WorldWideScience

Sample records for fission power 2d-mapping

  1. Map of calculated radioactivity of fission product, 2

    International Nuclear Information System (INIS)

    Takeda, Tsuneo

    1977-02-01

    In this work, the radioactivities of fission products were calculated and summarized in contour maps and tables depending on irradiation and cooling times. The irradiation condition and other parameters used for the present calculation are shown in the followings. Neutron flux (N sub(th)): 3x10 13 n/sec/cm 2 Atom number of uranium: 1 mole (6x10 23 , ca. 271 gUO 2 ) Enrichment of U-235: 2.7% Range of irradiation time: 60-6x10 7 sec (ca. 1.9 y) Range of cooling time: 60-6x10 7 sec (ca. 1.9 y). Values of the neutron flux and the enrichment treated here are representative for common LWRs. The maps and tables of 560 nuclides are divided and compiled into the following three volumes. Vol. I: Maps of radioactivity of overall total, element total and each nuclide (Ni - Zr), Vol. II: Maps of radioactivity of each nuclide (Nb - Sb), Vol. III: Maps of radioactivity of each nuclide (Te - Tm). (auth.)

  2. Fission Surface Power Technology Development Update

    Science.gov (United States)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2011-01-01

    conversion unit with electrical controls, and a heat rejection system with a multi-panel radiator assembly. Testing is planned at the Glenn Research Center Vacuum Facility 6 starting in 2012, with vacuum and liquid-nitrogen cold walls to provide simulation of operationally relevant environments. A nominal two-year test campaign is planned including a Phase 1 reactor simulator and power conversion test followed by a Phase 2 integrated system test with radiator panel heat rejection. The testing is expected to demonstrate the readiness and availability of fission surface power as a viable power system option for NASA's exploration needs. In addition to surface power, technology development work within this project is also directly applicable to in-space fission power and propulsion systems.

  3. Two-Dimensional Mapping of the Calculated Fission Power for the Full-Size Fuel Plate Experiment Irradiated in the Advanced Test Reactor

    Science.gov (United States)

    Chang, G. S.; Lillo, M. A.

    2009-08-01

    The National Nuclear Security Administrations (NNSA) Reduced Enrichment for Research and Test Reactors (RERTR) program assigned to the Idaho National Laboratory (INL) the responsibility of developing and demonstrating high uranium density research reactor fuel forms to enable the use of low enriched uranium (LEU) in research and test reactors around the world. A series of full-size fuel plate experiments have been proposed for irradiation testing in the center flux trap (CFT) position of the Advanced Test Reactor (ATR). These full-size fuel plate tests are designated as the AFIP tests. The AFIP nominal fuel zone is rectangular in shape having a designed length of 21.5-in (54.61-cm), width of 1.6-in (4.064-cm), and uniform thickness of 0.014-in (0.03556-cm). This gives a nominal fuel zone volume of 0.482 in3 (7.89 cm3) per fuel plate. The AFIP test assembly has two test positions. Each test position is designed to hold 2 full-size plates, for a total of 4 full-size plates per test assembly. The AFIP test plates will be irradiated at a peak surface heat flux of about 350 W/cm2 and discharged at a peak U-235 burn-up of about 70 at.%. Based on limited irradiation testing of the monolithic (U-10Mo) fuel form, it is desirable to keep the peak fuel temperature below 250°C to achieve this, it will be necessary to keep plate heat fluxes below 500 W/cm2. Due to the heavy U-235 loading and a plate width of 1.6-in (4.064-cm), the neutron self-shielding will increase the local-to-average-ratio (L2AR) fission power near the sides of the fuel plates. To demonstrate that the AFIP experiment will meet the ATR safety requirements, a very detailed 2-dimensional (2D) Y-Z fission power profile was evaluated in order to best predict the fuel plate temperature distribution. The ability to accurately predict fuel plate power and burnup are essential to both the design of the AFIP tests as well as evaluation of the irradiated fuel performance. To support this need, a detailed MCNP Y

  4. Map of calculated radioactivity of fission product, (4)

    International Nuclear Information System (INIS)

    Takeda, Tsuneo

    1978-07-01

    The overall radioactivities of fission products depending on irradiation time and cooling time were calculated for 18 different neutron fluxes, which are presented in contour maps and tables. Irradiation condition etc. are the followings: neutron flux (n sub(th)) 1 x 10 12 - 6.8 x 10 14 n/cm 2 /sec, uranium quantity 1 mole (6 x 10 23 atoms, ca. 271 g UO 2 ), U-235 enrichment 2.7%, irradiation time 60. - 6 x 10 7 sec (1 min - 1.9 y), cooling time 0. and 60. - 6 x 10 7 sec (1 min - 1.9 y). The enrichment value represents those for LWRs. To calculate the overall radioactivities, 595 fission product nuclides were introduced. Overall radioactivities calculations were made for 68,000 combinations of irradiation time, cooling time and neutron flux. The many complex decay chains of fission products were treated with CODAC-No.6 computer code. (author)

  5. Study of advanced fission power reactor development for the United States. Volume I

    International Nuclear Information System (INIS)

    1976-01-01

    This volume summarizes the results and conclusions of an assessment of five advanced fission power reactor concepts in the context of potential nuclear power economies developed over the time period 1975 to 2020. The study was based on the premise that the LMFBR program has been determined to be the highest priority fission reactor program and it will proceed essentially as planned. Accepting this fact, the overall objective of the study was to provide evaluations of advanced fission reactor systems for input to evaluating the levels of research and development funding for fission power. Evaluation of the reactor systems included the following categories: (1) power plant performance, (2) fuel resource utilization; (3) fuel-cycle requirements; (4) economics; (5) environmental impact; (6) risk to the public; and (7) R and D requirements to achieve commercial status. The specific major objectives of the study were twofold: (1) to parametrically assess the impact of various reactor types for various levels of power demand through the year 2020 on fissile fuel utilization, economics, and the environment, based on varying but reasonable assumptions on the rates of installation; and (2) to qualitatively assess the practicality of the advanced reactor concepts, and their research and development. The reactor concepts examined were limited to the following: advanced high-temperature, gas-cooled reactor (HTGR) systems including the thorium/U-233 fuel cycle, gas turbine, and binary cycle (BIHTGR); gas-cooled fast breeder reactor (GCFR); molten salt breeder reactor (MSBR); light water breeder reactor (LWBR); and CANDU heavy water reactor

  6. R and D in Ciemat Nuclear Fission Department

    International Nuclear Information System (INIS)

    Diaz, J. L.; Diaz Arocas, P.; Gomez Briceno, D.; Gonzalez de la Huebra Gordo, A.; Gonzalez Romero, E.; Herranz Puebla, L. E.; Sola Farre, R.

    2000-01-01

    The technologically developed countries count on nuclear fission as a durable energy resource to produce electricity, facing the future by establishing research programmes to enhance the safety and extend the lifetime of the current power plants and to achieve the adequate management of radioactive waste. At the same time, the progress in the development of a new generation of reactors based in innovative safety concepts. The Nuclear fission Department has the ultimate objective of providing technical support to the Spanish nuclear reactors through applied research and development focused on improving the safety and performance of the operating power plants, and cooperating in the activities related to radioactive waste. In this context, the Departament has been organised in four R and D project covering the areas of Safety, Materials, Radioactive. (Author)

  7. Options for Affordable Fission Surface Power Systems

    International Nuclear Information System (INIS)

    Houts, Mike; Gaddis, Steve; Porter, Ron; Van Dyke, Melissa; Martin, Jim; Godfroy, Tom; Bragg-Sitton, Shannon; Garber, Anne; Pearson, Boise

    2006-01-01

    Fission surface power systems could provide abundant power anywhere on the surface of the moon or Mars. Locations could include permanently shaded regions on the moon and high latitudes on Mars. To be fully utilized, however, fission surface power systems must be safe, have adequate performance, and be affordable. This paper discusses options for the design and development of such systems. (authors)

  8. Fission multipliers for D-D/D-T neutron generators

    International Nuclear Information System (INIS)

    Lou, T.P.; Vujic, J.L.; Koivunoro, H.; Reijonen, J.; Leung, K.-N.

    2003-01-01

    A compact D-D/D-T fusion based neutron generator is being designed at the Lawrence Berkeley National Laboratory to have a potential yield of 10 12 D-D n/s and 10 14 D-T n/s. Because of its high neutron yield and compact size (∼20 cm in diameter by 4 cm long), this neutron generator design will be suitable for many applications. However, some applications required higher flux available from nuclear reactors and spallation neutron sources operated with GeV proton beams. In this study, a subcritical fission multiplier with k eff of 0.98 is coupled with the compact neutron generators in order to increase the neutron flux output. We have chosen two applications to show the gain in flux due to the use of fission multipliers--in-core irradiation and out-of-core irradiation. For the in-core irradiation, we have shown that a gain of ∼25 can be achieved in a positron production system using D-T generator. For the out-of-core irradiation, a gain of ∼17 times is obtained in Boron Neutron Capture Therapy (BNCT) using a D-D neutron generator. The total number of fission neutrons generated by a source neutron in a fission multiplier with k eff is ∼50. For the out-of-core irradiation, the theoretical maximum net multiplication is ∼30 due to the absorption of neutrons in the fuel. A discussion of the achievable multiplication and the theoretical multiplication will be presented in this paper

  9. Reference reactor module for NASA's lunar surface fission power system

    International Nuclear Information System (INIS)

    Poston, David I.; Kapernick, Richard J.; Dixon, David D.; Werner, James; Qualls, Louis; Radel, Ross

    2009-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO 2 -fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.

  10. Map of calculated radioactivity of fission product, 3

    International Nuclear Information System (INIS)

    Takeda, Tsuneo

    1977-02-01

    In this work, the radioactivities of fission products were calculated and summarized in contour maps and tables depending on irradiation and cooling times. The irradiation condition and other parameters used for the present calculation are shown in the followings. Neutron flux (N sub(th)): 3x10 13 n/sec/cm 2 Atom number of uranium: 1 mole (6x10 23 , ca. 271 gUO 2 ) Enrichment of U-235: 2.7% Range of irradiation time: 60-6x10 7 sec (ca. 1.9 y) Range of cooling time: 60-6x10 7 sec (ca. 1.9 y). Values of the neutron flux and the enrichment treated here are representative for common LWRs. The maps and tables of 560 nuclides are divided and compiled into the following three volumes. Vol. I: Maps of radioactivity of overall total, element total and each nuclide (Ni - Zr), Vol. II: Maps of radioactivity of each nuclide (Nb - Sb), Vol. III: Maps of radioactivity of each nuclide (Te - Tm). (auth.)

  11. Map of calculated radioactivity of fission product, (1)

    International Nuclear Information System (INIS)

    Takeda, Tsuneo

    1977-02-01

    In this work, the radioactivities of fission products were calculated and summarized in contour maps and tables depending on irradiation and cooling times. The irradiation condition and other parameters used for the present calculation are shown in the followings. Neutron flux (N sub(th)): 3x10 13 n/sec/cm 2 Atom number of uranium: 1 mole (6x10 23 , ca. 271 gUO 2 ) Enrichment of U-235: 2.7% Range of irradiation time: 60-6x10 7 sec (ca. 1.9 y) Range of cooling time: 60-6x10 7 sec (ca. 1.9 y). Values of the neutron flux and the enrichment treated here are representative for common LWRs. The maps and tables of 560 nuclides are divided and compiled into the following three volumes. Vol. I Maps of radioactivity of overall total, element total and each nuclide (Ni - Zr) Vol. II Maps of radioactivity of each nuclide (Nb - Sb) Vol. III Maps of radioactivity of each nuclide (Te - Tm) (auth.)

  12. Personalized 2D color maps

    KAUST Repository

    Waldin, Nicholas

    2016-06-24

    2D color maps are often used to visually encode complex data characteristics such as heat or height. The comprehension of color maps in visualization is affected by the display (e.g., a monitor) and the perceptual abilities of the viewer. In this paper we present a novel method to measure a user\\'s ability to distinguish colors of a two-dimensional color map on a given monitor. We show how to adapt the color map to the user and display to optimally compensate for the measured deficiencies. Furthermore, we improve user acceptance of the calibration procedure by transforming the calibration into a game. The user has to sort colors along a line in a 3D color space in a competitive fashion. The errors the user makes in sorting these lines are used to adapt the color map to his perceptual capabilities.

  13. Explorative analysis of 2D color maps

    OpenAIRE

    Steiger, Martin; Bernard, Jürgen; Thum, Simon; Mittelstädt, Sebastian; Hutter, Marco; Keim, Daniel A.; Kohlhammer, Jörn

    2015-01-01

    Color is one of the most important visual variables in information visualization. In many cases, two-dimensional information can be color-coded based on a 2D color map. A variety of color maps as well as a number of quality criteria for the use of color have been presented. The choice of the best color map depends on the analytical task users intend to perform and the design space in choosing an appropriate 2D color map is large. In this paper, we present the ColorMap-Explorer, a visual-inter...

  14. Comparison of environmental impact of waste disposal from fusion, fission and coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Frey, Bruno [Fichtner GmbH und Co. KG, Stuttgart (Germany)

    2011-08-15

    The radiotoxic hazard of waste from fusion power plants has been compared with that of fission power and radioactive trace elements in coal ash within some research programs such as SEAFP and SEIF. Within another program, in 2005 a Power Plant Conceptual Study (PPCS) has been finalized investigating 4 fusion power plant models A to D. In this paper, the radiotoxicity of model B is compared with a fission power plant, concentrating on the production of wastes. The hazard of the respective masses of enriched uranium before use in a fission power plant and coal ash of a power plant generating the same amount of electricity are used as benchmarks. It is evident that the development of ingestion and inhalation hazard of the PPCS model B is different from the results of earlier studies because of different assumptions on material impurities and other constraints. An important aspect is the presence of actinides in fusion power plant waste. (orig.)

  15. Fission gas release and grain growth in THO2-UO2 fuel irradiated at high temperature

    International Nuclear Information System (INIS)

    Goldberg, I.; Waldman, L.A.; Giovengo, J.F.; Campbell, W.R.

    1979-01-01

    Data are presented on fission gas release and grain growth in ThO 2 -UO 2 fuels irradiated as part of the LWBR fuel element development program. These data for rods that experienced peak linear power outputs ranging from 15 to 22 KW/ft supplement fission gas release data previously reported for 51 rods containing ThO 2 and ThO 2 -UO 2 fuel irradiated at peak linear powers predominantly below 14 KW/ft. Fission gas release was relatively high (up to 15.0 percent) for the rods operated at high power in contrast to the relatively low fission gas release (0.1 to 5.2 percent) measured for the rods operated at lower power. Metallographic examination revealed extensive equiaxed grain growth in the fuel at the high power axial locations of the three rods

  16. Lunar surface fission power supplies: Radiation issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Lee, S.K.

    1994-01-01

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to these seen in free space. For a well designed shield, the additional mass required to be brought fro earth should be less than 1000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield

  17. Lunar surface fission power supplies: Radiation issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Lee, S.K.

    1994-01-01

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to those seen in free space. For a well designed shield, the additional mass required to be brought from earth should be less than 1,000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield

  18. Fission nuclear power prospects and its role in meeting global energy needs

    International Nuclear Information System (INIS)

    Golan, S.

    1992-01-01

    Nuclear power currently makes an important contribution to world's energy requirements providing 17% of its electricity. But as global warming becomes of greater concern, many ask whether nuclear power can and should contribute more. The author, who is involved in the nuclear power enterprise for 35 years, tries to answer this question affirmative. He holds the view that: a) nuclear fission power is essential to meeting world's energy needs without unduly impairing the global environment; b) by possessing the required attributes discussed in this paper, nuclear fission power can be made societally acceptable; c) the industrialized world should accelerate LMFR deployment while fostering more convenient energy alternatives for the developing world; and d) the HTGR is unique in its ability to augment non-electricity energy needs and could become the technology choice of developing countries for nuclear electricity production. (author). 5 refs., 5 figs., 4 tabs

  19. Reference reactor module for NASA's lunar surface fission power system

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David I [Los Alamos National Laboratory; Kapernick, Richard J [Los Alamos National Laboratory; Dixon, David D [Los Alamos National Laboratory; Werner, James [INL; Qualls, Louis [ORNL; Radel, Ross [SNL

    2009-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO{sub 2}-fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.

  20. A Practical Approach to Starting Fission Surface Power Development

    International Nuclear Information System (INIS)

    Mason, Lee

    2006-01-01

    The Prometheus Power and Propulsion Program has been reformulated to address NASA needs relative to lunar and Mars exploration. Emphasis has switched from the Jupiter Icy Moons Orbiter (JIMO) flight system development to more generalized technology development addressing Fission Surface Power (FSP) and Nuclear Thermal Propulsion (NTP). Current NASA budget priorities and the deferred mission need date for nuclear systems prohibit a fully funded reactor Flight Development Program. However, a modestly funded Advanced Technology Program can and should be conducted to reduce the risk and cost of future flight systems. A potential road-map for FSP technology development leading to possible flight applications could include three elements: 1) Conceptual Design Studies, 2) Advanced Component Technology, and 3) Non-Nuclear System Testing. The Conceptual Design Studies would expand on recent NASA and DOE analyses while increasing the depth of study in areas of greatest uncertainty such as reactor integration and human-rated shielding. The Advanced Component Technology element would address the major technology risks through development and testing of reactor fuels, structural materials, primary loop components, shielding, power conversion, heat rejection, and power management and distribution (PMAD). The Non-Nuclear System Testing would provide a modular, technology test-bed to investigate and resolve system integration issues. (author)

  1. Fission Surface Power Technology Demonstration Unit Test Results

    Science.gov (United States)

    Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M.; Sanzi, James L.

    2016-01-01

    The Fission Surface Power (FSP) Technology Demonstration Unit (TDU) is a system-level demonstration of fission power technology intended for use on manned missions to Mars. The Baseline FSP systems consists of a 190 kWt UO2 fast-spectrum reactor cooled by a primary pumped liquid metal loop. This liquid metal loop transfers heat to two intermediate liquid metal loops designed to isolate fission products in the primary loop from the balance of plant. The intermediate liquid metal loops transfer heat to four Stirling Power Conversion Units (PCU), each of which produce 12 kWe (48 kW total) and reject waste heat to two pumped water loops, which transfer the waste heat to titanium-water heat pipe radiators. The FSP TDU simulates a single leg of the baseline FSP system using an electrically heater core simulator, a single liquid metal loop, a single PCU, and a pumped water loop which rejects the waste heat to a Facility Cooling System (FCS). When operated at the nominal operating conditions (modified for low liquid metal flow) during TDU testing the PCU produced 8.9 kW of power at an efficiency of 21.7 percent resulting in a net system power of 8.1 kW and a system level efficiency of 17.2 percent. The reduction in PCU power from levels seen during electrically heated testing is the result of insufficient heat transfer from the NaK heater head to the Stirling acceptor, which could not be tested at Sunpower prior to delivery to the NASA Glenn Research Center (GRC). The maximum PCU power of 10.4 kW was achieved at the maximum liquid metal temperature of 875 K, minimum water temperature of 350 K, 1.1 kg/s liquid metal flow, 0.39 kg/s water flow, and 15.0 mm amplitude at an efficiency of 23.3 percent. This resulted in a system net power of 9.7 kW and a system efficiency of 18.7 percent.

  2. Modeling fission gas release in high burnup ThO2-UO2 fuel

    International Nuclear Information System (INIS)

    Long, Y.; Yuan, Y.; Pilat, E.E.; Rim, C.S.; Kazimi, M.S.

    2001-01-01

    A preliminary fission gas release model to predict the performance of thoria fuel using the FRAPCON-3 computer code package has been formulated. The following modeling changes have been made in the code: - Radial power/burnup distribution; - Thermal conductivity and thermal expansion; - Rim porosity and fuel density; - Diffusion coefficient of fission gas in ThO 2 -UO 2 fuel and low temperature fission gas release model. Due to its lower epithermal resonance absorption, thoria fuel experiences a much flatter distribution of radial fissile products and radial power distribution during operation as compared to uranian fuel. The rim effect and its consequences in thoria fuel, therefore, are expected to occur only at relatively high burnup levels. The enhanced conductivity is evident for ThO 2 , but for a mixture the thermal conductivity enhancement is small. The lower thermal fuel expansion tends to negate these small advantages. With the modifications above, the new version of FRAPCON-3 matched the measured fission gas release data reasonably well using the ANS 5.4 fission gas release model. (authors)

  3. 2-D mapping of ICRF-induced SOL perturbations in Tore Supra tokamak

    International Nuclear Information System (INIS)

    Colas, L.; Gunn, J.P.; Nanobashvili, I.; Petrzilka, V.; Goniche, M.; Ekedahl, A.; Heuraux, S.; Joffrin, E.; Saint-Laurent, F.; Balorin, C.; Lowry, C.; Basiuk, V.

    2007-01-01

    ICRF-induced SOL modifications are mapped for the first time in 2-D around Tore Supra ICRF antennas using reciprocating Langmuir probes. When probe heads are magnetically connected to powered antennas, radical modifications of floating potentials V float , effective temperatures T eff and ion saturation currents are observed. V float perturbations are located radially near antenna limiters, with a typical extension 2 cm. Poloidally they are locally minimal near the equatorial plane, and maximal near antenna box corners. Two possible interpretations for increased T eff are proposed: localised electron heating and RF loop voltage induced along probe circuit. Both interpretations rely on the generation of parallel RF fields by parallel RF currents on the antenna structure. The topology of such currents could explain the 2-D structure of T eff maps. Both interpretations also imply a positive DC biasing of the antenna environment. Differential biasing of nearby flux tubes drives DC E x B 0 convection that could explain 2-D density patterns

  4. Kilowatt-Class Fission Power Systems for Science and Human Precursor Missions

    Science.gov (United States)

    Mason, Lee S.; Gibson, Marc Andrew; Poston, Dave

    2013-01-01

    Nuclear power provides an enabling capability for NASA missions that might otherwise be constrained by power availability, mission duration, or operational robustness. NASA and the Department of Energy (DOE) are developing fission power technology to serve a wide range of future space uses. Advantages include lower mass, longer life, and greater mission flexibility than competing power system options. Kilowatt-class fission systems, designated "Kilopower," were conceived to address the need for systems to fill the gap above the current 100-W-class radioisotope power systems being developed for science missions and below the typical 100-k We-class reactor power systems being developed for human exploration missions. This paper reviews the current fission technology project and examines some Kilopower concepts that could be used to support future science missions or human precursors.

  5. (d,p)-transfer induced fission of heavy radioactive beams

    CERN Document Server

    Veselsky, Martin

    2012-01-01

    (d,p)-transfer induced fission is proposed as a tool to study low energy fission of exotic heavy nuclei. Primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission offers a possibility for systematic study the low energy fission of heavy exotic nuclei at the ISOLDE.

  6. Regulatory aspects of fusion power-lessons from fission plants

    International Nuclear Information System (INIS)

    Natalizio, A.; Brunnader, H.; Sood, S.K.

    1993-01-01

    Experience from fission reactors has shown the regulatory process for licensing a nuclear facility to be legalistic, lengthy, unpredictable, and costly. This experience also indicates that much of the regulatory debate is focused on safety margins, that is, the smaller the safety margins the bigger the regulatory debate and the greater the amount of proof required to satisfy the regulatory. Such experience suggests that caution and prudence guide the development of a regulatory regime for fusion reactors. Fusion has intrinsic safety and environmental advantages over fission, which should alleviate significantly, or even eliminate, the regulatory problems associated with fission. The absence of a criticality concern and the absence of fission products preclude a Chernobyl type accident from occurring in a fusion reactor. Although in a fusion reactor there are large inventories of radioactive products that can be mobilized, the total quantity is orders of magnitude smaller than in fission power reactors. The bulk of the radioactivity in a fusion reactor is either activation products in steel structures, or tritium fuel supplies safely stored in the form of a metal tritide in storage beds. The quantity of tritium that can be mobilized under accident conditions is much less than ten million curies. This compares very favorably with a fission product inventory greater than ten billion curies in a fission power reactor. Furthermore, in a fission reactor, all of the reactivity is contained in a steel vessel that is pressurized to about 150 atmospheres, whereas in a fusion reactor, the inventory of radioactive material is dispersed in different areas of the plant, such that it is improbable that a single event could give rise to the release of the entire inventory to the environment. With such significant intrinsic safety advantages there is no a priori need to make fusion requirements/regulations more demanding and more stringent than fission

  7. Fission observables from 4D Langevin calculations with macroscopic transport coefficients

    Directory of Open Access Journals (Sweden)

    Usang Mark D.

    2018-01-01

    Full Text Available We have extended the Langevin equations to 4 dimensions (4D by allowing the independent deformation for the left (δ1 and right fragments (δ2 of the fissioning nucleus. At the moment we are only able to use them in conjunction with the macroscopic transport coefficients. Nevertheless, we can see a considerable improvement in the preliminary results for the fission observables, especially those related to the total kinetic energy (TKE of fission fragments. By plotting the TKE distributions we have revealed the super-long fission modes in 236U and super-short fission modes in 257Fm. By plotting the distribution of δ against the fragment’s TKE we have noted a correlation between the values of δ and Brosa’s fission modes. We have found that the standard fission modes correspond to prolate tips of the light fragments while the complementary heavy fragments have oblate fission tips. On the other hand, if both fragments were prolate at the tips, we get super-long fission modes. If both fragments were oblate at the tips, we get super-short fission modes.

  8. Source driven breeding fission power reactors and the nuclear energy strategy

    International Nuclear Information System (INIS)

    Greenspan, E.

    The nuclear energy economy is facing severe difficulties associated with low utilization of uranium resources, safety, non-proliferation and environmental issues. Energy policy makers face the dilemma: commercialize LMFBRs immediately with the risk of negative economical, proliferation or other consequences, or continue with R and D programs that will provide the information needed for sounder decisions, but now taking the risk of running out of economically exploitable uranium ore resources. The development of hybrid reactors can provide an assurance against the latter risk and offers many interesting new options for the nuclear energy strategy. Being based on the technology of LWRs and HWRs, Light Water Hybrid Reactors (LWHR) provide a most natural link between the fission reactor technology of the present and the fusion power technology of the future. The investment in their development in excess of that required for the development of fusion power reactors is expected to be relatively small, thus making the development of LWHRs potentially a high benefit-to-cost ratio program. It is recommended that the fission and fusion communities will cooperate in hybrids R and D programs aimed at assessing the technological and economical viability of hybrid reactors as reliably and soon as possible. (author)

  9. Systems Modeling For The Laser Fusion-Fission Energy (LIFE) Power Plant

    International Nuclear Information System (INIS)

    Meier, W.R.; Abbott, R.; Beach, R.; Blink, J.; Caird, J.; Erlandson, A.; Farmer, J.; Halsey, W.; Ladran, T.; Latkowski, J.; MacIntyre, A.; Miles, R.; Storm, E.

    2008-01-01

    A systems model has been developed for the Laser Inertial Fusion-Fission Energy (LIFE) power plant. It combines cost-performance scaling models for the major subsystems of the plant including the laser, inertial fusion target factory, engine (i.e., the chamber including the fission and tritium breeding blankets), energy conversion systems and balance of plant. The LIFE plant model is being used to evaluate design trade-offs and to identify high-leverage R and D. At this point, we are focused more on doing self consistent design trades and optimization as opposed to trying to predict a cost of electricity with a high degree of certainty. Key results show the advantage of large scale (>1000 MWe) plants and the importance of minimizing the cost of diodes and balance of plant cost

  10. Determination of the fission barrier height in fission of heavy radioactive beams induced by the (d,p)-transfer

    CERN Multimedia

    A theoretical framework is described, allowing to determine the fission barrier height using the observed cross sections of fission induced by the (d,p)-transfer with accuracy, which is not achievable in another type of low-energy fission of neutron-deficient nuclei, the $\\beta$-delayed fission. The primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission of...

  11. Advantages of Production of New Fissionable Nuclides for the Nuclear Power Industry in Hybrid Fusion-Fission Reactors

    Science.gov (United States)

    Tsibulskiy, V. F.; Andrianova, E. A.; Davidenko, V. D.; Rodionova, E. V.; Tsibulskiy, S. V.

    2017-12-01

    A concept of a large-scale nuclear power engineering system equipped with fusion and fission reactors is presented. The reactors have a joint fuel cycle, which imposes the lowest risk of the radiation impact on the environment. The formation of such a system is considered within the framework of the evolution of the current nuclear power industry with the dominance of thermal reactors, gradual transition to the thorium fuel cycle, and integration into the system of the hybrid fusion-fission reactors for breeding nuclear fuel for fission reactors. Such evolution of the nuclear power engineering system will allow preservation of the existing structure with the dominance of thermal reactors, enable the reprocessing of the spent nuclear fuel (SNF) with low burnup, and prevent the dangerous accumulation of minor actinides. The proposed structure of the nuclear power engineering system minimizes the risk of radioactive contamination of the environment and the SNF reprocessing facilities, decreasing it by more than one order of magnitude in comparison with the proposed scheme of closing the uranium-plutonium fuel cycle based on the reprocessing of SNF with high burnup from fast reactors.

  12. Low Cost Radiator for Fission Power Thermal Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA Glenn Research Center (GRC) is developing fission power system technology for future space transportation and surface power applications. The early systems are...

  13. Tokamak hybrid thermonuclear reactor for the production of fissionable fuel and electric power

    International Nuclear Information System (INIS)

    Velikhov, E.P.; Glukhikh, V.A.; Gur'ev, V.V.

    1978-01-01

    The results of feasibility studies of a tokamak- based hybrid reactor concept are presented. The system selected has a D-T plasma volume of 575 m 3 with additional plasma heating by injection of fast neutral particles. The method of heating makes it possible to achieve an economical two-component tokamak regime at ntau=(4-6)x10 13 sxcm -3 , i e. far below the Lawson criterion. Plasma and vacuum chamber are surrounded by a blanket where fissionable plutonium is produced and heat transformed into electric power is generated. Major plasma-neutron-physical characteristics of the 6905 MWth (2500 MWe) reactor and its electromagnetic system are presented. Evaluations show that the hybrid reactor can produce about 800 kg of Pu per 1GWth/yr as compared to 70-150 kg of Pu for fast breeder reactors. The increased Pu production rate is the major merit of the concept promising for both power generation and fuelling thermal fission reactions

  14. Low Cost Radiator for Fission Power Thermal Control, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA GRC is developing fission power system technology for future space transportation and surface power applications. The early systems are envisioned in the 10 to...

  15. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 2: Power from nuclear fission

    Science.gov (United States)

    Clement, J. D.

    1973-01-01

    Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.

  16. The clinical study of 2D and power doppler ultrasound in esophagus varix

    International Nuclear Information System (INIS)

    Li Qiang; Zhou Liang; Zhang Yucheng; Yang Minghua; Ruan Fenglian; Lu Haixia; Li Yue

    2008-01-01

    Objective: To study the application of 2D and Power Doppler Ultrasound in diagnosing the abdominal esophageal varicose veins. Methods: 65 patients under suspicion with chronic hepatitis and cirrhosis for esophageal varicose at esophagus in abdomen section were examined by 2D and Power Doppler Ultrasound.Among them, 35 patients suffered from esophageal varicose veins proved by gastroscopy and the rest did not. Results: On the power doppler imaging map, colored blood stream signals were showed in varicose veins while without signals in non-varicose veins.The diagnostic sensitivity and specificity were 91.4% and 100% respectively. On the two-dimensional image chart, non-echoes were represented in varicose veins. The anteroposterior diameter, right-left diameter, as well as the thickness of esophagus wall were larger in patients with varicose veins than those in non varicose veins cases (P<0.01). Conclusion: 2D combined with Power Doppler Ultrasound was of non-invasive, safe, sensitive and high specificity, which is a valuable and practical tool in diagnosing the esophageal varicose veins. (authors)

  17. Detection of fission fragments by secondary emission; Detection des fragments de fission par emission secondaire

    Energy Technology Data Exchange (ETDEWEB)

    Audias, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    This fission fragment detecting apparatus is based on the principle that fragments traversing a thin foil will cause emission of secondary electrons. These electrons are then accelerated (10 kV) and directly detected by means of a plastic scintillator and associated photomultiplier. Some of the advantages of such a detector are, its rapidity, its discriminating power between alpha particles and fission fragments, its small energy loss in detecting the fragments and the relatively great amount of fissionable material which it can contain. This paper is subdivided as follows: a) theoretical considerations b) constructional details of apparatus and some experimental details and c) a study of the secondary emission effect itself. (author) [French] Le detecteur de fragments de fission que nous avons realise est base sur le principe de l'emission secondaire produite par les fragments de fission traversant une feuille mince: les electrons secondaires emis sont acceleres a des tensions telles (de l'ordre de 10 kV), qu'ils soient directement detectables par un scintillateur plastique associe a un photomultiplicateur. L'interet d'un tel detecteur reside: dans sa rapidite, sa tres bonne discrimination alpha, fission, la possibilite de detecter les fragments de fission avec une perte d'energie pouvant rester relativement faible, et la possibilite d'introduire des quantites de matiere fissile plus importantes que dans les autres types de detecteurs. Ce travail comporte: -) un apercu bibliographique de la theorie du phenomene, -) realisation et mise au point du detecteur avec etude experimentale de quelques parametres intervenant dans l'emission secondaire, -) etude de l'emission secondaire (sur la face d'emergence des fragments de fission) en fonction de l'energie du fragment et en fonction de l'epaisseur de matiere traversee avant emission secondaire, et -) une etude comparative de l'emission secondaire sur la face d'incidence et sur la face d'emergence des fragments de

  18. Power-balance analysis of muon-catalyzed fusion-fission hybrid reactor systems

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.

    1985-01-01

    A power-balance model of a muon-catalyzed fusion system in the context of a fission-fuel factory is developed and exercised to predict the required physics performance of systems competitive with either pure muon-catalyzed fusion systems or thermonuclear fusion-fission fuel factory hybrid systems

  19. High-power proton linac for transmuting the long-lived fission products in nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, G.P.

    1991-01-01

    High power proton linacs are being considered at Los Alamos as drivers for high-flux spallation neutron sources that can be used to transmute the troublesome long-lived fission products in defense nuclear waste. The transmutation scheme being studied provides a high flux (> 10{sup 16}/cm{sup 2}{minus}s) of thermal neutrons, which efficiently converts fission products to stable or short-lived isotopes. A medium-energy proton linac with an average beam power of about 110 MW can burn the accumulated Tc99 and I129 inventory at the DOE's Hanford Site within 30 years. Preliminary concepts for this machine are described. 3 refs., 5 figs., 2 tabs.

  20. A microstructure-dependent model for fission product gas release and swelling in UO2 fuel

    International Nuclear Information System (INIS)

    Notley, M.J.F.; Hastings, I.J.

    1979-06-01

    A model for the release of fission gas from irradiated UO2 fuel is presented. It incorporates fission gas diffusion bubble and grain boundary movement,intergranular bubble formation and interlinkage. In addition, the model allows estimates of the extent of structural change and fuel swelling. In the latter, contributions of thermal expansion, densification, solid fission products, and gas bubbles are considered. When included in the ELESIM fuel performance code, the model yields predictions which are in good agreement with data from UO2 fuel elements irradiated over a range of water-cooled reactor conditions: linear power outputs between 40 and 120 kW/m, burnups between 10 and 300 MW.h/kg U and power histories including constant, high-to-low and low-to-high power periods. The predictions of the model are shown to be most sensitive to fuel power (temperature), the selection of diffusion coefficient for fission gas in UO2 and burnup. The predictions are less sensitive to variables such as fuel restraint, initial grain size and the rate of grain growth. (author)

  1. Proceedings of the NEA International Workshop on the Nuclear Innovation road-map (NI2050)

    International Nuclear Information System (INIS)

    Ha, Jaejoo HA; Deffrennes, Marc; ); Tromm, Walter; Ait Abderrahim, Hamid; Fernandez Fernandez, Alberto; Speranzini, Robert; Jeong, Ik; Lee, Gye Seok; Castelao Lopez, Carlos; Pasamehmetoglu, Kemal; Puska, Eija Karita; Cordier, Pierre-Yves; Horvath, Akos; Agostini, Pietro; Kamide, Hideki; Nakatsuka, Toru; Roelofs, Ferry; Wrochna, Grzegorz; Zezula, Lubor; Rayment, Fiona; Cizelj, Leon; Zimmermann, Martin A.; Schmitz, Bruno; Martin-Ramos, Manuel; Andreeva-Andrievskaya, Lyudmila N.; Monti, Stefano; ); Paillere, Henri; ); Caron-Charles, Marylise; Gulliford, Jim; ); Breest, Axel; ); McGrath, Margaret; Bignan, Gilles

    2015-07-01

    The two-day workshop held at the OECD Headquarters in Paris on 7-8 July 2015, brought together some of the leading experts in the field of nuclear fission research, development and demonstration. The purpose was to launch the NEA Nuclear Innovation 2050 Initiative, aiming, after a first survey phase, at producing a road-map of main priority research programmes and infrastructures necessary to support the role nuclear energy may play in the low carbon power sector of the future. This might then further lead to some ad-hoc cooperation frameworks that help to effectively implement key priorities coming out of the road-mapping. The workshop was organised into the following five sessions: 1 - Opening session on NI2050: vision and main objectives; 2 - National presentations on nuclear fission research and innovation activities (programmes, infrastructures, budgets); 3 - Presentations on some existing international nuclear fission road-maps and co-operation frameworks; 4 - Defining the way forward for NI2050: survey, road-mapping and priorities and co-operation; 5 - Open discussion. These proceedings bring together the available presentations (slides) given during the workshop: 1. Opening session on NI2050: vision and main objectives: Setting the scene: NEA/IEA Nuclear Energy road-map 2050 (Jaejoo Ha); Proposed scope and organisation of the NI2050 project launching, taking stock of the IEA Energy RD and D survey and going further (Marc Deffrennes); 2. National presentations on nuclear fission research and innovation activities (programmes, infrastructures, budgets): Overview of German Situation with focus on HGF NUSAFE - HELMHOLTZ (W. Tromm); Investing in Nuclear Innovation in Belgium - SCKCEN (Hamid Ait Abderrahim and Alberto Fernandez); Canadian Nuclear Laboratories: Nuclear S and T and Innovation (R. Speranzini); ROK's Nuclear Policies and R and D Programs - KAERI (Ik Jeong and Lee Gye Seok); R and D Spanish Nuclear Platform (C. Castelao); NOE-NE Programs and

  2. Methodology and application of the WIMS-D4M fission product data

    International Nuclear Information System (INIS)

    Mo, S.C.

    1995-01-01

    The WIMS-D4 code has been modified (WIMS-D4m) to generate burn-up dependent microscopic cross sections for use in full core depletion calculations. The calculation of neutron absorption by fission products can be obtained from a reduced fission-product-chain model that includes the 135 Xe and 149 Sm chains, and a lumped fission product to account for the absorption by fission products not explicitly treated. Burn-up calculations were performed for the ANS MEU core using WIMS and EPRI-CELL cross sections. The calculated eigenvalues and material loadings are in good agreements

  3. Determination of the effective range of fission fragments in UO2 and of the disintegration constant for the spontaneous fission of Uranium 238

    International Nuclear Information System (INIS)

    Spaggiari, E.R.V.

    1980-01-01

    Results are presented of measurements realized aiming to determine the disintegration constant of spontaneous fission of U-238, with a discussion of the method utilized in the detection of fission tracks in muscovite. Several blades of mica were placed between two cylinders of Uo 2 to be irradiated with the fragments of spontaneous fission of U-238, and the fission tracks duly enlarged after a convenient chemical action were observed with a projection optical microscope. The effective thickness of UO 2 contributing to the observed tracks was measured through the irradiation of mica samples juxtaposed to the UO 2 cylinder, with 14,0 MeV neutrons from the (d,t 2 ) reaction. The detection efficiency of fission tracks originated in that thickness is practically 100% [pt

  4. Towards mapping of rock walls using a UAV-mounted 2D laser scanner in GPS denied environments

    Science.gov (United States)

    Turner, Glen

    In geotechnical engineering, the stability of rock excavations and walls is estimated by using tools that include a map of the orientations of exposed rock faces. However, measuring these orientations by using conventional methods can be time consuming, sometimes dangerous, and is limited to regions of the exposed rock that are reachable by a human. This thesis introduces a 2D, simulated, quadcopter-based rock wall mapping algorithm for GPS denied environments such as underground mines or near high walls on surface. The proposed algorithm employs techniques from the field of robotics known as simultaneous localization and mapping (SLAM) and is a step towards 3D rock wall mapping. Not only are quadcopters agile, but they can hover. This is very useful for confined spaces such as underground or near rock walls. The quadcopter requires sensors to enable self localization and mapping in dark, confined and GPS denied environments. However, these sensors are limited by the quadcopter payload and power restrictions. Because of these restrictions, a light weight 2D laser scanner is proposed. As a first step towards a 3D mapping algorithm, this thesis proposes a simplified scenario in which a simulated 1D laser range finder and 2D IMU are mounted on a quadcopter that is moving on a plane. Because the 1D laser does not provide enough information to map the 2D world from a single measurement, many measurements are combined over the trajectory of the quadcopter. Least Squares Optimization (LSO) is used to optimize the estimated trajectory and rock face for all data collected over the length of a light. Simulation results show that the mapping algorithm developed is a good first step. It shows that by combining measurements over a trajectory, the scanned rock face can be estimated using a lower-dimensional range sensor. A swathing manoeuvre is introduced as a way to promote loop closures within a short time period, thus reducing accumulated error. Some suggestions on how to

  5. Fission Reaction Event Yield Algorithm FREYA 2.0.2

    Science.gov (United States)

    Verbeke, J. M.; Randrup, J.; Vogt, R.

    2018-01-01

    FREYA (Fission Reaction Event Yield Algorithm) is a fission event generator which models complete fission events. As such, it automatically includes fluctuations as well as correlations between observables, resulting from conservation of energy and momentum. The purpose of this paper is to present the main differences between FREYA versions 1.0 and 2.0.2 : additional fissionable isotopes, angular momentum conservation, Giant Dipole Resonance form factor for the statistical emission of photons, improved treatment of fission photon emission using RIPL database, and dependence on the incident neutron direction. FREYA 2.0.2 has been integrated into the LLNL Fission Library 2.0.2, which has itself been integrated into MCNP6.2, TRIPOLI-4.10, and can be called from Geant4.10.

  6. A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium

    International Nuclear Information System (INIS)

    Reed, Mark; Parker, Ronald R.; Forget, Benoit

    2012-01-01

    This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more

  7. Physics and potentials of fissioning plasmas for space power and propulsion

    Science.gov (United States)

    Thom, K.; Schwenk, F. C.; Schneider, R. T.

    1976-01-01

    Fissioning uranium plasmas are the nuclear fuel in conceptual high-temperature gaseous-core reactors for advanced rocket propulsion in space. A gaseous-core nuclear rocket would be a thermal reactor in which an enriched uranium plasma at about 10,000 K is confined in a reflector-moderator cavity where it is nuclear critical and transfers its fission power to a confining propellant flow for the production of thrust at a specific impulse up to 5000 sec. With a thrust-to-engine weight ratio approaching unity, the gaseous-core nuclear rocket could provide for propulsion capabilities needed for manned missions to the nearby planets and for economical cislunar ferry services. Fueled with enriched uranium hexafluoride and operated at temperatures lower than needed for propulsion, the gaseous-core reactor scheme also offers significant benefits in applications for space and terrestrial power. They include high-efficiency power generation at low specific mass, the burnup of certain fission products and actinides, the breeding of U-233 from thorium with short doubling times, and improved convenience of fuel handling and processing in the gaseous phase.

  8. Effect of power change on fission gas release. Re-irradiation tests of spent fuel at JMTR

    International Nuclear Information System (INIS)

    Nakamura, Jinichi; Shimizu, Michio; Ishii, Tadahiko; Endo, Yasuichi; Ohwada, Isao; Nabeya, Hideaki; Uetsuka, Hiroshi

    1999-01-01

    A full length rod irradiated at Tsuruga unit 1 was refabricated to short length rods, and rod inner pressure gauges were re-instrumented to the rods. Re-irradiation tests to study the fission gas release during power change were carried out by means of BOCA/OSF-1 facility at the JMTR. In the tests, steady state operation at 40 kW/m and power cycling operations between 20 and 40 kW/m were conducted for the same high power holding time, and the rod inner pressure change during the tests was measured. The rod inner pressure increase was observed during power change, especially during power reduction. The rod inner pressure increase during a power cycling depended on the length of the high power operation just before the power cycling. The fission gas release during power reduction is estimated to be the release from fission gas bubbles on the grain boundary caused by the thermal stress in the pellet during power reduction. When steady state operation and power cycling were repeated at the power levels of 30, 35 and 40 kW/m, the power cycling accelerated the fission gas release compared with the steady state operation. (author)

  9. Measurements of the effective range of fission fragments in UO2 and the disintegration constant for spontaneous fission of 238U

    International Nuclear Information System (INIS)

    Spaggiari, E.R.V.

    1978-01-01

    The results of measuments of the disintegration constant for spontaneous fission in 238 U are presented, with a discussion on the method used for the detection of fission tracks in muscovite mica. Samples of muscovite mica sandwiched between two natural uranium dioxide cylinders were irradiated with fragments of spontaneous fission and the etched tracks counted with projetion optical microscope. The effective thickness of the UO 2 layer which contributed to the observed tracks was measured through irradiation of mica samples, in contact with the UO 2 cylinder with 14,0 MeV neutrons from a (d,t) reaction. (Author) [pt

  10. Fusion-fission hybrid studies in the United States

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Berwald, D.H.; Cheng, E.T.; Delene, J.G.; Jassby, D.L.

    1986-01-01

    Systems and conceptual design studies have been carried out on the following three hybrid types: (1) The fission-suppressed hybrid, which maximizes fissile material produced (Pu or 233 U) per unit of total nuclear power by suppressing the fission process and multiplying neutrons by (n,2n) reactions in materials like beryllium. (2) The fast-fission hybrid, which maximizes fissile material produced per unit of fusion power by maximizing fission of 238 U (Pu is produced) in which twice the fissile atoms per unit of fusion power (but only a third per unit of nuclear power) are made. (3) The power hybrid, which amplifies power in the blanket for power production but does not produce fuel to sell. All three types must sell electrical power to be economical

  11. Fission Surface Power System Initial Concept Definition

    Science.gov (United States)

    2010-01-01

    Under the NASA Exploration Technology Development Program (ETDP) and in partnership with the Department of Energy (DOE), NASA has embarked on a project to develop Fission Surface Power (FSP) technology. The primary goals of the project are to 1) develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options, 2) establish a hardwarebased technical foundation for FSP design concepts and reduce overall development risk, 3) reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates, and 4) generate the key products to allow NASA decision-makers to consider FSP as a preferred option for flight development. The FSP project was initiated in 2006 as the Prometheus Program and the Jupiter Icy Moons Orbiter (JIMO) mission were phased-out. As a first step, NASA Headquarters commissioned the Affordable Fission Surface Power System Study to evaluate the potential for an affordable FSP development approach. With a cost-effective FSP strategy identified, the FSP team evaluated design options and selected a Preliminary Reference Concept to guide technology development. Since then, the FSP Preliminary Reference Concept has served as a point-of-departure for several NASA mission architecture studies examining the use of nuclear power and has provided the foundation for a series of "Pathfinder" hardware tests. The long-term technology goal is a Technology Demonstration Unit (TDU) integrated system test using full-scale components and a non-nuclear reactor simulator. The FSP team consists of Glenn Research Center (GRC), Marshall Space Flight Center (MSFC) and the DOE National Laboratories at Los Alamos (LANL), Idaho (INL), Oak Ridge (ORNL), and Sandia (SNL). The project is organized into two main elements: Concept Definition and Risk Reduction. Under Concept Definition, the team performs trade studies, develops analytical tools, and formulates system concepts. Under Risk

  12. Fission gas release from ThO2 and ThO2--UO2 fuels (LWBR development program)

    International Nuclear Information System (INIS)

    Goldberg, I.; Spahr, G.L.; White, L.S.; Waldman, L.A.; Giovengo, J.F.; Pfennigwerth, P.L.; Sherman, J.

    1978-08-01

    Fission gas release data are presented from 51 fuel rods irradiated as part of the LWBR irradiations test program. The fuel rods were Zircaloy-4 clad and contained ThO 2 or ThO 2 -UO 2 fuel pellets, with UO 2 compositions ranging from 2.0 to 24.7 weight percent and fuel densities ranging from 77.8 to 98.7 percent of theoretical. Rod diameters ranged from 0.25 to 0.71 inches and fuel active lengths ranged from 3 to 84 inches. Peak linear power outputs ranged from 2 to 22 kw/ft for peak fuel burnups up to 56,000 MWD/MTM. Measured fission gas release was quite low, ranging from 0.1 to 5.2 percent. Fission gas release was higher at higher temperature and burnup and was lower at higher initial fuel density. No sensitivity to UO 2 composition was evidenced

  13. Status of fission power

    International Nuclear Information System (INIS)

    Levenson, M.

    1977-01-01

    Fission energy is reviewed from the viewpoints of technology, economics, politics, manufacturers, consumers, and foreign countries. Technically, the reactor program is operating and the light water reactor industry shows signs of maturing, although recent business has been disappointing. Marketing of gas-cooled reactors depends, not on technical, but economic and political issues. Liquid metal fast breeder reactors have been demonstrated worldwide, while the gas-cooled fast breeder remains an undemonstrated option. Nuclear plants, currently costing the same as coal plants with scrubbers, are the cheapest option for utilities because most of the cost is imbedded. The defeat of nuclear initiatives in seven states indicates that public feeling is not as anti-nuclear as opponents to nuclear power claim. The harshness of last winter demonstrated the advantages of a power source that is not so sensitive to the weather for reliable operation and transport, as well as low cost energy. Other nations are proceeding to build a nuclear capability, which the U.S. may jeopardize because of concerns about the fuel cycle, nuclear waste disposal, uranium reserves, and nuclear proliferation

  14. The future of fission-electric power

    International Nuclear Information System (INIS)

    Morowski, J.V.

    1983-06-01

    Future worldwide electricity supply needs dictate the necessity of maintaining a sound capability for electricity and electric power generating facilities, including nuclear, as viable export commodities. A survey of fission-power plant types and the status of worldwide nuclear electric power illustrates the primary emphasis on LWR's and HWR's as two leading types in the export market. This survey examines the factors affecting the market prospects for the next five to fifteen years and provides a discussion on some possible improvements to current market circumstances. A comparative description is provided for some of the types of LWR and CANDU characteristics such as quantities, schedules, constructability factors, and equipment and system. Important factors in the selection process for future nuclear power plants are discussed. Some factors included are seismic design requirements; plant design description and possible site layout; plant protection, control and instrumentation; thermal cycle design and arrangement; and special construction and rigging requirements

  15. Study on fission blanket fuel cycling of a fusion-fission hybrid energy generation system

    International Nuclear Information System (INIS)

    Zhou, Z.; Yang, Y.; Xu, H.

    2011-01-01

    This paper presents a preliminary study on neutron physics characteristics of a light water cooled fission blanket for a new type subcritical fusion-fission hybrid reactor aiming at electric power generation with low technical limits of fission fuel. The major objective is to study the fission fuel cycling performance in the blanket, which may possess significant impacts on the feasibility of the new concept of fusion-fission hybrid reactor with a high energy gain (M) and tritium breeding ratio (TBR). The COUPLE2 code developed by the Institute of Nuclear and New Energy Technology of Tsinghua University is employed to simulate the neutronic behaviour in the blanket. COUPLE2 combines the particle transport code MCNPX with the fuel depletion code ORIGEN2. The code calculation results show that soft neutron spectrum can yield M > 20 while maintaining TBR >1.15 and the conversion ratio of fissile materials CR > 1 in a reasonably long refuelling cycle (>five years). The preliminary results also indicate that it is rather promising to design a high-performance light water cooled fission blanket of fusion-fission hybrid reactor for electric power generation by directly loading natural or depleted uranium if an ITER-scale tokamak fusion neutron source is achievable.

  16. Planetary Surface Power and Interstellar Propulsion Using Fission Fragment Magnetic Collimator Reactor

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel V.; Hart, Ron R.; King, Don B.; Rochau, Gary E.

    2006-01-01

    Fission energy can be used directly if the kinetic energy of fission fragments is converted to electricity and/or thrust before turning into heat. The completed US DOE NERI Direct Energy Conversion (DEC) Power Production project indicates that viable DEC systems are possible. The US DOE NERI DEC Proof of Principle project began in October of 2002 with the goal to demonstrate performance principles of DEC systems. One of the emerging DEC concepts is represented by fission fragment magnetic collimator reactors (FFMCR). Safety, simplicity, and high conversion efficiency are the unique advantages offered by these systems. In the FFMCR, the basic energy source is the kinetic energy of fission fragments. Following escape from thin fuel layers, they are captured on magnetic field lines and are directed out of the core and through magnetic collimators to produce electricity and thrust. The exiting flow of energetic fission fragments has a very high specific impulse that allows efficient planetary surface power and interstellar propulsion without carrying any conventional propellant onboard. The objective of this work was to determine technological feasibility of the concept. This objective was accomplished by producing the FFMCR design and by analysis of its performance characteristics. The paper presents the FFMCR concept, describes its development to a technologically feasible level and discusses obtained results. Performed studies offer efficiencies up to 90% and velocities approaching speed of light as potentially achievable. The unmanned 10-tons probe with 1000 MW FFMCR propulsion unit would attain mission velocity of about 2% of the speed of light. If the unit is designed for 4000 MW, then in 10 years the unmanned 10-tons probe would attain mission velocity of about 10% of the speed of light

  17. Fission gas release during power change by means of re-irradiation of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Jinichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    A full length rod irradiated at Tsuruga unit 1 was refabricated to short length rods, and rod inner pressure gauges were re-instrumented to the rods. Re-irradiation tests to study the fission gas release during power change were carried out by means of BOCA/OSF-1 facility at JMTR. In the tests, steady state operation at 40kW/m, power cycling and daily load follow operations between 20 and 40kW/m were conducted for the same high power holding time, and the rod inner pressure change during the tests was measured. The rod inner pressure increase was observed during power change, especially during power reduction. The rod inner pressure increase during a power cycling depended on the length of the high power operation just before the power cycling. The width of the rod inner pressure increase during a power cycling decreased gradually as the power cycling was repeated continuously. When steady state operation and power cycling were repeated at the power levels of 30, 35 and 40kW/m, the power cycling accelerated the fission gas release compared with the steady state operation. The fission gas release during power reduction is estimated to be the release from FP gas bubbles on the grain boundary caused by the thermal stress in the pellet during power reduction. (author)

  18. Comparison of reconstructed radial pin total fission rates with experimental results in full scale BWR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Giust, Flavio [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Nordostschweizerische Kraftwerke AG, Parkstrasse 23, CH-5401 Baden (Switzerland); Grimm, Peter; Jatuff, Fabian [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Chawla, Rakesh [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland)

    2008-07-01

    Total fission rate measurements have been performed on full size BWR fuel assemblies of type SVEA-96+ in the zero power reactor PROTEUS at the Paul Scherrer Institute. This work presents comparisons of reconstructed 2D pin fission rates in two configurations, I-1A and I-2A. Both configurations contain, in the central test zone, an array of 3x3 SVEA-96+ fuel elements moderated with light water at 20 deg. C. In configuration I-2A, an L-shaped hafnium control blade (half of a real cruciform blade) is inserted adjacent to the NW corner of the central fuel element. To minimize the impact of the surroundings, all measurements were done in fuel pins belonging to the central assembly. The 3x3 experimental configuration was modeled using the core monitoring and design tools that are applied at the Leibstadt Nuclear Power Plant (KKL). These are the 2D transport code HELIOS, used for the cross-section generation, and the 3D, 2-group nodal diffusion code PRESTO-2. The exterior is represented, in the axial and radial directions, by 2-group albedos calculated at the test zone boundary using a full-core 3D MCNPX model. The calculated-to-experimental (C/E) ratios of the total fission rates have a standard deviation of 1.3% in configuration I-1A (uncontrolled) and 3.2% in configuration I-2A (controlled). Sensitivity cases are analyzed to show the impact of certain parameters on the calculated fission rate distribution and reactivity. It is shown that the relative pin fission rate is only weakly dependent on these parameters. In cases without a control blade, the pin power reconstruction methodology delivers the same level of accuracy as 2D transport calculations. On the other hand, significant deviations, that are inherent to the use of reflected geometry in the lattice calculations, are observed in cases when the control blade is inserted. (authors)

  19. TMI-2 decay power: LASL fission-product and actinide decay power calculations for the President's Commission at Three Mile Island

    International Nuclear Information System (INIS)

    England, T.R.; Wilson, W.B.

    1979-10-01

    Fission-product and actinide decay heating, gas content, curies, and detailed contributions of the most important nuclide contributors were supplied in a series of letters following requests from the Presidential Commission on the Accident at Three Mile Island. In addition, similar data assuming different irradiation (power) histories were requested for purposes of comparison. This report consolidates the tabular and graphical data supplied and explains its basis

  20. Application of Campbell's MSV method in monitoring of reactor's fission power

    International Nuclear Information System (INIS)

    Stankovic, S.J.; Vukcevic, M.; Loncar, B.; Vasic, A.; Osmokrovic, P.

    2003-01-01

    This paper presents some possibilities of Campbell's MSV (Mean Square Value) method in monitoring the reactor's fission power. Investigation of gamma discrimination compared to neutron component of signal along with change of variance and mean value the detector output signal for a specified range of reactor's fission power (10mW-22W) was carried out. The uncompensated ionization chamber for mixed n- gamma fields was used as detector element. Experimental measurements were performed using digitized MSV method, and obtained results were compared to those obtained by classical measuring chain. The final conclusion is that the order of discrimination in MSV signal processing is about fifty times larger than for classical measuring method (author)

  1. Measurable realistic image-based 3D mapping

    Science.gov (United States)

    Liu, W.; Wang, J.; Wang, J. J.; Ding, W.; Almagbile, A.

    2011-12-01

    Maps with 3D visual models are becoming a remarkable feature of 3D map services. High-resolution image data is obtained for the construction of 3D visualized models.The3D map not only provides the capabilities of 3D measurements and knowledge mining, but also provides the virtual experienceof places of interest, such as demonstrated in the Google Earth. Applications of 3D maps are expanding into the areas of architecture, property management, and urban environment monitoring. However, the reconstruction of high quality 3D models is time consuming, and requires robust hardware and powerful software to handle the enormous amount of data. This is especially for automatic implementation of 3D models and the representation of complicated surfacesthat still need improvements with in the visualisation techniques. The shortcoming of 3D model-based maps is the limitation of detailed coverage since a user can only view and measure objects that are already modelled in the virtual environment. This paper proposes and demonstrates a 3D map concept that is realistic and image-based, that enables geometric measurements and geo-location services. Additionally, image-based 3D maps provide more detailed information of the real world than 3D model-based maps. The image-based 3D maps use geo-referenced stereo images or panoramic images. The geometric relationships between objects in the images can be resolved from the geometric model of stereo images. The panoramic function makes 3D maps more interactive with users but also creates an interesting immersive circumstance. Actually, unmeasurable image-based 3D maps already exist, such as Google street view, but only provide virtual experiences in terms of photos. The topographic and terrain attributes, such as shapes and heights though are omitted. This paper also discusses the potential for using a low cost land Mobile Mapping System (MMS) to implement realistic image 3D mapping, and evaluates the positioning accuracy that a measureable

  2. Finite element simulation of fission gas release and swelling in UO2 fuel pellets

    International Nuclear Information System (INIS)

    Denis, Alicia C.

    1999-01-01

    A fission gas release model is presented, which solves the atomic diffusion problem with xenon and krypton elements tramps produced by uranium fission during UO 2 nuclear fuel irradiation. The model considers intra and intergranular precipitation bubbles, its re dissolution owing to highly energetic fission products impact, interconnection of intergranular bubbles and gas sweeping by grain border in movement because of grain growth. In the model, the existence of a thermal gradient in the fuel pellet is considered, as well as temporal variations of fission rate owing to changes in the operation lineal power. The diffusion equation is solved by the finite element method and results of gas release and swelling calculation owing to gas fission are compared with experimental data. (author)

  3. Control of a laser inertial confinement fusion-fission power plant

    Science.gov (United States)

    Moses, Edward I.; Latkowski, Jeffery F.; Kramer, Kevin J.

    2015-10-27

    A laser inertial-confinement fusion-fission energy power plant is described. The fusion-fission hybrid system uses inertial confinement fusion to produce neutrons from a fusion reaction of deuterium and tritium. The fusion neutrons drive a sub-critical blanket of fissile or fertile fuel. A coolant circulated through the fuel extracts heat from the fuel that is used to generate electricity. The inertial confinement fusion reaction can be implemented using central hot spot or fast ignition fusion, and direct or indirect drive. The fusion neutrons result in ultra-deep burn-up of the fuel in the fission blanket, thus enabling the burning of nuclear waste. Fuels include depleted uranium, natural uranium, enriched uranium, spent nuclear fuel, thorium, and weapons grade plutonium. LIFE engines can meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the highly undesirable stockpiles of depleted uranium, spent nuclear fuel and excess weapons materials.

  4. NeuroMap: A spline-based interactive open-source software for spatiotemporal mapping of 2D and 3D MEA data

    Directory of Open Access Journals (Sweden)

    Oussama eAbdoun

    2011-01-01

    Full Text Available A major characteristic of neural networks is the complexity of their organization at various spatial scales, from microscopic local circuits to macroscopic brain-scale areas. Understanding how neural information is processed thus entails the ability to study them at multiple scales simultaneously. This is made possible using microelectrodes array (MEA technology. Indeed, high-density MEAs provide large-scale covering (several mm² of whole neural structures combined with microscopic resolution (about 50µm of unit activity. Yet, current options for spatiotemporal representation of MEA-collected data remain limited. Here we present NeuroMap, a new interactive Matlab-based software for spatiotemporal mapping of MEA data. NeuroMap uses thin plate spline interpolation, which provides several assets with respect to conventional mapping methods used currently. First, any MEA design can be considered, including 2D or 3D, regular or irregular, arrangements of electrodes. Second, spline interpolation allows the estimation of activity across the tissue with local extrema not necessarily at recording sites. Finally, this interpolation approach provides a straightforward analytical estimation of the spatial Laplacian for better current sources localization. In this software, coregistration of 2D MEA data on the anatomy of the neural tissue is made possible by fine matching of anatomical data with electrode positions using rigid deformation based correction of anatomical pictures. Overall, NeuroMap provides substantial material for detailed spatiotemporal analysis of MEA data. The package is distributed under GNU General Public License (GPL and available at http://sites.google.com/site/neuromapsoftware.

  5. NeuroMap: A Spline-Based Interactive Open-Source Software for Spatiotemporal Mapping of 2D and 3D MEA Data.

    Science.gov (United States)

    Abdoun, Oussama; Joucla, Sébastien; Mazzocco, Claire; Yvert, Blaise

    2011-01-01

    A major characteristic of neural networks is the complexity of their organization at various spatial scales, from microscopic local circuits to macroscopic brain-scale areas. Understanding how neural information is processed thus entails the ability to study them at multiple scales simultaneously. This is made possible using microelectrodes array (MEA) technology. Indeed, high-density MEAs provide large-scale coverage (several square millimeters) of whole neural structures combined with microscopic resolution (about 50 μm) of unit activity. Yet, current options for spatiotemporal representation of MEA-collected data remain limited. Here we present NeuroMap, a new interactive Matlab-based software for spatiotemporal mapping of MEA data. NeuroMap uses thin plate spline interpolation, which provides several assets with respect to conventional mapping methods used currently. First, any MEA design can be considered, including 2D or 3D, regular or irregular, arrangements of electrodes. Second, spline interpolation allows the estimation of activity across the tissue with local extrema not necessarily at recording sites. Finally, this interpolation approach provides a straightforward analytical estimation of the spatial Laplacian for better current sources localization. In this software, coregistration of 2D MEA data on the anatomy of the neural tissue is made possible by fine matching of anatomical data with electrode positions using rigid-deformation-based correction of anatomical pictures. Overall, NeuroMap provides substantial material for detailed spatiotemporal analysis of MEA data. The package is distributed under GNU General Public License and available at http://sites.google.com/site/neuromapsoftware.

  6. Calculation of burnup and power dependence on fission gas released from PWR type reactor fuel element

    International Nuclear Information System (INIS)

    Edy-Sulistyono

    1996-01-01

    Burn up dependence of fission gas released and variation power analysis have been conducted using FEMXI-IV computer code program for Pressure Water Reactor Fuel During steady-state condition. The analysis result shows that the fission gas release is sensitive to the fuel temperature, the increasing of burn up and power in the fuel element under irradiation experiment

  7. Intact initiation of autophagy and mitochondrial fission by acute exercise in skeletal muscle of patientswith type 2 diabetes

    DEFF Research Database (Denmark)

    Kruse Sørensen, Rikke; Pedersen, Andreas James Thestrup; Kristensen, Jonas Møller

    2017-01-01

    AIMS: Type 2 diabetes (T2D) is characterized by insulin resistance, mitochondrial dysregulation, and, in some studies, exercise resistance in skeletal muscle. Regulation of autophagy and mitochondrial dynamics during exercise and recovery is important for skeletal muscle homeostasis......, and these responses may be altered in T2D. MATERIALS AND METHODS: We examined the effect of acute exercise on markers of autophagy and mitochondrial fusion and fission in skeletal muscle biopsies from patients with T2D (n=13) and weight-matched controls (n=14) before, immediately after and 3h after an acute bout...... of exercise. RESULTS: While mRNA levels of most markers of autophagy ( PIK3C, MAP1LC3B, SQSTM1, BNIP3, BNIP3L ) and mitochondrial dynamics ( OPA1, FIS1 ) remained unchanged, some either increased during and after exercise (GABARAPL1 ), decreased in the recovery period ( BECN1, ATG7, DNM1L ), or both ( MFN2...

  8. Evaluation of axial fission gas transport in power ramping experiments

    International Nuclear Information System (INIS)

    Kinoshita, Motoyasu

    1986-01-01

    The LINUS code calculates advective and diffusional transport of fission gas towards an upper plenum through the pellet-cladding gap. The basic equations were modified for analyzing a multi-component gas mixture in the gap and also for dealing with opening and/or closing of the gap, which induces additional axial gas flow. Analysis of the Petten ramp experiment shows that helium pressurization is effective in suppressing an ascending rate of fission gas concentration. After the maximum concentration is achieved through power ramping, the gas concentration could be described by a steady state analytical solution which does not depend on the filling gas pressure. (author)

  9. Some studies on the fission of uranium with the help of a self-controlled wilson chamber; Quelques etudes sur la fission de l'uranium a l'aide d'une chambre de wilson autocommandee

    Energy Technology Data Exchange (ETDEWEB)

    Laboulaye, H de; Tzara, C; Olkowsky, J [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires

    1953-07-01

    The authors applied the method of Wilson's chamber self intern control to the survey of the uranium fission with neutrons of the core. This method allowed them: 1) - to establish a distribution of the courses of the fission fragments in argon on a big number of events. 2) - to search for the probability of production of tri-partitions to third fragment of short course. The authors succeed to the conclusion that in relation to ordinary fission, this, probability is lower to (1 {+-} 3)/1000, what permits to doubt the existence of the phenomenon. (author) [French] Les auteurs ont applique la methode de la chambre de Wilson a autocommande interne a l'etude de la fission de l'uranium par neutrons de pile. Cette methode leur a permis: 1) - d'etablir une distribution des parcours des fragments de fission dans l'argon portant sur un grand nombre d'evenements. 2) - de rechercher la probabilite de production de tripartitions a troisieme fragment de court parcours. Les auteurs aboutissent a la conclusion que par rapport a la fission ordinaire, cette probabilite est inferieure a (1 {+-} 3)/1000, ce qui permet de douter de l'existence du phenomene. (auteur)

  10. Development of a power-period calculation unit for nuclear reactor Control; Etude et realisation d'un ensemble de calcul puissance periode pour le controle d'un reacteur nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-10-01

    The apparatus studied is a digital calculating assembly which makes it possible to prepare and to present numerically the period and power of a nuclear reactor during operation, from start-up to nominal power. The pulses from a fission chamber are analyzed continuously, using real time. A small number of elements is required because of the systematic use of a calculation technique comprising the determination of a base 2 logarithm by a linear approximation. The accuracy obtained for the period is of the order of 14%; the response time of the order of the calculated period value. An approximate value of the power (30%) is given at each calculation cycle together with the power thresholds required for the control. (author) [French] L'appareil etudie est un ensemble de calcul digital permettant d'elaborer et d'afficher numeriquement la periode et la puissance, d'un reacteur nucleaire lors de son fonctionnement depuis le demarrage jusqu'a la puissance nominale. Il traite en temps reel, de facon continue, les impulsions en provenance d'une chambre de fission. Grace a l'utilisation systematique d'une technique de calcul, la determination d'un logarithme a base 2 par approximation lineaire, un nombre reduit d'elements est utilise. La precision obtenue sur la periode est de l'ordre de 14 pour cent, le temps de reponse de l'ordre de la valeur de la periode calculee. Un ordre de grandeur de la puissance (30 pour cent) est donne a chaque cycle de calcul ainsi que des seuils de puissance necessaires au controle. (auteur)

  11. Computer program FPIP-REV calculates fission product inventory for U-235 fission

    Science.gov (United States)

    Brown, W. S.; Call, D. W.

    1967-01-01

    Computer program calculates fission product inventories and source strengths associated with the operation of U-235 fueled nuclear power reactor. It utilizes a fission-product nuclide library of 254 nuclides, and calculates the time dependent behavior of the fission product nuclides formed by fissioning of U-235.

  12. A Two-Phase Cooling Loop for Fission Surface Power Waste Heat Transport, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current lunar-based Fission Surface Power (FSP) Systems that will support sustained surface outposts consist of a nuclear reactor with power converters, whose waste...

  13. TMI-2 decay power: LASL fission-product and actinide decay power calculations for the President's Commission at Three Mile Island

    Energy Technology Data Exchange (ETDEWEB)

    England, T.R.; Wilson, W.B.

    1979-10-01

    Fission-product and actinide decay heating, gas content, curies, and detailed contributions of the most important nuclide contributors were supplied in a series of letters following requests from the Presidential Commission on the Accident at Three Mile Island. In addition, similar data assuming different irradiation (power) histories were requested for purposes of comparison. This report consolidates the tabular and graphical data supplied and explains its basis.

  14. A 2.5D Map-Based Mobile Robot Localization via Cooperation of Aerial and Ground Robots.

    Science.gov (United States)

    Nam, Tae Hyeon; Shim, Jae Hong; Cho, Young Im

    2017-11-25

    Recently, there has been increasing interest in studying the task coordination of aerial and ground robots. When a robot begins navigation in an unknown area, it has no information about the surrounding environment. Accordingly, for robots to perform tasks based on location information, they need a simultaneous localization and mapping (SLAM) process that uses sensor information to draw a map of the environment, while simultaneously estimating the current location of the robot on the map. This paper aims to present a localization method based in cooperation between aerial and ground robots in an indoor environment. The proposed method allows a ground robot to reach accurate destination by using a 2.5D elevation map built by a low-cost RGB-D (Red Green and Blue-Depth) sensor and 2D Laser sensor attached onto an aerial robot. A 2.5D elevation map is formed by projecting height information of an obstacle using depth information obtained by the RGB-D sensor onto a grid map, which is generated by using the 2D Laser sensor and scan matching. Experimental results demonstrate the effectiveness of the proposed method for its accuracy in location recognition and computing speed.

  15. A 2.5D Map-Based Mobile Robot Localization via Cooperation of Aerial and Ground Robots

    Directory of Open Access Journals (Sweden)

    Tae Hyeon Nam

    2017-11-01

    Full Text Available Recently, there has been increasing interest in studying the task coordination of aerial and ground robots. When a robot begins navigation in an unknown area, it has no information about the surrounding environment. Accordingly, for robots to perform tasks based on location information, they need a simultaneous localization and mapping (SLAM process that uses sensor information to draw a map of the environment, while simultaneously estimating the current location of the robot on the map. This paper aims to present a localization method based in cooperation between aerial and ground robots in an indoor environment. The proposed method allows a ground robot to reach accurate destination by using a 2.5D elevation map built by a low-cost RGB-D (Red Green and Blue-Depth sensor and 2D Laser sensor attached onto an aerial robot. A 2.5D elevation map is formed by projecting height information of an obstacle using depth information obtained by the RGB-D sensor onto a grid map, which is generated by using the 2D Laser sensor and scan matching. Experimental results demonstrate the effectiveness of the proposed method for its accuracy in location recognition and computing speed.

  16. Heat Pipe Powered Stirling Conversion for the Demonstration Using Flattop Fission (DUFF) Test

    Science.gov (United States)

    Gibson, Marc A.; Briggs, Maxwell H.; Sanzi, James L.; Brace, Michael H.

    2013-01-01

    Design concepts for small Fission Power Systems (FPS) have shown that heat pipe cooled reactors provide a passive, redundant, and lower mass option to transfer heat from the fuel to the power conversion system, as opposed to pumped loop designs typically associated with larger FPS. Although many systems have been conceptually designed and a few making it to electrically heated testing, none have been coupled to a real nuclear reactor. A demonstration test named DUFF Demonstration Using Flattop Fission, was planned by the Los Alamos National Lab (LANL) to use an existing criticality experiment named Flattop to provide the nuclear heat source. A team from the NASA Glenn Research Center designed, built, and tested a heat pipe and power conversion system to couple to Flattop with the end goal of making electrical power. This paper will focus on the design and testing performed in preparation for the DUFF test.

  17. Power Control for D2D Underlay Cellular Networks With Channel Uncertainty

    KAUST Repository

    Memmi, Amen

    2016-12-26

    Device-to-device (D2D) communications underlying the cellular infrastructure are a technology that have been proposed recently as a promising solution to enhance cellular network capabilities. It improves spectrum utilization, overall throughput, and energy efficiency while enabling new peer-to-peer and location-based applications and services. However, interference is the major challenge, since the same resources are shared by both systems. Therefore, interference management techniques are required to keep the interference under control. In this paper, in order to mitigate interference, we consider centralized and distributed power control algorithms in a one-cell random network model. Existing results on D2D underlay networks assume perfect channel state information (CSI). This assumption is usually unrealistic in practice due to the dynamic nature of wireless channels. Thus, it is of great interest to study and evaluate achievable performances under channel uncertainty. Differently from previous works, we are assuming that the CSI may be imperfect and include estimation errors. In the centralized approach, we derive the optimal powers that maximize the coverage probability and the rate of the cellular user while scheduling as many D2D links as possible. These powers are computed at the base station (BS) and then delivered to the users, and hence the name “centralized”. For the distributed method, the ON–OFF power control and the truncated channel inversion are proposed. Expressions of coverage probabilities are established in the function of D2D links intensity, pathloss exponent, and estimation error variance. Results show the important influence of CSI error on achievable performances and thus how crucial it is to consider it while designing networks and evaluating performances.

  18. Individualization of 2D color maps for people with color vision deficiencies

    KAUST Repository

    Waldin, Nicholas; Bernhard, Matthias; Rautek, Peter; Viola, Ivan

    2016-01-01

    2D color maps are often used to visually encode complex data characteristics such as heat or height. The comprehension of color maps in visualization is affected by the display (e.g., a monitor) and the perceptual abilities of the viewer. People with color vision deficiencies, such as red-green blindness, face difficulties when using conventional color maps. We propose a novel method for adapting a color map to an individual person, by having the user sort lines extracted from a given color map.

  19. Individualization of 2D color maps for people with color vision deficiencies

    KAUST Repository

    Waldin, Nicholas

    2016-12-13

    2D color maps are often used to visually encode complex data characteristics such as heat or height. The comprehension of color maps in visualization is affected by the display (e.g., a monitor) and the perceptual abilities of the viewer. People with color vision deficiencies, such as red-green blindness, face difficulties when using conventional color maps. We propose a novel method for adapting a color map to an individual person, by having the user sort lines extracted from a given color map.

  20. Fission Power System Technology for NASA Exploration Missions

    Science.gov (United States)

    Mason, Lee; Houts, Michael

    2011-01-01

    Under the NASA Exploration Technology Development Program, and in partnership with the Department of Energy (DOE), NASA is conducting a project to mature Fission Power System (FPS) technology. A primary project goal is to develop viable system options to support future NASA mission needs for nuclear power. The main FPS project objectives are as follows: 1) Develop FPS concepts that meet expected NASA mission power requirements at reasonable cost with added benefits over other options. 2) Establish a hardware-based technical foundation for FPS design concepts and reduce overall development risk. 3) Reduce the cost uncertainties for FPS and establish greater credibility for flight system cost estimates. 4) Generate the key products to allow NASA decisionmakers to consider FPS as a preferred option for flight development. In order to achieve these goals, the FPS project has two main thrusts: concept definition and risk reduction. Under concept definition, NASA and DOE are performing trade studies, defining requirements, developing analytical tools, and formulating system concepts. A typical FPS consists of the reactor, shield, power conversion, heat rejection, and power management and distribution (PMAD). Studies are performed to identify the desired design parameters for each subsystem that allow the system to meet the requirements with reasonable cost and development risk. Risk reduction provides the means to evaluate technologies in a laboratory test environment. Non-nuclear hardware prototypes are built and tested to verify performance expectations, gain operating experience, and resolve design uncertainties.

  1. Research problems of fission product behaviour in fuels of nuclear power plants and ways of their solution

    International Nuclear Information System (INIS)

    Sulaberidze, V.Sh.

    1988-01-01

    The most important problems of studying behaviour of fission products in fuel elements of maneouvrable nuclear power plants units are formulated. In-pile and out-of-pile investigation methods solving these problems are characterized in brief. 12 refs.; 2 figs

  2. 2-D Temperature Mapping in Fluorocarbon Plasmas

    Science.gov (United States)

    Steffens, Kristen L.; Sobolewski, Mark A.

    2005-09-01

    Two-dimensional maps of rotational temperature in CF4 plasmas were determined using planar laser-induced fluorescence measurements of CF A2Σ+ - X2Π (1,0). Rotational temperatures are expected to be in equilibrium with gas temperatures under the present conditions. Experiments were performed in a capacitively-coupled, parallel-plate reactor at pressures from 27 Pa to 107 Pa and powers of 10 W to 30 W. The effects of electrode cooling and having a wafer present were also examined. Measured temperatures ranged between 273 K±15 K and 480 K±15 K. The strong temperature gradients found in these plasmas can have serious effects on density measurements that probe a single rotational level, as well as on reaction rate constants and interpretation of density gradients.

  3. TMI-2 decay power: LASL fission-product and actinide decay power calculations for the President's commission on the accident at Three Mile Island

    International Nuclear Information System (INIS)

    England, T.R.; Wilson, W.B.

    1980-03-01

    Fission-product and actinide decay heating, gas content, curies, and detailed contributions of the most important nuclide contributors were supplied in a series of letters following requests from the Presidential Commission on the Accident at Three Mile Island. In addition, similar data assuming different irradiation (power) histories were requested for purposes of comparison. This report consolidates the tabular and graphical data supplied and explains its basis

  4. Fission yields and cross section uncertainty propagation in Boltzmann/Bateman coupled problems: Global and local parameters analysis with a focus on MTR

    International Nuclear Information System (INIS)

    Frosio, Thomas; Bonaccorsi, Thomas; Blaise, Patrick

    2016-01-01

    Highlights: • Nuclear data uncertainty propagation for neutronic quantities in coupled problems. • Uncertainties are detailed for local isotopic concentrations and local power maps. • Correlations are built between space areas of the core and for different burnups. - Abstract: In a previous paper, a method was investigated to calculate sensitivity coefficients in coupled Boltzmann/Bateman problem for nuclear data (ND) uncertainties propagation on the reactivity. Different methodologies were discussed and applied on an actual example of multigroup cross section uncertainty problem for a 2D Material Testing Reactor (MTR) benchmark. It was shown that differences between methods arose from correlations between input parameters, as far as the method enables to take them into account. Those methods, unlike Monte Carlo (MC) sampling for uncertainty propagation and quantification (UQ), allow obtaining sensitivity coefficients, as well as correlations values between nuclear data, during the depletion calculation for the parameters of interest. This work is here extended to local parameters such as power factors and isotopic concentrations. It also includes fission yield (FY) uncertainty propagation, on both reactivity and power factors. Furthermore, it introduces a new methodology enabling to decorrelate direct and transmutation terms for local quantities: a Monte-Carlo method using built samples from a multidimensional Gaussian law is used to extend the previous studies, and propagate fission yield uncertainties from the CEA’s COMAC covariance file. It is shown that, for power factors, the most impacting ND are the scattering reactions, principally coming from 27 Al and (bounded hydrogen in) H 2 O. The overall effect is a reduction of the propagated uncertainties throughout the cycle thanks to negatively correlated terms. For fission yield (FY), the results show that neither reactivity nor local power factors are strongly affected by uncertainties. However, they

  5. High Efficiency, High Temperature Foam Core Heat Exchanger for Fission Surface Power Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Fission-based power systems with power levels of 30 to ≥100 kWe will be needed for planetary surface bases. Development of high temperature, high efficiency heat...

  6. Fission Product Yield Study of 235U, 238U and 239Pu Using Dual-Fission Ionization Chambers

    Science.gov (United States)

    Bhatia, C.; Fallin, B.; Howell, C.; Tornow, W.; Gooden, M.; Kelley, J.; Arnold, C.; Bond, E.; Bredeweg, T.; Fowler, M.; Moody, W.; Rundberg, R.; Rusev, G.; Vieira, D.; Wilhelmy, J.; Becker, J.; Macri, R.; Ryan, C.; Sheets, S.; Stoyer, M.; Tonchev, A.

    2014-05-01

    To resolve long-standing differences between LANL and LLNL regarding the correct fission basis for analysis of nuclear test data [M.B. Chadwick et al., Nucl. Data Sheets 111, 2891 (2010); H. Selby et al., Nucl. Data Sheets 111, 2891 (2010)], a collaboration between TUNL/LANL/LLNL has been established to perform high-precision measurements of neutron induced fission product yields. The main goal is to make a definitive statement about the energy dependence of the fission yields to an accuracy better than 2-3% between 1 and 15 MeV, where experimental data are very scarce. At TUNL, we have completed the design, fabrication and testing of three dual-fission chambers dedicated to 235U, 238U, and 239Pu. The dual-fission chambers were used to make measurements of the fission product activity relative to the total fission rate, as well as for high-precision absolute fission yield measurements. The activation method was employed, utilizing the mono-energetic neutron beams available at TUNL. Neutrons of 4.6, 9.0, and 14.5 MeV were produced via the 2H(d,n)3He reaction, and for neutrons at 14.8 MeV, the 3H(d,n)4He reaction was used. After activation, the induced γ-ray activity of the fission products was measured for two months using high-resolution HPGe detectors in a low-background environment. Results for the yield of seven fission fragments of 235U, 238U, and 239Pu and a comparison to available data at other energies are reported. For the first time results are available for neutron energies between 2 and 14 MeV.

  7. Fission gas release from the sintered UO{sub 2} fuel; Oslobadjanje fisionih gasova iz goriva od sinterovanog UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sigulinski, F; Stevanovic, M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1966-11-15

    This paper shoes the phenomena which control fission gases release from the sintered UO{sub 2} dependent of the burnup rate: ejection, release, diffusion, increased fission gas accumulation causing structural changes in the fuel. release of fission gases from the fuel for power reactors was studied as well. The influence of factors as temperature, characteristics of fuel, burnup rate and burnup level was analyzed. Prikazani su mehanizmi koji kontrolisu izdvajanje fisionih gasova iz sinterovanog UO{sub 2} pri razlicitim brzinama izgaranja: izletanje, izbijanje, difuzija, povecano izdvajanje fisionih gasova koje prati strukturne promene u gorivu. Razmatrano je proucavanje izdvajanja fisionih gasova iz goriva za reaktore snage. Analiziran je uticaj faktora kao sto su temperatura, karakteristike goriva, brzina i stepen izgaranja (author)

  8. A new approach to the statistical treatment of 2D-maps in proteomics using fuzzy logic.

    Science.gov (United States)

    Marengo, Emilio; Robotti, Elisa; Gianotti, Valentina; Righetti, Pier Giorgio

    2003-01-01

    A new approach to the statistical treatment of 2D-maps has been developed. This method is based on the use of fuzzy logic and allows to take into consideration the typical low reproducibility of 2D-maps. In this approach the signal corresponding to the presence of proteins on the 2D-maps is substituted with probability functions, centred on the signal itself. The standard deviation of the bidimensional gaussian probability function employed to blur the signal allows to assign different uncertainties to the two electrophoretic dimensions. The effect of changing the standard deviation and the digitalisation resolution are investigated.

  9. NEA International Workshop on the Nuclear Innovation Road-map - NI2050. Workshop proceedings

    International Nuclear Information System (INIS)

    Ait Abderrahim, Hamid; Fernandez Fernandez, Alberto; Van Walle, Eric; Speranzini, Robert; Zezula, Lubor; Puska, Eija Karita; Tuomisto, Harri; Al Mazouzi, Abderrahim; Bazile, Fanny; Cordier, Pierre-Yves; Wahide, Carole; Tromm, Th. Walter; Horvath, Akos; Agostini, Pietro; Ambrosini, Walter; Kamide, Hideki; Nakatsuka, Toru; Sagayama, Yutaka; Tsujimoto, Kazufumi; Jeong, Ik; LEE, Gye Seok; Roelofs, Ferry; Van Der Lugt, Hermen; Wrochna, Grzegorz; Alekseev, Pavel; Andreeva-Andrievskaya, Lyudmila N.; Liska, Peter; Cizelj, Leon; Castelao Lopez, Carlos; Zimmermann, Martin; Rayment, Fiona; Pasamehmetoglu, Kemal; Martin Ramos, Manuel; Schmitz, Bruno; Monti, Stefano; Bignan, Gilles; Mcgrath, Margaret; Caron-Charles, Marylise; Magwood, William IV; Ha, Jaejoo; Deffrennes, Marc; Paillere, Henri; Noh, Jae Man; Gulliford, Jim; Breest, Axel; Matsumoto, Kiyoshi; Lebedev, Vladimir

    2015-07-01

    The two-day workshop held at the OECD Headquarters in Paris on 7-8 July 2015, brought together some of the leading experts in the field of nuclear fission research, development and demonstration. The purpose was to launch the NEA Nuclear Innovation 2050 Initiative, aiming, after a first survey phase, at producing a road-map of main priority research programs and infrastructures necessary to support the role nuclear energy may play in the low carbon power sector of the future. This might then further lead to some ad-hoc co-operation frameworks that help to effectively implement key priorities coming out of the road-mapping. The workshop was organised into the following five sessions: 1 - Opening session on NI2050: vision and main objectives; 2 - National presentations on nuclear fission research and innovation activities (programs, infrastructures, budgets); 3 - Presentations on some existing international nuclear fission road-maps and co-operation frameworks; 4 - Defining the way forward for NI2050: survey, road-mapping and priorities and co-operation; 5 - Open discussion. This document gathers the available presentations given at this workshop

  10. Fission gas release from UO2 pellet fuel at high burn-up

    International Nuclear Information System (INIS)

    Vitanza, C.; Kolstad, E.; Graziani, U.

    1979-01-01

    Analysis of in-reactor measurements of fuel center temperature and rod internal pressure at the OECD Halden Reactor Project has led to the development of an empirical fission gas release model, which is described. The model originally derived from data obtained in the low and intermediate burn-up range, appears to give good predictions for rods irradiated to high exposures as well. PIE puncturing data from seven fuel rods, operated at relatively constant powers and peak center temperatures between 1900 and 2000 0 C up to approx. 40,000 MWd/t UO 2 , did not exhibit any burn-up enhancement on the fission gas release rate

  11. Fission products collecting devices

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshi

    1979-01-01

    Purpose: To enable fission products trap with no contamination to coolants and cover gas by the provision of a fission products trap above the upper part of a nuclear power plant. Constitution: Upon fuel failures in a reactor core, nuclear fission products leak into coolants and move along the flow of the coolants to the coolants above the reactor core. The fission products are collected in a trap container and guided along a pipeline into fission products detector. The fission products detector monitors the concentration of the fission products and opens the downstream valve of the detector when a predetermined concentration of the fission products is detected to introduce the fission products into a waste gas processing device and release them through the exhaust pipe. (Seki, T.)

  12. Clean nuclear power (2. part)

    International Nuclear Information System (INIS)

    Rocherolles, R.

    1998-01-01

    The 450 nuclear power plants which produce 24% of world electricity do not generate greenhouse gas effects, but 8,000 tonnes per year of irradiated, radioactive fuel. The first article which was published in the July-August 1997 issue of this journal, described the composition and management of these fuels. This article wish to show the advantage of 'advanced re-processing', which would separate fission products from actinides, in order to incinerate them separately in dedicated fuels and reactors, which, from an ecological point of view, seems more efficient than burying them underground in deep, geological layers. To rid the planet of waste which is continuing to build up, the first step is to build 'incinerators' which will eliminate fission products by slow neutron assisted neutronic capture, and actinides by fast neutron assisted fission. Various projects have been set up, in particular, in Los Alamos, Japan and the CERN. The Carlo Rubbia hybrid machine operating on the well-known thorium cycle is the most advanced project. An incinerator connected up to standard PWR reactor produces no actinide, and reduces the existing stock of plutonium. However, the proper solution, obviously, is to no longer produce waste along with power; second generation nuclear fission will do this. The CERN team bas studied a clean reactor, producing practically no actinides, or fission products, more or less. Thus, the solution to the problem of waste is at hand, and nuclear power will be cleaner that all other types of power. The world market opening up to clean nuclear power is about 1,300 Gigawatts, or 1,300 plants of 1,000 Megawatts. Remarkable progress is taking place under our very eyes; soon we will have clean power in sufficient quantities, at a lower cost than that of other forms of power. (authors)

  13. Measurements of fission cross-sections and of neutron production rates; Mesures de sections efficaces de fission et du nombre de neutrons prompts emis par fission

    Energy Technology Data Exchange (ETDEWEB)

    Billaud, P; Clair, C; Gaudin, M; Genin, R; Joly, R; Leroy, J L; Michaudon, A; Ouvry, J; Signarbieux, C; Vendryes, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    a) Measurements of neutron induced fission cross-sections in the low energy region. The variation of the fission cross sections of several fissile isotopes has been measured and analysed, for neutron energies below 0,025 eV. The monochromator was a crystal spectrometer used in conjunction with a mechanical velocity selector removing higher order Bragg reflections. The fissile material was laid down on the plates of a fission chamber by painting technic. An ionization chamber, having its plates coated with thin {sup 10}B layers, was used as the neutron flux monitor. b) Measurement of the fission cross section of {sup 235}U. We intend to measure the variation of the neutron induced fission cross section of {sup 235}U over the neutron energy range from 1 keV by the time of flight method. The neutron source is the uranium target of a pulsed 28 MeV electron linear accelerator. The detector is a large fission chamber, with parallel plates, containing about 10 g of {sup 235}U (20 deposits of 25 cm diameter). The relative fission data were corrected for the neutron spectrum measured with a set of BF{sub 3} proportional counters. c) Mean number {nu} of neutrons emitted in neutron induced fission. We measured the value of {nu} for several fissile isotopes in the case of fission induced by 14 MeV neutrons. The 14 MeV neutrons were produced by D (t, n) {alpha} reaction by means of a 300 kV Cockcroft Walton generator. (author)Fren. [French] a) Mesures de sectionficaces de fission a basse energie. Nous avons mesure et analyse la variation de la section efficace de fission de divers isotopes fissiles pour des neutrons d'energie inferieure a 0,025 eV. Le monochromateur est constitue par un spectrometre a cristal auquel est associe un selecteur mecanique destine a eliminer les diffractions de Bragg d'ordre superieur au premier. Le materiau fissile est contenu dans une chambre a fission sous forme de depots realises par peinture; une chambre d'ionisation a depots minces de B{sub 10

  14. Some aspects of the nuclear fission process; Quelques aspects du processus de fission nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Netter, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    In the following report one can find first a short general view on the present situation of our knowledge concerning the nuclear fission process, namely on the nucleus going through the saddle-point. Then there are some aspects connected with the excitation energy of the fissioning nucleus. The measurements made at Saclay on the fast neutron fission cross-section of U{sup 233}, U{sup 235}, Pu{sup 239}, U{sup 238} are described at the beginning of this work. It appears that for U{sup 233} there is some characteristic shape modulation of the cross-section curve, in relation with the collective excited state of the deformed nucleus at the saddle-point. Good evidence of this is also given by the study of the relative fission rate with emission of long-range particles; it appears also that this ternary fission rate does not change substantially for neutron between thermal energy and 2 MeV, but that is very lower for the compound nucleus U{sup 239} than for even-even compound nuclei. At the end there are some experiments on the strong 4,5 MeV gamma-ray originated by slow neutron absorption in U{sup 235}. Time-of-flight device is used to establish that this 4,5 MeV gamma-ray seems mostly connected with radiative capture. (author) [French] Le present travail debute par un apercu de l'etat actuel de nos connaissances sur le processus de fission nucleaire, notamment sur le passage par le point-seuil. Puis sont evoques des aspects lies au niveau d'energie d'excitation auquel est porte le noyau qui subit la fission. Les mesures de sections efficaces de fission induite dans {sup 233}U, {sup 235}U, {sup 239}Pu et {sup 238}U par des neutrons rapides effectuees a Saclay sont decrites en premier lieu; elles font apparaitre pour {sup 233}U une ondulation caracteristique du role des etats collectifs d'excitation du noyau deforme au point-seuil. Des experiences sur la fission avec emission de particules de long parcours confirment cet aspect tout en demontrant que la frequence

  15. 1978 source book for fusion--fission hybrid systems. Executive summary

    International Nuclear Information System (INIS)

    Crowley, J.H.; Pavlenco, G.F.; Kaminski, R.S.

    1978-12-01

    The 1978 Source Book for Fusion--Fission Hybrid Systems was prepared by United Engineers and Constructors Inc. for the U.S. Department of Energy and the Electric Power Research Institute. It reviews the current status of fusion--fission hybrid reactors, and presents the prevailing views of members of the fusion community on the RD and D timetable required for the development and commercialization of fusion--fission hybrids. The results presented are based on a review of related references as well as interviews with recognized experts in the field. Contributors from the academic and industrial communities are listed

  16. Angular distributions in quasi-fission reactions

    International Nuclear Information System (INIS)

    Luetzenkirchen, K.; Kratz, J.V.; Lucas, R.; Poitou, J.; Gregoire, C.; Wirth, G.; Bruechle, W.; Suemmerer, K.

    1985-10-01

    Angular distributions for fission-like fragments were measured in the systems 50 Ti, 56 Fe + 208 Pb by applying an off-line KX-ray activation technique. The distributions d 2 sigma/dTHETAdZ exhibit forward-backward asymmetries that are strongly Z-dependent. They result from a process (quasi-fission) which yields nearly symmetric masses in times comparable to the rotational period of the composite system. A method for obtaining the variance of the tilting angular momentum, K 0 2 , from these skewed, differential angular distributions is described. The results indicate that the tilting mode is not fully excited in quasi-fission reactions. The results are compared to the sum of the variances of all statistical spin components, measured via γ-multiplicities. Integration of the angular distributions d 2 sigma/dTHETAdZ over all values of Z yields integral angular distributions dsigma/dTHETA and dsigma/dΩ symmetric around 90 0 . The associated unusually large anisotropies do not at all provide an adequate basis for tests or modifications of the transition state theory. A deconvolution of d 2 sigma/dTHETAdZ is performed with gaussian distributions depending on rotational angles ΔTHETA extending over a range of up to 540 0 . From the mean values a time scale for the evolution of K 0 is calculated. (orig.)

  17. 3D Mapping for Urban and Regional Planning

    DEFF Research Database (Denmark)

    Bodum, Lars

    2002-01-01

    The process of mapping in 3D for urban and regional planning purposes is not an uncomplicated matter. It involves both the construction of a new data-model and new routines for the geometric modeling of the physical objects. This is due to the fact that most of the documentation until now has been...... registered and georeferenced to the 2D plan. This paper will outline a new method for 3D mapping where new LIDAR (laser-scanning) technology and additional 2D maps with attributes will be combined to create a 3D map of an urban area. The 3D map will afterwards be used in a real-time simulation system (also...... known as Virtual Reality system) for urban and regional planning purposes. This initiative will be implemented in a specific geographic region (North Jutland County in Denmark) by a new research centre at Aalborg University called Centre for 3D GeoInformation. The key question for this research team...

  18. The MAP kinase Pmk1 and protein kinase A are required for rotenone resistance in the fission yeast, Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yiwei; Gulis, Galina; Buckner, Scott; Johnson, P. Connor; Sullivan, Daniel [Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 (United States); Busenlehner, Laura [Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487 (United States); Marcus, Stevan, E-mail: smarcus@bama.ua.edu [Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 (United States)

    2010-08-20

    Research highlights: {yields} Rotenone induces generation of ROS and mitochondrial fragmentation in fission yeast. {yields} The MAPK Pmk1 and PKA are required for rotenone resistance in fission yeast. {yields} Pmk1 and PKA are required for ROS clearance in rotenone treated fission yeast cells. {yields} PKA plays a role in ROS clearance under normal growth conditions in fission yeast. -- Abstract: Rotenone is a widely used pesticide that induces Parkinson's disease-like symptoms in rats and death of dopaminergic neurons in culture. Although rotenone is a potent inhibitor of complex I of the mitochondrial electron transport chain, it can induce death of dopaminergic neurons independently of complex I inhibition. Here we describe effects of rotenone in the fission yeast, Schizosaccharomyces pombe, which lacks complex I and carries out rotenone-insensitive cellular respiration. We show that rotenone induces generation of reactive oxygen species (ROS) as well as fragmentation of mitochondrial networks in treated S. pombe cells. While rotenone is only modestly inhibitory to growth of wild type S. pombe cells, it is strongly inhibitory to growth of mutants lacking the ERK-type MAP kinase, Pmk1, or protein kinase A (PKA). In contrast, cells lacking the p38 MAP kinase, Spc1, exhibit modest resistance to rotenone. Consistent with these findings, we provide evidence that Pmk1 and PKA, but not Spc1, are required for clearance of ROS in rotenone treated S. pombe cells. Our results demonstrate the usefulness of S. pombe for elucidating complex I-independent molecular targets of rotenone as well as mechanisms conferring resistance to the toxin.

  19. The MAP kinase Pmk1 and protein kinase A are required for rotenone resistance in the fission yeast, Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Wang, Yiwei; Gulis, Galina; Buckner, Scott; Johnson, P. Connor; Sullivan, Daniel; Busenlehner, Laura; Marcus, Stevan

    2010-01-01

    Research highlights: → Rotenone induces generation of ROS and mitochondrial fragmentation in fission yeast. → The MAPK Pmk1 and PKA are required for rotenone resistance in fission yeast. → Pmk1 and PKA are required for ROS clearance in rotenone treated fission yeast cells. → PKA plays a role in ROS clearance under normal growth conditions in fission yeast. -- Abstract: Rotenone is a widely used pesticide that induces Parkinson's disease-like symptoms in rats and death of dopaminergic neurons in culture. Although rotenone is a potent inhibitor of complex I of the mitochondrial electron transport chain, it can induce death of dopaminergic neurons independently of complex I inhibition. Here we describe effects of rotenone in the fission yeast, Schizosaccharomyces pombe, which lacks complex I and carries out rotenone-insensitive cellular respiration. We show that rotenone induces generation of reactive oxygen species (ROS) as well as fragmentation of mitochondrial networks in treated S. pombe cells. While rotenone is only modestly inhibitory to growth of wild type S. pombe cells, it is strongly inhibitory to growth of mutants lacking the ERK-type MAP kinase, Pmk1, or protein kinase A (PKA). In contrast, cells lacking the p38 MAP kinase, Spc1, exhibit modest resistance to rotenone. Consistent with these findings, we provide evidence that Pmk1 and PKA, but not Spc1, are required for clearance of ROS in rotenone treated S. pombe cells. Our results demonstrate the usefulness of S. pombe for elucidating complex I-independent molecular targets of rotenone as well as mechanisms conferring resistance to the toxin.

  20. Gamma-ray spectrometric measurements of fission rate ratios between fresh and burnt fuel following irradiation in a zero-power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kröhnert, H., E-mail: hanna.kroehnert@ensi.ch [Paul Scherrer Institut (PSI), CH-5232 Villigen (Switzerland); École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Perret, G.; Murphy, M.F. [Paul Scherrer Institut (PSI), CH-5232 Villigen (Switzerland); Chawla, R. [Paul Scherrer Institut (PSI), CH-5232 Villigen (Switzerland); École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2013-01-11

    The gamma-ray activity from short-lived fission products has been measured in fresh and burnt UO{sub 2} fuel samples after irradiation in a zero-power reactor. For the first time, short-lived gamma-ray activity from fresh and burnt fuel has been compared and fresh-to-burnt fuel fission rate ratios have been derived. For the measurements, well characterized fresh and burnt fuel samples, with burn-ups up to 46 GWd/t, were irradiated in the zero-power research reactor PROTEUS. Fission rate ratios were derived based on the counting of high-energy gamma-rays above 2200 keV, in order to discriminate against the high intrinsic activity of the burnt fuel. This paper presents the measured fresh-to-burnt fuel fission rate ratios based on the {sup 142}La (2542 keV), {sup 89}Rb (2570 keV), {sup 138}Cs (2640 keV) and {sup 95}Y (3576 keV) high-energy gamma-ray lines. Comparisons are made with the results of Monte Carlo modeling of the experimental configuration, carried out using the MCNPX code. The measured fission rate ratios have 1σ uncertainties of 1.7–3.4%. The comparisons with calculated predictions show an agreement within 1–3σ, although there appears to be a slight bias (∼3%).

  1. Cartilage quality in rheumatoid arthritis: comparison of T2* mapping, native T1 mapping, dGEMRIC, ΔR1 and value of pre-contrast imaging

    International Nuclear Information System (INIS)

    Buchbender, Christian; Scherer, Axel; Kroepil, Patric; Quentin, Michael; Reichelt, Dorothea C.; Lanzman, Rotem S.; Mathys, Christian; Blondin, Dirk; Wittsack, Hans-Joerg; Antoch, Gerald; Miese, Falk; Koerbl, Birthe; Bittersohl, Bernd; Zilkens, Christoph; Hofer, Matthias; Schneider, Matthias; Ostendorf, Benedikt

    2012-01-01

    To prospectively evaluate four non-invasive markers of cartilage quality - T2* mapping, native T1 mapping, dGEMRIC and ΔR1 - in healthy volunteers and rheumatoid arthritis (RA) patients. Cartilage of metacarpophalangeal (MCP) joints II were imaged in 28 consecutive subjects: 12 healthy volunteers [9 women, mean (SD) age 52.67 (9.75) years, range 30-66] and 16 RA patients with MCP II involvement [12 women, mean (SD) age 58.06 (12.88) years, range 35-76]. Sagittal T2* mapping was performed with a multi-echo gradient-echo on a 3 T MRI scanner. For T1 mapping the dual flip angle method was applied prior to native T1 mapping and 40 min after gadolinium application (delayed gadolinium-enhanced MRI of cartilage, dGEMRIC, T1 Gd ). The difference in the longitudinal relaxation rate induced by gadolinium (ΔR1) was calculated. The area under the receiver operating characteristic curve (AROC) was used to test for differentiation of RA patients from healthy volunteers. dGEMRIC (AUC 0.81) and ΔR1 (AUC 0.75) significantly differentiated RA patients from controls. T2* mapping (AUC 0.66) and native T1 mapping (AUC 0.66) were not significantly different in RA patients compared to controls. The data support the use of dGEMRIC for the assessment of MCP joint cartilage quality in RA. T2* and native T1 mapping are of low diagnostic value. Pre-contrast T1 mapping for the calculation of ΔR1 does not increase the diagnostic value of dGEMRIC. (orig.)

  2. Cartilage quality in rheumatoid arthritis: comparison of T2* mapping, native T1 mapping, dGEMRIC, {delta}R1 and value of pre-contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Buchbender, Christian; Scherer, Axel; Kroepil, Patric; Quentin, Michael; Reichelt, Dorothea C.; Lanzman, Rotem S.; Mathys, Christian; Blondin, Dirk; Wittsack, Hans-Joerg; Antoch, Gerald; Miese, Falk [University Duesseldorf, Department of Diagnostic and Interventional Radiology, Medical Faculty, Duesseldorf (Germany); Koerbl, Birthe [Heinrich-Heine-University, Department of Endocrinology, Diabetology and Rheumatology, Medical Faculty, Duesseldorf (Germany); Heinrich-Heine-University, Leibniz Centre for Diabetes Research, Institute of Biometrics and Epidemiology, German Diabetes Centre, Duesseldorf (Germany); Bittersohl, Bernd; Zilkens, Christoph [Heinrich-Heine-University, Department of Orthopaedics, Medical Faculty, Duesseldorf (Germany); Hofer, Matthias [Heinrich-Heine-University, Medical Education Group, Medical School, Duesseldorf (Germany); Schneider, Matthias; Ostendorf, Benedikt [Heinrich-Heine-University, Department of Endocrinology, Diabetology and Rheumatology, Medical Faculty, Duesseldorf (Germany)

    2012-06-15

    To prospectively evaluate four non-invasive markers of cartilage quality - T2* mapping, native T1 mapping, dGEMRIC and {delta}R1 - in healthy volunteers and rheumatoid arthritis (RA) patients. Cartilage of metacarpophalangeal (MCP) joints II were imaged in 28 consecutive subjects: 12 healthy volunteers [9 women, mean (SD) age 52.67 (9.75) years, range 30-66] and 16 RA patients with MCP II involvement [12 women, mean (SD) age 58.06 (12.88) years, range 35-76]. Sagittal T2* mapping was performed with a multi-echo gradient-echo on a 3 T MRI scanner. For T1 mapping the dual flip angle method was applied prior to native T1 mapping and 40 min after gadolinium application (delayed gadolinium-enhanced MRI of cartilage, dGEMRIC, T1{sub Gd}). The difference in the longitudinal relaxation rate induced by gadolinium ({delta}R1) was calculated. The area under the receiver operating characteristic curve (AROC) was used to test for differentiation of RA patients from healthy volunteers. dGEMRIC (AUC 0.81) and {delta}R1 (AUC 0.75) significantly differentiated RA patients from controls. T2* mapping (AUC 0.66) and native T1 mapping (AUC 0.66) were not significantly different in RA patients compared to controls. The data support the use of dGEMRIC for the assessment of MCP joint cartilage quality in RA. T2* and native T1 mapping are of low diagnostic value. Pre-contrast T1 mapping for the calculation of {delta}R1 does not increase the diagnostic value of dGEMRIC. (orig.)

  3. Birth to death analysis of the energy payback ratio and CO2 gas emission rates from coal, fission, wind, and DT-fusion electrical power plants

    International Nuclear Information System (INIS)

    White, Scott W.; Kulcinski, Gerald L.

    2000-01-01

    The amount of electrical energy produced over the lifetime of coal, LWR fission, UP fusion, and wind power plants is compared to the total amount of energy required to procure the fuel, build, operate, and decommission the power plants. The energy payback ratio varies from a low of 11 for coal plants to a high of 27 for DT-fusion plants. The magnitude of the energy investment and the source of the various energy inputs determine the CO 2 emission factor. This number varies from a low of 9 to a high of 974 tonnes of CO 2 per GW e h for DT-fusion and coal plants, respectively

  4. Post-irradiation studies on knock-out and pseudo-recoil releases of fission products from fissioning UO2

    International Nuclear Information System (INIS)

    Yamagishi, S.; Tanifuji, T.

    1976-01-01

    By using post-irradiation techniques, in-pile releases of 133 Xe, sup(85m)Kr, 88 Kr, 87 Kr and 138 Xe from UO 2 fissioning at low temperatures below about 200 0 C are studied: these are analyzed into a time-dependent knock-out and time-independent pseudo-recoil releases. For the latter, a 'self knock-out' mechanism is proposed: when a fission fragment loses thoroughly its energy near the UO 2 surface and stops there, it will knock out the surface substances and accordingly the fragment (i.e. the fission product) will be released. The effective thickness of the layer where the self knock-out occurs is found to be approximately 7A. As for the knock-out release, the following is estimated from its dependence on various factors: the knock-out release of fission products occurs from the surface layer with the effective thickness of approximately 20A: the shape of UO 2 matrix knocked out by one fission fragment passing through the surface is equivalent to a cylinder approximately 32A diameter by approximately 27A thick, (i.e. the knock-out coefficient for UO 2 is approximately 660 uranium atoms per knock-out event). On the basis of the above estimations, the conclusions derived from the past in-pile studies of fission gas releases are evaluated. (Auth.)

  5. Nuclear Power from Fission Reactors. An Introduction.

    Science.gov (United States)

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  6. Fission yield measurements at IGISOL

    Science.gov (United States)

    Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.

    2016-06-01

    The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  7. Fission yield measurements at IGISOL

    Directory of Open Access Journals (Sweden)

    Lantz M.

    2016-01-01

    Full Text Available The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f and Th(p,f have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  8. Ternary Fission of U{sup 235} by Resonance Neutrons; Fission Ternaire de {sup 235}U par des Neutrons de Resonance; 0422 0420 041e 0419 041d 041e 0415 0414 0415 041b 0415 041d 0418 0415 0423 0420 0410 041d 0410 -235 041d 0410 0420 0415 0417 041e 041d 0410 041d 0421 041d 042b 0425 041d 0415 0419 0422 0420 041e 041d 0410 0425 ; Fision Ternaria del {sup 235}U por Neutrones de Resonancia

    Energy Technology Data Exchange (ETDEWEB)

    Kvitek, I.; Popov, Ju. P.; Rjabov, Ju. V. [Ob' edinennyj Institut Jadernyh Issledovanij, Dubna, SSSR (Russian Federation)

    1965-07-15

    range 0.1 to 0.2 eV. The paper discusses the possible effect of the (n, {alpha}) reaction on the results obtained in experiments not using the coincidence of a long-range particle with a fission fragment. (author) [French] On a publie recemment des etudes dans lesquelles on signale que, lors du passage d'une resonance a une aune, le rapport entre les sections efficaces de fission ternaire et binaire de {sup 235}U subit des variations considerables. Or, les auteurs n'ont constate aucune variation de ce genre ni pour {sup 233}U ni pour {sup 2}'3{sup 9}Pu. Le memoire fait etat de recherches sur la fission ternaire de {sup 285}U par neutrons de 0,1 a 30 eV. Contrairement a d'autres travaux consacres a la fission ternaire de chaque fission ternaire a ete identifiee par coincidence entre l'un des fragments de fission et une particule legere a long parcours. Grace a ce procede, les fissions ternaires ont pu Etre separees de la contribution qui pourrait etre due a la reaction (n, {alpha}). Les mesures ont ete faites dans le reacteur a neutrons rapides de l'Institut unifie de recheiches nucleaires par la methode du temps de vol. Les auteucs ont utilise a cet effet une base de vol de 100 m, ce qui a permis d'obtenir un pouvoir de resolution de 0,6 {mu}s/m. Pour enregistrer les fragments de fission et la particule legere a long parcours, ils se sont servis de compteurs a scintillateur gazeux remplis de xenon sous une pression de 2 atm. Une couche de {sup 235}U enrichi d'environ 300 cm{sup 2} et de 2 mg/cm{sup 2} d'epaisseur a ete appliquee sur une feuille d'aluminium de 20 {mu}m. Dans le volume de gaz on a enregistre d'un cote de la feuille les scintillations dues aux fragments de fission et, de l'autre cote, celles qui pro venaient des particules legeres a long parcours. En vue d'evaluer le bruit de fond (par exemple les coincidences entre l'Impulsion provoquee par un fragment et l'impulsion due a un photon de fission gamma ou un proton provenant de la reaction (n, p) dans la

  9. Review of the safety concept for fusion reactor concepts and transferability of the nuclear fission regulation to potential fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Raeder, Juergen; Weller, Arthur; Wolf, Robert [Max-Planck-Institut fuer Plasmaphysik (IPP), Garching (Germany); Jin, Xue Zhou; Boccaccini, Lorenzo V.; Stieglitz, Robert; Carloni, Dario [Karlsruher Institute fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany); Pistner, Christoph [Oeko-Institut e.V., Darmstadt (Germany); Herb, Joachim [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Koeln (Germany)

    2016-01-15

    This paper summarizes the current state of the art in science and technology of the safety concept for future fusion power plants (FPPs) and examines the transferability of the current nuclear fission regulation to the concepts of future fusion power plants. At the moment there exist only conceptual designs of future fusion power plants. The most detailed concepts with regards to safety aspects were found in the European Power Plant Conceptual Study (PPCS). The plant concepts discussed in the PPCS are based on magnetic confinement of the plasma. The safety concept of fusion power plants, which has been developed during the last decades, is based on the safety concepts of installations with radioactive inventories, especially nuclear fission power plants. It applies the concept of defence in depth. However, there are specific differences between the implementations of the safety concepts due to the physical and technological characteristics of fusion and fission. It is analysed whether for fusion a safety concept is required comparable to the one of fission. For this the consequences of a purely hypothetical release of large amounts of the radioactive inventory of a fusion power plant and a fission power plant are compared. In such an event the evacuation criterion outside the plant is exceeded by several orders of magnitude for a fission power plant. For a fusion power plant the expected radiological consequences are of the order of the evacuation criterion. Therefore, a safety concept is also necessary for fusion to guarantee the confinement of the radioactive inventory. The comparison between the safety concepts for fusion and fission shows that the fundamental safety function ''confinement of the radioactive materials'' can be transferred directly in a methodical way. For a fusion power plant this fundamental safety function is based on both, physical barriers as well as on active retention functions. After the termination of the fusion

  10. Measurement and analysis of thorium fission rate in a polyethylene shell with a D-T neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Lei [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Yang, Yiwei, E-mail: winfield1920@126.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Liu, Zhujun [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Department of Nuclear Engineering and Technology, Sichuan University, Chengdu 610065,China (China); Liu, Rong, E-mail: liurongzy@163.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Jiang, Li; Wang, Mei [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-12-15

    Highlights: • Associated angular dependencies of the source neutron energy and intensity was given. • Two sets of fission yields from evaluated libraries were considered and applied. • Calculated results employing ENDF/B-VII.0 agreed with the experimental ones best. • Small discrepancies exist between thorium fission cross section evaluated libraries. - Abstract: In order to validate the {sup 232}Th fission cross section, an integral experiment was carried out using the activation method in a polyethylene shell with a D-T neutron source. Thorium samples were arranged in the 0° direction to the incident D{sup +} beam. The {sup 232}Th fission rate was determined by measuring the 151.195 keV characteristic γ ray emitted from the fission fragment {sup 85m}Kr, and the experimental uncertainties were about 5.3%. MCNP calculation results employing ENDF/B-VII.0, JENDL-3.3, JENDL-4.0 libraries are in good agreement with that of experiments within uncertainties except that employing ENDF/B-VII.1 (∼6.5%). The experiment results can be used to re-evaluate the {sup 232}Th fission cross section.

  11. Feasibility study on fission moly target development

    International Nuclear Information System (INIS)

    Kim, Byung Ku; Kim, Seong Nyun; Shon, Dong Seong; Choi, Chang Beom; Lee, Jae Kuk; Park, Jin Ho; Jeong, Won Myung; Jeon, Kwan Sik; You, Jae Hyung; Kang, Kyung Chul; Ahn, Jong Hwan; Ju, Po Kuk

    1996-01-01

    A multi-purpose research reactor, HANARO has been operated on the beginning of 1995 and can be utilized for production of various radioisotopes. And a R and D program for fission Mo production was established, and the technical and economical feasibility study has been performed for fission Mo production in Korea. In this study the process for fission Mo production was recommended as follows; 1. Target : UO 2 of annulus type. 2. Separation and purification : Nitric acid dissolution → Alumina adsorption → Benzoin oxime precipitation → Alumina adsorption. And more desirable plan for steady supply of fission Mo were suggested in following viewpoints; 1. Technical collaboration with foreign company. 2. Backup supply system. 3. Marketing arrangement. (Author)

  12. Sensitivity analysis for CORSOR models simulating fission product release in LOFT-LP-FP-2 severe accident experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hoseyni, Seyed Mohsen [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Basic Sciences; Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Young Researchers and Elite Club; Pourgol-Mohammad, Mohammad [Sahand Univ. of Technology, Tabriz (Iran, Islamic Republic of). Dept. of Mechanical Engineering; Yousefpour, Faramarz [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2017-03-15

    This paper deals with simulation, sensitivity and uncertainty analysis of LP-FP-2 experiment of LOFT test facility. The test facility simulates the major components and system response of a pressurized water reactor during a LOCA. MELCOR code is used for predicting the fission product release from the core fuel elements in LOFT LP-FP-2 experiment. Moreover, sensitivity and uncertainty analysis is performed for different CORSOR models simulating release of fission products in severe accident calculations for nuclear power plants. The calculated values for the fission product release are compared under different modeling options to the experimental data available from the experiment. In conclusion, the performance of 8 CORSOR modeling options is assessed for available modeling alternatives in the code structure.

  13. Fission ionisation chamber for the measurement of low fluxes of slow neutrons; Chambre d'ionisation a fission pour la mesure des faibles flux de neutrons lents

    Energy Technology Data Exchange (ETDEWEB)

    Weill, J; Duchene, J P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The ionisation chamber described is designed for the measurement of slow neutron fluxes of average or low intensity, in the presence, eventually, of very high gamma fluxes. The capture of a slow neutron by a fissile material, in this case {sup 235}U, gives rise to fission fragments, high-energy particles which ionise the gas contained in the chamber. The neutrons are detected by virtue of the potential pulses, on the collecting electrode of the chamber, deriving from the collection of the ions produced by the fission fragments. The pulses are counted by means of a measuring system consisting of a preamplifier, a 2 Mc amplifier, a discriminator and an electronic scale with numerator or integrator. The general characteristics are as follows: sensitivity to neutrons: 0.07 kicks/n/cm{sup 2}.s, sensitivity to {gamma} rays: zero up to 3.10{sup 4} R/H, a background noise at the normal discrimination voltage: 0.01 kicks/s, working H.T.: -500 V, capacity: 40 {mu}{mu}F, average height of pulse: 8 mV, limits of use: from several neutrons to 10{sup 6} n/cm{sup 2}.s. This chamber may be used in all cases where low fluxes of slow neutrons must be measured, especially in the presence of high gamma fluxes, for example in the checking of Pu concentrations in an extraction plant or for the starting up of reactors. (author) [French] La chambre d'ionisation decrite est destinee a la mesure des flux de neutrons lents d'intensite moyenne ou faible, en presence eventuelle de flux gamma tres importants. La capture d'un neutron lent par un materiau fissile, en l'occurrence {sup 235}U, donne naissance a des fragments de fission, particules de grande energie qui ionisent le gaz contenu dans la chambre. Les neutrons sont detectes grace aux impulsions de potentiel, sur l'electrode collectrice de la chambre, provenant de la collection des ions produits par les fragments de fission. Une chaine de mesure comprenant un preamplificateur, un amplificateur 2 Mc, un discriminateur, une echelle

  14. 2D discontinuous piecewise linear map: Emergence of fashion cycles.

    Science.gov (United States)

    Gardini, L; Sushko, I; Matsuyama, K

    2018-05-01

    We consider a discrete-time version of the continuous-time fashion cycle model introduced in Matsuyama, 1992. Its dynamics are defined by a 2D discontinuous piecewise linear map depending on three parameters. In the parameter space of the map periodicity, regions associated with attracting cycles of different periods are organized in the period adding and period incrementing bifurcation structures. The boundaries of all the periodicity regions related to border collision bifurcations are obtained analytically in explicit form. We show the existence of several partially overlapping period incrementing structures, that is, a novelty for the considered class of maps. Moreover, we show that if the time-delay in the discrete time formulation of the model shrinks to zero, the number of period incrementing structures tends to infinity and the dynamics of the discrete time fashion cycle model converges to those of continuous-time fashion cycle model.

  15. Behavior of solid fission products in irradiated fuel

    International Nuclear Information System (INIS)

    Song, Ung Sup; Jung, Yang Hong; Kim, Hee Moon; Yoo, Byun Gok; Kim, Do Sik; Choo, Yong Sun; Hong, Kwon Pyo

    2004-01-01

    Many fission products are generated by fission events in UO 2 fuel under irradiation in nuclear reactor. Concentration of each fission product is changed by conditions of neutron energy spectrum, fissile material, critical thermal power, irradiation period and cooling time. Volatile materials such as Cs and I, the fission products, degrade nuclear fuel rod by the decrease of thermal conductivity in pellet and the stress corrosion cracking in cladding. Metal fission products (white inclusion) make pellet be swelled and decrease volume of pellet by densification. It seems that metal fission products are filled in the pore in pellet and placed between UO 2 lattices as interstitial. In addition, metal oxide state may change structural lattice volume. Considering behavior of fission products mentioned above, concentration of them is important. Fission products could be classified as bellows; solid solution in matrix : Sr, Zr, Nb, Y, La, Ce, Pr, Nd, Pm, Sm - metal precipitates : Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sb, Te - oxide precipitates : Ba, Zr, Nb, Mo, (Rb, Cs, Te) - volatile and gases : Kr, Xe, Br, I, (Rb, Cs, Te)

  16. EVALUATION OF THE USER STRATEGY ON 2D AND 3D CITY MAPS BASED ON NOVEL SCANPATH COMPARISON METHOD AND GRAPH VISUALIZATION

    Directory of Open Access Journals (Sweden)

    J. Dolezalova

    2016-06-01

    Full Text Available The paper is dealing with scanpath comparison of eye-tracking data recorded during case study focused on the evaluation of 2D and 3D city maps. The experiment contained screenshots from three map portals. Two types of maps were used - standard map and 3D visualization. Respondents’ task was to find particular point symbol on the map as fast as possible. Scanpath comparison is one group of the eye-tracking data analyses methods used for revealing the strategy of the respondents. In cartographic studies, the most commonly used application for scanpath comparison is eyePatterns that output is hierarchical clustering and a tree graph representing the relationships between analysed sequences. During an analysis of the algorithm generating a tree graph, it was found that the outputs do not correspond to the reality. We proceeded to the creation of a new tool called ScanGraph. This tool uses visualization of cliques in simple graphs and is freely available at www.eyetracking.upol.cz/scangraph. Results of the study proved the functionality of the tool and its suitability for analyses of different strategies of map readers. Based on the results of the tool, similar scanpaths were selected, and groups of respondents with similar strategies were identified. With this knowledge, it is possible to analyse the relationship between belonging to the group with similar strategy and data gathered from the questionnaire (age, sex, cartographic knowledge, etc. or type of stimuli (2D, 3D map.

  17. Evaluation of the User Strategy on 2d and 3d City Maps Based on Novel Scanpath Comparison Method and Graph Visualization

    Science.gov (United States)

    Dolezalova, J.; Popelka, S.

    2016-06-01

    The paper is dealing with scanpath comparison of eye-tracking data recorded during case study focused on the evaluation of 2D and 3D city maps. The experiment contained screenshots from three map portals. Two types of maps were used - standard map and 3D visualization. Respondents' task was to find particular point symbol on the map as fast as possible. Scanpath comparison is one group of the eye-tracking data analyses methods used for revealing the strategy of the respondents. In cartographic studies, the most commonly used application for scanpath comparison is eyePatterns that output is hierarchical clustering and a tree graph representing the relationships between analysed sequences. During an analysis of the algorithm generating a tree graph, it was found that the outputs do not correspond to the reality. We proceeded to the creation of a new tool called ScanGraph. This tool uses visualization of cliques in simple graphs and is freely available at www.eyetracking.upol.cz/scangraph. Results of the study proved the functionality of the tool and its suitability for analyses of different strategies of map readers. Based on the results of the tool, similar scanpaths were selected, and groups of respondents with similar strategies were identified. With this knowledge, it is possible to analyse the relationship between belonging to the group with similar strategy and data gathered from the questionnaire (age, sex, cartographic knowledge, etc.) or type of stimuli (2D, 3D map).

  18. An assessment of fission product data for decay power calculation in fast reactors

    International Nuclear Information System (INIS)

    Sridharan, M.S.; Murthy, K.P.N.

    1987-01-01

    A review of our present capability at IGC, Kalpakkam to predict fission product decay power in fast reactors is presented. This is accomplished by comparing our summation calculations with the calculations of others and the reported experimental measurements. Our calculations are based on Chandy code developed at our Centre. The fission product data base of Chandy is essentially drawn from the yield data compiled by Crouch (1977) and the data on halflives etc. compiled by Tobias (1973). In general, we find good agreement amongst the different calculations (within ±5%) and our calculations also compare well with experimental measurements of AKIAMA et al and MURPHY et al

  19. Two-way DF relaying assisted D2D communication: ergodic rate and power allocation

    Science.gov (United States)

    Ni, Yiyang; Wang, Yuxi; Jin, Shi; Wong, Kai-Kit; Zhu, Hongbo

    2017-12-01

    In this paper, we investigate the ergodic rate for a device-to-device (D2D) communication system aided by a two-way decode-and-forward (DF) relay node. We first derive closed-form expressions for the ergodic rate of the D2D link under asymmetric and symmetric cases, respectively. We subsequently discuss two special scenarios including weak interference case and high signal-to-noise ratio case. Then we derive the tight approximations for each of the considered scenarios. Assuming that each transmitter only has access to its own statistical channel state information (CSI), we further derive closed-form power allocation strategy to improve the system performance according to the analytical results of the ergodic rate. Furthermore, some insights are provided for the power allocation strategy based on the analytical results. The strategies are easy to compute and require to know only the channel statistics. Numerical results show the accuracy of the analysis results under various conditions and test the availability of the power allocation strategy.

  20. Phase 1 space fission propulsion system design considerations

    International Nuclear Information System (INIS)

    Houts, Mike; Van Dyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Carter, Robert

    2002-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems operating at 80 kWe or above could enhance or enable numerous robotic outer solar system missions of interest. At these power levels it is possible to develop safe, affordable systems that meet mission performance requirements. In selecting the system design to pursue, seven evaluation criteria were identified: safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of three potential concepts was performed: an SP-100 based pumped liquid lithium system, a direct gas cooled system, and a heatpipe cooled system. For power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the heatpipe system has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the heatpipe approach. Successful development and utilization of a 'Phase 1' fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system

  1. JNDC nuclear data library of fission products

    International Nuclear Information System (INIS)

    Tasaka, Kanji; Ihara, Hitoshi; Akiyama, Masatsugu; Yoshida, Tadashi; Matumoto, Zyun-itiro; Nakasima, Ryuzo

    1983-10-01

    The JNDC (Japanese Nuclear Data Committee) FP (Fission Product) nuclear data library for 1172 fission products is described in this report. The gross theory of beta decay has been used extensively for estimating unknown decay data and also some of known decay data with poor accuracy. The calculated decay powers of fission products using the present library show excellent agreement with the latest measurements at ORNL (Oak Ridge National Laboratory), LANL (Los Alamos National Laboratory) and UTT (University of Tokyo, Tokai) for cooling times shorter than 10 3 s after irradiation. The calculated decay powers by the existing libraries showed systematic deviations at short cooling times; the calculated beta and gamma decay powers after burst fission were smaller than the experimental results for cooling times shorter than 10 s, and in the cooling time range 10 to 10 3 s the beta-decay power was larger than the measured values and the gamma decay power smaller than the measured results. The present JNDC FP nuclear data library resolved these discrepancies in the short cooling time ranges. The decay power of fission products has been calculated for ten fission types and the results have been fitted by an analytical function with 31 exponentials. This permits the easy application of the present results of decay power calculations to a LOCA (Loss-of-Coolant Accident) analysis of a light water reactor and so on. (author)

  2. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martovetsky, N. N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Molvik, A. W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simonen, T. C. [Univ. of California, Berkeley, CA (United States)

    2011-05-13

    The achieved performance of the gas dynamic trap version of magnetic mirrors and today’s technology we believe are sufficient with modest further efforts for a neutron source for material testing (Q=Pfusion/Pinput~0.1). The performance needed for commercial power production requires considerable further advances to achieve the necessary high Q>>10. An early application of the mirror, requiring intermediate performance and intermediate values of Q~1 are the hybrid applications. The Axisymmetric Mirror has a number of attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, inherently steady-state operation, and the presence of the natural divertors in the form of end tanks. This level of physics performance has the virtue of low risk and only modest R&D needed and its simplicity promises economy advantages. Operation at Q~1 allows for relatively low electron temperatures, in the range of 4 keV, for the DT injection energy ~ 80 keV. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror length of 35 m is discussed. Simple circular superconducting coils are based on today’s technology. The positive ion neutral beams are similar to existing units but designed for steady state. A brief qualitative discussion of three groups of physics issues is presented: axial heat loss, MHD stability in the axisymmetric geometry, microstability of sloshing ions. Burning fission reactor wastes by fissioning actinides (transuranics: Pu, Np, Am, Cm, .. or just minor actinides: Np, Am, Cm, …) in the hybrid will multiply fusion’s energy by a factor of ~10 or more and diminish the Q needed to less than 1 to overcome the cost of recirculating power for good economics. The economic value of destroying actinides by fissioning is rather low based on either the cost of long-term storage or even deep geologic disposal so most of the revenues of hybrids will come from electrical power. Hybrids that obtain revenues from

  3. The Cyrano program. 1 - description and operation of an irradiation device 'Cyrano'. 2 - results of the experiments Cyrano 1 and 2 (study of the EL 4 first-bach pencil); measurement of the thermal conductivity integral for UO{sub 2} sintered up to 2300 deg C; evolution of fission gases at constant power; Programme Cyrano. 1 - description et exploitation d'un dispositif d'irradiation ''cyrano''. 2 - resultats des experiences cyrano 1 et 2 (etude du crayon EL4 1. jeu). Mesure de l'integrale de conductibilite thermique d'UO{sub 2} fritte jusqu'a 2300 deg C. Evolution des gaz de fission a puissance constante

    Energy Technology Data Exchange (ETDEWEB)

    Stora, J P; Chenebault, P [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    Two rods of the type 'EL 4 first score' have been irradiated in 'Cyrano' capsules which are suited for continuous measurement of the nuclear power evolved and equipped with thermocouples. The variations of the integral of conductivity of sintered 96 per cent theoretical dense UO{sub 2} has been established until 2300 deg. C; these variations are coherent with those previously measured out-of-pile. The released fission gases have been recovered at different times during the irradiation: the kinetics of release of stable gases is such that, in the experimental conditions (T{sub surface} = 610 deg. C, {integral}{sub T{sub s}}{sup T{sub c}} kdT = 34.7 W cm{sup -1}) the fraction of released gases is still widely increasing after 12 days of irradiation. Numerous observations have been made on concentrations of rare gases locally present in the irradiated fuel. (authors) [French] L'irradiation de deux crayons combustibles type EL 4, 1er jeu, a ete menee a bien dans des capsules 'Cyrano' equipees de dispositifs de mesure continue de la puissance nucleaire et de plusieurs reperes de temperatures; la variation de l'integrale de conductibilite thermique de l'oxyde d'uranium fritte (96 pour cent d. th.) a ete tracee jusqu'a 2300 deg. C; la courbe representative de ces variations est coherente avec celle obtenue precedemment hors pile. Les gaz de fission apparus hors du combustible ont ete extraits du crayon a plusieurs reprises pendant l'experience: la cinetique d'accumulation des gaz stables est telle que dans les conditions etudiees (T{sub surface} = 610 deg. C, {integral}{sub T{sub s}}{sup T{sub c}} kdT = 34.7 W cm{sup -1}) la fraction des gaz degages est encore largement croissante apres 12 jours d'irradiation. De nombreuses observations ont ete recueillies sur la nature et la concentration des gaz rares presents en differents points du combustible irradie. (auteurs)

  4. Local Fission Gas Release and Swelling in Water Reactor Fuel during Slow Power Transients

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Walker, C.T.; Ray, I.L.F.

    1985-01-01

    Gas release and fuel swelling caused by a power increase in a water reactor fuel (burn-up 2.7–4.5% FIMA) is described. At a bump terminal level of about 400 W/cm (local value) gas release was 25–40%. The formation of gas bubbles on grain boundaries and their degree of interlinkage are the two...... factors that determine the level of fission gas release during a power bump. Release begins when gas bubbles on grain boundaries start o interlink. This occurred at r/r0 ~ 0.75. Release tunnels were fully developed at r/r0 ~ 0.55 with the result that gas release was 60–70% at this position....

  5. Out of lab calibration of a rotating 2D scanner for 3D mapping

    Science.gov (United States)

    Koch, Rainer; Böttcher, Lena; Jahrsdörfer, Maximilian; Maier, Johannes; Trommer, Malte; May, Stefan; Nüchter, Andreas

    2017-06-01

    Mapping is an essential task in mobile robotics. To fulfil advanced navigation and manipulation tasks a 3D representation of the environment is required. Applying stereo cameras or Time-of-flight cameras (TOF cameras) are one way to archive this requirement. Unfortunately, they suffer from drawbacks which makes it difficult to map properly. Therefore, costly 3D laser scanners are applied. An inexpensive way to build a 3D representation is to use a 2D laser scanner and rotate the scan plane around an additional axis. A 3D point cloud acquired with such a custom device consists of multiple 2D line scans. Therefore the scanner pose of each line scan need to be determined as well as parameters resulting from a calibration to generate a 3D point cloud. Using external sensor systems are a common method to determine these calibration parameters. This is costly and difficult when the robot needs to be calibrated outside the lab. Thus, this work presents a calibration method applied on a rotating 2D laser scanner. It uses a hardware setup to identify the required parameters for calibration. This hardware setup is light, small, and easy to transport. Hence, an out of lab calibration is possible. Additional a theoretical model was created to test the algorithm and analyse impact of the scanner accuracy. The hardware components of the 3D scanner system are an HOKUYO UTM-30LX-EW 2D laser scanner, a Dynamixel servo-motor, and a control unit. The calibration system consists of an hemisphere. In the inner of the hemisphere a circular plate is mounted. The algorithm needs to be provided with a dataset of a single rotation from the laser scanner. To achieve a proper calibration result the scanner needs to be located in the middle of the hemisphere. By means of geometric formulas the algorithms determine the individual deviations of the placed laser scanner. In order to minimize errors, the algorithm solves the formulas in an iterative process. First, the calibration algorithm was

  6. Ternary fission

    International Nuclear Information System (INIS)

    Wagemans, C.

    1991-01-01

    Since its discovery in 1946, light (charged) particle accompanied fission (ternary fission) has been extensively studied, for spontaneous as well as for induced fission reactions. The reason for this interest was twofold: the ternary particles being emitted in space and time close to the scission point were expected to supply information on the scission point configuration and the ternary fission process was an important source of helium, tritium, and hydrogen production in nuclear reactors, for which data were requested by the nuclear industry. Significant experimental progress has been realized with the advent of high-resolution detectors, powerful multiparameter data acquisition systems, and intense neutron and photon beams. As far as theory is concerned, the trajectory calculations (in which scission point parameters are deduced from the experimental observations) have been very much improved. An attempt was made to explain ternary particle emission in terms of a Plateau-Rayleigh hydrodynamical instability of a relatively long cylindrical neck or cylindrical nucleus. New results have also been obtained on the so-called open-quotes trueclose quotes ternary fission (fission in three about-equal fragments). The spontaneous emission of charged particles has also clearly been demonstrated in recent years. This chapter discusses the main characteristics of ternary fission, theoretical models, light particle emission probabilities, the dependence of the emission probabilities on experimental variables, light particle energy distributions, light particle angular distributions, correlations between light particle accompanied fission observables, open-quotes trueclose quotes ternary fission, and spontaneous emission of heavy ions. 143 refs., 18 figs., 8 tabs

  7. Antiproton Powered Gas Core Fission Rocket

    International Nuclear Information System (INIS)

    Kammash, Terry

    2005-01-01

    Extensive research in recent years has demonstrated that 'at rest' annihilation of antiprotons in the uranium isotope U238 leads to fission at nearly 100% efficiency. The resulting highly-ionizing, energetic fission fragments can heat a suitable medium to very high temperatures, making such a process particularly suitable for space propulsion applications. Such an ionized medium, which would serve as a propellant, can be confined by a magnetic field during the heating process, and subsequently ejected through a magnetic nozzle to generate thrust. The gasdynamic mirror (GDM) magnetic configuration is especially suited for this application since the underlying confinement principle is that the plasma be of such density and temperature as to make the ion-ion collision mean free path shorter than the plasma length. Under these conditions the plasma behaves like a fluid, and its escape from the system is analogous to the flow of a gas into vacuum from a vessel with a hole. For the system we propose we envisage radially injecting atomic or U238 plasma beam at a pre-determined position and axially pulsing an antiproton beam which upon interaction with the uranium target gives rise to near isotropic ejection of fission fragments with a total mass of 212 amu and total energy of about 160 MeV. These particles, along with the annihilation products (i.e. pions and muons) will heat the background U238 gas - inserted into the chamber just prior to the release of the antiproton - to one keV temperature. Preliminary analysis reveals that such a propulsion system can produce a specific impulse of about 3000 seconds at a thrust of about 50 kN. When applied to a round trip Mars mission, we find that such a journey can be accomplished in about 142 days with 2 days of thrusting and requiring only one gram of antiprotons to achieve it

  8. Fission gas behaviour modelling in plate fuel during a power transient

    International Nuclear Information System (INIS)

    Portier, S.

    2003-01-01

    This thesis is dedicated to the identification and modelization of the phenomena which are at the origin of the release of the fission gas formed in UO 2 plate fuels during the irradiation in a power transient. In the first experimental part, samples of plate fuels, irradiated at 36 GWj/tU, have been annealed to temperatures from 1100 C to 1500 C in a device that enabled the measurement of gas release in real time. At 1300 C, post-annealing observations demonstrated a link between the measured gas releases to a rapid formation of labyrinths at the grain surface. These labyrinths, which were formed by intergranular bubble interconnection, create release paths for the gas atoms which reach the grain surface. At this stage, the available experimental results (annealing and observations) were interpreted considering that it is the spreading of the gas atoms from the grains to the grain boundaries that is at the origin of the observed releases. This interpretation generates the hypothesis that a) at the end of the basic irradiation, the gas is at the atomic state and b) during the annealing, the spreading is reduced by the intragranular bubbles of the gas atoms. The last part of the work is dedicated to the modelization of the main phenomena at the origin of the gas release. The model developed, based on the model of the gas behaviour in MARGARET PWR, highlighted the great influence of the irradiation conditions on the gas distribution at the end of the irradiation and also its influence on the fission gas release during the power transient. (author) [fr

  9. COCOSYS analysis for deposition of aerosols and fission products in PHEBUS FPT-2 containment

    International Nuclear Information System (INIS)

    Kontautas, A.; Babilas, E.; Urbonavičius, E.

    2012-01-01

    Highlights: ► Aerosol and fission product behaviour in containment is analyzed. ► Lumped-parameter code COCOSYS is used for the analysis. ► Detailed description of COCOSYS model nodalisation is presented. - Abstract: The issue of the source term of radioactive fission products release from the nuclear power plants to the environment is not resolved yet. Even though experiments are performed and many analyses are performed using different computer codes some questions remain unresolved. The analyses of aerosol transport and deposition processes in the containments of nuclear power plants are investigated for a long time and computer codes are more advanced than 20 years ago there is not developed generic methodology how to develop nodalisation for the lumped-parameter codes. The validation of the computer codes is also an issue. The PHEBUS FP experiments provide possibility for an extensive validation of the computer codes and assessment of different methods to develop nodalisation of the containment.This paper presents results of analysis of aerosol and fission product behaviour in PHEBUS FPT-2 test. It includes description of the PHEBUS containment, detailed description of nodalisation with the initial and boundary conditions used in the analysis and extensive comparison of calculated and measured results. Lumped-parameter code COCOSYS was used for the analysis. The calculated thermal-hydraulic results are in good agreement with measured, which ensures good basis for analysis of aerosol and fission product transport and deposition. The calculated airborn aerosol and fission product masses are in good agreement with measured as well. The aerosol deposition distribution shows that the calculated diffusive deposition on the external containment walls is lower than measured and that the diffusive deposition model implemented in COCOSYS code could not explain this result and further investigations are needed.

  10. Preliminary assessment of a symbiotic fusion--fission power system using the TH/U refresh fuel cycle

    International Nuclear Information System (INIS)

    Bender, D.J.; Lee, J.D.; Moir, R.W.

    1977-10-01

    Studies of the mirror hybrid reactor by LLL/GA have concluded that the most promising role for this reactor concept is that of a producer of fissile fuel for fission reactors. Studies to date have examined primarily the U/Pu fuel cycle with light-water reactors serving as the consumers of the hybrid-bred fissile fuel; the specific scenarios examined required reprocessing and refabrication of the bred fuel before introduction into the fission reactor. This combination of technologies was chosen to illustrate the manner in which the hybrid reactor concept could serve the needs of, and use the technology of, the fission reactor industry as it now exists (and as it was thought it would evolve). However, the current U.S. Administration has expressed strong concerns about proliferation of nuclear weapons capability and terrorist diversion of weapons-grade nuclear materials. These concerns are based on the projected technology for the light-water reactor/fast breeder reactor using the U/Pu fuel cycle and extensive reprocessing/refabrication. A symbiotic nuclear power generation concept (hybrid fissile producer plus fission burner reactors) is described which eliminates those aspects of the present nuclear fuel cycle that (may) represent significant proliferation/diversion risks. Specifically, the proposed concept incorporates the following features: (1)Th/U 233 fuel cycle, (2) no reprocessing or fabrication of fissile material, and (3) no fissile material in a weapons-grade state

  11. Power Doppler flow mapping and four-dimensional ultrasound for evaluating tubal patency compared with laparoscopy.

    Science.gov (United States)

    Soliman, Amr A; Shaalan, Waleed; Abdel-Dayem, Tamer; Awad, Elsayed Elbadawy; Elkassar, Yasser; Lüdders, Dörte; Malik, Eduard; Sallam, Hassan N

    2015-12-01

    To study the accuracy of four-dimensional (4D) ultrasound and power Doppler flow mapping in detecting tubal patency in women with sub-/infertility, and compare it with laparoscopy and chromopertubation. A prospective study. The study was performed in the outpatient clinic and infertility unit of a university hospital. The sonographic team and laparoscopic team were blinded to the results of each other. Women aged younger than 43 years seeking medical advice due to primary or secondary infertility and who planned to have a diagnostic laparoscopy performed, were recruited to the study after signing an informed consent. All of the recruited patients had power Doppler flow mapping and 4D hysterosalpingo-sonography by injecting sterile saline into the fallopian tubes 1 day before surgery. Registering Doppler signals, while using power Doppler, both at the tubal ostia and fimbrial end and the ability to demonstrate the course of the tube especially the isthmus and fimbrial end, while using 4D mode, was considered a patent tube. Out of 50 recruited patients, 33 women had bilateral patent tubes and five had unilateral patent tubes as shown by chromopertubation during diagnostic laparoscopy. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy for two-dimensional power Doppler hysterosalpingography were 94.4%, 100%, 100%, 89.2%, and 96.2%, respectively and for 4D ultrasound were 70.4%, 100%, 100%, 70.4%, and 82.6%, respectively. Four-dimensional saline hysterosalpingography has acceptable accuracy in detecting tubal patency, but is surpassed by power Doppler saline hysterosalpingography. Power Doppler saline hysterosalpingography could be incorporated into the routine sub-/infertility workup. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. D-zero rototrack: first stage of D-zero 2 Tesla solenoid field mapping device

    International Nuclear Information System (INIS)

    Yamada, R.; Korienek, J.; Krider, J.; Lindenmeyer, C.; Miksa, D.; Miksa, R.

    1997-09-01

    A simple and portable field mapping device was developed at Fermilab and successfully used to test the D0 2 Tesla solenoid at Toshiba Works in Japan. A description of the mechanical structure, electric driving and control system, and software of the field mapping device is given. Four Hall probe elements of Group3 Digital Gaussmeters are mounted on the radial extension arm of a carriage, which is mounted on a central rotating beam. The system gives two dimensional motions (axial and rotational) to the Hall probes. To make the system compact and portable, we used a laptop computer with PCMCIA cards. For the control system we used commercially available software LabVIEW and Motion Toolbox, and for the data analysis we used Microsoft Excel

  13. Irradiation tests in BR2 of miniature fission chambers in pulse, Campbelling and current mode

    Energy Technology Data Exchange (ETDEWEB)

    Vermeeren, L. [SCK.CEN, Boeretang 200, B-2400 Mol (Belgium); Geslot, B.; Breaud, S.; Filliatre, P.; Jammes, C. [CEA/DEN/SPEx/LDCI, Centre de Cadarache, F-13109 Saint-Paul-lez-Durance (France); Legrand, A. [CEA/DEN/DRSN/SIREN/LASPI Saclay, F-91191 Gif sur Yvette Cedex (France); Barbot, L. [CEA/DEN/SPEx/LDCI, Centre de Cadarache, F-13109 Saint-Paul-lez-Durance (France)

    2011-07-01

    The FNDS system ('Fast Neutron Detection System') for the on-line in-pile detection of the fast neutron flux in the presence of a significant thermal neutron flux and a high gamma dose rate is being developed in the framework of the SCK.CEN-CEA Laboratoire Commun. The system has been patented in 2008. The system consists of a miniature Pu-242 fission chamber as main detector, complemented by a U-235 fission chamber or a rhodium Self-Powered Neutron Detector (SPND) for thermal neutron flux monitoring and a dedicated acquisition system that also takes care of the processing of the signals from both detectors to extract fast neutron flux data. This paper describes a FNDS qualification experiment in the SCK.CEN BR2 reactor, with experimental results on a large set of fission chambers in current and Campbelling mode. (authors)

  14. Irradiation tests in BR2 of miniature fission chambers in pulse, Campbelling and current mode

    International Nuclear Information System (INIS)

    Vermeeren, L.; Geslot, B.; Breaud, S.; Filliatre, P.; Jammes, C.; Legrand, A.; Barbot, L.

    2011-01-01

    The FNDS system ('Fast Neutron Detection System') for the on-line in-pile detection of the fast neutron flux in the presence of a significant thermal neutron flux and a high gamma dose rate is being developed in the framework of the SCK.CEN-CEA Laboratoire Commun. The system has been patented in 2008. The system consists of a miniature Pu-242 fission chamber as main detector, complemented by a U-235 fission chamber or a rhodium Self-Powered Neutron Detector (SPND) for thermal neutron flux monitoring and a dedicated acquisition system that also takes care of the processing of the signals from both detectors to extract fast neutron flux data. This paper describes a FNDS qualification experiment in the SCK.CEN BR2 reactor, with experimental results on a large set of fission chambers in current and Campbelling mode. (authors)

  15. Closed Brayton Cycle Power Conversion Unit for Fission Surface Power Phase I Final Report

    Science.gov (United States)

    Fuller, Robert L.

    2010-01-01

    A Closed Brayton cycle power conversion system has been developed to support the NASA fission surface power program. The goal is to provide electricity from a small nuclear reactor heat source for surface power production for lunar and Mars environments. The selected media for a heat source is NaK 78 with water as a cooling source. The closed Brayton cycle power was selected to be 12 kWe output from the generator terminals. A heat source NaK temperature of 850 K plus or minus 25 K was selected. The cold source water was selected at 375 K plus or minus 25 K. A vacuum radiation environment of 200 K is specified for environmental operation. The major components of the system are the power converter, the power controller, and the top level data acquisition and control unit. The power converter with associated sensors resides in the vacuum radiation environment. The power controller and data acquisition system reside in an ambient laboratory environment. Signals and power are supplied across the pressure boundary electrically with hermetic connectors installed on the vacuum vessel. System level analyses were performed on working fluids, cycle design parameters, heater and cooling temperatures, and heat exchanger options that best meet the needs of the power converter specification. The goal is to provide a cost effective system that has high thermal-to-electric efficiency in a compact, lightweight package.

  16. Power coefficient anomaly in Joyo, (2)

    International Nuclear Information System (INIS)

    Ishikawa, Makoto; Yamashita, Yoshioki; Sasaki, Makoto; Nara, Yoshihiko.

    1981-12-01

    In this report, the presumption about the mechanism having caused the power coefficient anomaly in Joyo during the 75 MW power-raising test in 1979 is described. After the previous report, the new information about the results of the post-irradiation examination and the analysis of the power coefficient of Joyo were able to be obtained. From these information, the mechanism of causing the anomaly was presumed as follows. In 50 MW operation, the fuel burnup reached about 10,000 MWD/ton at the end of second cycle, and produced fission gas was almost retained in fuel pellets. When the power was raised from 50 MW to 75 MW for the first time, the fission gas began to be released when 50 MW was somewhat exceeded. The fission gas release caused the temperature rise and cracking of fuel pellets, and elongated fuel stack length abruptly. These phenomena induced to enlarge the fuel expansion reactivity effect and Doppler reactivity effect, and caused the anomalous behavior of power coefficient. After reaching 75 MW, the fuel stack length did not respond normally to reactor power change, and the magnitude of power coefficient became smaller. The reactivity was lost considerably from the core after the anomaly. (Kako, I.)

  17. A method for measuring power signal background and source strength in a fission reactor

    International Nuclear Information System (INIS)

    Baers, B.; Kall, L.; Visuri, P.

    1977-01-01

    Theory and experimental verification of a novel method for measuring power signal bias and source strength in a fission reactor are reported. A minicomputer was applied in the measurements. The method is an extension of the inverse kinetics method presented by Mogilner et al. (Auth.)

  18. Radar Men on the Moon: A Brief Survey of Fission Surface Power Studies

    International Nuclear Information System (INIS)

    Bennett, Gary L.

    2008-01-01

    This paper reviews some of the salient fission surface power studies, including those dating back to the early SNAP (Systems for Nuclear Auxiliary Power) program. Particular attention will be focused on the more recent Space Exploration Initiative (including the related Synthesis Group report) and Vision for Space Exploration. Commonalties in these studies will be noted; for example, many studies have shown that powers in the range of 100 kWe are required for human-tended bases on the Moon and Mars. Just as advanced human civilizations depend upon electrical power so will advanced, human-occupied lunar and Mars bases with powers rising into the megawatt level for bases with manufacturing and resource utilization capabilities. The role of radioisotope power sources will also be noted

  19. Radar Men on the Moon: A Brief Survey of Fission Surface Power Studies

    Science.gov (United States)

    Bennett, Gary L.

    2008-01-01

    This paper reviews some of the salient fission surface power studies, including those dating back to the early SNAP (Systems for Nuclear Auxiliary Power) program. Particular attention will be focused on the more recent Space Exploration Initiative (including the related Synthesis Group report) and Vision for Space Exploration. Commonalties in these studies will be noted; for example, many studies have shown that powers in the range of 100 kWe are required for human-tended bases on the Moon and Mars. Just as advanced human civilizations depend upon electrical power so will advanced, human-occupied lunar and Mars bases with powers rising into the megawatt level for bases with manufacturing and resource utilization capabilities. The role of radioisotope power sources will also be noted.

  20. Considerations in modeling fission gas release during normal operation

    International Nuclear Information System (INIS)

    Rumble, E.T.; Lim, E.Y.; Stuart, R.G.

    1977-01-01

    The EPRI LWR fuel rod modeling code evaluation program analyzed seven fuel rods with experimental fission gas release data. In these cases, rod-averged burnups are less than 20,000 MWD/MTM, while the fission gas release fractions range roughly from 2 to 27%. Code results demonstrate the complexities in calculating fission gas release in certain operating regimes. Beyond this work, the behavior of a pre-pressurized PWR rod is simulated to average burnups of 40,000 MWD/MTM using GAPCON-THERMAL-2. Analysis of the sensitivity of fission gas release to power histories and release correlations indicate the strong impact that LMFBR type release correlations induce at high burnup. 15 refs

  1. Fission gas and iodine release measured in IFA-430 up to 15 GWd/t UO2 burnup

    International Nuclear Information System (INIS)

    Appelhans, A.D.; Turnbull, J.A.; White, R.J.

    1983-01-01

    The release of fission products from fuel pellets to the fuel-cladding gap is dependent on the fuel temperature, the power (fission rate) and the burnup (fuel structure). As part of the US Nuclear Regulatory Commission's Fuel Behavior Program, EG and G Idaho, Inc., is conducting fission product release studies in the Heavy Boiling Water Reactor in Halden, Norway. This paper presents a summary of the results up to December, 1982. The data cover fuel centerline temperatures ranging from 700 to 1500 0 C for average linear heat ratings of 16 to 35 kW/m. The measurements have been performed for the period between 4.2 and 14.8 GWd/t UO 2 of burnup of the Instrumented Fuel Assembly 430 (IFA-430). The measurement program has been directed toward quantifying the release of the short-lived radioactive noble gases and iodines

  2. Genomic characterization and linkage mapping of the apple allergen genes Mal d 2 (thaumatin-like protein) and Mal d 4 (profilin)

    NARCIS (Netherlands)

    Gao, Z.S.; Weg, van de W.E.; Schaart, J.G.; Arkel, van G.; Breiteneder, H.; Hoffmann-Sommergruber, K.; Gilissen, L.J.W.J.

    2005-01-01

    Four classes of apple allergens (Mal d 1, ¿2, ¿3 and ¿4) have been reported. By using PCR cloning and sequencing approaches, we obtained genomic sequences of Mal d 2 (thaumatin-like protein) and Mal d 4 (profilin) from the cvs Prima and Fiesta, the two parents of a European reference mapping

  3. Transfer parameters of fission and activation products present in effluents of nuclear power reactors

    International Nuclear Information System (INIS)

    Cancio, D.; Menossi, C.A.; Ciallella, N.R.

    1978-01-01

    The paper presents results of research carried out in Argentina on transfer parameters of fission and activation products which may be present in the effluents of nuclear power reactors. For some nuclides, as Sr-90, Co-137 and I-131, the parameters were obtained by studies of the fallout, from measurements of integrated levels in the environment and in the food chains. Other values are concentration factors derived from laboratory and field experiments. They refer to fish, molluscs, crustaces and fresh water plants, for several fission and activation nuclides. Transfer parameters obtained have been of significant importance for environmental assessments, relating to nuclear installations in Argentina. (author)

  4. Fission rates measured using high-energy gamma-rays from short half-life fission products in fresh and spent nuclear fuel

    International Nuclear Information System (INIS)

    Kroehnert, H.

    2011-02-01

    In recent years, higher discharge burn-ups and initial fuel enrichments have led to more and more heterogeneous core configurations in light water reactors (LWRs), especially at the beginning of cycle when fresh fuel assemblies are loaded next to highly burnt ones. As this trend is expected to continue in the future, the Paul Scherrer Institute has, in collaboration with the Swiss Association of Nuclear Utilities, swissnuclear, launched the experimental programme LIFE(at)PROTEUS. The LIFE(at)PROTEUS programme aims to better characterise interfaces between burnt and fresh UO 2 fuel assemblies in modern LWRs. Thereby, a novel experimental database is to be made available for enabling the validation of neutronics calculations of strongly heterogeneous LWR core configurations. During the programme, mixed fresh and highly burnt UO 2 fuel lattices will be investigated in the zero-power research reactor PROTEUS. One of the main types of investigations will be to irradiate the fuel in PROTEUS and measure the resulting fission rate distributions across the interface between fresh and burnt fuel zones. The measurement of fission rates in burnt fuel re-irradiated in a zero-power reactor requires, however, the development of new experimental techniques which are able to discriminate against the high intrinsic activity of the fuel. The principal goal of the present research work has been to develop such a new measurement technique. The selected approach is based on the detection of high-energy gamma-ray lines above the intrinsic background (i.e. above 2200 keV), which are emitted by short-lived fission products freshly created in the fuel. The fission products 88 Kr, 142 La, 138 Cs, 84 Br, 89 Rb, 95 Y, 90m Rb and 90 Rb, with half-lives between 2.6 min and 2.8 h, have been identified as potential candidates. During the present research work, the gamma-ray activity of short-lived fission products has, for the first time, been measured and quantitatively evaluated for re

  5. Highly efficient power system based on direct fission fragment energy conversion utilizing magnetic collimation

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel V.; Hart, Ron R.; Parish, Theodore A.

    2003-01-01

    The present study was focused on developing a technologically feasible power system that is based on direct fission fragment energy conversion utilizing magnetic collimation. The new concept is an attempt to combine several advantageous design solutions, which have been proposed for application in both fission and fusion reactors, into one innovative system that can offer exceptional energy conversion efficiency. The analysis takes into consideration a wide range of operational aspects including fission fragment escape from the fuel, collimation, collection, criticality, long-term performance, energy conversion efficiency, heat removal, and safety characteristics. Specific characteristics of the individual system components and the entire system are evaluated. Consistent analysis and evaluation of the technological feasibility of the concept were achieved using state-of-the-art computer codes that allowed realistic and consistent modeling. The calculated energy conversion efficiencies for the presented designs without a thermodynamic cycle and with the heavy water cycle are 52% and 62%, respectively. The analysis indicates that efficiencies up to 90% are potentially achievable. (author)

  6. Checkpoint independence of most DNA replication origins in fission yeast.

    Science.gov (United States)

    Mickle, Katie L; Ramanathan, Sunita; Rosebrock, Adam; Oliva, Anna; Chaudari, Amna; Yompakdee, Chulee; Scott, Donna; Leatherwood, Janet; Huberman, Joel A

    2007-12-19

    In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleoside triphosphates (dNTPs) and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR) or cds1 (which encodes the fission yeast homologue of Chk2). Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation) that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (approximately 3%) behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild-type cells as in checkpoint

  7. Checkpoint independence of most DNA replication origins in fission yeast

    Science.gov (United States)

    Mickle, Katie L; Ramanathan, Sunita; Rosebrock, Adam; Oliva, Anna; Chaudari, Amna; Yompakdee, Chulee; Scott, Donna; Leatherwood, Janet; Huberman, Joel A

    2007-01-01

    Background In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleoside triphosphates (dNTPs) and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR) or cds1 (which encodes the fission yeast homologue of Chk2). Results Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation) that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (~3%) behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild-type cells as in

  8. Checkpoint independence of most DNA replication origins in fission yeast

    Directory of Open Access Journals (Sweden)

    Scott Donna

    2007-12-01

    Full Text Available Abstract Background In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU, which limits the pool of deoxyribonucleoside triphosphates (dNTPs and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR or cds1 (which encodes the fission yeast homologue of Chk2. Results Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (~3% behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild

  9. New results concerning the behaviour of fission gases in in-pile UO{sub 2} at high temperatures; Resultats nouveaux sur le comportement des gaz de fission a haute temperature dans l'UO{sub 2} en pile

    Energy Technology Data Exchange (ETDEWEB)

    Soulhier, R; Schurenkamper, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The authors consider in the first part the various phenomena giving rise to the production of fission gases towards the exterior of nuclear fuels. The following aspects are dealt with: diffusion, for which is considered the influence of the predecessors of the radioactive gases, the fission recoil, atom expulsion along the fission paths and the evaporation. In the second part the authors present the results obtained on UO{sub 2} samples subjected to irradiation at temperatures of between 150 and 2000 deg C: - At low temperatures the variation of the amount produced as a function of the half-life of the isotopes studied shows that recoil is hot the only cause of gas production. - Above 1800 deg C, a weight loss by evaporation has been observed and the influence of this phenomenon on gas liberation has been studied; thus the fraction of {sup 135}Xe liberated at 2000 deg C by processes other than evaporation is of the order of 10 per cent. - The influence of the various mechanism on the overall effect as a function of temperature is discussed. (authors) [French] Dans une premiere partie, les auteurs etudient les differents phenomenes pouvant donner lieu au degagement des gaz de fission hors d'un combustible. Sont traites successivement: la diffusion, pour laquelle on discute l'influence des predecesseurs des gaz radioactifs, le recul de fission, l'expulsion des atomes le long des trajets de fission et l'evaporation. Dans une deuxieme partie ils exposent les resultats obtenus sur des echantillons d'UO{sub 2} portes sous irradiation a des temperatures comprises entre 150 deg C et 2000 deg C: - A basse temperature la variation de la quantite degagee suivant la periode des isotopes etudies montre que le recul n'est pas la seule cause du degagement des gaz. - Au-dessus de 1800 deg C on a note une perte de poids par evaporation et on a evalue l'influence de ce phenomene sur la liberation des gaz: ainsi la fraction du {sup 135}Xe liberee a 2000 deg C par d'autres processus

  10. Correspondence optimization in 2D standardized carotid wall thickness map by description length minimization: A tool for increasing reproducibility of 3D ultrasound-based measurements.

    Science.gov (United States)

    Chen, Yimin; Chiu, Bernard

    2016-12-01

    The previously described 2D standardized vessel-wall-plus-plaque thickness (VWT) maps constructed from 3D ultrasound vessel wall measurements using an arc-length (AL) scaling approach adjusted the geometric variability of carotid arteries and has allowed for the comparisons of VWT distributions in longitudinal and cross-sectional studies. However, this mapping technique did not optimize point correspondence of the carotid arteries investigated. The potential misalignment may lead to errors in point-wise VWT comparisons. In this paper, we developed and validated an algorithm based on steepest description length (DL) descent to optimize the point correspondence implied by the 2D VWT maps. The previously described AL approach was applied to obtain initial 2D maps for a group of carotid arteries. The 2D maps were reparameterized based on an iterative steepest DL descent approach, which consists of the following two steps. First, landmarks established by resampling the 2D maps were aligned using the Procrustes algorithm. Then, the gradient of the DL with respect to horizontal and vertical reparameterizations of each landmark on the 2D maps was computed, and the 2D maps were subsequently deformed in the direction of the steepest descent of DL. These two steps were repeated until convergence. The quality of the correspondence was evaluated in a phantom study and an in vivo study involving ten carotid arteries enrolled in a 3D ultrasound interscan variability study. The correspondence quality was evaluated in terms of the compactness and generalization ability of the statistical shape model built based on the established point correspondence in both studies. In the in vivo study, the effect of the proposed algorithm on interscan variability of VWT measurements was evaluated by comparing the percentage of landmarks with statistically significant VWT-change before and after point correspondence optimization. The statistical shape model constructed with optimized

  11. Power Control for D2D Underlay Cellular Networks with Imperfect CSI

    KAUST Repository

    Memmi, Amen

    2017-02-09

    Device-to-Device communications underlying the cellular infrastructure is a technology that has recently been proposed as a promising solution to enhance cellular network capabilities. However, interference is the major challenge since the same resources are shared by both systems. Therefore, interference management techniques are required to keep the interference under control. In this work, in order to mitigate interference, we consider centralized and distributed power control algorithms in a one-cell random network model. Differently from previous works, we are assuming that the channel state information may be imperfect and include estimation errors. We evaluate how this uncertainty impacts performances. In the centralized approach, we derive the optimal powers that maximize the coverage probability and the rate of the cellular user while scheduling as many D2D links as possible. These powers are computed at the base station (BS) and then delivered to the users, and hence the name

  12. Molecular Mapping of D1, D2 and ms5 Revealed Linkage between the Cotyledon Color Locus D2 and the Male-Sterile Locus ms5 in Soybean

    Directory of Open Access Journals (Sweden)

    Alina Ott

    2013-07-01

    Full Text Available In soybean, genic male sterility can be utilized as a tool to develop hybrid seed. Several male-sterile, female-fertile mutants have been identified in soybean. The male-sterile, female-fertile ms5 mutant was selected after fast neutron irradiation. Male-sterility due to ms5 was associated with the “stay-green” cotyledon color mutation. The cotyledon color trait in soybean is controlled by two loci, D1 and D2. Association between cotyledon color and male-sterility can be instrumental in early phenotypic selection of sterility for hybrid seed production. The use of such selection methods saves time, money, and space, as fewer seeds need to be planted and screened for sterility. The objectives of this study were to compare anther development between male-fertile and male-sterile plants, to investigate the possible linkages among the Ms5, D1 and D2 loci, and to determine if any of the d1 or d2 mutations can be applied in hybrid seed production. The cytological analysis during anther development displayed optically clear, disintegrating microspores and enlarged, engorged pollen in the male-sterile, female-fertile ms5ms5 plants, a common characteristic of male-sterile mutants. The D1 locus was mapped to molecular linkage group (MLG D1a and was flanked by Satt408 and BARCSOYSSR_01_1622. The ms5 and D2 loci were mapped to MLG B1 with a genetic distance ~12.8 cM between them. These results suggest that use of the d2 mutant in the selection of male-sterile line may attenuate the cost hybrid seed production in soybean.

  13. The Power Makers' Challenge And the Need for Fission Energy

    CERN Document Server

    Nicholson, Martin

    2012-01-01

    The Power Makers - the producers of our electricity - must meet the demands of their customers while also addressing the threat of climate change. There are widely differing views about solutions to electricity generation in an emission constrained world. Some see the problem as relatively straight forward, requiring deep cuts in emissions now by improving energy efficiency, energy conservation and using only renewable resources. Many electricity industry engineers and scientists see the problem as being much more involved.   The Power Makers ’ Challenge: and the need for Fission Energy looks at why using only conventional renewable energy sources is not quite as simple as it seems. Following a general introduction to electricity and its distribution, the author quantifies the reductions needed in greenhouse gas emissions from the power sector in the face of ever increasing world demands for electricity. It provides some much needed background on the many energy sources available for producing electricity ...

  14. Nuclear fission and fission-product spectroscopy: 3. International workshop on nuclear fission and fission-product spectroscopy

    International Nuclear Information System (INIS)

    Goutte, Heloise; Fioni, Gabriele; Faust, Herbert; Goutte, Dominique

    2005-01-01

    The present book contains the proceedings of the third workshop in a series of workshops previously held in Seyssins in 1994 and 1998. The meeting was jointly organized by different divisions of CEA and two major international laboratories. In the opening address, Prof. B. Bigot, the French High Commissioner for Atomic Energy, outlined France's energy policy for the next few decades. He emphasized the continuing progress of nuclear fission in both technical and economic terms, allowing it to contribute to the energy needs of the planet even more in the future than it does today. Such progress implies a very strong link between fundamental and applied research based on experimental and theoretical approaches. The workshop gathered the different nuclear communities studying the fission process, including topics as the following: - nuclear fission experiments, - spectroscopy of neutron rich nuclei, - fission data evaluation, - theoretical aspects of nuclear fission, - and innovative nuclear systems and new facilities. The scientific program was suggested by an International Advisory Committee. About 100 scientists from 13 different countries attended the conference in the friendly working atmosphere of the Castle of Cadarache in the heart of the Provence. The proceedings of the workshop were divided into 11 sections addressing the following subject matters: 1. Cross sections and resonances (5 papers); 2. Fission at higher energies - I (5 papers); 3. Fission: mass and charge yields (4 papers); 4. Light particles and cluster emission (4 papers); 5. Spectroscopy of neutron rich nuclei (5 papers); 6. Resonances, barriers, and fission times (5 papers); 7. Fragment excitation and neutron emission (4 papers); 8. Mass and energy distributions (4 papers); 9. Needs for nuclear data and new facilities - I (4 papers); 10. Angular momenta and fission at higher Energies - II (3 papers); 11. New facilities - II (2 papers). A poster session of 8 presentations completed the workshop

  15. Induced-Fission Imaging of Nuclear Material

    International Nuclear Information System (INIS)

    Hausladen, Paul; Blackston, Matthew A.; Mullens, James Allen; McConchie, Seth M.; Mihalczo, John T.; Bingham, Philip R.; Ericson, Milton Nance; Fabris, Lorenzo

    2010-01-01

    This paper presents initial results from development of the induced-fission imaging technique, which can be used for the purpose of measuring or verifying the distribution of fissionable material in an unopened container. The technique is based on stimulating fissions in nuclear material with 14 MeV neutrons from an associated-particle deuterium-tritium (D-T) generator and counting the subsequent induced fast fission neutrons with an array of fast organic scintillation detectors. For each source neutron incident on the container, the neutron creation time and initial trajectory are known from detection of the associated alpha particle of the d + t → α + n reaction. Many induced fissions will lie along (or near) the interrogating neutron path, allowing an image of the spatial distribution of prompt induced fissions, and thereby fissionable material, to be constructed. A variety of induced-fission imaging measurements have been performed at Oak Ridge National Laboratory with a portable, low-dose D-T generator, including single-view radiographic measurements and three-dimensional tomographic measurements. Results from these measurements will be presented along with the neutron transmission images that have been performed simultaneously. This new capability may have applications to a number of areas in which there may be a need to confirm the presence or configuration of nuclear materials, such as nuclear material control and accountability, quality assurance, treaty confirmation, or homeland security applications.

  16. Decay heat power of spent nuclear fuel of power reactors with high burnup at long-term storage

    Directory of Open Access Journals (Sweden)

    Ternovykh Mikhail

    2017-01-01

    Full Text Available Decay heat power of actinides and fission products from spent nuclear fuel of power VVER-1000 type reactors at long-term storage is calculated. Two modes of storage are considered: mode in which single portion of actinides or fission products is loaded in storage facility, and mode in which actinides or fission products from spent fuel of one VVER reactor are added every year in storage facility during 30 years and then accumulated nuclides are stored without addition new nuclides. Two values of fuel burnup 40 and 70 MW·d/kg are considered for the mode of storage of single fuel unloading. For the mode of accumulation of spent fuel with subsequent storage, one value of burnup of 70 MW·d/kg is considered. Very long time of storage 105 years accepted in calculations allows to simulate final geological disposal of radioactive wastes. Heat power of fission products decreases quickly after 50-100 years of storage. The power of actinides decreases very slow. In passing from 40 to 70 MW·d/kg, power of actinides increases due to accumulation of higher fraction of 244Cm. These data are important in the back end of fuel cycle when improved cooling system of the storage facility will be required along with stronger radiation protection during storage, transportation and processing.

  17. Decay heat power of spent nuclear fuel of power reactors with high burnup at long-term storage

    Science.gov (United States)

    Ternovykh, Mikhail; Tikhomirov, Georgy; Saldikov, Ivan; Gerasimov, Alexander

    2017-09-01

    Decay heat power of actinides and fission products from spent nuclear fuel of power VVER-1000 type reactors at long-term storage is calculated. Two modes of storage are considered: mode in which single portion of actinides or fission products is loaded in storage facility, and mode in which actinides or fission products from spent fuel of one VVER reactor are added every year in storage facility during 30 years and then accumulated nuclides are stored without addition new nuclides. Two values of fuel burnup 40 and 70 MW·d/kg are considered for the mode of storage of single fuel unloading. For the mode of accumulation of spent fuel with subsequent storage, one value of burnup of 70 MW·d/kg is considered. Very long time of storage 105 years accepted in calculations allows to simulate final geological disposal of radioactive wastes. Heat power of fission products decreases quickly after 50-100 years of storage. The power of actinides decreases very slow. In passing from 40 to 70 MW·d/kg, power of actinides increases due to accumulation of higher fraction of 244Cm. These data are important in the back end of fuel cycle when improved cooling system of the storage facility will be required along with stronger radiation protection during storage, transportation and processing.

  18. Burn-up physics in a coupled Hammer-Technion/Cinder-2 system and ENDF/B-V aggregate fission product thermal cross section validation

    International Nuclear Information System (INIS)

    Santos, A. dos.

    1990-01-01

    The new methodology developed in this work has the following purposes: a) to implement a burnup capability into the HAMMER-TECHNION/9/computer code by using the CINDER-2/10/computer code to perform the transmutation analysis for the actinides and fission products; b) to implement a reduced version of the CINDER-2 fission product chain structure to treat explicity nearly 99% of all original CINDER-2 fission product absorption in a typical PWR unit cell; c) to treat the effect of the fission product neutron absorption in an unit cell in a multigroup basis; d) to develop a tentative validation procedure for the ENOF/C-V stable and long-lived fission product nuclear data based on the available experimental data/11-14/. The analysis will be performed by using the reduce chain in the coupled system CINDER-2 to generate the time dependent effective four group cross sections for actinides and fission products and CINDER-2 to perform the complete transmutation analysis with its built-in chain structure. (author)

  19. Fission gas behaviour in UO2 under steady state and transient conditions

    International Nuclear Information System (INIS)

    Zimmermann, H.

    1980-01-01

    Fission gas behaviour in UO 2 is determined by the limited capacity of the fuel to retain fission gas. This capacity depends primarily on temperature, but also on fission rate, pressure loading, and fuel microstructure. Under steady state irradiation conditions fission gas behaviour can be described qualitatively as follows: At the beginning of the irradiation most of the fission gas remains in the grains in irradiation-induced solution. With increasing gas content in the grains the gas transport to the grain boundaries increases, too. The fission gas release from the grain boundaries occurs primarily by interlinkage of inter-granular bubbles. The fission gas release without noticeable fuel swelling during the short-term heating in the LOCA tests and the powdering of the high burnup UO 2 in the annealing tests can only be accounted for by formation of inter-granular separations, which are caused by the fission gas accumulated in the grain boundaries. Besides this short-term effect there are diffusion-controlled long-term effects, such as growth and coalescence of bubbles and formation of inter-connected porosity, which result in time-dependent fission gas release and fuel swelling

  20. Relaxation of the 5s22D3/2 state of the Cd II ion during collision with He atoms in a He-Cd medium excited by fission fragments

    International Nuclear Information System (INIS)

    Barysheva, N.M.; Bochkov, A.V.; Bochkova, N.V.; Grebenkin, K.F.; Kryzhanovskii, V.A.; Magda, E.P.; Neznakhina, A.E.

    1992-01-01

    Based on measurements of the luminescence intensities of the 5s 2 2 D 5/2 →5p 2 P 3/2 (λ=0.4416 μm) and 5s 2 2 D 3/2 →5p 2 P 1/2 (λ=0.325 μm) lines in a dense He-Cd medium excited by fission fragments, the reaction constant is determined for Cd + (5s 2 2 D 3/2 )+He→Cd + (5s 2 2 D 5/2 )+He. The assumption that the 5s 2 2 D 3/2 state of the Cd II ion is strongly deexcited by collisions with atoms of the buffer gas was not confirmed. The question of quasicontinuous lasing at the 5s 2 2 D 3/2 → 5p 2 P 1/2 (λ=0.325 μm) transition requires further study. 6 refs., 1 fig

  1. Fission fragment driven neutron source

    Science.gov (United States)

    Miller, Lowell G.; Young, Robert C.; Brugger, Robert M.

    1976-01-01

    Fissionable uranium formed into a foil is bombarded with thermal neutrons in the presence of deuterium-tritium gas. The resulting fission fragments impart energy to accelerate deuterium and tritium particles which in turn provide approximately 14 MeV neutrons by the reactions t(d,n).sup.4 He and d(t,n).sup.4 He.

  2. Reactivity effects of fission product decay in PWRs

    International Nuclear Information System (INIS)

    Aragones, J.M.; Ahnert, C.

    1988-01-01

    The purpose of the work reported in this paper is to analyze the effects of fission product chains with radioactive decay on the reactivity in pressurized water reactor (PWR) cores, calculating their accumulation and absorption rates along fuel burnup at continuous operation and after shutdown periods extending from 1 day to a few months. The authors PWR version of the WIMS-D4 code is first used to obtain the individual number densities, absorption rates, and averaged cross sections for every nuclide of the fission product chains with significant decay rates, as a function of fuel burnup at continuous irradiation. Next, by an auxiliary ad hoc code, these data, have been processed together with the required one for fissile nuclides and boron, also taken from WIMS at each burnup step, to calculate the average or effective values relevant for the analysis and the decay and change in overall absorption after several shutdown times. (1) The reactivity effect of fission product decay changes significantly with the shutdown time. The maximum absorption increase by decay is reached in ∼ 10 days' shutdown. (2) The dependence with fuel type, enrichment, and burnup is slight, but the change with previous power density is nearly linear, which might be significant after coast-down in previous cycles. (3) For long shutdown periods, the overall reactivity effect of decay in the three fission product chains considered is much less than if only the samarium peak due to 149 Nd is considered

  3. Research Needs for Fusion-Fission Hybrid Systems. Report of the Research Needs Workshop (ReNeW) Gaithersburg, Maryland, September 30 - October 2, 2009

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-09-30

    Largely in anticipation of a possible nuclear renaissance, there has been an enthusiastic renewal of interest in the fusion-fission hybrid concept, driven primarily by some members of the fusion community. A fusion-fission hybrid consists of a neutron-producing fusion core surrounded by a fission blanket. Hybrids are of interest because of their potential to address the main long-term sustainability issues related to nuclear power: fuel supply, energy production, and waste management. As a result of this renewed interest, the U.S. Department of Energy (DOE), with the participation of the Office of Fusion Energy Sciences (OFES), Office of Nuclear Energy (NE), and National Nuclear Security Administration (NNSA), organized a three-day workshop in Gaithersburg, Maryland, from September 30 through October 2, 2009. Participants identified several goals. At the highest level, it was recognized that DOE does not currently support any R&D in the area of fusion-fission hybrids. The question to be addressed was whether or not hybrids offer sufficient promise to motivate DOE to initiate an R&D program in this area. At the next level, the workshop participants were asked to define the research needs and resources required to move the fusion-fission concept forward. The answer to the high-level question was given in two ways. On the one hand, when viewed as a standalone concept, the fusion-fission hybrid does indeed offer the promise of being able to address the sustainability issues associated with conventional nuclear power. On the other hand, when participants were asked whether these hybrid solutions are potentially more attractive than contemplated pure fission solutions (that is, fast burners and fast breeders), there was general consensus that this question could not be quantitatively answered based on the known technical information. Pure fission solutions are based largely on existing both fusion and nuclear technology, thereby prohibiting a fair side-by-side comparison

  4. Consultancy to review and finalize the IAEA publication 'Compendium on the use of fusion/fission hybrids for the utilization and transmutation of actinides and long-lived fission products'. Working material

    International Nuclear Information System (INIS)

    2004-01-01

    In addition to the traditional fission reactor research, fusion R and D activities are becoming of interest also to nuclear fission power development. There is renewed interest in utilizing fusion neutrons, Heavy Liquid Metals, and molten salts for innovative systems (energy production and transmutation). Indeed, for nuclear power development to become sustainable as a long-term energy option, innovative fuel cycle and reactor technologies will have to be developed to solve the problems of resource utilization and long-lived radioactive waste management. In this context Member States clearly expressed the need for comparative assessments of various transmutation reactors. Both the fusion and fission communities are currently investigating the potential of innovative reactor and fuel cycle strategies that include a fusion/fission system. The attention is mainly focused on substantiating the potential advantages of such systems: utilization and transmutation of actinides and long-lived fission products, intrinsic safety features, enhanced proliferation resistance, and fuel breeding capabilities. An important aspect of the ongoing activities is the comparison with the accelerator driven subcritical system (spallation neutron source), which is the other main option for producing excess neutrons. Apart from comparative assessments, knowledge preservation is another subject of interest to the Member States: the goal, applied to fusion/fission systems, is to review the status of, and to produce a 'compendium' of past and present achievements in this area

  5. Monte Carlo simulation of fission yields, kinetic energy, fission neutron spectrum and decay γ-ray spectrum for 232Th(n,f) reaction induced by 3H(d,n) 4He neutron source

    International Nuclear Information System (INIS)

    Zheng Wei; Zeen Yao; Changlin Lan; Yan Yan; Yunjian Shi; Siqi Yan; Jie Wang; Junrun Wang; Jingen Chen; Chinese Academy of Sciences, Shanghai

    2015-01-01

    Monte Carlo transport code Geant4 has been successfully utilised to study of neutron-induced fission reaction for 232 Th in the transport neutrons generated from 3 H(d,n) 4 He neutron source. The purpose of this work is to examine the applicability of Monte Carlo simulations for the computation of fission reaction process. For this, Monte Carlo simulates and calculates the characteristics of fission reaction process of 232 Th(n,f), such as the fission yields distribution, kinetic energy distribution, fission neutron spectrum and decay γ-ray spectrum. This is the first time to simulate the process of neutron-induced fission reaction using Geant4 code. Typical computational results of neutron-induced fission reaction of 232 Th(n,f) reaction are presented. The computational results are compared with the previous experimental data and evaluated nuclear data to confirm the certain physical process model in Geant4 of scientific rationality. (author)

  6. Measurement of Fission Product Yields from Fast-Neutron Fission

    Science.gov (United States)

    Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Henderson, R.; Kenneally, J.; Macri, R.; McNabb, D.; Ryan, C.; Sheets, S.; Stoyer, M. A.; Tonchev, A. P.; Bhatia, C.; Bhike, M.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.

    2014-09-01

    One of the aims of the Stockpile Stewardship Program is a reduction of the uncertainties on fission data used for analyzing nuclear test data [1,2]. Fission products such as 147Nd are convenient for determining fission yields because of their relatively high yield per fission (about 2%) and long half-life (10.98 days). A scientific program for measuring fission product yields from 235U,238U and 239Pu targets as a function of bombarding neutron energy (0.1 to 15 MeV) is currently underway using monoenergetic neutron beams produced at the 10 MV Tandem Accelerator at TUNL. Dual-fission chambers are used to determine the rate of fission in targets during activation. Activated targets are counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. To date, data have been collected at neutron bombarding energies 4.6, 9.0, 14.5 and 14.8 MeV. Experimental methods and data reduction techniques are discussed, and some preliminary results are presented.

  7. ENDF/B-5 Fission Products Library. Rev. 2

    International Nuclear Information System (INIS)

    Schwerer, O.; Pronyaev, V.G.; Lemmel, H.D.

    1984-07-01

    This document summarizes contents and documentation of the 1984 version of the Fission Products Nuclear Data File of the ENDF/B-5 Library (Rev. 2) maintained by the National Nuclear Data Center (NNDC) at the Brookhaven National Laboratory, USA. This file contains numerical neutron reaction data and decay data for 877 fission product nuclides. The entire file or selective retrievals from it can be obtained on magnetic tape from the IAEA Nuclear Data Section. (author)

  8. GENERATION OF 2D LAND COVER MAPS FOR URBAN AREAS USING DECISION TREE CLASSIFICATION

    DEFF Research Database (Denmark)

    Höhle, Joachim

    2014-01-01

    A 2D land cover map can automatically and efficiently be generated from high-resolution multispectral aerial images. First, a digital surface model is produced and each cell of the elevation model is then supplemented with attributes. A decision tree classification is applied to extract map objects...... of stereo-observations of false-colour stereopairs. The stratified statistical assessment of the produced land cover map with six classes and based on 91 points per class reveals a high thematic accuracy for classes ‘building’ (99%, 95% CI: 95%-100%) and ‘road and parking lot’ (90%, 95% CI: 83%-95%). Some...

  9. Comparison of nuclear irradiation parameters of fusion breeder materials in high flux fission test reactors and a fusion power demonstration reactor

    International Nuclear Information System (INIS)

    Fischer, U.; Herring, S.; Hogenbirk, A.; Leichtle, D.; Nagao, Y.; Pijlgroms, B.J.; Ying, A.

    2000-01-01

    Nuclear irradiation parameters relevant to displacement damage and burn-up of the breeder materials Li 2 O, Li 4 SiO 4 and Li 2 TiO 3 have been evaluated and compared for a fusion power demonstration reactor and the high flux fission test reactor (HFR), Petten, the advanced test reactor (ATR, INEL) and the Japanese material test reactor (JMTR, JAERI). Based on detailed nuclear reactor calculations with the MCNP Monte Carlo code and binary collision approximation (BCA) computer simulations of the displacement damage in the polyatomic lattices with MARLOWE, it has been investigated how well the considered HFRs can meet the requirements for a fusion power reactor relevant irradiation. It is shown that a breeder material irradiation in these fission test reactors is well suited in this regard when the neutron spectrum is well tailored and the 6 Li-enrichment is properly chosen. Requirements for the relevant nuclear irradiation parameters such as the displacement damage accumulation, the lithium burn-up and the damage production function W(T) can be met when taking into account these prerequisites. Irradiation times in the order of 2-3 full power years are necessary for the HFR to achieve the peak values of the considered fusion power Demo reactor blanket with regard to the burn-up and, at the same time, the dpa accumulation

  10. FPFPspace2: A code for following airborne fission products in generic nuclear plant flow paths

    International Nuclear Information System (INIS)

    Owcarski, P.C.; Burk, K.W.; Ramsdell, J.V.; Yasuda, D.D.

    1991-03-01

    In order to assure that a nuclear power plant control room remains habitable during certain types of postulated accidents, Pacific Northwest Laboratory (PNL) has undertaken a special study for the US Nuclear Regulatory Commission. This purpose of this study is to develop software that can aid in the analyses of control room habitability during accidents in which airborne fission products could challenge internal air pathways to the control room. PNL has completed an initial version (FPFP) and final version (FPFP 2) of a software package that can estimate the unsteady-state invasion of quantities of fission products into the control room or any other destination within the nuclear plant via generic internal flow paths. This report consists of three parts: Section 2.0, Technical Bases, describes the flow path components and mechanisms of natural fission product deposition; Section 3.0, FPFP 2 Code Description, describes code organization and the functions of the subroutines; and Section 4.0, Code Operation, discusses details of input requirements, code output, and a sample case demonstration. The appendices consist of an FPFP 2 Fortran code listing, a listing of a code for building input files, forms for building input files, and the sample case input and output files. 7 refs., 3 figs

  11. Fission rate measurements in fuel plate type assembly reactor cores

    International Nuclear Information System (INIS)

    Rogers, J.W.

    1988-01-01

    The methods, materials and equipment have been developed to allow extensive and precise measurement of fission rate distributions in water moderated, U-Al fuel plate assembly type reactor cores. Fission rate monitors are accurately positioned in the reactor core, the reactor is operated at a low power for a short time, the fission rate monitors are counted with detectors incorporating automated sample changers and the measurements are converted to fission rate distributions. These measured fission rate distributions have been successfully used as baseline information related to the operation of test and experimental reactors with respect to fission power and distribution, fuel loading and fission experiments for approximately twenty years at the Idaho National Engineering Laboratory (INEL). 7 refs., 8 figs

  12. Potentials of fissioning plasmas

    International Nuclear Information System (INIS)

    Karlheinz, Thom.

    1979-01-01

    Successful experiments with the nuclear pumping of lasers have demonstrated that in gaseous medium the kinetic energy of fission fragments can be converted directly into non-equilibrium optical radiation. This confirms the concept that the fissioning medium in a gas-phase nuclear reactor shows an internal structure such as a plasma in nearly thermal equilibrium varying up to a state of extreme-non-equilibrium. The accompanying variations of temperatures, pressure and radiative spectrum suggest wide ranges of applications. For example, in the gas-phase fission reactor concept enriched uranium hexafluoride or an uranium plasma replaces conventional fuel elements and permits operation above the melting point of solid materials. This potential has been motivation for the US National Aeronautics and Space Administration (NASA) to conduct relevant research for high specific impulse propulsion in space. The need to separate the high temperature gaseous fuel from the surfaces of a containing vessel and to protect them against thermal radiation has led to the concept of an externally moderated reactor in which the fissioning gaseous material is suspended by fluid dynamic means and the flow of opaque buffer gas removes the power. The gaseous nuclear fuel can slowly be circulated through the reactor for continuous on-site reprocessing including the annihilation of transuranium actinides at fission when being fed back into the reactor. An equilibrium of the generation and destruction of such actinides at fission when being fed back into the reactor. An equilibrium of the generation and destruction of such actinides can thus be achieved. These characteristics and the unique radiative properties led to the expectation that the gas-phase fission reactor could feature improved safety, safeguarding and economy, in addition to new technologies such as processing, photochemistry and the transmission of power over large distances in space

  13. Industrial development of neutron detectors, fission chambers, self powered detectors, ionization chambers

    International Nuclear Information System (INIS)

    Constans, H.; Coville, P.; Guerre, J.

    1975-01-01

    Reactor control requires the determination of neutron flux at all times. The needed characteristics lead to use of several types of detectors: boron lined counters, boron lined ionization chambers, fission ionization chambers and self powered detectors. The principle of the reaction involved the fabrication requirements, the different modes of utilization and the characteristics obtained are examined for each detector. The problem of electric connections in the active area has been solved by developing ''integrated cables'' [fr

  14. He and Be ternary spontaneous fission of sup 2 sup 5 sup 2 Cf

    CERN Document Server

    Hwang, J K; Ramayya, A V; Hamilton, J H

    2002-01-01

    Ternary and binary fission studies of sup 2 sup 5 sup 2 Cf have been carried out by using the Gammasphere detector array with light charged particle (LCD) detectors. The relative sup 4 He and sup 5 He ternary fission yields were determined. The kinetic energies of the sup 5 He and sup 4 He ternary particles were found to be approximately 11 and 16 MeV, respectively. The sup 5 He particles contribute 10-20 % to the total observed alpha ternary yield. The data indicate that in nuclei with octupole deformations the population for the negative parity bands might be enhanced in the alpha ternary fission. >From LCP-gamma double gated spectra, neutron multiplicity distributions for alpha ternary fission pairs were measured. The average neutron multiplicity decreases about 0.7 AMU in going from the binary to alpha ternary fission in the approximately same mass splittings (104-146). From the analysis of the gamma-gamma matrix gated on the sup 1 sup 0 Be particles, the two fragment pairs of sup 1 sup 3 sup 8 Xe - sup 1...

  15. Fission rates measured using high-energy gamma-rays from short half-life fission products in fresh and spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kroehnert, H.

    2011-02-15

    In recent years, higher discharge burn-ups and initial fuel enrichments have led to more and more heterogeneous core configurations in light water reactors (LWRs), especially at the beginning of cycle when fresh fuel assemblies are loaded next to highly burnt ones. As this trend is expected to continue in the future, the Paul Scherrer Institute has, in collaboration with the Swiss Association of Nuclear Utilities, swissnuclear, launched the experimental programme LIFE(at)PROTEUS. The LIFE(at)PROTEUS programme aims to better characterise interfaces between burnt and fresh UO{sub 2} fuel assemblies in modern LWRs. Thereby, a novel experimental database is to be made available for enabling the validation of neutronics calculations of strongly heterogeneous LWR core configurations. During the programme, mixed fresh and highly burnt UO{sub 2} fuel lattices will be investigated in the zero-power research reactor PROTEUS. One of the main types of investigations will be to irradiate the fuel in PROTEUS and measure the resulting fission rate distributions across the interface between fresh and burnt fuel zones. The measurement of fission rates in burnt fuel re-irradiated in a zero-power reactor requires, however, the development of new experimental techniques which are able to discriminate against the high intrinsic activity of the fuel. The principal goal of the present research work has been to develop such a new measurement technique. The selected approach is based on the detection of high-energy gamma-ray lines above the intrinsic background (i.e. above 2200 keV), which are emitted by short-lived fission products freshly created in the fuel. The fission products {sup 88}Kr, {sup 142}La, {sup 138}Cs, {sup 84}Br, {sup 89}Rb, {sup 95}Y, {sup 90m}Rb and {sup 90}Rb, with half-lives between 2.6 min and 2.8 h, have been identified as potential candidates. During the present research work, the gamma-ray activity of short-lived fission products has, for the first time, been

  16. T2 mapping and dGEMRIC after autologous chondrocyte implantation with a fibrin-based scaffold in the knee: Preliminary results

    International Nuclear Information System (INIS)

    Domayer, S.E.; Welsch, G.H.; Nehrer, S.; Chiari, C.; Dorotka, R.; Szomolanyi, P.; Mamisch, T.C.; Yayon, A.; Trattnig, S.

    2010-01-01

    Objective: To assess repair tissue (RT) after the implantation of BioCart TM II, an autologous chondrocyte implantation (ACI) technique with a fibrin-hyaluronan polymer as scaffold. T2 mapping and delayed Gadolinium Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC) were used to gain first data on the biochemical properties of BioCart TM II RT in vivo. Methods: T2 mapping and dGEMRIC were performed at 3 T in five patients (six knee joints) who had undergone ACI 15-27 months before. T2 maps were obtained using a pixel wise, mono-exponential non-negative least squares fit analysis. For quantitative T1 mapping a dual flip angle 3D GRE sequence was used and T1 maps were calculated pre- and post-contrast using IDL software. Subsequent region of interest analysis was carried out in comparison with morphologic MRI. Results: A spatial variation of T2 values in both hyaline, normal cartilage (NC) and RT was found. Mean RT T2 values and mean NC T2 values did not differ significantly. Relative T2 values were calculated from global RT and NC T2 and showed a small range (0.84-1.07). The relative delta relaxation rates (rΔR1) obtained from the T1 maps had a wider range (0.77-4.91). Conclusion: T2 mapping and dGEMRIC provided complementary information on the biochemical properties of the repair tissue. BioCart TM II apparently can provide RT similar to hyaline articular cartilage and may become a less-invasive alternative to ACI with a periosteal flap.

  17. T2 mapping and dGEMRIC after autologous chondrocyte implantation with a fibrin-based scaffold in the knee: Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Domayer, S.E. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A 1090 Vienna (Austria); MR Centre of Excellence, Department of Radiodiagnostics, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna (Austria)], E-mail: stephan.domayer@meduniwien.ac.at; Welsch, G.H. [MR Centre of Excellence, Department of Radiodiagnostics, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna (Austria); Nehrer, S. [Centre of Regenerative Medicine, Danube University of Krems, Dr.-Karl-Dorrek-Strasse, 30 A-3500 Krems (Austria)], E-mail: stefan.nehrer@donau-uni.ac.at; Chiari, C.; Dorotka, R. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A 1090 Vienna (Austria); Szomolanyi, P. [MR Centre of Excellence, Department of Radiodiagnostics, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna (Austria); Institute of Measurement Science, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava (Slovakia); Mamisch, T.C. [Department of Orthopedics, Inselspital, University of Bern, 3010 Bern (Switzerland); Yayon, A. [ProChon Biotech Ltd., Weizmann Science Park, Nes Ziona (Israel); Trattnig, S. [MR Centre of Excellence, Department of Radiodiagnostics, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna (Austria)], E-mail: siegfried.trattnig@meduniwien.ac.at

    2010-03-15

    Objective: To assess repair tissue (RT) after the implantation of BioCart{sup TM}II, an autologous chondrocyte implantation (ACI) technique with a fibrin-hyaluronan polymer as scaffold. T2 mapping and delayed Gadolinium Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC) were used to gain first data on the biochemical properties of BioCart{sup TM}II RT in vivo. Methods: T2 mapping and dGEMRIC were performed at 3 T in five patients (six knee joints) who had undergone ACI 15-27 months before. T2 maps were obtained using a pixel wise, mono-exponential non-negative least squares fit analysis. For quantitative T1 mapping a dual flip angle 3D GRE sequence was used and T1 maps were calculated pre- and post-contrast using IDL software. Subsequent region of interest analysis was carried out in comparison with morphologic MRI. Results: A spatial variation of T2 values in both hyaline, normal cartilage (NC) and RT was found. Mean RT T2 values and mean NC T2 values did not differ significantly. Relative T2 values were calculated from global RT and NC T2 and showed a small range (0.84-1.07). The relative delta relaxation rates (r{delta}R1) obtained from the T1 maps had a wider range (0.77-4.91). Conclusion: T2 mapping and dGEMRIC provided complementary information on the biochemical properties of the repair tissue. BioCart{sup TM}II apparently can provide RT similar to hyaline articular cartilage and may become a less-invasive alternative to ACI with a periosteal flap.

  18. On the resolving power of 2-D interferometry

    International Nuclear Information System (INIS)

    Padula, Sandra S.

    1996-01-01

    A resonance gas model previously proposed is here briefly reviewed in order to illustrate some of the geometrical and dynamical effects that could distort the behavior of the two pion correlation function. The main of these effects - the resonance decaying into pions - has earlier been conceived as a possible means to probe resonance abundances at different energy ranges. However, reinforcing previous studies, we show here that the conventional 1-D projection of the correlation function does not allow for clear conclusions. Instead, we propose to use the 2-D projection associated to a 2-D X 2 analysis, which substantially enhances the resolving power of interferometry to differentiate decoupling geometries of distinct dynamical models. This result is achieved by studying the variation of the mean X 2 per degrees of freedom with respect to the range of the analysis in the ( qT , qL ) plane. The preliminary E802 data on Si + Au at 14.6 A GeV/c, used here for illustrating the method, seem to rule out dynamical models with high ω, η resonance formation yields. (author)

  19. The influence of roughness and obstacle on wind power map

    International Nuclear Information System (INIS)

    Abas Ab Wahab; Mohd Fadhil Abas; Mohd Hafiz Ismail

    2006-01-01

    In the development of wind energy in Malaysia, the need for wind power map of Peninsular Malaysia has aroused. The map is needed to help in determining the potential areas where low wind speed wind turbines could operate optimally. In establishing the wind power map the effects of roughness and obstacles have been investigated. Wind data from 24 meteorological stations around the country have been utilized in conjunction with the respective local roughness and obstacles. Two sets of wind power maps have been developed i.e. the wind power maps with and without roughness and obstacles. These two sets of wind power maps exhibit great significant amount of difference in the wind power values especially in the inland areas where the wind power map without roughness and obstacles gives much lower values than those with roughness and obstacles. This paper outlines the process of establishing the two sets of wind power map as well as discussing the influence of roughness and obstacles based on the results obtained

  20. Muon induced fission and fission track dating of minerals

    International Nuclear Information System (INIS)

    Marques, A.

    1988-01-01

    The effects of muon induced fission on geological dating of samples by the fission track method are evaluated for the case of muscovite minerals. It is found a small but significant effect, greater for the longer ages. Since calculations are developped under the hypothesis of constant atmosphere and primary cosmic ray flux it is suggested that any discrepancy found in ages of very old material that cannot be accounted for by well known environmental influences, be taken as an indication of variation on either the atmospheric stopping power or the intensity of cosmic radiation along the ages. (author) [pt

  1. Power calibration of Proserpine (1960); Etalonnage en puissance de proserpine (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Clouet d' Orval, C; Deilgat, E; Guery, M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The power of a homogeneous reactor can be determined if the fission rate at one point is known, and also the flux chart throughout the whole volume of fuel. By applying this method to Proserpine, the following operations have been carried out: 1) determination of the fission rate at a point by means of a miniature zirconium fission chamber, with absolute counting of the plutonium deposit in a low-geometry {alpha} chamber; 2)establishment of a flux chart by activation of gold bands, without contamination of gold by plutonium. (author) [French] On peut determiner la puissance d'un reacteur homogene si l'on connait le taux des reactions de fission en un point, et la carte du flux dans tout le volume du combustible. Cette methode, appliquee a la pile Proserpine, a conduit aux manipulations suivantes: 1) determination du taux de reactions en un point, grace a une chambre a fission miniature en zirconium, dont le depot de plutonium a fait l'objet de comptages absolus dans une chambre {alpha} a faible geometrie; 2) etablissement d'une carte de flux, par activation de bandes d'or, sans contamination de l'or par le plutonium. (auteur)

  2. Hefei experimental hybrid fusion-fission reactor conceptual design

    International Nuclear Information System (INIS)

    Qiu Lijian; Luan Guishi; Xu Qiang

    1992-03-01

    A new concept of hybrid reactor is introduced. It uses JET-like(Joint European Tokamak) device worked at sub-breakeven conditions, as a source of high energy neutrons to induce a blanket fission of depleted uranium. The solid breeding material and helium cooling technique are also used. It can produce 100 kg of 239 Pu per year by partial fission suppressed. The energy self-sustained of the fusion core is not necessary. Plasma temperature is maintained by external 20 MW ICRF (ion cyclotron resonance frequency) and 10 MW ECRF (electron cyclotron resonance frequency) heating. A steady state plasma current at 1.5 Ma is driven by 10 MW LHCD (lower hybrid current driven). Plasma density will be kept by pellet injection. ICRF can produce a high energy tail in ion distribution function and lead to significant enhancement of D-T reaction rate by 2 ∼ 5 times so that the neutron source strength reaches to the level of 1 x 10 19 n/s. This system is a passive system. It's power density is 10 W/cm 3 and the wall loading is 0.6 W/cm 2 that is the lower limitation of fusion and fission technology. From the calculation of neutrons it could always be in sub-critical and has intrinsic safety. The radiation damage and neutron flux distribution on the first wall are also analyzed. According to the conceptual design the application of this type hybrid reactor earlier is feasible

  3. How much of the rocks and the oceans for power? Exploiting the uranium-thorium fission cycle

    International Nuclear Information System (INIS)

    Lewis, W.B.

    1964-04-01

    Even at quite low costs there appear to be many routes available to supply the world population of the future with its power for electricity, heat, energy storage, portable fuel, desalting water and local climate control. For example, sufficient power could come from nuclear fission in thermal neutron reactors. When rich uranium ores have become scarce, the price will rise from the current $13/kg U, but with improved techniques of extraction and the choice of an economical fuel cycle, abundant uranium for many centuries appears to be available in the rocks and the oceans. Even from reactors already developed to the stage of engineering design it is possible to choose a fuel cycle to which uranium at $250/kg U would contribute no more than 2 mill/kWh. Without suggesting when such a high cost might he reached, its implications are examined. The optimum fuel cycle would balance the financing charges on the fuel inventory and the costs of fuel make-up supply and reprocessing. By using uranium and thorium in combination at least 50,000 MWd can be derived per tonne of uranium. At a current low net conversion efficiency of 30% and an overall rating of 6 thermal kW/kg, the natural uranium inventory would cost at the suggested high price $250/(6 x 0.3) $139/ekW and for 7000 hr/yr at 7% annual charges would contribute 1.4 mill/ekWh. At 50 MWd/kg U the make-up supply contributes 250/(50 x 24 x 0.3) = 0.7 mill/ekWh. Probably higher efficiency and possibly higher specific power ratings would be used to lower such costs. The value of uranium is related to its content of the fissile U-235, and even though most power may be derived from thorium, its value will not rise comparably with that of uranium. In the course of time a ceiling will be set on the value of fissile material by the introduction of processes other than the thermal neutron fission chain reaction for producing power or neutrons. The total cost of nuclear power includes also contributions from the cost of equipment

  4. How much of the rocks and the oceans for power? Exploiting the uranium-thorium fission cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W B

    1964-04-15

    Even at quite low costs there appear to be many routes available to supply the world population of the future with its power for electricity, heat, energy storage, portable fuel, desalting water and local climate control. For example, sufficient power could come from nuclear fission in thermal neutron reactors. When rich uranium ores have become scarce, the price will rise from the current $13/kg U, but with improved techniques of extraction and the choice of an economical fuel cycle, abundant uranium for many centuries appears to be available in the rocks and the oceans. Even from reactors already developed to the stage of engineering design it is possible to choose a fuel cycle to which uranium at $250/kg U would contribute no more than 2 mill/kWh. Without suggesting when such a high cost might be reached, its implications are examined. The optimum fuel cycle would balance the financing charges on the fuel inventory and the costs of fuel make-up supply and reprocessing. By using uranium and thorium in combination at least 50,000 MWd can be derived per tonne of uranium. At a current low net conversion efficiency of 30% and an overall rating of 6 thermal kW/kg, the natural uranium inventory would cost at the suggested high price $250/(6 x 0.3) $139/ekW and for 7000 hr/yr at 7% annual charges would contribute 1.4 mill/ekWh. At 50 MWd/kg U the make-up supply contributes 250/(50 x 24 x 0.3) = 0.7 mill/ekWh. Probably higher efficiency and possibly higher specific power ratings would be used to lower such costs. The value of uranium is related to its content of the fissile U-235, and even though most power may be derived from thorium, its value will not rise comparably with that of uranium. In the course of time a ceiling will be set on the value of fissile material by the introduction of processes other than the thermal neutron fission chain reaction for producing power or neutrons. The total cost of nuclear power includes also contributions from the cost of equipment

  5. High-resolution mapping of 1D and 2D dose distributions using X-band electron paramagnetic resonance imaging

    International Nuclear Information System (INIS)

    Kolbun, N.; Lund, E.; Adolfsson, E.; Gustafsson, H.

    2014-01-01

    Electron paramagnetic resonance imaging (EPRI) was performed to visualise 2D dose distributions of homogeneously irradiated potassium dithionate tablets and to demonstrate determination of 1D dose profiles along the height of the tablets. Mathematical correction was applied for each relative dose profile in order to take into account the inhomogeneous response of the resonator using X-band EPRI. The dose profiles are presented with the spatial resolution of 0.6 mm from the acquired 2D images; this value is limited by pixel size, and 1D dose profiles from 1D imaging with spatial resolution of 0.3 mm limited by the intrinsic line-width of potassium dithionate. In this paper, dose profiles from 2D reconstructed electron paramagnetic resonance (EPR) images using the Xepr software package by Bruker are focussed. The conclusion is that using potassium dithionate, the resolution 0.3 mm is sufficient for mapping steep dose gradients if the dosemeters are covering only ±2 mm around the centre of the resonator. (authors)

  6. Basic physics of the fission process. Chapter 2

    International Nuclear Information System (INIS)

    Michaudon, A.

    1981-01-01

    A general description of the fission process is given with special emphasis on those aspects which are necessary for the understanding of the measurements and calculations of neutron-induced fission cross-sections. Having considered the various phases of the process, some typical properties of the low-energy fission of actinide nuclei are presented and the more specific features of neutron induced fission are examined. (U.K.)

  7. Modelling isothermal fission gas release

    International Nuclear Information System (INIS)

    Uffelen, P. van

    2002-01-01

    The present paper presents a new fission gas release model consisting of two coupled modules. The first module treats the behaviour of the fission gas atoms in spherical grains with a distribution of grain sizes. This module considers single atom diffusion, trapping and fission induced re-solution of gas atoms associated with intragranular bubbles, and re-solution from the grain boundary into a few layers adjacent to the grain face. The second module considers the transport of the fission gas atoms along the grain boundaries. Four mechanisms are incorporated: diffusion controlled precipitation of gas atoms into bubbles, grain boundary bubble sweeping, re-solution of gas atoms into the adjacent grains and gas flow through open porosity when grain boundary bubbles are interconnected. The interconnection of the intergranular bubbles is affected both by the fraction of the grain face occupied by the cavities and by the balance between the bubble internal pressure and the hydrostatic pressure surrounding the bubbles. The model is under validation. In a first step, some numerical routines have been tested by means of analytic solutions. In a second step, the fission gas release model has been coupled with the FTEMP2 code of the Halden Reactor Project for the temperature distribution in the pellets. A parametric study of some steady-state irradiations and one power ramp have been simulated successfully. In particular, the Halden threshold for fission gas release and two simplified FUMEX cases have been computed and are summarised. (author)

  8. Personalized 2D color maps

    KAUST Repository

    Waldin, Nicholas; Bernhard, Matthias; Rautek, Peter; Viola, Ivan

    2016-01-01

    . In this paper we present a novel method to measure a user's ability to distinguish colors of a two-dimensional color map on a given monitor. We show how to adapt the color map to the user and display to optimally compensate for the measured deficiencies

  9. Establishment of a high-resolution 2-D reference map of human spermatozoal proteins from 12 fertile sperm-bank donors.

    Science.gov (United States)

    Li, Ling-Wei; Fan, Li-Qing; Zhu, Wen-Bing; Nien, Hong-Chuan; Sun, Bo-Lan; Luo, Ke-Li; Liao, Ting-Ting; Tang, Le; Lu, Guang-Xiu

    2007-05-01

    To extend the analysis of the proteome of human spermatozoa and establish a 2-D gel electrophoresis (2-DE) reference map of human spermatozoal proteins in a pH range of 3.5-9.0. In order to reveal more protein spots, immobilized pH gradient strips (24 cm) of broad range of pH 3-10 and the narrower range of pH 6-9, as well as different overlapping narrow range pH immobilized pH gradient (IPG) strips, including 3.5-4.5, 4.0-5.0, 4.5-5.5, 5.0-6.0 and 5.5-6.7, were used. After 2-DE, several visually identical spots between the different pH range 2-D gel pairs were cut from the gels and confirmed by mass spectrometry and used as landmarks for computer analysis. The 2-D reference map with pH value from 3.5 to 9.0 was synthesized by using the ImageMaster analysis software. The overlapping spots were excluded, so that every spot was counted only once. A total of 3872 different protein spots were identified from the reference map, an approximately 3-fold increase compared to the broad range pH 3-10 IPG strip (1306 spots). The present 2-D pattern is a high resolution 2-D reference map for human fertile spermatozoal protein spots. A comprehensive knowledge of the protein composition of human spermatozoa is very meaningful in studying dysregulation of male fertility.

  10. Efficient dense blur map estimation for automatic 2D-to-3D conversion

    Science.gov (United States)

    Vosters, L. P. J.; de Haan, G.

    2012-03-01

    Focus is an important depth cue for 2D-to-3D conversion of low depth-of-field images and video. However, focus can be only reliably estimated on edges. Therefore, Bea et al. [1] first proposed an optimization based approach to propagate focus to non-edge image portions, for single image focus editing. While their approach produces accurate dense blur maps, the computational complexity and memory requirements for solving the resulting sparse linear system with standard multigrid or (multilevel) preconditioning techniques, are infeasible within the stringent requirements of the consumer electronics and broadcast industry. In this paper we propose fast, efficient, low latency, line scanning based focus propagation, which mitigates the need for complex multigrid or (multilevel) preconditioning techniques. In addition we propose facial blur compensation to compensate for false shading edges that cause incorrect blur estimates in people's faces. In general shading leads to incorrect focus estimates, which may lead to unnatural 3D and visual discomfort. Since visual attention mostly tends to faces, our solution solves the most distracting errors. A subjective assessment by paired comparison on a set of challenging low-depth-of-field images shows that the proposed approach achieves equal 3D image quality as optimization based approaches, and that facial blur compensation results in a significant improvement.

  11. Volatilization and reaction of fission products in flowing steam

    International Nuclear Information System (INIS)

    Johnson, I.; Steidl, D.V.; Johnson, C.E.

    1985-01-01

    The principal risk to the public from nuclear power plants derives from the highly radioactive atoms (fission products) generated as energy is produced in the nuclear fuel. The revolatilization of fission products from reactor system surfaces due to self-heating by radioactive decay has become a complicating factor in the source-term redefinition effort. It has had a major impact on calculations of fission product distributions in accident safety analyses. The focus of this research effort was to investigate the volatilization and transport of fission products and control rod materials in a flowing gaseous steam-hydrogen mixture. Fission product and control rod materials in various combinations were studied including CsI, CsOH, TeO 2 , SrO, Ag, In, Cd and Mn. The vaporization behavior of the deposits were characterized with respect to vaporization rates, chemical species and downstream transport behavior

  12. PF2fit: Polar Fast Fourier Matched Alignment of Atomistic Structures with 3D Electron Microscopy Maps.

    Directory of Open Access Journals (Sweden)

    Radhakrishna Bettadapura

    2015-10-01

    Full Text Available There continue to be increasing occurrences of both atomistic structure models in the PDB (possibly reconstructed from X-ray diffraction or NMR data, and 3D reconstructed cryo-electron microscopy (3D EM maps (albeit at coarser resolution of the same or homologous molecule or molecular assembly, deposited in the EMDB. To obtain the best possible structural model of the molecule at the best achievable resolution, and without any missing gaps, one typically aligns (match and fits the atomistic structure model with the 3D EM map. We discuss a new algorithm and generalized framework, named PF(2 fit (Polar Fast Fourier Fitting for the best possible structural alignment of atomistic structures with 3D EM. While PF(2 fit enables only a rigid, six dimensional (6D alignment method, it augments prior work on 6D X-ray structure and 3D EM alignment in multiple ways: Scoring. PF(2 fit includes a new scoring scheme that, in addition to rewarding overlaps between the volumes occupied by the atomistic structure and 3D EM map, rewards overlaps between the volumes complementary to them. We quantitatively demonstrate how this new complementary scoring scheme improves upon existing approaches. PF(2 fit also includes two scoring functions, the non-uniform exterior penalty and the skeleton-secondary structure score, and implements the scattering potential score as an alternative to traditional Gaussian blurring. Search. PF(2 fit utilizes a fast polar Fourier search scheme, whose main advantage is the ability to search over uniformly and adaptively sampled subsets of the space of rigid-body motions. PF(2 fit also implements a new reranking search and scoring methodology that considerably improves alignment metrics in results obtained from the initial search.

  13. Production and release of the fission gas in (Th U)O2 fuel rods

    International Nuclear Information System (INIS)

    Dias, Marcio S.

    1982-06-01

    The volume, composition and release of the fission gas products were caculated for (Th, U)O 2 fuel rods. The theorectical calculations were compared with experimental results available on the literature. In ThO 2 + 5% UO 2 fuel rods it will be produced approximated 5% more fission gas as compared to UO 2 fuel rods. The fission gas composition or Xe to Kr ratio has showed a decreasing fuel brunup dependence, in opposition to that of UO 2 . Under the same fuel rod operational conditions, the (Th, U)O 2 fission gas release will be smaller as compared to UO 2 . This behaviour of (Th, U)O 2 fuel comes from smallest gas atom difusivity and higher activation energies of the processes that increase the fission gas release. (Author) [pt

  14. In core system mapping reactor power distribution

    International Nuclear Information System (INIS)

    Yoriyaz, H.; Moreira, J.M.L.

    1989-01-01

    Based on the signals of SPND'S (Self Powered Neutron Detectors) distributed inside of a core, the spatial power distribution is obtained using the MAP program, developed in this work. The methodology applied in MAP program uses a least mean square technique to calculate expansion coefficients that depend on the SPND'S signals. The final power or neutron flux distribution is obtained by a combination of certains functions or expansion modes that are provided from diffusion calculation with the CITATION code. The MAP program is written in PASCAL language and will be used in IEA-R1 reactor for assisting its operation. (author) [pt

  15. Coulomb fission and transfer fission at heavy ion collisions

    International Nuclear Information System (INIS)

    Himmele, G.

    1981-01-01

    In the present thesis the first direct evidence of nuclear fission after inelastic scattering of heavy ions (sup(183,184)W, 152 Sm → 238 U; 184 W → 232 Th; 184 W, 232 Th → 248 Cm) is reported. Experiments which were performed at the UNILAC of the Gesellschaft fuer Schwerionenforschung in Darmstadt show the observed heavy ion induced fission possesses significant properties of the Coulomb fission. The observed dependence of the fission probability for inelastic scattering on the projectile charge proves that the nuclear fission is mediated by the electromagnetic interaction between heavy ions. This result suggests moreover a multiple Coulomb-excitation preceding the fission. Model calculations give a first indication, that the Coulomb fission proceeds mainly from the higher β phonons. In the irradiation with 184 W the fission probability of 232 Th is for all incident energies about 40% smaller that at 238 U. The target dependence of the Coulomb fission however doesn't allow, to give quantitative statements about the position and B(E2)-values of higher lying β phonons. (orig./HSI) [de

  16. Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale

    Science.gov (United States)

    Hu, Xuan; Yasaei, Poya; Jokisaari, Jacob; Öǧüt, Serdar; Salehi-Khojin, Amin; Klie, Robert F.

    2018-02-01

    Two-dimensional materials, including graphene, transition metal dichalcogenides and their heterostructures, exhibit great potential for a variety of applications, such as transistors, spintronics, and photovoltaics. While the miniaturization offers remarkable improvements in electrical performance, heat dissipation and thermal mismatch can be a problem in designing electronic devices based on two-dimensional materials. Quantifying the thermal expansion coefficient of 2D materials requires temperature measurements at nanometer scale. Here, we introduce a novel nanometer-scale thermometry approach to measure temperature and quantify the thermal expansion coefficients in 2D materials based on scanning transmission electron microscopy combined with electron energy-loss spectroscopy to determine the energy shift of the plasmon resonance peak of 2D materials as a function of sample temperature. By combining these measurements with first-principles modeling, the thermal expansion coefficients (TECs) of single-layer and freestanding graphene and bulk, as well as monolayer MoS2 , MoSe2 , WS2 , or WSe2 , are directly determined and mapped.

  17. Fission in Empire-II version 2.19 beta1, Lodi

    International Nuclear Information System (INIS)

    Sin, M.

    2003-01-01

    This is a description of the fission model implemented presently in EMPIRE-II. This package offers two ways to calculate the fission probability selected by parameters in the optional input. Fission barriers, fission transmission coefficients, fission cross sections and fission files are calculated

  18. Options for development of space fission propulsion systems

    International Nuclear Information System (INIS)

    Houts, Mike; Van Dyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana

    2001-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include high specific power continuous impulse propulsion systems and bimodal nuclear thermal rockets. Despite their tremendous potential for enhancing or enabling deep space and planetary missions, to date space fission systems have only been used in Earth orbit. The first step towards utilizing advanced fission propulsion systems is development of a safe, near-term, affordable fission system that can enhance or enable near-term missions of interest. An evolutionary approach for developing space fission propulsion systems is proposed

  19. Needs and accuracy requirements for fission product nuclear data in the physics design of power reactor cores

    International Nuclear Information System (INIS)

    Rowlands, J.L.

    1978-01-01

    The fission product nuclear data accuracy requirements for fast and thermal reactor core performance predictions were reviewed by Tyror at the Bologna FPND Meeting. The status of the data was assessed at the Meeting and it was concluded that the requirements of thermal reactors were largely met, and the yield data requirements of fast reactors, but not the cross section requirements, were met. However, the World Request List for Nuclear Data (WRENDA) contains a number of requests for fission product capture cross sections in the energy range of interest for thermal reactors. Recent reports indicate that the fast reactor reactivity requirements might have been met by integral measurements made in zero power critical assemblies. However, there are requests for the differential cross sections of the individual isotopes to be determined in addition to the integral data requirements. The fast reactor requirements are reviewed, taking into account some more recent studies of the effects of fission products. The sodium void reactivity effect depends on the fission product cross sections in a different way to the fission product reactivity effect in a normal core. This requirement might call for different types of measurement. There is currently an interest in high burnup fuel cycles and alternative fuel cycles. These might require more accurate fission product data, data for individual isotopes and data for capture products. Recent calculations of the time dependence of fission product reactivity effects show that this is dependent upon the data set used and there are significant uncertainties. Some recent thermal reactor studies on approximations in the treatment of decay chains and the importance of xenon and samarium poisoning are also summarized. (author)

  20. Correlated prompt fission data in transport simulations

    Science.gov (United States)

    Talou, P.; Vogt, R.; Randrup, J.; Rising, M. E.; Pozzi, S. A.; Verbeke, J.; Andrews, M. T.; Clarke, S. D.; Jaffke, P.; Jandel, M.; Kawano, T.; Marcath, M. J.; Meierbachtol, K.; Nakae, L.; Rusev, G.; Sood, A.; Stetcu, I.; Walker, C.

    2018-01-01

    Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ-ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and γ-ray spectra, angular distributions of the emitted particles, n - n, n - γ, and γ - γ correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and γ rays from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and γ emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the γ-ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX - PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in

  1. Correlated prompt fission data in transport simulations

    Energy Technology Data Exchange (ETDEWEB)

    Talou, P.; Jaffke, P.; Kawano, T.; Stetcu, I. [Los Alamos National Laboratory, Nuclear Physics Group, Theoretical Division, Los Alamos, NM (United States); Vogt, R. [Lawrence Livermore National Laboratory, Nuclear and Chemical Sciences Division, Livermore, CA (United States); University of California, Physics Department, Davis, CA (United States); Randrup, J. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Rising, M.E.; Andrews, M.T.; Sood, A. [Los Alamos National Laboratory, Monte Carlo Methods, Codes, and Applications Group, Los Alamos, NM (United States); Pozzi, S.A.; Clarke, S.D.; Marcath, M.J. [University of Michigan, Department of Nuclear Engineering and Radiological Sciences, Ann Arbor, MI (United States); Verbeke, J.; Nakae, L. [Lawrence Livermore National Laboratory, Nuclear and Chemical Sciences Division, Livermore, CA (United States); Jandel, M. [Los Alamos National Laboratory, Nuclear and Radiochemistry Group, Los Alamos, NM (United States); University of Massachusetts, Department of Physics and Applied Physics, Lowell, MA (United States); Meierbachtol, K. [Los Alamos National Laboratory, Nuclear Engineering and Nonproliferation, Los Alamos, NM (United States); Rusev, G.; Walker, C. [Los Alamos National Laboratory, Nuclear and Radiochemistry Group, Los Alamos, NM (United States)

    2018-01-15

    Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ-ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and γ-ray spectra, angular distributions of the emitted particles, n-n, n-γ, and γ-γ correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and γ rays from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and γ emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the γ-ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX-PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in nonproliferation

  2. On the resolving power of 2-D interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Padula, Sandra S. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil)

    1996-12-31

    A resonance gas model previously proposed is here briefly reviewed in order to illustrate some of the geometrical and dynamical effects that could distort the behavior of the two pion correlation function. The main of these effects - the resonance decaying into pions - has earlier been conceived as a possible means to probe resonance abundances at different energy ranges. However, reinforcing previous studies, we show here that the conventional 1-D projection of the correlation function does not allow for clear conclusions. Instead, we propose to use the 2-D projection associated to a 2-D {sub X}{sup 2} analysis, which substantially enhances the resolving power of interferometry to differentiate decoupling geometries of distinct dynamical models. This result is achieved by studying the variation of the mean {sub X}{sup 2} per degrees of freedom with respect to the range of the analysis in the ({sub qT}, {sub qL}) plane. The preliminary E802 data on Si + Au at 14.6 A GeV/c, used here for illustrating the method, seem to rule out dynamical models with high {omega}, {eta} resonance formation yields. (author) 24 refs., 5 figs.

  3. Absence of rotational activity detected using 2-dimensional phase mapping in the corresponding 3-dimensional phase maps in human persistent atrial fibrillation.

    Science.gov (United States)

    Pathik, Bhupesh; Kalman, Jonathan M; Walters, Tomos; Kuklik, Pawel; Zhao, Jichao; Madry, Andrew; Sanders, Prashanthan; Kistler, Peter M; Lee, Geoffrey

    2018-02-01

    Current phase mapping systems for atrial fibrillation create 2-dimensional (2D) maps. This process may affect the accurate detection of rotors. We developed a 3-dimensional (3D) phase mapping technique that uses the 3D locations of basket electrodes to project phase onto patient-specific left atrial 3D surface anatomy. We sought to determine whether rotors detected in 2D phase maps were present at the corresponding time segments and anatomical locations in 3D phase maps. One-minute left atrial atrial fibrillation recordings were obtained in 14 patients using the basket catheter and analyzed off-line. Using the same phase values, 2D and 3D phase maps were created. Analysis involved determining the dominant propagation patterns in 2D phase maps and evaluating the presence of rotors detected in 2D phase maps in the corresponding 3D phase maps. Using 2D phase mapping, the dominant propagation pattern was single wavefront (36.6%) followed by focal activation (34.0%), disorganized activity (23.7%), rotors (3.3%), and multiple wavefronts (2.4%). Ten transient rotors were observed in 9 of 14 patients (64%). The mean rotor duration was 1.1 ± 0.7 seconds. None of the 10 rotors observed in 2D phase maps were seen at the corresponding time segments and anatomical locations in 3D phase maps; 4 of 10 corresponded with single wavefronts in 3D phase maps, 2 of 10 with 2 simultaneous wavefronts, 1 of 10 with disorganized activity, and in 3 of 10 there was no coverage by the basket catheter at the corresponding 3D anatomical location. Rotors detected in 2D phase maps were not observed in the corresponding 3D phase maps. These findings may have implications for current systems that use 2D phase mapping. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  4. The nuclear fission process

    International Nuclear Information System (INIS)

    Wagemans, C.

    1991-01-01

    Fifty years after its discovery, the nuclear fission phenomenon is of recurring interest. When its fundamental physics aspects are considered, fission is viewed in a very positive way, which is reflected in the great interest generated by the meetings and large conferences organized for the 50th anniversary of its discovery. From a purely scientific and practical point of view, a new book devoted to the (low energy) nuclear fission phenomenon was highly desirable considering the tremendous amount of new results obtained since the publication of the book Nuclear Fission by Vandenbosch and Huizenga in 1973 (Academic Press). These new results could be obtained thanks to the growth of technology, which enabled the construction of powerful new neutron sources, particle and heavy ion accelerators, and very performant data-acquisition and computer systems. The re-invention of the ionization chamber, the development of large fission fragment spectrometers and sophisticated multiparameter devices, and the production of exotic isotopes also contributed significantly to an improved understanding of nuclear fission. This book is written at a level to introduce graduate students to the exciting subject of nuclear fission. The very complete list of references following each chapter also makes the book very useful for scientists, especially nuclear physicists. The book has 12 chapters covering the fission barrier and the various processes leading to fission as well as the characteristics of the various fission reaction products. In order to guarantee adequate treatment of the very specialized research fields covered, several distinguished scientists actively involved in some of these fields were invited to contribute their expertise as authors or co-authors of the different chapters

  5. Fission product release from SLOWPOKE-2 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Harnden-Gillis, A M.C. [Queen` s Univ., Kingston, ON (Canada). Dept. of Physics

    1994-12-31

    Increasing radiation fields at several SLOWPOKE-2 reactors fuelled with highly enriched uranium aluminum alloy fuel have begun to interfere with the daily operation of these reactors. To investigate this phenomenon, samples of reactor container water and gas from the headspace were obtained at four SLOWPOKE-2 reactor facilities and examined by gamma ray spectroscopy methods. These radiation fields are due to the circulation of fission products within the reactor container vessel. The most likely source of the fission product release is an area of uranium-bearing material exposed to the coolant at the end weld line which originated at the time of fuel fabrication. The results of this study are compared with observations from an underwater visual examination of one core and the metallographic examination of archived fuel elements. 19 refs., 4 tabs., 8 figs.

  6. The utilization of mind map painting on 3D shapes with curved faces

    Science.gov (United States)

    Nur Sholikhah, Ayuk; Usodo, Budi; Pramudya, Ikrar

    2017-12-01

    This paper aims to study on the use of mind map painting media on material with 3D shapes with curved faces and its effect on student’s interest. Observation and literature studies were applied as the research method with the sake design of utilization of mind map painting. The result of this research is the design of mind map painting media can improve students' ability to solve problems, improve the ability to think, and maximize brain power. In relation, mind map painting in learning activities is considered to improve student interest.

  7. 3D Maps Representation Using GNG

    Directory of Open Access Journals (Sweden)

    Vicente Morell

    2014-01-01

    Full Text Available Current RGB-D sensors provide a big amount of valuable information for mobile robotics tasks like 3D map reconstruction, but the storage and processing of the incremental data provided by the different sensors through time quickly become unmanageable. In this work, we focus on 3D maps representation and propose the use of the Growing Neural Gas (GNG network as a model to represent 3D input data. GNG method is able to represent the input data with a desired amount of neurons or resolution while preserving the topology of the input space. Experiments show how GNG method yields a better input space adaptation than other state-of-the-art 3D map representation methods.

  8. Ejection of Uranium Atoms from UO{sub 2} by Fission Fragments

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Goesta

    1964-02-15

    The numbers of uranium atoms ejected from the surface of sintered plates of UO{sub 2} by fission fragments have been measured over the fission density range 5x10{sup 15} to 7x10{sup 16} fissions/cm{sup 3}. The number of uranium atoms ejected per escaping fragment was about 9. The measurements were performed by irradiating the plates in vacuum and collecting a fraction of the uranium atoms ejected on catcher foils. The amount collected was determined by fission counting. Saturation of the amount collected, as reported by Rogers and Adam, was not observed. The numbers of uranium atoms ejected as knock-ons under the same experimental conditions have been calculated. The reasonably close agreement between the experimental and theoretical values indicates that, under the prevailing experimental conditions, mainly knock-ons are ejected. Other ejection mechanisms, e. g. evaporation of material in thermal spikes, are probably insignificant; this is in contrast to the usual interpretation of the ejection process. The mean range in UO{sub 2}, of fission products of mass number 140 was found to be 7.37 {+-} 0. 05 mg/cm{sup 2} by direct gamma spectrometric, determination of the fraction of {sup 140}La escaping from the surface of the plates.

  9. Fission product release measured during fuel damage tests at the Power Burst Facility

    International Nuclear Information System (INIS)

    Osetek, D.J.; Hartwell, J.K.; Vinjamuri, K.; Cronenberg, A.W.

    1985-01-01

    Results are presented of fission product release behavior observed during four severe fuel damage tests on bundles of UO 2 fuel rods. Transient temperatures up to fuel melting were obtained in the tests that included both rapid quench and slow cooldown, low and high (36 GWd/t) burnup fuel and the addition of Ag-In-Cd control rods. Release fractions of major fission product species and release rates of noble gas species are reported. Significant differences in release behavior are discussed between heatup and cooldown periods, low and high burnup fuel and long- and short-lived fission products. Explanations are offered for the probable reasons for the observed differences and recommendations for further studies are given

  10. On mode selection and power control for uplink D2D communication in cellular networks

    KAUST Repository

    Ali, Konpal S.

    2015-06-08

    Device-to-device (D2D) communication enables users lying in close proximity to bypass the cellular base station (BS) and transmit to one another directly. This offloads traffic from the cellular network, improves spatial frequency reuse and energy efficiency in the network. We present a comprehensive and tractable analytical framework for D2D-enabled uplink cellular networks with two different flexible mode-selection schemes. The power-control cutoff thresholds of the two communication modes have been decoupled unlike past work on the subject. We find that for a given network, an optimal value exists not only for the biased mode selection criterion, but also for r, the ratio of the power-control cutoff thresholds of the two communication modes, which maximizes spatial spectral efficiency. Also, r turns out to be a more robust parameter for optimizing network performance. Further, it is shown that the second scheme, which prioritizes spatial frequency reuse over the per-user achievable performance compared to the first scheme, achieves almost the same overall network performance; thereby trading per user performance to serve a larger number of users.

  11. On mode selection and power control for uplink D2D communication in cellular networks

    KAUST Repository

    Ali, Konpal S.; Elsawy, Hesham; Alouini, Mohamed-Slim

    2015-01-01

    Device-to-device (D2D) communication enables users lying in close proximity to bypass the cellular base station (BS) and transmit to one another directly. This offloads traffic from the cellular network, improves spatial frequency reuse and energy efficiency in the network. We present a comprehensive and tractable analytical framework for D2D-enabled uplink cellular networks with two different flexible mode-selection schemes. The power-control cutoff thresholds of the two communication modes have been decoupled unlike past work on the subject. We find that for a given network, an optimal value exists not only for the biased mode selection criterion, but also for r, the ratio of the power-control cutoff thresholds of the two communication modes, which maximizes spatial spectral efficiency. Also, r turns out to be a more robust parameter for optimizing network performance. Further, it is shown that the second scheme, which prioritizes spatial frequency reuse over the per-user achievable performance compared to the first scheme, achieves almost the same overall network performance; thereby trading per user performance to serve a larger number of users.

  12. Overview on international experimental programmes on power ramping and fission gas release

    International Nuclear Information System (INIS)

    Knaab, H.; Lang, P.M.

    1985-01-01

    During the last few years a number of internationally sponsored experimental programmes have been initiated to study LWR fuel behaviour during ramping and fission gas release at high burnup levels. Common interest and the limited availability of experimental facilities and appropriate test fuel rods have led to valuable cooperation between many organizations throughout the nuclear community. These programmes are carried out by experienced staff from research centres using the centres' experimental facilities. Fuel vendors and several utilities contribute by supplying and irradiating the test fuel rods. The aim of this paper is to provide a synopsis of the following programmes: (a) Studsvik Projects: Interramp, Demoramp I and II, Overramp, Superramp; (b) Petten, High Burnup PWR Ramp Test Programme; (c) Mol, Tribulation Programme; (d) BNWL, High Burnup Effects Programme; (e) Riso Fission Gas Project; and (f) related tasks within the OECD Halden Reactor Project. The objectives of the programmes, their scope and the main results will be summarized. An overview of proposed future programmes will be given. (author)

  13. HPS: A space fission power system suitable for near-term, low-cost lunar and planetary bases

    International Nuclear Information System (INIS)

    Houts, M.G.; Poston, D.I.; Ranken, W.A.

    1996-01-01

    Near-term, low-cost space fission power systems can enhance the feasibility and utility of lunar and planetary bases. One such system, the Heatpipe Power System (HPS), is described in this paper. The HPS draws on 40 yr of United States and international experience to enable a system that can be developed in <5 yr at a cost of <$100M. Total HPS mass is <600 kg at 5 kWe and <2000 kg at 50 kWe, assuming that thermoelectric power conversion is used. More advanced power conversion systems could reduce system mass significantly. System mass for planetary surface systems also may be reduced (1) if indigenous material is used for radiation shielding and (2) because of the positive effect of the gravitational field on heatpipe operation. The HPS is virtually non-radioactive at launch and is passively subcritical during all credible launch accidents. Full-system electrically heated testing is possible, and a ground nuclear power test is not needed for flight qualification. Fuel burnup limits are not reached for several decades, thus giving the system long-life potential

  14. Perspective on the fusion-fission energy concept

    International Nuclear Information System (INIS)

    Liikala, R.C.; Perry, R.T.; Teofilo, V.L.

    1978-01-01

    A concept which has potential for near-term application in the electric power sector of our energy economy is combining fusion and fission technology. The fusion-fission system, called a hybrid, is distinguished from its pure fusion counterpart by incorporation of fertile materials (uranium or thorium) in the blanket region of a fusion machine. The neutrons produced by the fusion process can be used to generate energy through fission events in the blanket or produce fuel for fission reactors through capture events in the fertile material. The performance requirements of the fusion component of hybrids is perceived as being less stringent than those for pure fusion electric power plants. The performance requirements for the fission component of hybrids is perceived as having been demonstrated or could be demonstrated with a modest investment of research and development funds. This paper presents our insights and observations of this concept in the context of why and where it might fit into the picture of meeting our future energy needs. A bibliography of hybrid research is given

  15. A new technique to measure fission-product diffusion coefficients in UO2 fuel

    International Nuclear Information System (INIS)

    Hocking, W.H.; Verrall, R.A.; Bushby, S.J.

    1999-01-01

    This paper describes a new out-reactor technique for the measurement of fission-product diffusion rates in UO 2 . The technique accurately simulates in-reactor fission-fragment effects: a thermal diffusion that is due to localized mixing in the fission track, radiation-enhanced diffusion that is due to point-defect creation by fission fragments, and bubble resolution. The technique utilizes heavy-ion accelerators - low energy (40 keV to 1 MeV) for fission-product implantation, high energy (72 MeV) to create fission-fragment damage effects, and secondary ion mass spectrometry (SIMS) for measuring the depth profile of the implanted species. Preliminary results are presented from annealing tests (not in the 72 MeV ion flux) at 1465 deg. C and 1650 deg. C at low and high concentrations of fission products. (author)

  16. The use of recoil for the separation of uranium fission products; Utilisation du recul pour la separation des produits de fission de l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Henry, R; Herczec, C [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    The recoil distance of fission fragments in U{sub 3}O{sub 8} is about 8 microns. By using highly diluted suspensions of uranium oxide particles having dimension much smaller than this figure (mean diameter 0,5 micron), we were able to study the re-adsorption of fission products on uranium oxide. Separation results have been studied as a function of the nature of the irradiation medium (solid or liquid) and the separation medium, of particle size and of concentration of particles in the dispersing medium. Decay curves can be used to discriminate between {sup 239}Np and mixed fission products. Most of the {sup 239}Np is found in the U{sub 3}O{sub 8} particles. The location of fission products in solid dispersing media has been determined, fission products being found always inside the dispersing medium particles. The results obtained can be applied to the rapid separation of short-lived fission products from a uranium-free starting material. (author) [French] Le parcours de recul des fragments de fission est en moyenne de 8 microns dans l'U{sub 3}O{sub 8}. En prenant des suspensions d'oxyde d'uranium dont les particules, tres diluees, ont des dimensions nettement inferieures a cette valeur (diametre moyen 0,5 micron), on a pu etudier directement la readsorption des produits de fission sur l'oxyde d'uranium. Les resultats de separation ont ete etudies en fonction de la nature du milieu d'irradiation (solide ou liquide) et du milieu de separation, de la taille des particules d'oxyde et de leur concentration dans le milieu dispersant. Les courbes de decroissance permettent de determiner la perturbation apportee dans les mesures par le {sup 239}Np qui reste en majorite dans les grains d'U{sub 3}O{sub 8}. On a determine enfin l'emplacement des produits de fission dans le cas des melanges solides; ils se trouvent toujours a l'interieur des grains du milieu recepteur. Les resultats obtenus permettent d'envisager la separation rapide de produits de fission a periode courte a

  17. Towards molecular design using 2D-molecular contour maps obtained from PLS regression coefficients

    Science.gov (United States)

    Borges, Cleber N.; Barigye, Stephen J.; Freitas, Matheus P.

    2017-12-01

    The multivariate image analysis descriptors used in quantitative structure-activity relationships are direct representations of chemical structures as they are simply numerical decodifications of pixels forming the 2D chemical images. These MDs have found great utility in the modeling of diverse properties of organic molecules. Given the multicollinearity and high dimensionality of the data matrices generated with the MIA-QSAR approach, modeling techniques that involve the projection of the data space onto orthogonal components e.g. Partial Least Squares (PLS) have been generally used. However, the chemical interpretation of the PLS-based MIA-QSAR models, in terms of the structural moieties affecting the modeled bioactivity has not been straightforward. This work describes the 2D-contour maps based on the PLS regression coefficients, as a means of assessing the relevance of single MIA predictors to the response variable, and thus allowing for the structural, electronic and physicochemical interpretation of the MIA-QSAR models. A sample study to demonstrate the utility of the 2D-contour maps to design novel drug-like molecules is performed using a dataset of some anti-HIV-1 2-amino-6-arylsulfonylbenzonitriles and derivatives, and the inferences obtained are consistent with other reports in the literature. In addition, the different schemes for encoding atomic properties in molecules are discussed and evaluated.

  18. Measurement of the {sup 240}Pu concentration of a plutonium sample by the spontaneous fission method (1960); Mesure de la teneur d'un plutonium en {sup 240}Pu par la methode des fissions spontanees (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Caizergues, R; Clouet d' Orval, C [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    It is very important to know the plutonium-240 content of the plutonium formed in piles. The method of measurement described here consists in counting the number of spontaneous fissions produced in a known quantity of plutonium. This measurement is carried out in a multiple-plate ionisation chamber, the plutonium being deposited on the plates. The disintegration constant of plutonium-240 by spontaneous fission being known the plutonium-240 content in the sample can be calculated. (author) [French] La connaissance de la teneur en plutonium-240 du plutonium forme dans les piles est une question importante. La methode de mesure presentee ici consiste a compter le nombre de fissions spontanees issues d'une quantite connue de plutonium. Cette mesure est effectuee dans une chambre d'ionisation a plateaux multiples sur lesquels est depose le plutonium. La connaissance de la constante de desintegration du plutonium-240 par fissions spontanees permet de calculer la teneur en plutonium-240. (auteur)

  19. Studying fission neutrons with 2E-2v and 2E

    Directory of Open Access Journals (Sweden)

    Al-Adili Ali

    2018-01-01

    The 2E technique utilizes an ionization chamber together with two liquid scintillator detectors. Two measurements have been performed, one of 252Cf(sf and another one of thermal-neutron induced fission in 235U(n,f. Results from 252Cf(sf are reported here.

  20. Design of a Mechanical NaK Pump for Fission Space Power Systems

    Science.gov (United States)

    Mireles, Omar R.; Bradley, David; Godfroy, Thomas

    2010-01-01

    Alkali liquid metal cooled fission reactor concepts are under development for mid-range spaceflight power requirements. One such concept utilizes a sodium-potassium eutectic (NaK) as the primary loop working fluid. Traditionally, linear induction pumps have been used to provide the required flow and head conditions for liquid metal systems but can be limited in performance. This paper details the design, build, and check-out test of a mechanical NaK pump. The pump was designed to meet reactor cooling requirements using commercially available components modified for high temperature NaK service.

  1. International handling of fissionable material

    International Nuclear Information System (INIS)

    1975-01-01

    The opinion of the ministry for foreign affairs on international handling of fissionable materials is given. As an introduction a survey is given of the possibilities to produce nuclear weapons from materials used in or produced by power reactors. Principles for international control of fissionable materials are given. International agreements against proliferation of nuclear weapons are surveyed and methods to improve them are proposed. (K.K.)

  2. Efficient generation of 3D surfel maps using RGB–D sensors

    Directory of Open Access Journals (Sweden)

    Wilkowski Artur

    2016-03-01

    Full Text Available The article focuses on the problem of building dense 3D occupancy maps using commercial RGB-D sensors and the SLAM approach. In particular, it addresses the problem of 3D map representations, which must be able both to store millions of points and to offer efficient update mechanisms. The proposed solution consists of two such key elements, visual odometry and surfel-based mapping, but it contains substantial improvements: storing the surfel maps in octree form and utilizing a frustum culling-based method to accelerate the map update step. The performed experiments verify the usefulness and efficiency of the developed system.

  3. Status of fission product yield data

    International Nuclear Information System (INIS)

    Cuninghame, J.G.

    1978-01-01

    The topics covered in this paper are: (a) cumulative yields in thermal neutron fission and in fast fission up to 14 MeV incident neutron energy, (b) dependence of the yields on incident neutron energy and spectrum, (c) independent yields, (d) charge dispersion and distribution, and (e) yields of light particles from ternary fission. The paper reviews information on these subjects for fission of actinides from 232 Th upwards with special emphasis on data published since the 1973 Bologna FPND Panel, compares data sets, and discusses the gaps still to be found in them. (author)

  4. Concentration of E2 strength near the fission barrier of 232Th

    International Nuclear Information System (INIS)

    Arruda Neto, J.D.T.; Vannucci, M.F.B.M.; Herdade, S.B.; Vannucci, A.; Nascimento, I.C. do.

    1981-08-01

    The electrofission angular distribution of 232 Th, in the energy interval 5.5-7 MeV, was measured. The analysis of substantial amount of E2 fission strength is concentrated near the fission barrier, corresponding to (8 +- 2)% of one energy weighted sum rule unity. (Author) [pt

  5. Fission theory and actinide fission data

    Energy Technology Data Exchange (ETDEWEB)

    Michaudon, A.

    1975-06-01

    The understanding of the fission process has made great progress recently, as a result of the calculation of fission barriers, using the Strutinsky prescription. Double-humped shapes were obtained for nuclei in the actinide region. Such shapes could explain, in a coherent manner, many different phenomena: fission isomers, structure in near-threshold fission cross sections, intermediate structure in subthreshold fission cross sections and anisotropy in the emission of the fission fragments. A brief review of fission barrier calculations and relevant experimental data is presented. Calculations of fission cross sections, using double-humped barrier shapes and fission channel properties, as obtained from the data discussed previously, are given for some U and Pu isotopes. The fission channel theory of A. Bohr has greatly influenced the study of low-energy fission. However, recent investigation of the yields of prompt neutrons and γ rays emitted in the resonances of {sup 235}U and {sup 239}Pu, together with the spin determination for many resonances of these two nuclei cannot be explained purely in terms of the Bohr theory. Variation in the prompt neutron and γ-ray yields from resonance to resonance does not seem to be due to such fission channels, as was thought previously, but to the effect of the (n,γf) reaction. The number of prompt fission neutrons and the kinetic energy of the fission fragments are affected by the energy balance and damping or viscosity effects in the last stage of the fission process, from saddle point to scission. These effects are discussed for some nuclei, especially for {sup 240}Pu.

  6. Analytical modeling of mode selection and power control for underlay D2D communication in cellular networks

    KAUST Repository

    Elsawy, Hesham

    2014-11-01

    Device-to-device (D2D) communication enables the user equipments (UEs) located in close proximity to bypass the cellular base stations (BSs) and directly connect to each other, and thereby, offload traffic from the cellular infrastructure. D2D communication can improve spatial frequency reuse and energy efficiency in cellular networks. This paper presents a comprehensive and tractable analytical framework for D2D-enabled uplink cellular networks with a flexible mode selection scheme along with truncated channel inversion power control. The developed framework is used to analyze and understand how the underlaying D2D communication affects the cellular network performance. Through comprehensive numerical analysis, we investigate the expected performance gains and provide guidelines for selecting the network parameters.

  7. Nuclear fission and reactions

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The nuclear fission research programs are designed to elucidate basic features of the fission process. Specifically, (1) factors determining how nucleons of a fissioning nucleus are distributed between two fission fragments, (2) factors determining kinetic energy and excitation energies of fragments, and (3) factors controlling fission lifetimes. To these ends, fission studies are reported for several heavy elements and include investigations of spontaneous and neutron-induced fission, heavy ion reactions, and high energy proton reactions. The status of theoretical research is also discussed. (U.S.)

  8. Insights into nuclear structure and the fission process from spontaneous fission

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, J.H.; Butler-Moore, K.; Ramayya, A.V. [Vanderbilt Univ., Nashville, TN (United States)] [and others

    1993-12-31

    The {gamma}-rays emitted following spontaneous and induced fission are rich sources of information about the structure of neutron-rich nuclei and about the fission process itself. The study of spontaneous fissioning isotopes with large Ge detector arrays are providing a wealth of such information as seen, for example, in recent reports. In this paper we present some of our most recent results on nuclear structure studies and conclusions on the fission process itself. In our work, we have employed in spontaneous fission, a triple gamma coincidence study for the first time and a high resolution, X-ray detector-{gamma}-coincidence study. These data provide powerful ways of separating the gamma rays which belong to a particular nucleus. The triple coincidence technique was used to uniquely identify the levels in {sup 136}Te and higher spin states in its N=84 isotones, {sup 138}Xe and {sup 140}Ba{sup 171}. Some other examples of the level structures observed in the low and high mass partners are presented, including a detailed analysis of the backbending of the moment of inertia in {sup 112,114,116}Pd. Finally, we present the first examples of how our analysis allows one to extract a detailed picture of the dependence of the angular momentum on the mass and atomic numbers of the fission fragments and of the long-sought neutron multiplicity distribution from zero-n to ten-n as a function of the charge and mass asymmetry.

  9. Rate theory scenarios study on fission gas behavior of U 3 Si 2 under LOCA conditions in LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin; Gamble, Kyle A.; Andersson, David; Mei, Zhi-Gang; Yacout, Abdellatif M.

    2018-01-01

    Fission gas behavior of U3Si2 under various loss-of-coolant accident (LOCA) conditions in light water reactors (LWRs) was simulated using rate theory. A rate theory model for U3Si2 that covers both steady-state operation and power transients was developed for the GRASS-SST code based on existing research reactor/ion irradiation experimental data and theoretical predictions of density functional theory (DFT) calculations. The steady-state and LOCA condition parameters were either directly provided or inspired by BISON simulations. Due to the absence of in-pile experiment data for U3Si2's fuel performance under LWR conditions at this stage of accident tolerant fuel (ATF) development, a variety of LOCA scenarios were taken into consideration to comprehensively and conservatively evaluate the fission gas behavior of U3Si2 during a LOCA.

  10. Initial global 2-D shielding analysis for the Advanced Neutron Source core and reflector

    Energy Technology Data Exchange (ETDEWEB)

    Bucholz, J.A.

    1995-08-01

    This document describes the initial global 2-D shielding analyses for the Advanced Neutron Source (ANS) reactor, the D{sub 2}O reflector, the reflector vessel, and the first 200 mm of light water beyond the reflector vessel. Flux files generated here will later serve as source terms in subsequent shielding analyses. In addition to reporting fluxes and other data at key points of interest, a major objective of this report was to document how these analyses were performed, the phenomena that were included, and checks that were made to verify that these phenomena were properly modeled. In these shielding analyses, the fixed neutron source distribution in the core was based on the `lifetime-averaged` spatial power distribution. Secondary gamma production cross sections in the fuel were modified so as to account intrinsically for delayed fission gammas in the fuel as well as prompt fission gammas. In and near the fuel, this increased the low-energy gamma fluxes by 50 to 250%, but out near the reflector vessel, these same fluxes changed by only a few percent. Sensitivity studies with respect to mesh size were performed, and a new 2-D mesh distribution developed after some problems were discovered with respect to the use of numerous elongated mesh cells in the reflector. All of the shielding analyses were performed sing the ANSL-V 39n/44g coupled library with 25 thermal neutron groups in order to obtain a rigorous representation of the thermal neutron spectrum throughout the reflector. Because of upscatter in the heavy water, convergence was very slow. Ultimately, the fission cross section in the various materials had to be artificially modified in order to solve this fixed source problem as an eigenvalue problem and invoke the Vondy error-mode extrapolation technique which greatly accelerated convergence in the large 2-D RZ DORT analyses. While this was quite effective, 150 outer iterations (over energy) were still required.

  11. Initial global 2-D shielding analysis for the Advanced Neutron Source core and reflector

    International Nuclear Information System (INIS)

    Bucholz, J.A.

    1995-08-01

    This document describes the initial global 2-D shielding analyses for the Advanced Neutron Source (ANS) reactor, the D 2 O reflector, the reflector vessel, and the first 200 mm of light water beyond the reflector vessel. Flux files generated here will later serve as source terms in subsequent shielding analyses. In addition to reporting fluxes and other data at key points of interest, a major objective of this report was to document how these analyses were performed, the phenomena that were included, and checks that were made to verify that these phenomena were properly modeled. In these shielding analyses, the fixed neutron source distribution in the core was based on the 'lifetime-averaged' spatial power distribution. Secondary gamma production cross sections in the fuel were modified so as to account intrinsically for delayed fission gammas in the fuel as well as prompt fission gammas. In and near the fuel, this increased the low-energy gamma fluxes by 50 to 250%, but out near the reflector vessel, these same fluxes changed by only a few percent. Sensitivity studies with respect to mesh size were performed, and a new 2-D mesh distribution developed after some problems were discovered with respect to the use of numerous elongated mesh cells in the reflector. All of the shielding analyses were performed sing the ANSL-V 39n/44g coupled library with 25 thermal neutron groups in order to obtain a rigorous representation of the thermal neutron spectrum throughout the reflector. Because of upscatter in the heavy water, convergence was very slow. Ultimately, the fission cross section in the various materials had to be artificially modified in order to solve this fixed source problem as an eigenvalue problem and invoke the Vondy error-mode extrapolation technique which greatly accelerated convergence in the large 2-D RZ DORT analyses. While this was quite effective, 150 outer iterations (over energy) were still required

  12. Fission products in glasses. Pt. 2

    International Nuclear Information System (INIS)

    De, A.K.; Luckscheiter, B.; Malow, G.; Schiewer, E.

    1977-09-01

    Glass ceramics of different composition with high leach and impact resistance can be produced for fission product solidification. In contrast to commercial glass products, they consist of a number of crystalline phases and a residual glass phase. The major crystalline phase allows a classification into celsian, diopside, encryptite, and perovskite ceramics. They all are of special importance as host phases for long-lived fission products. The paper reports on relations between product composition and melting properties, viscosity, crystallization properties, and fixation capability for fission products. Further investigations deal with dimensional stability, impact resistance, thermal expansion, and thermal conductivity. The properties of the ceramics are compared with those of the basic products. The problems still to be solved with regard to further improvement and application of these products are discussed. (RB) [de

  13. 3D Mapping of the SPRY2 domain of ryanodine receptor 1 by single-particle cryo-EM.

    Directory of Open Access Journals (Sweden)

    Alex Perálvarez-Marín

    Full Text Available The type 1 skeletal muscle ryanodine receptor (RyR1 is principally responsible for Ca(2+ release from the sarcoplasmic reticulum and for the subsequent muscle contraction. The RyR1 contains three SPRY domains. SPRY domains are generally known to mediate protein-protein interactions, however the location of the three SPRY domains in the 3D structure of the RyR1 is not known. Combining immunolabeling and single-particle cryo-electron microscopy we have mapped the SPRY2 domain (S1085-V1208 in the 3D structure of RyR1 using three different antibodies against the SPRY2 domain. Two obstacles for the image processing procedure; limited amount of data and signal dilution introduced by the multiple orientations of the antibody bound in the tetrameric RyR1, were overcome by modifying the 3D reconstruction scheme. This approach enabled us to ascertain that the three antibodies bind to the same region, to obtain a 3D reconstruction of RyR1 with the antibody bound, and to map SPRY2 to the periphery of the cytoplasmic domain of RyR1. We report here the first 3D localization of a SPRY2 domain in any known RyR isoform.

  14. Characterization of a facility for the measurement of fission fragment transport effects: experimental determination of the fission rates for fissile and fissionable isotopes

    International Nuclear Information System (INIS)

    Benetti, P.; Raselli, G.L.; Tigliole, A. Borio di; Cagnazzo, M.; Cesana, A.; Mongelli, S.; Terrani, M.

    2002-01-01

    The transfer facility of the LENA laboratory allows the direct neutron irradiation of fissionable material in the D channel of the TRIGA reactor. A test measurement carried out with a ionization chamber and a 239 Pu sample shows the possibility to use this tool for the study of the transport effects of the fission fragment emerging from thin layers of fissile materials. (author)

  15. Physics and chemistry of fission

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: In the pleasant and hospitable atmosphere of the Kernforschungsanlage Juelich in the Federal Republic of Germany, the IAEA symposium on the Physics and Chemistry of Fission took place. Almost 200 scientists attended, 154 abstracts were submitted, and 57 papers presented, but more important than the numbers was the quality of the contributions and the progress reported at the symposium. The neutron was discovered almost 50 years ago; 40 years ago the idea of nuclear fission was born. Since then, a number of laboratories have worked hard to explain the phenomenon of fission One would expect that by now scientists would know exactly what happens in a nucleus before and during the process of fission, particularly as there are hundreds of power and research reactors in operation, and fission of uranium isotopes is the basis of their functioning. At first glance, fission seems a simple process: a neutron hits and penetrates the uranium nucleus which becomes excited, i.e. has a surplus of energy. One way to get rid of this energy is for the nucleus to split into two parts; additional products of this process are energy and more neutrons. Nature, however, seems to dislike such straightforward explanations. In the case of fission, scientists have observed a number of phenomena which disagree with a simple model. Sometimes, a nucleus will split into two parts without being 'attacked' by a neutron; this spontaneous fission opens up a new line of fission research and several contributions at the symposium reported on sophisticated experiments designed to unravel some of its specific details. Sometimes, a fissioning nucleus will emit another particle: ternary fission has become a powerful tool for studying the properties of nuclei during the fission process. For the scientist, it is fascinating to observe how the nucleus behaves during fission. They invent models which are supposed to reproduce the most probable course of events leading to fission. In one of these

  16. Separation of fission products by the use of recoil; Separation des produits de fission par utilisation du recul

    Energy Technology Data Exchange (ETDEWEB)

    Henry, R; Beydon, J; Bardy, A [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    We have studied fission recoil in U{sub 3}O{sub 8} organic solvent mixtures. The organic phase chosen was first naphtalene then terphenyl. Graphite and activated carbon were also tried out as recoil media. We first verified that the fission fragments are ejected from the uranium oxide particles under our experimental conditions. The retention phenomenon observed is due to an adsorption occurring either during irradiation or during the chemical treatment. Using naphthalene or terphenyl, the individual separation of the fission products has made it possible to show the influence of the chemical nature of the recoil medium on the retention of each fission product. We put forward a hypothesis concerning this phenomenon: experiments carried out using 'scavengers', together with kinetic studies make it possible to explain the retention phenomenon and to choose the most favorable conditions for reducing this retention to a low value. The thermal recombination kinetics demonstrate the influence of the fission ion charge on the final value of the retention for a given temperature. The origins of this thermal recombination are discussed. (author) [French] On a etudie le recul de fission dans les melanges U{sub 3}0{sub 8}, phase organique. La phase organique choisie a ete le naphtalene puis le terphenyle. Le graphite et le charbon actif ont egalement ete essayes comme milieux de recul. On a d'abord determine que les fragments de fission sortent des particules d'oxyde d'uranium avec un rendement de 100 pour cent dans nos conditions experimentales. Le phenomene de retention observe est du a une adsorption ayant lieu pendant l'irradiation ou pendant le traitement chimique. Dans le naphtalene et le terphenyle, la separation individuelle des produits de fission a permis de mettre en evidence l'influence de la nature chimique du milieu de recul sur la retention de chaque produit de fission. On avance une hypothese sur ce phenomene: des experiences effectuees avec des 'scavengers

  17. Contribution to the study of the desorption of fission gases formed in irradiated uranium oxide; Contribution a l'etude de la desorption des gaz de fission formes dans l'oxyde d'uranium irradie

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J -L; Darras, R; Roger, B [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-09-01

    The release of {sup 133}Xe from irradiated UO{sub 2} has been studied in the temperature range 1300 to 1900 deg C, using various monocrystalline or sintered samples. Up to 1600 deg C, this release is proportional to the square root of the time and thus occurs essentially by diffusion. The apparent diffusion constant D' decreases and the activation energy of the corresponding process increases as the integrated neutron flux received by the fuel increases. As the density of the sintered samples decreases however, the activation energy of the release also decreases, so that the difference between D' values for sintered samples of different densities decreases as the temperature rises. Finally, above 1600 deg C, the fission gas release phenomenon is governed by UO{sub 2} evaporation, and all the different types of oxide studied have similar behaviors, characterized by poor retention of these gases. (authors) [French] La desorption du xenon 133 forme dans le bioxyde d'uranium irradie a ete etudiee dans l'intervalle de 1300 a 1900 C, a l'aide de differents echantillons monocristallins ou frittes. Jusqu'a 1600 C, elle s'effectue proportionnellement a la racine carree du temps, donc essentiellement par diffusion. La pseudo-constante de desorption D' decroit et l'energie d'activation du processus correspondant croit lorsque le flux de neutrons integre recu par le combustible augmente. Cependant, lorsque la densite des frittes diminue, l'energie d'activation de desorption diminue egalement, de sorte que l'ecart entre les valeurs de D' relatives a des frittes de densites differentes se restreint lorsque, la temperature s'eleve. Finalement, au-dessus de 1600 C, l'evaporation de l'UO{sub 2} regit le phenomene de liberation des gaz de fission, et toutes les qualites d'oxyde etudiees presentent alors des comportements voisins a cet egard, caracterises par une mediocre retention de ces gaz. (auteurs)

  18. Burnup determination of power reactor fuel elements by gamma spectrometry; Determination par spectrometrie {gamma} du taux d'irradiation des elements combustibles des reacteurs de puissance

    Energy Technology Data Exchange (ETDEWEB)

    Robin, M; Jastrzeb, M; Boisliveau, S; Boyer, R; Vidal, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-07-01

    This report describes a method for determining by {gamma} spectrometry the burn up and the specific power of fuel elements irradiated in power reactors. The energy spectrum of {gamma} rays emitted by fission products is measured by means of a simple equipment using a sodium iodide detector and a multichannel analyzer. In order to extract from the spectrum a quantity proportional to the burn up, it is necessary to: - isolate an activity specific of one emitter,- give the same importance to fissions in uranium and plutonium - take into account the radioactive decay during and after irradiation. One hundred fuel elements were studied and burn up values obtained by {gamma} spectrometry are compared to results given by chemical analyses. Preliminary measurements show that the accuracy of the results is greatly increased by the use of a germanium detector, due to its good resolution. (authors) [French] Ce rapport expose une methode de determination par spectrometrie {gamma} du taux d'irradiation et de la puissance specifique des elements combustibles irradies dans les reacteurs de puissance. Une installation simple utilisant un detecteur d'iodure de sodium et un selecteur multicanaux mesure le spectre en energie du rayonnement {gamma} emis par les produits de fission. Afin d'extraire du spectre une quantite proportionnelle au taux de combustion, il faut: - isoler une activite specifique a un emetteur, - donner la meme importance aux fissions survenues dans l'uranium et le plutonium, - prendre en compte la decroissance radioactive pendant et apres l'irradiation. Les mesures ont porte sur une centaine d'elements combustibles et les taux de combustion obtenus par spectrometrie {gamma} sont compares aux resultats des analyses chimiques. Des mesures preliminaires montrent que l'utilisation d'un detecteur de germanium augmente considerablement la precision des resultats, en raison de son excellente resolution. (auteurs)

  19. Study of a device for the direct measurement of the fission gas pressure inside an in-pile fuel element; Etude d'un dispositif pour la mesure directe de la pression des gaz de fission a l'interieur d'un element combustible en pile

    Energy Technology Data Exchange (ETDEWEB)

    Lavaud, B; Uschanoff, S [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The fission gas pressure inside a fuel element made of a refractory fuel constitutes an important limiting factor for the burn-up. Although it is possible to calculate approximately the volume of gas produced outside the fuel during its life-time; it is nevertheless very difficult to evaluate the pressure since the volume allowed to the fission gases, as well as their temperature are known only very approximately. This physical value, which is essential for the technologist, can only be known by direct in-pile measurement of the pressure. The report describes the equipment which has been developed for this test. (authors) [French] La pression des gaz de fission a l'interieur d'un element combustible a combustible refractaire constitue une des limitations importantes du taux de combustion. Si on peut approcher par calcul la determination du volume, des gaz degages hors du combustible au cours de sa vie, il est par contre tres difficile d'evaluer la pression car le volume alloue aux gaz de fission et leur temperature sont tres mal connus. Cette donnee essentielle pour le technologue ne peut etre atteinte que par une mesure directe en pile de la pression. Le rapport decrit l'appareillage qui a ete mis au point pour cet essai. (auteurs)

  20. Review of power ramp irradiations with different pellet L/D ratios and thicknesses of CANLUB layers

    International Nuclear Information System (INIS)

    2009-01-01

    Power ramps in fuel during normal operation can result in Stress Corrosion Cracking (SCC) failures. Experimental evidence shows that pellets with smaller L/D ratios produce smaller circumferential ridges at pellet interface, the location where power ramps failures commonly occur. This may reduce the power ramp damage to the sheath, thereby improving the ability of the fuel sheath to withstand SCC. CANLUB coatings have demonstrated beneficial effects with respect to SCC. It is speculated that the coating acts as a chemical barrier by interacts with the corrosive fission products reducing the amount of corrosive species to reach susceptible areas of the sheath surface. This reduced concentration of corrosive products may enable the sheath to resist higher levels of incremental stresses/strains and therefore survive severe power-ramps. This work focuses on the review of experimental information that substantiates the effect of pellets with lower L/D ratios and thicker CANLUB layers on SCC sheath failures. (author)

  1. US/UK actinides experiment at the Dounreay PFR. I. Fission products

    International Nuclear Information System (INIS)

    Raman, S.; Murphy, B.D.

    1995-01-01

    The United States and the United Kingdom have been engaged in a joint research program in which samples of higher actinides were irradiated in the 600-MW Dounreay Prototype Fast Reactor in Scotland. Analytical results using mass spectrometry and radiometry for actinides and fission products are now available for the samples in Fuel Pins 1 and 2 which were irradiated for 63 full-power days and for the samples in Fuel Pin 4 which were irradiated for 492 full-power days. Results from these three fuel pins are providing estimates of integral cross sections and fission yields. (authors)

  2. Two-Step Multi-Physics Analysis of an Annular Linear Induction Pump for Fission Power Systems

    Science.gov (United States)

    Geng, Steven M.; Reid, Terry V.

    2016-01-01

    One of the key technologies associated with fission power systems (FPS) is the annular linear induction pump (ALIP). ALIPs are used to circulate liquid-metal fluid for transporting thermal energy from the nuclear reactor to the power conversion device. ALIPs designed and built to date for FPS project applications have not performed up to expectations. A unique, two-step approach was taken toward the multi-physics examination of an ALIP using ANSYS Maxwell 3D and Fluent. This multi-physics approach was developed so that engineers could investigate design variations that might improve pump performance. Of interest was to determine if simple geometric modifications could be made to the ALIP components with the goal of increasing the Lorentz forces acting on the liquid-metal fluid, which in turn would increase pumping capacity. The multi-physics model first calculates the Lorentz forces acting on the liquid metal fluid in the ALIP annulus. These forces are then used in a computational fluid dynamics simulation as (a) internal boundary conditions and (b) source functions in the momentum equations within the Navier-Stokes equations. The end result of the two-step analysis is a predicted pump pressure rise that can be compared with experimental data.

  3. 14. International workshop on nuclear fission physics. Proceedings

    International Nuclear Information System (INIS)

    2000-01-01

    The meetings on nuclear fission took place 12-15 October 1998 and was organized by Institute of Physics and Power Engineering. The aim of the workshop was to present and discuss main new both theoretical and experimental results obtained in the area of nuclear fission, dynamical feature, properties of fission fragments and complementary radiation. As usual the program of the workshop was designed to cover a wide range of physical phenomena - from low energy and spontaneous fission to fission of hot rotating nuclei and multifragmentation at intermediate and high energies. Reaction induced by slow and fast neutron, light and heavy ions were discussed [ru

  4. A New 3D Map of Milky Way Dust

    Science.gov (United States)

    Green, Gregory Maurice; Schlafly, Edward; Finkbeiner, Douglas

    2018-01-01

    Interstellar dust is an important foreground for observations across a wide range of wavelengths. Dust grains scatter and absorb UV, optical and near-infrared light. These processes heat dust grains, causing them to radiate in the far-infrared. As a tracer of mass in the interstellar medium, dust correlates strongly with diffuse gamma-ray emission generated by cosmic-ray pion production. Thus, while dust makes up just 1% of the mass of the interstellar medium, it plays an outsize role in our efforts to address questions as diverse as the chemical evolution of the Milky Way galaxy and the existence of primordial B-mode polarizations in the CMB.We present a new 3D map of Milky Way dust, covering three-quarters of the sky (δ > -30°). The map is based on high-quality photometry of more than 800 million stars observed by Pan-STARRS 1, with matched photometry from 2MASS for approximately 200 million stars. We infer the distribution of dust vs. distance along sightlines with a typical angular scale of 6'. Out of the midplane of the Galaxy, our map agrees well with 2D maps based on far-infrared dust emission. After accounting for a 15% difference in scale, we find a mean scatter of approximately 10% between our map and the Planck 2D dust map, out to a depth of 0.8 mag in E(r-z). Our map can be downloaded at http://argonaut.skymaps.info.In order to extend our map, we have surveyed the southern Galactic plane with DECam, which is mounted on the 4m Blanco telescope on Cerro Tololo. The resulting survey, the Dark Energy Camera Plane Survey (DECaPS), is now publicly available. See Edward Schlafly's poster for more information on DECaPS.

  5. The Radiological and Thermal Characteristics of Fission Waste from a Deep-Burn Fusion-Fission Hybrid (LIFE) and Implications for Repository Performance

    International Nuclear Information System (INIS)

    Shaw, H.F.; Blink, J.; Farmer, J.; Latkowski, J.; Kramer, K.

    2009-01-01

    We are studying the use of a Laser Inertial-confinement Fusion Engine (LIFE) to drive a hybrid fusion-fission system that can generate electrical power and/or burn nuclear waste. The system uses the neutrons from laser driven ICF to produce tritium and to drive nuclear reactions in a subcritical fission blanket. The fusion neutron source obviates the need for a self-sustaining chain reaction in the fission blanket. Either fissile or fertile could be used as fission fuel, thus eliminating the need for isotopic enrichment. The 'driven' system potentially allows very high levels of burnup to be reached, extracting a large fraction of the available energy in the fission fuel without the need for reprocessing. In this note, we discuss the radionuclide inventory of a depleted uranium (DU) fuel burned to greater than 95% FIMA (Fissions per Initial heavy Metal Atom), the implications for thermal management of the resulting waste, and the implications of this waste for meeting the dose standards for releases from a geological repository for high-level waste. The fission waste discussed here would be that produced by a LIFE hybrid with a 500-MW fusion source. The fusion neutrons are multiplied and moderated by a sequence of concentric shells of materials before encountering the fission fuel, and fission in this region is largely due to thermal neutrons. The fission blanket consists of 40 metric tons (MT) of DU, assumed to be in the form of TRISO-like UOC fuel particles embedded in 2-cm-diameter graphite pebbles. (It is recognized that TRISO-based fuel may not reach the high burnup of the fertile fuel considered here, and other fuel options are being investigated. We postulate the existence of a fuel that can reach >95% FIMA so that the waste disposal implications of high burnup can be assessed.) The engine and plant design considered here would receive one load of fission fuel and produce ∼2 GWt of power (fusion + fission) over its 50- to 70-year lifetime. Neutron and

  6. 2D-electrophoresis and the urine proteome map: where do we stand?

    Science.gov (United States)

    Candiano, Giovanni; Santucci, Laura; Petretto, Andrea; Bruschi, Maurizio; Dimuccio, Veronica; Urbani, Andrea; Bagnasco, Serena; Ghiggeri, Gian Marco

    2010-03-10

    The discovery of urinary biomarkers is a main topic in clinical medicine. The development of proteomics has rapidly changed the knowledge on urine protein composition and probably will modify it again. Two-dimensional electrophoresis (2D-PAGE) coupled with mass spectrometry has represented for years the technique of choice for the analysis of urine proteins and it is time to draw some conclusions. This review will focus on major methodological aspects related to urine sample collection, storage and analysis by 2D-PAGE and attempt to define an advanced normal urine protein map. Overall, 1118 spots were reproducibly found in normal urine samples but only 275 were characterized as isoforms of 82 proteins. One-hundred height spots belonging to 30 proteins were also detected in plasma and corresponded to typical plasma components. The identity of most of the proteins found in normal urine by 2D-PAGE remains to be determined, the majority being low-molecular weight proteins (urine composition. Technology advancements in concentrating procedure will improve sensitivity and give the possibility to purify proteins for mass spectrometry. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  7. Tables and figures from JNDC Nuclear Data Library of fission products, version 2

    International Nuclear Information System (INIS)

    Ihara, Hitoshi

    1989-11-01

    The content of JNDC (Japanese Nuclear Data Committee) FP (Fission Product) Nuclear Data Library version 2 for 1227 fission products is presented in the form of tables and figures. The library is inclusive of evaluated decay data such as decay constant, Q-value, average energies of beta, gamma and internal conversion electron, spin-parity, branching ratio of each decay mode and fission yield. The neutron capture cross-sections are also contained for 166 nuclides. The mass number of the fission product nuclides ranges from A = 66 to A = 172. (author)

  8. Investigation of delayed fission gas release

    International Nuclear Information System (INIS)

    Cayet, Nicolas

    1996-05-01

    The study of the fission gas release process in the high burnup rig IFA-562 has revealed a particular fuel behaviour: a delay in the fission gas release process. It appeared that an important release of gas was measured by the pressure transducers once the power had decreased, whereas, during steady-state operation, the pressure did not increase very much. After examinations, the gap size has been concluded to be the main parameter involving this delay. However the burnup could have been a potential factor, its role is mainly to close the gap by swelling. The observations of low burnup rods have shown the same delayed fission gas release, the gap being small by design and closed essentially by thermal expansion. The study of the kinetics has demonstrated the time-independency of the phenomenon. Thus the proposed mechanism driving this delayed fission gas release would involve three consecutives stages. During steady-state, the gas is released into the interlinkage network of grain boundary bubbles and cracks. Due to the closed gap, the gas is trapped in some void volumes, unable to escape the pellet. During power reduction, the gap and some old/new cracks open, immediately providing a path for the gas to the pressure transducers and explaining this delay in the fission gas release. (author)

  9. Neural Network Ensemble Based Approach for 2D-Interval Prediction of Solar Photovoltaic Power

    Directory of Open Access Journals (Sweden)

    Mashud Rana

    2016-10-01

    Full Text Available Solar energy generated from PhotoVoltaic (PV systems is one of the most promising types of renewable energy. However, it is highly variable as it depends on the solar irradiance and other meteorological factors. This variability creates difficulties for the large-scale integration of PV power in the electricity grid and requires accurate forecasting of the electricity generated by PV systems. In this paper we consider 2D-interval forecasts, where the goal is to predict summary statistics for the distribution of the PV power values in a future time interval. 2D-interval forecasts have been recently introduced, and they are more suitable than point forecasts for applications where the predicted variable has a high variability. We propose a method called NNE2D that combines variable selection based on mutual information and an ensemble of neural networks, to compute 2D-interval forecasts, where the two interval boundaries are expressed in terms of percentiles. NNE2D was evaluated for univariate prediction of Australian solar PV power data for two years. The results show that it is a promising method, outperforming persistence baselines and other methods used for comparison in terms of accuracy and coverage probability.

  10. Radioactive ion beams produced by neutron-induced fission at ISOLDE

    CERN Document Server

    Catherall, R; Gilardoni, S S; Köster, U

    2003-01-01

    The production rates of neutron-rich fission products for the next-generation radioactive beam facility EURISOL are mainly limited by the maximum amount of power deposited by protons in the target. An alternative approach is to use neutron beams to induce fission in actinide targets. This has the advantage of reducing: the energy deposited by the proton beam in the target; contamination from neutron-deficient isobars that would be produced by spallation; and mechanical stress on the target. At ISOLDE CERN, tests have been made on standard ISOLDE actinide targets using fast neutron bunches produced by bombarding thick, high-Z metal converters with 1 and 1.4 GeV proton pulses. This paper reviews the first applications of converters used at ISOLDE. It highlights the different geometries and the techniques used to compare fission yields produced by the proton beam directly on the target with neutron-induced fission. Results from the six targets already tested, namely UC2/graphite and ThO2 targets with tungsten an...

  11. Low-amplitude clustering in low-redshift 21-cm intensity maps cross-correlated with 2dF galaxy densities

    Science.gov (United States)

    Anderson, C. J.; Luciw, N. J.; Li, Y.-C.; Kuo, C. Y.; Yadav, J.; Masui, K. W.; Chang, T.-C.; Chen, X.; Oppermann, N.; Liao, Y.-W.; Pen, U.-L.; Price, D. C.; Staveley-Smith, L.; Switzer, E. R.; Timbie, P. T.; Wolz, L.

    2018-05-01

    We report results from 21-cm intensity maps acquired from the Parkes radio telescope and cross-correlated with galaxy maps from the 2dF galaxy survey. The data span the redshift range 0.057 clustering of neutral hydrogen (H I), a small correlation coefficient between optical galaxies and H I, or some combination of the two. Separating 2dF into red and blue galaxies, we find that red galaxies are much more weakly correlated with H I on k ˜ 1.5 h Mpc-1 scales, suggesting that H I is more associated with blue star-forming galaxies and tends to avoid red galaxies.

  12. Quantification and visualization of carotid segmentation accuracy and precision using a 2D standardized carotid map

    International Nuclear Information System (INIS)

    Chiu, Bernard; Ukwatta, Eranga; Shavakh, Shadi; Fenster, Aaron

    2013-01-01

    This paper describes a framework for vascular image segmentation evaluation. Since the size of vessel wall and plaque burden is defined by the lumen and wall boundaries in vascular segmentation, these two boundaries should be considered as a pair in statistical evaluation of a segmentation algorithm. This work proposed statistical metrics to evaluate the difference of local vessel wall thickness (VWT) produced by manual and algorithm-based semi-automatic segmentation methods (ΔT) with the local segmentation standard deviation of the wall and lumen boundaries considered. ΔT was further approximately decomposed into the local wall and lumen boundary differences (ΔW and ΔL respectively) in order to provide information regarding which of the wall and lumen segmentation errors contribute more to the VWT difference. In this study, the lumen and wall boundaries in 3D carotid ultrasound images acquired for 21 subjects were each segmented five times manually and by a level-set segmentation algorithm. The (absolute) difference measures (i.e., ΔT, ΔW, ΔL and their absolute values) and the pooled local standard deviation of manually and algorithmically segmented wall and lumen boundaries were computed for each subject and represented in a 2D standardized map. The local accuracy and variability of the segmentation algorithm at each point can be quantified by the average of these metrics for the whole group of subjects and visualized on the 2D standardized map. Based on the results shown on the 2D standardized map, a variety of strategies, such as adding anchor points and adjusting weights of different forces in the algorithm, can be introduced to improve the accuracy and variability of the algorithm. (paper)

  13. Burnout and gate rupture of power MOS transistors with fission fragments of 252Cf

    International Nuclear Information System (INIS)

    Tang Benqi; Wang Yanping; Geng Bin; Chen Xiaohua; He Chaohui; Yang Hailiang

    2000-01-01

    A study to determine the single event burnout (SEB) and single event gate rupture (SEGR) sensitivities of power MOSFET devices is carried out by exposure to fission fragments from 252 Cf source. The test method, test results, a description of observed burnout current waveforms and a discussion of a possible failure mechanism are presented. The test results include the observed dependence upon applied drain or gate to source bias and effect of external capacitors and limited resistors

  14. Upper Limits of the Fission Cross-Sections of Lead and Bismuth for Li-D Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Broda, E.

    1945-07-01

    This report was written by E. Broda and P.K. Wright at the Cavendish Laboratory (Cambridge) in April 1945 and is about the upper limits of the fission cross sections of lead and bismuth for Li-D neutrons. This report includes the experiment description and the discussion of the results. (nowak)

  15. CACA-2: revised version of CACA-a heavy isotope and fission-product concentration calculational code for experimental irradiation capsules

    International Nuclear Information System (INIS)

    Allen, E.J.

    1976-02-01

    A computer program is described which calculates nuclide concentration histories, power or neutron flux histories, burnups, and fission-product birthrates for fueled experimental capsules subjected to neutron irradiations. Seventeen heavy nuclides in the chain from 232 Th to 242 Pu and a user-specified number of fission products are treated. A fourth-order Runge-Kutta calculational method solves the differential equations for nuclide concentrations as a function of time. For a particular problem, a user-specified number of fuel regions may be treated. A fuel region is described by volume, length, and specific irradiation history. A number of initial fuel compositions may be specified for each fuel region. The irradiation history for each fuel region can be divided into time intervals, and a constant power density or a time-dependent neutron flux is specified for each time interval. Also, an independent cross-section set may be selected for each time interval in each irradiation history. The fission-product birthrates for the first composition of each fuel region are summed to give the total fission-product birthrates for the problem

  16. Systems study of tokamak fusion--fission reactors

    International Nuclear Information System (INIS)

    Tenney, F.H.; Bathke, C.G.; Price, W.G. Jr.; Bohlke, W.H.; Mills, R.G.; Johnson, E.F.; Todd, A.M.M.; Buchanan, C.H.; Gralnick, S.L.

    1978-11-01

    This publication reports the results of a two to three year effort at a systematic analysis of a wide variety of tokamak-driven fissioning blanket reactors, i.e., fusion--fission hybrids. It addresses the quantitative problems of determining the economically most desirable mix of the two products: electric power and fissionable fuel and shows how the price of electric power can be minimized when subject to a variety of constraints. An attempt has been made to avoid restricting assumptions, and the result is an optimizing algorithm that operates in a six-dimensional parameter space. Comparisons are made on sets of as many as 100,000 distinct machine models, and the principal results of the study have been derived from the examination of several hundred thousand possible reactor configurations

  17. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping of talar osteochondral lesions: Indicators of clinical outcomes.

    Science.gov (United States)

    Rehnitz, Christoph; Kuni, Benita; Wuennemann, Felix; Chloridis, Dimitrios; Kirwadi, Anand; Burkholder, Iris; Kauczor, Hans-Ulrich; Weber, Marc-André

    2017-12-01

    To evaluate the utility of delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) and T 2 mapping in evaluation of type II osteochondral lesions (OCLs) of the talus and define cutoff values for identifying patients with good/poor clinical outcomes. 28 patients (mean age, 42.3 years) underwent T 2 mapping and dGEMRIC at least 1.5 years (mean duration, 3.5 years) after microfracture (n = 12) or conservative (n = 16) treatment for type II OCL. Clinical outcomes were considered good with an American Orthopedic Foot and Ankle Society score ≥80. The T 1 /T 2 -values and indices of repair tissue (RT; cartilage above the OCL) were compared to those of the adjacent normal cartilage (NC) by region-of-interest analysis. The ability of the two methods to discriminate RT from NC was determined by area under the receiver operating characteristics curve (AUC) analysis. The Youden index was maximized for T 1 /T 2 measures for identifying cutoff values indicative of good/poor clinical outcomes. Repair tissue exhibited lower dGEMRIC values (629.83 vs. 738.51 msec) and higher T 2 values (62.07 vs. 40.69 msec) than NC (P < 0.001). T 2 mapping exhibited greater AUC than dGEMRIC (0.88 vs. 0.69; P = 0.0398). All T 1 measures exhibited higher maximized Youden indices than the corresponding T 2 measures. The highest maximized Youden index for T 1difference was observed at a cutoff value of 84 msec (sensitivity, 78%; specificity, 83%). While T 2 mapping is superior to dGEMRIC in discriminating RT, the latter better identifies good/poor clinical outcomes in patients with type II talar OCL. 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017;46:1601-1610. © 2017 International Society for Magnetic Resonance in Medicine.

  18. Intrinsic functional brain mapping in reconstructed 4D magnetic susceptibility (χ) data space.

    Science.gov (United States)

    Chen, Zikuan; Calhoun, Vince

    2015-02-15

    By solving an inverse problem of T2*-weighted magnetic resonance imaging for a dynamic fMRI study, we reconstruct a 4D magnetic susceptibility source (χ) data space for intrinsic functional mapping. A 4D phase dataset is calculated from a 4D complex fMRI dataset. The background field and phase wrapping effect are removed by a Laplacian technique. A 3D χ source map is reconstructed from a 3D phase image by a computed inverse MRI (CIMRI) scheme. A 4D χ data space is reconstructed by repeating the 3D χ source reconstruction for each time point. A functional map is calculated by a temporal correlation between voxel signals in the 4D χ space and the timecourse of the task paradigm. With a finger-tapping experiment, we obtain two 3D functional mappings in the 4D magnitude data space and in the reconstructed 4D χ data space. We find that the χ-based functional mapping reveals co-occurrence of bidirectional responses in a 3D activation map that is different from the conventional magnitude-based mapping. The χ-based functional mapping can also be achieved by a 3D deconvolution of a phase activation map. Based on a subject experimental comparison, we show that the 4D χ tomography method could produce a similar χ activation map as obtained by the 3D deconvolution method. By removing the dipole effect and other fMRI technological contaminations, 4D χ tomography provides a 4D χ data space that allows a more direct and truthful functional mapping of a brain activity. Published by Elsevier B.V.

  19. Performance of wind-powered soil electroremediation process for the removal of 2,4-D from soil.

    Science.gov (United States)

    Souza, F L; Llanos, J; Sáez, C; Lanza, M R V; Rodrigo, M A; Cañizares, P

    2016-04-15

    In this work, it is studied a wind-powered electrokinetic soil flushing process for the removal of pesticides from soil. This approach aims to develop an eco-friendly electrochemical soil treatment technique and to face the in-situ treatment of polluted soils at remote locations. Herbicide 2,4 dichlorophenoxyacetic acid (2,4-D) is selected as a model pollutant for the soil treatment tests. The performance of the wind-powered process throughout a 15 days experiment is compared to the same remediation process powered by a conventional DC power supply. The wind-powered test covered many different wind conditions (from calm to near gale), being performed 20.7% under calm conditions and 17% under moderate or gentle breeze. According to the results obtained, the wind-powered soil treatment is feasible, obtaining a 53.9% removal of 2,4-D after 15 days treatment. Nevertheless, the remediation is more efficient if it is fed by a constant electric input (conventional DC power supply), reaching a 90.2% removal of 2,4-D with a much lower amount of charge supplied (49.2 A h kg(-1) and 4.33 A h kg(-1) for wind-powered and conventional) within the same operation time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Release and transport of fission product cesium in the TMI-2 accident

    International Nuclear Information System (INIS)

    Lorenz, R.A.; Collins, J.L.

    1986-01-01

    Approximately 50% of the fission product cesium was released from the overheated UO 2 fuel in the TMI-2 accident. Steam that boiled away from a water pool in the bottom of the reactor vessel transported the released fission products throughout the reactor coolant system (RCS). Some fission products passed directly through a leaking valve with steam and water into the containment structure, but most deposited on dry surfaces inside of the RCS before being dissolved or resuspended when the RCS was refilled with water. A cesium transport model was developed that extended measured cesium in the RCS back to the first day of the accident. The model revealed that ∼62% of the released 137 Cs deposited on dry surfaces inside of the RCS before being slowly leached and transported out of the RCS in leaked or letdown water. The leach rates from the model agreed reasonably well with those measured in the laboratory. The chemical behavior of cesium in the TMI-2 accident agreed with that observed in fission product release tests at Oak Ridge National Laboratory (ORNL)

  1. Hybrid fission-fusion nuclear reactors

    International Nuclear Information System (INIS)

    Zucchetti, Massimo

    2011-01-01

    A fusion-fission hybrid could contribute to all components of nuclear power - fuel supply, electricity production, and waste management. The idea of the fusion-fission hybrid is many decades old. Several ideas, both new and revisited, have been investigated by hybrid proponents. These ideas appear to have attractive features, but they require various levels of advances in plasma science and fusion and nuclear technology. As a first step towards the development of hybrid reactors, fusion neutron sources can be considered as an option. Compact high-field tokamaks can be a candidate for being the neutron source in a fission-fusion hybrid, essentially due to their design characteristics, such as compact dimensions, high magnetic field, flexibility of operation. This study presents the development of a tokamak neutron source for a material testing facility using an Ignitor-based concept. The computed values show the potential of this neutron-rich device for fusion materials testing. Some full-power months of operation are sufficient to obtain relevant radiation damage values in terms of dpa. (Author)

  2. Power loss analysis of n-PASHA cells validated by 2D simulations

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, G.J.M.; Gutjahr, A.; Burgers, A.R.; Saynova, D.S.; Cesar, I.; Romijn, I.G.

    2013-10-15

    To reach >21% efficiency for the n-Pasha (passivated all sides H-pattern) cell of ECN, reliable power-loss analyses are essential. A power-loss analysis is presented that is based on experimental data but validated and completed by 2D simulations. The analysis is used to identify the key factors that will contribute most to achieving >21% efficiency.

  3. Mapping onto Eq-5 D for patients in poor health

    Directory of Open Access Journals (Sweden)

    Brazier John E

    2010-11-01

    Full Text Available Abstract Background An increasing amount of studies report mapping algorithms which predict EQ-5 D utility values using disease specific non-preference-based measures. Yet many mapping algorithms have been found to systematically overpredict EQ-5 D utility values for patients in poor health. Currently there are no guidelines on how to deal with this problem. This paper is concerned with the question of why overestimation of EQ-5 D utility values occurs for patients in poor health, and explores possible solutions. Method Three existing datasets are used to estimate mapping algorithms and assess existing mapping algorithms from the literature mapping the cancer-specific EORTC-QLQ C-30 and the arthritis-specific Health Assessment Questionnaire (HAQ onto the EQ-5 D. Separate mapping algorithms are estimated for poor health states. Poor health states are defined using a cut-off point for QLQ-C30 and HAQ, which is determined using association with EQ-5 D values. Results All mapping algorithms suffer from overprediction of utility values for patients in poor health. The large decrement of reporting 'extreme problems' in the EQ-5 D tariff, few observations with the most severe level in any EQ-5 D dimension and many observations at the least severe level in any EQ-5 D dimension led to a bimodal distribution of EQ-5 D index values, which is related to the overprediction of utility values for patients in poor health. Separate algorithms are here proposed to predict utility values for patients in poor health, where these are selected using cut-off points for HAQ-DI (> 2.0 and QLQ C-30 ( Conclusion Mapping algorithms overpredict utility values for patients in poor health but are used in cost-effectiveness analyses nonetheless. Guidelines can be developed on when the use of a mapping algorithms is inappropriate, for instance through the identification of cut-off points. Cut-off points on a disease specific questionnaire can be identified through association

  4. FEMB, 2-D Homogeneous Neutron Diffusion in X-Y Geometry with Keff Calculation, Dyadic Fission Matrix

    International Nuclear Information System (INIS)

    Misfeldt, I.B.

    1987-01-01

    1 - Nature of physical problem solved: The two-dimensional neutron diffusion equation (xy geometry) is solved in the homogeneous form (K eff calculation). The boundary conditions specify each group current as a linear homogeneous function of the group fluxes (gamma matrix concept). For each material, the fission matrix is assumed to be dyadic. 2 - Method of solution: Finite element formulation with Lagrange type elements. Solution technique: SOR with extrapolation. 3 - Restrictions on the complexity of the problem: Maximum order of the Lagrange elements is 6

  5. Metrology for New Generation Nuclear Power Plants - MetroFission

    International Nuclear Information System (INIS)

    Johansson, Lena; Dinsdale, Alan; Keightley, John; Filtz, Jean-Remy; Hay, Bruno; DeFelice, Pierino; Sadli, Mohamed; Plompen, Arjan; Heyse, Jan; Pomme, Stefaan; Cassette, Philippe

    2013-06-01

    MetroFission project has been looking at solving metrological problems related to a new generation of NPPs. The proposed Gen. IV NPPs are designed to run safely, make efficient use of natural resources, minimize the waste and maintain proliferation resistance. In order to reach these goals, the reactor operation involves higher temperatures, high-energy neutron fluence, different types of fuel where the minor actinides are included etc. The work has focused on improved temperature measurements, investigation of thermal properties of advanced materials, determination of new and relevant nuclear data and development of measurement techniques for radionuclides suitable for Gen. IV NPPs. The improved temperature measurement for nuclear power plant applications includes the development of a new Fe-C fixed point. Robust, repeatable and versatile cells have been constructed and compared with success among the project participants and their melting temperatures have been determined. Methodology of self-validating thermocouples has proven efficient at several fixed point temperatures using different designs. A practical acoustic thermometer has been tested at 1000 deg. C with success thanks to the use of innovative signal processing methods. Mo/Nb thermocouples have been obtained with different sheath materials and tested with the aim to achieve for the first time a reference function determined with the best possible uncertainties. Following reviews of designs and technology proposed for fourth generation nuclear plants effort within this project, with regards to thermal properties of advanced materials for nuclear design, has concentrated on provision of thermodynamic data to support the development of the sodium cooled fast reactor. Data has been critically assessed to represent the potential interaction between the Na coolant and the nuclear fuel taken to be based on (U, Pu)O 2 but incorporating minor actinides such as Np and Am. Data for the fission products and

  6. What happens to the fission process above the 2nd- and 3rd-chance fission thresholds

    International Nuclear Information System (INIS)

    Stewart, L.; Howerton, R.J.

    1976-01-01

    Although the multiple fission process is important at high neutron energies, most of the evaluations available today do not include these individual fission cross sections or their associated fission spectra. The representations used in the Los Alamos and Livermore libraries are described and calculations compared with 14-MeV integral experiments available on 235 U, 238 U, and 239 Pu. Further work is needed to clearly delineate the specific problems in order to propose unique solutions

  7. Electro-thermal analysis and optimisation of edge termination of power diode supported by 2-D/3-D numerical modelling and simulation

    International Nuclear Information System (INIS)

    Príbytný, P; Donoval, D; Chvála, A; Marek, J; Molnár, M

    2014-01-01

    Numerical modelling and simulation provide an efficient tool for analysis and optimization of device structure design. In this paper we present the analysis and the geometry optimization of the power module with high power pin diode structure supported by the advanced 2-D/3-D mixed-mode electro-thermal device simulation. The structure under investigation is P + NN + power diode device designed for high reverse voltages and very high forward currents, with a maximum forward surge current up to 2.7 kA.

  8. TMI-2 [Three Mile Island] fission product inventory program: FY-85 status report

    International Nuclear Information System (INIS)

    Langer, S.; Croney, S.T.; Akers, D.W.; Russell, M.L.

    1986-11-01

    This report presents the status of the TMI-2 fission product inventory program through May 1985. The fission product inventory program is an assessment of the location of fission products distributed in the plant as a result of the TMI-2 accident. Included in this report are principal results of samples from the reactor building where most of the mobile fission products (i.e., radiocesium and iodine) are expected to be found. The data are now complete enough for most reactor components; therefore, it is possible to direct the balance of the examination and sampling program to areas and components where it is likely to be most productive. Those areas are the reactor core and the reactor building basement, with emphasis on the currently unsampled portions of the core

  9. Multifractal and Singularity Maps of soil surface moisture distribution derived from 2D image analysis.

    Science.gov (United States)

    Cumbrera, Ramiro; Millán, Humberto; Martín-Sotoca, Juan Jose; Pérez Soto, Luis; Sanchez, Maria Elena; Tarquis, Ana Maria

    2016-04-01

    methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Cumbrera, R., Ana M. Tarquis, Gabriel Gascó, Humberto Millán (2012) Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images. Journal of Hydrology (452-453), 205-212. Martin Sotoca; J.J. Antonio Saa-Requejo, Juan Grau and Ana M. Tarquis (2016). Segmentation of singularity maps in the context of soil porosity. Geophysical Research Abstracts, 18, EGU2016-11402. Millán, H., Cumbrera, R. and Ana M. Tarquis (2016) Multifractal and Levy-stable statistics of soil surface moisture distribution derived from 2D image analysis. Applied Mathematical Modelling, 40(3), 2384-2395.

  10. Evaluation of focal cartilage lesions of the knee using MRI T2 mapping and delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC).

    Science.gov (United States)

    Årøen, Asbjørn; Brøgger, Helga; Røtterud, Jan Harald; Sivertsen, Einar Andreas; Engebretsen, Lars; Risberg, May Arna

    2016-02-11

    Assessment of degenerative changes of the cartilage is important in knee cartilage repair surgery. Magnetic Resonance Imaging (MRI) T2 mapping and delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC) are able to detect early degenerative changes. The hypothesis of the study was that cartilage surrounding a focal cartilage lesion in the knee does not possess degenerative changes. Twenty-eight consecutive patients included in a randomized controlled trial on cartilage repair were evaluated using MRI T2 mapping and dGEMRIC before cartilage treatment was initiated. Inclusion was based on disabling knee problems (Lysholm score of ≤ 75) due to an arthroscopically verified focal femoral condyle cartilage lesion. Furthermore, no major malalignments or knee ligament injuries were accepted. Mean patient age was 33 ± 9.6 years, and the mean duration of knee symptoms was 49 ± 60 months. The MRI T2 mapping and the dGEMRIC measurements were performed at three standardized regions of interest (ROIs) at the medial and lateral femoral condyle, avoiding the cartilage lesion The MRI T2 mapping of the cartilage did not demonstrate significant differences between condyles with or without cartilage lesions. The dGEMRIC results did not show significantly lower values of the affected condyle compared with the opposite condyle and the contra-lateral knee in any of the ROIs. The intraclass correlation coefficient (ICC) of the dGEMRIC readings was 0.882. The MRI T2 mapping and the dGEMRIC confirmed the arthroscopic findings that normal articular cartilage surrounded the cartilage lesion, reflecting normal variation in articular cartilage quality. NCT00885729 , registered April 17 2009.

  11. Nuclear power plant with improved arrangements for the removal of post fission and emergency heating

    International Nuclear Information System (INIS)

    Buescher, E.; Vinzens, K.

    1977-01-01

    This is concerned with additional equipment for emergency heat removal in a sodium cooled reactor, which operates on failure of the post fission heat removal system. The space for pressure relieving spaces and concrete masses as heat sinks within the reactor cell is no longer required. In this nuclear power plant, a heat exchanger chain transmits heat and power: There is a first sodium circuit between pressure vessel and the first heat exchanger, a second one between the first and second heat excahngers, and a third (Steam) circuit with turbine, condenser and return pump. A fourth circuit connects the secondary side of the condenser with a cooling tower. There is a threee component heat excahgner in the primary circuit after the first heat exchanger, which is built around the first heat exchanger, and is sealed into an unloading space. This space is situated next to the reactor cell and is above the operating level of the sodium in the pressure vessel. It is connected to the cell by an upper duct, normally closed by a bursting disc, and by a lower duct. In the three comopnent heat exchanger, a liquid lead-bismuth eutectic mixture transmits the heat from sodium pipes to water pipes. In normal operation it is used for steam superheating or feedwater preheating. The three component heat exchanger bridges the first and second heat exchangers as an emergency heat exchanger. If in such a case the post fission heat removal has failed, the sodium evaporating in the pressure vessel flows into the unloading space and condenses on the ribs of the emergency heat exchanger. The post fission heat is fed by the water secondary medium directly into the tertiary circuit. The sodium condensate flows back from the unloading space via the lower duct into the reactor cell and maintains the emergency level there. (RW) 891 RW [de

  12. The cyclophilin D/Drp1 axis regulates mitochondrial fission contributing to oxidative stress-induced mitochondrial dysfunctions in SH-SY5Y cells

    International Nuclear Information System (INIS)

    Xiao, Anqi; Gan, Xueqi; Chen, Ruiqi; Ren, Yanming; Yu, Haiyang; You, Chao

    2017-01-01

    Oxidative stress plays a central role in the pathogenesis of various neurodegenerative diseases. Increasing evidences have demonstrated that structural abnormalities in mitochondria are involved in oxidative stress related nerve cell damage. And Drp1 plays a critical role in mitochondrial dynamic imbalance insulted by oxidative stress-derived mitochondria. However, the status of mitochondrial fusion and fission pathway and its relationship with mitochondrial properties such as mitochondrial membrane permeability transition pore (mPTP) have not been fully elucidated. Here, we demonstrated for the first time the role of Cyclophilin D (CypD), a crucial component for mPTP formation, in the regulation of mitochondrial dynamics in oxidative stress treated nerve cell. We observed that CypD-mediated phosphorylation of Drp1 and subsequently augmented Drp1 recruitment to mitochondria and shifts mitochondrial dynamics toward excessive fission, which contributes to the mitochondrial structural and functional dysfunctions in oxidative stress-treated nerve cells. CypD depletion or over expression accompanies mitochondrial dynamics/functions recovery or aggravation separately. We also demonstrated first time the link between the CypD to mitochondrial dynamics. Our data offer new insights into the mechanism of mitochondrial dynamics which contribute to the mitochondrial dysfunctions, specifically the role of CypD in Drp1-mediated mitochondrial fission. The protective effect of CsA, or other molecules affecting the function of CypD hold promise as a potential novel therapeutic strategy for governing oxidative stress pathology via mitochondrial pathways. - Highlights: • Demonstrated first time the link between the mPTP to mitochondrial dynamics. • The role of Cyclophilin D in the regulation of Drp1-mediated mitochondrial fission. • CsA as a potential target for governing oxidative stress related neuropathology.

  13. Fission product behavior in the Molten Salt Reactor Experiment

    International Nuclear Information System (INIS)

    Compere, E.L.; Kirslis, S.S.; Bohlmann, E.G.; Blankenship, F.F.; Grimes, W.R.

    1975-10-01

    Essentially all the fission product data for numerous and varied samples taken during operation of the Molten Salt Reactor Experiment or as part of the examination of specimens removed after particular phases of operation are reported, together with the appropriate inventory or other basis of comparison, and relevant reactor parameters and conditions. Fission product behavior fell into distinct chemical groups. Evidence for fission product behavior during operation over a period of 26 months with 235 U fuel (more than 9000 effective full-power hours) was consistent with behavior during operation using 233 U fuel over a period of about 15 months (more than 5100 effective full-power hours)

  14. In-reactor testing of self-powered neutron detectors and miniature fission chambers

    International Nuclear Information System (INIS)

    Duchene, J.; LeMeur, R.; Verdant, R.

    1975-01-01

    The CEA has tested a variety of ''slow'' self-powered neutron detectors with rhodium, silver and vanadium emitters. Currently there are 120 vanadium detectors in the EL4 heavy water reactor. In addition, ''fast'' detectors with cobalt emitters have been tested at Saclay and 50 of these are in reactor. Other studies are concerned with 6 mm diameter miniature fission chambers. Two fast response chambers with argon-nitrogen filling gas became slow during irradiation, but operated to 600 deg C. An argon filled chamber of 4.7 mm diameter, for traversing in core system in pressurized water reactor, has shown satisfactory test results. (author)

  15. Radiochemical determination of Beryllium-7 in a fission-product mixture containing many inorganic salts; Determination radiochimique du beryllium-7 dans un melange de produits de fission riche en sels mineraux

    Energy Technology Data Exchange (ETDEWEB)

    Prigent, Y; Van Kote, F [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    A radiochemical method is described for analysing beryllium-7 in a mixture of fission products containing many inorganic salts. By studying the influence of various parameters it has been possible to speed up the decontamination on an anionic resin using an HCl isopropanol mixture, as proposed by KORKISCH- and al. Be(OH){sub 2} is first precipitated in the presence of E.D.T.A.; the main contaminants are then fixed on Dowex 1 x 10 in 12 M HCl and on Dowex 1 x 8 in a 3 M HCl (20 per cent)-isopropanol (80 per cent) (vol/vol) mixture. The Be, which is not fixed, is precipitated by NH{sub 4}H{sub 2}PO{sub 4} in the presence of E.D.T.A., ignited as Be{sub 2}P{sub 2}O{sub 7}, filtered, weighed, and analyzed by gamma spectrometry. The method makes it possible to dose 4 samples in 16 hours with a chemical yield of 80 per cent, using a 4 day-old fission product solution. The overall decontamination factor, exceeds 10{sup 8}. (authors) [French] On decrit un procede d'analyse radiochimique du beryllium-7 a partir d'un melange de produits de fission riche en sels mineraux. L'etude de l'influence de differents parametres a permis d'accelerer la decontamination sur resine anionique en milieu HCl-isopropanol proposee par KORKISCH et COLL. On precipite d'abord Be(OH){sub 2} en presence d'E.D.T.A., puis fixe les principaux contaminants sur Dowex 1 x 10 en milieu HCl 12 M et sur Dowex 1 x 8 en milieu HCl 3 M (20 pour cent)-isopropanol (80 pour cent) (v/v). Be, non fixe, est precipite par NH{sub 4}H{sub 2}PO{sub 4} en presence d'E.D.T.A., calcine en Be{sub 2}P{sub 2}O{sub 7}, filtre, pese et analyse par spectrometrie gamma. La methode permet de traiter quatre echantillons en 16 h, avec un rendement de 80 pour cent, a partir d'une solution de produits de fission vieille de quatre jours. Le facteur de decontamination global depasse 10{sup 8}. (auteurs)

  16. Fission-product energy release for times following thermal-neutron fission of 235U between 2 and 14000 seconds

    International Nuclear Information System (INIS)

    Dickens, J.K.; Emery, J.F.; Love, T.A.; McConnell, J.W.; Northcutt, K.J.; Peelle, R.W.; Weaver, H.

    1977-10-01

    Fission-product decay energy-releases rates were measured for thermal-neutron fission of 235 U. Samples of mass 1 to 10 μg were irradiated for 1 to 100 sec by use of the fast pneumatic-tube facility at the Oak Ridge Research Reactor. The resulting beta- and gamma-ray emissions were counted for times-after-fission between 2 and 14,000 seconds. The data were obtained for beta and gamma rays separately as spectral distributions, N(E/sub γ/) vs E/sub γ/ and N(E/sub beta/) vs E/sub β/. For the gamma-ray data the spectra were obtained by using a NaI detector, while for the beta-ray data the spectra were obtained by using an NE-110 detector with an anticoincidence mantle. The raw data were unfolded to provide spectral distributions of modest resolution. These were integrated over E/sub γ/ and E/sub β/ to provide total yield and energy integrals as a function of time after fission. Results are low compared to the present 1973 ANS Decay-heat standard. A complete description of the experimental apparatus and data-reduction techniques is presented. The final integral data are given in tabular and graphical form and are compared with published data. 41 figures, 13 tables

  17. Simulations of fusion chamber dynamics and first wall response in a Z-pinch driven fusion–fission hybrid power reactor (Z-FFR)

    Energy Technology Data Exchange (ETDEWEB)

    Qi, J.M., E-mail: qjm06@sina.com [Laboratory of Advanced Nuclear Energy (LANE), Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999 (China); Center for Fusion Energy Science and Technology (CFEST), China Academy of Engineering Physics, Mianyang 621999 (China); Wang, Z., E-mail: wangz_es@caep.cn [Laboratory of Advanced Nuclear Energy (LANE), Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999 (China); Center for Fusion Energy Science and Technology (CFEST), China Academy of Engineering Physics, Mianyang 621999 (China); Chu, Y.Y., E-mail: chuyanyun@caep.cn [Laboratory of Advanced Nuclear Energy (LANE), Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999 (China); Center for Fusion Energy Science and Technology (CFEST), China Academy of Engineering Physics, Mianyang 621999 (China); Li, Z.H., E-mail: lee_march@sina.com [Laboratory of Advanced Nuclear Energy (LANE), Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999 (China)

    2016-03-15

    Highlights: • Z-FFR utilizes DT neutrons to drive a sub-critical fission blanket to produce energy. • A metal shell and Ar gas are employed in the fusion chamber for shock mitigation. • Massive materials can effectively mitigate the thermal heats on the chamber wall. • The W-coated Zr-alloy first wall exhibits good viability as a long-lived component. - Abstract: In a Z-pinch driven fusion–fission hybrid power reactor (Z-FFR), the fusion target will produce enormous energy of ∼1.5 GJ per pulse at a frequency of 0.1 Hz. Almost 20% of the fusion energy yield, approximately 300 MJ, is released in forms of pulsed X-rays. To prevent the first wall from fatal damages by the intense X-rays, a thin spherical metal shell and rare Ar buffer gas are introduced to mitigate the transient X-ray bursts. Radiation hydrodynamics in the fusion chamber were investigated by MULTI-1D simulations, and the corresponding thermal and mechanical loads on the first wall were also obtained. The simulations indicated that by optimizing the design parameters of the metal shell and Ar buffer gas, peak power flux of the thermal heats on the first wall could be mitigated to less than 10{sup 4} W/cm{sup 2} within a time scale of several milliseconds, while peak overpressures of the mechanical loads varying from 0.6 to 0.7 MPa. In addition, the thermomechanical response in a W–coated Zr-alloy first wall was performed by FWDR1D calculations using the derived thermal and mechanical loads as inputs. The temperature and stress fields were analyzed, and the corresponding elastic strains were conducted for primary lifetime estimations by using the Coffin–Manson relationships of both W and Zr-alloy. It was shown that the maximum temperature rises and stresses in the first wall were less than 50 K and 130 MPa respectively, and lifetime of the first wall would be in excess of 10{sup 9} cycles. The chamber exhibits good viability as a long-lived component to sustain the Z-FFR conceptual

  18. A Review of Previous Research in Direct Energy Conversion Fission Reactors

    International Nuclear Information System (INIS)

    DUONG, HENRY; POLANSKY, GARY F.; SANDERS, THOMAS L.; SIEGEL, MALCOLM D.

    1999-01-01

    From the earliest days of power reactor development, direct energy conversion was an obvious choice to produce high efficiency electric power generation. Directly capturing the energy of the fission fragments produced during nuclear fission avoids the intermediate conversion to thermal energy and the efficiency limitations of classical thermodynamics. Efficiencies of more than 80% are possible, independent of operational temperature. Direct energy conversion fission reactors would possess a number of unique characteristics that would make them very attractive for commercial power generation. These reactors would be modular in design with integral power conversion and operate at low pressures and temperatures. They would operate at high efficiency and produce power well suited for long distance transmission. They would feature large safety margins and passively safe design. Ideally suited to production by advanced manufacturing techniques, direct energy conversion fission reactors could be produced more economically than conventional reactor designs. The history of direct energy conversion can be considered as dating back to 1913 when Moseleyl demonstrated that charged particle emission could be used to buildup a voltage. Soon after the successful operation of a nuclear reactor, E.P. Wigner suggested the use of fission fragments for direct energy conversion. Over a decade after Wigner's suggestion, the first theoretical treatment of the conversion of fission fragment kinetic energy into electrical potential appeared in the literature. Over the ten years that followed, a number of researchers investigated various aspects of fission fragment direct energy conversion. Experiments were performed that validated the basic physics of the concept, but a variety of technical challenges limited the efficiencies that were achieved. Most research in direct energy conversion ceased in the US by the late 1960s. Sporadic interest in the concept appears in the literature until this

  19. Baby fission chambers; Etude de chambres a fission miniatures

    Energy Technology Data Exchange (ETDEWEB)

    Guery, U; Tachon, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    The present report is intended, on the one band, as a study of the main types of fission chambers produced to date, and on the other, to deal more generally with this type of detector. Originally, it was with a view to the charting of neutron scatter in 'Proserpine' that the authors undertook the study of these chambers. During the course of the task, it was considered worth tbe trouble of developing its scope to include a more general application: neutron scatter measurement of various energy neutrons within a reduced volume with slight local disturbance. (author) [French] Le present rapport se propose, d'une part, d'exposer les principales realisations de chambres a fission, d'autre part de faire une mise au point a caractere plus general sur ces detecteurs. Au depart, c'est surtout en vue des mesures de densite neutronique dans 'Proserpine' que les auteurs ont etudie ces chambres; au cours de la mise au point, il a paru interessant de developper leur etude pour des applications plus generales: mesures de densites de neutrons de differentes energies dans un element de volume tres reduit et avec faible perturbation locale. (auteur)

  20. Fission and explosive energy releases of PuO2, PuO2--UO2, UO2, and UO3 assemblies

    International Nuclear Information System (INIS)

    Koelling, J.J.; Hansen, G.E.; Byers, C.C.

    1977-01-01

    The critical masses and fission and explosive energy releases of PuO 2 , PuO 2 --UO 2 , UO 2 , and UO 3 assemblies have been calculated. The parameters selected for the model are conservative. They were chosen after review of appropriate plants that have been and are proposed for construction in the future. The resulting data envelopes are intended to include any conceivable set of circumstances that could ultimately lead to a nuclear incident. All energy release analysis was performed for initial fission spikes only: recriticality mechanisms were not considered

  1. Behaviour of short-lived fission products within operating UO2 fuel elements

    International Nuclear Information System (INIS)

    Hastings, I.J.; Hunt, C.E.L.; Lipsett, J.J.

    1983-01-01

    We have carried out experiments using a ''sweep gas'' technique to determine the behaviour of short-lived fission products within operating, intact UO 2 fuel elements. The Zircaloy-4-clad elements were 500 mm long and contained fuel of density 10.65-10.71 Mg/m 3 . A He-2% H 2 carrier gas swept gaseous or volatile fission products out of the operating fuel element past a gamma spectrometer for measurement. In tests at linear powers of 45 and 60 kW/m to maximum burnups of 70 MW.h/kg U, the species measured directly at the spectrometer were generally the short-lived xenons and kryptons. We did not observe iodine or bromine during normal operation. However, we have deduced the behaviour of I-133 and I-135 from the decay of Xe-133 and Xe-135 during reactor shutdowns. Plots of R/B (released/born) against lambda (decay constant) or effective lambda for all isotopes observed at 45 and 60 kW/m show that a line of slope -0.5, corresponding with diffusion kinetics, is a good fit to the measured xenon and krypton data. Our inferred release of iodine fits the same line. From this we can extrapolate to an R/B for I-131 of about 5x10 -3 . The ANS 5.4 release correlation gives calculated results in good agreement with our measurements. (author)

  2. Angular momentum distribution of primary fission fragments by measurement of the relative yield of isomeric fission products

    International Nuclear Information System (INIS)

    Dornhoefer, H.

    1980-01-01

    The fission products 132 I and 136 I produced in the fission reactions 238 U(α,f) and 238 U(d,f) were spectroscoped using a gas transport system. Thereby was taken advantage of the fact that at the transport with pure helium without aerosols only iodine activities were collected in a membrane filter. The relative independent yields of the isomeric fission products of 132 I and 136 I were determined for different excitation energies. Thereby was taken advantage of the fact that the transport yield of the gas transport system for 136 I directly produced from the fission was greater than for iodine indirectly produced by β-decay. (orig./HSI) [de

  3. New vectors in fission yeast: application for cloning the his2 gene

    DEFF Research Database (Denmark)

    Weilguny, D; Praetorius, M; Carr, Alan

    1991-01-01

    of transforming Sc. pombe ura4 strains, as well as ura 3 strains of the distantly related budding yeast Saccharomyces cerevisiae. We have used pON163 for the construction of two fission yeast genomic libraries. From these gene banks clones were isolated that were able to complement fission yeast his2 mutants...

  4. High impact data visualization with Power View, Power Map, and Power BI

    CERN Document Server

    Aspin, Adam

    2014-01-01

    High Impact Data Visualization with Power View, Power Map, and Power BI helps you take business intelligence delivery to a new level that is interactive, engaging, even fun, all while driving commercial success through sound decision-making. Learn to harness the power of Microsoft's flagship, self-service business intelligence suite to deliver compelling and interactive insight with remarkable ease. Learn the essential techniques needed to enhance the look and feel of reports and dashboards so that you can seize your audience's attention and provide them with clear and accurate information. Al

  5. Resolving power test of 2-D K+ K+ interferometry

    International Nuclear Information System (INIS)

    Padula, Sandra S.; Roldao, Christiane G.

    1999-01-01

    Adopting a procedure previously proposed to quantitatively study pion interferometry 1 , an equivalent 2-D X 2 analysis was performed to test the resolving power of that method when applied to less favorable conditions, when no significant contribution from long lived resonances is expected, as in kaon interferometry. For that purpose, use is made of the preliminary E859 K + K + interferometry data from Si+Au collisions at 14.6 A GeV/c. Less sensitivity is achieved in the present case, although it is shown that it is still possible to distinguish two distinct decoupling geometries. (author)

  6. Foreground and Sensitivity Analysis for Broadband (2D) 21 cm-Lyα and 21 cm-Hα Correlation Experiments Probing the Epoch of Reionization

    Science.gov (United States)

    Neben, Abraham R.; Stalder, Brian; Hewitt, Jacqueline N.; Tonry, John L.

    2017-11-01

    A detection of the predicted anticorrelation between 21 cm and either Lyα or Hα from the epoch of reionization (EOR) would be a powerful probe of the first galaxies. While 3D intensity maps isolate foregrounds in low-{k}\\parallel modes, infrared surveys cannot yet match the field of view and redshift resolution of radio intensity mapping experiments. In contrast, 2D (I.e., broadband) infrared intensity maps can be measured with current experiments and are limited by foregrounds instead of photon or thermal noise. We show that 2D experiments can measure most of the 3D fluctuation power at klimit on residual foregrounds of the 21 cm-Lyα cross-power spectrum at z˜ 7 of {{{Δ }}}2text{kJy sr}}-1 {{mK}}) (95%) at {\\ell }˜ 800. We predict levels of foreground correlation and sample variance noise in future experiments, showing that higher-resolution surveys such as LOFAR, SKA-LOW, and the Dark Energy Survey can start to probe models of the 21 cm-Lyα EOR cross spectrum.

  7. Fission cross section calculations for 209Bi target nucleus based on fission reaction models in high energy regions

    Directory of Open Access Journals (Sweden)

    Kaplan Abdullah

    2015-01-01

    Full Text Available Implementation of projects of new generation nuclear power plants requires the solving of material science and technological issues in developing of reactor materials. Melts of heavy metals (Pb, Bi and Pb-Bi due to their nuclear and thermophysical properties, are the candidate coolants for fast reactors and accelerator-driven systems (ADS. In this study, α, γ, p, n and 3He induced fission cross section calculations for 209Bi target nucleus at high-energy regions for (α,f, (γ,f, (p,f, (n,f and (3He,f reactions have been investigated using different fission reaction models. Mamdouh Table, Sierk, Rotating Liquid Drop and Fission Path models of theoretical fission barriers of TALYS 1.6 code have been used for the fission cross section calculations. The calculated results have been compared with the experimental data taken from the EXFOR database. TALYS 1.6 Sierk model calculations exhibit generally good agreement with the experimental measurements for all reactions used in this study.

  8. Development of NASA's Small Fission Power System for Science and Human Exploration

    Science.gov (United States)

    Gibson, Marc A.; Mason, Lee S.; Bowman, Cheryl L.; Poston, David I.; McClure, Patrick R.; Creasy, John; Robinson, Chris

    2015-01-01

    Exploration of our solar system has brought many exciting challenges to our nations scientific and engineering community over the past several decades. As we expand our visions to explore new, more challenging destinations, we must also expand our technology base to support these new missions. NASAs Space Technology Mission Directorate is tasked with developing these technologies for future mission infusion and continues to seek answers to many existing technology gaps. One such technology gap is related to compact power systems (1 kWe) that provide abundant power for several years where solar energy is unavailable or inadequate. Below 1 kWe, Radioisotope Power Systems have been the workhorse for NASA and will continue to be used for lower power applications similar to the successful missions of Voyager, Ulysses, New Horizons, Cassini, and Curiosity. Above 1 kWe, fission power systems become an attractive technology offering a scalable modular design of the reactor, shield, power conversion, and heat transport subsystems. Near term emphasis has been placed in the 1-10kWe range that lies outside realistic radioisotope power levels and fills a promising technology gap capable of enabling both science and human exploration missions. History has shown that development of space reactors is technically, politically, and financially challenging and requires a new approach to their design and development. A small team of NASA and DOE experts are providing a solution to these enabling FPS technologies starting with the lowest power and most cost effective reactor series named Kilopower that is scalable from approximately 1-10 kWe.

  9. GeoCF - Smart Power Maps - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Chris [GeoCF LLC, Austin, TX (United States)

    2017-12-21

    GeoCF has greatly enhanced the utility-scale solar siting platform, Smart Power Maps, through the help of the DOE Solar Energy Technologies Office. It is now available for the entire country and includes an improved user interface and additional layers such as topology, soils, comprehensive floodplains, parcels, imagery, wells, pipelines, and more. As well, users can now draw and save maps and perform drastically improved and more relevant hydrological, transmission, and financial analyzes. Smart Power Maps has played a pivotal role in supporting the development of otherwise unknown or hard to locate ideal locations for large solar farms in the United States.

  10. Study of fission product {gamma} spectra in the band 2-500 keV; Etude du spectre {gamma} des produits de fission dans la bande 0-500 keV

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, A. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In the study of the {gamma} spectrum of uranium fission products, particular attention has been given in this note to the part of the spectrum ranging between 0 and 500 keV after a given pile operating programme and the evolution of this spectrum with time after a pile shutdown has been followed. The study be related to the fission products which appear in the pile as a whole or on those produced in a uranium sample assumed to have been placed in the pile. The latter case has been envisaged here. The spectrum determination is based partly on theory and partly on experiment. The pile operating conditions are different in the two cases, which widens the range of validity of the spectra traced here. (author) [French] Dans l'etude du spectre {gamma} des produits de fission de l'uranium, on s'est plus particulierement interesse dans la presente note a determiner la partie du spectre qui s'etend entre 0 et 500 keV, au bout d'un fonctionnement donne de pile, et a suivre l'evolution de ce spectre dans le temps apres un arret de pile. L'etude peut porter sur les produits de fission apparus dans toute la pile ou sur ceux apparus dans un echantillon d'uranium suppose place en pile. C'est ce dernier cas que nous avons envisage. La determination du spectre s'appuie sur une partie theorique et sur une partie experimentale. Les fonctionnements de pile choisis sont differents dans les deux cas, ce qui permet d'etendre la gamme de validite des spectres traces ici. (auteur)

  11. Study of fission product {gamma} spectra in the band 2-500 keV; Etude du spectre {gamma} des produits de fission dans la bande 0-500 keV

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, A [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In the study of the {gamma} spectrum of uranium fission products, particular attention has been given in this note to the part of the spectrum ranging between 0 and 500 keV after a given pile operating programme and the evolution of this spectrum with time after a pile shutdown has been followed. The study be related to the fission products which appear in the pile as a whole or on those produced in a uranium sample assumed to have been placed in the pile. The latter case has been envisaged here. The spectrum determination is based partly on theory and partly on experiment. The pile operating conditions are different in the two cases, which widens the range of validity of the spectra traced here. (author) [French] Dans l'etude du spectre {gamma} des produits de fission de l'uranium, on s'est plus particulierement interesse dans la presente note a determiner la partie du spectre qui s'etend entre 0 et 500 keV, au bout d'un fonctionnement donne de pile, et a suivre l'evolution de ce spectre dans le temps apres un arret de pile. L'etude peut porter sur les produits de fission apparus dans toute la pile ou sur ceux apparus dans un echantillon d'uranium suppose place en pile. C'est ce dernier cas que nous avons envisage. La determination du spectre s'appuie sur une partie theorique et sur une partie experimentale. Les fonctionnements de pile choisis sont differents dans les deux cas, ce qui permet d'etendre la gamme de validite des spectres traces ici. (auteur)

  12. Micro fission chamber for the ITER neutron monitor

    International Nuclear Information System (INIS)

    Yamauchi, Michinori; Nishitani, Takeo; Ochiai, Kentaro; Ebisawa, Katsuyuki

    2004-01-01

    This paper describes the design and the fabrication of a prototype micro-fission chamber and test results under ITER relevant conditions including wide neutron spectrum and intense gamma-rays, and the performance as a ITER power monitor is discussed. A micro-fission chamber with 12 mg UO 2 and a dummy chamber without uranium were designed and fabricated for the in-vessel neutron flux monitoring of ITER. The measurement ability was tested with the FNS facility for 14 MeV neutrons and the 60 Co gamma-ray irradiation facility at JAERI-Takasaki. Employing the Campbelling mode in the electronics, the ITER requirement for the temporal resolution was satisfied. The excellent linearity of the detector output versus the neutron flux was confirmed in the temperature range from 20degC to 250degC. As a result, it was concluded that the developed micro-fission chamber is applicable for ITER. (author)

  13. Structures and properties of (U,Pu)O{sub 2} containing non-active fission products. A simulation of irradiated nuclear fuel; Structure et proprietes de (U, Pu)O{sub 2} contenant des produits de fission sous forme inactive. Une simulation de combustible nucleaire irradie

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, F [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-07-01

    We have made oxides with the same uranium and plutonium content, the same stoichiometry and the same fission product content as an oxide fuel (U{sub 0,8}PuO{sub 2})O{sub 1,96} after 2 per cent burn up. We have calculated the stoichiometry changes due to irradiation and checked the calculation by X rays parameters measurements. We have calculated and measured the contraction of the oxide lattice due to fission products in solid solution. Microprobe analysis of precipitates have been made and have lead to the identification of non metallic barium containing compounds and have shown the particular behaviour of molybdenum. Some physical properties have been measured especially the electrical resistivity, the thermal diffusivity and the vapour pressure of zirconium in solid solution. (author) [French] Nous avons fabrique des oxydes dont la composition en uranium et plutonium, la stoechiometrie et la teneur en produit de fission, sont identiques a celles d'un oxyde (U{sub 0,8}PuO{sub 2})O{sub 1,96} ayant subi 2 pour cent de combustion. Nous avons calcule les changements de stoechiometrie entraines par l'irradiation et controle ces calculs par des mesures de parametre. Nous avons calcule et mesure la contraction du reseau due aux produits de fissions solubles dans la matrice. Des analyses a la microsonde des precipites de produits de fission insolubles ont ete faites et ont conduit a l'identification de composes non metalliques contenant du baryum et a la mise en evidence du role particulier du molybdene. Certaines proprietes physiques ont ete mesurees sur ces composes, en particulier la resistivite electrique, la diffusivite thermique et la tension de vapeur du zirconium dissout dans la matrice. (auteur)

  14. Overview of superconductivity in Japan Strategy road map and R&D status

    Science.gov (United States)

    Tsukamoto, O.

    2008-09-01

    Superconducting technology benefits society in broad fields; environment/energy, life science, manufacturing industry and information and communication. Superconducting equipments and devices used in various fields are divided into two categories, electric and electronic applications. Technologies in those applications are progressing remarkably owing to firm and consistent supports by various national projects. The final target of the NEDO R&D project of fundamental technology for superconductivity applications to develop 500 m long coated conductors (CCs) of the critical current 300 A/cm (at 77 K, 0 T) will be fulfilled by the end of JFY 2007 and manufacturing process to produce extremely low-cost CCs is to be developed to make the applications realistic. Preliminary works to develop power apparatuses using CCs have started in the frame of the R&D project for the fundamental technology and have produced significant results. Performance of BSCCO/Ag-sheathed wires has been improved greatly and various applications using those wires are being developed. R&D projects for SMES, power cable, flywheel energy storage and rotating machines are going to introduce those equipments to the real world. Technologies of SQUID and SFQ, basic devices of the electronic applications, are progressing dramatically also owing to various national projects. In this back ground the technology strategy map in the field of superconducting technology was formulated to prioritize investments in R&D by clearly defining the objectives and inspire autonomous R&D actives in various fields of industries. R&D activities in the superconducting technologies are to be scheduled following this strategy map.

  15. Fission yield covariance generation and uncertainty propagation through fission pulse decay heat calculation

    International Nuclear Information System (INIS)

    Fiorito, L.; Diez, C.J.; Cabellos, O.; Stankovskiy, A.; Van den Eynde, G.; Labeau, P.E.

    2014-01-01

    Highlights: • Fission yield data and uncertainty comparison between major nuclear data libraries. • Fission yield covariance generation through Bayesian technique. • Study of the effect of fission yield correlations on decay heat calculations. • Covariance information contribute to reduce fission pulse decay heat uncertainty. - Abstract: Fission product yields are fundamental parameters in burnup/activation calculations and the impact of their uncertainties was widely studied in the past. Evaluations of these uncertainties were released, still without covariance data. Therefore, the nuclear community expressed the need of full fission yield covariance matrices to be able to produce inventory calculation results that take into account the complete uncertainty data. State-of-the-art fission yield data and methodologies for fission yield covariance generation were researched in this work. Covariance matrices were generated and compared to the original data stored in the library. Then, we focused on the effect of fission yield covariance information on fission pulse decay heat results for thermal fission of 235 U. Calculations were carried out using different libraries and codes (ACAB and ALEPH-2) after introducing the new covariance values. Results were compared with those obtained with the uncertainty data currently provided by the libraries. The uncertainty quantification was performed first with Monte Carlo sampling and then compared with linear perturbation. Indeed, correlations between fission yields strongly affect the uncertainty of decay heat. Eventually, a sensitivity analysis of fission product yields to fission pulse decay heat was performed in order to provide a full set of the most sensitive nuclides for such a calculation

  16. Report on Fission Time Projection Chamber M3FT-12IN0210052

    Energy Technology Data Exchange (ETDEWEB)

    James K. Jewell

    2012-08-01

    The Time Projection Chamber is a collaborative effort to implement an innovative approach and deliver unprecedented fission measurements to DOE programs. This 4?-detector system will provide unrivaled 3-D data about the fission process. Shown here is a half populated TPC (2?) at the LLNL TPC laboratory as it undergoes testing before being shipped to LANSCE for beam experiments.

  17. Fission 2009 4. International Workshop on Nuclear Fission and Fission Product Spectroscopy - Compilation of slides

    International Nuclear Information System (INIS)

    2009-01-01

    This conference is dedicated to the last achievements in experimental and theoretical aspects of the nuclear fission process. The topics include: mass, charge and energy distribution, dynamical aspect of the fission process, nuclear data evaluation, quasi-fission and fission lifetime in super heavy elements, fission fragment spectroscopy, cross-section and fission barrier, and neutron and gamma emission. This document gathers the program of the conference and the slides of the presentations

  18. Electron spin resonance of gamma, electron, neutron and fission fragments irradiated K2SO4

    International Nuclear Information System (INIS)

    Kamali, J.; Walton, G.N.

    1985-01-01

    The electron spin resonance (ESR) of K 2 SO 4 irradiated by γ, electron, neutron and fission fragments has been investigated. The ESR spectra are attributed mainly to the formation of SO 3 - , SO 4 - , SO 2 - , and O 3 - radical ions. The most intense radical ion observed was due to the SO 3 - , and the other radicals were relatively much lower in intensity. Thermal annealing showed a significant decrease in the concentration of radical ions. The concentration of SO 3 - was measured in γ-irradiated K 2 SO 4 and K 2 SO 4 containing fission fragments. In fission fragments irradiated K 2 SO 4 , the G-value observed for SO 3 - radical formation was about eight times higher than that of γ-irradiated K 2 SO 4 . This was attributed to the high LET (Linear Energy Transfer) of the fission fragments. (author)

  19. Nuclear fission and neutron-induced fission cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    James, G.D.; Lynn, J.E.; Michaudon, A.; Rowlands, J.; de Saussure, G.

    1981-01-01

    A general presentation of current knowledge of the fission process is given with emphasis on the low energy fission of actinide nuclei and neutron induced fission. The need for and the required accuracy of fission cross section data in nuclear energy programs are discussed. A summary is given of the steps involved in fission cross section measurement and the range of available techniques. Methods of fission detection are described with emphasis on energy dependent changed and detector efficiency. Examples of cross section measurements are given and data reduction is discussed. The calculation of fission cross sections is discussed and relevant nuclear theory including the formation and decay of compound nuclei and energy level density is introduced. A description of a practical computation of fission cross sections is given.

  20. Study on the calculation method of source term from fission products

    International Nuclear Information System (INIS)

    Zhou Jing; Gong Quan; Qiu Haifeng

    2014-01-01

    As a major part of radioactive nuclides, fission products play an important role in nuclear power plant design. The paper analyzes the calculation model of core activity inventory, the model of fission products releasing from the pellets to RCS, the balance model of fission products in RCS, and then proves them by calculation of the typical pressurized water reactor. The model is proved applicable for calculating fission products of pressurized water reactors. (authors)

  1. Prompt fission neutron spectra of n + 235U above the (n, nf) fission threshold

    International Nuclear Information System (INIS)

    Shu Nengchuan; Chen Yongjing; Liu Tingjin; Jia Min

    2015-01-01

    Calculations of prompt fission neutron spectra (PFNS) from the 235 U(n, f) reaction were performed with a semi-empirical method for En = 7.0 and 14.7 MeV neutron energies. The total PFNS were obtained as a superposition of (n, xnf) pre-fission neutron spectra and post-fission spectra of neutrons which were evaporated from fission fragments, and these two kinds of spectra were taken as an expression of the evaporation spectrum. The contributions of (n, xnf) fission neutron spectra on the calculated PFNS were discussed. The results show that emission of one or two neutrons in the (n, nf) or (n, 2nf) reactions influences the PFNS shape, and the neutron spectra of the (n, xnf) fission-channel are soft compared with the neutron spectra of the (n, f) fission channel. In addition, analysis of the multiple-chance fission component showed that second-chance fission dominates the PFNS with an incident neutron energy of 14.7 MeV whereas first-chance fission dominates the 7 MeV case. (authors)

  2. MAP3D: a media processor approach for high-end 3D graphics

    Science.gov (United States)

    Darsa, Lucia; Stadnicki, Steven; Basoglu, Chris

    1999-12-01

    Equator Technologies, Inc. has used a software-first approach to produce several programmable and advanced VLIW processor architectures that have the flexibility to run both traditional systems tasks and an array of media-rich applications. For example, Equator's MAP1000A is the world's fastest single-chip programmable signal and image processor targeted for digital consumer and office automation markets. The Equator MAP3D is a proposal for the architecture of the next generation of the Equator MAP family. The MAP3D is designed to achieve high-end 3D performance and a variety of customizable special effects by combining special graphics features with high performance floating-point and media processor architecture. As a programmable media processor, it offers the advantages of a completely configurable 3D pipeline--allowing developers to experiment with different algorithms and to tailor their pipeline to achieve the highest performance for a particular application. With the support of Equator's advanced C compiler and toolkit, MAP3D programs can be written in a high-level language. This allows the compiler to successfully find and exploit any parallelism in a programmer's code, thus decreasing the time to market of a given applications. The ability to run an operating system makes it possible to run concurrent applications in the MAP3D chip, such as video decoding while executing the 3D pipelines, so that integration of applications is easily achieved--using real-time decoded imagery for texturing 3D objects, for instance. This novel architecture enables an affordable, integrated solution for high performance 3D graphics.

  3. ACRR fission product release tests: ST-1 and ST-2

    International Nuclear Information System (INIS)

    Allen, M.D.; Stockman, H.W.; Reil, K.O.; Grimley, A.J.; Camp, W.J.

    1988-01-01

    Two experiments (ST-1 and ST-2) have been performed in the Annular Core Research Reactor (ACRR) at Sandia National Laboratories (SNLA) to obtain time-resolved data on the release of fission products from irradiated fuels under light water reactor (LWR) severe accident conditions. Both experiments were conducted in a highly reducing environment at maximum fuel temperatures of greater than 2400 K. These experiments were designed specifically to investigate the effect of increased total pressure on fission product release; ST-1 was performed at approximately 0.16 MPa and ST-2 was run at 1.9 MPa, whereas other parameters were matched as closely as possible. Release rate data were measured for Cs, I, Ba, Sr, Eu, Te, and U. The release rates were higher than predicted by existing codes for Ba, Sr, Eu, and U. Te release was very low, but Te did not appear to be sequestered by the zircaloy cladding; it was evenly distributed in the fuel. In addition, in posttest analysis a unique fuel morphology (fuel swelling) was observed which may have enhanced fission product release, especially in the high pressure test (ST-2). These data are compared with analytical results from the CORSOR correlation and the VICTORIA computer model

  4. Fission cross-section calculations and the multi-modal fission model

    International Nuclear Information System (INIS)

    Hambsch, F.J.

    2004-01-01

    New, self consistent, neutron-induced reaction cross section calculations for 235,238 U, 237 Np have been performed. The statistical model code STATIS was improved to take into account the multimodality of the fission process. The three most dominant fission modes, the two asymmetric standards I (S1) and standard II (S2) modes and the symmetric superlong (SL) mode have been taken into account. De-convoluted fission cross sections for those modes for 235,238 U(n,f) and 237 Np(n,f) based on experimental branching ratios, were calculated for the first time up to the second chance fission threshold. For 235 U(n,f), the calculations being made up to 28 MeV incident neutron energy, higher fission chances have been considered. This implied the need for additional calculations for the neighbouring isotopes. As a side product also mass yield distributions could be calculated at energies hitherto not accessible by experiment. Experimental validation of the predictions is being envisaged

  5. 3D Power Line Extraction from Multiple Aerial Images

    Directory of Open Access Journals (Sweden)

    Jaehong Oh

    2017-09-01

    Full Text Available Power lines are cables that carry electrical power from a power plant to an electrical substation. They must be connected between the tower structures in such a way that ensures minimum tension and sufficient clearance from the ground. Power lines can stretch and sag with the changing weather, eventually exceeding the planned tolerances. The excessive sags can then cause serious accidents, while hindering the durability of the power lines. We used photogrammetric techniques with a low-cost drone to achieve efficient 3D mapping of power lines that are often difficult to approach. Unlike the conventional image-to-object space approach, we used the object-to-image space approach using cubic grid points. We processed four strips of aerial images to automatically extract the power line points in the object space. Experimental results showed that the approach could successfully extract the positions of the power line points for power line generation and sag measurement with the elevation accuracy of a few centimeters.

  6. Migration of fission products in UO2. Final report

    International Nuclear Information System (INIS)

    Prussin, S.G.; Olander, D.R.

    1995-01-01

    Results of an experimental and calculational effort to examine the fundamental mechanisms of fission product migration in and release from polycrystalline uranium dioxide are reported. The experiments were designed to provide diffusion parameters for the representative fission products tellurium, iodine, xenon, molybdenum and ruthenium under both reducing and oxidizing conditions. The calculational effort applied a new model of fission product release from reactor fuel that incorporates grain growth as well as grain boundary and lattice diffusion

  7. Fission - track age of the Marjalahti Pallasite

    International Nuclear Information System (INIS)

    Bondar, Yu.V.; Perelygin, V.P.

    2006-01-01

    Full text: Investigation of fossil charged-particle tracks in various mineral phases of extraterrestrial samples is a powerful method for research the early stages of the solar system. Over geological time, meteorites crystals have accumulated a record of tracks produced by heavily charged energetic particles from both internal (spontaneous fission of 238U and some other extinct isotopes) and external sources (galactic cosmic rays with Z>20). The fortunate fact that meteorite grains can accumulate latent and very long-lived tracks since soon after the end of nucleosynthesis in the solar nebula enables one to decode their radiation history and to detect any thermal events in the meteorite cosmic history by revealing these tracks through suitable etching procedures. Only a few minerals in meteorites (mainly phosphates) contain small amount of uranium; the fact that 238 U undergoes fission with fission-decay constant λ f ∼ 8.2x10 -17 yr -1 allows one to use this isotope as a chronometer. By measuring the U concentration in the crystals (by reactor irradiation) and the density of the spontaneous-fission tracks it is relatively easy to calculate the 'fission-track age' if 238 U is the main source of fission tracks. However the fission-track dating of extraterrestrial samples compared with the terrestrial ones has some peculiar features due to presence of a number of other potential track sources except the spontaneous fission of 238 U, such as the spontaneous fission of presently extinct 244 Pu, heavy nuclei of cosmic rays and induced fission by cosmic ray primaries. Only tracks from the spontaneous fission of U and Pu are suitable for fission-track dating. The competing effects of these fissioning elements, whose half-lives differ by a factor of ∼50, form a basis for a fission-track chronology for samples older than ∼ 4.0 Gyr. Over small intervals in time (∼ few x10 8 yr ) the track density from spontaneous fission of 238 U is nearly constant. However, the

  8. Fission gas release behaviour in MOX fuels

    International Nuclear Information System (INIS)

    Viswanathan, U.K.; Anantharaman, S.; Sahoo, K.C.

    2002-01-01

    As a part of plutonium recycling programme MOX (U,Pu)O 2 fuels will be used in Indian boiling water reactors (BWR) and pressurised heavy water reactors (PHWR). Based on successful test irradiation of MOX fuel in CIRUS reactor, 10 MOX fuel assemblies have been loaded in the BWR of Tarapur Atomic Power Station (TAPS). Some of these MOX fuel assemblies have successfully completed the initial target average burnup of ∼16,000 MWD/T. Enhancing the burnup target of the MOX fuels and increasing loading of MOX fuels in TAPS core will depend on the feedback information generated from the measurement of released fission gases. Fission gas release behaviour has been studied in the experimental MOX fuel elements (UO 2 - 4% PuO 2 ) irradiated in pressurised water loop (PWL) of CIRUS. Eight (8) MOX fuel elements irradiated to an average burnup of ∼16,000 MWD/T have been examined. Some of these fuel elements contained controlled porosity pellets and chamfered pellets. This paper presents the design details of the experimental set up for studying fission gas release behaviour including measurement of gas pressure, void volume and gas composition. The experimental data generated is compared with the prediction of fuel performance modeling codes of PROFESS and GAPCON THERMAL-3. (author)

  9. Baby fission chambers; Etude de chambres a fission miniatures

    Energy Technology Data Exchange (ETDEWEB)

    Guery, U.; Tachon, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    The present report is intended, on the one band, as a study of the main types of fission chambers produced to date, and on the other, to deal more generally with this type of detector. Originally, it was with a view to the charting of neutron scatter in 'Proserpine' that the authors undertook the study of these chambers. During the course of the task, it was considered worth tbe trouble of developing its scope to include a more general application: neutron scatter measurement of various energy neutrons within a reduced volume with slight local disturbance. (author) [French] Le present rapport se propose, d'une part, d'exposer les principales realisations de chambres a fission, d'autre part de faire une mise au point a caractere plus general sur ces detecteurs. Au depart, c'est surtout en vue des mesures de densite neutronique dans 'Proserpine' que les auteurs ont etudie ces chambres; au cours de la mise au point, il a paru interessant de developper leur etude pour des applications plus generales: mesures de densites de neutrons de differentes energies dans un element de volume tres reduit et avec faible perturbation locale. (auteur)

  10. Citygml Modelling for Singapore 3d National Mapping

    Science.gov (United States)

    Soon, K. H.; Khoo, V. H. S.

    2017-10-01

    Since 2014, the Land Survey Division of Singapore Land Authority (SLA) has spearheaded a Whole-of-Government (WOG) 3D mapping project to create and maintain a 3D national map for Singapore. The implementation of the project is divided into two phases. The first phase of the project, which was based on airborne data collection, has produced 3D models for Relief, Building, Vegetation and Waterbody. This part of the work was completed in 2016. To complement the first phase, the second phase used mobile imaging and scanning technique. This phase is targeted to be completed by the mid of 2017 and is creating 3D models for Transportation, CityFurniture, Bridge and Tunnel. The project has extensively adopted the Open Geospatial Consortium (OGC)'s CityGML standard. Out of 10 currently supported thematic modules in CityGML 2.0, the project has implemented 8. The paper describes the adoption of CityGML in the project, and discusses challenges, data validations and management of the models.

  11. Studies of fission fragment yields via high-resolution γ-ray spectroscopy

    Science.gov (United States)

    Wilson, J. N.; Lebois, M.; Qi, L.; Amador-Celdran, P.; Bleuel, D.; Briz, J. A.; Carroll, R.; Catford, W.; Witte, H. De; Doherty, D. T.; Eloirdi, R.; Georgiev, G.; Gottardo, A.; Goasduff, A.; Hadyñska-Klek, K.; Hauschild, K.; Hess, H.; Ingeberg, V.; Konstantinopoulos, T.; Ljungvall, J.; Lopez-Martens, A.; Lorusso, G.; Lozeva, R.; Lutter, R.; Marini, P.; Matea, I.; Materna, T.; Mathieu, L.; Oberstedt, A.; Oberstedt, S.; Panebianco, S.; Podolyak, Zs.; Porta, A.; Regan, P. H.; Reiter, P.; Rezynkina, K.; Rose, S. J.; Sahin, E.; Seidlitz, M.; Serot, O.; Shearman, R.; Siebeck, B.; Siem, S.; Smith, A. G.; Tveten, G. M.; Verney, D.; Warr, N.; Zeiser, F.; Zielinska, M.

    2018-03-01

    Precise spectroscopic information on the fast neutron induced fission of the 238U(n,f) reaction was recently gained using a new technique which involved coupling of the Miniball high resolution y-ray spectrometer and the LICORNE directional neutron source. The experiment allowed measurement of the isotopic fission yields for around 40 even-even nuclei at an incident neutron energy of around 2 MeV where yield data are very sparse. In addition spectroscopic information on very neutron-rich fission products was obtained. Results were compared to models, both the JEFF-3.1.1 data base and the GEF code, and large discrepancies for the S1 fission mode in the Sn/Mo isotope pair were discovered. This suggests that current models are overestimating the role played by spherical shell effects in fast neutron induced fission. In late 2017 and 2018 the nu-ball hybrid spectrometer will be constructed at the IPN Orsay to perform further experimental investigations with directional neutrons coupled to a powerful hybrid Ge/LaBr3 detector array. This will open up new possibilities for measurements of fission yields for fast-neutron-induced fission using the spectroscopic technique and will be complimentary to other methods being developed.

  12. Studies of fission fragment yields via high-resolution γ-ray spectroscopy

    Directory of Open Access Journals (Sweden)

    Wilson J.N.

    2018-01-01

    Full Text Available Precise spectroscopic information on the fast neutron induced fission of the 238U(n,f reaction was recently gained using a new technique which involved coupling of the Miniball high resolution y-ray spectrometer and the LICORNE directional neutron source. The experiment allowed measurement of the isotopic fission yields for around 40 even-even nuclei at an incident neutron energy of around 2 MeV where yield data are very sparse. In addition spectroscopic information on very neutron-rich fission products was obtained. Results were compared to models, both the JEFF-3.1.1 data base and the GEF code, and large discrepancies for the S1 fission mode in the Sn/Mo isotope pair were discovered. This suggests that current models are overestimating the role played by spherical shell effects in fast neutron induced fission. In late 2017 and 2018 the nu-ball hybrid spectrometer will be constructed at the IPN Orsay to perform further experimental investigations with directional neutrons coupled to a powerful hybrid Ge/LaBr3 detector array. This will open up new possibilities for measurements of fission yields for fast-neutron-induced fission using the spectroscopic technique and will be complimentary to other methods being developed.

  13. Irradiation of UO{sub 2} sheathed in thick tubes effect of initial gap; Irradiation d'oxyde d'uranium en gaine resistante effet du jeu diametral initial sur le comportement global (programme CC-7: 1. et 2. tranches)

    Energy Technology Data Exchange (ETDEWEB)

    Janvier, J C; De Bernardy de Sigoyer, B.; Delmas, R [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-07-01

    Sixteen fuel elements made of thick zircaloy tubes containing sintered UO{sub 2}, were irradiated to burn-ups of 3000 resp. 6000 MWd/t. The specific power was continuously measured for each element. The initial diametral clearance was either 0.31 mm (free thermal expansion) or 0.12 mm (thermal expansion stress). The examinations of irradiated fuel elements suggest that : - when the initial gap is high, the fuel expands until it comes in close contact to the sheath; the thermal resistance between fuel and sheath is higher than in the case the fuel is stressed. - a central hole and lenticular voids in movement toward the center by evaporation - condensation can be seen only in specimens having the highest initial gap. - some fission products are concentrated at a certain distance from the center, corresponding to bright rings {beta} autoradiography pictures; that event occurs only in large gap specimens. - fission gas release does not seem to be influenced by mechanical stresses applied to the fuel; the fraction released is coherent, in every, case, with the probable temperature distribution. (authors) [French] Seize cartouches d'oxyde d'uranium fritte a gaines tres epaisses de zircaloy ont ete irradiees dans des conditions de puissance calorifique mesurees continument. Pour huit de ces cartouches le jeu diametral initial entre UO{sub 2} et gaine etait de 0,31 mm et le combustible etait libre de se dilater; pour les huit autres 3 soumises aux memes conditions d'irradiation, le jeu initial etait de 0,12 mm, de sorte que le combustible se trouvait comprime par dilatation differentielle. Les taux de combustion etaient soit de 3000, soit de 6000 MWj/t. Les examens post-irradiatoires suggerent que; - lorsque la jeu initial est eleve, l'UO{sub 2} se dilate jusqu'a venir pratiquement en contact avec la gaine; la resistance thermique a l'interface est alors nettement plus grande que lorsqu'il y a compression mecanique. - la presence d'une cheminee centrale et l'existence de

  14. Experimental validation of 3D reconstructed pin-power distributions in full-scale BWR fuel assemblies with partial length rods

    Energy Technology Data Exchange (ETDEWEB)

    Giust, F. D. [Axpo Kernenergie, Parkstrasse 23, CH-5401 Baden (Switzerland); Swiss Federal Inst. of Technology EPFL, CH-1015 Lausanne (Switzerland); Grimm, P. [Paul Scherrer Inst., CH-5232 Villigen (Switzerland); Chawla, R. [Paul Scherrer Inst., CH-5232 Villigen (Switzerland); Swiss Federal Inst. of Technology (EPFL), CH-1015 Lausanne (Switzerland)

    2012-07-01

    Total fission rate measurements have been performed on full-size BWR fuel assemblies of type SVEA-96 Optima2 in the framework of Phase III of the LWR-PROTEUS experimental program at the Paul Scherrer Inst.. This paper presents comparisons of calculated, nodal reconstructed, pin-wise total-fission rate distributions with experimental results. Radial comparisons have been performed for the three sections of the assembly (96, 92 and 84 fuel pins), while three-dimensional effects have been investigated at pellet-level for the two transition regions, i.e. the tips of the short (1/3) and long (2/3) partial length rods. The test zone has been modeled using two different code systems: HELIOS/PRESTO-2 and CASMO-5/SIMULATE-5. The first is presently used for core monitoring and design at the Leibstadt Nuclear Power Plant (KKL). The second represents the most recent generation of the widely applied CASMO/SIMULATE system. For representing the PROTEUS test-zone boundaries, Partial Current Ratios (PCRs) - derived from a 3D MCNPX model of the entire reactor - have been applied to the PRESTO-2 and SIMULATE-5 models in the form of 2- and 5-group diagonal albedo matrices, respectively. The MCNPX results have also served as a reference, high-order transport solution in the calculation/experiment comparisons. It is shown that the performance of the nodal methodologies in predicting the global distribution of the total-fission rate is very satisfactory. Considering the various radial comparisons, the standard deviations of the calculated/experimental (C/E) distributions do not exceed 1.9% for any of the three methodologies - PRESTO-2, SIMULATE-5 and MCNPX. For the three-dimensional comparisons at pellet-level, the corresponding standard deviations are 2.7%, 2.0% and 2.1%, respectively. (authors)

  15. Fission cross section and fission fragment angular distribution for oriented nucleus fission by intermediate energy neutrons (epsilon < or approximately 1 Mev)

    International Nuclear Information System (INIS)

    Barabanov, A.L.; Grechukhin, D.P.

    1985-01-01

    General analysis is conducted, and formulae for fission cross section and angular distribution of fission fragments of oriented nuclei by fast neutrons are presented. Geometrical coefficients making up the formulae permitting to carry out calculations for target nuclei with spins I=3/2, 5/2, 7/2 at interaction energies epsilon < or approximately 1 MeV are tabulated. Results of demonstrative calculation of fission fragment angular distribution of oriented sup(235)U nuclei by 0.1 <= epsilon <= 1.0 MeV neutrons reveal that angular distribution weakly depends on the set of permeability factors of neutron waves applied in the calculations

  16. PowerPoint and Concept Maps: A Great Double Act

    Science.gov (United States)

    Simon, Jon

    2015-01-01

    This article explores how concept maps can provide a useful addition to PowerPoint slides to convey interconnections of knowledge and help students see how knowledge is often non-linear. While most accounting educators are familiar with PowerPoint, they are likely to be less familiar with concept maps and this article shows how the tool can be…

  17. Delayed fission

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukawa, Yuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-07-01

    Delayed fission is a nuclear decay process that couples {beta} decay and fission. In the delayed fission process, a parent nucleus undergoes {beta} decay and thereby populates excited states in the daughter. If these states are of energies comparable to or greater than the fission barrier of the daughter, then fission may compete with other decay modes of the excited states in the daughter. In this paper, mechanism and some experiments of the delayed fission will be discussed. (author)

  18. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  19. Energy from nuclear fission an introduction

    CERN Document Server

    De Sanctis, Enzo; Ripani, Marco

    2016-01-01

    This book provides an overview on nuclear physics and energy production from nuclear fission. It serves as a readable and reliable source of information for anyone who wants to have a well-balanced opinion about exploitation of nuclear fission in power plants. The text is divided into two parts; the first covers the basics of nuclear forces and properties of nuclei, nuclear collisions, nuclear stability, radioactivity, and provides a detailed discussion of nuclear fission and relevant topics in its application to energy production. The second part covers the basic technical aspects of nuclear fission reactors, nuclear fuel cycle and resources, safety, safeguards, and radioactive waste management. The book also contains a discussion of the biological effects of nuclear radiation and of radiation protection, and a summary of the ten most relevant nuclear accidents. The book is suitable for undergraduates in physics, nuclear engineering and other science subjects. However, the mathematics is kept at a level that...

  20. Technical strategy map to employing nuclear power plant aging management

    International Nuclear Information System (INIS)

    Sekimura, Naoto; Kanno, Masanori

    2008-01-01

    Stated in this report are back ground of technical strategy map for nuclear power plant aging management, result of the first road map, significance of technical strategy map, introduction scenario, technology map, road map, upgrade in every year, three groups of academia, industry and government, plan of technical strategy map, upgrade system, comprehensive introduction scenario, measures of nuclear power plant aging management in Japan and the world, new inspection system, outline of 'technical strategy map 2008', preparation of technical information bases in industry, academia and government, collaboration of them, safety researches of neutron radiation damage, stress corrosion crack, fatigue, piping thinning, insulation degradation, concrete degradation, thermal aging, evaluation technologies of earthquake resistance, preparation of rules and standards, ideal maintenance, and training talent. (S.Y.)

  1. Development of a fission product transport module predicting the behavior of radiological materials during sever accidents in a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyung Seok; Rhee, Bo Wook; Kim, Dong Ha [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-09-15

    Korea Atomic Energy Research Institute is developing a fission product transport module for predicting the behavior of radioactive materials in the primary cooling system of a nuclear power plant as a separate module, which will be connected to a severe accident analysis code, Core Meltdown Progression Accident Simulation Software (COMPASS). This fission product transport (COMPASS-FP) module consists of a fission product release model, an aerosol generation model, and an aerosol transport model. In the fission product release model there are three submodels based on empirical correlations, and they are used to simulate the fission product gases release from the reactor core. In the aerosol generation model, the mass conservation law and Raoult's law are applied to the mixture of vapors and droplets of the fission products in a specified control volume to find the generation of the aerosol droplet. In the aerosol transport model, empirical correlations available from the open literature are used to simulate the aerosol removal processes owing to the gravitational settling, inertia impaction, diffusiophoresis, and thermophoresis. The COMPASS-FP module was validated against Aerosol Behavior Code Validation and Evaluation (ABCOVE-5) test performed by Hanford Engineering Development Laboratory for comparing the prediction and test data. The comparison results assuming a non-spherical aerosol shape for the suspended aerosol mass concentration showed a good agreement with an error range of about ±6%. It was found that the COMPASS-FP module produced the reasonable results of the fission product gases release, the aerosol generation, and the gravitational settling in the aerosol removal processes for ABCOVE-5. However, more validation for other aerosol removal models needs to be performed.

  2. Matching of dense plasma focus devices with fission reactors

    International Nuclear Information System (INIS)

    Harms, A.A.; Heindler, M.

    1978-01-01

    The potential role of dense plasma focus devices as compact neutron sources for fissile fuel breeding in conjunction with existing fission reactors is considered. It is found that advanced plasma focus devices can be used effectively in conjunction with neutronically efficient fission reactors to constitute ''self-sufficient'' breeders. Correlations among the various parameters such as the power output and conversion ratio of the fission reactor with the neutron yield and capacitor bank energy of the dense plasma focus device are presented and discussed

  3. Irradiation effects and behaviour of fission products in zirconia and spinel; Effets d'irradiation et comportement des produits de fission dans la zircone et le spinelle

    Energy Technology Data Exchange (ETDEWEB)

    Gentils, A

    2003-10-01

    Crystalline oxides, such as zirconia (ZrO{sub 2}) and spinel (MgAl{sub 2}O{sub 4}), are promising inert matrices for the transmutation of plutonium and minor actinides. This work deals with the study of the physico-chemical properties of these matrices, more specifically their behaviour under irradiation and their capacity to retain fission products. Irradiations at low energy and incorporation of stable analogs of fission products (Cs, I, Xe) into yttria-stabilized zirconia and magnesium-aluminate spinel single crystals were performed by using the ion implanter IRMA (CSNSM-Orsay). Irradiations at high energy were made on several heavy ion accelerators (GANIL-Caen, ISL-Berlin, HIL-Warsaw). The damage induced by irradiation and the release of fission products were monitored by in situ Rutherford Backscattering Spectrometry experiments. Transmission electron microscopy was also used in order to determine the nature of the damage induced by irradiation. The results show that irradiation of ZrO{sub 2} and MgAl{sub 2}O{sub 4} with heavy ions (about hundred keV and about hundred MeV) induces a huge structural damage in crystalline matrices. Total disorder (amorphization) is however never reached in zirconia, contrary to what is observed in the case of spinel. The results also emphasize the essential role played by the concentration of implanted species on their retention capacity. A dramatic release of fission products was observed when the concentration exceeds a threshold of a few atomic percent. Irradiation of implanted samples with medium-energy noble-gas ions leads to an enhancement of the fission product release. The exfoliation of spinel crystals implanted at high concentration of Cs ions is observed after a thermal treatment at high temperature. (author)

  4. Fission-fragment and neutron data traced back to the macroscopic and microscopic properties of the fissioning systems

    Directory of Open Access Journals (Sweden)

    Schmidt K.-H.

    2010-10-01

    Full Text Available A new model description of fission-fragment yields and prompt neutron emission is developed. The yields of the different fission channels and their properties are attributed to the number of relevant states above the potential-energy landscape on the fission path at the moment of dynamical freeze-out, which is specific to the collective coordinate considered. The model combines well established ideas with novel concepts. The separability principle of macroscopic properties of the compound nucleus and microscopic properties of the fragments strongly reduces the number of model parameters and assures a high predictive power. The recently discovered energy-sorting mechanism in superfluid nuclear dynamics determines the sharing of intrinsic excitation energy at scission and the enhancement of even-odd structure in asymmetric splits.

  5. Properties of Fission-Product decay heat from Minor-Actinide fissioning systems

    International Nuclear Information System (INIS)

    Oyamatsu, Kazuhiro; Mori, Hideki

    2000-01-01

    The aggregate Fission-Product (FP) decay heat after a pulse fission is examined for Minor Actinide (MA) fissiles 237 Np, 241 Am, 243 Am, 242 Cm and 244 Cm. We find that the MA decay heat is comparable but smaller than that of 235 U except for cooling times at about 10 8 s (approx. = 3 y). At these cooling times, either the β or γ component of the FP decay heat for these MA's is substantially larger than the one for 235 U. This difference is found to originate from the cumulative fission yield of 106 Ru (T 1/2 = 3.2x10 7 s). This nuclide is the parent of 106 Rh (T 1/2 = 29.8 s) which is the dominant source of the decay heat at 10 8 s (approx. = 3 y). The fission yield is nearly an increasing function of the fissile mass number so that the FP decay heat is the largest for 244 Cm among the MA's at the cooling time. (author)

  6. Design of a Mechanical NaK Pump for Fission Space Power

    Science.gov (United States)

    Mireles, Omar R.; Bradley, David E.; Godfroy, Thomas

    2011-01-01

    Alkali liquid metal cooled fission reactor concepts are under development for spaceflight power requirements. One such concept utilizes a sodium-potassium eutectic (NaK) as the primary loop working fluid, which has specific pumping requirements. Traditionally, electromagnetic linear induction pumps have been used to provide the required flow and pressure head conditions for NaK systems but they can be limited in performance, efficiency, and number of available vendors. The objective of the project was to develop a mechanical NaK centrifugal pump that takes advantages of technology advances not available in previous liquid metal mechanical pump designs. This paper details the design, build, and performance test of a mechanical NaK pump developed at NASA Marshall Space Flight Center. The pump was designed to meet reactor cooling requirements using commercially available components modified for high temperature NaK service.

  7. All 2D materials as electrodes for high power hybrid energy storage applications

    Science.gov (United States)

    Kato, Keiko; Sayed, Farheen N.; Babu, Ganguli; Ajayan, Pulickel M.

    2018-04-01

    Achieving both high energy and power densities from energy storage devices is a core strategy to meet the increasing demands of high performance portable electronics and electric transportation systems. Li-ion capacitor is a promising hybrid technology that strategically exploits high energy density from a Li-ion battery electrode and high power density from a supercapacitor electrode. However, the performance and safety of hybrid devices are still major concerns due to the use of graphite anodes which form passivation layers with organic electrolytes at lower potentials. Here, we explore 2D nanosheets as both anode and cathode electrodes to build a high power system without compromising energy density. Owing to the high electrical conductivity and multivalent redox activity at higher potentials, the Li-ion intercalation electrode is capable of maintaining large energy density at higher current rates with less safety risk than conventional systems. Hybrid devices consisting of all in all 2D electrodes deliver energy density as high as 121 Wh g-1 (at 240 W kg-1) and retains 29 Wh g-1 at high power density of 3600 W kg-1.

  8. Mechanical properties and structure of Zircaloy attached by UO2+x and fission products

    International Nuclear Information System (INIS)

    Holub, F.

    1987-08-01

    The aim of this project was to determine the combined long-term effect of simulated fission products and hyperstoichiometric uranium dioxide on the mechanical properties and structure of Zircaloy. Three groups of fission product elements or compounds were defined: The rare earth oxides CeO 2 , La 2 O 3 , Nd 2 O 3 , Y 2 O 3 ; The metals No, Ru, Ag; The low melting elements Te, Sb and Cd. Each of these groups of fission products was mixed with UO 2+x in proportion related for burnups of 5, 10 and 30%. The simulated fuel mixtures were filled into tubular Zircaloy casings, plugged and welded. These specimens were annealed at 350, 500 and 700 deg. C up to 17,500 hours. The test results indicate different kinds of action of the simulated fuel constituents. Mixtures of rare earth oxides and UO 2+x embrittle Zircaloy drastically at higher temperatures. There exists a mutual intensifying effect of rare earth oxides and UO 2+x . UO 2+x and (Mo + Ru + Ag) and their mixtures act very similar on Zircaloy. The low melting fission products (Te + Sb + Cd) influence the ductility of Zircaloy in an advantageous manner, compared to pure UO 2+x fuel. The layer of zirconium tellurides seems to protect the Zircaloy metal against the embrittling attack of oxygen from UO 2+x . The most important events of tensile tests at 400 deg. C are the high values of the elongation of specimens which are brittled at room temperature. It should guarantee the integrity of fuel elements, which have been attacked chemically by fission products at temperatures of 400 deg. C and higher

  9. A position sensitive parallel plate avalanche fission detector for use in particle induced fission coincidence measurements

    NARCIS (Netherlands)

    Plicht, J. van der

    1980-01-01

    A parallel plate avalanche detector developed for the detection of fission fragments in particle induced fission reactions is described. The active area is 6 × 10 cm2; it is position sensitive in one dimension with a resolution of 2.5 mm. The detector can withstand a count rate of 25000 fission

  10. ISOLDE experiment explores new territory in nuclear fission

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    An international collaboration led by the University of Leuven, Belgium, exploiting ISOLDE’s radioactive beams, has recently discovered an unexpected new type of asymmetric nuclear fission, which challenges current theories. The surprising result opens the way for new nuclear structure models and further theories to elucidate the question.   Resonance Ionization Laser Ion Source (RILIS) in action at ISOLDE. RILIS was instrumental in providing the pure beam necessary for the successful nuclear fission experiment. In nuclear fission, the nucleus splits into two fragments (daughter nuclei), releasing a huge amount of energy. Nuclear fission is exploited in power plants to produce energy. From the fundamental research point of view, fission is not yet fully understood decades after its discovery and its properties can still surprise nuclear physicists. The way the process occurs can tell us a lot about the internal structure of the nucleus and the interactions taking place inside the com...

  11. Cryospheric monitoring with new low power RTK dGPS systems

    Science.gov (United States)

    Martinez, K.; Hart, J. K.; Bragg, G. M.; Curry, J. S.

    2017-12-01

    Differential GPS is often used to measure the movement of glaciers. It requires data to be recorded at a fixed base station as well as the moving rover unit, followed by post-processing in order to compute the rover's positions. The typical dGPS units used consume considerable power and the recording times are often around one hour per reading. While this provides very precise (typically millimetre) precision it comes at a cost of power used and the data is rather large to send offsite regularly. Real-time kinematic modes of dGPS are typically used for rapid mapping and autonomous vehicles. New devices are lower cost and smaller size. They also provide a fix within a few minutes, which can be transmitted home. We describe the design, deployment and preliminary results of two tracking systems to monitor ice movement. The first used a normal GPS and Iridium satellite messaging to track the movement of a Greenland iceberg which calved from the Nattivit Apusiiat glacier (south west Greenland). This system followed the iceberg as it flowed 660 km south along the coast of Greenland. The second system was installed in Iceland to track the movement of glaciers using 2 different dGPS systems. A low power ARM Cortex M4-based controller ran Python code to schedule dGPS activity periodically and gather fixes. An Iridium short messaging unit (Rockblock) was used to transmit RTK location fixes. The aim was to experiment with the use of RTK dGPS as an alternative to recordings to measure how the glaciers responded to small scale changes in temperature and precipitation throughout the year.

  12. Experiments on the incorporation of concentrated solutions of fission products in glasses and micas; Essais d'incorporation de solutions concentrees de produits de fission dans des verres et des micas

    Energy Technology Data Exchange (ETDEWEB)

    Bonniaud, R; Cohen, P; Sombret, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    1) The plants designed for extracting the plutonium of the G1, G2, G3 reactors fuel rods will produce extremely concentrated tions of fission products. 2) Let us consider a synthetic solution of the 'G2' type: (2N NO{sub 3}H - 2,25 meq/cm{sup 3} AI{sup +++} - 5.10{sup -3} {sup 134}Cs - {sup 137}Cs tracer). We made various glasses and micas by adding and mixing the necessary adjuvants and baking (900 to 1400 deg. C) in a graphite crucible. 3) The products obtained had either the shape of a cylindrical pellet or were reduced into a fine powder. They were mixed with 300 cm{sup 3} of synthetic sea water during variable periods of time in order to study leaching of the activity. 4) Experiments were first carried on caesium because of its solubility. 5) Fabrication of micas on a large scale sets many technological problems more difficult to solve (1400 deg. C) than in the case of glasses (1000 deg. C). A comparative study on both micas and glasses showed that leaching of activity was more important in the micas. (author)Fren. [French] 1) La mise en service de l'Usine d'Extraction du Plutonium destinee en particulier au traitement des barres de combustibles de G1, G2, G3 fournira des solutions residuaires concentrees de produits de fission. 2) Partant d'une solution synthetique 'G2': (2N NO{sub 3}H - 2,25meq/cm{sup 3} AI{sup +++} - 5.10{sup -3} {sup 134}Cs - {sup 137}Cs traceur) nous avens realise differents verres et micas apres adduction et melange des adjuvants necessaires suivis de cuisson (900 a 1400 deg. C) dans un creuset de graphite. 3) Les produits obtenus ont ete, soit sous forme d'eprouvette cylindrique, soit sous forme de poudre finement broyee, mis en contact et agites avec 300 cm{sup 3} d'eau de mer synthetique, durant des temps varies pour etudier la retention de l'activite. 4) Le cesium a ete choisi pour ces essais a cause de sa solubilite. 5) La fabrication de micas a grande echelle pose des problemes technologiques plus difficiles (1400 deg. C) a

  13. GAMSOR: Gamma Source Preparation and DIF3D Flux Solution

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M. A. [Argonne National Lab. (ANL), Argonne, IL (United States); Lee, C. H. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. N. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-15

    Nuclear reactors that rely upon the fission reaction have two modes of thermal energy deposition in the reactor system: neutron absorption and gamma absorption. The gamma rays are typically generated by neutron absorption reactions or during the fission process which means the primary driver of energy production is of course the neutron interaction. In conventional reactor physics methods, the gamma heating component is ignored such that the gamma absorption is forced to occur at the gamma emission site. For experimental reactor systems like EBR-II and FFTF, the placement of structural pins and assemblies internal to the core leads to problems with power heating predictions because there is no fission power source internal to the assembly to dictate a spatial distribution of the power. As part of the EBR-II support work in the 1980s, the GAMSOR code was developed to assist analysts in calculating the gamma heating. The GAMSOR code is a modified version of DIF3D and actually functions within a sequence of DIF3D calculations. The gamma flux in a conventional fission reactor system does not perturb the neutron flux and thus the gamma flux calculation can be cast as a fixed source problem given a solution to the steady state neutron flux equation. This leads to a sequence of DIF3D calculations, called the GAMSOR sequence, which involves solving the neutron flux, then the gamma flux, then combining the results to do a summary edit. In this manuscript, we go over the GAMSOR code and detail how it is put together and functions. We also discuss how to setup the GAMSOR sequence and input for each DIF3D calculation in the GAMSOR sequence. With the GAMSOR capability, users can take any valid steady state DIF3D calculation and compute the power distribution due to neutron and gamma heating. The MC2-3 code is the preferable companion code to use for generating neutron and gamma cross section data, but the GAMSOR code can accept cross section data from other sources. To further

  14. Non-statistical effects in bond fission reactions of 1,2-difluoroethane

    Science.gov (United States)

    Schranz, Harold W.; Raff, Lionel M.; Thompson, Donald L.

    1991-08-01

    A microcanonical, classical variational transition-state theory based on the use of the efficient microcanonical sampling (EMS) procedure is applied to simple bond fission in 1,2-difluoroethane. Comparison is made with results of trajectory calculations performed on the same global potential-energy surface. Agreement between the statistical theory and trajectory results for CC CF and CH bond fissions is poor with differences as large as a factor of 125. Most importantly, at the lower energy studied, 6.0 eV, the statistical calculations predict considerably slower rates than those computed from trajectories. We conclude from these results that the statistical assumptions inherent in the transition-state theory method are not valid for 1,2-difluoroethane in spite of the fact that the total intramolecular energy transfer rate out of CH and CC normal and local modes is large relative to the bond fission rates. The IVR rate is not globally rapid and the trajectories do not access all of the energetically available phase space uniformly on the timescale of the reactions.

  15. A Depth Map Generation Algorithm Based on Saliency Detection for 2D to 3D Conversion

    Science.gov (United States)

    Yang, Yizhong; Hu, Xionglou; Wu, Nengju; Wang, Pengfei; Xu, Dong; Rong, Shen

    2017-09-01

    In recent years, 3D movies attract people's attention more and more because of their immersive stereoscopic experience. However, 3D movies is still insufficient, so estimating depth information for 2D to 3D conversion from a video is more and more important. In this paper, we present a novel algorithm to estimate depth information from a video via scene classification algorithm. In order to obtain perceptually reliable depth information for viewers, the algorithm classifies them into three categories: landscape type, close-up type, linear perspective type firstly. Then we employ a specific algorithm to divide the landscape type image into many blocks, and assign depth value by similar relative height cue with the image. As to the close-up type image, a saliency-based method is adopted to enhance the foreground in the image and the method combine it with the global depth gradient to generate final depth map. By vanishing line detection, the calculated vanishing point which is regarded as the farthest point to the viewer is assigned with deepest depth value. According to the distance between the other points and the vanishing point, the entire image is assigned with corresponding depth value. Finally, depth image-based rendering is employed to generate stereoscopic virtual views after bilateral filter. Experiments show that the proposed algorithm can achieve realistic 3D effects and yield satisfactory results, while the perception scores of anaglyph images lie between 6.8 and 7.8.

  16. Influence of angular momentum on fission fragment mass distribution: Interpretation within Langevin dynamics

    International Nuclear Information System (INIS)

    Ryabov, E.G.; Karpov, A.V.; Adeev, G.D.

    2006-01-01

    Dependence of fission fragments mass distribution on the angular momentum within Langevin dynamics is studied. The calculations are performed in the framework of the rotating temperature-dependent finite-range liquid drop model. The calculations are done for the five nuclei, representing heavy fissioning nuclei, medium fissioning nuclei and light fissioning one with the angular momentum varied in the wide range from l=0 to l=70-bar . The dependence coefficients dσ M 2 /dl 2 for the investigated nuclei are extracted. The comparison of the extracted values with the experimental data reveals a good agreement for all the cases (the heavy, medium, and light fissioning nuclei). It is found out that the obtained dependence of σ M 2 on l can be explained with the help of temperature at scission as a function of l. The latter dependence is determined by dependence of the mean prescission neutron multiplicity on l. The analysis of this dependence is done as a competition between fission process and neutron evaporation. 'Remembering of the former large fluctuations of mass asymmetry coordinate during descent from the saddle to scission' is considered. It is shown that the 'remembering effect' takes place, but does not play a crucial role for the investigated dependence of σ M 2 on l

  17. Investigation of applications for high-power, self-critical fissioning uranium plasma reactors. Final technical report

    International Nuclear Information System (INIS)

    Rodgers, R.J.; Latham, T.S.; Krascella, N.L.

    1976-09-01

    Analytical studies were conducted to investigate potentially attractive applications for gaseous nuclear cavity reactors fueled by uranium hexafluoride and its decomposition products at temperatures of 2000 to 6000 K and total pressures of a few hundred atmospheres. Approximate operating conditions and performance levels for a class of nuclear reactors in which fission energy removal is accomplished principally by radiant heat transfer from the high temperature gaseous nuclear fuel to surrounding absorbing media were determined. The results show the radiant energy deposited in the absorbing media may be efficiently utilized in energy conversion system applications which include (1) a primary energy source for high thrust, high specific impulse space propulsion, (2) an energy source for highly efficient generation of electricity, and (3) a source of high intensity photon flux for heating working fluid gases for hydrogen production or MHD power extraction. (Author)

  18. The Affinity of the S9.6 Antibody for Double-Stranded RNAs Impacts the Accurate Mapping of R-Loops in Fission Yeast.

    Science.gov (United States)

    Hartono, Stella R; Malapert, Amélie; Legros, Pénélope; Bernard, Pascal; Chédin, Frédéric; Vanoosthuyse, Vincent

    2018-02-02

    R-loops, which result from the formation of stable DNA:RNA hybrids, can both threaten genome integrity and act as physiological regulators of gene expression and chromatin patterning. To characterize R-loops in fission yeast, we used the S9.6 antibody-based DRIPc-seq method to sequence the RNA strand of R-loops and obtain strand-specific R-loop maps at near nucleotide resolution. Surprisingly, preliminary DRIPc-seq experiments identified mostly RNase H-resistant but exosome-sensitive RNAs that mapped to both DNA strands and resembled RNA:RNA hybrids (dsRNAs), suggesting that dsRNAs form widely in fission yeast. We confirmed in vitro that S9.6 can immuno-precipitate dsRNAs and provide evidence that dsRNAs can interfere with its binding to R-loops. dsRNA elimination by RNase III treatment prior to DRIPc-seq allowed the genome-wide and strand-specific identification of genuine R-loops that responded in vivo to RNase H levels and displayed classical features associated with R-loop formation. We also found that most transcripts whose levels were altered by in vivo manipulation of RNase H levels did not form detectable R-loops, suggesting that prolonged manipulation of R-loop levels could indirectly alter the transcriptome. We discuss the implications of our work in the design of experimental strategies to probe R-loop functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Influence of high burnup on the decay heat power of spent fuel at long-term storage

    International Nuclear Information System (INIS)

    Bergelson, B.; Gerasimov, A.; Tikhomirov, G.

    2005-01-01

    Development and application of advanced fuel with higher burnup is now in practice of NPP with light water reactors in an increasing number of countries. High burnup allows to decrease significantly consumption of uranium. However, spent fuel of this type contains increased amount of high active actinides and fission products in comparison with spent fuel of common-type burnup. Therefore extended time of storage, improved cooling system of the storage facility will be required along with more strong radiation protection during storage, transportation and processing. Calculated data on decay heat power of spent uranium fuel of light water VVER-1000 type reactor are discussed in the paper. Long-term storage of discharged fuel during 100000 years is considered. Calculations were made for burnups of 40-70 MW d/kg. In the initial 50-year period of storage, power of fission products is much higher than that of actinides. Power of gamma-radiation is mainly due to fission products. During subsequent storage power of fission products quickly decreases, the main contribution to the power is given by actinides rather than by fission products. (author)

  20. Overview of superconductivity in Japan - Strategy road map and R and D status

    International Nuclear Information System (INIS)

    Tsukamoto, O.

    2008-01-01

    Superconducting technology benefits society in broad fields; environment/energy, life science, manufacturing industry and information and communication. Superconducting equipments and devices used in various fields are divided into two categories, electric and electronic applications. Technologies in those applications are progressing remarkably owing to firm and consistent supports by various national projects. The final target of the NEDO R and D project of fundamental technology for superconductivity applications to develop 500 m long coated conductors (CCs) of the critical current 300 A/cm (at 77 K, 0 T) will be fulfilled by the end of JFY 2007 and manufacturing process to produce extremely low-cost CCs is to be developed to make the applications realistic. Preliminary works to develop power apparatuses using CCs have started in the frame of the R and D project for the fundamental technology and have produced significant results. Performance of BSCCO/Ag-sheathed wires has been improved greatly and various applications using those wires are being developed. R and D projects for SMES, power cable, flywheel energy storage and rotating machines are going to introduce those equipments to the real world. Technologies of SQUID and SFQ, basic devices of the electronic applications, are progressing dramatically also owing to various national projects. In this back ground the technology strategy map in the field of superconducting technology was formulated to prioritize investments in R and D by clearly defining the objectives and inspire autonomous R and D actives in various fields of industries. R and D activities in the superconducting technologies are to be scheduled following this strategy map

  1. Proceedings of the Conference on 75 years of Nuclear Fission

    Indian Academy of Sciences (India)

    Proceedings of the Conference on 75 years of Nuclear Fission: Present Status and Future Perspectives (Fission75) - Part I. pp 187-188. Organizing Committee · More Details Fulltext PDF. pp 189-190. Foreword · D C Biswas K Mahata V M Datar · More Details Fulltext PDF. pp 191-198. Seventy-five years of nuclear fission.

  2. Perspectives of 2D and 3D mapping of atmospheric pollutants over urban areas by means of airborne DOAS spectrometers

    Directory of Open Access Journals (Sweden)

    F. Ravegnani

    2006-06-01

    Full Text Available tants, offering numerous advantages over conventional networks of in situ analysers. We propose some innovative solutions in the field of DOAS (Differential Optical Absorption Spectroscopy remote systems, utilizing diffuse solar light as the radiation source. We examine the numerous potentialities of minor gas slant column calculations, applying the «off-axis» methodology for collecting the diffuse solar radiation. One of these particular approaches, using measurements along horizontal paths, has already been tested with the spectrometer installed on board the Geophysica aircraft during stratospheric flights up to altitudes of 20 km. The theoretical basis of these new measurement techniques using DOAS remote sensing systems are delineated to assess whether low altitude flights can provide 2D and 3D pollution tomography over metropolitan areas. The 2D or 3D trace gas total column mapping could be used to investigate: i transport and dispersion phenomena of air pollution, ii photochemical process rates, iii gas plume tomography, iv minor gas vertical profiles into the Planetary Boundary Layer and v minor gas flux divergence over a large area.

  3. Morse-Sard theorem for d.c. functions and mappings on R.sup.2./sup

    Czech Academy of Sciences Publication Activity Database

    Pavlica, David; Zajíček, L.

    2005-01-01

    Roč. 55, č. 3 (2005), s. 1195-1207 ISSN 0022-2518 Grant - others:GA ČR(CZ) GA201/03/0931 Institutional research plan: CEZ:AV0Z10190503 Keywords : Morse-Sard theorem * d.c. function * d.c. mapping Subject RIV: BA - General Mathematics Impact factor: 0.769, year: 2005

  4. Comparative energetics of three fusion-fission symbiotic nuclear reactor systems

    International Nuclear Information System (INIS)

    Gordon, C.W.; Harms, A.A.

    1975-01-01

    The energetics of three symbiotic fusion-fission nuclear reactor concepts are investigated. The fuel and power balances are considered for various values of systems parameters. The results from this analysis suggest that symbiotic fusion-fission systems are advantageous from the standpoint of economy and resource utilization. (Auth.)

  5. The power and benefits of concept mapping: measuring use, usefulness, ease of use, and satisfaction

    Science.gov (United States)

    Freeman, Lee A.; Jessup, Leonard M.

    2004-02-01

    The power and benefits of concept mapping rest in four arenas: enabling shared understanding, the inclusion of affect, the balance of power, and client involvement. Concept mapping theory and research indicate concept maps (1) are appropriate tools to assist with communication, (2) are easy to use, and (3) are seen as beneficial by their users. An experiment was conducted to test these assertions and analyze the power and benefits of concept mapping using a typical business consulting scenario involving 16 groups of two individuals. The results were analyzed via empirical hypothesis testing and protocol analyses, and indicate an overall support of the theory and prior research and additional support of new measures of usefulness, ease of use, and satisfaction by both parties. A more thorough understanding of concept mapping is gained and available to future practitioners and researchers.

  6. Synchronized 2D/3D optical mapping for interactive exploration and real-time visualization of multi-function neurological images.

    Science.gov (United States)

    Zhang, Qi; Alexander, Murray; Ryner, Lawrence

    2013-01-01

    Efficient software with the ability to display multiple neurological image datasets simultaneously with full real-time interactivity is critical for brain disease diagnosis and image-guided planning. In this paper, we describe the creation and function of a new comprehensive software platform that integrates novel algorithms and functions for multiple medical image visualization, processing, and manipulation. We implement an opacity-adjustment algorithm to build 2D lookup tables for multiple slice image display and fusion, which achieves a better visual result than those of using VTK-based methods. We also develop a new real-time 2D and 3D data synchronization scheme for multi-function MR volume and slice image optical mapping and rendering simultaneously through using the same adjustment operation. All these methodologies are integrated into our software framework to provide users with an efficient tool for flexibly, intuitively, and rapidly exploring and analyzing the functional and anatomical MR neurological data. Finally, we validate our new techniques and software platform with visual analysis and task-specific user studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling

    Energy Technology Data Exchange (ETDEWEB)

    Pastore, Giovanni, E-mail: Giovanni.Pastore@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Swiler, L.P., E-mail: LPSwile@sandia.gov [Optimization and Uncertainty Quantification, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1318 (United States); Hales, J.D., E-mail: Jason.Hales@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Novascone, S.R., E-mail: Stephen.Novascone@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Perez, D.M., E-mail: Danielle.Perez@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Spencer, B.W., E-mail: Benjamin.Spencer@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Luzzi, L., E-mail: Lelio.Luzzi@polimi.it [Politecnico di Milano, Department of Energy, Nuclear Engineering Division, via La Masa 34, I-20156 Milano (Italy); Van Uffelen, P., E-mail: Paul.Van-Uffelen@ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, Hermann-von-Helmholtz-Platz 1, D-76344 Karlsruhe (Germany); Williamson, R.L., E-mail: Richard.Williamson@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States)

    2015-01-15

    The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code with a recently implemented physics-based model for fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO{sub 2} single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information in the open literature. The study leads to an initial quantitative assessment of the uncertainty in fission gas behavior predictions with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, significantly higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.

  8. SSNTD study of the probable influence of alpha activity on the mass distribution of sup 2 sup 5 sup 2 Cf fission fragments

    CERN Document Server

    Paul, D; Sastri, R C; Ghose, D

    1999-01-01

    The SSNTD has come a long way in its application for the study of nuclear phenomena. Spontaneous fission of transuranic elements is one such phenomena wherein use of SSNTD offers easy registration of the signature of the fission fragments. The object of the present study is to explore whether any one of the track parameters such as the diameter can be used to estimate the atomic mass ratios of the spontaneous fission fragments. The spontaneous fission data from sup 2 sup 5 sup 2 Cf recorded almost at the end of one and four half-life periods for alpha decay are analysed, taking a plot of the number of tracks versus the track diameter. From these plots it is seen that initially, when significant alpha activity of sup 2 sup 5 sup 2 Cf persists, the fission fragments appear to cluster into two predominant groups as indicated by two peaks. The ratio of the diameters at these peak positions appear to be related to the ratio of average mass numbers of the light and heavy groups of fission fragments. However, absenc...

  9. Fission-gas release in fuel performing to extended burnups in Ontario Hydro nuclear generating stations

    International Nuclear Information System (INIS)

    Floyd, M.R.; Novak, J.; Truant, P.T.

    1992-06-01

    The average discharge burnup of CANDU fuel is about 200 MWh/kgU. A significant number of 37-element bundles have achieved burnups in excess of 400 MWh/kgU. Some of these bundles have experienced failures related to their extended operation. To date, hot-cell examinations have been performed on fuel elements from nine 37-element bundles irradiated in Bruce NGS-A that have burnups in the range of 300-800 MWh/kgU. 1 Most of these have declining power histories from peak powers of up to 59 kW/m. Fission-gas releases of up to 26% have been observed and exhibit a strong dependence on fuel power. This obscures any dependence on burnup. The extent of fission-gas release at extended burnups was not predicted by low-burnup code extrapolations. This is attributed primarily to a reduction in fuel thermal conductivity which results in elevated operating temperatures. Reduced conductivity is due, at least in part, to the buildup of fission products in the fuel matrix. Some evidence of hyperstoichiometry exists, although this needs to be further investigated along with any possible relation to CANLUB graphite coating behaviour and sheath oxidation. Residual tensile sheath strains of up to 2% have been observed and can be correlated with fuel power/fission-gas release. SCC 2 -related defects have been observed in the sheath and endcaps of elements from bundles experiencing declining power histories to burnups in excess of 500 MWh/kgU. This indicates that the current recommended burnup limit of 450 MWh/kgU is justified. SCC-related defects have also been observed in ramped bundles having burnups < 450 MWh/kgU. Hence, additional guidelines are in place for power ramping extended-burnup fuel

  10. Solidification of residual fission-product solutions; laboratory studies; Solidification de solutions residuaires concentrees de produits de fission: etudes de laboratoire

    Energy Technology Data Exchange (ETDEWEB)

    Boniaud, R; Cohen, P; Sombret, C [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    This paper describes the results obtained, at laboratory scale, during the study of the incorporation of fission products into glasses and synthetic micas. The rate of leaching of fission products from the glass and their volatility during firing were measured. A hot cell was built to complete these results. (author) [French] Ce rapport resume le resultat des etudes faites en laboratoire (activite de l'ordre du millicurie) sur l'incorporation des produits de fission dans des verres et micas synthetiques. On a mesure le taux de lixiviation des produits de fission et leur volatilisation au cours de la cuisson. Une cellule chaude a ete installee pour completer ces resultats au moyen d'essais realises avec une activite superieure. (auteur)

  11. An experimental investigation of fission product release in SLOWPOKE-2 reactors - Data report

    International Nuclear Information System (INIS)

    Harnden, A.M.C.

    1995-09-01

    The results of an investigation into the release of fission products from SLOWPOKE-2 reactors fuelled with a highly-enriched uranium alloy core are detailed in Volume 1. This data report (Volume 2) contains plots of the activity concentrations of the fission products observed in the reactor container at the University of Toronto, Ecole Polytechnique and the Kanata Isotope Production Facility. Release rates from the reactor container water to the gas headspace are also included. (author)

  12. Experimental approach to fission process of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Hiroshi [Osaka Univ., Toyonaka (Japan). Faculty of Science

    1997-07-01

    From experimental views, it seems likely that the mechanism of nuclear fission process remains unsolved even after the Bohr and Weeler`s study in 1939. Especially, it is marked in respect of mass distribution in unsymmetric nuclear fission. The energy dependency of mass distribution can be explained with an assumption of 2-mode nuclear fission. Further, it was demonstrated that the symmetrical fission components and the unsymmetrical ones have different saddle and fission points. Thus, the presence of the 2-mode fission mechanism was confirmed. Here, transition in the nuclear fission mechanism and its cause were investigated here. As the cause of such transition, plausible four causes; a contribution of multiple-chance fission, disappearance of shell effects, beginning of fission following collective excitation due to GDR and nuclear phase transition were examined in the condition of excitation energy of 14.0 MeV. And it was suggested that the transition in the nuclear fission concerned might be related to phase transition. In addition, the mechanism of nuclear fission at a low energy and multi-mode hypothesis were examined by determination of the energy for thermal neutron fission ({sup 233,235}U and {sup 239}Pu) and spontaneous nuclear fission ({sup 252}Cf). (M.N.)

  13. Specific fission J-window and angular momentum dependence of the fission barrier

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Hiroshi; Saito, Tadashi; Takahashi, Naruto; Yokoyama, Akihiko [Osaka Univ., Suita (Japan); Shinohara, Atsushi

    1997-04-01

    A method to determine a unique J-window in the fission process was devised and the fissioning nuclide associated with thus extracted J-window was identified for each of the heavy-ion reaction systems. Obtained fission barriers at the resulting J-window were compared with the calculated values by the rotating finite range model (RFRM). The deduced barriers for individual nuclides were compared with the RFRM barriers to reproduce more or less the angular momentum dependence the RFRM prediction. The deduced systematic behavior of the fission barrier indicates no even-odd and shell corrections are necessary. The nuclear dissipation effect based on Kramer`s model revealed substantial reduction of the statistically deduced barrier heights and brought a fairly large scattering from the RFRM J-dependence. However, introduction of the temperature-dependent friction coefficient ({gamma} = 2 for T {>=} 1.0 MeV and 0.5 for T < 1.0 MeV) was found to bring about satisfactory agreement with both RFRM fission barriers and the pre-fission neutron multiplicity systematics. (author). 81 refs.

  14. Study of hypernuclei fission

    International Nuclear Information System (INIS)

    Malek, F.

    1990-01-01

    This work is about PS177 experience made on LEAR machine at CERN in 1988. The annihilation reaction of anti protons on a target of Bismuth or Uranium is studied. Lambda particles are produced by this reaction, in the nucleus in 2% of cases 7.1 10 -3 hypernuclei by stopped antiproton in the target are produced. The prompt hypernucleus fission probability of uranium is 75% and that of Bismuth 10%. The mass distribution of fission fragments is symmetrical ((≡ the excitation energy of the nucleus is very high). If the nucleus hasn't fissioned, the non-mesonic lambda decay, gives it an energy of 100 MeV, what allows to fission later. This fission is delayed because the hypernucleus lifetime is 1.3 +0.25 -0.21 10 -10 sec for Bismuth [fr

  15. A new hybrid nonlinear congruential number generator based on higher functional power of logistic maps

    International Nuclear Information System (INIS)

    Cecen, Songul; Demirer, R. Murat; Bayrak, Coskun

    2009-01-01

    We propose a nonlinear congruential pseudorandom number generator consisting of summation of higher order composition of random logistic maps under certain congruential mappings. We change both bifurcation parameters of logistic maps in the interval of U=[3.5599,4) and coefficients of the polynomials in each higher order composition of terms up to degree d. This helped us to obtain a perfect random decorrelated generator which is infinite and aperiodic. It is observed from the simulation results that our new PRNG has good uniformity and power spectrum properties with very flat white noise characteristics. The results are interesting, new and may have applications in cryptography and in Monte Carlo simulations.

  16. Transmutation analysis considering and explicit fission product treatment based on a coupled Hammer-Technion and Cinder-2 system

    International Nuclear Information System (INIS)

    Abe, A.Y.

    1989-01-01

    This work presents a study about neutron absorption in a typical PWR cell by considering an explicit treatment for the fission products. The proposed methodology to treat fission product neutron absorption in a lattice calculation combines the HAMMER-TECHNION and CINDER-2 codes. The fission product chain treatment considers nearly 99% of all original CINDER-2 neutron absorption chain treatment. Parallel to the explicit treatment, a cross section library in the HAMMER-TECHNION code multigroup structure for the fission products was generated using the ENDF/B-V fission product library and processed by NJOY and AMPX-II processing codes. The methodology validation was investigated against two available benchmarks and it was obtained excellent results for the K-Infinity (IAEA-TECDOC-233) as function of burnup and enrichment and for the aggregate quantity sup(σ)2200 in units of barns/fission cross sections (OKAZAKI and SOKOLOWSKI). This work contributed for a better understanding of the fission product neutron absorption in a typical PWR cell and showed that the explicit fission product treatment can be successfully achieved. Besides that the performance of the ENDF/B-V fission product library was accessed. (author)

  17. Tests to determine the release of short-lived fission products from UO2 fuel operating at linear powers of 45 and 60 kW/m

    International Nuclear Information System (INIS)

    Hastings, I.J.; Hunt, C.E.L.; Lipsett, J.J.; MacDonald, R.D.

    1985-09-01

    Experiments have been carried out using a 'sweep gas' technique to determine the behaviour of short-lived fission products within operating, intact UO 2 fuel elements. The Zircaloy-4-clad elements were 600 mm long and contained fuel of density 10.65 - 10.71 Mg/m 3 . A He-2% H 2 carrier gas swept gaseous or volatile fission products out of the operating fuel element past a gamma spectrometer for measurement. We outline our loop model and give full details of calculational procedures. In tests at linear powers of 45 (FIO-122) and 60 kW/m (FIO-124) to a maximum burnup of 80 MW.h/kg U, the species measured directly at the spectrometer during normal operation were generally the short-lived xenons and kryptons. Iodines were not observed during normal operation. The behaviour of I-133 and I-135 was deduced from the decay of Xe-133 and Xe-135 during reactor shutdowns. Plots of R/B (released/born) against λ (decay constant) or effective λ for all isotopes observed at 45 and 60 kW/m show that a line of slope -0.5, corresponding with diffusion kinetics, is a good fit to the measured xenon and krypton data. The inferred release of iodine fits the same line. From this we can extrapolate to an R/B for I-131 of about 5 x 10 -4 at 45 kW/m, and 3 x 10 -3 at 60 kW/m. Both tests were terminated by defects. Under defect conditions, R/B dependence on λ was about 0.6. I-131 release under defect conditions was 5 Ci and 60 mCi for FIO-122 and FI0-124, respectively. 22 refs

  18. Isotopic composition of fission gases in LWR fuel

    International Nuclear Information System (INIS)

    Jonsson, T.

    2000-01-01

    Many fuel rods from power reactors and test reactors have been punctured during past years for determination of fission gas release. In many cases the released gas was also analysed by mass spectrometry. The isotopic composition shows systematic variations between different rods, which are much larger than the uncertainties in the analysis. This paper discusses some possibilities and problems with use of the isotopic composition to decide from which part of the fuel the gas was released. In high burnup fuel from thermal reactors loaded with uranium fuel a significant part of the fissions occur in plutonium isotopes. The ratio Xe/Kr generated in the fuel is strongly dependent on the fissioning species. In addition, the isotopic composition of Kr and Xe shows a well detectable difference between fissions in different fissile nuclides. (author)

  19. Low-Cost Radiator for Fission Power Thermal Control

    Science.gov (United States)

    Maxwell, Taylor; Tarau, Calin; Anderson, William; Hartenstine, John; Stern, Theodore; Walmsley, Nicholas; Briggs, Maxwell

    2014-01-01

    NASA Glenn Research Center (GRC) is developing fission power system technology for future Lunar surface power applications. The systems are envisioned in the 10 to 100kW(sub e) range and have an anticipated design life of 8 to 15 years with no maintenance. NASA GRC is currently setting up a 55 kW(sub e) non-nuclear system ground test in thermal-vacuum to validate technologies required to transfer reactor heat, convert the heat into electricity, reject waste heat, process the electrical output, and demonstrate overall system performance. Reducing the radiator mass, size, and cost is essential to the success of the program. To meet these goals, Advanced Cooling Technologies, Inc. (ACT) and Vanguard Space Technologies, Inc. (VST) are developing a single facesheet radiator with heat pipes directly bonded to the facesheet. The facesheet material is a graphite fiber reinforced composite (GFRC) and the heat pipes are titanium/water. By directly bonding a single facesheet to the heat pipes, several heavy and expensive components can be eliminated from the traditional radiator design such as, POC(TradeMark) foam saddles, aluminum honeycomb, and a second facesheet. A two-heat pipe radiator prototype, based on the single facesheet direct-bond concept, was fabricated and tested to verify the ability of the direct-bond joint to withstand coefficient of thermal expansion (CTE) induced stresses during thermal cycling. The thermal gradients along the bonds were measured before and after thermal cycle tests to determine if the performance degraded. Overall, the results indicated that the initial uniformity of the adhesive was poor along one of the heat pipes. However, both direct bond joints showed no measureable amount of degradation after being thermally cycled at both moderate and aggressive conditions.

  20. Polarographic determination of Iodide and Iodate, in Solutions Coming from Aerosols in Fission Products Containment Studies in Nuclear Power Stations

    International Nuclear Information System (INIS)

    Sanchez, M.; Ballesteros, O.; Fernandez, M.; Clavero, M.A.; Gonzalez, A.M.

    2000-01-01

    A polarographic method is described for the iodine species determination, iodide and iodate in water solutions. the iodate can be determined by differential pulse polarography. Calibration curves and the detection and determination limits have been obtained. Iodides is oxidized to iodate with sodium hypochlorite and the excess of oxidizing agent is destroyed with sodium sulphide. The concentration of iodide is calculated as the difference between the concentration of iodate in the sample before and after the oxidation. As an application, species of iodine in samples coming from the experimental plants GIRS (Gaseous Iodine Removal by Sprays) of Nuclear Fission Department of the CIEMAT, dedicated to fission products containment studies in nuclear power station, were determined. (Author) 10 refs

  1. An improved technique for fission track dating

    International Nuclear Information System (INIS)

    Zhao Yunlong; Wu Zhaohui; Xia Yuliang

    1996-01-01

    The necessity of improving the fission track dating (FTD) technique both at home and abroad is illustrated. The ways of making such improvement are also proposed. It is suggested to calibrate the constant b value of the uranium standard glass by using the method of fission products activity. The 3 kinds of uranium standard glass which have been calibrated are NBS SRM962a, UB 1 and UB 2 . An established new method σ·Φ ρ d /b, to measure neutron fluence, avoids the influence of the varying neutron spectrum on measuring neutron fluence. The improved etching technique for fission tracks in zircon adopted a two-step method which includes the molten alkali system etching using NaOH + KOH and the mixed acid system etching using HNO 3 + HF; this technique results in adequate track etching, increased track clarity and less interference. In this way the intensity of tracks is authentically reflected. Dividing angular zone in accordance with the angular distribution of spontaneous fission track on the crystal surface of minerals to count the tracks and using the improved etching technique to remove the non-uniform angular distribution of spontaneous fission tracks in zircon, ensure the accuracy of tracks count. The improved FTD techniques were used to finish Laboratory Standardized Calibration. The tests using international FTD age standards samples have proved that above mentioned techniques are reliable and practical in obtaining the accurate FTD data. (8 tabs.; 3 figs.)

  2. 3-D mapping with ellipsometrically determined physical thickness ...

    Indian Academy of Sciences (India)

    Unknown

    values at different points (121 nos.) with 1 mm gap between two points. Those data were utilized in the Auto- lisp programme for 3-D mapping. Radial distribution of the evaluated values was also displayed. Keywords. Sol–gel silica layer; ellipsometric studies; refractive index; physical thickness; 3D-mapping. 1. Introduction.

  3. 2D Spatial Frequency Considerations in Comparing 1D Power Spectral Density Measurements

    International Nuclear Information System (INIS)

    Takacs, P.Z.; Barber, S.; Church, E.L.; Kaznatcheev, K.; McKinney, W.R.; Yashchuk, V.Y.

    2010-01-01

    The frequency footprint of ID and 2D profiling instruments needs to be carefully considered in comparing ID surface roughness spectrum measurements made by different instruments. Contributions from orthogonal direction frequency components can not be neglected. The use of optical profiling instruments is ubiquitous in the measurement of the roughness of optical surfaces. Their ease-of-use and non-contact measurement method found widespread use in the optics industry for measuring the quality of delicate optical surfaces. Computerized digital data acquisition with these instruments allowed for quick and easy calculation of surface roughness statistics, such as root-mean-square (RMS) roughness. The computing power of the desktop computer allowed for the rapid conversion of spatial domain data into the frequency domain, enabling the application of sophisticated signal processing techniques to be applied to the analysis of surface roughness, the most powerful of which is the power spectral density (PSP) function. Application of the PSD function to surface statistics introduced the concept of 'bandwidth-limited' roughness, where the value of the RMS roughness depends critically upon the spatial frequency response of the instrument. Different instruments with different spatial frequency response characteristics give different answers when measuring the same surface.

  4. Computational methods for constructing protein structure models from 3D electron microscopy maps.

    Science.gov (United States)

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2013-10-01

    Protein structure determination by cryo-electron microscopy (EM) has made significant progress in the past decades. Resolutions of EM maps have been improving as evidenced by recently reported structures that are solved at high resolutions close to 3Å. Computational methods play a key role in interpreting EM data. Among many computational procedures applied to an EM map to obtain protein structure information, in this article we focus on reviewing computational methods that model protein three-dimensional (3D) structures from a 3D EM density map that is constructed from two-dimensional (2D) maps. The computational methods we discuss range from de novo methods, which identify structural elements in an EM map, to structure fitting methods, where known high resolution structures are fit into a low-resolution EM map. A list of available computational tools is also provided. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Contributions to the theory of fission neutron emission

    International Nuclear Information System (INIS)

    Seeliger, D.; Maerten, H.; Ruben, A.

    1990-03-01

    This report gives a compilation of recent work performed at Technical University, Dresden by D. Seeliger, H. Maerten and A. Ruben on the topic of fission neutron emission. In the first paper calculated fission neutron spectra are presented using the temperature distribution model FINESSE for fissioning actinide nuclei. In the second paper, starting from a general energy balance, Terrell's approach is generalized to describe average fragment energies as a function of incident energy; trends of fragment energy data in the Th-Pu region are well reproduced. In the third contribution, prompt fission neutron spectra and fragment characteristics for spontaneous fission of even Pu-isotopes are presented and discussed in comparison with experimental data using a phenomenological scission point model including temperature dependent shell effects. In the fourth paper, neutron multiplicities and energy spectra as well as average fragment energies for incident energies from threshold to 20 MeV (including multiple-chance fission) for U-238 are compared with traditional data representations. (author). Refs, figs and tabs

  6. Evaluation of power history during power burst experiments in TRACY by combination of gamma-ray and thermal neutron detectors

    International Nuclear Information System (INIS)

    Yanagisawa, Hiroshi; Ohno, Akio

    2002-01-01

    A combination method using γ-ray and thermal neutron detectors was newly applied to the accurate evaluation of power histories during reactivity-initiated power burst experiments in the Transient Experiment Critical Facility (TRACY). During an initial power burst, the power history was determined using a fast response γ-ray ionization chamber, which was used because of its ability to exactly trace the power history within a short duration of the initial burst. After the initial burst, a micro fission chamber containing highly enriched uranium was used for the determination of the power history because the γ-ray ionization chamber could not be applied due to the contribution of delayed γ-rays from fission products. By the present method, the power histories were evaluated for the experiments in the range of 1.50 to 2.93$ of the reactivity insertion. It was found that the peak power and integrated power as determined by the previous method using only the micro fission chamber were underestimated to be 40% and 30% in maximum, respectively, in comparison with the results from the present evaluation. The numerical simulation performed by using the Monte Carlo method indicated that the underestimation could be comprehended by considering the time delay of thermal neutron detection of the fission chamber, which arose from the flight-time of neutrons from the TRACY core to the fission chamber. (author)

  7. Beginning Power BI with Excel 2013 self-service business intelligence using Power Pivot, Power View, Power Query, and Power Map

    CERN Document Server

    Clark, Dan

    2014-01-01

    Understanding your company's data has never been easier than with Microsoft's new Power BI package for Excel 2013. Consisting of four powerful tools-Power Pivot, Power View, Power Query and Power Maps-Power BI makes self-service business intelligence a reality for a wide range of users, bridging the traditional gap between Excel users, business analysts and IT experts and making it easier for everyone to work together to build the data models that can give you game-changing insights into your business. Beginning Power BI with Excel 2013 guides you step by step through the process of analyzin

  8. Energy production using fission fragment rockets

    International Nuclear Information System (INIS)

    Chapline, G.; Matsuda, Y.

    1991-08-01

    Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: Approximately twice as efficient if one can directly convert the fission fragment energy into electricity; by reducing the buildup of a fission fragment inventory in the reactor one could avoid a Chernobyl type disaster; and collecting the fission fragments outside the reactor could simplify the waste disposal problem. 6 refs., 4 figs., 2 tabs

  9. Mga2 transcription factor regulates an oxygen-responsive lipid homeostasis pathway in fission yeast

    DEFF Research Database (Denmark)

    Burr, Risa; Stewart, Emerson V; Shao, Wei

    2016-01-01

    -binding protein (SREBP) transcription factors regulate lipid homeostasis. In mammals, SREBP-2 controls cholesterol biosynthesis, whereas SREBP-1 controls triacylglycerol and glycerophospholipid biosynthesis. In the fission yeast Schizosaccharomyces pombe, the SREBP-2 homolog Sre1 regulates sterol homeostasis....... In the absence of mga2, fission yeast exhibited growth defects under both normoxia and low oxygen conditions. Mga2 transcriptional targets were enriched for lipid metabolism genes, and mga2Δ cells showed disrupted triacylglycerol and glycerophospholipid homeostasis, most notably with an increase in fatty acid...

  10. FREVAP-6, Metal Fission Products Release from HTGR Fuel Elements

    International Nuclear Information System (INIS)

    Pierce, V.H.

    2005-01-01

    1 - Description of problem or function: The FREVAP type of code for estimating the release of longer-lived metallic fission products from HTGR fuel elements has been developed to take into account the combined effects of the retention of metallic fission products by fuel particles and the rather strong absorption of these fission products by the graphite of the fuel elements. Release calculations are made on the basis that the loss of fission product nuclides such as strontium, cesium, and barium is determined by their evaporation from the graphite surfaces and their transpiration induced by the flowing helium coolant. The code is devised so that changes of fission rate (fuel element power), fuel temperature, and graphite temperature may be incorporated into the calculation. Temperature is quite important in determining release because, in general, both release from fuel particles and loss by evaporation (transpiration) vary exponentially with the reciprocal of the absolute temperature. NESC0301/02: This version differs from the previous one in the following points: The source and output files were converted from BCD to ASCII coding. 2 - Method of solution: A problem is defined as having a one-dimensional segment made up of three parts - (1) the fission product source (fuel particles) in series with, (2) a non-source and absorption part (element graphite) and (3) a surface for evaporation to the coolant (graphite-helium interface). More than one segment may be connected (possibly segments stacked axially) by way of the coolant. At any given segment, a continuity equation is solved assuming equilibrium between the source term, absorption term, evaporation at coolant interface and the partial pressure of the fission product isotope in the coolant. 3 - Restrictions on the complexity of the problem - Maxima of: 5 isotopes; 10 time intervals for time-dependent variable; 49 segments (times number of isotopes); 5 different output print time-steps

  11. Assessing Methods for Mapping 2D Field Concentrations of CO2 Over Large Spatial Areas for Monitoring Time Varying Fluctuations

    Science.gov (United States)

    Zaccheo, T. S.; Pernini, T.; Botos, C.; Dobler, J. T.; Blume, N.; Braun, M.; Levine, Z. H.; Pintar, A. L.

    2014-12-01

    This work presents a methodology for constructing 2D estimates of CO2 field concentrations from integrated open path measurements of CO2 concentrations. It provides a description of the methodology, an assessment based on simulated data and results from preliminary field trials. The Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE) system, currently under development by Exelis and AER, consists of a set of laser-based transceivers and a number of retro-reflectors coupled with a cloud-based compute environment to enable real-time monitoring of integrated CO2 path concentrations, and provides 2D maps of estimated concentrations over an extended area of interest. The GreenLITE transceiver-reflector pairs provide laser absorption spectroscopy (LAS) measurements of differential absorption due to CO2 along intersecting chords within the field of interest. These differential absorption values for the intersecting chords of horizontal path are not only used to construct estimated values of integrated concentration, but also employed in an optimal estimation technique to derive 2D maps of underlying concentration fields. This optimal estimation technique combines these sparse data with in situ measurements of wind speed/direction and an analytic plume model to provide tomographic-like reconstruction of the field of interest. This work provides an assessment of this reconstruction method and preliminary results from the Fall 2014 testing at the Zero Emissions Research and Technology (ZERT) site in Bozeman, Montana. This work is funded in part under the GreenLITE program developed under a cooperative agreement between Exelis and the National Energy and Technology Laboratory (NETL) under the Department of Energy (DOE), contract # DE-FE0012574. Atmospheric and Environmental Research, Inc. is a major partner in this development.

  12. Experimental validation of radial reconstructed pin-power distributions in full-scale BWR fuel assemblies with and without control blade

    Energy Technology Data Exchange (ETDEWEB)

    Giust, Flavio, E-mail: flavio.giust@axpo.c [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Axpo Kernenergie AG, Parkstrasse 23, CH-5401 Baden (Switzerland); Grimm, Peter [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Chawla, Rakesh [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland)

    2010-12-15

    Total fission rate measurements have been performed on full-size BWR fuel assemblies of type SVEA-96+ in the zero power reactor PROTEUS at the Paul Scherrer Institute. This paper presents comparisons of reconstructed 2D pin fission rates from nodal diffusion calculations to the experimental results in two configurations: one 'regular' (I-1A) and the other 'controlled' (I-2A). Both configurations consist of an array of 3 x 3 SVEA-96+ fuel assemblies moderated with light water at 20 {sup o}C. In configuration I-2A, an L-shaped hafnium control blade (half of a real cruciform blade) is inserted adjacent to the north-west corner of the central fuel assembly. To minimise the impact of the surroundings, all measurements were done in fuel pins belonging to the central assembly. The 3 x 3 experimental configuration (test zone) was modelled using the core monitoring and design tools that are applied at the Leibstadt Nuclear Power Plant (KKL). These are the 2D transport code HELIOS, used for the cross-section generation, and the 3D, 2-group nodal diffusion code PRESTO-2. The exterior is represented, in the axial and radial directions, by 2-group partial current ratios (PCRs) calculated at the test zone boundary using a 3D Monte Carlo (MCNPX) model of the whole PROTEUS reactor. Sensitivity cases are analysed to show the impact of changes in the 2D lattice modelling on the calculated fission rate distribution and reactivity. Further, the effects of variations in the test zone boundary PCRs and their behaviour in energy are investigated. For the test zone configuration without control blade, the pin-power reconstruction methodology delivers the same level of accuracy as the 2D transport calculations. On the other hand, larger deviations that are inherent to the use of reflected geometry in the lattice calculations are observed for the configuration with the control blade inserted. In the basic (reference) simulation cases, the calculated-to-experimental (C

  13. Calibration on Pegase of a selective D.R.G. installation for short life and long life fission gas

    International Nuclear Information System (INIS)

    Vasnier, F.

    1968-01-01

    Pegase irradiation loops are equipped with a detection installation which measures the global activity of short-life and long-life fission gases which are released in CO 2 , but the reduced size of circuits in the loop results in an accumulation of long life fission gases, and therefore in problems in the interpretation of measured signals. Thus, the authors propose an additional detection installation which allows long-life fission gases to be separately measured. The principle is to ensure a partial decay of the sampled gas by imposing an additional transit time in order to get rid of short-life fission gases which have a radioactive period of some tenths of a second. A second detector is then used to measure the residual activity of long-life fission gases. The author describes the installation (the normal circuit and the modified circuit), reports the performed tests and the calibration, presents and discusses the obtained results and the installation sensitivity (for short-life and long-life fission gases), and reports their application to the relationship between DRG (sheath failure detection) signals obtained on Pegase and on EDF and EL4 reactors

  14. GROGi-F. Modified version of GROGi 2 nuclear evaporation computer code including fission decay channel

    International Nuclear Information System (INIS)

    Delagrange, H.

    1977-01-01

    This report is the user manual of the GR0GI-F code, modified version of the GR0GI-2 code. It calculates the cross sections for heavy ion induced fission. Fission probabilities are calculated via the Bohr-Wheeler formalism

  15. Fission fragment angular distributions and fission cross section validation

    International Nuclear Information System (INIS)

    Leong, Lou Sai

    2013-01-01

    The present knowledge of angular distributions of neutron-induced fission is limited to a maximal energy of 15 MeV, with large discrepancies around 14 MeV. Only 238 U and 232 Th have been investigated up to 100 MeV in a single experiment. The n-TOF Collaboration performed the fission cross section measurement of several actinides ( 232 Th, 235 U, 238 U, 234 U, 237 Np) at the n-TOF facility using an experimental set-up made of Parallel Plate Avalanche Counters (PPAC), extending the energy domain of the incident neutron above hundreds of MeV. The method based on the detection of the 2 fragments in coincidence allowed to clearly disentangle the fission reactions among other types of reactions occurring in the spallation domain. I will show the methods we used to reconstruct the full angular resolution by the tracking of fission fragments. Below 10 MeV our results are consistent with existing data. For example in the case of 232 Th, below 10 MeV the results show clearly the variation occurring at the first (1 MeV) and second (7 MeV) chance fission, corresponding to transition states of given J and K (total spin and its projection on the fission axis), and a much more accurate energy dependence at the 3. chance threshold (14 MeV) has been obtained. In the spallation domain, above 30 MeV we confirm the high anisotropy revealed in 232 Th by the single existing data set. I'll discuss the implications of this finding, related to the low anisotropy exhibited in proton-induced fission. I also explore the critical experiments which is valuable checks of nuclear data. The 237 Np neutron-induced fission cross section has recently been measured in a large energy range (from eV to GeV) at the n-TOF facility at CERN. When compared to previous measurements, the n-TOF fission cross section appears to be higher by 5-7 % beyond the fission threshold. To check the relevance of n-TOF data, we simulate a criticality experiment performed at Los Alamos with a 6 kg sphere of 237 Np. This

  16. US industry optimistic on fission's 50th anniversary

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The United States (US) nuclear industry is looking to the future even as it prepares to celebrate the 50th anniversary of the first fission chain reaction - that momentous event which took place on a cold 2 December 1942 morning below the stands of a football field at the University of Chicago. Plans to incorporate nuclear power into US energy policy are well advanced. (Author)

  17. 3D mapping of turbulence: a laboratory experiment

    Science.gov (United States)

    Le Louarn, Miska; Dainty, Christopher; Paterson, Carl; Tallon, Michel

    2000-07-01

    In this paper, we present the first experimental results of the 3D mapping method. 3D mapping of turbulence is a method to remove the cone effect with multiple laser guide stars and multiple deformable mirrors. A laboratory experiment was realized to verify the theoretical predictions. The setup consisted of two turbulent phase screens (made with liquid crystal devices) and a Shack-Hartmann wavefront sensor. We describe the interaction matrix involved in reconstructing Zernike commands for multiple deformable mirror from the slope measurements made from laser guide stars. It is shown that mirror commands can indeed be reconstructed with the 3D mapping method. Limiting factors of the method, brought to light by this experiment are discussed.

  18. Photocurrent enhanced by singlet fission in a dye-sensitized solar cell.

    Science.gov (United States)

    Schrauben, Joel N; Zhao, Yixin; Mercado, Candy; Dron, Paul I; Ryerson, Joseph L; Michl, Josef; Zhu, Kai; Johnson, Justin C

    2015-02-04

    Investigations of singlet fission have accelerated recently because of its potential utility in solar photoconversion, although only a few reports definitively identify the role of singlet fission in a complete solar cell. Evidence of the influence of singlet fission in a dye-sensitized solar cell using 1,3-diphenylisobenzofuran (DPIBF, 1) as the sensitizer is reported here. Self-assembly of the blue-absorbing 1 with co-adsorbed oxidation products on mesoporous TiO2 yields a cell with a peak internal quantum efficiency of ∼70% and a power conversion efficiency of ∼1.1%. Introducing a ZrO2 spacer layer of thickness varying from 2 to 20 Å modulates the short-circuit photocurrent such that it is initially reduced as thickness increases but 1 with 10-15 Å of added ZrO2. This rise can be explained as being due to a reduced rate of injection of electrons from the S1 state of 1 such that singlet fission, known to occur with a 30 ps time constant in polycrystalline films, has the opportunity to proceed efficiently and produce two T1 states per absorbed photon that can subsequently inject electrons into TiO2. Transient spectroscopy and kinetic simulations confirm this novel mode of dye-sensitized solar cell operation and its potential utility for enhanced solar photoconversion.

  19. Photodissociaton of allyl-d2 iodide excited at 193 nm: Stability of highly rotationally excited H2CDCH2 radicals to C-D fission

    International Nuclear Information System (INIS)

    Szpunar, D.E.; Liu, Y.; McCullagh, M.J.; Butler, L.J.; Shu, J.

    2003-01-01

    The photodissociation of allyl-d2 iodide (H2C=CDCH2I) and the dynamics of the nascent allyl-d2 radical (H2CCDCH2) were studied using photofragment translational spectroscopy. A previous study found the allyl radical stable at internal energies up to 15 kcal/mol higher than the 60 kcal/mol barrier to allene + H formation as the result of a centrifugal barrier. The deuterated allyl radical should then also show a stability to secondary dissociation at internal energies well above the barrier due to centrifugal effects. A comparison in this paper shows the allyl-d2 radical is stable to allene + D formation at energies of 2-3 kcal/mol higher than that of the non-deuterated allyl radical following photolysis of allyl iodide at 193 nm. This is most likely a result of a combination of the slight raising of the barrier from the difference in zero-point levels and a reduction of the impact parameter of the dissociative fragments due to the decrease in frequency of the C-D bending modes, and the refore allene + D product orbital angular momentum. Integrated signal taken at m/e = 40 (allene) and m/e = 41 (allene-d1 and propyne-d3) shows a minor fraction of the allyl-d2 radicals isomerize to the 2-propenyl radical, in qualitative support of earlier conclusions of the domination of direct allene + H formation over isomerization

  20. IFPE/RISOE-II, Fuel Performance Data from Transient Fission Gas Release

    International Nuclear Information System (INIS)

    Turnbull, J.A.

    1995-01-01

    Description: The RISO National Laboratory in Denmark have carried out three irradiation programs of slow ramp and hold tests, so called 'bump tests' to investigate fission gas release and fuel microstructural changes. The second project took place between 1982 and 1986 and was called 'The RISO Transient Fission Gas Project'. The fuel used in the project was from: IFA-161 irradiated in the Halden BWR (27 to 42 MWd/kgUO 2 ) and GE BWR fuel irradiated in the Millstone 1 reactor 14 to 29 MWd/kgUO 2 . Using the re-fabrication technique, it was possible to back fill the test segment with a choice of gas and gas pressure and to measure the time dependence of fission gas release by continuous monitoring of the plenum pressure. The short length of the test segment was an advantage because, depending on where along the original rod the section was taken, burnup could be chosen variable, and during the test the fuel experienced a single power

  1. Power Company No 2. Activity Report 1992 - 1994

    International Nuclear Information System (INIS)

    1995-01-01

    The Power Company No.2 is in charge of power generation and distribution for the southern area of Vietnam. Status and development plans of the Company is presented in the report. (NHA). 10 figs, 2 tabs, 17 photos, 2 maps

  2. An optimized symbiotic fusion and molten-salt fission reactor system

    International Nuclear Information System (INIS)

    Blinkin, V.L.; Novikov, V.M.

    A symbiotic fusion-fission reactor system which breeds nuclear fuel is discussed. In the blanket of the controlled thermonuclear reactor (CTR) uranium-233 is generated from thorium, which circulates in the form of ThF 4 mixed with molten sodium and beryllium fluorides. The molten-salt fission reactor (MSR) burns up the uranium-233 and generates tritium for the fusion reactor from lithium, which circulates in the form of LiF mixed with BeF 2 and 233 UF 4 through the MSR core. With a CTR-MSR thermal power ratio of 1:11 the system can produce electrical energy and breed fuel with a doubling time of 4-5 years. The system has the following special features: (1) Fuel reprocessing is much simpler and cheaper than for contemporary fission reactors; reprocessing consists simply in continuous removal of 233 U from the salt circulating in the CTR blanket by the fluorination method and removal of xenon from the MSR fuel salt by gas scavenging; the MSR fuel salt is periodically exchanged for fresh salt and the 233 U is then removed from it; (2) Tritium is produced in the fission reactor, which is a much simpler system than the fusion reactor; (3) The CTR blanket is almost ''clean''; no tritium is produced in it and fission fragment activity does not exceed the activity induced in the structural materials; (4) Almost all the thorium introduced into the CTR blanket can be used for producing 233 U

  3. Neutron kinetics in moderators and SNM detection through epithermal-neutron-induced fissions

    Energy Technology Data Exchange (ETDEWEB)

    Gozani, Tsahi, E-mail: tgmaven@gmail.com [1050 Harriet St., Palo Alto, CA 94301 (United States); King, Michael J. [Rapiscan Laboratories Inc., 520 Almanor Ave., Sunnyvale, CA 94085 (United States)

    2016-01-01

    Extension of the well-established Differential Die Away Analysis (DDAA) into a faster time domain, where more penetrating epithermal neutrons induce fissions, is proposed and demonstrated via simulations and experiments. In the proposed method the fissions stimulated by thermal, epithermal and even higher-energy neutrons are measured after injection of a narrow pulse of high-energy 14 MeV (d,T) or 2.5 MeV (d,D) source neutrons, appropriately moderated. The ability to measure these fissions stems from the inherent correlation of neutron energy and time (“E–T” correlation) during the process of slowing down of high-energy source neutrons in common moderating materials such as hydrogenous compounds (e.g., polyethylene), heavy water, beryllium and graphite. The kinetic behavior following injection of a delta-function-shaped pulse (in time) of 14 MeV neutrons into such moderators is studied employing MCNPX simulations and, when applicable, some simple “one-group” models. These calculations served as a guide for the design of a source moderator which was used in experiments. Qualitative relationships between slowing-down time after the pulse and the prevailing neutron energy are discussed. A laboratory system consisting of a 14 MeV neutron generator, a polyethylene-reflected Be moderator, a liquid scintillator with pulse-shape discrimination (PSD) and a two-parameter E–T data acquisition system was set up to measure prompt neutron and delayed gamma-ray fission signatures in a 19.5% enriched LEU sample. The measured time behavior of thermal and epithermal neutron fission signals agreed well with the detailed simulations. The laboratory system can readily be redesigned and deployed as a mobile inspection system for SNM in, e.g., cars and vans. A strong pulsed neutron generator with narrow pulse (<75 ns) at a reasonably high pulse frequency could make the high-energy neutron induced fission modality a realizable SNM detection technique.

  4. Exploratory study of fission product yields of neutron-induced fission of 235U , 238U , and 239Pu at 8.9 MeV

    Science.gov (United States)

    Bhatia, C.; Fallin, B. F.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.; Arnold, C. W.; Bond, E.; Bredeweg, T. A.; Fowler, M. M.; Moody, W.; Rundberg, R. S.; Rusev, G. Y.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Macri, R.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.

    2015-06-01

    Using dual-fission chambers each loaded with a thick (200 -400 -mg /c m2) actinide target of 235 ,238U or 239Pu and two thin (˜10 -100 -μ g /c m2) reference foils of the same actinide, the cumulative yields of fission products ranging from 92Sr to 147Nd have been measured at En= 8.9 MeV . The 2H(d ,n ) 3He reaction provided the quasimonoenergetic neutron beam. The experimental setup and methods used to determine the fission product yield (FPY) are described, and results for typically eight high-yield fission products are presented. Our FPYs for 235U(n ,f ) , 238U(n ,f ) , and 239Pu(n ,f ) at 8.9 MeV are compared with the existing data below 8 MeV from Glendenin et al. [Phys. Rev. C 24, 2600 (1981), 10.1103/PhysRevC.24.2600], Nagy et al. [Phys. Rev. C 17, 163 (1978), 10.1103/PhysRevC.17.163], Gindler et al. [Phys. Rev. C 27, 2058 (1983), 10.1103/PhysRevC.27.2058], and those of Mac Innes et al. [Nucl. Data Sheets 112, 3135 (2011), 10.1016/j.nds.2011.11.009] and Laurec et al. [Nucl. Data Sheets 111, 2965 (2010), 10.1016/j.nds.2010.11.004] at 14.5 and 14.7 MeV, respectively. This comparison indicates a negative slope for the energy dependence of most fission product yields obtained from 235U and 239Pu , whereas for 238U the slope issue remains unsettled.

  5. Status update on the NIFFTE high precision fission cross section measurement program

    International Nuclear Information System (INIS)

    Laptev, Alexander B.; Tovesson, Fredrik; Burgett, Eric; Greife, Uwe; Grimes, Steven; Heffner, Michael D.; Hertel, Nolan E.; Hill, Tony; Isenhower, Donald; Klay, Jennifer L.; Kornilov, Nickolay; Kudo, Ryuho; Loveland, Walter; Massey, Thomas; McGrath, Chris; Pickle, Nathan; Qu, Hai; Sharma, Sarvagya; Snyder, Lucas; Thornton, Tyler; Towell, Rusty S.; Watson, Shon

    2010-01-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) program has been underway for nearly two years. The program's mission is to measure fission cross sections of the primary fissionable and fissile materials ( 235 U, 239 Pu, 238 U) as well as the minor actinides across energies from approximately 50 keV up to 20 MeV with an absolute uncertainty of less than one percent while investigating energy ranges from below an eV to 600 MeV. This basic nuclear physics data is being reinvestigated to support the next generation power plants and a fast burner reactor program. Uncertainties in the fast, resolved and unresolved resonance regions in plutonium and other transuranics are extremely large, dominating safety margins in the next generation nuclear power plants and power plants of today. This basic nuclear data can be used to support all aspects of the nuciear renaissance. The measurement campaign is utilizing a Time Projection Chamber or TPC as the tool to measure these cross sections to these unprecedented levels. Unlike traditional fission cross section measurements using time-of-flight and a multiple fission foil configurations in which fission cross sections in relation to that of 235 U are performed, the TPC project uses time-of-flight and hydrogen as the benchmark cross section. Using the switch to hydrogen, a simple, smooth cross section that can be used which removes the uncertainties associated with the resolved and unresolved resonances in 235 U.

  6. The Growth of Sea cucumber Stichopus herrmanni After Transverse Induced Fission in Two and Three Fission Plane

    Directory of Open Access Journals (Sweden)

    Retno Hartati

    2016-06-01

    Full Text Available Transverse induced fission proven could be done in Teripang Tril, Stichopus herrmanni. This present works aimed to analyze wound recovery, regeneration period and growth of Teripang Trill  after asexual reproduction by fission using two and three fission plane. Observations were made every day until the sea cucumber body separated into two or more (depending on treatment and reared for 16 weeks.  The results showed that there are differences in wound recovery, regeneration period and growth of S. herrmanni depend on their different fission plane. The wound recovery and regeneration period (days of anterior, middle and posterior individu S. herrmanni resulted from two and three fission plane were varied but the two fission plane the anterior individu recover for longer period than posterior part and  the wound recover process in both end for thee fission plane was same. Average growth of anterior and posterior fragment were longer for two fission plane than three fission plane.  The middle fragment (M1 and M2 both fission plane was able to grow but very low.  It showed that three fission plane gave very slow growth in every fragment of the body. Keywords: growth, post-fission, fission plane, Stichopus herrmanni

  7. Thermal Energetic Reactor with High Reproduction of Fission Materials

    Directory of Open Access Journals (Sweden)

    Vladimir M. Kotov

    2012-01-01

    On the base of thermal reactors with high fission materials reproduction world atomic power engineering development supplying higher power and requiring smaller speed of raw uranium mining, than in the variant with fast reactors, is possible.

  8. COMPARISON OF S-CO2 POWER CYCLES FOR NUCLEAR ENERGY

    Directory of Open Access Journals (Sweden)

    Ladislav Vesely

    2016-12-01

    Full Text Available The supercritical carbon dioxide (S-CO2 is a possible cooling system for the new generations of nuclear reactors and fusion reactors. The S-CO2 power cycles have several advantages over other possible coolants such as water and helium. The advantages are the compression work, which is lower than in the case of helium, near the critical point and the S-CO2 is more compact than water and helium. The disadvantage is so called Pinch point which occurs in the regenerative heat exchanger. The pinch point can be eliminated by an arrangement of the cycle or using a mixture of CO2. This paper describes the S-CO2 power cycles for nuclear fission and fusion reactors.

  9. Reactor AQUILON. The hardening of neutron spectrum in natural uranium rods, with a computation of epithermal fissions (1961); Pile AQUILON. Durcissement du spectre des neutrons dans les barreaux d'uranium et calcul des fissions epithermiques (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Durand -Smet, R; Lourme, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    - Microscopic flux measurements in reactor Aquilon have allowed to investigate the thermal and epithermal flux distribution in natural uranium rods, then to obtain the neutron spectrum variations in uranium, Wescott '{beta}' term of the average spectrum in the rod, and the ratio of epithermal to therma fissions. A new definition for the infinite multiplication factor is proposed in annex, which takes into account epithermal parameters. (authors) [French] - Un certain nombre de mesures effectuees dans la pile Aquilon ont permis d'etablir la distribution fine des flux thermique et epithermique dans les barreaux d'uranium, et d'en deduire les variations du spectre des neutrons dans l'uranium, le terme {beta} du spectre de Wescott moyen dans le barreau et le nombre de fissions epithermiques. En annexe, il est propose une definition nouvelle du coefficient de multiplication infini, qui fait intervenir les parametres epithermiques. (auteurs)

  10. BTC the UK focus for nuclear fission R and D in the post NDA era

    International Nuclear Information System (INIS)

    Rice, T.G.; Carpenter, J.C.; Williamson, R.

    2005-01-01

    The BNFL Technology Centre at Sellafield, UK, will provide the focal point for nuclear fission R and D in the UK for the 21th Century. The facility provides a range of non-active, trace active, plutonium active and high active facilities enabling NSTS to support the Nuclear Decommissioning Authority's remit to manage the UK's nuclear legacy and other requirements The facilities also provide an environment for academic research and foster the development of University Research Alliances. (Author)

  11. The status of fission product yield data (FPND) in 1977

    International Nuclear Information System (INIS)

    Cuninghame, J.G.

    1977-05-01

    The topics covered is this paper are:- (a) cumulative yields in thermal neutron fission and in fast fission up to 14 MeV incident neutron energy; (b) dependence of the yields on incident neutron energy and spectrum; (c) independent yields; (d) charge dispersion and distribution, and (e) yields of light particles from ternary fission. The paper reviews information on these subjects for fission of actinides from 232 Th upwards, with special emphasis on data published since the 1973 Bologna FPND Panel, compares data sets and discusses the gaps still to be found in them. (author)

  12. FluoRender: An application of 2D image space methods for 3D and 4D confocal microscopy data visualization in neurobiology research

    KAUST Repository

    Wan, Yong; Otsuna, Hideo; Chien, Chi-Bin; Hansen, Charles

    2012-01-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists' demands for qualitative analysis of confocal microscopy data. © 2012 IEEE.

  13. FluoRender: An application of 2D image space methods for 3D and 4D confocal microscopy data visualization in neurobiology research

    KAUST Repository

    Wan, Yong

    2012-02-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists\\' demands for qualitative analysis of confocal microscopy data. © 2012 IEEE.

  14. Chrono-thermométrie par traces de fission : une perspective nouvelle pour la prospection pétrolière Chronothermometry by Fission-Track Dating: New Means for Petroleum Prospection

    Directory of Open Access Journals (Sweden)

    Storzer D.

    2006-11-01

    Full Text Available La propriété caractéristique des traces de fission d'enregistrer les paléotempératures offre la possibilité unique de caler des événements thermiques dans leur contexte géologique et donc de modéliser quantitativement les histoires thermiques des roches. Le thermomètre traces de fission-apatite enregistre les paléo-températures dans un intervalle compris entre 30 et 170°C, domaine qui inclut les températures généralement retenues pour la genèse optimale des hydrocarbures liquides. La formation, la maturation et la destruction des hydrocarbures, de la même façon que la guérison des traces latentes, sont fonction des deux paramètres temps et températures; en conséquence, l'étude détaillée de l'effacement progressif des traces latentes fossiles dans les apatites en fonction de leur profondeur dans un puits, conduit à des indications précises sur les variations de la température en fonction du temps à l'intérieur de la fenêtre à huile. Ces deux informations sont obtenues en combinant la datation traces de fission-isochrone et les analyses de longueurs des traces de fission. Le potentiel de la méthode des traces de fission dans son application à la reconstitution de l'histoire thermique des bassins sédimentaires est illustré à partir de l'analyse d'apatites détritiques provenant des bassins intérieur et côtier du Gabon d'une part et du bassin d'Otway en Australie du Sud d'autre part. The characteristic property of fission tracks to record paleotemperatures provides a unique possibility of setting thermal events in their geological context and hence of quantitatively modeling the thermal histories of rocks. The fission track apatite-thermometer records paleotemperatures in the interval between 30 and 170°C, a range that includes the temperatures generally considered to be required for the optimum formation of liquid hydrocarbons. The formation, maturation and destruction of hydrocarbons, as well as the

  15. 3D mapping of individual cells using a proton microbeam

    International Nuclear Information System (INIS)

    Michelet, C.; Moretto, Ph.

    1999-01-01

    Various imaging techniques carried out with a nuclear microprobe make it possible to reveal by 2D mapping, the internal structure of isolated cells. An improvement of those techniques allows today 3D mapping of cells. STIM- and PIXE-Tomography have been recently implemented on the CENBG microbeam line. The performance offered by these methods, which are capable of resolving objects having diameters less then 100 μm, has been validated on reference specimens and on human cells from cultures. In addition to the fineness of the resolution, these techniques offer the advantage of performing volume analyses without prior cutting of the samples. The ultimate aim of this program of research is to perform 3D elemental chemical analysis of individual cells in the field of biomedicine

  16. Thermal Energetic Reactor with High Reproduction of Fission Materials

    International Nuclear Information System (INIS)

    Kotov, V.M.

    2012-01-01

    Existing thermal reactors are energy production scale limited because of low portion of raw uranium usage. Fast reactors are limited by reprocessing need of huge mass of raw uranium at the initial stage of development. The possibility of development of thermal reactors with high fission materials reproduction, which solves the problem, is discussed here. Neutron losses are decreased, uranium-thorium fuel with artificial fission materials equilibrium regime is used, additional in-core and out-core neutron sources are used for supplying of high fission materials reproduction. Liquid salt reactors can use dynamic loading regime for this purpose. Preferable construction is channel type reactor with heavy water moderator. Good materials for fuel element shells and channel walls are zirconium alloys enriched by 90Zr. Water cooled reactors with usage 12% of raw uranium and liquid metal cooled reactors with usage 25% of raw uranium are discussed. Reactors with additional neutron sources obtain full usage of raw uranium with small additional energy expenses. On the base of thermal reactors with high fission materials reproduction world atomic power engineering development supplying higher power and requiring smaller speed of raw uranium mining, than in the variant with fast reactors, is possible.

  17. A high efficiency PWM CMOS class-D audio power amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Zhangming; Liu Lianxi; Yang Yintang [Institute of Microelectronics, Xidian University, Xi' an 710071 (China); Lei Han, E-mail: zmyh@263.ne [Xi' an Power-Rail Micro Co., Ltd, Xi' an 710075 (China)

    2009-02-15

    Based on the difference close-loop feedback technique and the difference pre-amp, a high efficiency PWM CMOS class-D audio power amplifier is proposed. A rail-to-rail PWM comparator with window function has been embedded in the class-D audio power amplifier. Design results based on the CSMC 0.5 mum CMOS process show that the max efficiency is 90%, the PSRR is -75 dB, the power supply voltage range is 2.5-5.5 V, the THD+N in 1 kHz input frequency is less than 0.20%, the quiescent current in no load is 2.8 mA, and the shutdown current is 0.5 muA. The active area of the class-D audio power amplifier is about 1.47 x 1.52 mm{sup 2}. With the good performance, the class-D audio power amplifier can be applied to several audio power systems.

  18. A high efficiency PWM CMOS class-D audio power amplifier

    International Nuclear Information System (INIS)

    Zhu Zhangming; Liu Lianxi; Yang Yintang; Lei Han

    2009-01-01

    Based on the difference close-loop feedback technique and the difference pre-amp, a high efficiency PWM CMOS class-D audio power amplifier is proposed. A rail-to-rail PWM comparator with window function has been embedded in the class-D audio power amplifier. Design results based on the CSMC 0.5 μm CMOS process show that the max efficiency is 90%, the PSRR is -75 dB, the power supply voltage range is 2.5-5.5 V, the THD+N in 1 kHz input frequency is less than 0.20%, the quiescent current in no load is 2.8 mA, and the shutdown current is 0.5 μA. The active area of the class-D audio power amplifier is about 1.47 x 1.52 mm 2 . With the good performance, the class-D audio power amplifier can be applied to several audio power systems.

  19. A high efficiency PWM CMOS class-D audio power amplifier

    Science.gov (United States)

    Zhangming, Zhu; Lianxi, Liu; Yintang, Yang; Han, Lei

    2009-02-01

    Based on the difference close-loop feedback technique and the difference pre-amp, a high efficiency PWM CMOS class-D audio power amplifier is proposed. A rail-to-rail PWM comparator with window function has been embedded in the class-D audio power amplifier. Design results based on the CSMC 0.5 μm CMOS process show that the max efficiency is 90%, the PSRR is -75 dB, the power supply voltage range is 2.5-5.5 V, the THD+N in 1 kHz input frequency is less than 0.20%, the quiescent current in no load is 2.8 mA, and the shutdown current is 0.5 μA. The active area of the class-D audio power amplifier is about 1.47 × 1.52 mm2. With the good performance, the class-D audio power amplifier can be applied to several audio power systems.

  20. Simultaneous measurement of fission fragments and prompt neutrons for thermal neutron-induced fission of U-235

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Katsuhisa; Yamamoto, Hideki; Kimura, Itsuro; Nakagome, Yoshihiro [Kyoto Univ. (Japan)

    1997-03-01

    Simultaneous measurement of fission fragments and prompt neutrons following the thermal neutron induced fission of U-235 has been performed in order to obtain the neutron multiplicity (v) and its emission energy ({eta}) against the specified mass (m{sup *}) and the total kinetic energy (TKE). The obtained value of -dv/dTKE(m{sup *}) showed a saw-tooth distribution. The average neutron energy <{eta}>(m{sup *}) had a distribution with a reflection symmetry around the half mass division. The measurement also gave the level density parameters of the specified fragment, a(m{sup *}), and this parameters showed a saw-tooth trend too. The analysis by a phenomenological description of this parameters including the shell and collective effects suggested the existence of a collective motion of the fission fragments. (author)

  1. Positivity of linear maps under tensor powers

    Energy Technology Data Exchange (ETDEWEB)

    Müller-Hermes, Alexander, E-mail: muellerh@ma.tum.de; Wolf, Michael M., E-mail: m.wolf@tum.de [Zentrum Mathematik, Technische Universität München, 85748 Garching (Germany); Reeb, David, E-mail: reeb.qit@gmail.com [Zentrum Mathematik, Technische Universität München, 85748 Garching (Germany); Institute for Theoretical Physics, Leibniz Universität Hannover, 30167 Hannover (Germany)

    2016-01-15

    We investigate linear maps between matrix algebras that remain positive under tensor powers, i.e., under tensoring with n copies of themselves. Completely positive and completely co-positive maps are trivial examples of this kind. We show that for every n ∈ ℕ, there exist non-trivial maps with this property and that for two-dimensional Hilbert spaces there is no non-trivial map for which this holds for all n. For higher dimensions, we reduce the existence question of such non-trivial “tensor-stable positive maps” to a one-parameter family of maps and show that an affirmative answer would imply the existence of non-positive partial transpose bound entanglement. As an application, we show that any tensor-stable positive map that is not completely positive yields an upper bound on the quantum channel capacity, which for the transposition map gives the well-known cb-norm bound. We, furthermore, show that the latter is an upper bound even for the local operations and classical communications-assisted quantum capacity, and that moreover it is a strong converse rate for this task.

  2. Positivity of linear maps under tensor powers

    International Nuclear Information System (INIS)

    Müller-Hermes, Alexander; Wolf, Michael M.; Reeb, David

    2016-01-01

    We investigate linear maps between matrix algebras that remain positive under tensor powers, i.e., under tensoring with n copies of themselves. Completely positive and completely co-positive maps are trivial examples of this kind. We show that for every n ∈ ℕ, there exist non-trivial maps with this property and that for two-dimensional Hilbert spaces there is no non-trivial map for which this holds for all n. For higher dimensions, we reduce the existence question of such non-trivial “tensor-stable positive maps” to a one-parameter family of maps and show that an affirmative answer would imply the existence of non-positive partial transpose bound entanglement. As an application, we show that any tensor-stable positive map that is not completely positive yields an upper bound on the quantum channel capacity, which for the transposition map gives the well-known cb-norm bound. We, furthermore, show that the latter is an upper bound even for the local operations and classical communications-assisted quantum capacity, and that moreover it is a strong converse rate for this task

  3. [Fission product yields of 60 fissioning reactions]. Final report

    International Nuclear Information System (INIS)

    Rider, B.F.

    1995-01-01

    In keeping with the statement of work, I have examined the fission product yields of 60 fissioning reactions. In co-authorship with the UTR (University Technical Representative) Talmadge R. England ''Evaluation and Compilation of Fission Product Yields 1993,'' LA-UR-94-3106(ENDF-349) October, (1994) was published. This is an evaluated set of fission product Yields for use in calculation of decay heat curves with improved accuracy has been prepared. These evaluated yields are based on all known experimental data through 1992. Unmeasured fission product yields are calculated from charge distribution, pairing effects, and isomeric state models developed at Los Alamos National Laboratory. The current evaluation has been distributed as the ENDF/B-VI fission product yield data set

  4. Evaluations of fusion-fission (hybrid) concepts: market penetration analysis for fusion-fission hybrids. Part A

    International Nuclear Information System (INIS)

    Engel, R.L.; Deonigi, D.E.

    1976-01-01

    This report summarizes findings of the fusion-fission studies conducted for the Electric Power Research Institute by Battelle, Pacific Northwest Laboratories. This particular study focused on the evaluation of fissile material producing hybrids. Technical results of the evaluation of actinide burning are presented in a companion volume, Part B

  5. User's manual for computer code RIBD-II, a fission product inventory code

    International Nuclear Information System (INIS)

    Marr, D.R.

    1975-01-01

    The computer code RIBD-II is used to calculate inventories, activities, decay powers, and energy releases for the fission products generated in a fuel irradiation. Changes from the earlier RIBD code are: the expansion to include up to 850 fission product isotopes, input in the user-oriented NAMELIST format, and run-time choice of fuels from an extensively enlarged library of nuclear data. The library that is included in the code package contains yield data for 818 fission product isotopes for each of fourteen different fissionable isotopes, together with fission product transmutation cross sections for fast and thermal systems. Calculational algorithms are little changed from those in RIBD. (U.S.)

  6. Proton-induced fission cross sections on "2"0"8Pb at high kinetic energies

    International Nuclear Information System (INIS)

    Rodriguez-Sanchez, J.L.; Benlliure, J.; Paradela, C.; Ayyad, Y.; Alvarez-Pol, H.; Cortina-Gil, D.; Pietras, B.; Ramos, D.; Vargas, J.; Taieb, J.; Chatillon, A.; Belier, G.; Boutoux, G.; Gorbinet, T.; Laurent, B.; Martin, J.F.; Pellereau, E.; Casarejos, E.; Rodriguez-Tajes, C.

    2014-01-01

    Total fission cross sections of "2"0"8Pb induced by protons have been determined at 370 A, 500 A, and 650 A MeV. The experiment was performed at GSI Darmstadt where the combined use of the inverse kinematics technique with an efficient detection setup allowed us to determine these cross sections with an uncertainty below 6%. This result was achieved by an accurate beam selection and registration of both fission fragments in coincidence which were also clearly distinguished from other reaction channels. These data solve existing discrepancies between previous measurements, providing new values for the Prokofiev systematics. The data also allow us to investigate the fission process at high excitation energies and small deformations. In particular, some fundamental questions about fission dynamics have been addressed, which are related to dissipative and transient time effects. (authors)

  7. On fusion/fission chain reactions in the Fleischmann-Pons cold fusion experiment

    International Nuclear Information System (INIS)

    Anghaie, S.; Froelich, P.; Monkhorst, H.J.

    1990-01-01

    In this paper the possibility of fusion/fission chain reactions following d-d source reactions in electrochemical cold fusion experiments have been investigated. The recycling factors for the charged particles in fusion reactions with consumable nuclei deuteron, 6 Li nd 7 Li, are estimated. It is concluded that, based on the established nuclear fusion cross sections and electronic stopping power, the recycling factor is four to five orders of magnitude less than required for close to critical conditions. It is argued that the cross generation of charged particles by neutrons does not play a significant role in this process, even if increased densities at the surface of electrodes do occur

  8. Easy 3D Mapping for Indoor Navigation of Micro UAVs

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Totu, Luminita Cristiana; La Cour-Harbo, Anders

    2017-01-01

    Indoor operation of micro air vehicles (UAS or UAV) is significantly simplified with the availability of some means for indoor localization as well as a sufficiently precise 3D map of the facility. Creation of 3D maps based on the available architectural information should on the one hand provide...... a map of sufficient precision and on the other limit complexity to a manageable level. This paper presents a box based approach for easy generation 3D maps to serve as the basis for indoor navigation of UAS. The basic building block employed is a 3D axis parallel box (APB). Unions of APBs constitute...... with arguments for pivotal design choices and a selection of examples....

  9. Fission product behaviour during operation of the second Peach Bottom core

    International Nuclear Information System (INIS)

    Malinauskas, A.P.; Nordwall, H.J. de; Dyer, F.F.; Wichner, R.P.; Martin, W.J.; Kolb, J.O.

    1976-01-01

    The Peach Bottom high-temperature, gas-cooled reactor began operation on 1 June 1967 and continued power production until 9 October 1969, accumulating 452 equivalent full power days (EFPD) operation. After reload, power production with Core 2 began 14 July 1970 and terminated 31 October 1974 after 897 EFPD operation. Surveillance of fission product release and behaviour was intensified during Core 2 operation to permit a wider range of measurements to be made. In addition to monitoring the noble gas content of the fuel element purge system and the coolant circuit, the programme was extended to include measurements of radioactive and other condensible species (including dust) entering or exiting the core and steam generator, and of surface concentrations of gamma-emitting nuclides deposited on the primary coolant surfaces. These data, which were obtained over the operating period April 1971 - October 1974, are summarized and discussed. The data demonstrate that caesium behaviour in the coolant circuit during the first two-thirds of Core 2 life was primarily governed by caesium released during Core 1 operation. The data also indicate that whereas the steam generator surfaces attenuate molecular caesium concentrations in the coolant, the dust-borne component is remarkably persistent. Driver fuel elements were removed from the reactor after 385 EFPD, 701 EFPD, and at end-of-life. These fuel elements are at various stages of an intensive post-irradiation examination. Some of the axial and radial concentration profiles of fission products which have been obtained are likewise presented. Although these profiles indicate varied fission product behaviour, the observations can in general be qualitatively described on the basis of the operational histories of the fuel elements. (author)

  10. Summary of the Manufacture, Testing and Model Validation of a Full-Scale Radiator for Fission Surface Power Applications

    Science.gov (United States)

    Ellis, David L.; Calder, James; Siamidis, John

    2011-01-01

    A full-scale radiator for a lunar fission surface power application was manufactured by Material innovations, Inc., for the NASA Glenn Research Center. The radiator was designed to reject 6 kWt with an inlet water temperature of 400 K and a water mass flow rate of 0.5 kg/s. While not flight hardware, the radiator incorporated many potential design features and manufacturing techniques for future flight hardware. The radiator was tested at NASA Glenn Research Center for heat rejection performance. The results showed that the radiator design was capable of rejecting over 6 kWt when operating at the design conditions. The actual performance of the radiator as a function of operational manifolds, inlet water temperature and facility sink temperature was compared to the predictive model developed by NASA Glenn Research Center. The results showed excellent agreement with the model with the actual average face sheet temperature being within 1% of the predicted value. The results will be used in the design and production of NASA s next generation fission power heat rejection systems. The NASA Glenn Research Center s Technology Demonstration Unit will be the first project to take advantage of the newly developed manufacturing techniques and analytical models.

  11. Critical masses of miniexplosion in fission-fusion hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Kaliski, S [Polska Akademia Nauk, Warsaw. Inst. Podstawowych Problemow Techniki

    1976-01-01

    The critical mass of the fissionable material subjected to the explosive compression and the action of the neutron stream originating from the process of D-T fusion in the spherical cavity was estimated. High energy recovery from the fissionable material was obtained and the energy of the laser pulse was minimized.

  12. New isomeric states in 152,154,156Nd produced by spontaneous fission of 252Cf

    International Nuclear Information System (INIS)

    Gautherin, C.; Houry, M.; Korten, W.; Le Coz, Y.; Lucas, R.; Phan, X.H.; Theisen, C.; Belier, G.; Girod, M.; Meot, V.; Peru, S.; Astier, A.; Ducroux, L.; Meyer, M.; Redon, N.

    1998-01-01

    Isomeric states have been observed in fission-fragments produced by spontaneous fission of 252 Cf. These states are found in neutron rich nuclei of different structure and deformations. About 50 isomeric nuclei have been observed using coincidences between γ-rays identified in EUROGAM II and fission fragments detected in photovoltaic cells (SAPhIR). Lifetimes in the range from 20 ns to 2μs have been measured. Presented calculations based on HFB+D1S force on new measured isomeric states in the 152,154,156 Nd show evidence for K-isomers. (orig.)

  13. Conceptual design of the blanket and power conversion system for a mirror hybrid fusion-fission reactor. 12-month progress report, July 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    Schultz, K.R.; Baxi, C.B.; Rao, R.

    1976-01-01

    This report presents the conceptual design and preliminary feasibility assessment for the hybrid blanket and power conversion system of the Mirror Hybrid Fusion-Fission Reactor. Existing gas-cooled fission reactor technology is directly applicable to the Mirror Hybrid Reactor. There are a number of aspects of the present conceptual design that require further design and analysis effort. The blanket and power conversion system operating parameters have not been optimized. The method of supporting the blanket modules and the interface between these modules and the primary loop helium ducting will require further design work. The means of support and containment of the primary loop components must be studied. Nevertheless, in general, the conceptual design appears quite feasible

  14. Advances on fission chamber modelling

    International Nuclear Information System (INIS)

    Filliatre, Philippe; Jammes, Christian; Geslot, Benoit; Veenhof, Rob

    2013-06-01

    In-vessel, online neutron flux measurements are routinely performed in mock-up and material testing reactors by fission chambers. Those measurements have a wide range of applications, including characterization of experimental conditions, reactor monitoring and safety. Depending on the application, detectors may experience a wide range of constraints, of several magnitudes, in term of neutron flux, gamma-ray flux, temperature. Hence, designing a specific fission chamber and measuring chain for a given application is a demanding task. It can be achieved by a combination of experimental feedback and simulating tools, the latter being based on a comprehensive understanding of the underlying physics. A computation route that simulates fission chambers, named CHESTER, is presented. The retrieved quantities of interest are the neutron-induced charge spectrum, the electronic and ionic pulses, the mean current and variance, the power spectrum. It relies on the GARFIELD suite, originally developed for drift chambers, and makes use of the MAGBOLTZ code to assess the drift parameters of electrons within the filling gas, and the SRIM code to evaluate the stopping range of fission products. The effect of the gamma flux is also estimated. Computations made with several fission chambers exemplify the possibilities of the route. A good qualitative agreement is obtained when comparing the results with the experimental data available to date. In a near future, a comprehensive experimental programme will be undertaken to qualify the route using the known neutron sources, mock-up reactors and wide choice of fission chambers, with a stress on the predictiveness of the Campbelling mode. Depending on the results, a refinement of the modelling and an effort on the accuracy of input data are also to be considered. CHESTER will then make it possible to predict the overall sensitivity of a chamber, and to optimize the design for a given application. Another benefit will be to increase the

  15. Detergent-induced stabilization and improved 3D map of the human heteromeric amino acid transporter 4F2hc-LAT2.

    Science.gov (United States)

    Meury, Marcel; Costa, Meritxell; Harder, Daniel; Stauffer, Mirko; Jeckelmann, Jean-Marc; Brühlmann, Béla; Rosell, Albert; Ilgü, Hüseyin; Kovar, Karin; Palacín, Manuel; Fotiadis, Dimitrios

    2014-01-01

    Human heteromeric amino acid transporters (HATs) are membrane protein complexes that facilitate the transport of specific amino acids across cell membranes. Loss of function or overexpression of these transporters is implicated in several human diseases such as renal aminoacidurias and cancer. HATs are composed of two subunits, a heavy and a light subunit, that are covalently connected by a disulphide bridge. Light subunits catalyse amino acid transport and consist of twelve transmembrane α-helix domains. Heavy subunits are type II membrane N-glycoproteins with a large extracellular domain and are involved in the trafficking of the complex to the plasma membrane. Structural information on HATs is scarce because of the difficulty in heterologous overexpression. Recently, we had a major breakthrough with the overexpression of a recombinant HAT, 4F2hc-LAT2, in the methylotrophic yeast Pichia pastoris. Microgram amounts of purified protein made possible the reconstruction of the first 3D map of a human HAT by negative-stain transmission electron microscopy. Here we report the important stabilization of purified human 4F2hc-LAT2 using a combination of two detergents, i.e., n-dodecyl-β-D-maltopyranoside and lauryl maltose neopentyl glycol, and cholesteryl hemisuccinate. The superior quality and stability of purified 4F2hc-LAT2 allowed the measurement of substrate binding by scintillation proximity assay. In addition, an improved 3D map of this HAT could be obtained. The detergent-induced stabilization of the purified human 4F2hc-LAT2 complex presented here paves the way towards its crystallization and structure determination at high-resolution, and thus the elucidation of the working mechanism of this important protein complex at the molecular level.

  16. Detergent-induced stabilization and improved 3D map of the human heteromeric amino acid transporter 4F2hc-LAT2.

    Directory of Open Access Journals (Sweden)

    Marcel Meury

    Full Text Available Human heteromeric amino acid transporters (HATs are membrane protein complexes that facilitate the transport of specific amino acids across cell membranes. Loss of function or overexpression of these transporters is implicated in several human diseases such as renal aminoacidurias and cancer. HATs are composed of two subunits, a heavy and a light subunit, that are covalently connected by a disulphide bridge. Light subunits catalyse amino acid transport and consist of twelve transmembrane α-helix domains. Heavy subunits are type II membrane N-glycoproteins with a large extracellular domain and are involved in the trafficking of the complex to the plasma membrane. Structural information on HATs is scarce because of the difficulty in heterologous overexpression. Recently, we had a major breakthrough with the overexpression of a recombinant HAT, 4F2hc-LAT2, in the methylotrophic yeast Pichia pastoris. Microgram amounts of purified protein made possible the reconstruction of the first 3D map of a human HAT by negative-stain transmission electron microscopy. Here we report the important stabilization of purified human 4F2hc-LAT2 using a combination of two detergents, i.e., n-dodecyl-β-D-maltopyranoside and lauryl maltose neopentyl glycol, and cholesteryl hemisuccinate. The superior quality and stability of purified 4F2hc-LAT2 allowed the measurement of substrate binding by scintillation proximity assay. In addition, an improved 3D map of this HAT could be obtained. The detergent-induced stabilization of the purified human 4F2hc-LAT2 complex presented here paves the way towards its crystallization and structure determination at high-resolution, and thus the elucidation of the working mechanism of this important protein complex at the molecular level.

  17. Utilizing Yagi antennas in Lightning Mapping Array to detect low-power VHF signals

    Science.gov (United States)

    Tilles, J.; Thomas, R. J.; Edens, H. E.; Krehbiel, P. R.; Rison, W.

    2013-12-01

    The New Mexico Tech VHF Lightning Mapping Array (LMA) being operated at Langmuir Laboratory in central New Mexico is comprised of 22 time-of-arrival stations spanning an area approximately 60 km north-south and 45 km east-west. Nine stations are at high altitude (3.1-3.3 km GPS) over a 3 x 4 km area around the mountain-top Laboratory, and 13 are on the surrounding plains and the Rio Grande valley, at altitudes between 1.4 and 2.2 km. Each station utilizes a vertical half-wave dipole antenna having about 2 dBi gain at horizontal incidence and providing omnidirectional azimuthal coverage. In 2012, four additional stations utilizing higher gain (11 dBi) Yagi antennas were co-located at four of the surrounding sites within 10-15 km of the laboratory, each pointed over the laboratory area. The purpose was to test if directional antennas would improve detection of low-power sources in the laboratory vicinity, such as those associated with positive breakdown or weak precursor events. The test involved comparing the number and quality of radiation sources obtained by processing data from two sets of stations: first for a 17-station network in which all stations were omnidirectional, and then for the same network with Yagi-based measurements substituted in place of the omni measurements at the four co-located stations. For radiation events located in both datasets, the indicated source power values from Yagi stations were typically 5-10 dB greater than their omnidirectional counterpart for sources over or near the laboratory, consistent with the 9 dB difference in on-axis gain values. The difference decreased through zero and to negative values with increasing distance from the laboratory, confirming that it was due to the directionality of the Yagi antennas. It was expected that a network having Yagi antennas at all outlying stations would improve the network's detection of lower power sources in its central region. Rather, preliminary results show that there is no

  18. Attachment behavior of fission products to solution aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Takamiya, Koichi; Tanaka, Toru; Nitta, Shinnosuke; Itosu, Satoshi; Sekimoto, Shun; Oki, Yuichi; Ohtsuki, Tsutomu [Research Reactor Institute, Kyoto University, Osaka (Japan)

    2016-12-15

    Various characteristics such as size distribution, chemical component and radioactivity have been analyzed for radioactive aerosols released from Fukushima Daiichi Nuclear Power Plant. Measured results for radioactive aerosols suggest that the potential transport medium for radioactive cesium was non-sea-salt sulfate. This result indicates that cesium isotopes would preferentially attach with sulfate compounds. In the present work the attachment behavior of fission products to aqueous solution aerosols of sodium salts has been studied using a generation system of solution aerosols and spontaneous fission source of {sup 248}Cm. Attachment ratios of fission products to the solution aerosols were compared among the aerosols generated by different solutions of sodium salt. A significant difference according as a solute of solution aerosols was found in the attachment behavior. The present results suggest the existence of chemical effects in the attachment behavior of fission products to solution aerosols.

  19. Application of Higher Order Fission Matrix for Real Variance Estimation in McCARD Monte Carlo Eigenvalue Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ho Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Shim, Hyung Jin [Seoul National University, Seoul (Korea, Republic of)

    2015-05-15

    In a Monte Carlo (MC) eigenvalue calculation, it is well known that the apparent variance of a local tally such as pin power differs from the real variance considerably. The MC method in eigenvalue calculations uses a power iteration method. In the power iteration method, the fission matrix (FM) and fission source density (FSD) are used as the operator and the solution. The FM is useful to estimate a variance and covariance because the FM can be calculated by a few cycle calculations even at inactive cycle. Recently, S. Carney have implemented the higher order fission matrix (HOFM) capabilities into the MCNP6 MC code in order to apply to extend the perturbation theory to second order. In this study, the HOFM capability by the Hotelling deflation method was implemented into McCARD and used to predict the behavior of a real and apparent SD ratio. In the simple 1D slab problems, the Endo's theoretical model predicts well the real to apparent SD ratio. It was noted that the Endo's theoretical model with the McCARD higher mode FS solutions by the HOFM yields much better the real to apparent SD ratio than that with the analytic solutions. In the near future, the application for a high dominance ratio problem such as BEAVRS benchmark will be conducted.

  20. 3D Geological Mapping - uncovering the subsurface to increase environmental understanding

    Science.gov (United States)

    Kessler, H.; Mathers, S.; Peach, D.

    2012-12-01

    Geological understanding is required for many disciplines studying natural processes from hydrology to landscape evolution. The subsurface structure of rocks and soils and their properties occupies three-dimensional (3D) space and geological processes operate in time. Traditionally geologists have captured their spatial and temporal knowledge in 2 dimensional maps and cross-sections and through narrative, because paper maps and later two dimensional geographical information systems (GIS) were the only tools available to them. Another major constraint on using more explicit and numerical systems to express geological knowledge is the fact that a geologist only ever observes and measures a fraction of the system they study. Only on rare occasions does the geologist have access to enough real data to generate meaningful predictions of the subsurface without the input of conceptual understanding developed from and knowledge of the geological processes responsible for the deposition, emplacement and diagenesis of the rocks. This in turn has led to geology becoming an increasingly marginalised science as other disciplines have embraced the digital world and have increasingly turned to implicit numerical modelling to understand environmental processes and interactions. Recent developments in geoscience methodology and technology have gone some way to overcoming these barriers and geologists across the world are beginning to routinely capture their knowledge and combine it with all available subsurface data (of often highly varying spatial distribution and quality) to create regional and national geological three dimensional geological maps. This is re-defining the way geologists interact with other science disciplines, as their concepts and knowledge are now expressed in an explicit form that can be used downstream to design process models structure. For example, groundwater modellers can refine their understanding of groundwater flow in three dimensions or even directly

  1. Subsurface Profile Mapping using 3-D Compressive Wave Imaging

    Directory of Open Access Journals (Sweden)

    Hazreek Z A M

    2017-01-01

    Full Text Available Geotechnical site investigation related to subsurface profile mapping was commonly performed to provide valuable data for design and construction stage based on conventional drilling techniques. From past experience, drilling techniques particularly using borehole method suffer from limitations related to expensive, time consuming and limited data coverage. Hence, this study performs subsurface profile mapping using 3-D compressive wave imaging in order to minimize those conventional method constraints. Field measurement and data analysis of compressive wave (p-wave, vp was performed using seismic refraction survey (ABEM Terraloc MK 8, 7 kg of sledgehammer and 24 units of vertical geophone and OPTIM (SeisOpt@Picker & SeisOpt@2D software respectively. Then, 3-D compressive wave distribution of subsurface studied was obtained using analysis of SURFER software. Based on 3-D compressive wave image analyzed, it was found that subsurface profile studied consist of three main layers representing top soil (vp = 376 – 600 m/s, weathered material (vp = 900 – 2600 m/s and bedrock (vp > 3000 m/s. Thickness of each layer was varied from 0 – 2 m (first layer, 2 – 20 m (second layer and 20 m and over (third layer. Moreover, groundwater (vp = 1400 – 1600 m/s starts to be detected at 2.0 m depth from ground surface. This study has demonstrated that geotechnical site investigation data related to subsurface profiling was applicable to be obtained using 3-D compressive wave imaging. Furthermore, 3-D compressive wave imaging was performed based on non destructive principle in ground exploration thus consider economic, less time, large data coverage and sustainable to our environment.

  2. JEFF-3T. Decay data and fission yield libraries

    International Nuclear Information System (INIS)

    Bersillon, O.; Blachot, J.; Dean, C.J.; Mills, R.W.; Nichols, A.L.; Nouri, A.

    2002-01-01

    Comprehensive decay-data and fission-yield libraries provide important input to a wide range of nuclear physics codes for nuclear applications. A new initiative has begun under the auspices of the NEA/OECD to generate improved data sets that will constitute the JEFF-3 libraries in ENDF-6 format, primarily for nuclear power, fuel reprocessing and waste management needs. Various sources of decay data have been accessed in order to assemble these files: NUBASE, ENSDF, UKPADD-6 and UKHEDD-2. Efforts have also focused on the evaluation of decay data for a number of important short-lived fission products, so that artificial adjustments to some of the relevant decay data and fission yields are not required to accommodate a previous lack of such data. Fission yields were adopted from UK evaluations recently undertaken to create the UKFY3 library. Decay-data files for 3 755 nuclides have been prepared, including sets of data for the stable nuclides (i.e. mass, natural abundance, spin and parity). Problems in the assignment of ENDF material numbers were addressed, while format and consistency tests were made using CHECKR and FIZCON, respectively. The assembly processes are discussed and reviewed, and the contents of the JEFF-3T starter libraries are described. (author)

  3. REJUVENATING THE MATTER POWER SPECTRUM: RESTORING INFORMATION WITH A LOGARITHMIC DENSITY MAPPING

    International Nuclear Information System (INIS)

    Neyrinck, Mark C.; Szalay, Alexander S.; Szapudi, Istvan

    2009-01-01

    We find that nonlinearities in the dark matter power spectrum are dramatically smaller if the density field first undergoes a logarithmic mapping. In the Millennium simulation, this procedure gives a power spectrum with a shape hardly departing from the linear power spectrum for k ∼ -1 at all redshifts. Also, this procedure unveils pristine Fisher information on a range of scales reaching a factor of 2-3 smaller than in the standard power spectrum, yielding 10 times more cumulative signal to noise at z = 0.

  4. Fission and activation of uranium by fashion-plasma neutrons

    International Nuclear Information System (INIS)

    Lee, J.H.; Hochl, F.; McFarland, D.R.

    1978-01-01

    Disks of enriched and depleted uranium were irradiated by neutrons from the D-D fusions in a dense plasma-focus. A fission yield of 10 6 fissions-cm -3 in U 235 per pulse was determined with Ge(Li) gamme-ray spectrometry. Activation of U 238 caused increased beta activity after the plasma-neutron irradiation but alpha-particle spectrometry showed Pu 239 production was negligible. In addition, with a disk of lithium in the apparatus, 13.3 MeV neutrons from 7 Li(d,n) 8 Be was observed with a 80-m time-of-flight neutron detector. Dense plasma focuses are now operated not only in a single coaxial gun, but also in improved geometries, such as the hypocycloidal pinch and the staged plasma focus, from which a multiple plasma-focus array suitable for experimental verification of, and eventuel development into a fusion-fission hybrid reactor could be produced. (orig.) [de

  5. Physical Investigation for Neutron Consumption and Multiplication in Blanket Module of Fusion-Fission Hybrid Reactor

    International Nuclear Information System (INIS)

    Tariq Siddique, M.; Kim, Myung Hyun

    2014-01-01

    Fusion-fission hybrid reactor can be the first milestone of fusion technology and achievable in near future. It can provide operational experience for tritium recycling for pure fusion reactor and be used for incineration of high-level long-lived waste isotopes from existing fission power reactors. Hybrid reactor for waste transmutation (Hyb-WT) was designed and optimized to assess its otential for waste transmutation. ITER will be the first large scaled experimental tokamak facility for the testing of test blanket modules (TBM) which will layout the foundation for DEMO fusion power plants. Similarly hybrid test blanket module (HTBM) will be the foundation for rationality of fusion fission hybrid reactors. Designing and testing of hybrid blankets will lead to another prospect of nuclear technology. This study is initiated with a preliminary design concept of a hybrid test blanket module (HTBM) which would be tested in ITER. The neutrons generated in D-T fusion plasma are of high energy, 14.1 MeV which could be multiplied significantly through inelastic scattering along with fission in HTBM. In current study the detailed neutronic analysis is performed for the blanket module which involves the neutron growth and loss distribution within blanket module with the choice of different fuel and coolant materials. TRU transmutation and tritium breeding performance of HTBM is analyzed under ITER irradiation environment for five different fuel types and with Li and LiPb coolants. Simple box geometry with plate type TRU fuel is adopted so that it can be modelled with heterogeneous material geometry in MCNPX. Waste transmutation ratio (WTR) of TRUs and tritium breeding ration (TBR) is computed to quantify the HTBM performance. Neutron balance is computed in detail to analyze the performance parameters of HTBM. Neutron spectrum and fission to capture ratio in TRU fuel types is also calculated for detailed analysis of HTBM

  6. Physical Investigation for Neutron Consumption and Multiplication in Blanket Module of Fusion-Fission Hybrid Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tariq Siddique, M.; Kim, Myung Hyun [Kyung Hee Univ., Yongin (Korea, Republic of)

    2014-05-15

    Fusion-fission hybrid reactor can be the first milestone of fusion technology and achievable in near future. It can provide operational experience for tritium recycling for pure fusion reactor and be used for incineration of high-level long-lived waste isotopes from existing fission power reactors. Hybrid reactor for waste transmutation (Hyb-WT) was designed and optimized to assess its otential for waste transmutation. ITER will be the first large scaled experimental tokamak facility for the testing of test blanket modules (TBM) which will layout the foundation for DEMO fusion power plants. Similarly hybrid test blanket module (HTBM) will be the foundation for rationality of fusion fission hybrid reactors. Designing and testing of hybrid blankets will lead to another prospect of nuclear technology. This study is initiated with a preliminary design concept of a hybrid test blanket module (HTBM) which would be tested in ITER. The neutrons generated in D-T fusion plasma are of high energy, 14.1 MeV which could be multiplied significantly through inelastic scattering along with fission in HTBM. In current study the detailed neutronic analysis is performed for the blanket module which involves the neutron growth and loss distribution within blanket module with the choice of different fuel and coolant materials. TRU transmutation and tritium breeding performance of HTBM is analyzed under ITER irradiation environment for five different fuel types and with Li and LiPb coolants. Simple box geometry with plate type TRU fuel is adopted so that it can be modelled with heterogeneous material geometry in MCNPX. Waste transmutation ratio (WTR) of TRUs and tritium breeding ration (TBR) is computed to quantify the HTBM performance. Neutron balance is computed in detail to analyze the performance parameters of HTBM. Neutron spectrum and fission to capture ratio in TRU fuel types is also calculated for detailed analysis of HTBM.

  7. 60 years controlled nuclear fission: CP-1

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    On December 2, 1942, the Chicago Pile 1 (CP-1) went critical for the first time. In this way, the scientists and engineers involved in the project under the leadership of Enrico Fermi succeeded in demonstrating that a self-sustaining nuclear reaction with nuclear fission processes was technically feasible. Only four years after the discovery and proof of nuclear fission by Otto Hahn, Fritz Strassmann, and Lise Meitner, the experiment consisting of graphite blocks as the moderator and uranium dioxide pellets as the fuel, as well as instrumentation and control devices, had been set up in the former squash court of the field and track stadium of the University of Chicago. Precisely at 3.36 a.m. Chicago time, after control rods had been withdrawn, the instruments showed the chain reaction by the neutron flux they indicated. An important cornerstone in the use of nuclear power had thus been laid. (orig.)

  8. Solid State Track Recorder fission rate measurements in low power light water reactor pressure vessel mockups

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Roberts, J.H.; Kellogg, L.S.

    1985-01-01

    The results of extensive SSTR measurements made at the Pool Critical Assembly (PCA) facility at Oak Ridge National Laboratory have been reported previously. Measurements were made at key locations in PCA which is an idealized mockup of the water gap, thermal shield, pressure vessel geometry of a light water reactor. Recently, additional SSTR fission rate measurements have been carried out for 237-Np, 238-U, and 235-U in key locations in the NESTOR Shielding and Dosimetry Improvement Program (NESDIP) mockup facility located at Winfrith, England. NESDIP is a replica of the PCA facility, and comparisons will be made between PCA and NESDIP measurements. The results of measurements made at the engineering mockup at the VENUS critical assembly at CEN/SCK, Mol, Belgium will also be reported. Measurements were made at selected radial and azimuthal locations in VENUS, which models the in-core and near-core regions of a pressurized water reactor. Comparisons of absolute SSTR fission rates with absolute fission rates made with the Mol miniature fission chamber will be reported. Absolute fission rate comparisons have also been made between the NBS fission chamber, radiometric fission foils, and SSTRs, and these results will be summarized

  9. Fission product and aerosol behaviour within the containment

    International Nuclear Information System (INIS)

    Beard, A.M.; Benson, C.G.; Bowsher, B.R.; Dickinson, S.; Nichols, A.L.

    1990-04-01

    Experimental studies have been undertaken to characterise the behaviour of fission products in the containment of a pressurised water reactor during a severe accident. The following aspects of fission product transport have been studied: (a) aerosol nucleation, (b) vapour transport processes, (c) chemical forms of high-temperature vapours, (d) interaction of fission product vapours with aerosols generated from within the reactor core, (e) resuspension processes, (f) chemistry in the containment. Chemical effects have been shown to be important in defining and quantifying fission product source terms in a wide range of accident sequences. Both the chemical forms of the fission product vapours and their interactions with reactor materials aerosols could have a major effect on the magnitude and physicochemical forms of the radioactive emission from a severe reactor accident. Only the main conclusions are presented in this summary document; detailed technical aspects of the work are described in separate reports listed in the annex

  10. Roles of plasma neutron source reactor in development of fusion reactor engineering: Comparison with fission reactor engineering

    International Nuclear Information System (INIS)

    Hirayama, Shoichi; Kawabe, Takaya

    1995-01-01

    The history of development of fusion power reactor has come to a turning point, where the main research target is now shifting from the plasma heating and confinement physics toward the burning plasma physics and reactor engineering. Although the development of fusion reactor system is the first time for human beings, engineers have experience of development of fission power reactor. The common feature between them is that both are plants used for the generation of nuclear reactions for the production of energy, nucleon, and radiation on an industrial scale. By studying the history of the development of the fission reactor, one can find the existence of experimental neutron reactors including irradiation facilities for fission reactor materials. These research neutron reactors played very important roles in the development of fission power reactors. When one considers the strategy of development of fusion power reactors from the points of fusion reactor engineering, one finds that the fusion neutron source corresponds to the neutron reactor in fission reactor development. In this paper, the authors discuss the roles of the plasma-based neutron source reactors in the development of fusion reactor engineering, by comparing it with the neutron reactors in the history of fission power development, and make proposals for the strategy of the fusion reactor development. 21 refs., 6 figs

  11. Fission level densities

    International Nuclear Information System (INIS)

    Maslov, V.M.

    1998-01-01

    Fission level densities (or fissioning nucleus level densities at fission saddle deformations) are required for statistical model calculations of actinide fission cross sections. Back-shifted Fermi-Gas Model, Constant Temperature Model and Generalized Superfluid Model (GSM) are widely used for the description of level densities at stable deformations. These models provide approximately identical level density description at excitations close to the neutron binding energy. It is at low excitation energies that they are discrepant, while this energy region is crucial for fission cross section calculations. A drawback of back-shifted Fermi gas model and traditional constant temperature model approaches is that it is difficult to include in a consistent way pair correlations, collective effects and shell effects. Pair, shell and collective properties of nucleus do not reduce just to the renormalization of level density parameter a, but influence the energy dependence of level densities. These effects turn out to be important because they seem to depend upon deformation of either equilibrium or saddle-point. These effects are easily introduced within GSM approach. Fission barriers are another key ingredients involved in the fission cross section calculations. Fission level density and barrier parameters are strongly interdependent. This is the reason for including fission barrier parameters along with the fission level densities in the Starter File. The recommended file is maslov.dat - fission barrier parameters. Recent version of actinide fission barrier data obtained in Obninsk (obninsk.dat) should only be considered as a guide for selection of initial parameters. These data are included in the Starter File, together with the fission barrier parameters recommended by CNDC (beijing.dat), for completeness. (author)

  12. Fusion-fission hybrid design with analysis of direct enrichment and non-proliferation features (the SOLASE-H study)

    International Nuclear Information System (INIS)

    Conn, R.W.; Abdel-Khalik, S.I.; Moses, G.A.; Kulcinski, G.L.; Larsen, E.; Maynard, C.W.; Magheb, M.M.H.; Sviatolslavsky, I.N.; Vogelsang, W.F.; Wolfer, W.G.

    1981-01-01

    The role of a fusion-fission hybrid in the context of a nuclear economy with and without reprocessing is examined. An inertial confinement fusion driver is assumed and a consistent set of reactor parameters are developed. The form of the driver is not critical, however, to the general concepts. The use of the hybrid as a fuel factory within a secured fuel production and reprocessing center is considered. Either the hybrid or a low power fission reactor can be used to mildly irradiate fuel prior to shipment to offsite reactors thereby rendering the fuel resistant to diversion. A simplified economic analysis indicates a hybrid providing fuel to 10 fission reactors of equal thermal power is insensitive to the recirculating power fraction provided reprocessing is permitted. If reprocessing is not allowed, the hybrid can be used to directly enrich light water reactor fuel bundles fabricated initially from fertile fuel (either ThO 2 or 238 UO 2 ). A detailed neutronic analysis indicates such direct enrichments is feasible but the support ratio for 233 U or 239 Pu production is only 2, making such an approach highly sensitive to the hybrid cost. The hybrid would have to produce considerable net power for economic feasibility in this case. Inertial confinement fusion performance requirements for hybrid application are also examined and an integrated design, SOLASE-H, is described based upon the direct enrichment concept. (orig.)

  13. Singlet-triplet fission of carotenoid excitation in light-harvesting LH2 complexes of purple phototrophic bacteria.

    Science.gov (United States)

    Klenina, I B; Makhneva, Z K; Moskalenko, A A; Gudkov, N D; Bolshakov, M A; Pavlova, E A; Proskuryakov, I I

    2014-03-01

    The current generally accepted structure of light-harvesting LH2 complexes from purple phototrophic bacteria conflicts with the observation of singlet-triplet carotenoid excitation fission in these complexes. In LH2 complexes from the purple bacterium Allochromatium minutissimum, a drop in the efficiency of carotenoid triplet generation is demonstrated, which correlates with the extent of selective photooxidation of bacteriochlorophylls absorbing at ~850 nm. We conclude that singlet-triplet fission of carotenoid excitation proceeds with participation of these excitonically coupled bacteriochlorophylls. In the framework of the proposed mechanism, the contradiction between LH2 structure and photophysical properties of carotenoids is eliminated. The possibility of singlet-triplet excitation fission involving a third mediator molecule was not considered earlier.

  14. SPHERICAL HARMONIC ANALYSES OF INTENSITY MAPPING POWER SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Adrian; Zhang, Yunfan; Parsons, Aaron R., E-mail: acliu@berkeley.edu [Department of Astronomy and Radio Astronomy Laboratory, University of California Berkeley, Berkeley, CA 94720 (United States)

    2016-12-20

    Intensity mapping is a promising technique for surveying the large-scale structure of our universe from z  = 0 to z  ∼ 150, using the brightness temperature field of spectral lines to directly observe previously unexplored portions of our cosmic timeline. Examples of targeted lines include the 21 cm hyperfine transition of neutral hydrogen, rotational lines of carbon monoxide, and fine-structure lines of singly ionized carbon. Recent efforts have focused on detections of the power spectrum of spatial fluctuations, but have been hindered by systematics such as foreground contamination. This has motivated the decomposition of data into Fourier modes perpendicular and parallel to the line of sight, which has been shown to be a particularly powerful way to diagnose systematics. However, such a method is well-defined only in the limit of a narrow-field, flat-sky approximation. This limits the sensitivity of intensity mapping experiments, as it means that wide surveys must be separately analyzed as a patchwork of smaller fields. In this paper, we develop a framework for analyzing intensity mapping data in a spherical Fourier–Bessel basis, which incorporates curved sky effects without difficulty. We use our framework to generalize a number of techniques in intensity mapping data analysis from the flat sky to the curved sky. These include visibility-based estimators for the power spectrum, treatments of interloper lines, and the “foreground wedge” signature of spectrally smooth foregrounds.

  15. Multimodal Sensor-Based Semantic 3D Mapping for a Large-Scale Environment

    OpenAIRE

    Jeong, Jongmin; Yoon, Tae Sung; Park, Jin Bae

    2018-01-01

    Semantic 3D mapping is one of the most important fields in robotics, and has been used in many applications, such as robot navigation, surveillance, and virtual reality. In general, semantic 3D mapping is mainly composed of 3D reconstruction and semantic segmentation. As these technologies evolve, there has been great progress in semantic 3D mapping in recent years. Furthermore, the number of robotic applications requiring semantic information in 3D mapping to perform high-level tasks has inc...

  16. The effect of UO2 density on fission product gas release and sheath expansion

    International Nuclear Information System (INIS)

    Notley, M.J.F.; MacEwan, J.R.

    1965-03-01

    The effect of UO 2 density on fission product gas release and sheath expansion has been determined in an irradiation experiment in which the performance of fuel elements with densities between 10.42 and 10.74 g/cm 3 was compared at ∫λdθ values of 39 and 42 W/cm. The elements were irradiated as clusters of four in a pressurized water loop, hence their irradiation histories were identical. Fission product gas release and the extend of grain growth were greater for the lower density elements. Both effects can be attributed solely to the variation of the thermal conductivity of the fuel with the fractional porosity p, if λ p λ [1 - (2.6 ± 0.8) p] where λ is the thermal conductivity of fully dense UO 2 and λ p is that of the porous UO 2 . This expression is in agreement with laboratory findings. A correlation between the extent of grain growth in the UO 2 and the fractional gas release was found to exist in this test and was shown to apply in a large number of other fuel irradiations. Diametral sheath strain was lower for the low density fuel elements than for those of high density, although the former were deduced to have operated with higher central temperatures. It is supposed that the thermal expansion of the fuel can be partially accommodated by elimination of some of the original porosity. The data are consistent with the assumption that approximately half the porosity in the region of the fuel undergoing grain growth is eliminated. (author)

  17. Review of fission-fusion pellet designs and inertial confinement system studies at EIR

    Energy Technology Data Exchange (ETDEWEB)

    Seifriz, W [Eidgenoessisches Inst. fuer Reaktorforschung, Wuerenlingen (Switzerland)

    1978-01-01

    The article summarizes the work done so far at the Swiss Federal Institute for Reactor Research (EIR) in the field of the inertial confinement fusion technique. The following subjects are reviewed: a) fission fusion pellet designs using fissionable triggers, b) uranium tampered pellets, c) tampered pellets recycling unwanted actinide wastes from fission reactors in beam-driven micro-explosion reactors, and d) symbiotic fusion/fission reactor studies.

  18. Simulating fission product transients via the history-based local-parameter methodology

    International Nuclear Information System (INIS)

    Jenkins, D.A.; Rouben, B.; Salvatore, M.

    1993-01-01

    This paper describes the fission-product-calculation capacity of the history-based local-parameter methodology for evaluating lattice properties for use in core-tracking calculations in CANDU reactors. In addition to taking into account the individual past history of each bundles flux/power level, fuel temperature, and coolant density and temperature that the bundle has seen during its stay in the core, the latest refinement of the history-based method provides the capability of fission-product-drivers. It allows the bundle-specific concentrations of the three basic groups of saturating fission products to be calculated in steady state or following a power transient, including long shutdowns. The new capability is illustrated by simulating the startup period following a typical long-shutdown, starting from a snapshot in the Point Lepreau operating history. 9 refs., 7 tabs

  19. Fission gas and iodine release measured up to 15 GWd/t UO2 burnup

    International Nuclear Information System (INIS)

    Appelhans, A.D.

    1983-01-01

    A summary is presented of the measured release of xenon, krypton and iodine up to 15 GWd/t UO 2 burnup for fuel centerline temperatures ranging from 950 to 1800 K, at average linear heat ratings of 15 to 35 kW/m. The IFA-430 is composed of four 1.28-m-long fuel rods containing 10% enriched UO 2 pellet fuel. Two of the fuel rods are connected, top and bottom, to a gas flow system that permits the fission gases released from the fuel pellets to be swept out of the rods during irradiation and measured via gamma spectrometry. The release/burnup increased significantly between 10 and 15 GWd/t burnup. Fuel temperature did not change. Increased releases were due to physical changes in the fuel-surface area. Changes appeared to be due to higher power operation and burnup

  20. Fission Fragment Mass Distributions and Total Kinetic Energy Release of 235-Uranium and 238-Uranium in Neutron-Induced Fission at Intermediate and Fast Neutron Energies

    Energy Technology Data Exchange (ETDEWEB)

    Duke, Dana Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-12

    This Ph.D. dissertation describes a measurement of the change in mass distributions and average total kinetic energy (TKE) release with increasing incident neutron energy for fission of 235U and 238U. Although fission was discovered over seventy-five years ago, open questions remain about the physics of the fission process. The energy of the incident neutron, En, changes the division of energy release in the resulting fission fragments, however, the details of energy partitioning remain ambiguous because the nucleus is a many-body quantum system. Creating a full theoretical model is difficult and experimental data to validate existing models are lacking. Additional fission measurements will lead to higher-quality models of the fission process, therefore improving applications such as the development of next-generation nuclear reactors and defense. This work also paves the way for precision experiments such as the Time Projection Chamber (TPC) for fission cross section measurements and the Spectrometer for Ion Determination in Fission (SPIDER) for precision mass yields.

  1. Resolving power test of 2-D K{sup +} K{sup +} interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Padula, Sandra S.; Roldao, Christiane G. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil)

    1999-07-01

    Adopting a procedure previously proposed to quantitatively study pion interferometry {sup 1} , an equivalent 2-D X{sup 2} analysis was performed to test the resolving power of that method when applied to less favorable conditions, when no significant contribution from long lived resonances is expected, as in kaon interferometry. For that purpose, use is made of the preliminary E859 K{sup +}K{sup +} interferometry data from Si+Au collisions at 14.6 A GeV/c. Less sensitivity is achieved in the present case, although it is shown that it is still possible to distinguish two distinct decoupling geometries. (author)

  2. 3D silicon breast surface mapping via structured light profilometry

    Science.gov (United States)

    Vairavan, R.; Ong, N. R.; Sauli, Z.; Kirtsaeng, S.; Sakuntasathien, S.; Shahimin, M. M.; Alcain, J. B.; Lai, S. L.; Paitong, P.; Retnasamy, V.

    2017-09-01

    Digital fringe projection technique is one of the promising optical methods for 3D surface imaging as it demonstrates non contact and non invasive characteristics. The potential of this technique matches the requirement for human body evaluation, as it is vital for disease diagnosis and for treatment option selection. Thus, the digital fringe projection has addressed this requirement with its wide clinical related application and studies. However, the application of this technique for 3D surface mapping of the breast is very minimal. Hence, in this work, the application of digital fringe projection for 3D breast surface mapping is reported. Phase shift fringe projection technique was utilized to perform the 3D breast surface mapping. Maiden results have confirmed the feasibility of using the digital fringe projection method for 3D surface mapping of the breast and it can be extended for breast cancer detection.

  3. Accurate 3D Mapping Algorithm for Flexible Antennas

    Directory of Open Access Journals (Sweden)

    Saed Asaly

    2018-01-01

    Full Text Available This work addresses the problem of performing an accurate 3D mapping of a flexible antenna surface. Consider a high-gain satellite flexible antenna; even a submillimeter change in the antenna surface may lead to a considerable loss in the antenna gain. Using a robotic subreflector, such changes can be compensated for. Yet, in order to perform such tuning, an accurate 3D mapping of the main antenna is required. This paper presents a general method for performing an accurate 3D mapping of marked surfaces such as satellite dish antennas. Motivated by the novel technology for nanosatellites with flexible high-gain antennas, we propose a new accurate mapping framework which requires a small-sized monocamera and known patterns on the antenna surface. The experimental result shows that the presented mapping method can detect changes up to 0.1-millimeter accuracy, while the camera is located 1 meter away from the dish, allowing an RF antenna optimization for Ka and Ku frequencies. Such optimization process can improve the gain of the flexible antennas and allow an adaptive beam shaping. The presented method is currently being implemented on a nanosatellite which is scheduled to be launched at the end of 2018.

  4. High Temperature Fission Chamber for He- and FLiBe-cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Zane W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giuliano, Dominic R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lance, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, Roger G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Warmack, Robert J. Bruce [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    We have evaluated candidate technologies for in-core fission chambers for high-temperature reactors to monitor power level via measurements of neutron flux from start-up through full power at up to 800°C. This research is important because there are no commercially available instruments capable of operating above 550 °C. Component materials and processes were investigated for fission chambers suitable for operation at 800 °C in reactors cooled by molten fluoride salt (FLiBe) or flowing He, with an emphasis placed on sensitivity (≥ 1 cps/nv), service lifetime (2 years at full power), and resistance to direct immersion in FLiBe. The latter gives the instrument the ability to survive accidents involving breach of a thimble. The device is envisioned to be a two-gap, three-electrode instrument constructed from concentric nickel-plated alumina cylinders and using a noble gas–nitrogen fill-gas. We report the results of measurements and calculations of the response of fill gasses, impurity migration in nickel alloy, brazing of the alumina insulator, and thermodynamic calculations.

  5. RELOS.MOD2: a code system for the determination of instationary fission product releases from molten pools

    International Nuclear Information System (INIS)

    Kortz, Ch.; Koch, M.K.; Unger, H.; Funke, F.

    1999-01-01

    For the assessment of molten corium pool source terms, a mechanistic model has been developed to describe the transport of fission products from liquid corium pool surfaces into a colder gas atmosphere. Modelling is based on an approach for diffusive and convective transport processes coupled with thermochemical equilibrium considerations enabling detailed speciation analyses of the fission products released. Both have been implemented into the code system RELOS.MOD2. RELOS.MOD2 sensitivity calculations on possible effects of anticipated uncertainties in the thermo-chemical data on the fission product release predictions are presented. (author)

  6. On the combination of delayed neutron and delayed gamma techniques for fission rate measurement in nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Perret, G.; Jordan, K. A. [Paul Scherrer Institut, Villigen, 5232 (Switzerland)

    2011-07-01

    Novel techniques to measure newly induced fissions in spent fuel after re-irradiation at low power have been developed and tested at the Proteus zero-power research reactor. The two techniques are based on the detection of high energy gamma-rays emitted by short-lived fission products and delayed neutrons. The two techniques relate the measured signals to the total fission rate, the isotopic composition of the fuel, and nuclear data. They can be combined to derive better estimates on each of these parameters. This has potential for improvement in many areas. Spent fuel characterisation and safeguard applications can benefit from these techniques for non-destructive assay of plutonium content. Another application of choice is the reduction of uncertainties on nuclear data. As a first application of the combination of the delayed neutron and gamma measurement techniques, this paper shows how to reduce the uncertainties on the relative abundances of the longest delayed neutron group for thermal fissions in {sup 235}U, {sup 239}Pu and fast fissions in {sup 238}U. The proposed experiments are easily achievable in zero-power research reactors using fresh UO{sub 2} and MOX fuel and do not require fast extraction systems. The relative uncertainties (1{sigma}) on the relative abundances are expected to be reduced from 13% to 4%, 16% to 5%, and 38% to 12% for {sup 235}U, {sup 238}U and {sup 239}Pu, respectively. (authors)

  7. Chemical effects of fission recoils

    International Nuclear Information System (INIS)

    Meisels, G.G.; Freeman, J.P.; Gregory, J.P.; Richardson, W.C.; Sroka, G.J.

    1978-01-01

    The production of nitrogen from nitrous oxide at high density was employed to investigate the energy deposition efficiency of fission recoils produced from fission of U 235 in uranium-palladium foils clad with platinum. Nitrogen production varied linearly with fission recoil dose from 1.1 x 10 20 to 9.0 x 10 20 eV, and was independent of density between 12.5 and 127.5 g l -1 N 2 O. 16.2 +- 0.8% of the fission recoil energy was deposited external to the foil. Electron microprobe analysis showed some unevenness of new foil and polymer buildup on the surface after irradiation of ethylene-oxygen mixtures. Subsequent irradiation in the presence of nitrous oxide restored some of the original efficiency. This is ascribed to chemical oxidation of the polymer induced by reactive intermediates produced from nitrous oxide. (author)

  8. A CMOS RF-to-DC Power Converter With 86% Efficiency and -19.2-dBm Sensitivity

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed; Ouda, Mahmoud H.; Salama, Khaled N.

    2018-01-01

    This paper proposes an RF-to-dc power converter for ambient wireless powering that is efficient, highly sensitive, and less dependent on the load resistance with an extended dynamic range. The proposed rectifier utilizes a variable biasing technique to control the conduction of the rectifying transistors selectively, hence minimizing the leakage current; unlike the prior work that has a fixed feedback resistors, which limits the efficient operation to a relatively high RF power and causes a drop in the peak power conversion efficiency (PCE). The proposed design is fabricated using a 0.18-μm standard CMOS technology and occupies an area of 8800 μm². The measurement results show an 86% PCE and -19.2-dBm (12 μW) sensitivity when operating at the medical band 433 MHz with a 100-kΩ load. Furthermore, the PCE is 66%, and the sensitivity is -18.2 dBm (15.1 μW) when operating at UHF 900 MHz with a 100-kΩ load.

  9. A CMOS RF-to-DC Power Converter With 86% Efficiency and -19.2-dBm Sensitivity

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed

    2018-01-09

    This paper proposes an RF-to-dc power converter for ambient wireless powering that is efficient, highly sensitive, and less dependent on the load resistance with an extended dynamic range. The proposed rectifier utilizes a variable biasing technique to control the conduction of the rectifying transistors selectively, hence minimizing the leakage current; unlike the prior work that has a fixed feedback resistors, which limits the efficient operation to a relatively high RF power and causes a drop in the peak power conversion efficiency (PCE). The proposed design is fabricated using a 0.18-μm standard CMOS technology and occupies an area of 8800 μm². The measurement results show an 86% PCE and -19.2-dBm (12 μW) sensitivity when operating at the medical band 433 MHz with a 100-kΩ load. Furthermore, the PCE is 66%, and the sensitivity is -18.2 dBm (15.1 μW) when operating at UHF 900 MHz with a 100-kΩ load.

  10. Fission products in National Atmospheric Deposition Program—Wet deposition samples prior to and following the Fukushima Dai-Ichi Nuclear Power Plant incident, March 8?April 5, 2011

    Science.gov (United States)

    Wetherbee, Gregory A.; Debey, Timothy M.; Nilles, Mark A.; Lehmann, Christopher M.B.; Gay, David A.

    2012-01-01

    Radioactive isotopes I-131, Cs-134, or Cs-137, products of uranium fission, were measured at approximately 20 percent of 167 sampled National Atmospheric Deposition Program monitoring sites in North America (primarily in the contiguous United States and Alaska) after the Fukushima Dai-Ichi Nuclear Power Plant incident on March 12, 2011. Samples from the National Atmospheric Deposition Program were analyzed for the period of March 8-April 5, 2011. Calculated 1- or 2-week radionuclide deposition fluxes at 35 sites from Alaska to Vermont ranged from 0.47 to 5,100 Becquerels per square meter during the sampling period of March 15-April 5, 2011. No fission-product isotopes were measured in National Atmospheric Deposition Program samples obtained during March 8-15, 2011, prior to the arrival of contaminated air in North America.

  11. 3-D Mapping Technologies For High Level Waste Tanks

    International Nuclear Information System (INIS)

    Marzolf, A.; Folsom, M.

    2010-01-01

    This research investigated four techniques that could be applicable for mapping of solids remaining in radioactive waste tanks at the Savannah River Site: stereo vision, LIDAR, flash LIDAR, and Structure from Motion (SfM). Stereo vision is the least appropriate technique for the solids mapping application. Although the equipment cost is low and repackaging would be fairly simple, the algorithms to create a 3D image from stereo vision would require significant further development and may not even be applicable since stereo vision works by finding disparity in feature point locations from the images taken by the cameras. When minimal variation in visual texture exists for an area of interest, it becomes difficult for the software to detect correspondences for that object. SfM appears to be appropriate for solids mapping in waste tanks. However, equipment development would be required for positioning and movement of the camera in the tank space to enable capturing a sequence of images of the scene. Since SfM requires the identification of distinctive features and associates those features to their corresponding instantiations in the other image frames, mockup testing would be required to determine the applicability of SfM technology for mapping of waste in tanks. There may be too few features to track between image frame sequences to employ the SfM technology since uniform appearance may exist when viewing the remaining solids in the interior of the waste tanks. Although scanning LIDAR appears to be an adequate solution, the expense of the equipment ($80,000-$120,000) and the need for further development to allow tank deployment may prohibit utilizing this technology. The development would include repackaging of equipment to permit deployment through the 4-inch access ports and to keep the equipment relatively uncontaminated to allow use in additional tanks. 3D flash LIDAR has a number of advantages over stereo vision, scanning LIDAR, and SfM, including full frame

  12. Mass distribution of fission-like fragments formed in 20Ne + 165Ho system at Elab≈ 8.2 MeV/A

    International Nuclear Information System (INIS)

    Singh, D.; Linda, Sneha Bharti; Giri, Pankaj K.

    2017-01-01

    In the present work, an attempt has been made to study CFF and IFF in 20 Ne + 165 Ho system at projectile energy ≈ 8.2 MeV/A. Twelve fission like fragments (FLF) produced through complete fusion-fission (CFF) and/or incomplete fusion-fission (IFF) in the present system have been identified. The production cross-sections of identified fission like fragments have been measured and the mass distribution of fission like fragments studied

  13. Comparison of 235U fission cross sections in JENDL-3.3 and ENDF/B-VI

    International Nuclear Information System (INIS)

    Kawano, Toshihiko; Carlson, Allan D.; Matsunobu, Hiroyuki; Nakagawa, Tsuneo; Shibata, Keiichi

    2002-01-01

    Comparisons of evaluated fission cross sections for 235 U in JENDL-3.3 and ENDF/B-VI are carried out. The comparisons are made for both the differential and integral data. The fission cross sections as well as the fission ratios are compared with the experimental data in detail. Spectrum averaged cross sections are calculated and compared with the measurements. The employed spectra are the 235 U prompt fission neutron spectrum, the 252 Cf spontaneous fission neutron spectrum, and the neutron spectrum produced by a 9 Be(d, xn) reaction. For 235 U prompt fission neutron spectrum, the ENDF/B-VI evaluation reproduces experimental averaged cross sections. For 252 Cf and 9 Be(d, xn) neutron spectra, the JENDL-3.3 evaluation gives better results than ENDF/B-VI. (author)

  14. Burn-up calculation of fusion-fission hybrid reactor using thorium cycle

    International Nuclear Information System (INIS)

    Shido, S.; Matsunaka, M.; Kondo, K.; Murata, I.; Yamamoto, Y.

    2006-01-01

    A burn-up calculation system has been developed to estimate performance of blanket in a fusion-fission hybrid reactor which is a fusion reactor with a blanket region containing nuclear fuel. In this system, neutron flux is calculated by MCNP4B and then burn-up calculation is performed by ORIGEN2. The cross-section library for ORIGEN2 is made from the calculated neutron flux and evaluated nuclear data. The 3-dimensional ITER model was used as a base fusion reactor. The nuclear fuel (reprocessed plutonium as the fission materials mixed with thorium as the fertile materials), transmutation materials (minor actinides and long-lived fission products) and tritium breeder were loaded into the blanket. Performances of gas-cooled and water-cooled blankets were compared with each other. As a result, the proposed reactor can meet the requirement for TBP and power density. As far as nuclear waste incineration is concerned, the gas-cooled blanket has advantages. On the other hand, the water cooled-blanket is suited to energy production. (author)

  15. Power Maps and Commutativity of Groups

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 7. Power Maps and Commutativity of Groups. Ashok Singh. Classroom Volume 9 Issue 7 July 2004 pp 70-73. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/009/07/0070-0073. Keywords. Abelian ...

  16. FeatureMap3D - a tool to map protein features and sequence conservation onto homologous structures in the PDB

    DEFF Research Database (Denmark)

    Wernersson, Rasmus; Rapacki, Krzysztof; Stærfeldt, Hans Henrik

    2006-01-01

    FeatureMap3D is a web-based tool that maps protein features onto 3D structures. The user provides sequences annotated with any feature of interest, such as post-translational modifications, protease cleavage sites or exonic structure and FeatureMap3D will then search the Protein Data Bank (PDB) f...

  17. Analytical measurements of fission products during a severe nuclear accident

    Science.gov (United States)

    Doizi, D.; Reymond la Ruinaz, S.; Haykal, I.; Manceron, L.; Perrin, A.; Boudon, V.; Vander Auwera, J.; tchana, F. Kwabia; Faye, M.

    2018-01-01

    The Fukushima accident emphasized the fact that ways to monitor in real time the evolution of a nuclear reactor during a severe accident remain to be developed. No fission products were monitored during twelve days; only dose rates were measured, which is not sufficient to carry out an online diagnosis of the event. The first measurements were announced with little reliability for low volatile fission products. In order to improve the safety of nuclear plants and minimize the industrial, ecological and health consequences of a severe accident, it is necessary to develop new reliable measurement systems, operating at the earliest and closest to the emission source of fission products. Through the French program ANR « Projet d'Investissement d'Avenir », the aim of the DECA-PF project (diagnosis of core degradation from fission products measurements) is to monitor in real time the release of the major fission products (krypton, xenon, gaseous forms of iodine and ruthenium) outside the nuclear reactor containment. These products are released at different times during a nuclear accident and at different states of the nuclear core degradation. Thus, monitoring these fission products gives information on the situation inside the containment and helps to apply the Severe Accident Management procedures. Analytical techniques have been proposed and evaluated. The results are discussed here.

  18. Nuclear fission with inertial confinement

    CERN Document Server

    Koshkarev, D G

    2002-01-01

    The possibility of initiating the explosive fission reaction in a small quantity of fissile material through the heavy ions beam from the powerful accelerator-driver, developed for realization of the thermonuclear synthesis in the deuterium-tritium cylindrical targets with the direct ignition, is considered. The consequences of applying this method in the nuclear engineering are discussed

  19. Fission product determination in irradiated fuel processing waste (electrophoresis); Dosage des produits de fission dans les effluents de traitement des combustibles irradies (electrophorese)

    Energy Technology Data Exchange (ETDEWEB)

    Auchapt, J M; Tret, J [Commissariat a l' Energie Atomique, Centre de Marcoule, 30 - Bagnols-sur-Ceze (France). Centre de Production de Plutonium de Marcoule. Services d' Extraction du Plutonium

    1966-07-01

    This dosage method concerns fission products present in the waste produced from the processing of cooled irradiated fuels. - Sr, Cs, Ce, Y, Ru by quantitative analysis; - Zr, Nb by qualitative analysis. It includes electrophoresis on paper strips one meter long which is then analysed between two window-less Geiger counters. For an activity of 10{sup -2} {mu}Ci of any cation in a 10 {mu}l spot, the standard error {sigma} if 3 to 4 per cent. complete analysis lasts about 5 hours. (authors) [French] Cette methode de dosage concerne les produits de fission presents dans les effluents de traitement des combustibles irradies refroidis: - Sr, Cs, Ce, Y, Ru en analyse quantitative; - Zr, Nb en analyse qualitative. Elle comporte une electrophorese sur bande de papier de un metre de longueur suivie d'un depouillement entre deux compteurs Geiger sans fenetre. Pour une activite de 10{sup -2} {mu}Ci d'un cation quelconque dans une tache de 10 {mu}l l'erreur standard {sigma} est de 3 a 4 pour cent. L'analyse complete demande environ 5 heures. (auteurs)

  20. Opimization of fusion-driven fissioning systems

    International Nuclear Information System (INIS)

    Chapin, D.L.; Mills, R.G.

    1976-01-01

    Potential advantages of hybrid or fusion/fission systems can be exploited in different ways. With selection of the 238 U-- 239 Pu fuel cycle, we show that the system has greatest value as a power producer. Numerical examples of relative revenue from power production vs. 239 Pu production are discussed, and possible plant characteristics described. The analysis tends to show that the hybrid may be more economically attractive than pure fusion systems

  1. 14.2 MeV neutron induced U-235 fission cross section measurement

    International Nuclear Information System (INIS)

    Li Jingwen; Shen Guanren; Ye Zongyuan; Li Anli; Zhou Shuhua; Sun Zhongfan; Wu Jingxia; Huang Tanzi

    1986-01-01

    The cross section of U-235 fission induced by 14.2 MeV neutrons was measured by the time correlated associated particle method. The result obtained is (2.078+-0.040) barn. Comparison with other author's is also given. (author)

  2. Fission fragment yields and total kinetic energy release in neutron-induced fission of235,238U,and239Pu

    Science.gov (United States)

    Tovesson, F.; Duke, D.; Geppert-Kleinrath, V.; Manning, B.; Mayorov, D.; Mosby, S.; Schmitt, K.

    2018-03-01

    Different aspects of the nuclear fission process have been studied at Los Alamos Neutron Science Center (LANSCE) using various instruments and experimental techniques. Properties of the fragments emitted in fission have been investigated using Frisch-grid ionization chambers, a Time Projection Chamber (TPC), and the SPIDER instrument which employs the 2v-2E method. These instruments and experimental techniques have been used to determine fission product mass yields, the energy dependent total kinetic energy (TKE) release, and anisotropy in neutron-induced fission of U-235, U-238 and Pu-239.

  3. Status of the general description of fission observables by the GEF code

    CERN Document Server

    Jurado, B

    2014-01-01

    The GEneral Fission (GEF) model treats spontaneous fission and fission up to an excitation energy of about 100 MeV of a wide range of heavy nuclei. GEF makes use of general laws of statistical and quantum mechanics, assuring a high predictive power. It is unique in providing a general description of essentially all fission observables in a consistent way while preserving the correlations between all of them. In this contribution we present some of the physical aspects on which the model is based, give an overview on the results that can be obtained with the code and show an example that illustrates how the GEF code can serve as a framework for revealing the sensitivity of the fission observables to some basic nuclear properties.

  4. Identification of Sungai Batu Sediment using 2-D Resistivity Imaging and Seismic Refraction Methods for Ancient River Mapping at Kedah, Malaysia

    Science.gov (United States)

    Andika, F.; Saad, R.; Saidin, M. M.; Muztaza, N. M.; Amsir

    2018-04-01

    Sungai Batu is an earliest civilization in Southeast Asia with evidenced by the discovery of riverside jetty, iron smelting, and ritual monuments. The evidences can lead to prediction of buried river caused by geological and sedimentation process. This study was conducted to study sediment deposit characteristic and to map thickness of the sediments using 2-D resistivity imaging and seismic refraction for ancient river mapping. A total of thirty, 2-D resistivity and nine seismic survey lines were conducted at the study area. Four of the lines R1-R4 and S1-S4 were correlated and validated with existing on site boreholes BH1-BH4 to identify sediment type and thickness. The validated values applied to the remaining survey lines which no borehole record to map the subsurface of the study area. Based on the results, Sungai Batu area consist of clay with resistivity value of 6.6-25.9 Ω.m and velocity value of 716.9-1606.9 m/s; sandy clay with resistivity value of 6-265.1 Ω.m and velocity value of 1003.6-1901.4 m/s; while shale was identified with resistivity value of >668.6 Ω.m and velocity value of >2051.7 m/s. Boundary between clay/sandy clay with shale was identified with resistivity value of 314 Ω.m and velocity value of 1822 m/s. The integration of the 2-D resistivity and seismic refraction identified that the thickness of Sungai Batu sediment is 0-150 m and Sungai Batu ancient river was successfully map based on thickness of sediment which is >45 m.

  5. Fission, fusion and photonuclear physics. Chapter 2

    International Nuclear Information System (INIS)

    Mazur, C.; Ribrag, M.

    Pronounced structures in the time of flight distribution of fission fragments, having a given energy, were recently reported. This experiment has been reproduced with a better time resolution and structures are not observed [fr

  6. GAMSOR: Gamma Source Preparation and DIF3D Flux Solution

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M. A. [TerraPower, Bellevue, WA (United States); Lee, C. H. [TerraPower, Bellevue, WA (United States); Hill, R. N. [TerraPower, Bellevue, WA (United States)

    2017-06-28

    Nuclear reactors that rely upon the fission reaction have two modes of thermal energy deposition in the reactor system: neutron absorption and gamma absorption. The gamma rays are typically generated by neutron capture reactions or during the fission process which means the primary driver of energy production is of course the neutron interaction. In conventional reactor physics methods, the gamma heating component is ignored such that the gamma absorption is forced to occur at the gamma emission site. For experimental reactor systems like EBR-II and FFTF, the placement of structural pins and assemblies internal to the core leads to problems with power heating predictions because there is no fission power source internal to the assembly to dictate a spatial distribution of the power. As part of the EBR-II support work in the 1980s, the GAMSOR code was developed to assist analysts in calculating the gamma heating. The GAMSOR code is a modified version of DIF3D and actually functions within a sequence of DIF3D calculations. The gamma flux in a conventional fission reactor system does not perturb the neutron flux and thus the gamma flux calculation can be cast as a fixed source problem given a solution to the steady state neutron flux equation. This leads to a sequence of DIF3D calculations, called the GAMSOR sequence, which involves solving the neutron flux, then the gamma flux, and then combining the results to do a summary edit. In this manuscript, we go over the GAMSOR code and detail how it is put together and functions. We also discuss how to setup the GAMSOR sequence and input for each DIF3D calculation in the GAMSOR sequence.

  7. Post-scission fission theory: Neutron emission in fission

    International Nuclear Information System (INIS)

    Madland, D.G.

    1997-01-01

    A survey of theoretical representations of two of the observables in neutron emission in fission is given, namely, the prompt fission neutron spectrum N (E) and the average prompt neutron multiplicity bar ν p . Early representations of the two observables are presented and their deficiencies are discussed. This is followed by summaries and examples of recent theoretical models for the calculation of these quantities. Emphasis is placed upon the predictability and accuracy of the recent models. In particular, the dependencies of N (E) and bar ν p upon the fissioning nucleus and its excitation energy are treated. Recent work in the calculation of the prompt fission neutron spectrum matrix N (E, E n ), where E n is the energy of the neutron inducing fission, is then discussed. Concluding remarks address the current status of our ability to calculate these observables with confidence, the direction of future theoretical efforts, and limitations to current (and future) approaches

  8. Physics of neutron emission in fission

    International Nuclear Information System (INIS)

    Lemmel, H.D.

    1989-06-01

    The document contains the proceedings of the IAEA Consultants' Meeting on the Physics of Neutron Emission in Fission, Mito City (Japan), 24-27 May 1988. Included are the conclusions and recommendations reached at the meeting and the papers presented by the meeting participants. These papers cover the following topics: Energy dependence of the number of fission neutrons ν-bar (3 papers), multiplicity distribution of fission neutrons (3 papers), competition between neutron and γ-ray emission (4 papers), the fission neutron yield in resonances (2 papers) and the energy spectrum of fission neutrons in experiment (9 papers), theory (4 papers) and evaluation (1 paper). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  9. CINDER, Depletion and Decay Chain Calculation for Fission Products in Thermal Reactors

    International Nuclear Information System (INIS)

    England, T.R.; Gorrell, T.C.; Hightower, J.H.

    2001-01-01

    1 - Description of problem or function: CINDER is a four-group, one- point depletion and fission product program based on the evaluation of a general analytical solution of nuclides coupled in any linear sequence of radioactive decays and neutron absorptions in a specified neutron flux spectrum. The desired depletion and fission product chains and all physical data are specified by the problem originator. The program computes individual nuclide number densities, activities, nine energy-group disintegration rates, and macroscopic and barns/fission poisons at each time-step as well as selected summaries of these data. 2 - Method of solution: Time-dependent variations in nuclide cross sections and neutron fluxes are approximated by a user-specified sequential set of values which are considered constant during the duration of the user-specified associated time-increments. When a nuclide concentration is independent of the concentration of any of its progeny, it is possible to resolve the couplings so as to obtain nuclides fed by a single parent. These chains are referred to as linear. 3 - Restrictions on the complexity of the problem: The program is limited to 500 total nuclides formed in up to 240 chains of 20 or fewer nuclides each. Up to 10 nuclides may act as fission product sources, contributing to power, and as many as 99 time-steps of arbitrary length are permitted. All stable nuclides must have a cross section if zero power time-increments are anticipated

  10. Navigating 3D electron microscopy maps with EM-SURFER.

    Science.gov (United States)

    Esquivel-Rodríguez, Juan; Xiong, Yi; Han, Xusi; Guang, Shuomeng; Christoffer, Charles; Kihara, Daisuke

    2015-05-30

    The Electron Microscopy DataBank (EMDB) is growing rapidly, accumulating biological structural data obtained mainly by electron microscopy and tomography, which are emerging techniques for determining large biomolecular complex and subcellular structures. Together with the Protein Data Bank (PDB), EMDB is becoming a fundamental resource of the tertiary structures of biological macromolecules. To take full advantage of this indispensable resource, the ability to search the database by structural similarity is essential. However, unlike high-resolution structures stored in PDB, methods for comparing low-resolution electron microscopy (EM) density maps in EMDB are not well established. We developed a computational method for efficiently searching low-resolution EM maps. The method uses a compact fingerprint representation of EM maps based on the 3D Zernike descriptor, which is derived from a mathematical series expansion for EM maps that are considered as 3D functions. The method is implemented in a web server named EM-SURFER, which allows users to search against the entire EMDB in real-time. EM-SURFER compares the global shapes of EM maps. Examples of search results from different types of query structures are discussed. We developed EM-SURFER, which retrieves structurally relevant matches for query EM maps from EMDB within seconds. The unique capability of EM-SURFER to detect 3D shape similarity of low-resolution EM maps should prove invaluable in structural biology.

  11. Extreme population inversion in the fragments formed by UV photoinduced S-H bond fission in 2-thiophenethiol.

    Science.gov (United States)

    Ingle, Rebecca A; Karsili, Tolga N V; Dennis, Gregg J; Staniforth, Michael; Stavros, Vasilios G; Ashfold, Michael N R

    2016-04-28

    H atom loss following near ultraviolet photoexcitation of gas phase 2-thiophenethiol molecules has been studied experimentally, by photofragment translational spectroscopy (PTS) methods, and computationally, by ab initio electronic structure calculations. The long wavelength (277.5 ≥ λ(phot) ≥ 240 nm) PTS data are consistent with S-H bond fission after population of the first (1)πσ* state. The partner thiophenethiyl (R) radicals are formed predominantly in their first excited Ã(2)A' state, but assignment of a weak signal attributable to H + R(X˜(2)A'') products allows determination of the S-H bond strength, D0 = 27,800 ± 100 cm(-1) and the Ã-X˜ state splitting in the thiophenethiyl radical (ΔE = 3580 ± 100 cm(-1)). The deduced population inversion between the à and X˜ states of the radical reflects the non-planar ground state geometry (wherein the S-H bond is directed near orthogonal to the ring plane) which, post-photoexcitation, is unable to planarise sufficiently prior to bond fission. This dictates that the dissociating molecules follow the adiabatic fragmentation pathway to electronically excited radical products. π* ← π absorption dominates at shorter excitation wavelengths. Coupling to the same (1)πσ* potential energy surface (PES) remains the dominant dissociation route, but a minor yield of H atoms attributable to a rival fragmentation pathway is identified. These products are deduced to arise via unimolecular decay following internal conversion to the ground (S0) state PES via a conical intersection accessed by intra-ring C-S bond extension. The measured translational energy disposal shows a more striking change once λ(phot) ≤ 220 nm. Once again, however, the dominant decay pathway is deduced to be S-H bond fission following coupling to the (1)πσ* PES but, in this case, many of the evolving molecules are deduced to have sufficiently near-planar geometries to allow passage through the conical intersection at extended S-H bond

  12. Benchmark of 6D SLAM (6D Simultaneous Localisation and Mapping Algorithms with Robotic Mobile Mapping Systems

    Directory of Open Access Journals (Sweden)

    Bedkowski Janusz

    2017-09-01

    Full Text Available This work concerns the study of 6DSLAM algorithms with an application of robotic mobile mapping systems. The architecture of the 6DSLAM algorithm is designed for evaluation of different data registration strategies. The algorithm is composed of the iterative registration component, thus ICP (Iterative Closest Point, ICP (point to projection, ICP with semantic discrimination of points, LS3D (Least Square Surface Matching, NDT (Normal Distribution Transform can be chosen. Loop closing is based on LUM and LS3D. The main research goal was to investigate the semantic discrimination of measured points that improve the accuracy of final map especially in demanding scenarios such as multi-level maps (e.g., climbing stairs. The parallel programming based nearest neighborhood search implementation such as point to point, point to projection, semantic discrimination of points is used. The 6DSLAM framework is based on modified 3DTK and PCL open source libraries and parallel programming techniques using NVIDIA CUDA. The paper shows experiments that are demonstrating advantages of proposed approach in relation to practical applications. The major added value of presented research is the qualitative and quantitative evaluation based on realistic scenarios including ground truth data obtained by geodetic survey. The research novelty looking from mobile robotics is the evaluation of LS3D algorithm well known in geodesy.

  13. A novel method for fission product noble gas sampling

    International Nuclear Information System (INIS)

    Jain, S.K.; Prakash, Vivek; Singh, G.K.; Vinay, Kr.; Awsthi, A.; Bihari, K.; Joyson, R.; Manu, K.; Gupta, Ashok

    2008-01-01

    Noble gases occur to some extent in the Earth's atmosphere, but the concentrations of all but argon are exceedingly low. Argon is plentiful, constituting almost 1 % of the air. Fission Product Noble Gases (FPNG) are produced by nuclear fission and large parts of FPNG is produced in Nuclear reactions. FPNG are b-j emitters and contributing significantly in public dose. During normal operation of reactor release of FPNG is negligible but its release increases in case of fuel failure. Xenon, a member of FPNG family helps in identification of fuel failure and its extent in PHWRs. Due to above reasons it becomes necessary to assess the FPNG release during operation of NPPs. Presently used methodology of assessment of FPNG, at almost all power stations is Computer based gamma ray spectrometry. This provides fission product Noble gases nuclide identification through peak search of spectra. The air sample for the same is collected by grab sampling method, which has inherent disadvantages. An alternate method was developed at Rajasthan Atomic Power Station (RAPS) - 3 and 4 for assessment of FPNG, which uses adsorption phenomena for collection of air samples. This report presents details of sampling method for FPNG and noble gases in different systems of Nuclear Power Plant. (author)

  14. InterMap3D: predicting and visualizing co-evolving protein residues

    DEFF Research Database (Denmark)

    Oliveira, Rodrigo Gouveia; Roque, francisco jose sousa simôes almeida; Wernersson, Rasmus

    2009-01-01

    InterMap3D predicts co-evolving protein residues and plots them on the 3D protein structure. Starting with a single protein sequence, InterMap3D automatically finds a set of homologous sequences, generates an alignment and fetches the most similar 3D structure from the Protein Data Bank (PDB......). It can also accept a user-generated alignment. Based on the alignment, co-evolving residues are then predicted using three different methods: Row and Column Weighing of Mutual Information, Mutual Information/Entropy and Dependency. Finally, InterMap3D generates high-quality images of the protein...

  15. The LRRK2 Variant E193K Prevents Mitochondrial Fission Upon MPP+ Treatment by Altering LRRK2 Binding to DRP1

    Directory of Open Access Journals (Sweden)

    Maria Perez Carrion

    2018-02-01

    Full Text Available Mutations in leucine-rich repeat kinase 2 gene (LRRK2 are associated with familial and sporadic Parkinson’s disease (PD. LRRK2 is a complex protein that consists of multiple domains, including 13 putative armadillo-type repeats at the N-terminus. In this study, we analyzed the functional and molecular consequences of a novel variant, E193K, identified in an Italian family. E193K substitution does not influence LRRK2 kinase activity. Instead it affects LRRK2 biochemical properties, such as phosphorylation at Ser935 and affinity for 14-3-3ε. Primary fibroblasts obtained from an E193K carrier demonstrated increased cellular toxicity and abnormal mitochondrial fission upon 1-methyl-4-phenylpyridinium treatment. We found that E193K alters LRRK2 binding to DRP1, a crucial mediator of mitochondrial fission. Our data support a role for LRRK2 as a scaffolding protein influencing mitochondrial fission.

  16. An economic parametric analysis of the synthetic fuel produced by a fusion-fission complex

    International Nuclear Information System (INIS)

    Tai, A.S.; Krakowski, R.A.

    1980-01-01

    A simple analytic model is used to examine economic constraints of a fusion-fission complex in which a portion of a thermal energy is used for producing synthetic fuel (synfuel). Since the values of many quantities are not well-known, a parametric analysis has been carried out for testing the sensitivity of the synfuel production cost in relation to crucial economic and technological quantities (investment costs of hybrid and synfuel plants, energy multiplication of the fission blanket, recirculating power fraction of the fusion driver, etc.). In addition, a minimum synfuel selling price has been evaluated, from