Atomic Research Centre, Radiochemistry Division, Mumbai (India); Kim, G.N.; Kim, K. [Kyungpook National University, Department of Physics, Daegu (Korea, Republic of); Suryanarayana, S.V. [Bhabha Atomic Research Centre, Nuclear Physics Division, Mumbai (India)

    2013-10-15

    The yields of various fission products in the 19.6, 32.2, and 44.8 MeV proton-induced fission of {sup 232}Th have been determined by recoil catcher and an off-line {gamma}-ray spectrometric technique using the BARC-TIFR Pelletron in India and MC-50 cyclotron in Korea. The mass-yield distributions were obtained from the fission product yield using the charge distribution corrections. The peak-to-valley (P/V) ratio of the present work and that of literature data for {sup 232}Th(p,f) and {sup 238}U(p,f) were obtained from the mass yield distribution. The present and the existing literature data for {sup 232}Th(p,f), {sup 232}Th(n,f), and {sup 232}Th({gamma},f) at various energies were compared with those for {sup 238}U(p,f), {sup 238}U(n,f), and {sup 238}U({gamma},f) to examine the probable nuclear structure effect. The role of Th-anomaly on the peak-to-valley ratio in proton-, neutron-, and photon-induced fission of {sup 232}Th was discussed with the similar data in {sup 238}U. On the other hand, the fine structure in the mass yield distributions of the fissioning systems at various excitation energies has been explained from the point of standard I and II asymmetric mode of fission besides the probable role of even-odd effect, A/Z ratio, and fissility parameter. (orig.)

  13. Fission product release measured during fuel damage tests at the Power Burst Facility

    International Nuclear Information System (INIS)

    Osetek, D.J.; Hartwell, J.K.; Vinjamuri, K.; Cronenberg, A.W.

    1985-01-01

    Results are presented of fission product release behavior observed during four severe fuel damage tests on bundles of UO 2 fuel rods. Transient temperatures up to fuel melting were obtained in the tests that included both rapid quench and slow cooldown, low and high (36 GWd/t) burnup fuel and the addition of Ag-In-Cd control rods. Release fractions of major fission product species and release rates of noble gas species are reported. Significant differences in release behavior are discussed between heatup and cooldown periods, low and high burnup fuel and long- and short-lived fission products. Explanations are offered for the probable reasons for the observed differences and recommendations for further studies are given

  14. ESOL facility for the generation and radiochemical separation of short half-life fission products

    International Nuclear Information System (INIS)

    Gehrke, R.J.; Meikrantz, D.H.; Baker, J.D.; Anderl, R.A.; Novick, V.J.; Greenwood, R.C.

    1988-01-01

    A facility has been developed at the Idaho National Engineering Laboratory (INEL) for the generation and rapid radiochemical separation of short half-life mixed fission products. This facility, referred to as the Idaho Elemental Separation On Line (ESOL), consists of electro-plated sources of spontaneously fissioning 252 Cf with a helium jet transport arrangement to continuously deliver short half-life, mixed fission products to the radiochemistry laboratory for rapid, computer controlled, radiochemical separations. 18 refs., 13 figs

  15. Polyphase diffusion of fission products in graphite

    International Nuclear Information System (INIS)

    Dannert, V.

    1989-05-01

    The report attempts to give an introduction into the subject of fission product transport in nuclear graphite and results in an extended proposal of a transport-model. Beginning with a rough description of the graphite in question, an idea about the physical transport-phenomena in graphite is developed. Some of the basic experimental methods, especially techniques of porosimetry, determination of sorption-isotherms and of course several transport-experiments, are briefly described and their results are discussed. Some of the most frequent transport models are introduced and assessed with the criteria emphasized in this report. An extended model is proposed including the following main ideas: The transport of the fission-products is regarded as a two-phase-diffusion process through the open pores of the graphite. The two phases are: surface-diffusion and gas-diffusion. A time-dependent coupling of the two diffusion-phases by sorption-isotherms and a concentration-dependence of the surface diffusion coefficient, also related to the physical behaviour of the sorption-isotherms, are the basic properties of the proposed model. (orig./HP) [de

  16. Current status of decay heat measurements, evaluations, and needs

    International Nuclear Information System (INIS)

    Dickens, J.K.

    1986-01-01

    Over a decade ago serious concern over possible consequences of a loss-of-coolant accident in a commercial light-water reactor prompted support of several experiments designed specifically to measure the latent energy of beta-ray and gamma-ray emanations from fission products for thermal reactors. This latent energy was termed Decay Heat. At about the same time the American Nuclear Society convened a working group to develop a standard for use in computing decay heat in real reactor environs primarily for regulatory requirements. This working group combined the new experimental results and best evaluated data into a standard which was approved by the ANS and by the ANSI. The primary work since then has been (a) on improvements to computational efforts and (b) experimental measurements for fast reactors. In addition, the need for decay-heat data has been extended well beyond the time regime of a loss-of-coolant accident; new concerns involve, for example, away-from-reactor shipments and storage. The efficacy of the ANS standard for these longer time regimes has been a subject of study with generally positive results. However, a specific problem, namely, the consequences of fission-product neutron capture, remains contentious. Satisfactory resolution of this problem merits a high priority. 31 refs

  17. Interim report on research between Oak Ridge National Laboratory and Japan Nuclear Cycle Development Institute on neutron-capture cross sections by long-lived fission product nuclides

    International Nuclear Information System (INIS)

    Furutaka, Kazuyoshi; Nakamura, Shoji; Harada, Hideo

    2004-03-01

    Neutron capture cross sections of long-lived fission products (LLFP) are important quantities as fundamental data for the study of nuclear transmutation of radioactive wastes. Previously obtained thermal-neutron capture gamma-ray data were analyzed to deduce the partial neutron-capture cross sections of LLFPs including 99 Tc, 93 Zr, and 107 Pd for thermal neutrons. By comparing the decay gamma-ray data and prompt gamma-ray data for 99 Tc, the relation between the neutron-capture cross section deduced by the two different methods was studied. For the isotopes 93 Zr and 107 Pd, thermal neutron-capture gamma-ray production cross sections were deduced for the first time. The level schemes of 99 Tc, 93 Zr, and 107 Pd have also been constructed form the analyzed data and compared with previously reported levels. This work has been done under the cooperative program 'Neutron Capture Cross Sections of Long-Lived Fission products (LLFPs)' by Japan Nuclear Cycle Development Institute (JNC) and Oak Ridge National Laboratory (ORNL). (author)

  18. Chemical Separation of Fission Products in Uranium Metal Ingots from Electrolytic Reduction Process

    International Nuclear Information System (INIS)

    Lee, Chang-Heon; Kim, Min-Jae; Choi, Kwang-Soon; Jee, Kwang-Yong; Kim, Won-Ho

    2006-01-01

    Chemical characterization of various process materials is required for the optimization of the electrolytic reduction process in which uranium dioxide, a matrix of spent PWR fuels, is electrolytically reduced to uranium metal in a medium of LiCl-Li 2 O molten at 650 .deg. C. In the uranium metal ingots of interest in this study, residual process materials and corrosion products as well as fission products are involved to some extent, which further adds difficulties to the determination of trace fission products. Besides it, direct inductively coupled plasma atomic emission spectrometric (ICP-AES) analysis of uranium bearing materials such as the uranium metal ingots is not possible because a severe spectral interference is found in the intensely complex atomic emission spectra of uranium. Thus an adequate separation procedure for the fission products should be employed prior to their determinations. In present study ion exchange and extraction chromatographic methods were adopted for selective separation of the fission products from residual process materials, corrosion products and uranium matrix. The sorption behaviour of anion and tri-nbutylphosphate (TBP) extraction chromatographic resins for the metals in acidic solutions simulated for the uranium metal ingot solutions was investigated. Then the validity of the separation procedure for its reliability and applicability was evaluated by measuring recoveries of the metals added

  19. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  20. Decay properties of {sup 256-339}Ds superheavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, K.P.; Nithya, C. [Kannur University, School of Pure and Applied Physics, Payyanur, Kerala (India)

    2017-09-15

    The decay properties of 84 isotopes of darmstadtium superheavy nuclei (Z = 110) have been studied using various theoretical models. The proton emission half-lives, the alpha decay half-lives, the spontaneous fission half-lives and the cluster decay half-lives of all the isotopes are evaluated. The one-proton emission half-lives and the alpha decay half-lives are predicted using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The calculated alpha half-lives are compared with the available experimental results as well as with the predictions of other theoretical models. The predicted half-lives matches well with the experimental results. The one-proton half-lives are also compared with the predictions using other formalisms. The shell-effect-dependent formula of Santhosh et al. has been employed for calculating the spontaneous fission half-lives. A theoretical comparison of spontaneous fission half-lives with four different formalisms is performed. By comparing the one-proton emission half-lives, the alpha decay half-lives and the spontaneous fission half-lives decay modes are predicted for all the isotopes of Ds. It is seen that the isotopes within the range 256 ≤ A ≤ 263 and 279 ≤ A ≤ 339 decay through spontaneous fission and the isotopes 264 ≤ A ≤ 278 exhibit alpha decay. Cluster decay half-lives are calculated using different models including the Coulomb and proximity potential (CPPM), for determining the magicities in the superheavy region. The effect of magicity at N = 184 and N = 202 were confirmed from the plot of log{sub 10}T{sub 1/2} versus neutron number of the daughter nuclei for the emission of different clusters. We hope that the systematic and detailed study of all the possible decay modes of {sup 256-339}Ds using various theoretical models will be helpful in the experimental identification of the isotopes of the element in the future. (orig.)

  1. Rapid separation of individual rare-earth elements from fission products

    International Nuclear Information System (INIS)

    Baker, J.D.; Gehrke, R.J.; Greenwood, R.C.; Meikrantz, D.H.

    1980-01-01

    A microprocessor-controlled radiochemical separation system has been developed to rapidly separate rare-earth elements from gross fission products. The system is composed of two high performance liquid chromatography columns coupled in series by a stream-splitting injection valve. The first column separates the rare-earth group by extraction chromatography using dihexyldiethylcarbamylmethylenephosphonate (DHDECMP) adsorbed on Vydac C 8 resin. The second column isolates the individual rare-earth elements by cation exchange using Aminex A-9 resin with α-hydroxyisobutyric acid (α-HIBA) as the eluent. With this system, fission-product rare-earth isotopes with half-lives as short as three minutes have been studied

  2. Influence of high burnup on the decay heat power of spent fuel at long-term storage

    International Nuclear Information System (INIS)

    Bergelson, B.; Gerasimov, A.; Tikhomirov, G.

    2005-01-01

    Development and application of advanced fuel with higher burnup is now in practice of NPP with light water reactors in an increasing number of countries. High burnup allows to decrease significantly consumption of uranium. However, spent fuel of this type contains increased amount of high active actinides and fission products in comparison with spent fuel of common-type burnup. Therefore extended time of storage, improved cooling system of the storage facility will be required along with more strong radiation protection during storage, transportation and processing. Calculated data on decay heat power of spent uranium fuel of light water VVER-1000 type reactor are discussed in the paper. Long-term storage of discharged fuel during 100000 years is considered. Calculations were made for burnups of 40-70 MW d/kg. In the initial 50-year period of storage, power of fission products is much higher than that of actinides. Power of gamma-radiation is mainly due to fission products. During subsequent storage power of fission products quickly decreases, the main contribution to the power is given by actinides rather than by fission products. (author)

  3. Mechanistic prediction of fission product release under normal and accident conditions: key uncertainties that need better resolution

    International Nuclear Information System (INIS)

    Rest, J.

    1983-09-01

    A theoretical model has been used for predicting the behavior of fission gas and volatile fission products (VFPs) in UO 2 -base fuels during steady-state and transient conditions. This model represents an attempt to develop an efficient predictive capability for the full range of possible reactor operating conditions. Fission products released from the fuel are assumed to reach the fuel surface by successively diffusing (via atomic and gas-bubble mobility) from the grains to grain faces and then to the grain edges, where the fission products are released through a network of interconnected tunnels of fission-gas induced and fabricated porosity. The model provides for a multi-region calculation and uses only one size class to characterize a distribution of fission gas bubbles

  4. Alpha and gamma spectroscopy of fission isomers

    International Nuclear Information System (INIS)

    Makarenko, V.E.

    1988-01-01

    The attempts to discover in the experiment decay of fission isomers of heavy nuclei in the U-Am range by emitting α particles or γ quanta are considered. Some facilities for searching αdecay of spontaneously fissile isomers are given in brief. The first experimental results are discussed

  5. Status of fission product yield data

    International Nuclear Information System (INIS)

    Cuninghame, J.G.

    1978-01-01

    The topics covered in this paper are: (a) cumulative yields in thermal neutron fission and in fast fission up to 14 MeV incident neutron energy, (b) dependence of the yields on incident neutron energy and spectrum, (c) independent yields, (d) charge dispersion and distribution, and (e) yields of light particles from ternary fission. The paper reviews information on these subjects for fission of actinides from 232 Th upwards with special emphasis on data published since the 1973 Bologna FPND Panel, compares data sets, and discusses the gaps still to be found in them. (author)

  6. Enrichment of fission products in ionic salt bath by countercurrent electromigration

    International Nuclear Information System (INIS)

    Matsuura, Haruaki; Takagi, Ryuzo; Okada, Isao; Fujita, Reiko.

    1997-01-01

    We have proposed to apply a countercurrent electromigration method to enrichment of fission products in ionic melts. In the test runs, for this purpose, we have enriched Cs, Sr and Gd from their dilute melts. All of Cs, Sr and Gd were much concentrated at the area near the anode in the migration tubes. Gd and Sr were more concentrated than Cs. It was found that the electromigration method can be applied to the salt bath refleshing process after an electrorefining process, which removes fission products of multivalent cations. (author)

  7. Method and apparatus for producing ultralowmass fissionable deposits for reactor neutron dosimetry by recoil ion-implantation

    International Nuclear Information System (INIS)

    Ruddy, F.H.

    1988-01-01

    A method for producing a fissionable deposit of selectively ultralow mass for neutron dosimetry is described comprising the steps of: (a) spacing in opposing relation a substrate and an alpha-emitting parent source which decays to implant into the substrate of fissionable daughter ejected from the parent source as a result of the decay; and (b) holding the opposing relation for a period of time until the parent source decays to form a corresponding mass of isotopically pure fissionable daughter uniformly on the substrate

  8. Estimation of the radiation strength, dose equivalent and mean gamma-ray energy form p+ sup 2 sup 3 sup 8 U fission products

    CERN Document Server

    Kawakami, H

    2003-01-01

    On 100 isobars from 72 to 171 mass number, the radiation strength, dose equivalent and mean gamma-ray energy from p+ sup 2 sup 3 sup 8 U fission products at Tandem accelerator facility were estimated on the basis of data of proton induced fission mass yield by T. Tsukada. In order to control radiation, the decay curves of radiation of each mass after irradiation were estimated and illustrated. These calculation results showed 1) the peak of p+ sup 2 sup 3 sup 8 U fission products is 101 and 133 mass number. 2) gamma-ray strength of target ion source immediately after irradiation is 3.12x10 sup 1 sup 1 (Radiation/s) when it repeated 4 cycles of UC sub 2 (2.6 g/cm sup 2) target radiated by 30 MeV and 3 mu A proton for 5 days and then cooled for 2 days. It decreased to 3.85x10 sup 1 sup 0 and 6.7x10 sup 9 (Radiation/s) after one day and two weeks cooling, respectively. 3) Total dose equivalent is 3.8x10 sup 4 (mu S/h) at 1 m distance without shield. 4) There are no problems on control the following isobars, beca...

  9. Remarks on the fission barriers of super-heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Goethe-Universitaet Frankfurt, Institut fuer Physik, Frankfurt (Germany); Heinz, S.; Mann, R.; Maurer, J.; Muenzenberg, G.; Barth, W.; Dahl, L.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Runke, J.; Scheidenberger, C.; Tinschert, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Antalic, S. [Comenius University, Department of Nuclear Physics and Biophysics, Bratislava (Slovakia); Eberhardt, K.; Thoerle-Pospiech, P.; Trautmann, N. [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Grzywacz, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Tennessee, Knoxville, TN (United States); Hamilton, J.H. [Vanderbilt University, Department of Physics and Astronomy, Nashville, TN (United States); Henderson, R.A.; Kenneally, J.M.; Moody, K.J.; Shaughnessy, D.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Miernik, K. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Warsaw, Warsaw (Poland); Miller, D. [University of Tennessee, Knoxville, TN (United States); Morita, K. [RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama (Japan); Nishio, K. [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Popeko, A.G.; Yeremin, A.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Roberto, J.B.; Rykaczewski, K.P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Uusitalo, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland)

    2016-04-15

    Shell-correction energies of super-heavy nuclei are approximated by using Q{sub α} values of measured decay chains. Five decay chains were analyzed, which start at the isotopes {sup 285}Fl, {sup 294}118, {sup 291}Lv, {sup 292}Lv and {sup 293}Lv. The data are compared with predictions of macroscopic-microscopic models. Fission barriers are estimated that can be used to eliminate uncertainties in partial fission half-lives and in calculations of evaporation-residue cross-sections. In that calculations, fission probability of the compound nucleus is a major factor contributing to the total cross-section. The data also provide constraints on the cross-sections of capture and quasi-fission in the entrance channel of the fusion reaction. Arguments are presented that fusion reactions for synthesis of isotopes of elements 118 and 120 may have higher cross-sections than assumed so far. (orig.)

  10. A new type of active actinide target for studying fission and (n,xn) reactions

    International Nuclear Information System (INIS)

    Belier, G.; Aupiais, J.; Varignon, C.; Vayre, S.

    2011-01-01

    A new type of active target for the detection of fission of actinides has been developed, it is based on α spectrometry through liquid scintillation. The target uses the liquid-liquid extraction in order to mix the actinide with the liquid organic scintillator. The actinide to be detected is inside the detector itself which maximises the efficiency of the detector. The use of an organic scintillator allows the identification of the particles emitted. Indeed, the time delay for the transfer of the energy deposited in the solvent towards the scintillating molecules depends on the type of the energy deposits: instantaneous fluorescence is obtained for direct excitation while delayed fluorescence is obtained for energy deposits through ionization. By discriminating the different slow and quick components of the photomultiplier signal it is then possible to identify the particle: beta, alpha or fission products. This target has been tested with Cf 252 irradiated with 18 MeV neutrons, the experimental data show different peaks corresponding to alpha decay (97%), spontaneous fission (3%), beta decay and recoil protons due to neutron emissions. (A.C.)

  11. Fission Product Yields of 233U, 235U, 238U and 239Pu in Fields of Thermal Neutrons, Fission Neutrons and 14.7-MeV Neutrons

    Science.gov (United States)

    Laurec, J.; Adam, A.; de Bruyne, T.; Bauge, E.; Granier, T.; Aupiais, J.; Bersillon, O.; Le Petit, G.; Authier, N.; Casoli, P.

    2010-12-01

    The yields of more than fifteen fission products have been carefully measured using radiochemical techniques, for 235U(n,f), 239Pu(n,f) in a thermal spectrum, for 233U(n,f), 235U(n,f), and 239Pu(n,f) reactions in a fission neutron spectrum, and for 233U(n,f), 235U(n,f), 238U(n,f), and 239Pu(n,f) for 14.7 MeV monoenergetic neutrons. Irradiations were performed at the EL3 reactor, at the Caliban and Prospero critical assemblies, and at the Lancelot electrostatic accelerator in CEA-Valduc. Fissions were counted in thin deposits using fission ionization chambers. The number of fission products of each species were measured by gamma spectrometry of co-located thick deposits.

  12. An experimental investigation of fission product release in SLOWPOKE-2 reactors - Data report

    International Nuclear Information System (INIS)

    Harnden, A.M.C.

    1995-09-01

    The results of an investigation into the release of fission products from SLOWPOKE-2 reactors fuelled with a highly-enriched uranium alloy core are detailed in Volume 1. This data report (Volume 2) contains plots of the activity concentrations of the fission products observed in the reactor container at the University of Toronto, Ecole Polytechnique and the Kanata Isotope Production Facility. Release rates from the reactor container water to the gas headspace are also included. (author)

  13. Burn-Up Determination by High Resolution Gamma Spectrometry: Fission Product Migration Studies

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, R S; Blackadder, W H; Ronqvist, N

    1967-04-15

    The migration of solid fission products, in particular caesium and ruthenium, in high temperature oxide fuel can create a severe problem during the application of non-destructive burn-up methods employing gamma spectrometry, since caesium-137 is otherwise the most convenient long-lived burn-up monitor and ruthenium-106 can be used to distinguish between fissions in U-235 and Pu-239. As part of an experimental programme to develop burn-up methods, gamma scanning experiments have been performed on slices of irradiated UO{sub 2} pellets using a lithium-drifted germanium detector. The usefulness of the technique for migration studies has been demonstrated by comparing the fission product distribution curves across the specimen diameters with the microstructure of the specimens after polishing and etching.

  14. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  15. Release of fission products in transients

    International Nuclear Information System (INIS)

    Christensen, H.; Lundqwist, R.

    1979-07-01

    A station for automatic sampling of coolant has been put in operation at the Oskarshamn-1 reactor. The release of 131 J and other fission products in spikes in connection with reactor trips and scheduled shutdowns has been measured. A model developed at General Electric has been used to predict the spike release in Oskarshamn-1 and the predicted values have been compared with experimental values. Literature data of iodine spikes in BWR and PWR have been reviewed. (author)

  16. Specialists' meeting on role of fission products in whole core accidents

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-07-01

    Safety of nuclear reactors has been a central concern of the nuclear energy industry from the very beginning. This concern, and the resultant excellence of design, fabrication, and operation, aided by extensive engineered safety features, has given nuclear energy its superior record of protection of the environment and of the public health and safety. With respect to the fast reactor, it was recognized early in the program that there exists a theoretical possibility of a core compaction leading to significant energy release. The considerations of fission product effects are primarily on of the main concerns in evaluation of safety issues. Since fission products have the potential for dispersing fuel from the core region and thereby producing reactor shutdown, knowledge of their effects can contribute to demonstrating that there is a low probability producing whole-core involvement. Similarly, knowledge of fission product effects can contribute to demonstrating that there is a low probability of a whole-core disruptive accident leading to sufficient energy release to challenge the containment capability.

  17. Specialists' meeting on role of fission products in whole core accidents

    International Nuclear Information System (INIS)

    1977-01-01

    Safety of nuclear reactors has been a central concern of the nuclear energy industry from the very beginning. This concern, and the resultant excellence of design, fabrication, and operation, aided by extensive engineered safety features, has given nuclear energy its superior record of protection of the environment and of the public health and safety. With respect to the fast reactor, it was recognized early in the program that there exists a theoretical possibility of a core compaction leading to significant energy release. The considerations of fission product effects are primarily on of the main concerns in evaluation of safety issues. Since fission products have the potential for dispersing fuel from the core region and thereby producing reactor shutdown, knowledge of their effects can contribute to demonstrating that there is a low probability producing whole-core involvement. Similarly, knowledge of fission product effects can contribute to demonstrating that there is a low probability of a whole-core disruptive accident leading to sufficient energy release to challenge the containment capability

  18. Detection of gaseous fission products in water - a method of monitoring fuel sheathing failures

    Energy Technology Data Exchange (ETDEWEB)

    Tunnicliffe, P. R.; Whittier, A. C.

    1959-05-15

    The gaseous activities stripped from samples of effluent coolant from the NRU fuel elements tested in the central thimble of the NRX reactor (NRU loop) and from the NRX main effluent have been investigated. The activities obtained from the NRU loop can be attributed to gaseous fission products only. Design data have been obtained for a 'Gaseous Fission Product Monitor' to be installed for use with the NRU reactor. It is expected that this monitor will have high sensitivity to activity indicative of an incipient fuel element sheath failure. No qualitative determination of the various gaseous activities obtained from the NRX effluent has been made. A strong component of 25 {+-}1 seconds half-life is not consistent with O-19. Limited information concerning sheath failures in NRX was obtained. Of six failures observed in parallel with the installed delayed neutron monitors, three of these gave pre-warnings and in each case the gaseous fission product monitor showed a substantially greater sensitivity. An experiment in which small samples of uranium, inserted into the NRX reactor, could be exposed at will to a stream of water showed the behaviour of the two types of monitors to be similar. However, a number of signals were detected only by the gaseous fission product monitor. These can be attributed to its sensitivity to relatively long lived fission products. (author)

  19. Grain boundary sweeping and dissolution effects on fission product behaviour under severe fuel damage accident conditions

    International Nuclear Information System (INIS)

    Rest, J.

    1986-01-01

    The theoretical FASTGRASS-VFP model has been used in the interpretation of fission gas, iodine, tellurium, and cesium release from severe-fuel-damage (SFD) tests performed in the PBF reactor in Idaho. A theory of grain boundary sweeping of gas bubbles, gas bubble behavior during fuel liquefaction (destruction of grain boundaries due to formation of a U-rich melt phase), and during U-Zr eutectic melting has been included within the FASTGRASS-VFP formalism. The grain-boundary-sweeping theory considers the interaction between the moving grain boundary and two distinct size classes of bubbles, those on grain faces and on grain edges. The theory of the effects of fuel liquefaction and U-Zr eutectic melting on fission product behaviour considers the migration and coalescence of fission gas bubbles in either molten uranium, or a Zircaloy-Uranium eutectic melt. Results of the analyses demonstrate that intragranular fission product behavior during the tests can be interpreted in terms of a grain-growth/grain-boundary-sweeping mechanism that enhances the flow of fission products from within the grains to the grain boundaries. Whereas fuel liquefaction leads to an enhanced release of fission products in trace-irradiated fuel, the occurrence of fuel liquefaction in normally-irradiated fuel can degrade fission product release. This phenomenon is due in part to reduced gas-bubble mobilities in a viscous medium as compared to vapor transport, and in part to a degradation of grain growth rates and the subsequent decrease in grain-boundary sweeping of intragranular fission products into the liquified lamina. The analysis shows that total UO 2 dissolution due to eutectic melting leads to increased release for both trace-irradiated and normally-irradiated fuel. The FASTGRASS-VFP predictions, measured release rates from the above tests, and previously published release rates are compared and differences between fission product behavior in trace-irradiated and in normally

  20. The role of fission on neutron star mergers and its impact on the r-process peaks

    International Nuclear Information System (INIS)

    Eichler, M.; Thielemann, F.-K.; Arcones, A.; Langanke, K.; Martinez-Pinedo, G.; Kelic, A.; Korobkin, O.; Rosswog, S.; Marketin, T.; Panov, I.; Rauscher, T.; Winteler, C.; Zinner, N. T.

    2016-01-01

    The comparison between observational abundance features and those obtained from nucleosynthesis predictions of stellar evolution and/or explosion simulations can scrutinize two aspects: (a) the conditions in the astrophysical production site and (b) the quality of the nuclear physics input utilized. Here we test the abundance features of r-process nucleosynthesis calculations using four different fission fragment distribution models. Furthermore, we explore the origin of a shift in the third r-process peak position in comparison with the solar r-process abundances which has been noticed in a number of merger nucleosynthesis predictions. We show that this shift occurs during the r-process freeze-out when neutron captures and β-decays compete and an (n,γ)-(γ,n) equilibrium is not maintained anymore. During this phase neutrons originate mainly from fission of material above A = 240. We also investigate the role of β-decay half-lives from recent theoretical advances, which lead either to a smaller amount of fissioning nuclei during freeze-out or a faster (and thus earlier) release of fission neutrons, which can (partially) prevent this shift and has an impact on the second and rare-earth peak as well.

  1. The role of fission on neutron star mergers and its impact on the r-process peaks

    Energy Technology Data Exchange (ETDEWEB)

    Eichler, M., E-mail: marius.eichler@unibas.ch; Thielemann, F.-K. [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4055 Basel (Switzerland); Arcones, A.; Langanke, K.; Martinez-Pinedo, G. [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstrasse 2, D-64289 Darmstadt (Germany); GSI Helmholtzzentrum fr Schwerionenforschung GmbH, Planckstrasse 1, D-64291 Darmstadt (Germany); Kelic, A. [GSI Helmholtzzentrum fr Schwerionenforschung GmbH, Planckstrasse 1, D-64291 Darmstadt (Germany); Korobkin, O.; Rosswog, S. [The Oskar Klein Centre, Department of Astronomy, AlbaNova, Stockholm University, SE-10691 Stockholm (Sweden); Marketin, T. [Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb (Croatia); Panov, I. [SSC RF ITEP of NRC “Kurchatov Institute”, Bolshaya Cheremushkinskaya 25, 117218 Moscow (Russian Federation); Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4055 Basel (Switzerland); Rauscher, T. [Centre for Astrophysics Research, School of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4055 Basel (Switzerland); Winteler, C. [Institut Energie am Bau, Fachhochschule Nordwestschweiz, St. Jakobs-Strasse 84, 4132 Muttenz (Switzerland); Zinner, N. T. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade, bygn. 1520, DK-8000 Aarhus C (Denmark)

    2016-06-21

    The comparison between observational abundance features and those obtained from nucleosynthesis predictions of stellar evolution and/or explosion simulations can scrutinize two aspects: (a) the conditions in the astrophysical production site and (b) the quality of the nuclear physics input utilized. Here we test the abundance features of r-process nucleosynthesis calculations using four different fission fragment distribution models. Furthermore, we explore the origin of a shift in the third r-process peak position in comparison with the solar r-process abundances which has been noticed in a number of merger nucleosynthesis predictions. We show that this shift occurs during the r-process freeze-out when neutron captures and β-decays compete and an (n,γ)-(γ,n) equilibrium is not maintained anymore. During this phase neutrons originate mainly from fission of material above A = 240. We also investigate the role of β-decay half-lives from recent theoretical advances, which lead either to a smaller amount of fissioning nuclei during freeze-out or a faster (and thus earlier) release of fission neutrons, which can (partially) prevent this shift and has an impact on the second and rare-earth peak as well.

  2. Fission rates measured using high-energy gamma-rays from short half-life fission products in fresh and spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kroehnert, H.

    2011-02-15

    In recent years, higher discharge burn-ups and initial fuel enrichments have led to more and more heterogeneous core configurations in light water reactors (LWRs), especially at the beginning of cycle when fresh fuel assemblies are loaded next to highly burnt ones. As this trend is expected to continue in the future, the Paul Scherrer Institute has, in collaboration with the Swiss Association of Nuclear Utilities, swissnuclear, launched the experimental programme LIFE(at)PROTEUS. The LIFE(at)PROTEUS programme aims to better characterise interfaces between burnt and fresh UO{sub 2} fuel assemblies in modern LWRs. Thereby, a novel experimental database is to be made available for enabling the validation of neutronics calculations of strongly heterogeneous LWR core configurations. During the programme, mixed fresh and highly burnt UO{sub 2} fuel lattices will be investigated in the zero-power research reactor PROTEUS. One of the main types of investigations will be to irradiate the fuel in PROTEUS and measure the resulting fission rate distributions across the interface between fresh and burnt fuel zones. The measurement of fission rates in burnt fuel re-irradiated in a zero-power reactor requires, however, the development of new experimental techniques which are able to discriminate against the high intrinsic activity of the fuel. The principal goal of the present research work has been to develop such a new measurement technique. The selected approach is based on the detection of high-energy gamma-ray lines above the intrinsic background (i.e. above 2200 keV), which are emitted by short-lived fission products freshly created in the fuel. The fission products {sup 88}Kr, {sup 142}La, {sup 138}Cs, {sup 84}Br, {sup 89}Rb, {sup 95}Y, {sup 90m}Rb and {sup 90}Rb, with half-lives between 2.6 min and 2.8 h, have been identified as potential candidates. During the present research work, the gamma-ray activity of short-lived fission products has, for the first time, been

  3. Studies of short-lived products of spallation fission reactions at TRIUMF

    CERN Document Server

    Bischoff, G; D'Auria, J M; Dautet, H; Lee, J K P; Pate, B D; Wiesehahn, W

    1976-01-01

    The gas-jet recoil transport technique has been used to transport products from spallation and fission reactions from a target chamber to a shielded location for nuclear spectroscopic studies. These involve X- beta - gamma coincidence measurements and (shortly) time- of-flight mass spectroscopy. It has been deduced that the proton beam at present intensities has no appreciable effect on the ability of ethylene and other cluster-producing gases to transport radioactivity. Preliminary results will be presented for shortlived fission products from uranium, and for spallation products of iodine and argon. The latter were obtained from the bombardment of gas and aerosol targets mixed with the transporting gas in the target chamber, which appears to be a generally useful technique.

  4. Fission product release from HTGR coated microparticles and fuel elements

    International Nuclear Information System (INIS)

    Gusev, A.A.; Deryugin, A.I.; Lyutikov, R.A.; Chernikov, A.S.

    1991-01-01

    The article presents the results of the investigation of fission products release from microparticles with UO 2 core and five-layer HII PyC- and SiC base protection layers of TRICO type as well as from spherical fuel elements based thereon. It is shown that relative release of short-lived xenon and crypton from microparticles does not exceed (2-3) 10 -7 . The release of gaseous fission products from fuel elements containing no damaged coated microparticles, is primarily determined by the contamination of matrix graphite with fuel. An analytical dependence is derived, the dependence described the relation between structural parameters of coated microparticles, irradiation conditions and fuel burnup at which depressurization of coated microparticles starts

  5. Fission product release during MCCI. CEC nuclear safety program: MCCI project

    Energy Technology Data Exchange (ETDEWEB)

    Cenerino, G [CEA Centre d` Etudes Nucleaires de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Cordfunke, E H.P. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Hunterlaar, M E [Netherlands Energy Research Foundation (ECN), Petten (Netherlands)

    1995-01-01

    The assessment of the consequences of severe accidents in nuclear reactors involving molten core-concrete interactions (MCCls) requires estimates of the quantities and physicochemical forms of the radioactive species released from the melt into the cavity atmosphere. Such estimates in turn require a detailed knowledge of the complex chemical interactions which would occur between the fission products, fuel and the components of the core structural materials and the concrete. In recent years, effort has been put into the thermodynamic characterization of these processes. The results of such studies are important for predicting several aspects of MCCls, including: 1. The release of species by vaporization; 2. the extent of concrete penetration: a. The melt solidus and liquidus temperatures, which in turn affect the heat transfer processes and hence tile predictions of the melt temperature and the onset of solidification, b. the amounts of the solid and liquid phases and the respective compositions, which determines the viscosity of the melt, and c. the composition of the crust formed following the addition of water to quench the interaction. d. the distribution of fission products among metallic and oxidic phases. This SOAR is devoted to thermochemical calculations in the context of MCCI where most fission products and the metallic components of the melt are transferred into an oxidic form sooner or later. Calculations on fission product release from a molten pool without MCCI are underway in the source term project of the CEC-RCA. The following conditions have to be taken into account in order to be able to perform reliable thermodynamic calculations. (orig./HP).

  6. Fission product release during MCCI. CEC nuclear safety program: MCCI project

    International Nuclear Information System (INIS)

    Cenerino, G.; Hunterlaar, M.E.

    1995-01-01

    The assessment of the consequences of severe accidents in nuclear reactors involving molten core-concrete interactions (MCCls) requires estimates of the quantities and physicochemical forms of the radioactive species released from the melt into the cavity atmosphere. Such estimates in turn require a detailed knowledge of the complex chemical interactions which would occur between the fission products, fuel and the components of the core structural materials and the concrete. In recent years, effort has been put into the thermodynamic characterization of these processes. The results of such studies are important for predicting several aspects of MCCls, including: 1. The release of species by vaporization; 2. the extent of concrete penetration: a. The melt solidus and liquidus temperatures, which in turn affect the heat transfer processes and hence tile predictions of the melt temperature and the onset of solidification, b. the amounts of the solid and liquid phases and the respective compositions, which determines the viscosity of the melt, and c. the composition of the crust formed following the addition of water to quench the interaction. d. the distribution of fission products among metallic and oxidic phases. This SOAR is devoted to thermochemical calculations in the context of MCCI where most fission products and the metallic components of the melt are transferred into an oxidic form sooner or later. Calculations on fission product release from a molten pool without MCCI are underway in the source term project of the CEC-RCA. The following conditions have to be taken into account in order to be able to perform reliable thermodynamic calculations. (orig./HP)

  7. QCD in heavy quark production and decay

    Energy Technology Data Exchange (ETDEWEB)

    Wiss, J. [Univ. of Illinois, Urbana, IL (United States)

    1997-06-01

    The author discusses how QCD is used to understand the physics of heavy quark production and decay dynamics. His discussion of production dynamics primarily concentrates on charm photoproduction data which are compared to perturbative QCD calculations which incorporate fragmentation effects. He begins his discussion of heavy quark decay by reviewing data on charm and beauty lifetimes. Present data on fully leptonic and semileptonic charm decay are then reviewed. Measurements of the hadronic weak current form factors are compared to the nonperturbative QCD-based predictions of Lattice Gauge Theories. He next discusses polarization phenomena present in charmed baryon decay. Heavy Quark Effective Theory predicts that the daughter baryon will recoil from the charmed parent with nearly 100% left-handed polarization, which is in excellent agreement with present data. He concludes by discussing nonleptonic charm decay which is traditionally analyzed in a factorization framework applicable to two-body and quasi-two-body nonleptonic decays. This discussion emphasizes the important role of final state interactions in influencing both the observed decay width of various two-body final states as well as modifying the interference between interfering resonance channels which contribute to specific multibody decays. 50 refs., 77 figs.

  8. QCD in heavy quark production and decay

    International Nuclear Information System (INIS)

    Wiss, J.

    1997-01-01

    The author discusses how QCD is used to understand the physics of heavy quark production and decay dynamics. His discussion of production dynamics primarily concentrates on charm photoproduction data which are compared to perturbative QCD calculations which incorporate fragmentation effects. He begins his discussion of heavy quark decay by reviewing data on charm and beauty lifetimes. Present data on fully leptonic and semileptonic charm decay are then reviewed. Measurements of the hadronic weak current form factors are compared to the nonperturbative QCD-based predictions of Lattice Gauge Theories. He next discusses polarization phenomena present in charmed baryon decay. Heavy Quark Effective Theory predicts that the daughter baryon will recoil from the charmed parent with nearly 100% left-handed polarization, which is in excellent agreement with present data. He concludes by discussing nonleptonic charm decay which is traditionally analyzed in a factorization framework applicable to two-body and quasi-two-body nonleptonic decays. This discussion emphasizes the important role of final state interactions in influencing both the observed decay width of various two-body final states as well as modifying the interference between interfering resonance channels which contribute to specific multibody decays. 50 refs., 77 figs

  9. Studies on the fission products behavior during dissolution process of BWR spent fuel

    International Nuclear Information System (INIS)

    Sato, K.; Nakai, E.; Kobayashi, Y.

    1987-01-01

    In order to obtain basic data on fission products behavior in connection with the head end process of fuel reprocessing, especially to obtain better understanding on undissolved residues, small scale dissolution studies were performed by using BWR spent fuel rods which were irradiated as monitoring fuel rods under the monitoring program for LWR fuel assembly performance entitled PROVING TEST ON RELIABILITY OF FUEL ASSEMBLY . The Zircaloy-2 claddings and the fuel pellets were subjected individually to the following studies on 1) release of fission products during dissolution process, 2) characterization of undissolved residues, and 3) analysis of the claddings. This paper presents comprehensive descriptions of the fission products behavior during dissolution process, based on detailed and through PIE conducted by JNFS under the sponsorship of MITI (Ministry of International Trade and Industry)

  10. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    International Nuclear Information System (INIS)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-01-01

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.(1) The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  11. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  12. Very-long-term storage of fission products

    International Nuclear Information System (INIS)

    Sousselier, Y.; Pradel, J.; Cousin, O.

    The large majority of the fission products, with 99.9 percent of the radioactivity content, do not pose actual problems in storage in a geological formation for which we can guarantee total confinement. Safety of storage in a geological formation for the radionuclides of long half-life is based in particular on the absorption capacity of the geological formations and the example of the Oklo fossil reactor and the retention of Pu which is produced is a striking example. But the problems are not the same, and the properties that we look for in the terrain are not the same. We could thus be led to storage in different geological formations for the fission products and the long-half-life emitters. Their separation is interesting from this point of view, but the date at which the separation is made will not be necessarily that of reprocessing. But there is a question of one or the other, and these storages will offer a very high level of insurance and will present only the potential hazards that are very comparable with those presented by natural conditions

  13. ACRR fission product release tests: ST-1 and ST-2

    International Nuclear Information System (INIS)

    Allen, M.D.; Stockman, H.W.; Reil, K.O.; Grimley, A.J.; Camp, W.J.

    1988-01-01

    Two experiments (ST-1 and ST-2) have been performed in the Annular Core Research Reactor (ACRR) at Sandia National Laboratories (SNLA) to obtain time-resolved data on the release of fission products from irradiated fuels under light water reactor (LWR) severe accident conditions. Both experiments were conducted in a highly reducing environment at maximum fuel temperatures of greater than 2400 K. These experiments were designed specifically to investigate the effect of increased total pressure on fission product release; ST-1 was performed at approximately 0.16 MPa and ST-2 was run at 1.9 MPa, whereas other parameters were matched as closely as possible. Release rate data were measured for Cs, I, Ba, Sr, Eu, Te, and U. The release rates were higher than predicted by existing codes for Ba, Sr, Eu, and U. Te release was very low, but Te did not appear to be sequestered by the zircaloy cladding; it was evenly distributed in the fuel. In addition, in posttest analysis a unique fuel morphology (fuel swelling) was observed which may have enhanced fission product release, especially in the high pressure test (ST-2). These data are compared with analytical results from the CORSOR correlation and the VICTORIA computer model

  14. JENDL FP decay data file 2000 and the beta-decay theory

    International Nuclear Information System (INIS)

    Yoshida, Tadashi; Katakura, Jun Ichi; Tachibana, Takahiro

    2002-01-01

    JENDL FP Decay Data File 2000 has been developed as one of the special purpose files of the Japanese Evaluated Nuclear Data Library (JENDL), which constitutes a versatile nuclear data basis for science and technology. In the format of ENDF-6 this file includes the decay data for 1087 unstable fission product (FP) nuclides and 142 stable nuclides as their daughters. The primary purpose of this file is to use in the summation calculation of FP decay heat, which plays a critical role in nuclear safety analysis; the loss-of-coolant accident analysis of reactors, for example. The data for a given nuclide are its decay modes, the Q value, the branching ratios, the average energies released in the form of beta- and gamma-rays per decay, and their spectral data. The primary source of the decay data adopted here is the ENSDF (Evaluated Nuclear Structure Data File). The data in ENSDF, however, cover only the measured values. The data of the short-lived nuclides, which are essential for the decay heat calculations at short cooling times, are often fully lacking or incomplete even if they exist. This is mainly because of their short half-life nature. For such nuclides a theoretical model calculation is applied in order to fill the gaps between the true and the experimentally known decay schemes. In practice we have to predict the average decay energies and the spectral data for a lot of short-lived FPs by use of beta-decay theories. Thus the beta-decay theory plays a very important role in generating the FP decay data file

  15. Determination of procedures for transmutation of fission product wastes by fusion neutrons. Volume 2. Final report

    International Nuclear Information System (INIS)

    Lang, G.P.

    1980-12-01

    This study is concerned with the engineering aspects of the transmutation of fission products utilizing neutrons generated in fusion reactors. It is assumed that fusion reactors, although not yet developed, will be available around the turn of the century. Therefore, early studies of this type are appropriate as a guide to the large amount of further investigations that will be needed to fully evaluate this concept. Not all of the radioactive products from light water reactors can be economically transmuted, but it appears that the most hazardous can. This requires that fission-product wastes must first be separated into a number of fractions, and in some instances this must be accomplished with extremely high separation factors. A review of current commercial separation processes and of promising methods that are now in the laboratory stage indicate that the necessary processes can most likely be developed but will require an active and sustained development program. Current fusion reactor concepts were examined as to their suitability for transmuting the separated fission wastes. It was concluded that the long-lived fission products were most amenable to transmutation. The medium-lived fission products, Cs-137 and Sr-90, require higher neutron fluxes than are available in the most developed fusion reactor concepts. Concepts which are less developed may eventually be adaptable as transmuters of these fission products

  16. An optimization on strontium separation model for fission products (inactive trace elements) using artificial neural networks

    International Nuclear Information System (INIS)

    Moosavi, K.; Setayeshi, S.; Maragheh, M.Gh.; Ahmadi, S.J.; Kardan, M.R.; Banaem, L.M.

    2009-01-01

    In this study, an experimental design using artificial neural networks for an optimization on the strontium separation model for fission products (inactive trace elements) is investigated. The goal is to optimize the separation parameters to achieve maximum amount of strontium that is separated from the fission products. The result of the optimization method causes a proper purity of Strontium-89 that was separated from the fission products. It is also shown that ANN may be establish a method to optimize the separation model.

  17. A novel method for fission product noble gas sampling

    International Nuclear Information System (INIS)

    Jain, S.K.; Prakash, Vivek; Singh, G.K.; Vinay, Kr.; Awsthi, A.; Bihari, K.; Joyson, R.; Manu, K.; Gupta, Ashok

    2008-01-01

    Noble gases occur to some extent in the Earth's atmosphere, but the concentrations of all but argon are exceedingly low. Argon is plentiful, constituting almost 1 % of the air. Fission Product Noble Gases (FPNG) are produced by nuclear fission and large parts of FPNG is produced in Nuclear reactions. FPNG are b-j emitters and contributing significantly in public dose. During normal operation of reactor release of FPNG is negligible but its release increases in case of fuel failure. Xenon, a member of FPNG family helps in identification of fuel failure and its extent in PHWRs. Due to above reasons it becomes necessary to assess the FPNG release during operation of NPPs. Presently used methodology of assessment of FPNG, at almost all power stations is Computer based gamma ray spectrometry. This provides fission product Noble gases nuclide identification through peak search of spectra. The air sample for the same is collected by grab sampling method, which has inherent disadvantages. An alternate method was developed at Rajasthan Atomic Power Station (RAPS) - 3 and 4 for assessment of FPNG, which uses adsorption phenomena for collection of air samples. This report presents details of sampling method for FPNG and noble gases in different systems of Nuclear Power Plant. (author)

  18. $\\beta$-delayed fission, laser spectroscopy and shape-coexistence studies with radioactive At beams

    CERN Multimedia

    We propose to study the $\\beta$-delayed fission, laser spectroscopy and radioactive decay of the newly available pure beams of neutron-deficient and neutron-rich astatine (Z=85) isotopes. The fission probability and the fission fragment distribution of the even-even isotopes $^{194,196}$Po following the $\\beta$-decay of the isotopes $^{194,196}$At will be studied with the Windmill setup. In-source laser spectroscopy will be performed on the entire astatine isotopic chain, using a combination of the Windmill setup, ISOLTRAP MR-ToF and ISOLDE Faraday. Radioactive decay data will be acquired at the Windmill setup throughout those studies and contribute to the global understanding of the phenomenon of shape coexistence in the neutron-deficient lead region.

  19. Decay heat uncertainty quantification of MYRRHA

    Directory of Open Access Journals (Sweden)

    Fiorito Luca

    2017-01-01

    Full Text Available MYRRHA is a lead-bismuth cooled MOX-fueled accelerator driven system (ADS currently in the design phase at SCK·CEN in Belgium. The correct evaluation of the decay heat and of its uncertainty level is very important for the safety demonstration of the reactor. In the first part of this work we assessed the decay heat released by the MYRRHA core using the ALEPH-2 burnup code. The second part of the study focused on the nuclear data uncertainty and covariance propagation to the MYRRHA decay heat. Radioactive decay data, independent fission yield and cross section uncertainties/covariances were propagated using two nuclear data sampling codes, namely NUDUNA and SANDY. According to the results, 238U cross sections and fission yield data are the largest contributors to the MYRRHA decay heat uncertainty. The calculated uncertainty values are deemed acceptable from the safety point of view as they are well within the available regulatory limits.

  20. Surface-deposition and distribution of the radon-decay products indoors

    International Nuclear Information System (INIS)

    Espinosa, G.; Tommasino, L.

    2015-01-01

    The exposure to radon-decay products is of great concern both in dwellings and workplaces. The model to estimate the lung dose refers to the deposition mechanisms and particle sizes. Unfortunately, most of the dose data available are based on the measurement of radon concentration and the concentration of radon decay products. These combined measurements are widely used in spite of the fact that accurate dose assessments require information on the particle deposition mechanisms and the spatial distribution of radon decay products indoors. Most of the airborne particles and/or radon decay products are deposited onto indoor surfaces, which deposition makes the radon decay products unavailable for inhalation. These deposition processes, if properly known, could be successfully exploited to reduce the exposure to radon decay products. In spite of the importance of the surface deposition of the radon decay products, both for the correct evaluation of the dose and for reducing the exposure; little or no efforts have been made to investigate these deposition processes. Recently, two parallel investigations have been carried out in Rome and at Universidad Nacional Autónoma de México (UNAM) in Mexico City respectively, which address the issue of the surface-deposited radon decay products. Even though these investigations have been carried independently, they complement one another. It is with these considerations in mind that it was decided to report both investigations in the same paper. - Highlights: • Distribution of Radon and Thoron decay indoor products. • Indoor radon measurements complexity. • Short and long term measurements of surface deposit of Radon and Thoron decay products. • Microclimate controlled conditions room. • Nuclear Tracks Detectors

  1. Calculated leaching of certain fission products from a cylinder of French glass

    International Nuclear Information System (INIS)

    Blomqvist, G.

    1977-07-01

    The probable total leaching of the most important fission products and actinides have been tabulated for a cylinder of French HLW glass with approximately 9 percent fission products. The calculations cover the period between 30 and 10000 years after removal from the reactor. The cylinder is of the type planned for the introduction of the HLW into Swedish crystalline rocks. All the components are supposed to have the same leach rate. The calculations also include the probable thickness of eroded glass layer/year. (author)

  2. Preparation of lumped fission product (FP) cross sections for a multigroup library

    International Nuclear Information System (INIS)

    Ono, S.; Corcuera, R.P.

    1984-01-01

    A method for the calculation of lumped Fission Product (FP) cross sections has been developed. The group constants fo each nuclide are generated by NJOY code, based on ENDF/B-V data. In this first version, cross section of 28 nuclides are lumped for typical characteristics of Binary Breeder Reactor (BBR). One energy group calculations are made for a 1000 MWe fast reactor to verify the influence of burnup, number of FP and fuel composition on the lumped fission product cross sections. (Author) [pt

  3. Methodology and experimental setup for measuring short-lives fission product yields in actinides induced fission by charged particles

    International Nuclear Information System (INIS)

    Bellido, A.V.

    1995-07-01

    The theoretical principles and the laboratory set-up for the fission products yields measurements are described. The procedures for the experimental determinations are explain in detail. (author). 43 refs., 5 figs

  4. Solidification of highly active fission products by a thermite reaction. Pt. 1

    International Nuclear Information System (INIS)

    Rudolph, G.; Hild, W.

    1976-07-01

    To solidify high-level fission products a process was developed according to which a high-melting ceramic product is obtained as a solidification matrix in a thermite reaction. With a constant content of fission product oxides reaction mixtures consisting of 35 to 55 wt.% of manganese dioxide, 24 to 32 wt.% of aluminum shot and 17 to 36 wt.% of sand give suitable products. In the thermite reactiom some components contained in the reactic mixture volatilize partly by evaporation (alkali oxides, manganese oxide, and others) and partly by the formation of volatile oxides having lower valencies (silicon and aluminum oxide). The smoke generated can be easily collected in filters made of glass wool fibers. (orig./HR) [de

  5. Curves and tables of neutron cross sections of fission product nuclei in JENDL-3

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Tsuneo [ed.

    1992-06-15

    Neutron cross sections of 172 nuclei in the fission product region stored in JENDL-3 are shown in graphs and tables. The evaluation work of these nuclei was made by the Fission Product Nuclear Data Working Group of the Japanese Nuclear Data Committee, in the neutron energy region from 10{sup {minus}5} eV to 20 MeV. Almost of the cross section data reproduced in graphs in this report. The cross section averaged over 38 energy intervals are listed in a table. Shown in order tables are thermal cross sections, resonance integrals, Maxwellian neutron flux average cross sections, fission spectrum average cross sections, 14-MeV cross sections, one group average cross sections in neutron flux of typical types of fission reactors and average cross sections in the 30-keV Maxwellian spectrum.

  6. Curves and tables of neutron cross sections of fission product nuclei in JENDL-3

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo

    1992-06-01

    Neutron cross sections of 172 nuclei in the fission product region stored in JENDL-3 are shown in graphs and tables. The evaluation work of these nuclei was made by the Fission Product Nuclear Data Working Group of the Japanese Nuclear Data Committee, in the neutron energy region from 10 -5 eV to 20 MeV. Almost all the cross section data are reproduced in graphs in this report. The cross section averaged over 38 energy intervals are listed in a table. Shown in other tables are thermal cross sections, resonance integrals, Maxwellian neutron flux average cross sections, fission spectrum average cross sections, 14-MeV cross sections, one group average cross sections in neutron flux of typical types of fission reactors and average cross sections in the 30-keV Maxwellian spectrum. (author)

  7. Exploratory study of fission product yields of neutron-induced fission of 235U , 238U , and 239Pu at 8.9 MeV

    Science.gov (United States)

    Bhatia, C.; Fallin, B. F.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.; Arnold, C. W.; Bond, E.; Bredeweg, T. A.; Fowler, M. M.; Moody, W.; Rundberg, R. S.; Rusev, G. Y.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Macri, R.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.

    2015-06-01

    Using dual-fission chambers each loaded with a thick (200 -400 -mg /c m2) actinide target of 235 ,238U or 239Pu and two thin (˜10 -100 -μ g /c m2) reference foils of the same actinide, the cumulative yields of fission products ranging from 92Sr to 147Nd have been measured at En= 8.9 MeV . The 2H(d ,n ) 3He reaction provided the quasimonoenergetic neutron beam. The experimental setup and methods used to determine the fission product yield (FPY) are described, and results for typically eight high-yield fission products are presented. Our FPYs for 235U(n ,f ) , 238U(n ,f ) , and 239Pu(n ,f ) at 8.9 MeV are compared with the existing data below 8 MeV from Glendenin et al. [Phys. Rev. C 24, 2600 (1981), 10.1103/PhysRevC.24.2600], Nagy et al. [Phys. Rev. C 17, 163 (1978), 10.1103/PhysRevC.17.163], Gindler et al. [Phys. Rev. C 27, 2058 (1983), 10.1103/PhysRevC.27.2058], and those of Mac Innes et al. [Nucl. Data Sheets 112, 3135 (2011), 10.1016/j.nds.2011.11.009] and Laurec et al. [Nucl. Data Sheets 111, 2965 (2010), 10.1016/j.nds.2010.11.004] at 14.5 and 14.7 MeV, respectively. This comparison indicates a negative slope for the energy dependence of most fission product yields obtained from 235U and 239Pu , whereas for 238U the slope issue remains unsettled.

  8. Results of the experiment on chemical identification of Db as a decay product of element 115

    International Nuclear Information System (INIS)

    Dmitriev, S.N.; Oganesyan, Yu.Ts.; Utenkov, V.K.

    2004-01-01

    For the first time the chemical identification of Db as the terminal isotope of the decay element 115 produced via the 243 Am( 48 Ca, 3n) 288 115 reaction was realized. The experiment was performed on the U400 cyclotron of FLNR, JINR. The 243 Am target was bombarded with a beam dose of 3.4 · 10 18 48 Ca projectiles at an energy of 247 MeV in the center of the target. The reaction products were collected in the surface of a copper catcher block, which was removed with a lathe and then dissolved in concentrated HNO 3 . The group 5 elements were separated by sorption onto Dowex 50X8 cation-exchange resin with subsequent desorption using 1 M HF, which forms anionic fluoride complexes of group 5 elements. The eluant was evaporated onto 0.4 μm thick polyethylene foils which were placed between a pair of semiconductor detectors surrounded by 3 He neutron counters for measurement of α particles, fission fragments and neutrons. Over the course of the experiment, we observed 15 spontaneous fission events with T 1/2 = 32 -7 +11 h which we attribute to 268 Db. The production cross section for the 243 Am + 48 Ca reaction was 4.2 -1.2 + 1 .6 pb. These results agree with the original element 115 synthesis experiment where 268 Db was first observed as the terminal isotope following the five consecutive α decays from the 288 115 parent nucleus at the Dubna gas-filled separator. The data from the present experiment give independent evidence for the synthesis of element 115 as well as element 113 via the 243 Am + 48 Ca reaction

  9. Prediction of fission product and actinide levels in irradiated fuel and cladding

    International Nuclear Information System (INIS)

    Burstall, R.F.; Thornton, D.E.J.

    1977-01-01

    The production of radioactive isotopes and their subsequent decay is of crucial importance in the nuclear industry, dominating the shield design of chemical reprocessing plants, transport flasks and waste disposal facilities which account for a large part of the capital investment in a nuclear programme. The isotopes are also important in studies of reactor shielding. The computation of the level and behavior of such nuclides has been practiced for many years in countries with nuclear industries, with ever-increasing sophistication in methods of calculation and in improving the accuracy of the basic nuclide data. Calculation is usually made for three groups of nuclides, the actinides or transuranics, the fission products, and nuclides present in the cladding. The currently accepted computer code within the UKAEA for such calculations is FISPIN. This code calculates activities for all the above groups either separately or in combination. As well as individual nuclide concentrations and activities integral information is produced. The paper describes the methods of calculation. The code has been compared with other codes which have a similar function, and it is concluded that the only significant differences are those associated with data. A number of different data sets, to a large degree independent, have been compared using the code, and the paper describes some of the results obtained

  10. Future trends in the assessment of hazards from fission product releases

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, J. R.

    1983-11-15

    In comparing and selecting sites for reactors from the point of view of safety, one considers the remote possibility of an accidental release of moderately large amounts of fission products and its effects in relation to the present and future distribution of population in the neighbourhood. At present, until experience is gained of the reliability and safety of reactors, there is a tendency to site them remotely from centres of industry and population, although for economic reasons there will be a need to site large power reactors more closely to such centres in the future. With, among other objectives, the aim of adopting, in the proper course or time, less restrictive siting criteria, improvements are continually made in the intrinsic safety of reactor system and more sophisticated forms of reactor containment are devised, in order to reduce the possibility and scale of any fission product release. Changes and improvements in reactor systems could affect the nature and proportion of an accidental release of fission products if this should occur in the future. It is appropriate to consider what such a release and its radiobiological effects might be.

  11. Fission Product Separation from Pyrochemical Electrolyte by Cold Finger Melt Crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Versey, Joshua R. [Univ. of Idaho, Moscow, ID (United States)

    2013-08-01

    This work contributes to the development of pyroprocessing technology as an economically viable means of separating used nuclear fuel from fission products and cladding materials. Electrolytic oxide reduction is used as a head-end step before electrorefining to reduce oxide fuel to metallic form. The electrolytic medium used in this technique is molten LiCl-Li2O. Groups I and II fission products, such as cesium (Cs) and strontium (Sr), have been shown to partition from the fuel into the molten LiCl-Li2O. Various approaches of separating these fission products from the salt have been investigated by different research groups. One promising approach is based on a layer crystallization method studied at the Korea Atomic Energy Research Institute (KAERI). Despite successful demonstration of this basic approach, there are questions that remain, especially concerning the development of economical and scalable operating parameters based on a comprehensive understanding of heat and mass transfer. This research explores these parameters through a series of experiments in which LiCl is purified, by concentrating CsCl in a liquid phase as purified LiCl is crystallized and removed via an argon-cooled cold finger.

  12. The LANL C-NR counting room and fission product yields

    Energy Technology Data Exchange (ETDEWEB)

    Jackman, Kevin Richard [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-09-21

    This PowerPoint presentation focused on the following areas: LANL C-NR counting room; Fission product yields; Los Alamos Neutron wheel experiments; Recent experiments ad NCERC; and Post-detonation nuclear forensics

  13. Specialists' meeting on fission product release and transport in gas-cooled reactors. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-07-01

    The purpose of the Meeting on Fission Product Release and Transport in Gas-Cooled Reactors was to compare and discuss experimental and theoretical results of fission product behaviour in gas-cooled reactors under normal and accidental conditions and to give direction for future development. The technical part of the meeting covered operational experience and laboratory research, activity release, and behaviour of released activity.

  14. Specialists' meeting on fission product release and transport in gas-cooled reactors. Summary report

    International Nuclear Information System (INIS)

    1985-01-01

    The purpose of the Meeting on Fission Product Release and Transport in Gas-Cooled Reactors was to compare and discuss experimental and theoretical results of fission product behaviour in gas-cooled reactors under normal and accidental conditions and to give direction for future development. The technical part of the meeting covered operational experience and laboratory research, activity release, and behaviour of released activity

  15. Dispersions and correlations of the distributions of products of 252Cf spontaneous fission

    International Nuclear Information System (INIS)

    Vidyakin, G.S.; Vyrodov, V.N.; Gurevich, I.I.; Kirillov, B.F.; Kozlov, Y.V.; Martem'yanov, V.P.; Sukhotin, S.V.; Tarasenkov, V.G.; Khakimov, S.K.

    1982-01-01

    We report the results of two experiments on study of the dispersions and correlations of the distributions of products of the spontaneous fission of 252 Cf. In each experiment about 10 8 fissions were recorded with simultaneous measurement of the number of neutrons produced and in one case the fragment kinetic energy and in the other case the energy of the prompt #betta# rays. The quantities obtained were the probabilities of production of a given number of neutrons per fission, the dispersions of the distributions of the number of neutrons produced and of the fragment kinetic energy, and the dependence of the average #betta#-ray energy and the average fragment kinetic energy on the number of neutrons produced. A calculation is made of the spectrum of the total energy carried away by fragments and neutrons, and its dispersion is determined. An estimate of the total energy release in the 252 Cf fission process is made

  16. The study of radiochemical separation methods on gaseous Fission product krypton-88

    International Nuclear Information System (INIS)

    Yang Zhihong; Zhang Shengdong; Yang Lei; Ding Youqian; Sun Hongqing; Ma Peng

    2012-01-01

    Half-life of krypton-88 is 2.84 hours, high fission yields and a relatively large gamma branching ratio is had. The gas is short-lived fission products in burnup measurements. Only New fission products can extract from extraction in gas of fissile irradiation target. But krypton-88 with krypton-85, krypton-87, xenon -135, and xenon-138 is coexisted together, thus radiochemical separation must quickly taken. selected the irradiation time is 1-2 hours and cooling time is best 2 hours for sample preparation, krypton and xenon were separated using activated carbon adsorption, the ratio of krypton and xenon were measured by gamma spectroscopy. Then according to the ratio of krypton-85 and xenon-125 count rate coefficient around separation were calculated yield of krypton and decontamination factor of xenon and the final the yield of krypton-85 is calculated. (authors)

  17. Production of $\\Sigma^{0}$ and $\\Omega^{-}$ in Z decays

    CERN Document Server

    Adam, W; Agasi, E; Ajinenko, I; Aleksan, Roy; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barate, R; Barbi, M S; Bardin, Dimitri Yuri; Baroncelli, A; Bärring, O; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Belous, K S; Benvenuti, Alberto C; Berggren, M; Bertrand, D; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Blyth, S; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Borisov, G; Bosio, C; Bosworth, S; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Bricman, C; Brillault, L; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Buys, A; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerrito, L; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Chauveau, J; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahl-Jensen, Erik; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Defoix, C; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Dijkstra, H; Di Ciaccio, Lucia; Djama, F; Dolbeau, J; Dönszelmann, M; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Dufour, Y; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Ershaidat, N; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Ferrer, A; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gerdyukov, L N; Gibbs, M; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Grosdidier, G; Grzelak, K; Gumenyuk, S A; Gunnarsson, P; Günther, M; Guy, J; Hahn, F; Hahn, S; Hallgren, A; Hamacher, K; Hao, W; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karafasoulis, K; Karlsson, M; Karvelas, E; Katsanevas, S; Katsoufis, E C; Keränen, R; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klein, H; Klovning, A; Kluit, P M; Köne, B; Kokkinias, P; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Kramer, P H; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamblot, S; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Last, I; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemoigne, Y; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Maio, A; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Maron, T; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Merk, M; Meroni, C; Meyer, S; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Petrovykh, M; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Pindo, M; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Prest, M; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rídky, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Rückstuhl, W; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sánchez, J; Sannino, M; Schimmelpfennig, M; Schneider, H; Schwickerath, U; Schyns, M A E; Sciolla, G; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Shellard, R C; Siccama, I; Siegrist, P; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Solovyanov, O; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chikilev, O G; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Waldner, F; Weierstall, M; Weilhammer, Peter; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Woschnagg, K; Yip, K; Yushchenko, O P; Zach, F; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zuberi, R; Zucchelli, G C; Zumerle, G

    1996-01-01

    Reconstructed \\lam\\ baryon decays and photon conversions in DELPHI are used to measure the \\sig\\ production rate from hadronic Z^0 decays at LEP. The number of \\sig\\ decays per hadronic Z decay is found to be: \\begin{center} = \\wffe{0.070}{0.010}{0.010 }{}. \\end{center} \\bigskip The \\Omega^- production rate is similarly measured to be: \\begin{center} = \\wffe{0.0014}{0.0002}{0.0004}{} \\end{center} by a combination of methods using constrained fits to the whole decay chain and particle identification.

  18. Deep Atomic Binding (DAB) Approach in Interpretation of Fission Products Behavior in Terrestrial and Water Ecosystems

    International Nuclear Information System (INIS)

    Ajlouni, Abdul-Wali M.S.

    2006-01-01

    A large number of studies and models were established to explain the fission products (FP) behavior within terrestrial and water ecosystems, but a number of behaviors were non understandable, which always attributed to unknown reasons. According to DAB hypothesis, almost all fission products behaviors in terrestrial and water ecosystems could be interpreted in a wide coincidence. The gab between former models predictions, and field behavior of fission products after accidents like Chernobyl have been explained. DAB represents a tool to reduce radio-phobia as well as radiation protection expenses. (author)

  19. Measurement of fission product release during LWR fuel failure

    International Nuclear Information System (INIS)

    Osetek, D.J.; King, J.J.

    1979-01-01

    The PBF is a specialized test reactor consisting of an annular core and a central test space 21 cm in diameter and 91 cm high. A test loop circulates coolant through the central experimental section at typical power reactor conditions. Light-water-reactor-type fuel rods are exposed to power bursts simulating reactivity insertion transients, and to power-cooling-mismatch conditions during which the rods are allowed to operate in film boiling. Fission product concentrations in the test loop coolant are continuously monitored during these transients by a Ge(Li) detector based gamma spectrometer. Automatic batch processing of pulse height spectra results in a list of radionuclide concentrations present in the loop coolant as a function of time during the test. Fission product behavior is then correlated to test parameters and posttest examination of the fuel rods. Data are presented from Test PCM-1

  20. Dynamics of hadron strong production and decay

    International Nuclear Information System (INIS)

    Burns, T. J.; Close, F. E.; Thomas, C. E.

    2008-01-01

    We generalize results of lattice QCD to determine the spin-dependent symmetries and factorization properties of meson production in Okubo-Zweig-Iizuka allowed processes. This explains some conjectures previously made in the literature about axial meson decays and gives predictions for exclusive decays of vector charmonia, including ways of establishing the structure of Y(4260) and Y(4325) from their S-wave decays. Factorization gives a selection rule which forbids e + e - →D*D 2 near threshold with the tensor meson in helicity 2. The relations among amplitudes for double charmonia production e + e - →ψ+χ 0,1,2 are expected to differ from the analogous relations among light flavor production such as e + e - →ωf 0,1,2

  1. Recovery of noble metals from fission products

    International Nuclear Information System (INIS)

    Jenson, G.A.; Platt, A.M.; Mellinger, G.B.; Bjorklund, W.J.

    1982-11-01

    Scoping studies were started in 1979 to develop a cost-effective, waste-management-compatible process to extract noble metals from fission products. The process, involving the reaction with glassmelting chemicals, a metal oxide (PbO), and a reducing agent (charcoal), was demonstrated for recovering noble metals from simulated high-level waste oxides. The process has now been demonstrated on a laboratory scale (100 g) using irradiated fuels. Recoveries in the recovered lead averaged 80% for Pd, 60% for Rh, and 14% Ru. The resulting glass product was homogeneous in appearance, and the chemical durability was comparable to other waste oxides

  2. Cumulative fission yield of Ce-148 produced by thermal-neutron fission of U-235

    International Nuclear Information System (INIS)

    Hasan, A.A.

    1984-12-01

    Cumulative fission yield of 148 cesium isotopes and some other fission products produced by thermal-neutron fission of 235 uranium is determined by Germanium/Lithium spectroscopic methods. The measuremets were done at Tsing-Hua open pool reactor using 3 to 4 mg of 93.15% enriched 235 uranium samples. Gamma rays are assigned to the responsible fission products by matching gamma rays energies and half lives. Fission rate is calculated by fission track method. Cumulative fission yields of 148 cesium, 90 krypton, 130 iodine, 144 lanthanum, 89 krypton, 136 xenon, 137 xenon and 140 cesium are calculated. This values are compared with previously predicted values and showed good agreement. 21 Ref

  3. A search for back-to-back e+e- pairs in the spontaneous-fission disintegration of 252Cf

    International Nuclear Information System (INIS)

    Tsunoda, T.; Nakamura, S.; Orito, S.; Minowa, M.

    1995-01-01

    A back-to-back electron-positron pair is searched for in spontaneous-fission disintegration of 252 Cf. The emission of such a pair, if observed, might be a manifestation of production and prompt decay of a heretofore unknown neutral particle. The emission rate of such a pair is found to be less than (2.5-5.5) . 10 -10 per fission at the 95% confidence level depending on the mass of the hypothetical particle which is between 40 and 200 MeV/c 2 . (orig.)

  4. Prediction of fission product and aerosol behaviour during a postulated severe accident in a LWR

    International Nuclear Information System (INIS)

    Guentay, S.; Aeby, F.; Raguin, M.; Passalacqua, R.

    1990-02-01

    Lack of appropriate energy removal causes fuel elements in a reactor core to overheat and may eventually cause core to degrade. Fission products will be emitted from a degraded reactor core. Aerosols are generated when the vapours of various fuel and structural materials reach a cold environment and nucleate. In addition to the fission products release and aerosol generation taking place in the reactor vessel, some more fission products release and aerosol generation will occur when the molten core debris leaves the pressure vessel bottom head and comes in contact with the pedestal concrete floor. Fission products, if they are released to environment from the containment boundary, exert a great danger to public health. A source term is defined as the quantity, timing, and characteristics of the release of radionuclide material to the environment following a postulated severe accident. At PSI a considerable effort hase been spent in investigating and establishing a source term assessment methodology in order to predict the source term for a given Light Water Reactor (LWR) accident scenario. This report introduces the computer programs and the methods associated with the release of the fission products, generation of the aerosols and behaviour of the aerosols in LWR compartments used for a source term assessment analysis at PSI. (author) 4 figs., 5 tabs., 28 refs

  5. Electroplating method for producing ultralow-mass fissionable deposits

    International Nuclear Information System (INIS)

    Ruddy, F.H.

    1989-01-01

    A method for producing ultralow-mass fissionable deposits for nuclear reactor dosimetry is described, including the steps of holding a radioactive parent until the radioactive parent reaches secular equilibrium with a daughter isotope, chemically separating the daughter from the parent, electroplating the daughter on a suitable substrate, and holding the electroplated daughter until the daughter decays to the fissionable deposit

  6. Actinides and fission products partitioning from high level liquid waste

    International Nuclear Information System (INIS)

    Yamaura, Mitiko

    1999-01-01

    The presence of small amount of mixed actinides and long-lived heat generators fission products as 137 Cs and 90 Sr are the major problems for safety handling and disposal of high level nuclear wastes. In this work, actinides and fission products partitioning process, as an alternative process for waste treatment is proposed. First of all, ammonium phosphotungstate (PWA), a selective inorganic exchanger for cesium separation was chosen and a new procedure for synthesizing PWA into the organic resin was developed. An strong anionic resin loaded with tungstate or phosphotungstate anion enables the precipitation of PWA directly in the resinous structure by adding the ammonium nitrate in acid medium (R-PWA). Parameters as W/P ratio, pH, reactants, temperature and aging were studied. The R-PWA obtained by using phosphotungstate solution prepared with W/P=9.6, 9 hours digestion time at 94-106 deg C and 4 to 5 months aging time showed the best capacity for cesium retention. On the other hand, Sr separation was performed by technique of extraction chromatography, using DH18C6 impregnated on XAD7 resin as stationary phase. Sr is selectively extracted from acid solution and >99% was recovered from loaded column using distilled water as eluent. Concerning to actinides separations, two extraction chromatographic columns were used. In the first one, TBP(XAD7) column, U and Pu were extracted and its separations were carried-out using HNO 3 and hydroxylamine nitrate + HNO 3 as eluent. In the second one, CMP0-TBP(XAD7) column, the actinides were retained on the column and the separations were done by using (NH 4 ) 2 C 2 O 4 , DTPA, HNO 3 and HCl as eluent. The behavior of some fission products were also verified in both columns. Based on the obtained data, actinides and fission products Cs and Sr partitioning process, using TBP(XAD7) and CMP0-TBP(XAD7) columns for actinides separation, R-PWA column for cesium retention and DH18C6(XAD7) column for Sr isolation was performed

  7. Determination of gamma-ray exposure rate from short-lived fission products under criticality accident conditions

    International Nuclear Information System (INIS)

    Yanagisawa, Hiroshi; Ohno, Akio; Aizawa, Eijyu

    2002-01-01

    For the assessment of γ-ray doses from short-lived fission products (FPs) under criticality accident conditions, γ-ray exposure rates varying with time were experimentally determined in the Transient Experiment Critical Facility (TRACY). The data were obtained by reactivity insertion in the range of 1.50 to 2.93$. It was clarified from the experiments that the contribution of γ-ray from short-lived FPs to total exposure during the experiments was evaluated to be 15 to 17%. Hence, the contribution cannot be neglected for the assessment of γ-ray doses under criticality accident conditions. Computational analyses also indicated that γ-ray exposure rates from short-lived FPs calculated with the Monte Carlo code, MCNP4B, and photon sources based on the latest FP decay data, the JENDL FP Decay Data File 2000, well agreed with the experimental results. The exposure rates were, however, extremely underestimated when the photon sources were obtained by the ORIGEN2 code. The underestimation is due to lack of energy-dependent photon emission data for major short-lived FP nuclides in the photon database attached to the ORIGEN2 code. It was also confirmed that the underestimation arose in 1,000 or less of time lapse after an initial power burst. (author)

  8. Radiation Damage and Fission Product Release in Zirconium Nitride

    Energy Technology Data Exchange (ETDEWEB)

    Egeland, Gerald W. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    2005-08-29

    Zirconium nitride is a material of interest to the AFCI program due to some of its particular properties, such as its high melting point, strength and thermal conductivity. It is to be used as an inert matrix or diluent with a nuclear fuel based on transuranics. As such, it must sustain not only high temperatures, but also continuous irradiation from fission and decay products. This study addresses the issues of irradiation damage and fission product retention in zirconium nitride through an assessment of defects that are produced, how they react, and how predictions can be made as to the overall lifespan of the complete nuclear fuel package. Ion irradiation experiments are a standard method for producing radiation damage to a surface for observation. Cryogenic irradiations are performed to produce the maximum accumulation of defects, while elevated temperature irradiations may be used to allow defects to migrate and react to form clusters and loops. Cross-sectional transmission electron microscopy and grazing-incidence x-ray diffractometry were used in evaluating the effects that irradiation has on the crystal structure and microstructure of the material. Other techniques were employed to evaluate physical effects, such as nanoindentation and helium release measurements. Results of the irradiations showed that, at cryogenic temperatures, ZrN withstood over 200 displacements per atom without amorphization. No significant change to the lattice or microstructure was observed. At elevated temperatures, the large amount of damage showed mobility, but did not anneal significantly. Defect clustering was possibly observed, yet the size was too small to evaluate, and bubble formation was not observed. Defects, specifically nitrogen vacancies, affect the mechanical behavior of ZrN dramatically. Current and previous work on dislocations shows a distinct change in slip plane, which is evidence of the bonding characteristics. The stacking-fault energy changes dramatically with

  9. The discovery of 260Md and the decay properties of 258Fm, 258m,gMd and 259Md

    International Nuclear Information System (INIS)

    Lougheed, R.W.; Hulet, E.K.; Dougan, R.J.; Wild, J.F.; Dupzyk, R.J.; Henderson, C.M.; Moody, K.J.; Hahn, R.L.; Suemmerer, K.; Bethune, G.

    1986-01-01

    We have discovered a new neutron-rich isotope, 260 Md, from 18 O and 22 Ne bombardments of 254 Es. We observed a spontaneous-fission (SF) activity with a half-life of 32 days in electromagnetically separated fractions with mass number 260 from these bombardments and we measured the mass and kinetic energy distributions of this SF activity. The mass distribution was symmetric with the principal energy peak at a total kinetic energy (TKE) of 234 MeV, similar to previous observations for heavy fermium isotopes. Surprisingly, we also observed a smaller symmetric component with a TKE of 195 MeV. We interpret these two peaks in the TKE distribution as arising from two types of fission in the same nucleus, or bimodal fission. The observed fission activity may be either from the SF decay of 260 Md or from 260 Fm which would arise from electron-capture (EC) decay of 260 Md. We have eliminated the possible β - decay of 260 Md by measuring β - -SF time correlations for the decay of 260 Md and we plan to determine whether 260 Md decays by EC by measuring time correlations between fermium X-rays and SF events. We also measured various properties of the heavy fermium and mendelevium isotopes and obtained 1. more accurate cross-sections for the neutron-rich mendelevium isotopes which we use to predict the production rates of yet undiscovered nuclides, 2. improved half-life measurements for 258m,g Md and 259 Md, 3. confirmation of the EC decay of 258m Md by measurement of the fermium X-rays preceding the SF decay of 258 Fm and 4. very substantially improved mass and TKE distributions for the SF decay of 258 Fm and 259 Md. (orig.)

  10. Novel Fission-Product Separation Based on Room-Temperature Ionic Liquids

    International Nuclear Information System (INIS)

    Rogers, Robin D.

    2004-01-01

    This project has demonstrated that Sr2+ and Cs+ can be selectively extracted from aqueous solutions into ionic liquids using crown ethers and that unprecedented large distribution coefficients can be achieved for these fission products. The volume of secondary wastes can be significantly minimized with this new separation technology. Through the current EMSP funding, the solvent extraction technology based on ionic liquids has been shown to be viable and can potentially provide the most efficient separation of problematic fission products from high level wastes. The key results from the current funding period are the development of highly selective extraction process for cesium ions based on crown ethers and calixarenes, optimization of selectivities of extractants via systematic change of ionic liquids, and investigation of task-specific ionic liquids incorporating both complexant and solvent characteristics

  11. Radiochemistry and the Study of Fission

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-14

    These are slides from a lecture given at UC Berkeley. Radiochemistry has been used to study fission since its discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution. The following topics are covered: In the beginning: the discovery of fission; forensics using fission products: what can be learned from fission products, definitions of R-values and Q-values, fission bases, K-factors and fission chambers, limitations; the neutron energy dependence of the mass yield distribution (the two mode fission hypothesis); the influence of nuclear structure on the mass yield distribution. In summary: Radiochemistry has been used to study fission since its discovery. Radiochemical measurement of fission product yields have provided the highest precision data for developing fission models and for nuclear forensics. The two-mode fission hypothesis provides a description of the neutron energy dependence of the mass yield curve. However, data is still rather sparse and more work is needed near second and third chance fission. Radiochemical measurements have provided evidence for the importance of nuclear states in the compound nucleus in predicting the mass yield curve in the resonance region.

  12. Radiochemistry and the Study of Fission

    International Nuclear Information System (INIS)

    Rundberg, Robert S.

    2016-01-01

    These are slides from a lecture given at UC Berkeley. Radiochemistry has been used to study fission since its discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution. The following topics are covered: In the beginning: the discovery of fission; forensics using fission products: what can be learned from fission products, definitions of R-values and Q-values, fission bases, K-factors and fission chambers, limitations; the neutron energy dependence of the mass yield distribution (the two mode fission hypothesis); the influence of nuclear structure on the mass yield distribution. In summary: Radiochemistry has been used to study fission since its discovery. Radiochemical measurement of fission product yields have provided the highest precision data for developing fission models and for nuclear forensics. The two-mode fission hypothesis provides a description of the neutron energy dependence of the mass yield curve. However, data is still rather sparse and more work is needed near second and third chance fission. Radiochemical measurements have provided evidence for the importance of nuclear states in the compound nucleus in predicting the mass yield curve in the resonance region.

  13. Bubble chamber: Omega production and decay

    CERN Multimedia

    1973-01-01

    This image is of real particle tracks taken from the CERN 2 m liquid hydrogen bubble chamber and shows the production and decay of a negative omega particle. A negative kaon enters the chamber which decays into many particles, including a negative omega that travels a short distance before decaying into more particles. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real tracks left by particles to be seen and photographed by expanding liquid that had been heated to boiling point.

  14. Manifestation of transient effects in fission induced by relativistic heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Jurado, B.; Schmitt, C.; Schmidt, K.H.; Benlliure, J. [Universidad de Santiago de Compostela (Spain); Junghans, A.R. [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany)

    2004-03-01

    We examine the manifestation of transient effects in fission by analysing experimental data where fission is induced by peripheral heavy-ion collisions at relativistic energies. Available total nuclear fission cross sections of {sup 238}U at1.A GeV on gold and uranium targets are compared with a nuclear-reaction code, where transient effects in fission are modelled using different approximations to the numerical time-dependent fission-decay width: a new analytical description based on the solution of the Fokker-Planck equation and two widely used but less realistic descriptions, a step function and an exponential-like function. The experimental data are only reproduced when transient effects are considered. The deduced value of the dissipation strength {beta} depends strongly on the approximation applied for the time-dependent fission-decay width and is estimated to be of the order of 2 x 10{sup 21} s{sup -1}. A careful analysis sheds severe doubts on the use of the exponential-like in-growth function largely used in the past. Finally, we discuss which should be the characteristics of experimental observables to be most sensitive to transient effects in fission. (orig.)

  15. Production of D$^{**}_{s}$ mesons in hadronic Z decays

    CERN Document Server

    Heister, A.; Barate, R.; De Bonis, I.; Decamp, D.; Goy, C.; Lees, J.P.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Boix, G.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Ruiz, H.; Colaleo, A.; Creanza, D.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Azzurri, P.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Greening, T.C.; Hansen, J.B.; Harvey, J.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Schneider, O.; Sguazzoni, G.; Tejessy, W.; Teubert, F.; Valassi, A.; Videau, I.; Ward, J.; Badaud, F.; Falvard, A.; Gay, P.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Perret, P.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Waananen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J.C.; Rouge, A.; Rumpf, M.; Swynghedauw, M.; Verderi, M.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Spagnolo, P.; Halley, A.; Lynch, J.G.; Negus, P.; O'Shea, V.; Raine, C.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E.E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Dornan, P.J.; Girone, M.; Marinelli, N.; Sedgbeer, J.K.; Thompson, J.C.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Sander, H.G.; Wachsmuth, H.; Zeitnitz, C.; Bonissent, A.; Carr, J.; Coyle, P.; Leroy, O.; Payre, P.; Rousseau, D.; Talby, M.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Settles, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Lefrancois, J.; Veillet, J.J.; Yuan, C.; Bagliesi, Giuseppe; Boccali, T.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Blair, G.A.; Cowan, G.; Green, M.G.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; von Wimmersperg-Toeller, J.H.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Colas, P.; Emery, S.; Kozanecki, W.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Roussarie, A.; Schuller, J.P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Konstantinidis, N.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Ngac, A.; Prange, G.; Sieler, U.; Giannini, G.; Rothberg, J.; Armstrong, S.R.; Berkelman, Karl; Cranmer, K.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Pan, Y.B.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.; Dissertori, G.

    2002-01-01

    The production rates of the orbitally excited Ds** mesons, Ds1 and Ds2*, are measured with the 4.1 million hadronic Z decays recorded by the ALEPH detector during 1991--1995. The Ds** mesons are reconstructed in the decay modes Ds1+ -> D*+ K0, Ds1+ -> D*0 K+ and Ds2*+ -> D0 K+. The production rate of the Ds1 is measured to be n(Z->Ds1+-)=(0.52+-0.09+-0.06)%, under the assumption that the two considered decay modes of the Ds1 saturate the branching ratio. The production rate of the Ds2* is determined to be n(Z->Ds2*+-)=(0.83+-0.29+0.07-0.13)%, assuming that the branching fraction of the decay Ds2*+ -> D0 K+ is 45%. The production rates in Z->cc and Z->bbar decays are measured separately.

  16. $\\Upsilon$ production in Z Decays

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alverson, G; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Boucham, A; Bourilkov, D; Bourquin, Maurice; Boutigny, D; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chekanov, S V; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chen, M; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Commichau, V; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dorne, I; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gerald, J; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Van Hoek, W C; Hofer, H; Hong, S J; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kim, Y G; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Ladrón de Guevara, P; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Leggett, C; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Mihul, A; Van Mil, A J W; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Morganti, S; Moulik, T; Mount, R; Müller, S; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Opitz, H; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Pinto, J C; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sarkar, S; Sassowsky, M; Sauvage, G; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schmitz, P; Schneegans, M; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Sopczak, André; Soulimov, V; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, H; Stoyanov, B; Strässner, A; Strauch, K; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonutti, M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Van de Walle, R T; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wittgenstein, F; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhou, Y; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F

    1997-01-01

    We have searched for evidence of Upsilon production in 3.5 million hadronic Z decays collected by the L3 detector at LEP in 1991-1995. No signals are observed for the decay chain Z -> Upsilon X; Upsilon -> l+l- (l= e, mu), therefore upper limits at the 95% confidence level are set on the following Z branching fractions: BR (Z -> Upsilon(1S) X) Upsilon(2S) X) Upsilon(3S) X) < 9.4 x 10**-5.

  17. Predictions on the modes of decay of even Z superheavy isotopes within the range 104 ≤ Z ≤ 136

    Science.gov (United States)

    Santhosh, K. P.; Nithya, C.

    2018-01-01

    The decay modes and half lives of all the even Z isotopes of superheavy elements within the range 104 ≤ Z ≤ 136 have been predicted by comparing the alpha decay half-lives with the spontaneous fission half-lives. The Coulomb and proximity potential model for deformed nuclei (CPPMDN) and the shell-effect-dependent formula of Santhosh et al. are used to calculate the alpha half-lives and spontaneous fission half-lives respectively. For theoretical comparison the alpha decay half-lives are also calculated using Coulomb and proximity potential model (CPPM), the Viola-Seaborg-Sobiczewski semi-empirical (VSS) relation, the universal (UNIV) curve of Poenaru et al., the analytical formula of Royer and the universal decay law (UDL) of Qi et al. Another tool used for the evaluation of spontaneous fission half-lives is the semi-empirical formula of Xu et al. The nuclei with alpha decay half-lives less than spontaneous fission half-lives will survive fission and hence decay through alpha emission. The predicted half lives and decay modes are compared with the available experimental results. The one-proton and two-proton separation energies of all the isotopes are calculated to find nuclei which lie beyond the proton drip line. Among 1119 even Z nuclei within the range 104 ≤ Z ≤ 136, 164 nuclei show sequential alpha emission followed by subsequent spontaneous fission. Since the isotopes decay through alpha decay chain and the half-lives are in measurable range, these isotopes are predicted to be synthesized and detected in laboratory via alpha decay. 2 nuclei will decay by alpha decay followed by proton emission, 54 nuclei show full alpha chains, 642 nuclei will decay through spontaneous fission, 166 nuclei exhibit proton decay and 91 isotopes are found to be stable against alpha decay. All the isotopes are tabulated according to their decay modes. The study is intended to enhance further experimental investigations in superheavy region.

  18. Fission Product Release from Spent Nuclear Fuel During Melting

    International Nuclear Information System (INIS)

    Howell, J.P.; Zino, J.F.

    1998-09-01

    The Melt-Dilute process consolidates aluminum-clad spent nuclear fuel by melting the fuel assemblies and diluting the 235U content with depleted uranium to lower the enrichment. During the process, radioactive fission products whose boiling points are near the proposed 850 degrees C melting temperature can be released. This paper presents a review of fission product release data from uranium-aluminum alloy fuel developed from Severe Accident studies. In addition, scoping calculations using the ORIGEN-S computer code were made to estimate the radioactive inventories in typical research reactor fuel as a function of burnup, initial enrichment, and reactor operating history and shutdown time.Ten elements were identified from the inventory with boiling points below or near the 850 degrees C reference melting temperature. The isotopes 137Cs and 85Kr were considered most important. This review serves as basic data to the design and development of a furnace off-gas system for containment of the volatile species

  19. Decay times for second-chance fission of 239U studied by crystal blocking

    International Nuclear Information System (INIS)

    Andersen, J.U.; Chechenin, N.G.; Jensen, A.S.; Joergensen, K.; Laegsgaard, E.

    1979-01-01

    Neutron-induced fission of 238 U has been studied by the crystal-blocking technique for neutron energies just below and above the threshold for second-chance fission. In agreement with earlier measurements, in this energy range the lifetime for first-chance fission is found to be too short to have an observable effect on the blocking dips. Above the threshold, however, an appreciable filling-in of the dips is observed. The results are analyzed in the terms of a two-component lifetime distribution and then indicate an average lifetime of a few fsec for second-chance fission at a neutron energy of Esub(n)approximately7.2 MeV, in agreement with results from a simple calculation. It is shown that in this analysis it is important to take into account the anisotropy of the fission-fragment distribution and, in particular, the difference between the angular distributions for first- and second-chance fission. (Auth.)

  20. Fission product Pd-SiC interaction in irradiated coated particle fuels

    International Nuclear Information System (INIS)

    Tiegs, T.N.

    1980-04-01

    Silicon carbide is the main barrier to fission product release from coated particle fuels. Consequently, degradation of the SiC must be minimized. Electron microprobe analysis has identified that palladium causes corrosion of the SiC in irradiated coated particles. Further ceramographic and electron microprobe examinations on irradiated particles with kernels ranging in composition from UO 2 to UC 2 , including PuO/sub 2 -x/ and mixed (Th, Pu) oxides, and in enrichment from 0.7 to 93.0% 235 U revealed that temperature is the major factor affecting the penetration rate of SiC by Pd. The effects of kernel composition, Pd concentration, other fission products, and SiC properties are secondary