Influence of spin on fission fragments anisotropy
Directory of Open Access Journals (Sweden)
Ghodsi Omid N.
2005-01-01
Full Text Available An analysis of selected fission fragment angular distribution when at least one of the spins of the projectile or target is appreciable in induced fission was made by using the statistical scission model. The results of this model predicate that the spins of the projectile or target are affected on the nuclear level density of the compound nucleus. The experimental data was analyzed by means of the couple channel spin effect formalism. This formalism suggests that the projectile spin is more effective on angular anisotropies within the limits of energy near the fusion barrier.
Fission fragment angular momentum
International Nuclear Information System (INIS)
Frenne, D. De
1991-01-01
Most of the energy released in fission is converted into translational kinetic energy of the fragments. The remaining excitation energy will be distributed among neutrons and gammas. An important parameter characterizing the scission configuration is the primary angular momentum of the nascent fragments. Neutron emission is not expected to decrease the spin of the fragments by more than one unit of angular momentum and is as such of less importance in the determination of the initial fragment spins. Gamma emission is a suitable tool in studying initial fragment spins because the emission time, number, energy, and multipolarity of the gammas strongly depend on the value of the primary angular momentum. The main conclusions of experiments on gamma emission were that the initial angular momentum of the fragments is large compared to the ground state spin and oriented perpendicular to the fission axis. Most of the recent information concerning initial fragment spin distributions comes from the measurement of isomeric ratios for isomeric pairs produced in fission. Although in nearly every mass chain isomers are known, only a small number are suitable for initial fission fragment spin studies. Yield and half-life considerations strongly limit the number of candidates. This has the advantage that the behavior of a specific isomeric pair can be investigated for a number of fissioning systems at different excitation energies of the fragments and fissioning nuclei. Because most of the recent information on primary angular momenta comes from measurements of isomeric ratios, the global deexcitation process of the fragments and the calculation of the initial fragment spin distribution from measured isomeric ratios are discussed here. The most important results on primary angular momentum determinations are reviewed and some theoretical approaches are given. 45 refs., 7 figs., 2 tabs
International Nuclear Information System (INIS)
Kasilov, V.I.; Lapin, N.N.
1981-01-01
An enhancement is detected under the angle of 90 deg in the fission fragment yield from 238 U nuclei produced by photons emitted by high-energy electrons passing through a silicon monocrystal. The results enable one to select the most optimal conditions to obtain maximal yields of nuclear particles [ru
International Nuclear Information System (INIS)
Barabanov, A.L.
1985-01-01
Experimental data on dependence of fission cross section Σsub(f) (epsilon) and angular anisotropy W(epsilon, 0 deg)/W(epsilon, 90 deg) of sup(235)U fission fragment escape by neutrons with energy epsilon=100 and 200 keV on orientation of target nuclei are analyzed. 235 U (Isup(πsub(0))=7/2sup(-)) nuclei were orientated at the expense of interaction of quadrupole nucleus momenta with nonuniform electric field of uranyl-rubidium nitrate crystal at crystal cooling to T=0.2 K. The analysis was carried out with three different sets of permeability factors T(epsilon). Results of the analysis weakly depend on T(epsilon) choice. It is shown that a large number of adjusting parameters (six fissionabilities γsup(f)(Jsup(π), epsilon) and six momenta sub(Jsup(π))) permit to described experimental data on Σsub(f)(epsilon) and W(epsilon, 0 deg)/W(epsilon, 90 deg), obtained at epsilon=200 keV by introducing essential dependence of γsup(f)(Jsup(π), epsilon) and sub(Jsup(π)) on Jsup(π). Estimations of fission cross sections Σsub(f)(epsilon) and angular distribution W(epsilon, n vector) up to T approximately equal to 0.01 K in two geometries of the experiment: the orientation axis is parallel and perpendicular to momentum direction p vector of incident neutrons, are conducted
Gamma Radiation from Fission Fragments
International Nuclear Information System (INIS)
Higbie, Jack
1969-10-01
The gamma radiation from the fragments of the thermal neutron fission of 235 U has been investigated, and the preliminary data are presented here with suggestions for further lines of research and some possible interpretations of the data. The data have direct bearing on the fission process and the mode of fragment de-excitation. The parameters measured are the radiation decay curve for the time interval (1 - 7) x 10 -10 sec after fission, the photon yield, the total gamma ray energy yield, and the average photon energy. The last three quantities are measured as a function of the fragment mass
Gamma Radiation from Fission Fragments
Energy Technology Data Exchange (ETDEWEB)
Higbie, Jack
1969-10-15
The gamma radiation from the fragments of the thermal neutron fission of {sup 235}U has been investigated, and the preliminary data are presented here with suggestions for further lines of research and some possible interpretations of the data. The data have direct bearing on the fission process and the mode of fragment de-excitation. The parameters measured are the radiation decay curve for the time interval (1 - 7) x 10{sup -10} sec after fission, the photon yield, the total gamma ray energy yield, and the average photon energy. The last three quantities are measured as a function of the fragment mass.
The spectroscopy of fission fragments
Energy Technology Data Exchange (ETDEWEB)
Phillips, W.R. [Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)
1998-12-31
High-resolution measurements on {gamma} rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author) 24 refs., 8 figs., 1 tab.
The spectroscopy of fission fragments
International Nuclear Information System (INIS)
Phillips, W.R.
1998-01-01
High-resolution measurements on γ rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author)
Chemical Production using Fission Fragments
International Nuclear Information System (INIS)
Dawson, J. K.; Moseley, F.
1960-01-01
Some reactor design considerations of the use of fission recoil fragment energy for the production of chemicals of industrial importance have been discussed previously in a paper given at the Second United Nations International Conference on the Peaceful Uses of Atomic Energy [A/Conf. 15/P.76]. The present paper summarizes more recent progress made on this topic at AERE, Harwell. The range-energy relationship for fission fragments is discussed in the context of the choice of fuel system for a chemical production reactor, and the experimental observation of a variation of chemical effect along the length of a fission fragment track is described for the irradiation of nitrogen-oxygen mixtures. Recent results are given on the effect of fission fragments on carbon monoxide-hydrogen gas mixtures and on water vapour. No system investigated to date shows any outstanding promise for large-scale chemical production. (author) [fr
Fission fragment driven neutron source
Miller, Lowell G.; Young, Robert C.; Brugger, Robert M.
1976-01-01
Fissionable uranium formed into a foil is bombarded with thermal neutrons in the presence of deuterium-tritium gas. The resulting fission fragments impart energy to accelerate deuterium and tritium particles which in turn provide approximately 14 MeV neutrons by the reactions t(d,n).sup.4 He and d(t,n).sup.4 He.
Neutron multiplicity of fission fragments
Energy Technology Data Exchange (ETDEWEB)
Abdelrahman, Y S [Physics department, mu` rah university Al-Karak, (Jordan)
1995-10-01
The total average neutron multiplicity of the fission fragments produced by the spontaneous fission of {sup 248} Cm has been measured. This measurement has been done by using a new experimental technique. This technique mainly depends on {gamma}-{gamma} coincidence using a very high resolution high purity germanium (HPGe) detector. 2 figs.
Fission fragment spins and spectroscopy
International Nuclear Information System (INIS)
Durell, J.L.
1988-01-01
Prompt γ-ray coincidence experiments have been carried out on γ-rays emitted from post-neutron emission fission fragments produced by the aup 19F + 197 Au and 18 O + 232 Th reactions. Decay schemes have been established for even-even nuclei ranging from 78 Se to 148 Nd. Many new states with spin up to ∼ 12h have been observed. Apart from providing a wealth of new information on the spectroscopy of neutron-rich nuclei, the data have been analyzed to determine the average spin of primary fission fragments as a function of fragment mass. The results suggest that the fragment spins are determined by the temperature and shape of the primary fragments at or near to scission
Energy production using fission fragment rockets
International Nuclear Information System (INIS)
Chapline, G.; Matsuda, Y.
1991-08-01
Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: Approximately twice as efficient if one can directly convert the fission fragment energy into electricity; by reducing the buildup of a fission fragment inventory in the reactor one could avoid a Chernobyl type disaster; and collecting the fission fragments outside the reactor could simplify the waste disposal problem. 6 refs., 4 figs., 2 tabs
Fission fragment angular distributions and fission cross section validation
International Nuclear Information System (INIS)
Leong, Lou Sai
2013-01-01
The present knowledge of angular distributions of neutron-induced fission is limited to a maximal energy of 15 MeV, with large discrepancies around 14 MeV. Only 238 U and 232 Th have been investigated up to 100 MeV in a single experiment. The n-TOF Collaboration performed the fission cross section measurement of several actinides ( 232 Th, 235 U, 238 U, 234 U, 237 Np) at the n-TOF facility using an experimental set-up made of Parallel Plate Avalanche Counters (PPAC), extending the energy domain of the incident neutron above hundreds of MeV. The method based on the detection of the 2 fragments in coincidence allowed to clearly disentangle the fission reactions among other types of reactions occurring in the spallation domain. I will show the methods we used to reconstruct the full angular resolution by the tracking of fission fragments. Below 10 MeV our results are consistent with existing data. For example in the case of 232 Th, below 10 MeV the results show clearly the variation occurring at the first (1 MeV) and second (7 MeV) chance fission, corresponding to transition states of given J and K (total spin and its projection on the fission axis), and a much more accurate energy dependence at the 3. chance threshold (14 MeV) has been obtained. In the spallation domain, above 30 MeV we confirm the high anisotropy revealed in 232 Th by the single existing data set. I'll discuss the implications of this finding, related to the low anisotropy exhibited in proton-induced fission. I also explore the critical experiments which is valuable checks of nuclear data. The 237 Np neutron-induced fission cross section has recently been measured in a large energy range (from eV to GeV) at the n-TOF facility at CERN. When compared to previous measurements, the n-TOF fission cross section appears to be higher by 5-7 % beyond the fission threshold. To check the relevance of n-TOF data, we simulate a criticality experiment performed at Los Alamos with a 6 kg sphere of 237 Np. This
The VERDI fission fragment spectrometer
Directory of Open Access Journals (Sweden)
Frégeau M.O.
2013-12-01
Full Text Available The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution.
Fusion barrier distributions and fission anisotropies
International Nuclear Information System (INIS)
Hinde, D.J.; Morton, C.R.; Dasgupta, M.; Leigh, J.R.; Lestone, J.P.; Lemmon, R.C.; Mein, J.C.; Newton, J.O.; Timmers, H.; Rowley, N.; Kruppa, A.T.
1995-01-01
Fusion excitation functions for 16,17 O+ 144 Sm have been measured to high precision. The extracted fusion barrier distributions show a double-peaked structure interpreted in terms of coupling to inelastic collective excitations of the target. The effect of the positive Q-value neutron stripping channel is evident in the reaction with 17 O. Fission and evaporation residue cross-sections and excitation functions have been measured for the reaction of 16 O+ 208 Pb and the fusion barrier distribution and fission anisotropies determined. It is found that the moments of the fusion l-distribution determined from the fusion and fission measurements are in good agreement. ((orig.))
On angular distribution of nucleus fission fragments by fast neutrons
International Nuclear Information System (INIS)
Barabanov, A.L.; Grechukhin, D.P.
1987-01-01
Evaluation of amplitudes of quadrupole and hexadecapole components of angular distribution of nucleus fission fragments by neutrons with the energies E n < or approx. 6 MeV is conducted. Stability of this amplitude to permeability optical coefficient variations for neutrons is revealed. It is shown, that the ratio of these amplitudes as well as the character of their dependence on the target nucleus orientation degree are sensitive to the type of fission probability distribution along K projection if fissile nucleus J spin to the fragment scattering axis. This sensitivity may be used for fragment angular distribution anisotropy formation statistical model verification
Reexamination of fission fragment angular distributions and the fission process: Formalism
International Nuclear Information System (INIS)
Bond, P.D.
1985-01-01
The theory of fission fragment angular distributions is examined and the universally used expression is found to be valid only under restrictive assumptions. A more general angular distribution formula is derived and applied to recent data of high spin systems. At the same time it is shown that the strong anisotropies observed from such systems can be understood without changing the essential basis of standard fission theory. The effects of reaction mechanisms other than complete fusion on fission fragment angular distributions are discussed and possible angular distribution signatures of noncompound nucleus formation are mentioned
Fission fragment excited laser system
McArthur, David A.; Tollefsrud, Philip B.
1976-01-01
A laser system and method for exciting lasing action in a molecular gas lasing medium which includes cooling the lasing medium to a temperature below about 150 K and injecting fission fragments through the lasing medium so as to preferentially excite low lying vibrational levels of the medium and to cause population inversions therein. The cooled gas lasing medium should have a mass areal density of about 5 .times. 10.sup.-.sup.3 grams/square centimeter, relaxation times of greater than 50 microseconds, and a broad range of excitable vibrational levels which are excitable by molecular collisions.
Fission fragment distributions within dynamical approach
Energy Technology Data Exchange (ETDEWEB)
Mazurek, K. [Institute of Nuclear, Physics Polish Academy of Sciences, Krakow (Poland); Nadtochy, P.N. [Omsk State Technical University, Omsk (Russian Federation); Ryabov, E.G.; Adeev, G.D. [Omsk State University, Physics Department, Omsk (Russian Federation)
2017-04-15
The review covers recent developments and achievements in the dynamical description of fission process at high excitation energy. It is shown that the dynamical approach based on multidimensional Langevin equations combined with the statistical description of nuclear decay by particles evaporation is capable of fairly well describing the formation of fission fragment mass-energy, charge, and angular distributions of fission fragments in coincidence with the pre- and post-scission particle emission. The final yields of fission and evaporation residues channels products could be obtained. The detailed description of fission dynamics allows studying different stages of fission process, indicating the most important ingredients governing fission process and studying in detail such fundamental nuclear properties as nuclear viscosity and fission timescale. The tasks and perspectives of multidimensional dynamical approach are also discussed. (orig.)
Azimuthal Anisotropies in Nuclear Fragmentation
International Nuclear Information System (INIS)
Dabrowska, A.; Szarska, M.; Trzupek, A.; Wolter, W.; Wosiek, B.
2002-01-01
The directed and elliptic flow of fragments emitted from the excited projectile nuclei has been observed for 158 AGeV Pb collisions with the lead and plastic targets. For comparison the flow analysis has been performed for 10.6 AGeV Au collisions with the emulsion target. The strong directed flow of heaviest fragments is found. Light fragments exhibit directed flow opposite to that of heavy fragments. The elliptic flow for all multiply charged fragments is positive and increases with the charge of the fragment. The observed flow patterns in the fragmentation of the projectile nucleus are practically independent of the mass of the target nucleus and the collision energy. Emission of fragments in nuclear multifragmentation shows similar, although weaker, flow effects. (author)
Neighbouring charge fragmentations in low energy fission
International Nuclear Information System (INIS)
Montoya, M.
1986-10-01
Shell and odd-even effects in fission have been largely studied until now. The structure in fragment mass, charge and kinetic energy distributions of fragments were interpreted as shell and even-odd effects. In this paper, we want to show that the discret change of fragment charge symmetry should produce also structures in those distribution. 19 refs
A reconsideration of fission fragment angular distributions from nuclei of high spin
International Nuclear Information System (INIS)
Vaz, L.C.; Alexander, J.M.
1983-01-01
It has often been stated that fission fragment angular anisotropy, as predicted by equilibrium statistical theory, should disappear with increasing spin of the composite nucleus. However, several recent experimental studies reveal strong anisotropies for fission fragments from high-spin nuclear systems. We discuss this apparent discrepancy and its relationship to the rigid-rotor approximation used in the standard theory. A systematic comparison is given for fission fragment anisotropies from many experiments via the empirical parameters K 0 2 and Ssub(eff). These systematics indicate a strong regularity, provided one allows for the perturbing effects of fission after transfer reactions. Many of the observed anisotropies exceed the predictions of the standard theory, but, as these predictions are based on a rigid rotor model, this does not seem particularly noteworthy. (orig.)
Polarization and alignment of nucleus fission fragments
International Nuclear Information System (INIS)
Barabanov, A.L.; Grechukhin, D.P.
1987-01-01
Correlation of fragment orientation with orientation axis of fissile nucleus and with n-vector f vector of fragment divergence is considered. Estimations of polarization and alignment of fission fragments of preliminarily oriented nuclei in correlation (with n-vector f recording) and integral (with n-vector f averaging) experiments were conducted. It is shown that high sensitivity of polarization and fragment alignment to the character of nucleus movement at the stage of descent from barrier to rupture point exists
Antiproton Induced Fission and Fragmentation of Nuclei
2002-01-01
The annihilation of slow antiprotons with nuclei results in a large highly localized energy deposition primarily on the nuclear surface. \\\\ \\\\ The study of antiproton induced fission and fragmentation processes is expected to yield new information on special nuclear matter states, unexplored fission modes, multifragmentation of nuclei, and intranuclear cascades.\\\\ \\\\ In order to investigate the antiproton-nucleus interaction and the processes following the antiproton annihilation at the nucleus, we propose the following experiments: \\item A)~Measurement of several fragments from fission and from multifragmentation in coincidence with particle spectra, especially neutrons and kaons. \\item B)~Precise spectra of $\\pi$, K, n, p, d and t with time-of-flight techniques. \\item C)~Installation of the Berlin 4$\\pi$ neutron detector with a 4$\\pi$ Si detector placed inside for fragments and charged particles. This yields neutron multiplicity distributions and consequently distributions of thermal excitation energies and...
Energy Technology Data Exchange (ETDEWEB)
Audias, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1965-07-01
This fission fragment detecting apparatus is based on the principle that fragments traversing a thin foil will cause emission of secondary electrons. These electrons are then accelerated (10 kV) and directly detected by means of a plastic scintillator and associated photomultiplier. Some of the advantages of such a detector are, its rapidity, its discriminating power between alpha particles and fission fragments, its small energy loss in detecting the fragments and the relatively great amount of fissionable material which it can contain. This paper is subdivided as follows: a) theoretical considerations b) constructional details of apparatus and some experimental details and c) a study of the secondary emission effect itself. (author) [French] Le detecteur de fragments de fission que nous avons realise est base sur le principe de l'emission secondaire produite par les fragments de fission traversant une feuille mince: les electrons secondaires emis sont acceleres a des tensions telles (de l'ordre de 10 kV), qu'ils soient directement detectables par un scintillateur plastique associe a un photomultiplicateur. L'interet d'un tel detecteur reside: dans sa rapidite, sa tres bonne discrimination alpha, fission, la possibilite de detecter les fragments de fission avec une perte d'energie pouvant rester relativement faible, et la possibilite d'introduire des quantites de matiere fissile plus importantes que dans les autres types de detecteurs. Ce travail comporte: -) un apercu bibliographique de la theorie du phenomene, -) realisation et mise au point du detecteur avec etude experimentale de quelques parametres intervenant dans l'emission secondaire, -) etude de l'emission secondaire (sur la face d'emergence des fragments de fission) en fonction de l'energie du fragment et en fonction de l'epaisseur de matiere traversee avant emission secondaire, et -) une etude comparative de l'emission secondaire sur la face d'incidence et sur la face d'emergence des fragments de
Fission fragment angular distribution in the reaction 28Si+176Yb
International Nuclear Information System (INIS)
Tripathi, R.; Sudarshan, K.; Sharma, S.K.; Reddy, A.V.R.; Pujari, P.K.; Dutta, D.; Goswami, A.; Ramachandran, K.
2009-01-01
Fission fragment angular distribution has been measured in the reaction 28 Si+ 176 Yb at beam energies of 145 and 155 MeV to investigate the contribution from non-compound nucleus fission. Experiments were carried out at BARC-TIFR Pelletron-LINAC accelerator facility, Mumbai. Experimental angular anisotropies in this reaction were observed to be higher than those calculated using statistical theory, indicating contribution from non-compound nucleus fission in this reaction. (author)
Influence of mass-asymmetry and ground state spin on fission fragment angular distributions
International Nuclear Information System (INIS)
Thomas, R.G.; Biswas, D.C.; Saxena, A.; Pant, L.M.; Nayak, B.K.; Vind, R.P.; Sahu, P.K.; Sinha, Shrabani; Choudhury, R.K.
2001-01-01
The strong influence of the target or/and projectile ground state spin on the anomalously large anisotropies of fission fragments produced in the heavy-ion induced fission of actinide targets were reported earlier. Interestingly, all those systems studied were having a mass asymmetry greater than the Businaro-Gallone critical asymmetry and hence the presence of pre-equilibrium fission was unambiguously ruled out. The observed anisotropies were successfully explained using the ECD-K-States model. It is of interest to know the influence of the target/projectile ground state spin on systems having an entrance channel mass asymmetry less than the critical value where pre-equilibrium fission cannot be ignored. With this motivation we performed measurements of fission fragment angular distributions of the 16 O+ 235 U (spin=7/2) system
Fission fragment angular distributions in proton-induced fission of 209Bi (p,f) and 197Au (p,f)
International Nuclear Information System (INIS)
Soheily, S.; Noshad, H.; Lamehi-Rashti, M.
2002-01-01
The fission fragment angular distributions have been measured for proton-induced fission of 209 B i and 197 A u nuclei using surface barrier detectors at several energies between 25 MeV and 30 MeV. The experimental anisotropies are found to be in agreement with the predictions of the Standard Saddle-Point Statistical Model. The fission cross sections of 209 B i and 197 A u nuclei were also measured and compared with the previous works
About total kinetic energy distribution between fragments of binary fission
International Nuclear Information System (INIS)
Khugaev, A.V.; Koblik, Yu.N.; Pikul, V.P.; Ioannou, P.; Dimovasili, E.
2002-01-01
At the investigation of binary fission reactions one of the main characteristic of process is total kinetic energy (TKE) of fission fragments and it distribution between them. From the values of these characteristics it is possible to extract the information about structure of fission fragments in the break up point of initial fissionable nuclear system. In our work TKE dependence from the deformation parameters of shape and density distribution of charge in the fission fragments are investigated. In the end of paper some generalizations of obtaining results are carried out and presented in the form of tables and figures
The Munich accelerator for fission fragments MAFF
International Nuclear Information System (INIS)
Habs, D.; Gross, M.; Assmann, W.; Ames, F.; Bongers, H.; Emhofer, S.; Heinz, S.; Henry, S.; Kester, O.; Neumayr, J.; Ospald, F.; Reiter, P.; Sieber, T.; Szerypo, J.; Thirolf, P.G.; Varentsov, V.; Wilfart, T.; Faestermann, T.; Kruecken, R.; Maier-Komor, P.
2003-01-01
The Munich Accelerator for Fission Fragments MAFF has been designed for the new Munich research reactor FRM-II. It will deliver several intense beams (∼3x10 11 s -1 ) of very neutron-rich fission fragments with a final energy of 30 keV (low-energy beam) or energies between 3.7 and 5.9 MeV·A (high-energy beam). Such beams are of interest for the creation of super-heavy elements by fusion reactions, nuclear spectroscopy of exotic nuclei, but they also have a potential for applications, e.g. in medicine. Presently the Munich research reactor FRM-II is ready for operation, but authorities delay the final permission to turn the reactor critical probably till the end of 2002. Only after this final permission the financing of the major parts of MAFF can start. On the other hand all major components have been designed and special components have been tested in separate setups
Alkaline glass as induced fission fragment detectors
International Nuclear Information System (INIS)
Amorim, A.M.M.
1986-01-01
The slide glass, registered trade marks INLAB, INVICT and PERFECTA were compared. For the three kinds of glasses the following studies were done: chemical composition; general dissolution rate for hydrofluoric acid solutions of concentrations between 1 and 10M, at 30 0 C and ultrasound shaking; relative efficiency for recording fission fragment tracks from 252 Cf. The INLAB glass was selected due to the better quality of its surface after chemical etching. The HF concentration 2.5M was determined for chemical etching of INLAB glass, and the optimum etching time was chosen between 8 and 10 minutes. The thermal attenuation of latent tracks in the environmental temperature was observed for intervals uo to 31 days between the detector exposure to the fission fragment source and etching of tracks. Several methods were used for determining the detector parameters, such as: critical angle, angle of the cone and efficiency of etching. The effects of gamma irradiation from 60 Co and reactor neutrons in material properties as track detector were studied. Attenuation of latent tracks and saturation of color centers were observed for doses over 100M Rad. Since this kind of material contains uranium as impurity, uniformely distributed, slide glass were calibrated to be applied as a monitor of thermal neutron flux in nuclear reactor. (Author) [pt
The multi-step prompt particle emission from fission fragments
International Nuclear Information System (INIS)
Zhivopistsev, A.; Oprea, C.; Oprea, I.
2003-01-01
The purpose of this work is the study of non-equilibrium high-energy gamma emission from 252 Cf. In the framework of the formalism of statistical multi-step compound processes in nuclear reactions. A relation was found between the shape of the high-energy part of the gamma spectrum and different mechanisms of excitation of the fission fragments. Agreement with experimental data for different groups of fission fragments was obtained. The analysis of the experimental high-energy part of gamma spectra yields information about the mechanism of excitation of fission fragments. The influence of dissipation of the deformation excess on intrinsic excitation of fission fragments was studied. (authors)
Neutron emission during acceleration of 252Cf fission fragments
International Nuclear Information System (INIS)
Batenkov, O.I.; Blinov, M.V.; Blinov, A.B.; Smirnov, S.N.
1991-01-01
We investigate neutron emission during acceleration of fission fragments in the process of spontaneous fission of 252 Cf. Experimental angular and energy distributions of neutrons are compared with the results of calculations of neutron evaporation during fragment acceleration. (author). 8 refs, 3 figs
Anisotropy in the ternary cold fission
Delion, D S; Greiner, W
2003-01-01
We describe the spontaneous ternary cold fission of sup 2 sup 5 sup 2 Cf, accompanied by sup 4 He, sup 1 sup 0 Be and sup 1 sup 4 C within a stationary scattering formalism. We show that the light cluster should be born in the neck region. It decays from the first resonant eigenstate in the Coulomb plus harmonic oscillator potential, centred in this region and eccentric with respect to the symmetry axis. This description gives a simple answer to the question why the averaged values in the energy spectra of emitted clusters are close to each other, in spite of different Coulomb barriers. We have shown that the angular distribution of the emitted light particle is strongly connected with its deformation and the equatorial distance. Experimental angular distributions can be explained by the spherical shapes of emitted clusters, except for a deformed sup 1 sup 0 Be. We also predicted some dependences of half-lives for such tri-nuclear systems upon potential parameters.
Delayed β ray spectrum of 235U fission fragments
International Nuclear Information System (INIS)
Pascholati, P.R.
1973-01-01
The time-dependent electron spectra of fission fragments from the thermal-neutron-induced fission of 235 U are calculated. The Gross theory of nuclear beta decay is used to obtain the decay constant and individual electron spectra. The mean energy per fission carried by the electrons and the number of electrons per fission are also calculated. Comparison of these calculated spectra to experimental ones shows good agreements. (Author) [pt
Tovesson, F.; Duke, D.; Geppert-Kleinrath, V.; Manning, B.; Mayorov, D.; Mosby, S.; Schmitt, K.
2018-03-01
Different aspects of the nuclear fission process have been studied at Los Alamos Neutron Science Center (LANSCE) using various instruments and experimental techniques. Properties of the fragments emitted in fission have been investigated using Frisch-grid ionization chambers, a Time Projection Chamber (TPC), and the SPIDER instrument which employs the 2v-2E method. These instruments and experimental techniques have been used to determine fission product mass yields, the energy dependent total kinetic energy (TKE) release, and anisotropy in neutron-induced fission of U-235, U-238 and Pu-239.
Angular momenta of fission fragments in the {alpha}-accompanied fission of {sup 252}Cf
Energy Technology Data Exchange (ETDEWEB)
Jandel, M.; Kliman, J.; Krupa, L.; Morhac, M. [Slovak Academy of Sciences, Department of Nuclear Physics, Bratislava (Slovakia); Joint Institute for Nuclear Research, Flerov Laboratory for Nuclear Reactions, Dubna (Russian Federation); Hamilton, J.H.; Kormicki, J.; Ramayya, A.V.; Hwang, J.K.; Luo, Y.X.; Fong, D.; Gore, P. [Vanderbilt University, Department of Physics, Nashville, TN (United States); Ter-Akopian, G.M.; Oganessian, Yu.Ts.; Rodin, A.M.; Fomichev, A.S.; Popeko, G.S. [Joint Institute for Nuclear Research, Flerov Laboratory for Nuclear Reactions, Dubna (Russian Federation); Daniel, A.V. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Rasmussen, J.O.; Macchiavelli, A.O.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Donangelo, R.; Cole, J.D.
2005-06-01
For the first time, average angular momenta of the ternary fission fragments {sup 100,102}Zr, {sup 106}Mo, {sup 144,146}Ba and {sup 138,140,142}Xe from the {alpha}-accompanied fission of {sup 252}Cf were obtained from relative intensities of prompt {gamma}-ray transitions with the use of the statistical model calculation. Average values of the angular momenta were compared with the corresponding values for the same fission fragments from the binary fission of {sup 252}Cf. Results indicate the presence of a decreasing trend in the average values of angular momenta induced in ternary fission fragments compared to the same binary fission fragments. On the average, the total angular momentum extracted for ternary fission fragments is {proportional_to}1.4{Dirac_h} lower than in binary fission. Consequently, results indicate that the mechanism of the ternary {alpha}-particles emission may directly effect an induction of angular momenta of fission fragments, and possible scenarios of such mechanisms are discussed. Further, the dependence of the angular momenta of {sup 106}Mo and {sup 140}Xe on the number of emitted neutrons from correlated pairs of primary fragments was obtained also showing a decreasing dependence of average angular momenta with increasing number of emitted neutrons. Consequences are briefly discussed. (orig.)
Fission fragment mass and angular distributions
Indian Academy of Sciences (India)
2015-07-22
Jul 22, 2015 ... Synthesis of heavy and superheavy elements is severely hindered by fission and fission-like processes. The probability of these fission-like, non-equilibrium processes strongly depends on the entrance channel parameters. This article attempts to summarize the recent experimental findings and classify the ...
Fission fragment mass distributions via prompt γ-ray spectroscopy
Indian Academy of Sciences (India)
The distribution of fragment masses formed in nuclear fission is one of the most strik- ing features .... 80. 100. 120. 140. 160. 10. 3. 10. 4. Fragment Mass. Relative yield. Sn. Cd. Te. Pd ... the secondary fragment at Z = 50 and N = 82 shells, where the yields are depleted. Both ... More systematic experimental data are required.
Fission Fragment Yield Data in Support of Advanced Reactor Technology
Energy Technology Data Exchange (ETDEWEB)
Hecht, Adam [Univ. of New Mexico, Albuquerque, NM (United States)
2017-11-21
Within the 3 year POP we propose to continue to test and further develop the fission spectrometers, to do development tests and full data acquisition run at the national laboratory neutron beam facilities, to measure correlated fission fragment yields at low neutron energies with 235 U fission targets, and make these data available to the nuclear community. The spectrometer development will be both on the university based r\\prototype and on the National Laboratory Spectrometer, and measurements will be performed with both. Over the longer time frame of the collaboration, we will take data over a range of low energies, and use other fission targets available to the laboratory. We will gather energy specific fragment distributions and reaction cross sections. We will further develop the data acquisition capabilities to take correlated fission fragment'gamma ray/neurton data, all on an event-by-event basis. This really is an enabling technology.
Fission dynamics as brought out in cold fragmentation studies
International Nuclear Information System (INIS)
Signarbieux, G.
1986-10-01
Fission dynamics problem has been addressed since the beginning. This paper is specifically concerned by ''even-odd effects '' in fragment distribution. These effects are reinterpreted, some complementary thoughts on double ionization chamber are given together with a study of fission dymanics at low energy [fr
Anisotropy in highly charged ion induced molecule fragmentation
International Nuclear Information System (INIS)
Juhasz, Z.; Sulik, B.; Fremont, F.; Chesnel, J.Y.; Hajaji, A.
2006-01-01
Complete text of publication follows. Studying fragmentation processes of biologically relevant molecules due to highly charged ion impact is important to understand radiation damage in biological tissues. Energy spectra of the charged molecule fragments may reveal the different fragmentation patterns meanwhile the angular distributions of the fragments characterize the dependence of fragmentation probability on the initial orientation of the molecule. The research to explore the angular distribution of the molecule fragments has only recently been started[1]. In 2006 we performed measurements at ARIBE facility at GANIL, Caen (France), in order to investigate orientation effects in molecule fragmentation. Fragmentation of H 2 O, C 6 H 6 and CH 4 , which represent different level of symmetry, have been studied by 60 keV N 6+ ion impact. Energy spectra of the charged fragments at different observation angles have been taken. As our example spectra show the different protonic peaks can be attributed to different fragmentation processes. Significant anisotropy can be seen in the different processes. The strongest evidence for the anisotropy can be seen in the spectra of C 6 H 6 , where the spectra appear isotropic in almost the whole observed energy range except one peak, which has a strong angular dependence and is maximal around 90 deg. (author)
Prompt neutrons from {sup 236}U fission fragments
Energy Technology Data Exchange (ETDEWEB)
Boldeman, J W; Musgrove, A.R. de L.; Walsch, R L
1971-03-01
Measurements were made of prompt neutron emission in the thermal neutron fission of {sup 235}U. The mean neutron emission per fragment was obtained for particular values of the fragment mass and total kinetic energy. A direct neutron counting method was employed and a comparison made with data from previous experiments of this type. (author)
High-energy nuclear reaction mechanisms - fission, fragmentation and spallation
International Nuclear Information System (INIS)
Kaufman, S.B.
1987-01-01
Measurements of the correlations in kinetic energy, mass, charge, and angle of coincident fragments formed in high-energy nuclear reactions have helped to characterize the processes of fission, fragmentation and spallation. For example, fission or fission-like two-body breakup mechanisms result in a strong angular correlation between two heavy fragments; in addition, the momentum transfer in the reaction can be deduced from the correlation. Another example is the multiplicity of light charged particles associated with a given heavy fragment, which is a measure of the violence of the collision, thus distinguishing between central and peripheral collisions. A summary of what has been learned about these processes from such studies will be given, along with some suggestions for further experiments
Analysis of fission-fragment mass distribution within the quantum-mechanical fragmentation theory
Energy Technology Data Exchange (ETDEWEB)
Singh, Pardeep; Kaur, Harjeet [Guru Nanak Dev University, Department of Physics, Amritsar (India)
2016-11-15
The fission-fragment mass distribution is analysed for the {sup 208}Pb({sup 18}O, f) reaction within the quantum-mechanical fragmentation theory (QMFT). The reaction potential has been calculated by taking the binding energies, Coulomb potential and proximity potential of all possible decay channels and a stationary Schroedinger equation has been solved numerically to calculate the fission-fragment yield. The overall results for mass distribution are compared with those obtained in experiment. Fine structure dips in yield, corresponding to fragment shell closures at Z = 50 and N=82, which are observed by Bogachev et al., are reproduced successfully in the present calculations. These calculations will help to estimate the formation probabilities of fission fragments and to understand many related phenomena occurring in the fission process. (orig.)
Light particles emitted with the fission fragments of thorium
Energy Technology Data Exchange (ETDEWEB)
San-Tsiang, T; Faraggi, H
1947-01-01
The traces produced by the fission of thorium with fast neutrons have been recorded photographically and studied. The formation of a light fragment of long range by either quadripartition or tripartition was not observed. The release of a short-range light fragment by bipartition was observed about one hundred times more frequently than was the release of such a fragment by tripartition. The ratio of the range of the two heavy fragments produced by tripartition was 1:2; this compares with a ratio of 1:3 for the heavy fragments produced by bipartition.
Effects of fissioning nuclei distributions on fragment mass distributions for high energy fission
Directory of Open Access Journals (Sweden)
Rossi P C R
2012-02-01
Full Text Available We study the effects of fissioning nuclei mass- and energy-distributions on the formation of fragments for fission induced by high energy probes. A Monte Carlo code called CRISP was used for obtaining mass distributions and spectra of the fissioning nuclei for reactions induced by 660 MeV protons on 241Am and on 239Np, by 500 MeV protons on 208Pb, and by Bremsstrahlung photons with end-point energies at 50 MeV and 3500 MeV on 238U. The results show that even at high excitation energies, asymmetric fission may still contribute significantly to the fission cross section of actinide nuclei, while it is the dominante mode in the case of lead. However, more precise data for high energy fission on actinide are necessary in order to allow definite conclusions.
SAPhIR: a fission-fragment detector
International Nuclear Information System (INIS)
Theisen, Ch.; Gautherin, C.; Houry, M.; Korten, W.; Le Coz, Y.; Lucas, R.; Barreau, G.; Doan, T. P.; Belier, G.; Meot, V.; Ethvignot, Th.; Cahan, B.; Le Coguie, A.; Coppolani, X.; Delaitre, B.; Le Bourlout, P.; Legou, Ph.; Maillard, O.; Durand, G.; Bouillac, A.
1998-01-01
SAPhIR is the acronym for S a clay A q uitaine P ho tovoltaic cells for I s omer R e search. It consists of solar cells, used for fission-fragment detection. It is a collaboration between 3 laboratories: CEA Saclay, CENBG Bordeaux and CEA Bruyeres le Chatel. The coupling of a highly efficient fission-fragment detector like SAPhIR with EUROBALL will provide new insights in the study of very deformed nuclear matter and in the spectroscopy of neutron-rich nuclei
Nuclear structure via isomer tagging of fission fragments
Wu, C. Y.; Cline, D.; Simon, M. W.; Stoyer, M. A.
1997-10-01
The high efficiency for detecting high-fold γ rays by large Ge arrays makes it possible to study the detailed spectroscopy of many neutron-rich nuclei produced by fission. Major progress has been made using sealed spontaneous fission sources. Considerable improvement in selectivity is provided, with an open source, both by gating on isomers and by detection of both fission fragments in coincidence with the deexcitation γ rays (see the preceding contribution). The reconstructed kinematics allows a measure of fragment mass and the Doppler shift correction of γ rays. In a recent experiment, fission fragments were detected using half of the CHICO array and an annular PPAC in coincidence with deexcitation γ rays detected by the Rochester array of eight Compton-suppressed Ge detectors. The annular PPAC was located only 1.0" from a 3.7 μCi ^252Cf source for efficient isomer tagging. The correlation was studied between delayed, within a time window between 150 ns and 10 μs after a fission occurring, and prompt γ rays. Several prominent feeding patterns to isomers in the mass region around 100 and 130 are identified by such correlation study. Experimental details and results will be presented.
Effectiveness in detecting fission fragments with ionization chambers
International Nuclear Information System (INIS)
Manrique Garcia, J.; Monne, G.
1991-01-01
Detection of fission fragments is important in nuclear measurements. When a high detection accuracy is required it is necessary to take in account the detection losses due to the absorption of fragments in the fissionable material. The losses corrections might change the final results in 2-3%. The traditional expression used in the calculation of the detection efficiency does not consider neither the density variation of the fissionable substance with its width, because it depends on the target material. That's why actually in many labs it is being searched new methods that allow to find the efficiency for each target. In this work a new method for determination of absorption efficiency is presented. The obtained results are analyzed
Neutron emission and fragment yield in high-energy fission
International Nuclear Information System (INIS)
Grudzevich, O. T.; Klinov, D. A.
2013-01-01
The KRIS special library of spectra and emission probabilities in the decays of 1500 nuclei excited up to energies between 150 and 250 MeV was developed for correctly taking into account the decay of highly excited nuclei appearing as fission fragments. The emission of neutrons, protons, and photons was taken into account. Neutron emission fromprimary fragments was found to have a substantial effect on the formation of yields of postneutron nuclei. The library was tested by comparing the calculated and measured yields of products originating from the fission of nuclei that was induced by high-energy protons. The method for calculating these yields was tested on the basis of experimental data on the thermal-neutroninduced fission of 235 U nuclei
Fission fragment yields from heavy-ion-induced reactions measured with a fragment separator
Tarasov, O. B.; Delaune, O.; Farget, F.; Morrissey, D. J.; Amthor, A. M.; Bastin, B.; Bazin, D.; Blank, B.; Cacéres, L.; Chbihi, A.; Fernández-Dominguez, B.; Grévy, S.; Kamalou, O.; Lukyanov, S. M.; Mittig, W.; Pereira, J.; Perrot, L.; Saint-Laurent, M.-G.; Savajols, H.; Sherrill, B. M.; Stodel, C.; Thomas, J. C.; Villari, A. C.
2018-04-01
The systematic study of fission fragment yields under different initial conditions has provided valuable experimental data for benchmarking models of fission product yields. Nuclear reactions using inverse kinematics coupled to the use of a high-resolution spectrometer with good fragment identification are shown here to be a powerful tool to measure the inclusive isotopic yields of fission fragments. In-flight fusion-fission was used in this work to produce secondary beams of neutron-rich isotopes in the collisions of a 238U beam at 24 MeV/u with 9Be and 12C targets at GANIL using the LISE3 fragment separator. Unique identification of the A, Z, and atomic charge state, q, of fission products was attained with the Δ E- TKE-B ρ- ToF measurement technique. Mass, and atomic number distributions are reported for the two reactions. The results show the importance of different reaction mechanisms in the two cases. The optimal target material for higher yields of neutron-rich high- Z isotopes produced in fusion-fission reactions as a function of projectile energy is discussed.
Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.
2018-03-01
The fission-fragment mass and total kinetic energy (TKE) distributions are evaluated in a quantum mechanical framework using elongation, mass asymmetry, neck degree of freedom as the relevant collective parameters in the Fourier shape parametrization recently developed by us. The potential energy surfaces (PES) are calculated within the macroscopic-microscopic model based on the Lublin-Strasbourg Drop (LSD), the Yukawa-folded (YF) single-particle potential and a monopole pairing force. The PES are presented and analysed in detail for even-even Plutonium isotopes with A = 236-246. They reveal deep asymmetric valleys. The fission-fragment mass and TKE distributions are obtained from the ground state of a collective Hamiltonian computed within the Born-Oppenheimer approximation, in the WKB approach by introducing a neck-dependent fission probability. The calculated mass and total kinetic energy distributions are found in good agreement with the data.
Spatial- and Time-Correlated Detection of Fission Fragments
Directory of Open Access Journals (Sweden)
Platkevic M.
2012-02-01
Full Text Available With the goal to measure angular correlations of fission fragments in rare fission decay (e.g. ternary and quaternary fission, a multi-detector coincidence system based on two and up to four position sensitive pixel detectors Timepix has been built. In addition to the high granularity, wide dynamic range and per pixel signal threshold, these devices are equipped with per pixel energy and time sensitivity providing more information (position, energy, time, enhances particle-type identification and selectivity of event-by-event detection. Operation of the device with the integrated USB 2.0 based readout interface FITPix and the control and data acquisition software tool Pixelman enables online visualization and flexible/adjustable operation for a different type of experiments. Spatially correlated fission fragments can be thus registered in coincidence. Similarly triggered measurements are performed using an integrated spectrometric module with analogue signal chain electronics. The current status of development together with demonstration of the technique with a 252Cf source is presented.
Mass spectrometry with ionization induced by 252Cf fission fragments
International Nuclear Information System (INIS)
Sysoev, A.A.; Artaev, V.B.
1991-01-01
The review deals with mass-spectrometry with ionization induced by 252 Cf fission fragments. Equipment and technique of the analysis, analytic possibilities of the method are considered. The method permits to determine molecular masses of large nonvolatile biological molecules. The method is practically nondestructive, it possesses a high resolution over the depth and surface, which permits to use it for the analysis of surface of semiconductors, dielectrics, catalysts, for the study of formation kinetics of complex unstable molecules on the surface
Amplifier channel for a fission fragment semiconductor detector
International Nuclear Information System (INIS)
Tyurin, G.P.
1981-01-01
To compensate the decrease of the transformation coefficient of fission fragment semiconductor detector (SCD) developed is a special amplification channel with controlled transfer coefficient. The block diagram of the channel is presented, the main functional units of which are as follows: preamplifying head with charge-sensitive and timing preamplifiers, linear amplifier and the circuit of spectrum position stabilization, which includes a differential discriminator, integrator and reference signal generator. The amplification channel is made in the CAMAC standard and has the following specifications: dinamical input capacitance of charge-sensitive amplifier c=10000 n PHI, signal amplitude at output of the linear amplifier at energy of fission fragments of 120 MeV has negative polarity and is equal to 5 V. Pulse amplitude change at SCD sensitivity decrease to 50% constitutes not more than 1%. Timing preamplifier has the gain factor at voltage of K=80 at front duration of 3.5 nc. Time resolution of the amplification channel is not worse than 1 nc. Dimensions of preamplifying head are 40x40x15 mm. The amplification channel permitted to use SCD for long-term measurements of fission fragment spectra [ru
Fission of heavy nuclei: microscopic study of fission barriers and fragments angular momentum
International Nuclear Information System (INIS)
Bonneau, L.
2003-11-01
A lot of experimental data on nuclear fission has been being collected for the last 65 years, allowing theoreticians to confront their models with reality. The first part of this work is dedicated to the computation of fission barriers. We have extended the HF + BCS (Hartree Fock + Bandeen-Cooper-Schrieffer) method in order to include a new set of polynomials on which wave functions can be broken to, more accurately than on Hermite's polynomials in the 2 fragment configuration. The fission barriers of 26 heavy nuclei from Thorium-230 to Nobelium-256 have been assessed and compared to experimental data, it appears that differences are no greater than 1 MeV. We have discovered a neat correlation between the variation of the experimental fission lifetimes of even Fermium isotopes and the computed heights of second barriers. Moreover our model reproduces the hyper-deformed well of Thorium-230 with a good agreement on the well depth. The second part deals with the scission region. We have performed Hartree-Fock calculations in order to explore different ways of fragmentation. We have shown that the harmonic oscillator gives a valid description of such ways. In order to compute the mean value of J 2 in the fragments we have been driven to propose an adequate definition of that quantity consistent with the non-locality property of the J 2 operator. (A.C.)
Direct fission fragment energy converter - Magnetic collimator option
International Nuclear Information System (INIS)
Tsvetkov, P. V.; Hart, R. R.
2006-01-01
The present study was focused on developing a technologically feasible power system that is based on direct fission fragment energy conversion utilizing magnetic collimation. The new concept is an attempt to combine several advantageous design solutions, which have been proposed for application in both fission and fusion reactors, into one innovative system that can offer exceptional energy conversion efficiency. The analysis takes into consideration a wide range of operational aspects including fission fragment escape from the fuel, collimation, collection, criticality, long-term performance, energy conversion efficiency, heat removal, and safety characteristics. Specific characteristics of the individual system components and the entire system are evaluated. Analysis and evaluation of the technological feasibility of the concept were achieved using state-of-the-art computer codes that allowed realistic and consistent modeling. In addition to the extensive computational effort, the scaled prototype experimental proof-of-principle program was conducted to validate basic physics of the concept. The program was focused on electromagnetic components and experimental demonstration of performance. This paper summarizes the final results of the 6-years research program including both computational and experimental efforts. Potential future research and development and anticipated applications are discussed. (authors)
International Nuclear Information System (INIS)
Behera, B.R.; Jena, S.; Satapathy, M.; Ison, V.V.; Kailas, S.; Chatterjee, A.; Shrivastava, A.; Mahata, K.; Satpathy, L.; Basu, P.; Roy, S.; Sharan, M.; Chatterjee, M.L; Datta, S.K.
2000-01-01
Fission fragment angular distributions of heavy-ion induced fission in actinide nuclei at near-barrier energies show anomalous fragment anisotropies. At above barrier energies entrance channel dependence is a probable cause and explanation in terms of pre-equilibrium fission and the critical mass asymmetry parameter (Businaro-Gallone) has been tried. Target deformation and ground state spin also seem to influence the measured anisotropy. To understand the extent of importance of some or all of these features, we performed a set of experiments where (i) entrance channel dependence (ii) mass asymmetry on the two sides of Businaro-Gallone and (iii) different ground state spins are present. The channels chosen are 14 N+ 232 Th and 11 B+ 235 U. Experiments were done using the Pelletron accelerators at NSC, New Delhi and BARC-TIFR, Bombay. Compound nucleus populated in both cases is 246 Bk. 232 Th has ground state spin zero and 235 U has spin 7/2. Fragment anisotropies have been measured from 10-15 % above barrier to 10 % below barrier at similar excitation energy (around 40 MeV to 58 MeV). The mean square angular momentum is matched at least at one energy. Results indicate that when both excitation energy and angular momentum are matched, there are differences in the measured values of fission anisotropies. This implies entrance channel dependence consistent with the expectation of pre-equilibrium fission model. (authors)
Measurement of p-odd asymmetry of fragment escape in ternary fission of plutonium 239
International Nuclear Information System (INIS)
Belozerov, A.V.; Vodennikov, B.D.; Danilyan, G.V.; Korobkina, E.I.; Pavlov, V.S.; Pevchev, Yu.F.; Sadchikov, A.G.
1988-01-01
Values of effects of parity nonconservation in binary and ternary fission of plutonium 239 by polarized thermal neutrons were measured simultaneously. The ratio of asymmetry coefficient (AC) of ternary fission to the AC of binary fission was equal to 0.67+-0.20. The obtained result testifies to insignificant disagreement of AC of fragment escape in studied fission types
Simultaneous measurement of neutrons and fission fragments of thermal neutron fission of U-233
International Nuclear Information System (INIS)
Itsuro Kimura; Katsuhisa Nishio; Yoshihiro Nakagome
2000-01-01
The multiplicity and the energy of prompt neutrons from the fragments for 233 U(n th , f) were measured as functions of fragment mass and total kinetic energy. Average neutron energy against the fragment mass showed a nearly symmetric distribution about the half mass division with two valleys at 98 and 145 u. The slope of the neutron multiplicity with total kinetic energy depended on the fragment mass and showed the minimum at about 130 u. The obtained neutron data were applied to determine the total excitation energy of the system, and the resulting value in the typical asymmetric fission lied between 22 and 25 MeV. The excitation energy agreed with that determined by subtracting the total kinetic energy from the Q-value within 1 MeV, thus satisfied the energy conservation. In the symmetric fission, where the mass yield was drastically suppresses, the total excitation energy is significantly large and reaches to about 40 MeV, suggesting that fragment pairs are preferentially formed in a compact configuration at the scission point [ru
Conceptual Analysis of Fission Fragment Magnetic Collimator Reactors
International Nuclear Information System (INIS)
Tsvetkov, Pavel V.; Parish, Theodore A.
2002-01-01
As part of the current research work within the US DOE NERI Direct Electricity Conversion (DEC) Project on methods for utilizing direct electricity conversion in nuclear reactors, a detailed study of a Fission Fragment Magnetic Collimator Reactor (FFMCR) has been performed. The FFMCR concept is an advanced DEC system that combines advantageous design solutions proposed for application in both fission and fusion reactors. The present study was focused on determining the electrical efficiency and other important operational aspects of the FFMCR concept. In principle, acceptable characteristics have been demonstrated, and results obtained are presented in the paper. Technological visibility of the FFMCR concept and required further design development are discussed. Preliminary characteristics of the promising design are outlined. (authors)
Langevin description of fission fragment charge distribution from excited nuclei
Karpov, A V
2002-01-01
A stochastic approach to fission dynamics based on a set of three-dimensional Langevin equations was applied to calculate fission-fragment charge distribution of compound nucleus sup 2 sup 3 sup 6 U. The following collective coordinates have been chosen - elongation coordinate, neck-thickness coordinate, and charge-asymmetry coordinate. The friction coefficient of charge mode has been calculated in the framework of one-body and two-body dissipation mechanisms. Analysis of the results has shown that Langevin approach is appropriate for investigation of isobaric distribution. Moreover, the dependences of the variance of the charge distribution on excitation energy and on the two-body viscosity coefficient has been studied
Projectile fission of 238U relativistic ions in a Pb target and discovery of new fission fragments
International Nuclear Information System (INIS)
Bernas, M.; Donzaud, C.; Dessagne, Ph.; Miehe, Ch.; Hanelt, E.; Heinz, A.
1994-01-01
With the 238 U beam accelerated at relativistic energies by the heavy ion synchrotron (SIS) at GSI, fission was investigated using inverse kinematics. This geometry is well suited for analyzing fragments with the fragment separator. The fragments are identified by in flight measurements of their energy loss and time of flight signals. More than forty new isotopes have been discovered focusing on the light branch of fission products. (K.A.) 12 refs., 5 figs., 1 tab
Khryachkov, Vitaly; Goverdovskii, Andrei; Ketlerov, Vladimir; Mitrofanov, Vecheslav; Sergachev, Alexei
2018-03-01
Binary fission of 232Th and 238U induced by fast neutrons were under intent investigation in the IPPE during recent years. These measurements were performed with a twin ionization chamber with Frisch grids. Signals from the detector were digitized for further processing with a specially developed software. It results in information of kinetic energies, masses, directions and Bragg curves of registered fission fragments. Total statistics of a few million fission events were collected during each experiment. It was discovered that for several combinations of fission fragment masses their total kinetic energy was very close to total free energy of the fissioning system. The probability of such fission events for the fast neutron induced fission was found to be much higher than for spontaneous fission of 252Cf and thermal neutron induced fission of 235U. For experiments with 238U target the energy of incident neutrons were 5 MeV and 6.5 MeV. Close analysis of dependence of fission fragment distribution on compound nucleus excitation energy gave us some explanation of the phenomenon. It could be a process in highly excited compound nucleus which leads the fissioning system from the scission point into the fusion valley with high probability.
Morphologies of fission fragment impacts in diamond and silica
International Nuclear Information System (INIS)
Gammage, R.B.; Espinosa, G.; Vazquez, C.; Moreno, A.
2005-01-01
The morphologies of fission-fragment impact craters in diamond and silica were investigated by atomic force microscopy. The impacts produced micron-sized craters that were especially obvious in diamond; irradiations in air may have allowed the cratering in carbon to be oxidally enhanced. The eject deposit preferentially at ordered sites and have the appearance of hillocks of a few tenths microns in size. On quartz, the hillocks have a parallel-perpendicular, x-y pattern; on diamond, the hillocks form one dimensional, parallel rows. In contrast, the hillocks on amorphous silica fiber show a random pattern. (Author)
Yields of correlated fragment pairs and neutron multiplicity in spontaneous fission of {sup 242}Pu
Energy Technology Data Exchange (ETDEWEB)
Veselsky, M.; Kliman, J.; Morhaccaron, M. [Institute of Physics of Slovak Academy of Sciences, Dubravska 9, 84228 Bratislava (Slovakia); Ramayya, A.V.; Kormicki, J.; Daniel, A.V. [Physics Department, Vanderbilt University, Nashville (United States)] Rasmussen, J.O. [Lawrence Berkeley National Laboratory, Berkeley (United States)] Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore (United States); Daniel, A.V.; Popeko, G.S.; Oganessian, Yu. Ts. [Joint Institute for Nuclear Research, Dubna (Russia)] Greiner, W. [Institut fur Theoretische Physik, J. W. Goethe Universitaet, Frankfurt a. M. (Germany); Aryaeinejad, R. [Idaho National Engineering Laboratory, Idaho Falls (United States)
1998-10-01
Yields of correlated fragment pairs were obtained in spontaneous fission of {sup 242}Pu. Charge, mass and neutron multiplicity distributions of fragment pairs were determined and compared to available data. The yield of cold fission without neutron emission was determined to about 10{percent} for the set of observed correlated fragment pairs. {copyright} {ital 1998 American Institute of Physics.}
Topological anisotropy of stone-wales waves in graphenic fragments.
Ori, Ottorino; Cataldo, Franco; Putz, Mihai V
2011-01-01
Stone-Wales operators interchange four adjacent hexagons with two pentagon-heptagon 5|7 pairs that, graphically, may be iteratively propagated in the graphene layer, originating a new interesting structural defect called here Stone-Wales wave. By minimization, the Wiener index topological invariant evidences a marked anisotropy of the Stone-Wales defects that, topologically, are in fact preferably generated and propagated along the diagonal of the graphenic fragments, including carbon nanotubes and graphene nanoribbons. This peculiar edge-effect is shown in this paper having a predominant topological origin, leaving to future experimental investigations the task of verifying the occurrence in nature of wave-like defects similar to the ones proposed here. Graph-theoretical tools used in this paper for the generation and the propagation of the Stone-Wales defects waves are applicable to investigate isomeric modifications of chemical structures with various dimensionality like fullerenes, nanotubes, graphenic layers, schwarzites, zeolites.
Target conception for the Munich fission fragment accelerator
Maier, H J; Gross, M L; Grossmann, R; Kester, O; Thirolf, P
1999-01-01
For the new high-flux reactor FRM II, the fission fragment accelerator MAFF is under design. MAFF will supply intense mass-separated radioactive ion beams of very neutron-rich nuclei with energies around the Coulomb barrier. A central part of this accelerator is the ion source with the fission target, which is operated at a neutron flux of 1.5x10 sup 1 sup 4 cm sup - sup 2 s sup - sup 1. The target consists of typically 1 g of sup 2 sup 3 sup 5 U dispersed in a cylindrical graphite matrix, which is encapsulated in a Re container. To enable diffusion and extraction of the fission products, the target has to be maintained at a temperature of up to 2400 deg. C during operation. It has to stand this temperature for at least one reactor cycle of 1250 h. Comprehensive tests are required to study the long-term behaviour of the involved materials at these conditions prior to operation in the reactor. The present paper gives details of the target conception and the projected tests.
Critical angles for fission fragment registrations in some solid state track detectors
Energy Technology Data Exchange (ETDEWEB)
Belyaev, A D; Bahromi, I I; Beresina, N V [AN Uzbekskoj SSR, Tashkent. Inst. Yadernoj Fiziki; and others
1980-03-01
In studies of the registration efficiency of various solid state track detectors (polycarbonate, polyethyleneterephthalate, cellulose nitrate and muscovite) the detectors were irradiated with spontaneous fission fragments from /sup 252/Cf and with fission fragments from /sup 235/U separated according to mass and energy. Experimental details are given. Critical angles for the registration of fission fragments in the various detectors are given for specified energies and masses.
Studies of Fission Fragment Rocket Engine Propelled Spacecraft
Werka, Robert O.; Clark, Rodney; Sheldon, Rob; Percy, Thomas K.
2014-01-01
The NASA Office of Chief Technologist has funded from FY11 through FY14 successive studies of the physics, design, and spacecraft integration of a Fission Fragment Rocket Engine (FFRE) that directly converts the momentum of fission fragments continuously into spacecraft momentum at a theoretical specific impulse above one million seconds. While others have promised future propulsion advances if only you have the patience, the FFRE requires no waiting, no advances in physics and no advances in manufacturing processes. Such an engine unequivocally can create a new era of space exploration that can change spacecraft operation. The NIAC (NASA Institute for Advanced Concepts) Program Phase 1 study of FY11 first investigated how the revolutionary FFRE technology could be integrated into an advanced spacecraft. The FFRE combines existent technologies of low density fissioning dust trapped electrostatically and high field strength superconducting magnets for beam management. By organizing the nuclear core material to permit sufficient mean free path for escape of the fission fragments and by collimating the beam, this study showed the FFRE could convert nuclear power to thrust directly and efficiently at a delivered specific impulse of 527,000 seconds. The FY13 study showed that, without increasing the reactor power, adding a neutral gas to the fission fragment beam significantly increased the FFRE thrust through in a manner analogous to a jet engine afterburner. This frictional interaction of gas and beam resulted in an engine that continuously produced 1000 pound force of thrust at a delivered impulse of 32,000 seconds, thereby reducing the currently studied DRM 5 round trip mission to Mars from 3 years to 260 days. By decreasing the gas addition, this same engine can be tailored for much lower thrust at much higher impulse to match missions to more distant destinations. These studies created host spacecraft concepts configured for manned round trip journeys. While the
Fission fragment assisted reactor concept for space propulsion: Foil reactor
International Nuclear Information System (INIS)
Wright, S.A.
1991-01-01
The concept is to fabricate a reactor using thin films or foils of uranium, uranium oxide and then to coat them on substrates. These coatings would be made so thin as to allow the escaping fission fragments to directly heat a hydrogen propellant. The idea was studied of direct gas heating and direct gas pumping in a nuclear pumped laser program. Fission fragments were used to pump lasers. In this concept two substrates are placed opposite each other. The internal faces are coated with thin foil of uranium oxide. A few of the advantages of this technology are listed. In general, however, it is felt that if one look at all solid core nuclear thermal rockets or nuclear thermal propulsion methods, one is going to find that they all pretty much look the same. It is felt that this reactor has higher potential reliability. It has low structural operating temperatures, very short burn times, with graceful failure modes, and it has reduced potential for energetic accidents. Going to a design like this would take the NTP community part way to some of the very advanced engine designs, such as the gas core reactor, but with reduced risk because of the much lower temperatures
Mass distribution of fission fragments using SSNTDs based image analysis system
International Nuclear Information System (INIS)
Kolekar, R.V.; Sharma, D.N.
2006-01-01
Lexan polycarbonate track detector was used to obtain mass distribution of fission fragments from 252 Cf planchette source, Normally, if the fission fragments are incident perpendicular to the lexan surface, the diameter of heavy fragment is greater than that of lighter fragment. In practical problems fission fragments are incident on the detector at all angles. So, in the present experiment, lexan detector was exposed to 252 Cf planchette source in 2π geometry. Fission fragments were incident on the detector with various angles. So the projected fission track length for fission fragment of same energy is different because of different angle of incidence. Image analysis software was used to measure the projected track length. But the problem is that for fission fragment having greater angle of incidence the entire track length is not focused on the surface. So reduced track length is measured. This problem is solved by taking two images, one at the surface and one at the tip of track and then overlapping both the images using image analysis software. The projected track length and the depth of the track were used to get the angle of incidence. Fission track lengths were measured for same angle of incidence. In all 500 track lengths were measured and plot for mass distribution for fission fragment was obtained.(author)
Fission anisotropy of Tl produced in fusion reactions in the ...
Indian Academy of Sciences (India)
- ... framework of the modified statistical model and the results were compared ... Later, it has been found that the fission times calculated using this model .... where P(K) = (T /hωeq) exp(−Veq/T) is the probability that the system is in a given K,.
International Nuclear Information System (INIS)
Popkiewicz, M.; Osuch, S.; Szeflinski, Z.; Sztampke, A.; Wilhelmi, Z.; Wolinska, M.; Zaganczyk, R.
1997-01-01
The detection system MONA (Modular Neutron Array) consisting of eight large BC-501A liquid scintillators, was applied to determine the temperature of fission fragments emitted in spontaneous fission of 252 Cf. The determination of the temperature was based on the measurement of the neutron spectra
Energy Technology Data Exchange (ETDEWEB)
Popkiewicz, M.; Osuch, S.; Szeflinski, Z.; Sztampke, A.; Wilhelmi, Z.; Wolinska, M.; Zaganczyk, R. [Warsaw Univ., Inst. of Experimental Physics, Nuclear Physics Div., Warsaw (Poland)
1997-12-31
The detection system MONA (Modular Neutron Array) consisting of eight large BC-501A liquid scintillators, was applied to determine the temperature of fission fragments emitted in spontaneous fission of {sup 252}Cf. The determination of the temperature was based on the measurement of the neutron spectra. 5 refs, 2 figs.
Metastable decay of photoionized niobium clusters: Evaporation vs fission fragmentation
International Nuclear Information System (INIS)
Cole, S.K.; Liu, K.; Riley, S.J.
1986-01-01
The metastable decay of photoionized niobium clusters (Nb/sub n/ + ) has been observed in a newly constructed cluster beam machine. The decay manifests itself in the time-of-flight (TOF) mass spectrum as an asymmetric broadening of daughter ion peaks. Pulsed ion extraction has been used to measure the decay rate constants and to establish the mechanism of the fragmentation, evaporation and/or fission of the photoionized clusters. It is found that within the experimental time window evaporation dominates for the smaller clusters (n 6 sec -1 . The average kinetic energy release is also determined and is found to be on the order of 5 MeV. 8 refs., 3 figs., 1 tab
Light fragment preformation in cold fission of {sup 282}Cn
Energy Technology Data Exchange (ETDEWEB)
Poenaru, D.N.; Gherghescu, R.A. [Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), P.O. Box MG-6, Bucharest-Magurele (Romania); Johann Wolfgang Goethe University, Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main (Germany)
2016-11-15
In a previous article, published in Phys. Rev. C 94, 014309 (2016), we have shown for the first time that the best dynamical trajectory during the deformation toward fission of the superheavy nucleus {sup 286}Fl is a linearly increasing radius of the light fragment, R{sub 2}. This macroscopic-microscopic result reminds us about the α or cluster preformation at the nuclear surface, assumed already in 1928, and proved microscopically many times. This time we give more detailed arguments for the nucleus {sup 282}Cn. Also similar figures are presented for heavy nuclei {sup 240}Pu and {sup 252} Cf. The deep minimum of the total deformation energy near the surface is shown for the first time as a strong argument for cluster preformation. (orig.)
Fission fragment simulation of fusion neutron radiation effects on bulk mechanical properties
International Nuclear Information System (INIS)
Van Konynenburg, R.A.; Mitchell, J.B.; Guinan, M.W.; Stuart, R.N.; Borg, R.J.
1976-01-01
This research demonstrates the feasibility of using homogeneously-generated fission fragments to simulate high-fluence fusion neutron damage in niobium tensile specimens. This technique makes it possible to measure radiation effects on bulk mechanical properties at high damage states, using conveniently short irradiation times. The primary knock-on spectrum for a fusion reactor is very similar to that produced by fission fragments, and nearly the same ratio of gas atoms to displaced atoms is produced in niobium. The damage from fission fragments is compared to that from fusion neutrons and fission reactor neutrons in terms of experimentally measured yield strength increase, transmission electron microscopy (TEM) observations, and calculated damage energies
Isotopic resolution of fission fragments from 238U + 12C transfer and fusion reactions
International Nuclear Information System (INIS)
Caamano, M.; Rejmund, F.; Derkx, X.; Schmidt, K. H.; Andouin, L.; Bacri, C. O.; Barreau, G.; Benlliure, J.; Casarejos, E.; Fernandez-Dominguez, B.; Gaudefroy, L.; Golabek, C.; Jurado, B.; Lemasson, A.; Navin, A.; Rejmund, M.; Roger, T.; Shrivastava, A.; Schmitt, C.; Taieb, J.
2010-01-01
Recent results from an experiment at GANIL, performed to investigate the main properties of fission-fragment yields and energy distributions in different fissioning nuclei as a function of the excitation energy, in a neutron-rich region of actinides, are presented. Transfer reactions in inverse kinematics between a 238 U beam and a 12 C target produced different actinides, within a range of excitation energy below 30 MeV. These fissioning nuclei are identified by detecting the target-like recoil, and their kinetic and excitation energy are determined from the reconstruction of the transfer reaction. The large-acceptance spectrometer VAMOS was used to identify the mass, atomic number and charge state of the fission fragments in flight. As a result, the characteristics of the fission-fragment isotopic distributions of a variety of neutron-rich actinides are observed for the first time over the complete range of fission fragments. (authors)
Scission configurations and their implication in fission-fragment angular momenta
International Nuclear Information System (INIS)
Bonneau, L.; Quentin, P.; Mikhailov, I. N.
2007-01-01
The generation of sizable angular momenta in fragments formed in low-energy nuclear fission is described microscopically within the general quantum-mechanical framework of orientation pumping due to the Heisenberg uncertainty principle. Within this framework, we make use of the results of Skyrme-Hartree-Fock plus BCS-pairing calculations of fragment deformabilities to deduce a distribution of fission-fragment spins as a function of the fragment total excitation energy. We consider a fragmentation corresponding to a pair of deformed fragments and for which fission data are available. The properties of the scission configurations determine to a large extent the fission-fragment spins. This is why we pay particular attention to quantitatively defining the scission configurations and to studying the various implications of such a specific choice. A fair qualitative agreement with data is demonstrated and discussed within the limits of the simple scission-configuration model used here
Proposal to represent neutron absorption by fission products by a single pseudo-fragment
International Nuclear Information System (INIS)
Tsibulya, A.M.; Kochetkov, A.L.; Kravchenko, I.V.; Nikolaev, M.N.
1991-01-01
The concentration of fission products during reactor operation is analyzed. The dependence of a composite fission product capture cross-section as a function of time and on the nature of the A of the fissile nuclide are investigated, and the neutron radiative capture in fission products of a thermal reactor is evaluated. It is concluded that neutron absorption by fission products can be described by pseudo-fragments. (author). 18 refs, 2 figs, 3 tabs
International Nuclear Information System (INIS)
Benetti, P.; Raselli, G.L.; Tigliole, A. Borio di; Cagnazzo, M.; Cesana, A.; Mongelli, S.; Terrani, M.
2002-01-01
The transfer facility of the LENA laboratory allows the direct neutron irradiation of fissionable material in the D channel of the TRIGA reactor. A test measurement carried out with a ionization chamber and a 239 Pu sample shows the possibility to use this tool for the study of the transport effects of the fission fragment emerging from thin layers of fissile materials. (author)
Controlled isotropic fission fragment sources on the base of nuclear-physical facilities
International Nuclear Information System (INIS)
Sevast'yanov, V.D.; Maslov, G.N.
1995-01-01
Isotropic fission fragment sources (IFFS) are developed on the base of a neutron generator and pulse fast reactor. IFFS permit to calibrate fission fragment detectors. The IFFS consist of radiators with 235 U. The radiators are placed in a thermal neutron field of the neutron generator or in the reactor core center. The fragment activity is controlled by indications of an α-particle counter or by indications of a monitor of energy release in the core. 14 refs.; 1 fig.; 1 tab
International Nuclear Information System (INIS)
Barabanov, A.L.; Grechukhin, D.P.
1985-01-01
General analysis is conducted, and formulae for fission cross section and angular distribution of fission fragments of oriented nuclei by fast neutrons are presented. Geometrical coefficients making up the formulae permitting to carry out calculations for target nuclei with spins I=3/2, 5/2, 7/2 at interaction energies epsilon < or approximately 1 MeV are tabulated. Results of demonstrative calculation of fission fragment angular distribution of oriented sup(235)U nuclei by 0.1 <= epsilon <= 1.0 MeV neutrons reveal that angular distribution weakly depends on the set of permeability factors of neutron waves applied in the calculations
Prompt neutron emission from fragments in spontaneous fission of {sup 244,248}Cm and {sup 252}Cf
Energy Technology Data Exchange (ETDEWEB)
Vorobyev, A. S.; Shcherbakov, O. A. [Petersburg Nuclear Physics Institute, Gatchina, Leningrad district, 188300 (Russian Federation); Dushin, V. N.; Jakovlev, V. A.; Kalinin, V. A.; Petrov, B. F. [V.G. Khlopin Radium Institute, St. Petersburg, 194021 (Russian Federation); Hambsch, F.J [EC-JRC-Institute for Reference Materials and Measurements Retieseweg 111, B-2440 Geel (Belgium); Laptev, A. B. [Petersburg Nuclear Physics Institute, Gatchina, Leningrad district, 188300 (Russian Federation); Japan Nuclear Cycle Development Institute, Tokai-mura, Naka-gun, Ibaraki 319-1194 (Japan)
2005-07-01
Neutrons emitted in fission were measured separately for each complementary fragment in correlation with fission fragment energies. Two high efficiency Gd-loaded liquid scintillator tanks were used for neutron registration. Fission fragment energies were measured using a twin Frisch gridded ionization chamber with a pin-hole collimator. The neutron multiplicity distributions were obtained for each value of the fission fragment mass and energy and corrected for neutron registration efficiency, background and pile-up. The dependencies of these distributions on fragment mass and energy for different energy and mass bins, as well as the mass and energy distribution of the fission fragments are presented and discussed. (authors)
Irradiation of Methane by Recoiling Fission-Fragments
Energy Technology Data Exchange (ETDEWEB)
Hall, G. R.; Galley, M. R. [Imperial College of Science and Technology, London (United Kingdom)
1963-11-15
Pure methane gas (containing <0.003% oxygen and <5 mg H{sub 2}O per m{sup 3}) has been irradiated at pressures ranging from 5 to 50 atmospheres pressure and at 30{sup o}C with recoiling fission - fragments. The gas is contained in a silica ampoule of volume about 9 cm{sup 3} and which also contains a platinum cylinder coated on the inside with 0.5 mg/cm{sup 2} highly enriched uranium oxide. When the ampoule is irradiated in a nuclear reactor with thermal neutrons, about half the fission-fragments recoil from the uranium and dissipate their energy in the methane. In a typical irradiation, methane at 10 atm pressure receives a dose of 5 x 10{sup 21} eV at an integrated reactor flux of 5 x 10{sup 15} neutrons/cm{sup 2}. Neutron flux i s measured by means of a gold-foil flux monitor. The activity of the Au{sup 198} is counted in a 4 {pi} proportional counter. The irradiation products have been detected by using beta-ionization detectors for gas-phase chromatography with suitable columns. The following products have been found: hydrogen, ethane, propane, n-butane, isobutane, n-pentane, iso-pentane, neo-pentane, the seven hexanes. Traces of higher hydrocarbons are undoubtedly present but the analysis of these has not been attempted. Hydrogen is present in greatest yield and the yields of the hydrocarbons decrease in the order given above. Despite previously reported yields of ethylene (G-value-0.1) from gamma and fast - electron irradiations, no ethylene or other unsaturated products have been detected in this work. It would have been possible to detect 10 ppm in the products. This is to be expected as any double bonds which may be produced would almost immediately be hydrogenated by the hydrogen present. Yields for hydrogen, ethane and propane lie within the range of values that have been reported by other workers for gamma and fast electron irradiations. (author)
Revisiting the even-odd staggering in fission-fragment yields
International Nuclear Information System (INIS)
Caamano, M.; Rejmund, F.; Schmidt, K. H.
2010-01-01
The even-odd staggering observed in the experimental fission-fragment nuclear-charge yields is investigated over a wide systematics of fission fragments measured at Lohengrin in direct kinematics and at GSI in inverse kinematics. The general increase of the even-odd staggering in the fission-fragment charge yields towards asymmetric charge splits is explained by the absorption of the unpaired nucleons by the heavy fragment. As a consequence, the well established trend of even-odd staggering in the fission fragment charge yields to decrease with the fissility is attributed in part to the asymmetry evolution of the charge distribution. This interpretation is strongly supported by the data measured at GSI, which cover the complete charge distribution and include precise yields at symmetry. They reveal that the even-odd effect around symmetry remains constant over a large range of fissility. (authors)
Nuclear fission fragment excitation of electronic transition laser media
International Nuclear Information System (INIS)
Lorents, D.C.; McCusker, M.V.; Rhodes, C.K.
1976-01-01
The properties of high energy electronic transition lasers excited by fission fragments are expanded. Specific characteristics of the media including density, excitation rates, wavelength, kinetics, fissile material, scale size, and medium uniformity are assessed. The use of epithermal neutrons, homogeneously mixed fissile material, and special high cross section nuclear isotopes to optimize coupling of the energy to the medium are shown to be important considerations maximizing the scale size, energy deposition, and medium uniformity. A performance limit point of approximately 1000 J/l in approximately 100 μs pulses is established for a large class of systems operating in the near ultraviolet and visible spectral regions. It is demonstrated that e-beam excitation can be used to simulate nuclear pumping conditions to facilitate the search for candidate media. Experimental data for the kinetics of a XeF* laser operating in Ar/Xe/F 2 /UF 6 mixtures are given. These reactor-pumped systems are suitable for scaling to volumes on the order of (meters) 3
Energy Technology Data Exchange (ETDEWEB)
Nishio, Katsuhisa; Yamamoto, Hideki; Kimura, Itsuro; Nakagome, Yoshihiro [Kyoto Univ. (Japan)
1997-03-01
Simultaneous measurement of fission fragments and prompt neutrons following the thermal neutron induced fission of U-235 has been performed in order to obtain the neutron multiplicity (v) and its emission energy ({eta}) against the specified mass (m{sup *}) and the total kinetic energy (TKE). The obtained value of -dv/dTKE(m{sup *}) showed a saw-tooth distribution. The average neutron energy <{eta}>(m{sup *}) had a distribution with a reflection symmetry around the half mass division. The measurement also gave the level density parameters of the specified fragment, a(m{sup *}), and this parameters showed a saw-tooth trend too. The analysis by a phenomenological description of this parameters including the shell and collective effects suggested the existence of a collective motion of the fission fragments. (author)
Prompt Gamma Radiation from Fragments in the Thermal Fission of 235U
International Nuclear Information System (INIS)
Albinsson, H.; Lindow, L.
1970-06-01
Measurements were made on the gamma radiation emitted from fission fragments in slow neutron induced fission of 235 U. The fragments were detected with solid state detectors of the surface barrier type and the gamma radiation with a Nal(Tl) scintillator. Mass selection was used so that the gamma radiation could be measured as a function of fragment mass. Time discrimination between the fission gammas and the prompt neutrons released in the fission process was employed to reduce the background. The gamma radiation emitted during different time intervals after the fission event was studied with the help of a collimator, the position of which was changed along the path of the fission fragments. In this way a decay curve was obtained from which the life-time of one of the gamma-emitting states could be estimated. The relative yield of the gamma-rays was determined as a function of mass for different gamma-ray energy portions and two specific time intervals after the fission events. Comparisons were made with data obtained from 252 Cf-fission. Attention is drawn to some features which seem to be the same in 235 U and 252 Cf-fission
Prompt Gamma Radiation from Fragments in the Thermal Fission of {sup 235}U
Energy Technology Data Exchange (ETDEWEB)
Albinsson, H [Chalmers Univ. of Technology, Goteborg (Sweden); Lindow, L [AB Atomenergi, Nykoeping (Sweden)
1970-06-15
Measurements were made on the gamma radiation emitted from fission fragments in slow neutron induced fission of {sup 235}U. The fragments were detected with solid state detectors of the surface barrier type and the gamma radiation with a Nal(Tl) scintillator. Mass selection was used so that the gamma radiation could be measured as a function of fragment mass. Time discrimination between the fission gammas and the prompt neutrons released in the fission process was employed to reduce the background. The gamma radiation emitted during different time intervals after the fission event was studied with the help of a collimator, the position of which was changed along the path of the fission fragments. In this way a decay curve was obtained from which the life-time of one of the gamma-emitting states could be estimated. The relative yield of the gamma-rays was determined as a function of mass for different gamma-ray energy portions and two specific time intervals after the fission events. Comparisons were made with data obtained from {sup 252} Cf-fission. Attention is drawn to some features which seem to be the same in {sup 235}U and {sup 252} Cf-fission.
Mass distribution of fission fragments within the Born-Oppenheimer approximation
Energy Technology Data Exchange (ETDEWEB)
Pomorski, K.; Nerlo-Pomorska, B. [M.C.S. University, Department of Theoretical Physics, Lublin (Poland); Ivanyuk, F.A. [Institute for Nuclear Research, Kiev (Ukraine)
2017-03-15
The fission fragments mass-yield of {sup 236} U is obtained by an approximate solution of the eigenvalue problem of the collective Hamiltonian that describes the dynamics of the fission process whose degrees of freedom are: the fission (elongation), the neck and mass-asymmetry modes. The macroscopic-microscopic method is used to evaluate the potential energy surface. The macroscopic energy part is calculated using the liquid drop model and the microscopic corrections are obtained using a Woods-Saxon single-particle levels. The four-dimensional modified Cassini ovals shape parametrization is used to describe the shape of the fissioning nucleus. The mass tensor is taken within a cranking-type approximation. The final fragment mass distribution is obtained by weighting the adiabatic density distribution in the collective space with the neck-dependent fission probability. The neck degree of freedom is found to play a significant role in determining the final fragment mass distribution. (orig.)
Electron spin resonance of gamma, electron, neutron and fission fragments irradiated K2SO4
International Nuclear Information System (INIS)
Kamali, J.; Walton, G.N.
1985-01-01
The electron spin resonance (ESR) of K 2 SO 4 irradiated by γ, electron, neutron and fission fragments has been investigated. The ESR spectra are attributed mainly to the formation of SO 3 - , SO 4 - , SO 2 - , and O 3 - radical ions. The most intense radical ion observed was due to the SO 3 - , and the other radicals were relatively much lower in intensity. Thermal annealing showed a significant decrease in the concentration of radical ions. The concentration of SO 3 - was measured in γ-irradiated K 2 SO 4 and K 2 SO 4 containing fission fragments. In fission fragments irradiated K 2 SO 4 , the G-value observed for SO 3 - radical formation was about eight times higher than that of γ-irradiated K 2 SO 4 . This was attributed to the high LET (Linear Energy Transfer) of the fission fragments. (author)
Gamma ray transitions in de-excitation of 252Cf spontaneous fission fragments
International Nuclear Information System (INIS)
Khan, N.A.; Rashid, K.; Ahmad, M.; Qureshi, I.E.; Alam, G.D.; Ali, A.; Bhatti, N.; Horsch, F.
1983-11-01
Gamma rays in the range from 60 keV to 730 keV have been observed following the spontaneous fission of 252 Cf, with high resolution Ge(Li) detector, full width at half maximum (FWHM) of 700 eV at 122 keV, in coincidence with the two fission fragments observed with surface barrier detectors. A total number of 18, 636, 549 events were recorded over a run period of about 150 hours stretching over three weeks. The events were sorted to generate gamma ray spectra belonging to 2 amu intervals gamma of the fragment masses and 6 MeV intervals of the total kinetic energy released. Some of the prominent gamma lines belonging to various masses of the fission fragments have been identified. For some gamma lines, the intensities have been evaluated as a function of the total kinetic energy of the fission fragments. (authors)
Study of fission fragments produced by 14N + 235U reaction
International Nuclear Information System (INIS)
Yalcinkaya, M.; Erduran, M.N.; Ganioglu, E.; Akkus, B.; Bostan, M.; Gurdal, G.; Erturk, S.; Balabanski, D.; Minkova, A.; Danchev, M.
2005-01-01
This work was performed to understand the structure of neutron rich fission fragments around ∼ 130 region. A thin metallic 235 U target was bombarded by 14 N beam with 10 MeV/A from the Separated Sector Cyclotron at the National Accelerator Centre, Cape Town, South Africa. The main goal to detect and identify fission fragments and to obtain their mass distribution was achieved by using Solar Cell detectors in the AFRODITE (African Omnipurpose Detector for Innovative Techniques and Experiments) spectrometer. The X-rays emitted from fission fragments were detected by LEP detectors and γ rays emitted from excited states of the fission fragments were detected by CLOVER detectors in the spectrometer. (author)
Inverse kinematics technique for the study of fission-fragment isotopic yields at GANIL energies
International Nuclear Information System (INIS)
Delaune, O.
2012-01-01
The characteristics of the fission-products distributions result of dynamical and quantum properties of the deformation process of the fissioning nucleus. These distributions have also an interest for the conception of new nuclear power plants or for the transmutation of the nuclear wastes. Up to now, our understanding of the nuclear fission remains restricted because of experimental limitations. In particular, yields of the heavy fission products are difficult to get with precision. In this work, an innovative experimental technique is presented. It is based on the use of inverse kinematics coupled to the use of a spectrometer, in which a 238 U beam at 6 or 24 A MeV impinges on light targets. Several actinides, from 238 U to 250 Cf, are produced by transfer or fusion reactions, with an excitation energy ranges from ten to few hundreds MeV depending on the reaction and the beam energy. The fission fragments of these actinides are detected by the VAMOS spectrometer or the LISE separator. The isotopic yields of fission products are completely measured for different fissioning systems. The neutron excess of the fragments is used to characterise the isotopic distributions. Its evolution with excitation energy gives important insights on the mechanisms of the compound-nucleus formation and its deexcitation. Neutron excess is also used to determine the multiplicity of neutrons evaporated by the fragments. The role of the proton and neutron shell effects into the formation of fission fragments is also discussed. (author) [fr
Simultaneous investigation of fission fragments and neutrons in 252Cf(s,f)
International Nuclear Information System (INIS)
Budtz-Joergensen, C.; Knitter, H.H.
1986-01-01
The gridded twin ion chamber developed at CBNM is used to measure the kinetic energy-, mass- and angular distributions of the fission fragments of 252 Cf in an advantageous 4π-geometry. Together with a neutron time-of-flight detector this experimental arrangement permits to measure the correlation between neutron emission, fragment angle, mass and energy in the spontaneous fission of 252 Cf. With the present experimental set-up a mass resolution for fission fragments of 0.5 a.m.u., an angular resolution of Δcosθ = 0.05 and a timing resolution of 0.7 ns FWHM were observed. Preliminary evaluations of the raw experimental data are presented for the fission fragment mass distribution, the average total kinetic energy and their variance as function of mass, the angular distribution between fragments and neutrons, the number of neutrons emitted per fragment as function of fragment mass, the average neutron emission energies as function of mass, and the prompt fission neutron spectrum averaged over all fragments. (author)
SOFIA: An innovative setup to measure complete isotopic yield of fission fragments
Directory of Open Access Journals (Sweden)
Pellereau E.
2013-12-01
Full Text Available We performed an experiment dedicated to the accurate isotopic yield measurement of fission fragments over the whole range. SOFIA exploits the inverse kinematics technique: using heavy ion beams at relativistic energies, fission is induced by Coulomb excitation in a high-Z target. The fragments are emitted forward and both of them are identified in charge and mass. The setup will be presented, as well as preliminary spectra.
Formation and distribution of fragments in the spontaneous fission of 240Pu
Sadhukhan, Jhilam; Zhang, Chunli; Nazarewicz, Witold; Schunck, Nicolas
2017-12-01
Background: Fission is a fundamental decay mode of heavy atomic nuclei. The prevalent theoretical approach is based on mean-field theory and its extensions where fission is modeled as a large amplitude motion of a nucleus in a multidimensional collective space. One of the important observables characterizing fission is the charge and mass distribution of fission fragments. Purpose: The goal of this Rapid Communication is to better understand the structure of fission fragment distributions by investigating the competition between the static structure of the collective manifold and the stochastic dynamics. In particular, we study the characteristics of the tails of yield distributions, which correspond to very asymmetric fission into a very heavy and a very light fragment. Methods: We use the stochastic Langevin framework to simulate the nuclear evolution after the system tunnels through the multidimensional potential barrier. For a representative sample of different initial configurations along the outer turning-point line, we define effective fission paths by computing a large number of Langevin trajectories. We extract the relative contribution of each such path to the fragment distribution. We then use nucleon localization functions along effective fission pathways to analyze the characteristics of prefragments at prescission configurations. Results: We find that non-Newtonian Langevin trajectories, strongly impacted by the random force, produce the tails of the fission fragment distribution of 240Pu. The prefragments deduced from nucleon localizations are formed early and change little as the nucleus evolves towards scission. On the other hand, the system contains many nucleons that are not localized in the prefragments even near the scission point. Such nucleons are distributed rapidly at scission to form the final fragments. Fission prefragments extracted from direct integration of the density and from the localization functions typically differ by more than
Directory of Open Access Journals (Sweden)
Schmidt K.-H.
2010-10-01
Full Text Available A new model description of fission-fragment yields and prompt neutron emission is developed. The yields of the different fission channels and their properties are attributed to the number of relevant states above the potential-energy landscape on the fission path at the moment of dynamical freeze-out, which is specific to the collective coordinate considered. The model combines well established ideas with novel concepts. The separability principle of macroscopic properties of the compound nucleus and microscopic properties of the fragments strongly reduces the number of model parameters and assures a high predictive power. The recently discovered energy-sorting mechanism in superfluid nuclear dynamics determines the sharing of intrinsic excitation energy at scission and the enhancement of even-odd structure in asymmetric splits.
Energy Technology Data Exchange (ETDEWEB)
Bonneau, L
2003-11-01
A lot of experimental data on nuclear fission has been being collected for the last 65 years, allowing theoreticians to confront their models with reality. The first part of this work is dedicated to the computation of fission barriers. We have extended the HF + BCS (Hartree Fock + Bandeen-Cooper-Schrieffer) method in order to include a new set of polynomials on which wave functions can be broken to, more accurately than on Hermite's polynomials in the 2 fragment configuration. The fission barriers of 26 heavy nuclei from Thorium-230 to Nobelium-256 have been assessed and compared to experimental data, it appears that differences are no greater than 1 MeV. We have discovered a neat correlation between the variation of the experimental fission lifetimes of even Fermium isotopes and the computed heights of second barriers. Moreover our model reproduces the hyper-deformed well of Thorium-230 with a good agreement on the well depth. The second part deals with the scission region. We have performed Hartree-Fock calculations in order to explore different ways of fragmentation. We have shown that the harmonic oscillator gives a valid description of such ways. In order to compute the mean value of J{sup 2} in the fragments we have been driven to propose an adequate definition of that quantity consistent with the non-locality property of the J{sup 2} operator. (A.C.)
Energy Technology Data Exchange (ETDEWEB)
Bonneau, L
2003-11-01
A lot of experimental data on nuclear fission has been being collected for the last 65 years, allowing theoreticians to confront their models with reality. The first part of this work is dedicated to the computation of fission barriers. We have extended the HF + BCS (Hartree Fock + Bandeen-Cooper-Schrieffer) method in order to include a new set of polynomials on which wave functions can be broken to, more accurately than on Hermite's polynomials in the 2 fragment configuration. The fission barriers of 26 heavy nuclei from Thorium-230 to Nobelium-256 have been assessed and compared to experimental data, it appears that differences are no greater than 1 MeV. We have discovered a neat correlation between the variation of the experimental fission lifetimes of even Fermium isotopes and the computed heights of second barriers. Moreover our model reproduces the hyper-deformed well of Thorium-230 with a good agreement on the well depth. The second part deals with the scission region. We have performed Hartree-Fock calculations in order to explore different ways of fragmentation. We have shown that the harmonic oscillator gives a valid description of such ways. In order to compute the mean value of J{sup 2} in the fragments we have been driven to propose an adequate definition of that quantity consistent with the non-locality property of the J{sup 2} operator. (A.C.)
Goodness of isospin in neutron rich systems from the fission fragment distribution
Garg, Swati; Jain, Ashok Kumar
2017-09-01
We present the results of our calculations for the relative yields of neutron-rich fission fragments emitted in 208Pb (18O, fission) reaction by using the concept of the conservation of isospin and compare with the experimental data. We take into account a range of isospin values allowed by the isospin algebra and assume that the fission fragments are formed in isobaric analog states. We also take into account the neutron multiplicity data for various neutron-emission channels in each partition, and use them to obtain the weight factors in calculating the yields. We then calculate the relative yields of the fission fragments. Our calculated results are able to reproduce the experimental trends reasonably well. This is the first direct evidence of the isospin conservation in neutron-rich systems and may prove a very useful tool in their studies.
Anomalies in the Charge Yields of Fission Fragments from the ^{238}U(n,f) Reaction.
Wilson, J N; Lebois, M; Qi, L; Amador-Celdran, P; Bleuel, D; Briz, J A; Carroll, R; Catford, W; De Witte, H; Doherty, D T; Eloirdi, R; Georgiev, G; Gottardo, A; Goasduff, A; Hadyńska-Klęk, K; Hauschild, K; Hess, H; Ingeberg, V; Konstantinopoulos, T; Ljungvall, J; Lopez-Martens, A; Lorusso, G; Lozeva, R; Lutter, R; Marini, P; Matea, I; Materna, T; Mathieu, L; Oberstedt, A; Oberstedt, S; Panebianco, S; Podolyák, Zs; Porta, A; Regan, P H; Reiter, P; Rezynkina, K; Rose, S J; Sahin, E; Seidlitz, M; Serot, O; Shearman, R; Siebeck, B; Siem, S; Smith, A G; Tveten, G M; Verney, D; Warr, N; Zeiser, F; Zielinska, M
2017-06-02
Fast-neutron-induced fission of ^{238}U at an energy just above the fission threshold is studied with a novel technique which involves the coupling of a high-efficiency γ-ray spectrometer (MINIBALL) to an inverse-kinematics neutron source (LICORNE) to extract charge yields of fission fragments via γ-γ coincidence spectroscopy. Experimental data and fission models are compared and found to be in reasonable agreement for many nuclei; however, significant discrepancies of up to 600% are observed, particularly for isotopes of Sn and Mo. This indicates that these models significantly overestimate the standard 1 fission mode and suggests that spherical shell effects in the nascent fission fragments are less important for low-energy fast-neutron-induced fission than for thermal neutron-induced fission. This has consequences for understanding and modeling the fission process, for experimental nuclear structure studies of the most neutron-rich nuclei, for future energy applications (e.g., Generation IV reactors which use fast-neutron spectra), and for the reactor antineutrino anomaly.
International Nuclear Information System (INIS)
Naqvi, A.A.
1980-03-01
Fission fragment properties such as mass distribution, kinetic energy distribution or number of prompt emitted neutrons as a function of fragment mass can be used to characterize the scission point configuration. The present experiment allows for the first time to investigate these quantities for neutron induced fission in the MeV range. In this way the influence of excitation energy of the saddle point deformation of the fissioning system ( 237 Np + n) can be studied. Neutrons with energies of 0.8 and 5.5 MeV were produced by the Karlsruhe pulsed 3MV Van de Graaff accelerator. Kinetic energies and velocities of correlated fragments were determined by solid state detectors using the time-of-flight technique. The experimentally determined distributions of fragment properties were compared to a recent model suggested by Wilkins et al. which assumes only relatively weak coupling between internal and collective degrees of freedom. At least qualitative agreement is found for most of the results. (orig.) [de
MAFF – The Munich accelerator for fission fragments
Indian Academy of Sciences (India)
CERN, Genf, Switzerland. Abstract. At the new high flux reactor FRM-II in Munich the accelerator MAFF (Munich accel- erator for fission ..... 16th Int. Conf. on the Application of Accelerators in Research and Industry,. CAARI 2000, Denton, Texas. [12] M Cavenago, Rev. Sci. Instrum. 71, 663 (2000). [13] H-J Maier et al, Nucl.
Fission fragment mass distribution in the 13C+182W and 176Yb reactions
International Nuclear Information System (INIS)
Ramachandran, K.; Hinde, D.J.; Dasgupta, M.; Williams, E.; Wakhle, A.; Luong, D.H.; Evers, M.; Carter, I.P.; Das, S.
2014-01-01
Fission fragment mass distributions have been measured for many systems and found to be asymmetric in the fission of nuclei with nucleon number A in the range 228-258 and proton number Z in the range 90-100. For lighter systems, it has been observed that fission fragment mass distributions are usually symmetric. At high excitation energies the shell effects are expected to vanish and the nuclei are expected to behave like a charged liquid drop; hence, only symmetric fission is expected for all the nuclei. Even after much experimental and theoretical work in this field, the rate of damping of shell effects with excitation energy is not well known. This abstract reports our measurements with 13 C beams on 182 W and 176 Yb targets
Fission and nuclear fragmentation of silver and bromine nuclei by photons of 1-6 GeV
International Nuclear Information System (INIS)
Pinheiro Filho, J.D.
1983-01-01
The studies of fission and fragmentation of silver and bromine nuclei by Bremsstrahlung photons of 1.6 GeV energy range are presented. The Il ford-KO nuclear emulsion submitted to Bremsstrahlung beams in Deutsches Elektronen Synchrotron (DESY) with total doses of 10'' equivalent photons, was used for nuclear fragment detection. The discrimination of fission and fragmentation events was done analysing angular distribution, range and angles between fragments. The results of fragment range distributions, angular distributions, distributions of angles between fragments, distributions of ratio between range, velocity distributions forward/backward ratio, cross sections of fission and fragmentation, nuclear fissionability and ternary fission frequency are presented and discussed. (M.C.K.)
Correlated spins of complementary fragment pairs in the spontaneous fission of 252Cf
International Nuclear Information System (INIS)
Smith, A. G.; Simpson, G. S.; Billowes, J.; Dagnall, P. J.; Durell, J. L.; Freeman, S. J.; Leddy, M.; Phillips, W. R.; Roach, A. A.; Smith, J. F.
1999-01-01
A study of the γ-ray decay of low-lying excited states in fragments produced in the spontaneous fission of 252 Cf has revealed a significant correlation between the angles of emission of the 2 1 + →0 1 + transitions of complementary fragment pairs. Calculations of the amount of dealignment that is needed to reproduce the measured a 2 values, and a comparison with the results of previous fragment-γ angular distribution measurements, suggests that at scission there may be significant population of m≠0 substates associated with the projection of the fragment spin vector on the fission axis. Fragments from the spontaneous fission of 248 Cm emit 2 1 + →0 1 + γ rays that show markedly reduced interfragment correlations, suggesting that either a larger role is played by the relative angular momentum of the fragments, or that the dealignment introduced by the neutron emission and statistical γ decay to the 2 1 + state is larger in 248 Cm than 252 Cf fission. (c) 1999 The American Physical Society
Mathematical processing of experimental data on neutron yield from separate fission fragments
International Nuclear Information System (INIS)
Basova, B.G.; Rabinovich, A.D.; Ryazanov, D.K.
1975-01-01
The algorithm is described for processing the multi-dimensional experiments on measurements of prompt emission of neutrons from separate fission fragments. While processing the data the effect of a number of experimental corrections is correctly taken into account; random coincidence background, neutron spectrum, neutron detector efficiency, instrument angular resolution. On the basis of the described algorithm a program for BESM-4 computer is realized and the treatment of experimental data is performed according to the spontaneous fission of 252 Cf
Observed mass distribution of spontaneous fission fragments from samples of lime - an SSNTD study
Paul, D; Ghose, D; Sastri, R C
1999-01-01
SSNTD is one of the most commonly used detectors in the studies involving nuclear phenomena. The ease of registration of the presence of alpha particles and fission fragments has made it particularly suitable in studies where stable long exposures are needed to extract reliable information. Studies on the presence of alpha emitting nuclides in the environment assume importance since they are found to be carcinogenic. Lime samples from Silchar in Assam of Eastern India have shown the presence of spontaneous fission fragments besides alphas. In the present study we look at the ratio of the average mass distribution of these fission fragments, that gives us an indication of the presence of the traces of transuranic elements.
Heavy neutron-deficient radioactive beams: fission studies and fragment distributions
Energy Technology Data Exchange (ETDEWEB)
Schmidt, K.H.; Benlliure, J.; Heinz, A.; Voss, B. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Boeckstiegel, C.; Grewe, A.; Steinhaeuser, S.; Clerc, H.G.; Jong, M. de; Junghans, A.R.; Mueller, J. [Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik; Pfuetzner, M. [Warsaw Univ. (Poland). Inst. of Experimental Physics
1998-02-01
The secondary-beam facility of GSI Darmstadt was used to study the fission process of short-lived radioactive nuclei. Relativistic secondary projectiles were produced by fragmentation of a 1 A GeV {sup 238}U primary beam and identified in nuclear charge and mass number. Their production cross sections were determined, and the fission competition in the statistical deexcitation was deduced for long isotopical chains. New results on the enhancement of the nuclear level density in spherical and deformed nuclei due to collective rotational and vibrational excitations were obtained. Using these reaction products as secondary beams, the dipole giant resonance was excited by electromagnetic interactions in a secondary lead target, and fission from excitation energies around 11 MeV was induced. The fission fragments were identified in nuclear charge, and their velocity vectors were determined. Elemental yields and total kinetic energies have been determined for a number of neutron-deficient actinides and preactinides which were not accessible with conventional techniques. The characteristics of multimodal fission of nuclei around {sup 226}Th were systematically investigated and related to the influence of shell effects on the potential energy and on the level density between fission barrier and scission. A systematic view on the large number of elemental yields measured gave rise to a new interpretation of the enhanced production of even elements in nuclear fission and allowed for a new understanding of pair breaking in large-scale collective motion. (orig.)
International Nuclear Information System (INIS)
Birtcher, R.C.; Blewitt, T.H.
1981-01-01
Damage production and saturation has been monitored in copper by simultaneous electrical resistivity- and length-change measurements. Damage was introduced by 235 U fission fragments at either 7 or 85 K. At both temperatures, the resistivity and length changes were linearly related to each other for resistivity changes less than 80% saturation resistivity. The linear relationship was the same for both irradiation temperatures and was the same as that observed previously for 10 B fission fragment irrations at 4 K. These results are interpreted to show that the resistivity change per defect is unaffected by irradiation under conditions which lead to interstitial clustering. (orig.)
MAFF–The Munich accelerator for fission fragments
Indian Academy of Sciences (India)
Research reactors; linear accelerator; beam transport; particle sources and targets; ion sources. Abstract. At the new high ﬂux reactor FRM-II in Munich the accelerator MAFF (Munich accelerator for ﬁssion fragments) is under design. In the high neutron ﬂux of 1014 n/cm2 s up to 1014 neutron-rich ﬁssion fragments per ...
Energy Technology Data Exchange (ETDEWEB)
Gautherin, C
1997-09-01
This thesis is devoted to the study of the nuclear structure of neutron-rich nuclei, via the search of isomeric nuclear states. Neutron-rich nuclei were produced in the spontaneous fission of {sup 252}Cf. The experimental study of isomeric states in these nuclei was performed with the {gamma}-array EUROGAM II, coupled to an additional and original fission fragment detector composed by photovoltaic cells, SAPhIR. The photovoltaic cells are well adapted to detect low energy heavy ions and have good energy and time resolutions to obtain a good fission fragment detection. This experiment led to the discovery of new isomeric states in {sup 135}Xe, {sup 104}Mo, {sup 146,147,148}Ce and {sup 152,154,156}Nd, with lifetimes between 60 ns and 2 {mu}s. Level schemes of these nuclei have been completed. An interpretation of the isomeric states in the nuclei {sup 154,156}Nd and {sup 156,158}Sm was performed by Hartree-Fock-Bogolyubov calculations using the DIS Gogny force with two quasi-particles excitations. The confrontation with the experimental results led to an interpretation of these isomeric states as K-isomers. (author)
Gamma Radiation from Fission Fragments Experimental Apparatus-Mass Spectrum Resolution
Energy Technology Data Exchange (ETDEWEB)
Higbie, Jack
1969-08-15
The gamma-radiation from fission fragments was studied as a function of the fragment mass. The mass was determined from the fragment energies using solid state detectors. The mass resolution which can be achieved by this method is treated in detail. The average initial fragment mass and the initial mass resolution is calculated as a function of the measured (apparent) mass yield for three different thicknesses of the fissile material deposit. This treatment gives a clear indication of those factors most important for good mass resolution work. A detailed description of the experimental apparatus is given in the appendices.
International Nuclear Information System (INIS)
Faust, H.; Koester, U.; Kessedjian, G.; Sage, C.; Chebboubi, A.
2013-01-01
We review the statistical model and its application for the process of nuclear fission. The expressions for excitation energy and spin distributions for the individual fission fragments are given. We will finally emphasize the importance of measuring prompt gamma decay to further test the statistical model in nuclear fission with the FIPPS project. (authors)
International Nuclear Information System (INIS)
Heinrich, S.
2006-01-01
Nucleus fission process is a very complex phenomenon and, even nowadays, no realistic models describing the overall process are available. The work presented here deals with a theoretical description of fission fragments distributions in mass, charge, energy and deformation. We have reconsidered and updated the B.D. Wilking Scission Point model. Our purpose was to test if this statistic model applied at the scission point and by introducing new results of modern microscopic calculations allows to describe quantitatively the fission fragments distributions. We calculate the surface energy available at the scission point as a function of the fragments deformations. This surface is obtained from a Hartree Fock Bogoliubov microscopic calculation which guarantee a realistic description of the potential dependence on the deformation for each fragment. The statistic balance is described by the level densities of the fragment. We have tried to avoid as much as possible the input of empirical parameters in the model. Our only parameter, the distance between each fragment at the scission point, is discussed by comparison with scission configuration obtained from full dynamical microscopic calculations. Also, the comparison between our results and experimental data is very satisfying and allow us to discuss the success and limitations of our approach. We finally proposed ideas to improve the model, in particular by applying dynamical corrections. (author)
Time-zero fission-fragment detector based on low-pressure multiwire proportional chambers
Assamagan, Ketevi A; Bayatyan, G L; Carlini, R; Danagulyan, S; Eden, T; Egiyan, K; Ent, R; Fenker, H; Gan, L; Gasparian, A; Grigoryan, N K; Greenwood, Z; Gueye, P; Hashimoto, O; Johnston, K; Keppel, C; Knyazyan, S; Majewski, S; Margaryan, A; Margaryan, Yu L; Marikian, G G; Martoff, J; Mkrtchyan, H G; Parlakyan, L; Sato, Y; Sawafta, R; Simicevic, N; Tadevosyan, V; Takahashi, T; Tang, L; Vartanian, G S; Vulcan, W; Wells, S; Wood, S
1999-01-01
A time-zero fission fragment (FF) detector, based on the technique of low-pressure multiwire proportional chambers (LPMWPC), has been designed and constructed for the heavy hypernuclear lifetime experiment (E95-002) at Thomas Jefferson National Accelerator Facility. Its characteristics and the method of time-zero reconstruction were investigated using fission fragments from a sup 2 sup 5 sup 2 Cf spontaneous fission source. The influence of the ionization energy loss was also studied. It is shown that Heptane, Hexane, and Isobutane gases at a pressure of 1-2 Torr are all suitable for such a FF detector. As desired by experiment, a timing resolution of about 200 ps (FWHM) for a chamber size of 21x21 cm sup 2 was achieved.
Formation of fission-fragment mass distribution for nuclei lighter than thorium
International Nuclear Information System (INIS)
Itkis, M.G.; Mul'gin, S.I.; Rusanov, A.Y.; Okolovich, A.N.; Smirenkin, G.N.
1986-01-01
A phenomenological approach to description of fission-fragment mass distribution Y(M) for nuclei in the vicinity of Pb is developed and used to extract from the experimental Y(M) data the nuclear deformation potential energy V(M) and its components: the macroscopic (liquid-drop) part and the shell correction in the transition state. The results of the analysis are compared with the theoretically obtained V(M) and Y(M). The three-hump fragment-mass distributions observed in Ra fission are satisfactorily described within the framework of the approach developed. The properties of the symmetric and asymmetric fission valleys and the related Y(M) components are discussed
Time-zero fission-fragment detector based on low-pressure multiwire proportional chambers
International Nuclear Information System (INIS)
Assamagan, K.; Baker, K.; Bayatyan, G.; Carlini, R.; Danagoulian, S.; Eden, T.; Egiyan, K.; Ent, R.; Fenker, H.; Gan, L.; Gasparian, A.; Grigoryan, N.; Greenwood, Z.; Gueye, P.; Hashimoto, O.; Johnston, K.; Keppel, C.; Knyazyan, S.; Majewski, S.; Margaryan, A.; Margaryan, Yu.; Marikyan, G.; Martoff, J.; Mkrtchyan, H.; Parlakyan, L.; Sato, Y.; Sawafta, R.; Simicevic, N.; Tadevosyan, V.; Takahashi, T.; Tang, L.; Vartanyan, G.; Vulcan, W.; Wells, S.; Wood, S.
1999-01-01
A time-zero fission fragment (FF) detector, based on the technique of low-pressure multiwire proportional chambers (LPMWPC), has been designed and constructed for the heavy hypernuclear lifetime experiment (E95-002) at Thomas Jefferson National Accelerator Facility. Its characteristics and the method of time-zero reconstruction were investigated using fission fragments from a 252 Cf spontaneous fission source. The influence of the ionization energy loss was also studied. It is shown that Heptane, Hexane, and Isobutane gases at a pressure of 1-2 Torr are all suitable for such a FF detector. As desired by experiment, a timing resolution of about 200 ps (FWHM) for a chamber size of 21x21 cm 2 was achieved
Growth of fine holes in polyethyleneterephthalate film irradiated by fission fragments
International Nuclear Information System (INIS)
Komaki, Y.; Tsujimura, S.
1975-01-01
Growth of fine holes by chemical etching in polyethyleneterephthalate films exposed to fission fragments were followed by measuring gas flow through films. The etching rate along tracks and the radial etching rate were determined at hole diameters of 100--3000 A and hole densities of 10 6 --10 8 /cm 2
Experimental study of fission process by fragment-neutron correlation measurement
Energy Technology Data Exchange (ETDEWEB)
Nishio, Katsuhisa; Yamamoto, Hideki; Kanno, Ikuo; Kimura, Itsuro; Nakagome, Yoshihiro [Kyoto Univ. (Japan). Faculty of Engineering
1997-07-01
Fragment-neutron correlation measurement of {sup 235}U(n{sub th}, f) was carried out. The obtained results showed more statistical accuracy than that of reported thermal neutron reaction. Experimental results and it`s analysis made clear the following facts. The minimum values of <{eta}> (m*) are shown at about 90 and 145 {mu} and <{eta}> (m*) showed the symmetrical form with an axis of symmetrical fission. This tendency is same as the distribution of {sup 252}Cf(s.f). -dV/dTKE(m*) indicates the saw-teethed distribution as same as <{nu}>(m*). The distribution seems depend on stiffness of fission fragment affected by the shell effect. The level density parameter a(m*) of fission fragment obtained from {sup 235}U(n{sub th}, f) expresses the saw-teethed distribution as same as that of {sup 252}Cf(s.f). This distribution can be explained by the empirical equation under consideration of the fission fragment depending on the shell effect and the collective motion. (S.Y.)
Energy Technology Data Exchange (ETDEWEB)
Shanglian, Bao; Jinquan, Liu [Beijing Univ., BJ (China); Batenkov, O I; Blinov, M V; Smirnov, S N [V.G. Khlopin Radium Institute, ST. Petersburg (Russian Federation)
1994-09-01
The {sup 252}Cf spontaneous prompt fission neutron spectrum at 0 degree and 180 degree relative to the motion direction of corresponding fission fragments was measured. High angular resolution for fragment measurements and high energy resolution for neutron measurements were obtained using multi-parameter TOF spectrometer. The results showed that there is a symmetric distribution of `forward` and `backward` for low energy in C.M.S. neutrons, which was an evidence of nonequilibrium neutrons existed in fission process.
International Nuclear Information System (INIS)
Lima, D.A. de; Martins, J.B.; Tavares, O.A.P.
1987-01-01
Whenever use is made of thick samples in contact with solid state nuclear track detectors for determining fission yields, one of the fundamental problems is the evaluation of the effective number of target nuclei which contributes to the fraction of the number of fission events that will be recorded. The evaluation of the effective number of target nuclei which contributes to recorded events is based on the effective thickness of the sample. A method for evaluating effective thickness of thick samples for binary fission modes, is presented. A cross section equation which takes into account all the necessary corrections due to fragment attenuation effects by a thick target for calculation induced fission yields, was obtained. (Author) [pt
Ranges of the fragments from thermal (slow) neutron fission of /sup 235/U in water
Energy Technology Data Exchange (ETDEWEB)
Gu, H; Chao, Z; Sheng, Z; Wang, L; Feng, X
1980-05-01
According to the principle of thick target, we used the aqueous solutions of uranyl chloride of various concentrations as thick targets and platinum plates of known surface area as absorbers immersed in the target solutions. The ranges of the U(n, f) fission fragments /sup 89/Sr, /sup 91/Y, /sup 140/Ba, /sup 141/Ce and /sup 144/Ce in the aqueous solutions of uranyl chloride of various concentrations were determined. In the concentration region of 0.16 U% - 6.2 U%, the uranium concentration had no significant effect on the measurement of the range. Therefore, the ranges of the fission fragments in diluted UO/sub 2/Cl/sub 2/ solutions are very close to those in pure water, and the mean value of the ranges in UO/sub 2/Cl/sub 2/ solutions of various concentrations was taken as the range in water. The experimental results of the ranges of these five fission fragments in water were: R/sub Sr-90/ = 2.39 +- 0.04 mgcm/sup -2/, R/sub Y-91/ = 2.35 +- 0.09 mgcm/sup -2/, R/sub Ba-140/ = 1.92 +- 0.07 mgcm/sup -2/, R/sub Ce-141/ = 1.91 +- 0.12 mgcm/sup -2/, R/sub Ce-144/ = 1.84 +- 0.10 mgcm/sup -2/. In order to estimate the effect of back scattering of fission fragments in platinum plate, we did the experiments using stainless steel plate as absorber (the aqueous solutions of uranyl chloride as thick targets). The results were similar. Thus, the effect of back scattering was not significant. This work provides a convenient means for determining the ranges of the fission fragments in a liquid.
Mass distribution of fission-like fragments formed in 20Ne + 165Ho system at Elab≈ 8.2 MeV/A
International Nuclear Information System (INIS)
Singh, D.; Linda, Sneha Bharti; Giri, Pankaj K.
2017-01-01
In the present work, an attempt has been made to study CFF and IFF in 20 Ne + 165 Ho system at projectile energy ≈ 8.2 MeV/A. Twelve fission like fragments (FLF) produced through complete fusion-fission (CFF) and/or incomplete fusion-fission (IFF) in the present system have been identified. The production cross-sections of identified fission like fragments have been measured and the mass distribution of fission like fragments studied
Feasibility of Traveling Wave Direct Energy Conversion of Fission Reaction Fragments
Tarditi, A. G.; George, J. A.; Miley, G. H.; Scott, J. H.
2013-01-01
Fission fragment direct energy conversion has been considered in the past for the purpose of increasing nuclear power plant efficiency and for advanced space propulsion. Since the fragments carry electric charge (typically in the order of 20 e) and have 100 MeV-range kinetic energy, techniques utilizing very high-voltage DC electrodes have been considered. This study is focused on a different approach: the kinetic energy of the charged fission fragments is converted into alternating current by means of a traveling wave coupling scheme (Traveling Wave Direct Energy Converter, TWDEC), thereby not requiring the utilization of high voltage technology. A preliminary feasibility analysis of the concept is introduced based on a conceptual level study and on a particle simulation model of the beam dynamics.
Multi-fold correlations between 252Cf (sf) fragments and fission neutrons/γ-rays
International Nuclear Information System (INIS)
Duering, I.; Jahnke, U.
1993-01-01
Direction-sensitive spectroscopy of fission fragments (twin ionization chamber with Frisch grids) was combined with the measurement of neutron multiplicity distribution (P(ν), average total γ-ray energy (2x2 π Gd-loaded scintillator) as well as energy and angular distribution of neutrons and γ-rays. Based on the careful account for necessary corrections, scission configurations given by mass asymmetry, elongation (total kinetic energy of fragments), and shape asymmetry (ν 1 /ν 2 ) can be studied exclusively in correlation with differential distributions of emission products. The scheme for correcting the neutron multiplicity distribution including its separation into the contributions from the complementary fragments is presented in detail. The mass yield for extreme anti ν 1 / anti ν 2 ratios show fine structures indicating the cold shape-asymmetric fission. (orig.)
Double-energy double-velocity measurement system for fission fragments and its application
International Nuclear Information System (INIS)
Kanno, Ikuo
1987-10-01
A new system of double-energy double-velocity (DEDV) measurement for fission fragments has been developed. In this system, the energies of fission fragments are measured by silicon surface barrier detectors (SSB) and the velocities by the time-of-flight (TOF) method utilizing thin film detectors (TFD) as start detectors and SSBs as stop detectors of TOF. Theoretical and experimental studies on TFDs and SSBs have been performed before the construction of the DEDV measurement system. The TFD consists of a thin plastic scintillator film and light guide. The author proposes a new model of the luminescence production in a scintillator film. This model takes into account the thickness of the scintillator film and uses only one parameter. The calculated TFD response to charged particles shows good agreement with other experiments. The dependence of the TFD response to the thickness of the scintillator film has been studied experimentally and analyzed by the luminescence production model. The results of this analysis shows the validity of the luminescence production model. The time resolution of the DEDV measurement system using TFDs and SSBs was 133 ps. As an application of this system, the DEDV measurement for the thermal neutron-induced fission of 233 U has been carried out at the super mirror neutron guide tube facility of Kyoto University Reactor (KUR). The energy and velocity of each fission fragment have been stored on magnetic disk event by event in a list mode. The analyzed results of masses, energies and velocities of light and heavy fragments agree well with other authors' works. The value of the total neutron emission number is 2.53 and shows good agreement within experimental error, with the JENDL-2 value, 2.49. The light fragment shows a slightly greater number of neutrons emitted than the other works. This suggests the possibility of larger deformation of light fragments at the scission point. (author)
Neutron-induced fission fragment angular distribution at CERN n TOF: The Th-232 case
Tarrio, Diego; Paradela, Carlos
This thesis work was done in the frame of the study of the neutron-induced fission of actinides and subactinides at the CERN n TOF facility using a fast Parallel Plate Avalanche Counters (PPACs) setup. This experimental setup provide us with an intense neutron beam with a white spectrum from thermal to 1 GeV and with an outstanding high resolution provided by its flight path of 185 m. In our experiment, fission events were identified by detection of both fission fragments in time coincidence in the two PPAC detectors flanking the corresponding target. This technique allowed us to discriminate the fission events from the background produced by α disintegration of radioactive samples and by particles produced in spallation reactions. Because PPAC detectors are insensitive to the γ flash, it is possible to reach energies as high as 1 GeV. The stripped cathodes provide the spatial position of the hits in the detectors, so that the emission angle of the fission fragments can be measured. Inside the reaction cham...
Ejection of Uranium Atoms from UO{sub 2} by Fission Fragments
Energy Technology Data Exchange (ETDEWEB)
Nilsson, Goesta
1964-02-15
The numbers of uranium atoms ejected from the surface of sintered plates of UO{sub 2} by fission fragments have been measured over the fission density range 5x10{sup 15} to 7x10{sup 16} fissions/cm{sup 3}. The number of uranium atoms ejected per escaping fragment was about 9. The measurements were performed by irradiating the plates in vacuum and collecting a fraction of the uranium atoms ejected on catcher foils. The amount collected was determined by fission counting. Saturation of the amount collected, as reported by Rogers and Adam, was not observed. The numbers of uranium atoms ejected as knock-ons under the same experimental conditions have been calculated. The reasonably close agreement between the experimental and theoretical values indicates that, under the prevailing experimental conditions, mainly knock-ons are ejected. Other ejection mechanisms, e. g. evaporation of material in thermal spikes, are probably insignificant; this is in contrast to the usual interpretation of the ejection process. The mean range in UO{sub 2}, of fission products of mass number 140 was found to be 7.37 {+-} 0. 05 mg/cm{sup 2} by direct gamma spectrometric, determination of the fraction of {sup 140}La escaping from the surface of the plates.
Influence of primary fragment excitation energy and spin distributions on fission observables
Litaize, Olivier; Thulliez, Loïc; Serot, Olivier; Chebboubi, Abdelaziz; Tamagno, Pierre
2018-03-01
Fission observables in the case of 252Cf(sf) are investigated by exploring several models involved in the excitation energy sharing and spin-parity assignment between primary fission fragments. In a first step the parameters used in the FIFRELIN Monte Carlo code "reference route" are presented: two parameters for the mass dependent temperature ratio law and two constant spin cut-off parameters for light and heavy fragment groups respectively. These parameters determine the initial fragment entry zone in excitation energy and spin-parity (E*, Jπ). They are chosen to reproduce the light and heavy average prompt neutron multiplicities. When these target observables are achieved all other fission observables can be predicted. We show here the influence of input parameters on the saw-tooth curve and we discuss the influence of a mass and energy-dependent spin cut-off model on gamma-rays related fission observables. The part of the model involving level densities, neutron transmission coefficients or photon strength functions remains unchanged.
Upgrading DRACULA setup to be used for light products - fission fragments coincidence measurements
International Nuclear Information System (INIS)
Simion, V.; Petrovici, M.; Pop, A.; Berceanu, I.; Duma, M.; Moisa, D.; Pagano, A.; Geraci, E.
1999-01-01
At low bombarding energy (E/A 238 U give rise to a number of fission processes, all leading to very similar fission products. Therefore, in order to understand the fission processes in this energy domain it is of interest to determine the amount of fission occurring after a peripheral interaction relative to that originating from compound nucleus formation. Although the detection of a projectile residue (PLF) in coincidence with the fission fragments is a very promising probe for the macroscopic features of the mechanism of induced fission, at incident energies in the vicinity of the Coulomb barrier (E/A 2 cross section area uses the phoswich technique by coupling a thin fast NE102A plastic scintillator to a 10 cm long BaF 2 crystal of hexagonal section. The BaF 2 crystal detectors have been successfully used in modular multielement detector ARGOS in the context of GANCT and HOTCT researches at LNS. The light response of the phoswich configuration as a function of the plastic thickness and of the energy and charge of the incident ion has been studied at Tandem energies. Both arrays will be placed in separate vacuum chambers attached to the remaining large angular opening windows of the reaction chamber. By rotating the whole device the fission fragment detection arrays will cover a range of 96 angle in the horizontal plane. The main advantage of this setup is that it allows to perform continuous measurements in energy and angle of the reaction products. The geometry of the whole device has been tested by Monte Carlo calculations using the code ELPHIC. The coincidence condition is completely fulfilled for the first two positions of the setup and partially for the third one. Measurements are intended to be performed at the SMP Tandem from LNS-Catania using light beams ( 16 O, 19 F, 20 Ne, 32 S) at ∼ 6 MeV/A on high fissility parameter targets. (authors)
International Nuclear Information System (INIS)
Tsvetkov, Pavel V.; Hart, Ron R.; King, Don B.; Rochau, Gary E.
2006-01-01
Fission energy can be used directly if the kinetic energy of fission fragments is converted to electricity and/or thrust before turning into heat. The completed US DOE NERI Direct Energy Conversion (DEC) Power Production project indicates that viable DEC systems are possible. The US DOE NERI DEC Proof of Principle project began in October of 2002 with the goal to demonstrate performance principles of DEC systems. One of the emerging DEC concepts is represented by fission fragment magnetic collimator reactors (FFMCR). Safety, simplicity, and high conversion efficiency are the unique advantages offered by these systems. In the FFMCR, the basic energy source is the kinetic energy of fission fragments. Following escape from thin fuel layers, they are captured on magnetic field lines and are directed out of the core and through magnetic collimators to produce electricity and thrust. The exiting flow of energetic fission fragments has a very high specific impulse that allows efficient planetary surface power and interstellar propulsion without carrying any conventional propellant onboard. The objective of this work was to determine technological feasibility of the concept. This objective was accomplished by producing the FFMCR design and by analysis of its performance characteristics. The paper presents the FFMCR concept, describes its development to a technologically feasible level and discusses obtained results. Performed studies offer efficiencies up to 90% and velocities approaching speed of light as potentially achievable. The unmanned 10-tons probe with 1000 MW FFMCR propulsion unit would attain mission velocity of about 2% of the speed of light. If the unit is designed for 4000 MW, then in 10 years the unmanned 10-tons probe would attain mission velocity of about 10% of the speed of light
Lifetime measurements on fission fragments in the A ∼ 100 region
International Nuclear Information System (INIS)
Grente, L.; Salsac, M. D.; Korten, W.; Goergen, A.; Hagen, T. W.; Braunroth, T.; Bruyneel, B.; Celikovic, I.; Clement, E.; Delaune, O.; Dijon, A.; Drouart, A.; Ertuerk, S.; Farget, F.; De France, G.; Gottardo, A.; Hackstein, M.; Jacquot, B.; Libert, J.; Litzinger, J.; Ljungvall, J.; Louchart, C.; Michelagnoli, C.; Napoli, D. R.; Navin, A.; Pillet, N.; Pipidis, A.; Recchia, F.; Rejmund, M.; Rother, W.; Sahin, E.; Schmitt, C.; Siem, S.; Sulignano, B.; Valiente-Dobon, J. J.; Zell, K. O.
2013-01-01
Lifetimes of first 4 + and 6 + states have been measured in neutron-rich isotopes of Zr, Mo, Ru and Pd using the recoil distance Doppler shift method at GANIL. The nuclei were produced through a fusion-fission reaction in inverse kinematics. The fission fragments were fully identified in the large-acceptance VAMOS spectrometer and γ-rays were detected in coincidence with the EXOGAM germanium array. Lifetimes of excited states in the range of 1-100 ps were measured with the Cologne plunger. Preliminary lifetime results are presented as well as a discussion on the evolution of the collectivity in this region. (authors)
Energy Technology Data Exchange (ETDEWEB)
Gaudefroy, L., E-mail: laurent.gaudefroy@cea.fr [CEA, DAM, DIF, F-91297 Arpajon (France); Roger, T., E-mail: roger@ganil.fr [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Pancin, J., E-mail: pancin@ganil.fr [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Spitaels, C. [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Aupiais, J. [CEA, DAM, DIF, F-91297 Arpajon (France); Mottier, J. [Institut de Physique Nucléaire, Université Paris-Sud-11-CNRS-IN2P3, F-91406 Orsay (France)
2017-05-21
We present a twin Frisch-grid ionization chamber. The detector is meant to provide high selective power for the study of delayed gamma-ray spectroscopy of fission fragments produced via {sup 252}Cf spontaneous fission. A mean energy resolution on the kinetic energy of fission fragments of 675 keV (FWHM) is achieved and allows us to resolve masses of fragments for fission events where neutron emission is not energetically possible. The mean mass resolution measured for these particular events amounts to 0.54 mass units (FWHM). For fission events with neutron emission a resolution of 4 mass units (FWHM) is reported. Information on fragment emission angle is measured with a resolution of 0.1 on the difference of the cosines determined for both halves of the detector. A charge resolution of 4.5 charge units (FWHM) is also demonstrated.
Fission and fragmentation of silver and bromine nuclei by 1-6 GeV energy photons
International Nuclear Information System (INIS)
Pinheiro Filho, J. de D.
1983-01-01
Fission and fragmentation of silver and bromine nuclei induced by bremsstrahlung photons in the maximum energy range of 1-6 GeV are studied. A special technique of nuclear emulsion for the highly ionizing nuclear fragment detection is used in the discrimination between nuclear fission and fragmentation events. Films of Ilford-KO nuclear emulsion (approximatelly 10 20 atoms/cm 2 of Ag, Br) which had been exposed to bremsstrahlung beams in 'Deutsches Elektronen Synchrotron' (DESY, Hamburg) with total doses of approximatelly 10 11 equivalent photons are used. Through a detailed analysis of range, angular and angle between fragment distributions, and empirical relations which permit to estimate nuclear fragment energy, range and velocity, the discrimination between fission and fragmentation events is made. Results related to fragment range distribution, angular distribution, distribution of angle between fragments, distribution of ratio between ranges, velocity distributions, forward/backward ratio, fission and fragmentation cross sections, nuclear fissionability and ternary fission frequency are presented and discussed. The results show that the mean photofragmentation cross section in the internal 1-6 GeV (0,09+-0,02mb) is significant when compared to the photofission (0,29+-0,05mb). It is also shown that the mean photofission cross section between 1 and 6 GeV is great by a factor of approximatelly 10 when compared to the foreseen by the cascade-evaporation nuclear model for monoenergetic photons of 0,6 GeV. (L.C.) [pt
International Nuclear Information System (INIS)
Ryabov, E.G.; Karpov, A.V.; Adeev, G.D.
2006-01-01
Dependence of fission fragments mass distribution on the angular momentum within Langevin dynamics is studied. The calculations are performed in the framework of the rotating temperature-dependent finite-range liquid drop model. The calculations are done for the five nuclei, representing heavy fissioning nuclei, medium fissioning nuclei and light fissioning one with the angular momentum varied in the wide range from l=0 to l=70-bar . The dependence coefficients dσ M 2 /dl 2 for the investigated nuclei are extracted. The comparison of the extracted values with the experimental data reveals a good agreement for all the cases (the heavy, medium, and light fissioning nuclei). It is found out that the obtained dependence of σ M 2 on l can be explained with the help of temperature at scission as a function of l. The latter dependence is determined by dependence of the mean prescission neutron multiplicity on l. The analysis of this dependence is done as a competition between fission process and neutron evaporation. 'Remembering of the former large fluctuations of mass asymmetry coordinate during descent from the saddle to scission' is considered. It is shown that the 'remembering effect' takes place, but does not play a crucial role for the investigated dependence of σ M 2 on l
What can be learnt from the channel analysis of the 232Th neutron fission cross section
International Nuclear Information System (INIS)
Abou Yehia, H.; Jary, J.; Trochon, J.; Boldeman, J.W.; Musgrove, A.R. de L.
1979-10-01
Channel analyses of the neutron fission cross section of 232 Th have been made in two laboratories. The calculated fission cross sections and fission fragment anisotropies are compared with the experimental data. Despite some differences in the methods used, the conclusions on the physical aspects of the fission process are very similar
Optical efficiency for fission fragment track counting in Muscovite solid state track recorders
International Nuclear Information System (INIS)
Roberts, J.H.; Ruddy, F.H.; Gold, R.
1984-01-01
In order to determine absolute fission rates from thin actinide deposits placed in direct contact with Muscovite Solid State Track Recorders, it is necessary to know the efficiency with which fission fragment tracks are recorded. In this paper, a redetermination of the 'optical efficiency', i.e. the fraction of fission events recorded and observed in the Muscovite is reported. The value obtained from a well-calibrated thin deposit of 252 Cf and Muscovite etched about 90 min. in 49% HF at room temperature, is 0.9875 +- 0.0085. Manual counting was used. Preliminary results from a deposit of 242 Pu are also reported, along with preliminary comparisons of track counting with an automated system. Reasons for the discrepancy of the optical efficiency reported here with an earlier measurement are also reported. (author)
Optical efficiency for fission-fragment track counting in Muscovite Solid-State Track Recorders
International Nuclear Information System (INIS)
Roberts, J.H.; Ruddy, F.H.; Gold, R.
1983-07-01
In order to determine absolute fission rates from thin actinide deposits placed in direct contact with Muscovite Solid-State Track Recorders, it is necessary to know the efficiency with which fission-fragment tracks are recorded. In this paper, a redetermination of the optical efficiency, i.e., the fraction of fission events recorded and observed in the Muscovite, is reported. The value obtained from a well-calibrated thin deposit of 252 Cf and Muscovite etched about 90 min. in 49% HF at room temperature, is 0.9875 +- 0.0085. Manual counting was used. Preliminary results from a deposit of 242 Pu are also reported, along with preliminary comparisons of track counting with an automated system. Reasons for the discrepancy of the optical efficiency reported here with an earlier measurement are also reported. 5 references, 1 figure, 3 tables
Energies and Yields of Prompt Gamma Rays from Fragments in Slow-Neutron Induced Fission of 235U
Energy Technology Data Exchange (ETDEWEB)
Albinsson, H [Chalmers Univ. of Technology, Goeteborg (SE)
1971-04-15
Measurements were made on the gamma radiation emitted from fission fragments in slow-neutron induced fission of 235U. The fragments were detected with solid state detectors of the surface barrier type and the gamma radiation with a Nal(Tl) scintillator. Mass selection was used so that the gamma radiation could be measured as a function of fragment mass. Time discrimination between the fission gammas and the prompt neutrons released in the fission process was employed to reduce the background. The gamma radiation emitted during different time intervals after the fission event was studied with the help of a collimator, the position of which was changed along the path of the fission fragments. In this way it was possible to select various collimator settings and let gamma radiation of different half-lives be enhanced. Gamma-ray energy spectra from these time components were then recorded as function of mass. The spectrum shape differed greatly depending on the half-life of the radiation and the fragment from which it was emitted. The results of the present measurements were discussed in the light of existing fission models, and comparisons were made with prompt gamma-ray and neutron data from other fission experiments
Energies and Yields of Prompt Gamma Rays from Fragments in Slow-Neutron Induced Fission of 235U
International Nuclear Information System (INIS)
Albinsson, H.
1971-04-01
Measurements were made on the gamma radiation emitted from fission fragments in slow-neutron induced fission of 235 U. The fragments were detected with solid state detectors of the surface barrier type and the gamma radiation with a Nal(Tl) scintillator. Mass selection was used so that the gamma radiation could be measured as a function of fragment mass. Time discrimination between the fission gammas and the prompt neutrons released in the fission process was employed to reduce the background. The gamma radiation emitted during different time intervals after the fission event was studied with the help of a collimator, the position of which was changed along the path of the fission fragments. In this way it was possible to select various collimator settings and let gamma radiation of different half-lives be enhanced. Gamma-ray energy spectra from these time components were then recorded as function of mass. The spectrum shape differed greatly depending on the half-life of the radiation and the fragment from which it was emitted. The results of the present measurements were discussed in the light of existing fission models, and comparisons were made with prompt gamma-ray and neutron data from other fission experiments
International Nuclear Information System (INIS)
Zaky, M.F.; Youssef, A.A.
2002-01-01
Two groups of CR-39 detectors samples are exposed to two types of charged particle radiation. The first group are severe damaged with fission fragment tracks from 2 52C f source. The second accepted alpha particles resulting from the interaction of highly energetic 1 9F -ions and a copper disk with thickness 1 cm, which are of less damage tracks than fission fragments. , The isothermal annealing of tracks in the temperature range from 175 to 300 degree C in step 25 degree C for annealing time of 10,15,20,25 and 30 minutes has been investigated. The changes introduced in the track density and track diameter for two types of irradiation in the detector have been observed and compared between them. The results indicate that the track density and the size of the tracks are considerably changed due to annealing
International Nuclear Information System (INIS)
Gundorin, N.A.; Kopach, Y.N.; Telezhnikov, S.A.
1994-01-01
The independent yields of 239 Pu fission fragments by means of gamma-spectroscopy method were measured for light and heavy groups on the IBR-30 reactor in Dubna. Comparative analysis of experimental data for fission induced by thermal and resonance neutrons was performed. The possibilities to increase the measurement's precision consist of the employment of a HPGe detector with high efficiency and its open-quotes activeclose quotes shielding in the gamma spectrometer, as well as a high speed electronics system. In this way the number of identified fragments will be increased and independent yields will be measured to a precision of 1-3%. Measurements at the source with shorter neutron pulse duration to increase neutron energy resolution will be possible after the reconstruction of a modern neutron source in Dubna in accordance with the IREN project
Burnout and gate rupture of power MOS transistors with fission fragments of 252Cf
International Nuclear Information System (INIS)
Tang Benqi; Wang Yanping; Geng Bin; Chen Xiaohua; He Chaohui; Yang Hailiang
2000-01-01
A study to determine the single event burnout (SEB) and single event gate rupture (SEGR) sensitivities of power MOSFET devices is carried out by exposure to fission fragments from 252 Cf source. The test method, test results, a description of observed burnout current waveforms and a discussion of a possible failure mechanism are presented. The test results include the observed dependence upon applied drain or gate to source bias and effect of external capacitors and limited resistors
Ability of Accelerator-Driven Systems (ADS) to Transmute Long Lived Fission Fragments
International Nuclear Information System (INIS)
Nguyen Mong Giao; Nguyen Thi Ai Thu; Tu Thanh Danh; Tran Thanh Dung; Huynh, Thi Kim Chi
2010-12-01
This paper presents the research results of the possibility to transmute the long-lived radioactive isotopes into stable or short-lived, mainly the long-lived fission fragments as 99 Tc, 127 I, 129 I, 181 Ta, 107 Ag, 109 Ag by accelerator-driven systems. We use semi-empirical formulas to establish our calculating code with the support of computer programs. (author)
Growth of fine holes in polyethylenenaphthalate film irradiated by fission fragments
International Nuclear Information System (INIS)
Komaki, Y.; Tsujimura, S.
1976-01-01
Growth of fine holes by chemical etching in polyethylenenaphthalate films exposed to fission fragments were examined by measuring gas flow through the films. The etching rate along tracks, the radial etching rate, and the bulk etching rate were determined at effective hole diameters of 100 to 1000 A and hole densities of approximately 10 8 cm -2 . The effects of ethanol and surfactants on the etching rates were studied from the viewpoint of attaining less-tapered holes
Fission theory and actinide fission data
Energy Technology Data Exchange (ETDEWEB)
Michaudon, A.
1975-06-01
The understanding of the fission process has made great progress recently, as a result of the calculation of fission barriers, using the Strutinsky prescription. Double-humped shapes were obtained for nuclei in the actinide region. Such shapes could explain, in a coherent manner, many different phenomena: fission isomers, structure in near-threshold fission cross sections, intermediate structure in subthreshold fission cross sections and anisotropy in the emission of the fission fragments. A brief review of fission barrier calculations and relevant experimental data is presented. Calculations of fission cross sections, using double-humped barrier shapes and fission channel properties, as obtained from the data discussed previously, are given for some U and Pu isotopes. The fission channel theory of A. Bohr has greatly influenced the study of low-energy fission. However, recent investigation of the yields of prompt neutrons and γ rays emitted in the resonances of {sup 235}U and {sup 239}Pu, together with the spin determination for many resonances of these two nuclei cannot be explained purely in terms of the Bohr theory. Variation in the prompt neutron and γ-ray yields from resonance to resonance does not seem to be due to such fission channels, as was thought previously, but to the effect of the (n,γf) reaction. The number of prompt fission neutrons and the kinetic energy of the fission fragments are affected by the energy balance and damping or viscosity effects in the last stage of the fission process, from saddle point to scission. These effects are discussed for some nuclei, especially for {sup 240}Pu.
Energy Technology Data Exchange (ETDEWEB)
Mueller, J.M., E-mail: jonathan_mueller@ncsu.edu; Mattingly, J.
2016-07-21
There is a significant and well-known anisotropy between the prompt neutrons emitted from a single fission event; these neutrons are most likely to be observed at angles near 0° or 180° relative to each other. However, the propagation of this anisotropy through different generations of a fission chain reaction has not been previously studied. We have measured this anisotropy in neutron–neutron coincidences from a subcritical highly-multiplying assembly of plutonium metal. The assembly was a 4.5 kg α-phase plutonium metal sphere composed of 94% {sup 239}Pu and 6% {sup 240}Pu by mass. Data were collected using two EJ-309 liquid scintillators and two EJ-299 plastic scintillators. The angular distribution of neutron–neutron coincidences was measured at 90° and 180° and found to be largely isotropic. Simulations were performed using MCNPX-PoliMi of similar plutonium metal spheres of varying sizes and a correlation between the neutron multiplication of the assembly and the anisotropy of neutron–neutron coincidences was observed. In principle, this correlation could be used to assess the neutron multiplication of an unknown assembly.
Energy Technology Data Exchange (ETDEWEB)
Tarrío, D., E-mail: dtarriov@gmail.com [Universidade de Santiago de Compostela (Spain); Leong, L.S.; Audouin, L. [Centre National de la Recherche Scientifique/IN2P3 -Université Paris-Sud - IPN, Orsay (France); Duran, I.; Paradela, C. [Universidade de Santiago de Compostela (Spain); Tassan-Got, L.; Le Naour, C.; Bacri, C.O.; Petitbon, V.; Mottier, J. [Centre National de la Recherche Scientifique/IN2P3 -Université Paris-Sud - IPN, Orsay (France); Caamaño, M. [Universidade de Santiago de Compostela (Spain); Altstadt, S. [Johann-Wolfgang-Goethe Universität, Frankfurt (Germany); Andrzejewski, J. [Uniwersytet Łódzki, Lodz (Poland); Barbagallo, M. [Istituto Nazionale di Fisica Nucleare, Bari (Italy); Bécares, V. [Centro de Investigaciones Energeticas Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Bečvář, F. [Charles University, Prague (Czech Republic); Belloni, F. [Commissariat à l’Énergie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); Berthoumieux, E. [Commissariat à l’Énergie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Billowes, J. [University of Manchester, Oxford Road, Manchester (United Kingdom); Boccone, V. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); and others
2014-04-11
A fission reaction chamber based on Parallel Plate Avalanche Counters (PPACs) was built for measuring angular distributions of fragments emitted in neutron-induced fission of actinides at the neutron beam available at the Neutron Time-Of-Flight (n{sub T}OF) facility at CERN. The detectors and the samples were tilted 45° with respect to the neutron beam direction to cover all the possible values of the emission angle of the fission fragments. The main features of this setup are discussed and results on the fission fragment angular distribution are provided for the {sup 232}Th(n,f) reaction around the fission threshold. The results are compared with the available data in the literature, demonstrating the good capabilities of this setup.
New insight on the high radiation resistance of UO{sub 2} against fission fragments
Energy Technology Data Exchange (ETDEWEB)
Szenes, G., E-mail: szenesgyorgy@caesar.elte.hu
2016-12-15
Track radii are derived for semiconductors from a temperature distribution Θ(r) in which the width of the distribution is the only materials parameter. Analysis of track data for GeS, InP, GaAs and GaN show that the projectile velocity has no effect on track radii in semiconductors. Due to the missing velocity effect, the threshold for track formation, S{sub et} = 20 keV/nm is high in semiconducting UO{sub 2} in the whole range of projectile velocities. This is the origin of the high radiation resistance for fission fragments. Consequences for the simulation experiments with insulating CeO{sub 2} are discussed. It is verified that sputtering is described accurately by the Arrhenius equation for various materials including UO{sub 2}. The ion-induced surface potential has a strong effect on the activation energy. - Highlights: • Uniform features of track formation are demonstrated. • Semiconductors are more stable than insulators against fission fragments. • Melting point and width of the thermal spike control the track size. • High threshold for tracks S{sub et} = 20 keV/nm for fission fragments in semiconducting UO{sub 2}. • An Arrhenius equation describes the inelastic sputtering in UO{sub 2} and other solids.
International Nuclear Information System (INIS)
Silva Oliveira, S. da; Rogers, J.D.
1980-01-01
The basic properties of the electrochemical corrosion method, for the Makrofol E plastic, irradiated with fission fragments from a 252 Cf source were studied and discussed in this paper. (A.C.A.S.) [pt
Charge distributions of fission fragments of low- and high-energy fission of Fm, No, and Rf isotopes
Paşca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.
2018-03-01
The charge (mass) distributions of fission fragments resulting from low- and high-energy fission of the even-even nuclei 254 -260 ,264Fm , 258 -264No , and 262 -266Rf are studied with the statistical scission-point model. The calculated results are compared with the available experimental data. In contrast to the experimental data, the calculated mass distribution for 258Fm (s.f.) is strikingly similar to the experimental one for 257Fm (s.f.). The transformation of the shape of charge distribution with increasing isospin and excitation energy occurs gradually and in a similar fashion like that of the mass distribution, but slower. For 254Fm(i.f.), 257Fm(nt h,f), and 260Fm (s.f.), the unexpected difference (symmetric or asymmetric) between the shapes of charge and mass distributions is predicted for the first time. At some critical excitation energy, the saturation of the symmetric component of charge (mass) yields is demonstrated.
Fission-fragment angular distributions and total kinetic energies for 235U(n,f) from .18 to 8.83 MeV
International Nuclear Information System (INIS)
Meadows, J.W.; Budtz-Joergensen, C.
1982-01-01
A gridded ion chamber was used to measure the fission fragment angular distribution and total kinetic energy for the 235 U(n,f) reaction from 0.18 to 8.81 MeV neutron energy. The anisotropies are in generally good agreement with earlier measurements. The average total kinetic energy is approx. 0.2 MeV greater than the thermal value at neutron energies < 2 MeV and shows a sudden decrease of approx. 0.8 MeV between 4 and 5 MeV neutron energy, well below the (n, n'f) threshold. Possible causes of this decrease are a change in the mass distribution or decreased shell effects in the heavy fragment
Investigation of prompt gamma-ray yields as a function of mass and charge of 236U fission fragments
International Nuclear Information System (INIS)
Bogdzel', A.A.; Gundorin, N.A.; Duka-Zojomi, A.; Kliman, Ya.; Krishtiak, J.
1987-01-01
New experimental results determining yields of the prompt gamma-rays from the excited states decay of fission fragments are presented. 80 gamma-transitions were observed in 51 fission fragments. The measurements were performed by Ge(Li)-spectrometry in coincidence with fast ionization chamber (10g 235 U). The beam of the resonance neutrons with energy range from 0.7 to 36 eV was used
A high-resolution time-of-flight spectrometer for fission fragments and ion beams
Energy Technology Data Exchange (ETDEWEB)
Kosev, Krasimir Milchev
2007-07-01
For the purpose of fission-fragment detection a double time-of-flight (TOF) spectrometer has been developed. The key component of the TOF spectrometer is a TOF detector consisting of multichannel-plate (MCP) detectors with a position-sensitive readout, a foil for secondary electron (SE) production and an electrostatic mirror. The fission fragments are detected by measuring the SEs impinging on the position-sensitive anode after emission from the foil, acceleration and deflection by the electrostatic mirror. The functionality of the different detector components is proven in detail. Optimised schemes for the high-voltage supplies of the MCP detectors have been implemented successfully. In order to process the multichannel-plate detector signals optimally, a new state-of-the-art constant-fraction discriminator based on the amplitude and rise time compensated technique with very low threshold capabilities and optimised walk properties has been developed and incorporated into the setup. In a setup consisting of two mirror MCP detectors, we could successfully observe the TOF spectrum of a mixed ({sup 226}Ra,{sup 222}Rn,{sup 210}Po,{sup 218}Po,{sup 214}Po) {alpha}-source. Testing photo-fission experiments were performed at the bremsstrahlung facility at the ELBE accelerator. The setup consisted of two mirror detectors (first arm) and a 80 mm diameter MCP detector (second arm) with a {sup 238}U target positioned in between. TOF measurements with two bremsstrahlung end-point energies of 12.9 and 16.0 MeV were carried out. A clear cut separation of the TOF peaks for the medium-mass and heavy fission fragments was observed. (orig.)
A high-resolution time-of-flight spectrometer for fission fragments and ion beams
International Nuclear Information System (INIS)
Kosev, Krasimir Milchev
2007-01-01
For the purpose of fission-fragment detection a double time-of-flight (TOF) spectrometer has been developed. The key component of the TOF spectrometer is a TOF detector consisting of multichannel-plate (MCP) detectors with a position-sensitive readout, a foil for secondary electron (SE) production and an electrostatic mirror. The fission fragments are detected by measuring the SEs impinging on the position-sensitive anode after emission from the foil, acceleration and deflection by the electrostatic mirror. The functionality of the different detector components is proven in detail. Optimised schemes for the high-voltage supplies of the MCP detectors have been implemented successfully. In order to process the multichannel-plate detector signals optimally, a new state-of-the-art constant-fraction discriminator based on the amplitude and rise time compensated technique with very low threshold capabilities and optimised walk properties has been developed and incorporated into the setup. In a setup consisting of two mirror MCP detectors, we could successfully observe the TOF spectrum of a mixed ( 226 Ra, 222 Rn, 210 Po, 218 Po, 214 Po) α-source. Testing photo-fission experiments were performed at the bremsstrahlung facility at the ELBE accelerator. The setup consisted of two mirror detectors (first arm) and a 80 mm diameter MCP detector (second arm) with a 238 U target positioned in between. TOF measurements with two bremsstrahlung end-point energies of 12.9 and 16.0 MeV were carried out. A clear cut separation of the TOF peaks for the medium-mass and heavy fission fragments was observed. (orig.)
Study of the neutron-photon competition during fission fragment de-excitation
International Nuclear Information System (INIS)
Min, Dong Pil.
1976-01-01
A program was developed to study in detail the competition between neutron and photon emissions during the different stages of the nucleus de-excitation. The main conclusions of this work are the following: the neutron-photon competition fairly depends of the initial spin of the primary fragment. It has a strong effect on the mean number of emitted neutrons, on the photon energy, and to a lower degree, on the mean energy per neutron. A relation between the mean initial spin of the heavy fragment for the almost symmetrical fission, the mean initial spin of the heavy fragment for a very asymmetric fission and the corresponding values of the mean number of emitted neutrons is given. The mean initial excitation energy must increase of about 9MeV for the nucleus to emit one more neutron. Two reasons are given to explain the fact that the measured neutron multiplicity variance is higher for the heavy fragment than for the light one: either the existence of a covariance between spin and excitation energy distribution, or a dispersion of the values of the mean number of emitted neutrons due to the mass and charge distribution resulting from experimental incertitudes. The mean energy per neutron calculated with the program is in good agreement with measured values [fr
Energy Technology Data Exchange (ETDEWEB)
Mory, J [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires
1965-07-01
The passage of fission fragments is manifested in insulators by the formation of damage lines which can easily be observed by transparence using the electron microscope after a suitable chemical attack. Since the recording efficiency is 100 per cent for mica and plastics this phenomenon has a certain number of applications. After briefly recalling the interaction processes between charged particles and matter, and giving a quantitative study of the relationships connecting the various parameters, the author considers here some of these applications: - thermal neutron dosimetry: it is possible to measure integrated fluxes of between lO{sup 3} and 10{sup 21} n/cm{sup 2}, according to the method used; - fast neutron dosimetry: by using fission fragment threshold sources it is easy to measure biological type doses of about 1 rem: - dosage of very low fissile impurity concentrations: atomic concentrations of about 10{sup -9}; can be measured; this limit has never been attained by conventional methods; - study of fissile elements occurring in atmospheric dusts. Results are then briefly given of an automated counting test for traces effected by measuring the electrical resistivity, of the irradiated membrane. Finally are given the advantages and disadvantages of these solid detectors, especially with respect to nuclear emulsions whose uses are approximately identical. (author) [French] Le passage des fragments de fission se materialise dans les isolants par des lignes de dommages que l'on peut facilement observer par transparence au microscope optique apres une attaque chimique appropriee. L'efficacite d'enregistrement etant de 100 pour cent dans le mica et les plastiques, ce phenomene peut avoir un certain nombre d'applications. Apres un bref rappel des processus d'interaction entre particules chargees et matiere, et une etude quantitative des relations unissant les differents parametres, on etudie ici quelques-unes de ces applications: - dosimetrie de neutrons
International Nuclear Information System (INIS)
Spaggiari, E.R.V.
1980-01-01
Results are presented of measurements realized aiming to determine the disintegration constant of spontaneous fission of U-238, with a discussion of the method utilized in the detection of fission tracks in muscovite. Several blades of mica were placed between two cylinders of Uo 2 to be irradiated with the fragments of spontaneous fission of U-238, and the fission tracks duly enlarged after a convenient chemical action were observed with a projection optical microscope. The effective thickness of UO 2 contributing to the observed tracks was measured through the irradiation of mica samples juxtaposed to the UO 2 cylinder, with 14,0 MeV neutrons from the (d,t 2 ) reaction. The detection efficiency of fission tracks originated in that thickness is practically 100% [pt
Light nuclides observed in the fission and fragmentation of 238U
International Nuclear Information System (INIS)
Ricciardi, M.V.; Schmidt, K.H.; Benlliure, J.
2001-05-01
Light nuclides produced in collisions of 1 A.GeV 238 U with protons and titanium have been fully identified with a high-resolution forward magnetic spectrometer, the fragment separator (FRS), at GSI, and for each nuclide an extremely precise determination of the velocity has been performed. The so-obtained information on the velocity shows that the very asymmetric fission of uranium, in the 238 U + p reaction, produces neutron-rich isotopes of elements down to around charge 10. New important features of the fragmentation of 238 U, concerning the velocity and the N/Z-ratio of these light fragments, and a peculiar even-odd structure in N=Z nuclei, have also been observed. (orig.)
International Nuclear Information System (INIS)
Spaggiari, E.R.V.
1978-01-01
The results of measuments of the disintegration constant for spontaneous fission in 238 U are presented, with a discussion on the method used for the detection of fission tracks in muscovite mica. Samples of muscovite mica sandwiched between two natural uranium dioxide cylinders were irradiated with fragments of spontaneous fission and the etched tracks counted with projetion optical microscope. The effective thickness of the UO 2 layer which contributed to the observed tracks was measured through irradiation of mica samples, in contact with the UO 2 cylinder with 14,0 MeV neutrons from a (d,t) reaction. (Author) [pt
Timing characteristics of a two-dimensional multi-wire cathode strip detector for fission fragments
International Nuclear Information System (INIS)
Vind, R.P.; Joshi, B.N.; Jangale, R.V.; Inkar, A.L.; Prajapati, G.K.; John, B.V.; Biswas, D.C.
2014-01-01
In the recent past, a gas filled two-dimensional multi-wire cathode strip detector (MCSD) was developed for the detection of fission fragments (FFs). The position resolution was found to be about 1.0 and 1.5 mm in X and Y directions respectively. The detector has three electrode planes consisting of cathode strip (X-plane), anode wires and split-cathode wires (Y-plane). Each thin wire of the anode plane placed between the two cathode planes is essentially independent and behaves like a proportional counter. The construction of the detector in detail has been given in our earlier paper. The position information has been obtained by employing high impedance discrete delay line read out method for extracting position information in X and Y-directions. In this work, the timing characteristics of MCSD detector are reported to explore the possible use of this detector for the measurement of the mass of the fission fragments produced in heavy ion induced fission reactions
The REX-ISOLDE-project and the Munich Accelerator for Fission Fragments MAFF
Habs, D; Assmann, R W; Emhofer, S; Engels, O; Gross, M; Kester, O; Maier, H J; Reiter, P; Sieber, T; Thirolf, P G
2001-01-01
After a general discussion of ISOL-facilities in Europe we focus on the present status of the REX-ISOLDE facility at CERN and the Munich Accelerator for Fission Fragments MAFF. At REX-ISOLDE in 2001 radioactive beams of ISOLDE will be accelerated to (0.8-2.4) MeV/u. At the new Munich high-flux reactor FRM-II a production target of MAFF with 10$^{14}$ fissions/s is under design. Probably in 2003 intense low-energy beams ( approximately=10$^{11}$/s) of very neutron-rich fission fragments will be available. For MAFF a linac is being developed, which will accelerate the ions after charge breeding to energies between 3.7 and 5.9 MeV/u. In the long term a recycling ring with large momentum acceptance will further increase the radioactive beam intensities by a factor of 10$^{2}$-10$^{3}$ for specific experiments. (33 refs).
International Nuclear Information System (INIS)
Tsvetkov, Pavel V.; Hart, Ron R.; Parish, Theodore A.
2003-01-01
The present study was focused on developing a technologically feasible power system that is based on direct fission fragment energy conversion utilizing magnetic collimation. The new concept is an attempt to combine several advantageous design solutions, which have been proposed for application in both fission and fusion reactors, into one innovative system that can offer exceptional energy conversion efficiency. The analysis takes into consideration a wide range of operational aspects including fission fragment escape from the fuel, collimation, collection, criticality, long-term performance, energy conversion efficiency, heat removal, and safety characteristics. Specific characteristics of the individual system components and the entire system are evaluated. Consistent analysis and evaluation of the technological feasibility of the concept were achieved using state-of-the-art computer codes that allowed realistic and consistent modeling. The calculated energy conversion efficiencies for the presented designs without a thermodynamic cycle and with the heavy water cycle are 52% and 62%, respectively. The analysis indicates that efficiencies up to 90% are potentially achievable. (author)
International Nuclear Information System (INIS)
Tanaka, E.M.
1979-01-01
The Fission Fragment Track Registration Technique is developed to measure the uranium concentration about microgram of uranium per litre of liquid samples. The drying method of drops on the detector (Makrofol KG) and a special sampling procedure to avoid the cumbersome high density of tracks formation at the edge of the deposition surface as a 'ring' is adopted. The samples are irradiated by neutrons produced by the IEA-R1 Reactor (thermal neutron flux about 10 12 neutrons/cm 2 .s) inducing the uranium fission. The tracks registered by the fission fragments in the detector are chemically enlarged and counted by an automatic couting system. By this method the uranium concentrations ranging from 0,9 to 7,6 microgram of uranium per litre, can be determined with precisions between 2,7% the greater and 23% to the lower concentration. The uranium concentration measurements in human hair and urine are made showing that this method is very useful to control and detect eventual uranium contamination [pt
International Nuclear Information System (INIS)
Pellereau, Eric
2013-01-01
The isotopic fission yields of U 238 following the SOFIA experiment, conducted at the GSI facility (Darmstadt), are presented here. This experiment takes advantage of the inverse kinematics technique at relativistic energies. Benefits are several: fission fragments are highly focused (high geometrical efficiency) and are also completely stripped, which greatly simplifies their nuclear charge measurement. The first detector of the SOFIA setup is an active target in which fission occurs via electromagnetic excitation, followed by an ionization chamber to measure the nuclear charge and the horizontal angle of both fission fragments. The masses are deduced by the bending radius measurement of the fragments, deflected by a strong magnet (ALADIN), thanks to two position detectors (MWPC), and also by a highly resolved time-of-flight measurement (40 ps FWHM) so that heavy neighboring isotopes can be separated. The data analysis shows that the main goals are achieved since the isotopic separation is reached over the whole range of the fission fragments. A strong even-odd effect is seen in the charge spectrum, which also exhibits a mean heavy charge close to Z = 54. Surprisingly, the neutron even-odd effect of the light region is seen to be very close to the one in thermal neutron induced fission. The peak-to-valley ratio of the mass spectrum confirms that the mean excitation energy at fission is close to the expected one (14 MeV). The GEF code is used for comparison and always gives results very close to ours. (author) [fr
From ground state to fission fragments: A complex, multi-dimensional multi-path problem
International Nuclear Information System (INIS)
Moeller, P.; Nix, J.R.; Swiatecki, W.J.
1992-01-01
Experimental results on the fission properties of nuclei close to 264 Fm show sudden and large changes with a change of only one or two neutrons or protons. The nucleus 258 Fm, for instance, undergoes symmetric fission with a half-life of about 0.4 ms and a kinetic-energy distribution peaked at about 235 MeV whereas 256 Fm undergoes asymmetric fission with a half-life of about 3 h and a kinetic-energy distribution peaked at about 200 MeV. Qualitatively, these sudden changes have been postulated to be due to the emergence of fragment shells in symmetric-fission products close to 132 Sn. Here we present a quantitative calculation that shows where high-kinetic-energy symmetric fusion occurs and why it is associated with a sudden and large decrease in fission half-lives. We base our study on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. We use the three-quadratic-surface parameterization to generate the shapes for which the potential-energy surfaces are calculated. The use of this parameterization and the use of the finite-range macroscopic model allows for the study of two touching spheres and similar shapes. Since these shapes are thought to correspond to the scission shapes for the high-kinetic-energy events it is of crucial importance that a continuous sequence of shapes leading from the nuclear ground state to these configurations can be studied within the framework of the model. We present the results of the calculations in terms of potential-energy surfaces and fission half-lives for heavy even nuclei. The surfaces are displayed in the form of contour diagrams as functions of two moments of the shape. They clearly show the appearance of a second fission valley, which leads to scission configurations close to tow touching spheres, for fissioning systems in the vicinity of 264 Fm
International Nuclear Information System (INIS)
Vanin, D.V.; Nadtochy, P.N.; Adeev, G.D.; Kosenko, G.I.
2000-01-01
A stochastic approach to fission dynamics is proposed. The approach, which is based on Langevin equations, is used to calculate the mass distributions of fragments originating from the fission of excited nuclei. The effect of viscosity and light-particle emission on the variance of mass distributions is studied. The results of the calculations based on the above approach reveal that, in order to obtain a simultaneous description of mass-distribution parameters and the multiplicities of prescission particles, it is necessary to use sufficiently large values of nuclear viscosity both for the one-body and for the two-body viscosity mechanism, anomalously large values of the viscosity coefficient being required in the latter case
Energy Technology Data Exchange (ETDEWEB)
Duke, Dana Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-11-12
This Ph.D. dissertation describes a measurement of the change in mass distributions and average total kinetic energy (TKE) release with increasing incident neutron energy for fission of ^{235}U and ^{238}U. Although fission was discovered over seventy-five years ago, open questions remain about the physics of the fission process. The energy of the incident neutron, En, changes the division of energy release in the resulting fission fragments, however, the details of energy partitioning remain ambiguous because the nucleus is a many-body quantum system. Creating a full theoretical model is difficult and experimental data to validate existing models are lacking. Additional fission measurements will lead to higher-quality models of the fission process, therefore improving applications such as the development of next-generation nuclear reactors and defense. This work also paves the way for precision experiments such as the Time Projection Chamber (TPC) for fission cross section measurements and the Spectrometer for Ion Determination in Fission (SPIDER) for precision mass yields.
Microscopical descriptions of the fission fragmentation developed at CEA Bruyeres (France)
International Nuclear Information System (INIS)
Sida, J. L.
2007-01-01
The fission process has been studied from 1939 but there is no full theoretical description of the process. Two approaches have been developped at CEA Bruyeres le Chatel (France) in the basis of microscopic calculations with the Gogny Force. The first one is based on mean field calculations of the fission parameters (Potential enegy landscape, inertial parameters). The evolution of the wave function of the system is followed from the saddle point to the scission line in an adiabatic dynamical approach in order to determine the fission fragment distributions [GOU04]. The second one used the theoretical nuclear database AMEDEE (http://www-phynu.cea.fr/science_en_ligne/carte_potentiels_microscopiques/carte_potentiel_nucleaire.htm) which includes the mean field potential of more than 7000 nuclei. A precise energy balance is done at the scission point in order to define the available energy for each possible fragmentation. A statistical model is than used to determine the fragments distributions [HEI06]. This work is an improvement of the statistical scission point model of Wilkins et al [WIL76]. The free parameters of the previous description have been reduced to the minimum and there is still one parameter value that define the scission configuration which is not used ass a free parameter but has been fixed for the systematic that will be presented. This two microscopical models will be presented and the results will be discussed and compared to experiments. We will also point on their possible use to realize data evaluation for the burn-up of minor actinides, wastes of nuclear plants. (Author)
Calculation of energy transfer by fission fragments from plane uranium layer to thin wire
International Nuclear Information System (INIS)
Pikulev, A.A.
2006-01-01
Energy transfer from a flat fissile uranium slab to a fine wire via fission fragments is calculated. The rate of energy transfer versus the thicknesses of the slab and protecting aluminum film, as well as the wire-slab gap, is found. An expression for the absorption coefficient of the wire is derived, and the effect the thickness of the wire has on the energy transfer process is studied. The amount of the edge effect for a finite-size uranium slab is demonstrated with calculations for vacuum conditions and for argon under a pressure of 0.25 atm [ru
Towards the high spin–isospin frontier using isotopically-identified fission fragments
Energy Technology Data Exchange (ETDEWEB)
Navin, A., E-mail: navin@ganil.fr [GANIL, CEA/DSM–CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Rejmund, M.; Schmitt, C. [GANIL, CEA/DSM–CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Bhattacharyya, S. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Lhersonneau, G.; Van Isacker, P. [GANIL, CEA/DSM–CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Caamaño, M. [USC, Universidad de Santiago de Compostela, E-15706 Santiago de Compostela (Spain); Clément, E.; Delaune, O.; Farget, F.; France, G. de; Jacquot, B. [GANIL, CEA/DSM–CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France)
2014-01-20
Measurements of prompt γ rays in coincidence with isotopically-identified fission fragments, produced in collisions of {sup 238}U on a {sup 9}Be target, at an energy around the Coulomb barrier are reported. This technique provides simultaneous access to the spectroscopy of many nuclei, extending to very neutron-rich isotopes and fairly high angular momenta. The structural evolution of the neutron-rich zirconium isotopes is discussed in the light of the present measurements in {sup 105,106}Zr and in the context of the interacting boson model with a global parameterization that includes triaxiality but no shape coexistence.
Towards the high spin–isospin frontier using isotopically-identified fission fragments
Navin, A.GANIL, CEA/DSM–CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France; Rejmund, M.(GANIL, CEA/DSM–CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France); Schmitt, C.(GANIL, CEA/DSM–CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France); Bhattacharyya, S.(Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, India); Lhersonneau, G.(GANIL, CEA/DSM–CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France); Van Isacker, P.(GANIL, CEA/DSM–CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France); Caamaño, M.(USC, Universidad de Santiago de Compostela, E-15706 Santiago de Compostela, Spain); Clément, E.(GANIL, CEA/DSM–CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France); Delaune, O.(GANIL, CEA/DSM–CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France); Farget, F.(GANIL, CEA/DSM–CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France); de France, G.(GANIL, CEA/DSM–CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France); Jacquot, B.(GANIL, CEA/DSM–CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France)
2014-01-01
Measurements of prompt γ rays in coincidence with isotopically-identified fission fragments, produced in collisions of 238 U on a 9 Be target, at an energy around the Coulomb barrier are reported. This technique provides simultaneous access to the spectroscopy of many nuclei, extending to very neutron-rich isotopes and fairly high angular momenta. The structural evolution of the neutron-rich zirconium isotopes is discussed in the light of the present measurements in Zr105,106 and in the conte...
Towards the high spin–isospin frontier using isotopically-identified fission fragments
International Nuclear Information System (INIS)
Navin, A.; Rejmund, M.; Schmitt, C.; Bhattacharyya, S.; Lhersonneau, G.; Van Isacker, P.; Caamaño, M.; Clément, E.; Delaune, O.; Farget, F.; France, G. de; Jacquot, B.
2014-01-01
Measurements of prompt γ rays in coincidence with isotopically-identified fission fragments, produced in collisions of 238 U on a 9 Be target, at an energy around the Coulomb barrier are reported. This technique provides simultaneous access to the spectroscopy of many nuclei, extending to very neutron-rich isotopes and fairly high angular momenta. The structural evolution of the neutron-rich zirconium isotopes is discussed in the light of the present measurements in 105,106 Zr and in the context of the interacting boson model with a global parameterization that includes triaxiality but no shape coexistence
Detection of fission fragments and alpha particles using the solid trace detector CR-39
International Nuclear Information System (INIS)
Santos, R.C.
1988-01-01
The technique of detecting charged particles using the solid track detector CR-39 is employed to establish some characteristics of fission fragments and alpha particles emitted from a Cf-252 source. Results are presented and discussed on the following aspects i) distribution of the track diameters; ii) variations on the track diameters to the chemical attack; iii) variations of the chemical attack velocity with respect to concentration and temperature. iv) activation energy of the developping process; v) induction time; vi) critical angle and efficiency on track developping. (A.C.A.S.) [pt
Energy Technology Data Exchange (ETDEWEB)
Albinsson, H [Chalmers Univ. of Technology, Goeteborg (SE)
1971-07-01
Fission gamma radiation yields as functions of the total fragment kinetic energy were obtained for 235U thermal-neutron induced fission. The fragments were detected with silicon surface-barrier detectors and the gamma radiation with a Nal(Tl) scintillator. In some of the measurements mass selection was used so that the gamma radiation could also be measured as a function of fragment mass. Time discrimination between the fission gammas and the prompt neutrons released in the fission process was employed to reduce the background. The gamma radiation emitted during different time intervals after the fission event was studied with the help of a collimator, the position of which was changed along the path of the fission fragments. Fission-neutron and gamma-ray data of previous experiments were used for comparisons of the yields, and estimates were made of the variation of the prompt gamma-ray energy with the total fragment kinetic energy
SPY: a new scission-point model based on microscopic inputs to predict fission fragment properties
Energy Technology Data Exchange (ETDEWEB)
Panebianco, Stefano; Lemaître, Jean-Francois; Sida, Jean-Luc [CEA Centre de Saclay, Gif-sur-Ivette (France); Dubray, Noëel [CEA, DAM, DIF, Arpajon (France); Goriely, Stephane [Institut d' Astronomie et d' Astrophisique, Universite Libre de Bruxelles, Brussels (Belgium)
2014-07-01
Despite the difficulty in describing the whole fission dynamics, the main fragment characteristics can be determined in a static approach based on a so-called scission-point model. Within this framework, a new Scission-Point model for the calculations of fission fragment Yields (SPY) has been developed. This model, initially based on the approach developed by Wilkins in the late seventies, consists in performing a static energy balance at scission, where the two fragments are supposed to be completely separated so that their macroscopic properties (mass and charge) can be considered as fixed. Given the knowledge of the system state density, averaged quantities such as mass and charge yields, mean kinetic and excitation energy can then be extracted in the framework of a microcanonical statistical description. The main advantage of the SPY model is the introduction of one of the most up-to-date microscopic descriptions of the nucleus for the individual energy of each fragment and, in the future, for their state density. These quantities are obtained in the framework of HFB calculations using the Gogny nucleon-nucleon interaction, ensuring an overall coherence of the model. Starting from a description of the SPY model and its main features, a comparison between the SPY predictions and experimental data will be discussed for some specific cases, from light nuclei around mercury to major actinides. Moreover, extensive predictions over the whole chart of nuclides will be discussed, with particular attention to their implication in stellar nucleosynthesis. Finally, future developments, mainly concerning the introduction of microscopic state densities, will be briefly discussed. (author)
Multiplicity and energy of neutrons from {sup 233}U(n{sub th},f) fission fragments
Energy Technology Data Exchange (ETDEWEB)
Nishio, Katsuhisa; Kimura, Itsuro; Nakagome, Yoshihiro [Kyoto Univ. (Japan)
1998-03-01
The correlation between fission fragments and prompt neutrons from the reaction {sup 233}U(n{sub th},f) was measured with improved accuracy. The results determined the neutron multiplicity and emission energy as a function of fragment mass and total kinetic energy. The average energy as a function of fragment mass followed a nearly symmetric distribution centered about the equal mass-split and formed a remarkable contrast with the saw-tooth distribution of the average neutron multiplicity. The neutron multiplicity from the specified fragment decreases linearly with total kinetic energy, and the slope of multiplicity with kinetic energy had the minimum value at about 130 u. The level density parameter versus mass determined from the neutron data showed a saw-tooth structure with the pronounced minimum at about 128 and generally followed the formula by Gilbert and Cameron, suggesting that the neutron emission process was very much affected by the shell-effect of the fission fragment. (author)
International Nuclear Information System (INIS)
Fernandez-Dominguez, B.
2003-03-01
The aim of this work is the study of the fission fragments produced in the spallation reaction 208 Pb + p at 500 AMeV. The fission fragments from Z=23 up to Z=59 have been detected and identified by using the inverse kinematics technique with the high-resolution spectrometer FRS. The production cross sections and the recoil velocities of 430 nuclei have been measured. The measured data have been compared with previous data. The isotopic distributions show a high precision. However, the absolute value of the fission cross section is higher than expected. From the experimental data the characteristics of the average fissioning system have been reconstructed (Z fis , A fis , E* fis ). In addition, the number of post-fission neutrons emitted from the fission fragments, v post , has been determined by using a new method. The experimental data have been compared to the two-steps models describing the spallation reaction. The impact of the model parameters on the observables has been analysed and the reasons Leading to the observed differences between the codes are also presented. This analyse shows a good agreement with the INCL4+ABLA code. (author)
International Nuclear Information System (INIS)
Carlsson, Magnus
2004-06-01
Areas ranging from nuclear structure models to accelerator-driven systems benefit from improved neutron-induced fission data in the intermediate energy region. In this Master's degree thesis, the fragment angular distribution from fission of 238 U, induced by 21-MeV neutrons, has been analysed from an experiment performed with the Medley/DIFFICILE setup at the The Svedberg Laboratory in Uppsala. The data have been corrected for low energy neutrons in the beam. The results agree with other experiments, as well as with model calculations. The data should be a starting point for further analysis with a goal to deduce the fission cross-section of 238 U
The etching property of the surface of CR-39 and the track core radius of fission fragment
Mineyama, D; Yamauchi, T; Oda, K; El-Rahman, A
2002-01-01
The etch pits of fission fragments in CR-39 detector have been observed carefully using an atomic force microscope (AFM) after extremely short chemical etching in stirred 6N KOH solution kept at 70degC. It was found that there existed a thin layer where the bulk etch rate is relativity from large the etch-pit growth curve for the etching duration between 10 and 1800 seconds. The track core radius of fission fragment was evaluated to be about 6 nm from the extrapolation of the growth curve in a thinner region. (author)
International Nuclear Information System (INIS)
Moraes, O.M.G. de.
1984-01-01
A systematic study about the registration characteristics of synthetic fused quartz 'Suprasil I' use as a detector of fission fragments under high flux of reactor neutrons and the effects of irradiation on it was performed. Fission fragments of 252 Cf, gamma radiation doses of of 60 Co up to 150 MGy, and integrated neutrons fluxes up to 10 20 n/cm 2 were used. A model to explain the effects on track registration and development characteristics of 'Suprasil I' irradiated on reactors were proposed, based on the obtained results for efficiency an for annealing. (C.G.C.) [pt
Concept Assessment of a Fission Fragment Rocket Engine (FFRE) Propelled Spacecraft
Werka, Robert; Clark, Rod; Sheldon, Rob; Percy, Tom
2012-01-01
The March, 2012 issue of Aerospace America stated that ?the near-to-medium prospects for applying advanced propulsion to create a new era of space exploration are not very good. In the current world, we operate to the Moon by climbing aboard a Carnival Cruise Lines vessel (Saturn 5), sail from the harbor (liftoff) shedding whole decks of the ship (staging) along the way and, having reached the return leg of the journey, sink the ship (burnout) and return home in a lifeboat (Apollo capsule). Clearly this is an illogical way to travel, but forced on Explorers by today's propulsion technology. However, the article neglected to consider the one propulsion technology, using today's physical principles that offer continuous, substantial thrust at a theoretical specific impulse of 1,000,000 sec. This engine unequivocally can create a new era of space exploration that changes the way spacecraft operate. Today's space Explorers could travel in Cruise Liner fashion using the technology not considered by Aerospace America, the novel Dusty Plasma Fission Fragment Rocket Engine (FFRE). This NIAC study addresses the FFRE as well as its impact on Exploration Spacecraft design and operation. It uses common physics of the relativistic speed of fission fragments to produce thrust. It radiatively cools the fissioning dusty core and magnetically controls the fragments direction to practically implement previously patented, but unworkable designs. The spacecraft hosting this engine is no more complex nor more massive than the International Space Station (ISS) and would employ the successful ISS technology for assembly and check-out. The elements can be lifted in "chunks" by a Heavy Lift Launcher. This Exploration Spacecraft would require the resupply of small amounts of nuclear fuel for each journey and would be an in-space asset for decades just as any Cruise Liner on Earth. This study has synthesized versions of the FFRE, integrated one concept onto a host spacecraft designed for
Energy Technology Data Exchange (ETDEWEB)
Moeller, Peter [Los Alamos National Laboratory, Theoretical Division, Los Alamos, NM (United States); Schmitt, Christelle [CEA/DSM-CNRS/IN2P3, Grand Accelerateur National d' Ions Lourds, Caen (France)
2017-01-15
We use the Brownian shape-motion model, with its recent extensions, which allow modeling of odd-even staggering, to calculate the evolution of fission-fragment charge distributions with neutron number for the compound-system sequence {sup 234}U, {sup 236}U, {sup 238}U, and {sup 240}U. We compare to experimental data where available, for neutron- and electromagnetic-induced fission over a compound-nucleus excitation energy range from about 6 to 20 MeV. A notable result of the study is that the evolution of the location of the peak charge yield from Z = 54 in {sup 234}U towards Z = 52 in heavier isotopes, seen in the experimental data, is present also in the calculated yields. We further show that to describe yields at higher compound-nucleus excitation energies, then, already at 20 MeV, it is necessary to take multi-chance fission into account. (orig.)
International Nuclear Information System (INIS)
Zhu Shoupeng; Wang Yuanchang
1990-11-01
The subcellular localization of fission fragment 147 Pm in tissue cells by electron microscopic autoradiography was investigated. The early harm of internal contaminated accumulation of 147 Pm appeared in blood cells and endothelium cells, obviously in erythrocytes. Then 147 Pm was selectively deposited in ultrastructure of liver cells. Autoradiographic study demonstrated that dense tracks appeared in mitochondria and lysosome of podal cells within renal corpuscle. In nucleus as well as in mitochondria and microbodies of epicyte of kidney near-convoluted tubule, there are numerous radioactive 149 Pm accumulated. With the prolongation of observing time, 149 Pm was selectively and steadily deposited in subcellular level of organic component bone. The radionuclides could be accumulated in nucleus of osteoclasts and osteoblasts. In organelles, the radionuclides was mainly accumulated in rough endoplasmic reticulum and mitochondria. Autoradiographic tracks of 149 Pm was obviously found to be localized in combined point between Golgi complex and transitive vesicle of rough endoplasmic reticulum
Directory of Open Access Journals (Sweden)
R. Léguillon
2016-10-01
Full Text Available It is shown that the multinucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multinucleon transfer channels of the 18O+232Th reaction are used to study fission of fourteen nuclei 231,232,233,234Th, 232,233,234,235,236Pa, and 234,235,236,237,238U. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel, in selected bins of excitation energy. In particular, the mass distributions of 231,234Th and 234,235,236Pa are measured for the first time. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation–dissipation model.
International Nuclear Information System (INIS)
Itkis, M.G.; Kalpakchieva, R.; Okolovich, V.N.; Penionzhkevich, Yu.Eh.; Tolstikov, V.N.
1982-01-01
To study characteristics of fissioning nucleus fragments, investigated were reactiiiiiiiiiiiiiiiH8Pt+ 12 C → 210 Po in the 12 C ion energy range of 86-110.5 MeV, of 192 Os+ 16 O → 208 Po in 90-131 MeV range, 204 Pb+ 3 He → 207 Po, 206 Pb+ 3 He → 209 Po, 207 Pb+ 3 He → 210 Po with 60 MeV 3 He ion energy. Using a correlation technique for measuring energies of two fragments mass and energy distributions of fission fragments of 208 Po and 210 Po compound nuclei produced in the reactions have been studied. Mass and energy distributions of fragments from fission of 208 Po and 210 Po in the reactions with ions 16 O, 12 C and 3 He were investigated in an ample energy range, using the correlational techniques for measurement of energies of two fragments. An increase in the total kinetic energy with rise of the angular momentum was observed, the fact indicating a weak coupling of one-particle and collective modes of motion in the fissile nucleus resulting in that the rolational energy is transfered mainly to translation energies of the fragments
Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.
2016-05-01
Background: Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. Purpose: In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear density functional theory (DFT). Methods: Our theoretical framework is the nuclear energy density functional (EDF) method, where large-amplitude collective motion is treated adiabatically by using the time-dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). In practice, the TDGCM is implemented in two steps. First, a series of constrained EDF calculations map the configuration and potential-energy landscape of the fissioning system for a small set of collective variables (in this work, the axial quadrupole and octupole moments of the nucleus). Then, nuclear dynamics is modeled by propagating a collective wave packet on the potential-energy surface. Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. Results: We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in two-dimensional collective spaces. Theory and experiment agree typically within two mass units for the position of the asymmetric peak. As expected, calculations are sensitive to the structure of the initial state and the prescription for the collective inertia. We emphasize that results are also sensitive to the continuity of the collective landscape near scission. Conclusions: Our analysis confirms
Influence of nuclear dissipation on fission dynamics of the excited ...
Indian Academy of Sciences (India)
A stochastic approach to fission dynamics based on two-dimensional Langevin equations was applied to calculate the anisotropy of the fission fragments angular distribution and average pre-scission neutron multiplicities for the compound nucleus 248Cf formed in the $${16}$O+$^{232}$Th reactions. Postsaddle nuclear ...
International Nuclear Information System (INIS)
Khouri, M.T.F.C.; Koskinas, M.F.; Andrade, C. de; Vilela, E.C.; Hinostroza, H.; Kaschiny, J.R.A.; Costa, M.S. da; Rizzo, P.; Santos, W.M.S.
1990-01-01
The technique of particle detection by solid track detectors, types of developing and analysis of results are presented. Efficiency measurements of alpha particle detection with Makrofol e and surface barrier detector are made. Detection of Cf-252 fission fragments is shown. (L.C.)
Plass, W. R.; Dickel, T.; Purushothaman, S.; Dendooven, P.; Geissel, H.; Ebert, J.; Haettner, E.; Jesch, C.; Ranjan, M.; Reiter, M. P.; Weick, H.; Amjad, F.; Ayet, S.; Diwisch, M.; Estrade, A.; Farinon, F.; Greiner, F.; Kalantar-Nayestanaki, N.; Knoebel, R.; Kurcewicz, J.; Lang, J.; Moore, I.; Mukha, I.; Nociforo, C.; Petrick, M.; Pfuetzner, M.; Pietri, S.; Prochazka, A.; Rink, A. -K.; Rinta-Antila, S.; Schaefer, D.; Scheidenberger, C.; Takechi, M.; Tanaka, Y. K.; Winfield, J. S.; Yavor, M. I.
2013-01-01
At the FRS Ion Catcher at GSI, projectile and fission fragments are produced at relativistic energies, separated in-flight, range-focused, slowed down and thermalized in a cryogenic stopping cell. A multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) is used to perform direct mass
International Nuclear Information System (INIS)
Khouri, M.T.F.C.; Koskinas, M.F.; Andrade, C. de; Vilela, E.C.; Hinostroza, H.; Kaschiny, J.E.A.; Costa, M.S. da; Rizzo, P.; Santos, W.M.S.
1990-01-01
A technique for particle detection by using track solid detector and also types of revealing and result analysis are presented concerned to Cf-252 fission fragments detection. Measurements of alpha particles detection efficiency using Makrofol E and surface barrier detector are performed. (L.C.J.A.)
International Nuclear Information System (INIS)
Dornhoefer, H.
1980-01-01
The fission products 132 I and 136 I produced in the fission reactions 238 U(α,f) and 238 U(d,f) were spectroscoped using a gas transport system. Thereby was taken advantage of the fact that at the transport with pure helium without aerosols only iodine activities were collected in a membrane filter. The relative independent yields of the isomeric fission products of 132 I and 136 I were determined for different excitation energies. Thereby was taken advantage of the fact that the transport yield of the gas transport system for 136 I directly produced from the fission was greater than for iodine indirectly produced by β-decay. (orig./HSI) [de
International Nuclear Information System (INIS)
Montoya, M.; Rojas, J.; Saettone, E.
2007-01-01
The mass and kinetic energy distribution of nuclear fragments from the thermal neutron-induced fission of 235 U have been studied using a Monte Carlo simulation. Besides reproducing the pronounced broadening on the standard deviation of the final fragment kinetic energy distribution (σ e (m)) around the mass number m = 109, our simulation also produces a second broadening around m = 125 that is in agreement with the experimental data obtained by Belhafaf et al. These results are a consequence of the characteristics of the neutron emission, the variation in the primary fragment mean kinetic energy, and the yield as a function of the mass. (Author)
Energy Technology Data Exchange (ETDEWEB)
Montoya, M.; Rojas, J. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, Lima 41 (Peru); Saettone, E. [Facultad de Ciencias, Universidad Nacional de lngenieria, Av. Tupac Amaru 210, Apartado 31-139, Lima (Peru)
2007-07-01
The mass and kinetic energy distribution of nuclear fragments from the thermal neutron-induced fission of {sup 235}U have been studied using a Monte Carlo simulation. Besides reproducing the pronounced broadening on the standard deviation of the final fragment kinetic energy distribution ({sigma}{sub e}(m)) around the mass number m = 109, our simulation also produces a second broadening around m = 125 that is in agreement with the experimental data obtained by Belhafaf et al. These results are a consequence of the characteristics of the neutron emission, the variation in the primary fragment mean kinetic energy, and the yield as a function of the mass. (Author)
Energy Technology Data Exchange (ETDEWEB)
Faraggi, H; Garin-Bonnet, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1958-07-01
The measurement of total number of fissiongments emerging from an homogeneous, thick alloy composed of uranium plus another element (the concentration of uranium being known) allows to obtain the range of the fragments in this alloy. By varying the concentration, the range of the fragments in uranium and in the other element can be deduced. (author)Fren. [French] La mesure du nombre total de fragments de fission sortant d'un alliage homogene epais d'uranium et d'un autre element, pour lequel la concentration en uranium est donnee, permet la mesure du parcours des fragments dans cet alliage. En faisant varier la concentration, on peut deduire de ces mesures le parcours des fragments dans l'uranium et dans l'autre element. (auteur)
Mass and kinetic-energy distributions of fragments formed in the heavy-ion-induced fission of 208Po
International Nuclear Information System (INIS)
Cuninghame, J.G.; Goodall, J.A.B.
1980-01-01
Fission fragments following the decay of a 208 Po compound nucleus have been observed by using radiochemical and particle-counting techniques. The (α+ 204 Pb), ( 12 C+ 196 Pt) and ( 16 O+ 192 Os) reactions were studied at two or three bombarding energies, covering overlapping ranges of excitation energies. - Radiochemical separations of As, Br, Y, Nb, Tc, Ag, Sb and I isotopes were made from catcher foils sandwiching isotopic targets, and their isotopic yield distributions determined. The distributions are used to estimate the average number of neutrons associated with each fission event, including neutrons emitted before and after fission. - Prompt coincidence measurements of fragments are used to derive the overall mass and kinetic-energy distributions of primary fragments, taking into account the effects of pre- and post-fission neutron emission. The mass distributions are well fitted by the statistical theory, at a temperature corresponding to an excitation about 10 MeV above that at the saddle point. No evidence is found for an increase of kinetic-energy with increasing angular momentum of the compound nucleus. (author)
The resonance neutron fission on heavy nuclei
International Nuclear Information System (INIS)
Kopach, Yu.N.; Popov, A.B.; Furman, V.I.; Alfimenkov, V.P.; Lason', L.; Pikel'ner, L.B.; ); Gonin, N.N.; Kozlovskij, L.K.; Tambovtsev, D.I.; Gagarskij, A.M.; Petrov, G.A.; Sokolov, V.E.
2001-01-01
A new approach to the description of the fission, similar to the well-known reaction theory and based on the helicity representation for the exit fission channels, is briefly summarized. This approach allows one to connect the multimodal fission representation with A. Bohr's concept of the fission transition states and to obtain formulae for the partial and differential fission cross sections. The formulae are used for analysis of the angular anisotropy of fragments in the neutron resonance induced fission of aligned 235 U nuclei and of the P-even angular forward-backward and right-left correlations of fragments oe the P-odd correlations caused by the interference of s- and p-wave neutron resonances [ru
Yields of some fragments on 235U, 238U and 239Pu fission due to the neutrons of the SBR-1 reactors
International Nuclear Information System (INIS)
Yurova, L.N.; Bushuev, A.V.; Ozerkov, V.N.; Chachin, V.V.; Zvonarev, A.V.; Liforov, Yu.G.; Koleganov, Yu.V.; Miller, V.V.; Gorbatyuk, O.V.
1979-01-01
Determined are the values of the yields of fission fragments in spectrum close to that of the neutron fission using the data on yields at fission by thermal neutrons. The relation between the activities of fragments in samples irradiated in the BR-1 center and in the thermal colomn of the same reactor was measured with the help of the Ge(Li). The relative rate of fissions in uranium and plutonium samples in the center or in thermal colomn were measured by track detectors. The comparison of the yields obtained and the data of other authors is being made
Continuous in-situ measurements of fission fragment irradiation induced void swelling in Ni
International Nuclear Information System (INIS)
Lefakis, H.
1980-01-01
A novel simulation technique has been developed to study the early stages of irradiation induced void formation in metals. The technique makes use of fission fragment irradiation produced by doping with 235 U and irradiating in a thermal neutron flux under highly controlled irradiation-environmental conditions. Employment of a computer and a high temperature radiation resistant LVDT resulted in a high volumetric sensitivity and the production of continuous, in-situ void swelling data for bulk specimens. Results for Ni, used as a test-metal served to corroborate the technique in a number of ways including comparisons with (a) reactor data, (b) direct post-irradiation specimen length measurements and (c) TEM examinations of irradiated samples. The technique has several unique advantages and, in conjunction with other conventional methods, it offers the possibility of detailed evaluation of void nucleation and growth theories. In view of the present results no definitive answer may be given on the issue of the incubation period while checks with two theoretical models have yielded an order-of-magnitude agreement
Differential and integral characteristics of prompt fission neutrons in the statistical theory
International Nuclear Information System (INIS)
Gerasimenko, B.F.; Rubchenya, V.A.
1989-01-01
Hauser-Feshbach statistical theory is the most consistent approach to the calculation of both spectra and prompt fission neutrons characteristics. On the basis of this approach a statistical model for calculation of differential prompt fission neutrons characteristics of low energy fission has been proposed and improved in order to take into account the anisotropy effects arising at prompt fission neutrons emission from fragments. 37 refs, 6 figs
Energy Technology Data Exchange (ETDEWEB)
Carlsson, Magnus
2004-06-01
Areas ranging from nuclear structure models to accelerator-driven systems benefit from improved neutron-induced fission data in the intermediate energy region. In this Master's degree thesis, the fragment angular distribution from fission of {sup 238}U, induced by 21-MeV neutrons, has been analysed from an experiment performed with the Medley/DIFFICILE setup at the The Svedberg Laboratory in Uppsala. The data have been corrected for low energy neutrons in the beam. The results agree with other experiments, as well as with model calculations. The data should be a starting point for further analysis with a goal to deduce the fission cross-section of {sup 238}U.
International Nuclear Information System (INIS)
Alexander, J.M.
1987-01-01
During the last two years there has been a true cacophony concerning the meaning of experimental angular distributions for fission and fission-like fragments. The heavily used, saddle-point, transition-state model has been shown to be of limited value for high-spin systems, and a wide variety of proposals has appeared often with mutual inconsistencies and conflicting views. Even though equilibrium statistical models for fragment emission and particle evaporation must have a very close kinship, this relationship, often left as murky, has now come onto center stage for understanding reactions at ≥ 100 MeV. Basic questions concern the nature of the decision-point configurations, their degrees of freedom, the role of deformation and the relevant moments of inertia. This paper points out serious inconsistencies in several recent scission-point models and discusses conditions for applicability of saddle-point and scission-point approaches
A new fission-fragment detector to complement the CACTUS-SiRi setup at the Oslo Cyclotron Laboratory
Energy Technology Data Exchange (ETDEWEB)
Tornyi, T.G., E-mail: tornyitom@atomki.hu [Department of Physics, University of Oslo (Norway); Institute of Nuclear Research of the Hungarian Academy of Sciences (MTA Atomki), Debrecen (Hungary); Görgen, A.; Guttormsen, M.; Larsen, A.C.; Siem, S. [Department of Physics, University of Oslo (Norway); Krasznahorkay, A. [Institute of Nuclear Research of the Hungarian Academy of Sciences (MTA Atomki), Debrecen (Hungary); Csige, L. [Institute of Nuclear Research of the Hungarian Academy of Sciences (MTA Atomki), Debrecen (Hungary); Max-Planck-Institute for Quantum Optics, D-85748 Garching (Germany)
2014-02-21
An array of Parallel Plate Avalanche Counters (PPAC) for the detection of heavy ions has been developed. The new device, NIFF (Nuclear Instrument for Fission Fragments), consists of four individual detectors and covers 60% of 2π. It was designed to be used in conjunction with the SiRi array of ΔE−E silicon telescopes for light charged particles and fits into the CACTUS array of 28 large-volume NaI scintillation detectors at the Oslo Cyclotron Laboratory. The low-pressure gas-filled PPACs are sensitive for the detection of fission fragments, but are insensitive to scattered beam particles of light ions or light-ion ejectiles. The PPAC detectors of NIFF have good time resolution and can be used either to select or to veto fission events in in-beam experiments with light-ion beams and actinide targets. The powerful combination of SiRi, CACTUS, and NIFF provides new research opportunities for the study of nuclear structure and nuclear reactions in the actinide region. The new setup is particularly well suited to study the competition of fission and γ decay as a function of excitation energy.
International Nuclear Information System (INIS)
Montoya, M.; Rojas, J.; Saetone, E.
2007-01-01
The mass and kinetic energy distribution of nuclear fragments from thermal neutron-induced fission of 235 U(n th ,f) have been studied using a Monte-Carlo simulation. Besides reproducing the pronounced broadening in the standard deviation of the kinetic energy at the final fragment mass number around m = 109, our simulation also produces a second broadening around m = 125. These results are in good agreement with the experimental data obtained by Belhafaf et al. and other results on yield of mass. We conclude that the obtained results are a consequence of the characteristics of the neutron emission, the sharp variation in the primary fragment kinetic energy and mass yield curves. We show that because neutron emission is hazardous to make any conclusion on primary quantities distribution of fragments from experimental results on final quantities distributions
A semi-empirical formula on the pre-neutron-emission fragment mass distribution in nuclear fission
International Nuclear Information System (INIS)
Wang Fucheng; Hu Jimin
1988-03-01
A 5-Gauss semi-empirical formula on the pre-neutron-emission fragment mass distribution is given. The absolute standard deviation and maximum departure between calculated values and experimental data for (n,f) and (n,n'f) fission reactions from 232 Th to 245 Cm are approximately 0.4% and 0.8%, respectively. The error will get bigger if the formula is used at higher excitation energies
International Nuclear Information System (INIS)
Couto, R.T.
1990-01-01
QUEIMAP is a computer routine for burnup calculation, composed of five FORTRAN-77 subroutines. Its objective is to solve depletion equation of four radionuclides conversion chain, U238, U235, Th232, as well as fission fragments equations. In this paper the burnup is considered punctual and evolutioned under cross section. It presents the solution algorithms employed by QUEIMAP, the validation of its results and the way of use it. (M.I.)
International Nuclear Information System (INIS)
Belovitzky, G.E.; Shteingrad, O.M.
2000-01-01
The mechanism underlying the emission of light charged particles (LCP) with Z = 1, 2 from fragments produced in fission of uranium nuclei by 153 MeV protons and 1700 MeV negative pions was studied. It was found that LCP accompanying the fission by pions are emitted from non-accelerated fragments immediately after the fission, whereas in the case of 153 MeV protons, the LCP are emitted from the accelerated heavy fragments. The number of LCP emitted in the course of pion-induced fission is 0.7 per fission event, which exceeds by a factor of 30 the corresponding number for 153 MeV protons [ru
International Nuclear Information System (INIS)
Simutkin, V.D.
2008-01-01
Conceptual analysis of accelerator-driven systems assumes extensive use of nuclear data on neutron-induced reactions at intermediate energies. In particular, information about the fission fragment yields from the 238 U(n,f) and 232 Th(n,f) reactions is of particular interest at neutron energies from 10 to 200 MeV. However, there is a lack of such data for both 238 U and 232 Th. Up to now, the intermediate energy measurements have been performed for 238 U only, and there are no data for the 232 Th(n,f) reaction. The aim of the work is to provide such data. Fission fragment mass distributions for the 232 Th(n,f) and 238 U(n,f) reactions have been measured for the incident neutron energies 32.8 MeV, 45.3 MeV and 59.9 MeV. The experiments have been performed at the neutron beam facility of the Universite Catholique de Louvain, Belgium. A multi-section Frisch-gridded ionization chamber has been used as a fission fragment detector. The data obtained have been interpreted in terms of the multimodal random neck-rupture model (MMRNRM). (authors)
International Nuclear Information System (INIS)
Jin Yimeng.
1989-04-01
In the detection of heavy ions and fission fragments, the photovoltaic cells can take the place of traditional silicon surface barrier detectors, if we need a great number of detectors as in the case of 4π multidetector, and do not expect excellent energy and time resolutions at the same time. Made for the purpose of converting the solar energy to the electrical energy, the photovoltaic cells have the similar structure as silicon surface barrier detectors, except for their much thinner pn junctions and, as a result much larger junction capacities, which is a major disadvantage for photovoltaic cells as fission fragment detectors. In order to get an acceptable energy resolution and a time resolution as good as possible, it is necessary to design a preamplifier specially adapted to cells, which plays a very important role in the utilization of photovoltaic cells as detectors. In the present work we analyze the electrical signal from a cell when hit by a fission fragment, and propose a new type cell oriented preamplifier of voltage, with which we can use a cell up to 10 cm 2 , and obtain a time resolution better than 16 ns [fr
International Nuclear Information System (INIS)
Montoya, M.; Rojas, J.; Lobato, I.
2010-01-01
The average of fragment kinetic energy (E-bar sign*) and the multiplicity of prompt neutrons (ν(bar sign)) as a function of fragment mass (m*), as well as the fragment mass yield (Y(m*)) from thermal neutron-induced fission of 239 Pu have been measured by Tsuchiya et al.. In that work the mass and kinetic energy are calculated from the measured kinetic energy of one fragment and the difference of time of flight of the two complementary fragments. However they do not present their results about the standard deviation σ E *(m*). In this work we have made a numerical simulation of that experiment which reproduces its results, assuming an initial distribution of the primary fragment kinetic energy (E(A)) with a constant value of the standard deviation as function of fragment mass (σ E (A)). As a result of the simulation we obtain the dependence σ E *(m*) which presents an enhancement between m* = 92 and m* = 110, and a peak at m* = 121.
International Nuclear Information System (INIS)
Volkov, N.G.; Emel'yanov, V.M.; Krajnov, V.P.
1979-01-01
In a statistical fission model calculated are charge distributions of fission fragments (CDFF) of a 236 U* nucleus and their dispersions as the functions of excitation energy and angular momentum (AM) of a compound nucleus as well as the effect of one-particle potential parameter on CDFF. The potential of two-center oscillator was choosen as the one-particle potential. The function of fissioning nucleus level density, which is necessary for calculations in the statistical approach, has been determined from one-particle spectrum. The scheme of calculations is realized with a computer. Presented are the results of calculating the dependence of a neutron gap size on nuclear temperature for various projections of total AM; CDFF for different values of E* excitation energy of AM projection and others. Calculated CDFF and experimental data were compared. Notwithstanding the availability of many parameters and a large volume of numerical calculations the model under consideration permits to describe many common regularities of heavy nucleus CDFF (experimental yields of charges, dispersion dependence on excitation energies and masses of nuclear fragments)
Studies of fission fragment yields via high-resolution γ-ray spectroscopy
Wilson, J. N.; Lebois, M.; Qi, L.; Amador-Celdran, P.; Bleuel, D.; Briz, J. A.; Carroll, R.; Catford, W.; Witte, H. De; Doherty, D. T.; Eloirdi, R.; Georgiev, G.; Gottardo, A.; Goasduff, A.; Hadyñska-Klek, K.; Hauschild, K.; Hess, H.; Ingeberg, V.; Konstantinopoulos, T.; Ljungvall, J.; Lopez-Martens, A.; Lorusso, G.; Lozeva, R.; Lutter, R.; Marini, P.; Matea, I.; Materna, T.; Mathieu, L.; Oberstedt, A.; Oberstedt, S.; Panebianco, S.; Podolyak, Zs.; Porta, A.; Regan, P. H.; Reiter, P.; Rezynkina, K.; Rose, S. J.; Sahin, E.; Seidlitz, M.; Serot, O.; Shearman, R.; Siebeck, B.; Siem, S.; Smith, A. G.; Tveten, G. M.; Verney, D.; Warr, N.; Zeiser, F.; Zielinska, M.
2018-03-01
Precise spectroscopic information on the fast neutron induced fission of the 238U(n,f) reaction was recently gained using a new technique which involved coupling of the Miniball high resolution y-ray spectrometer and the LICORNE directional neutron source. The experiment allowed measurement of the isotopic fission yields for around 40 even-even nuclei at an incident neutron energy of around 2 MeV where yield data are very sparse. In addition spectroscopic information on very neutron-rich fission products was obtained. Results were compared to models, both the JEFF-3.1.1 data base and the GEF code, and large discrepancies for the S1 fission mode in the Sn/Mo isotope pair were discovered. This suggests that current models are overestimating the role played by spherical shell effects in fast neutron induced fission. In late 2017 and 2018 the nu-ball hybrid spectrometer will be constructed at the IPN Orsay to perform further experimental investigations with directional neutrons coupled to a powerful hybrid Ge/LaBr3 detector array. This will open up new possibilities for measurements of fission yields for fast-neutron-induced fission using the spectroscopic technique and will be complimentary to other methods being developed.
Studies of fission fragment yields via high-resolution γ-ray spectroscopy
Directory of Open Access Journals (Sweden)
Wilson J.N.
2018-01-01
Full Text Available Precise spectroscopic information on the fast neutron induced fission of the 238U(n,f reaction was recently gained using a new technique which involved coupling of the Miniball high resolution y-ray spectrometer and the LICORNE directional neutron source. The experiment allowed measurement of the isotopic fission yields for around 40 even-even nuclei at an incident neutron energy of around 2 MeV where yield data are very sparse. In addition spectroscopic information on very neutron-rich fission products was obtained. Results were compared to models, both the JEFF-3.1.1 data base and the GEF code, and large discrepancies for the S1 fission mode in the Sn/Mo isotope pair were discovered. This suggests that current models are overestimating the role played by spherical shell effects in fast neutron induced fission. In late 2017 and 2018 the nu-ball hybrid spectrometer will be constructed at the IPN Orsay to perform further experimental investigations with directional neutrons coupled to a powerful hybrid Ge/LaBr3 detector array. This will open up new possibilities for measurements of fission yields for fast-neutron-induced fission using the spectroscopic technique and will be complimentary to other methods being developed.
International Nuclear Information System (INIS)
Harrison, K.G.; Hancock, I.B.; Holt, P.D.; Wylie, J.W.
1977-10-01
A new type of personal neutron dosimeter, in which neutron-induced fissions in a thin 237 Np foil are detected by a polycarbonate track-detector, is under development at Harwell for use in a nuclear-fuel reprocessing plant. As part of the development programme, an experimental dosimeter, etching facility and spark counter have been used to study the spark-counting method for counting fission-fragment tracks in polycarbonate. Emphasis has been placed on developing operating procedures for the counter consistent with good overall reproducibility. Existing methods for the optimizing and testing of spark counters is briefly reviewed and a practical operational testing procedure is devised. The optimized system is found to be relatively foolproof in operation and gives good results in unskilled use as well as under carefully-controlled laboratory conditions. (author)
Fission Fragment Angular Distributions in the $^{234}$U(n,f) and $^{236}$U(n,f) reactions
We propose to measure the fission fragment angular distribution (FFAD) of the $^{234}$U(n,f) and $^{236}$U (n,f) reactions with the PPAC detection setup used in previous n_TOF-14 experiment. This experiment would take advantage of the high resolution of the n_TOF facility to investigate the FFAD behaviour in the pronounced vibrational resonances that have been observed between 0.1 and 2 MeV for the thorium cycle isotopes. In addition, the angular distribution of these isotopes will be measured for the first time beyond 14 MeV. Furthermore, the experiment will also provide the fission cross section with reduced statistical uncertainty, extending the $^{236}$U(n,f) data up to 1 GeV
Automatic counting of fission fragments tracks using the gas permeation technique
Yamazaki, I M
1999-01-01
An automatic counting system for fission tracks induced in a polycarbonate plastic Makrofol KG (10 mu m thickness) is described. The method is based on the gas transport mechanism proposed by Knudsen, where the gas permeability for a porous membrane is expected to be directly related to its track density. In this work, nitrogen permeabilities for several Makrofol films, with different fission track densities, have been measured using an adequate gas permeation system. The fission tracks were produced by irradiating Makrofol foils with a 252Cf calibrated source in a 2 pi geometry. A calibration curve fission track number versus nitrogen permeability has been obtained, for track densities higher than 1000/cm sup 2 , where the spark gap technique and the visual methods employing a microscope, are not appropriate for track counting.
Magnetic anisotropy of [Mo(CN)7]4- anions and fragments of cyano-bridged magnetic networks.
Chibotaru, Liviu F; Hendrickx, Marc F A; Clima, Sergiu; Larionova, Joulia; Ceulemans, Arnout
2005-08-18
Quantum chemistry calculations of CASSCF/CASPT2 level together with ligand field analysis are used for the investigation of magnetic anisotropy of [Mo(CN)7]4- complexes. We have considered three types of heptacyano environments: two ideal geometries, a pentagonal bipyramid and a capped trigonal prism, and the heptacyanomolybdate fragment of the cyano-bridged magnetic network K2[Mn(H2O)2]3[Mo(CN)7]2.6H2O. At all geometries the first excited Kramers doublet is found remarkably close to the ground one due to a small orbital energy gap in the ligand field spectrum, which ranges between a maximal value in the capped trigonal prism (800 cm(-1)) and zero in the pentagonal bipyramid. The small value of this gap explains (i) the axial form of the g tensor and (ii) the strong magnetic anisotropy even in strongly distorted complexes. Comparison with available experimental data for the g tensor of the mononuclear precursors reveals good agreement with the present calculations for the capped trigonal prismatic complex and a significant discrepancy for the pentagonal bipyramidal one. The calculations for the heptacyanomolybdate fragment of K2[Mn(H2O)2]3[Mo(CN)7]2.6H2O give g(perpendicular)/g(parallel) approximately 0.5 and the orientation of the local anisotropy axis close to the symmetry axis of an idealized pentagonal bipyramid. These findings are expected to be important for the understanding of the magnetism of anisotropic Mo(III)-Mn(II) cyano-bridged networks based on the [Mo(CN)7]4- building block.
International Nuclear Information System (INIS)
Montoya, M.; Rojas, J.; Lobato, I.
2008-01-01
The standard deviation of the final kinetic energy distribution (σ e ) as a function of mass of final fragments (m) from low energy fission of 234 U, measured with the Lohengrin spectrometer by Belhafaf et al., presents a peak around m = 109 and another around m = 122. The authors attribute the first peak to the evaporation of a large number of neutrons around the corresponding mass number, i.e. there is no peak on the standard deviation of the primary kinetic energy distribution (σ E ) as a function of primary fragment mass (A). The second peak is attributed to a real peak on σ E (A). However, theoretical calculations related to primary distributions made by H.R. Faust and Z. Bao do not suggest any peak on σ E (A). In order to clarify this apparent controversy, we have made a numerical experiment in which the masses and the kinetic energy of final fragments are calculated, assuming an initial distribution of the kinetic energy without structures on the standard deviation as function of fragment mass. As a result we obtain a pronounced peak on σ e (m) curve around m = 109, a depletion from m = 121 to m = 129, and an small peak around m = 122, which is not as great as that measured by Belhafaf et al. Our simulation also reproduces the experimental results on the yield of the final mass Y(m), the average number of emitted neutrons as a function of the provisional mass (calculated from the values of the final kinetic energy of the complementary fragments) and the average value of fragment kinetic energy as a function of the final mass. From our results we conclude that there are no peaks on the σ E (A) curve, and the observed peaks on σ e (m) are due to the emitted neutron multiplicity and the variation of the average fragment kinetic energy as a function of primary fragment mass. (Author)
International Nuclear Information System (INIS)
Singh, V.P.; Sharma, A.P.
1982-01-01
The effect of etchant concentration and temperature on track revelation properties of soda glass detectors has been studied. Etch rate ratio, maximum observable diameter and the energy resolution of the fission fragment tracks of 252 Cf in glasses are increased when the samples are etched in 1.25 vol% HF as compared to higher concentrations of HF and other etching solutions. The critical angle of etching is found to decrease with decrease in etchant concentration. The activation energies for bulk etching and track etching have also been estimated. Better results were obtained by using lower etching temperatures. (author)
Energy Technology Data Exchange (ETDEWEB)
Ibrahim, F
2005-06-15
The study of nuclei far from stability is constitutive of the history of nuclear physics at its very beginning and has been making considerable great strides since then. The study of these nuclei give the opportunity to reach new information on the nuclear structure and thus to measure the solidity of our knowledge on nuclear matter and its validity when it is pushed to its limits. The reaction selected for the production of exotic nuclei in the framework of the PARRNe program is the fission of uranium 238. The nuclei produced have an intermediate mass and are very rich in neutrons. The technique to recover them in order to accelerate them is the thick target method called also the Isol technique. The installation of the ancient Lep injector at the Tandem line in Orsay (IPN) is expected to increase by a factor 100 the production rate of exotic nuclei in the PARRNe program, it is the Alto project. The work presented here concerns studies carried out at the Lohengrin spectrometer installed at the ILL in Grenoble, and at the Tandem installation in Orsay. This document is divided into 4 parts: 1) in flight techniques at Lohengrin, 2) the Isol technique, 3) magic numbers in the domain N=50, and 4) the Alto project.
International Nuclear Information System (INIS)
Vaz, L.C.; Alexander, J.M.
1983-01-01
Fission angular distributions have been studied for years and have been treated as classic examples of transition-state theory. Early work involving composite nuclei of relatively low excitation energy Esup(*) ( 2 0 (K 2 0 = Psub(eff)T/(h/2π) 2 ) are presented along with comparissons of Psub(eff) to moments of inertia for saddle-point nuclei from the rotating liquid drop model. This model gives an excellent guide for the intermediate spin zone (30 < or approx. I < or approx. 65), while strong shell and/or pairing effects are evident for excitations less than < or approx. 35 MeV. Observations of strong anisotropies for very high-spin systems signal the demise of certain approximations commonly made in the theory, and suggestions are made toward this end. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Dawson, J K; Moseley, F [AERE, Harwell (United Kingdom)
1960-07-15
Some reactor design considerations of the use of fission recoil fragment energy for the production of chemicals of industrial importance have been discussed previously in a paper given at the Second United Nations International Conference on the Peaceful Uses of Atomic Energy [A/Conf. 15/P.76]. The present paper summarizes more recent progress made on this topic at AERE, Harwell. The range-energy relationship for fission fragments is discussed in the context of the choice of fuel system for a chemical production reactor, and the experimental observation of a variation of chemical effect along the length of a fission fragment track is described for the irradiation of nitrogen-oxygen mixtures. Recent results are given on the effect of fission fragments on carbon monoxide-hydrogen gas mixtures and on water vapour. No system investigated to date shows any outstanding promise for large-scale chemical production. (author) [French] En ce qui concerne la construction de reacteurs, certaines considerations relatives a l'emploi de l'energie des fragments de fission de recul pour la production de certaines substances chimiques d'importance industrielle ont deja ete examinees dans un memoire soumis a la deuxieme Conference internationale sur l'utilisation de l'energie atomique a des fins pacifiques [A/Conf. 15/PP. 76]. Le present memoire donne un apercu des progres accomplis depuis lors dans ce domaine par 1'Atomic Energy Research Establishment a Harwell. Les auteurs etudient la relation entre le parcours et l'energie pour des fragments de fission a propos du choix du combustible pour un reacteur destine a la production de substances chimiques; ils decrivent aussi une variation d'effet chimique observee le long de la trajectoire d'un fragment de fission pendant l'irradiation de melanges azote-oxygene. Les auteurs fournissent les resultats de recherches recentes relatives a l'effet des fragments de fission sur des melanges oxyde de carbone-hydrogen e et sur la vapeur d
Fission-fragment attachment to aerosols and their transport through capillary tubes
International Nuclear Information System (INIS)
Novick, V.J.; Alvarez, J.L.; Greenwood, R.C.
1981-01-01
The transport of radioactive aerosols was studied using equipment, collectively called the Helium jet, that has been constructed to provide basic nuclear physics data on fission product nuclides. The transport of the fission products in the system depends on their attachment to aerosol particles. The system consists of 1) a tube furnace which generates aerosols by the sublimation or evaporation of source material, 2) a helium stream used to transport the aerosols, 3) a 25 m settling tube to eliminate the larger aerosols and smaller aerosols that would deposit in the capillary, 4) a Californium-252 self-fissioning source of fission product nuclides, and 5) a small capillary to carry the radioactive aerosols from the hot cell to the laboratory. Different source materials were aerosolized but NaCl is generally used because it yielded the highest transport efficiencies through the capillary. Particle size measurments were made with NaCl aerosols by using a cascade impactor, an optical light scattering device, and the capillary itself as a diffusion battery by performing radiation measurements and/or electrical conductivity measurements. Both radioactive and nonradioactive aerosols were measured in order to investigate the possibility of a preferential size range for fission product attachment. The measured size distributions were then used to calculate attachment coefficients and finally an attachment time
Pereira, J; Wlazlo, W; Benlliure, J; Casarejos, E; Armbruster, P; Bernas, M; Enqvist, T; Legrain, R; Leray, S; Rejmund, F; Mustapha, B; Schmidt, K.-H; Stéphan, C; Taïeb, J; Tassan-Got, L; Volant, C; Boudard, A; Czajkowski, S; 10.1103/PhysRevC.75.014602
2007-01-01
Fission fragments of 1A GeV 238U nuclei interacting with a deuterium target have been investigatedwith the Fragment Separator (FRS) at GSI (Darmstadt) by measuring their isotopicproduction cross-sections and recoil velocities. The results, along with those obtained recently forspallation-evaporation fragments, provide a comprehensive analysis of the spallation nuclear productionsin the reaction 238U(1A GeV)+d. Details about experiment performance, data reductionand results will be presented.
Paul, D; Sastri, R C; Ghose, D
1999-01-01
The SSNTD has come a long way in its application for the study of nuclear phenomena. Spontaneous fission of transuranic elements is one such phenomena wherein use of SSNTD offers easy registration of the signature of the fission fragments. The object of the present study is to explore whether any one of the track parameters such as the diameter can be used to estimate the atomic mass ratios of the spontaneous fission fragments. The spontaneous fission data from sup 2 sup 5 sup 2 Cf recorded almost at the end of one and four half-life periods for alpha decay are analysed, taking a plot of the number of tracks versus the track diameter. From these plots it is seen that initially, when significant alpha activity of sup 2 sup 5 sup 2 Cf persists, the fission fragments appear to cluster into two predominant groups as indicated by two peaks. The ratio of the diameters at these peak positions appear to be related to the ratio of average mass numbers of the light and heavy groups of fission fragments. However, absenc...
International Nuclear Information System (INIS)
Katsuma, Masahiko; Kobayashi, Hiroshi; Sawada, Tetsuo; Sasa, Toshinobu
2005-01-01
The 1 GeV proton induced reaction on 208 Pb targets is analyzed by using the percolation model combined with the Atchison fission model. The fragment mass distribution and the isotopic production cross sections obtained from our model are compared with the experimental data. The trends of the fragment mass distribution for the 1 GeV proton induced reaction can be reproduced by our calculation in some degree. The order of magnitude for the calculated isotopic production cross sections at the calculated peak positions is similar to that of the experimental peak values. The calculated peak positions of the isotopic production cross sections are shifted to the heavier region than those of the experimental data. (author)
Pandey, Naresh; Nobles, Christopher L; Zechiedrich, Lynn; Maresso, Anthony W; Silberg, Jonathan J
2015-05-15
Gene fission can convert monomeric proteins into two-piece catalysts, reporters, and transcription factors for systems and synthetic biology. However, some proteins can be challenging to fragment without disrupting function, such as near-infrared fluorescent protein (IFP). We describe a directed evolution strategy that can overcome this challenge by randomly fragmenting proteins and concomitantly fusing the protein fragments to pairs of proteins or peptides that associate. We used this method to create libraries that express fragmented IFP as fusions to a pair of associating peptides (IAAL-E3 and IAAL-K3) and proteins (CheA and CheY) and screened for fragmented IFP with detectable near-infrared fluorescence. Thirteen novel fragmented IFPs were identified, all of which arose from backbone fission proximal to the interdomain linker. Either the IAAL-E3 and IAAL-K3 peptides or CheA and CheY proteins could assist with IFP fragment complementation, although the IAAL-E3 and IAAL-K3 peptides consistently yielded higher fluorescence. These results demonstrate how random gene fission can be coupled to rational gene fusion to create libraries enriched in fragmented proteins with AND gate logic that is dependent upon a protein-protein interaction, and they suggest that these near-infrared fluorescent protein fragments will be suitable as reporters for pairs of promoters and protein-protein interactions within whole animals.
Energy Technology Data Exchange (ETDEWEB)
Enquist, T.; Benlliure, J.; Farget, F.; Schmidt, K.H.; Armbruster, P. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Bernas, M.; Tassan-Got, L. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Boudard, A.; Legrain, R.; Volant, C. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de Physique des Particules, de Physique Nucleaire et de l`Instrumentation Associee (DAPNIA); Boeckstiegel, C.; Jong, M. de [Technische Univ. Darmstadt (Germany); Dufour, J.P. [CEA Centre d`Etudes Nucleaires de Bordeaux-Gradignan, 33 - Gradignan (France)
1999-03-01
Projectile fragmentation and fission, induced in collisions of {sup 238}U at 1 A GeV with lead, have systematically been studied. A complete survey on the isotopic production cross sections of all elements between vanadium (Z = 23) and rhenium (Z = 75) down to a cross section of 0.1 mb is given. About 600 isotopes produced in fragmentation and about 600 isotopes produced in fission were identified in the GSI fragment separator FRS from magnetic rigidities, time-of-flight values, and the energy loss in an ionisation chamber. In addition, the velocity distributions of all these reaction products have been mapped, and the products are unambiguously attributed to the different reaction mechanisms due to their kinematical properties. The results are compared with empirical systematics and previous data. The velocity of the fragments obtained in the fission process by the Coulomb repulsion allows to reconstruct the TKE-value of the break-up and to identify the atomic number of the fissioning nucleus in hot fission. The mean velocities of light projectile fragments were found to be higher than the beam velocity. (orig.) 41 refs.
International Nuclear Information System (INIS)
Enqvist, T.; Benlliure, J.; Farget, F.; Schmidt, K.H.; Armbruster, P.; Bernas, M.; Tassan-Got, L.; Boeckstiegel, C.; Jong, M. de; Dufour, J.P.
1999-03-01
Projectile fragmentation and fission, induced in collisions of 238 U at 1 A GeV with lead, have systematically been studied. A complete survey on the isotopic production cross sections of all elements between vanadium (Z = 23) and rhenium (Z = 75) down to a cross section of 0.1 mb is given. About 600 isotopes produced in fragmentation and about 600 isotopes produced in fission were identified in the GSI fragment separator FRS from magnetic rigidities, time-of-flight values, and the energy loss in an ionisation chamber. In addition, the velocity distributions of all these reaction products have been mapped, and the products are unambiguously attributed to the different reaction mechanisms due to their kinematical properties. The results are compared with empirical systematics and previous data. The velocity of the fragments obtained in the fission process by the Coulomb repulsion allows to reconstruct the TKE-value of the break-up and to identify the atomic number of the fissioning nucleus in hot fission. The mean velocities of light projectile fragments were found to be higher than the beam velocity. (orig.)
Nolen, J A; Hassanein, A; Novick, V J; Plotkin, P; Specht, J R
2003-01-01
The driver linac of the proposed rare isotope accelerator facility is designed to deliver 2x10 sup 1 sup 3 uranium ions per second at 400 MeV/u on target for radionuclide production via the fission and fragmentation mechanisms. The ion optics of the large acceptance, high-resolution fragment separators that follow the production target require primary beam spot widths of 1 mm. To cope with the resulting high power densities, windowless liquid lithium targets are being developed. The present designs build on existing experience with liquid lithium and liquid sodium systems that have been used for fusion and fission applications. However, no completely windowless systems have been developed or tested to date. For the beam power indicated above (400 kW), the flow requirements are up to about 20 m/s and 10 l/s linear and volume flow rates, respectively. The required target thickness is 1-1.5 g/cm sup 2 (2-3 cm lithium thickness). At this time a prototype windowless system with a lithium thickness of 1-2 cm is und...
Choice of initial conditions in dynamical calculations of distributions of nuclear fission fragments
International Nuclear Information System (INIS)
Kosenko, G.I.
1993-01-01
The distribution function in the coordinates and momenta for a fissioning system traversing a barrier is determined in terms of Langevin fluctuation-dissipation dynamics. It is shown that this distribution is best described by the Kramers distribution. The equilibrium distribution can be used as the initial condition, provided that the system is in the overdamping regime. 28 refs., 5 figs., 3 tabs
International Nuclear Information System (INIS)
Karamyan, S.A.; Adam, J.; Belov, A.G.; Chaloun, P.; Norseev, Yu.V.; Stegajlov, V.I.
1997-01-01
Fission-fragment mass distribution has been measured by the cumulative yields of radionuclides detected in the 232 Th(γ,f)-reaction at the Bremsstrahlung endpoint energies of 12 and 24 MeV. The yield upper limits have been estimated for the light nuclei 24 Na, 28 Mg, 38 S etc. at the Th and Ta targets exposure to the 24 MeV Bremsstrahlung. The results are discussed in terms of the multimodal fission phenomena and cluster emission >from a deformed fissioning system or from a compound nucleus
International Nuclear Information System (INIS)
Varapai, N.
2006-12-01
The present work demonstrates the application of the digital technique for nuclear measurements. This new technique is based on the digitalization of the signals from the detectors and has several advantages. This technique allows us to extract the maximum amount of information contained in the signal shape. In the case of an ionization chamber this signal contains the necessary information on the particle kinetic energy, emission angle and mass. This method has been implemented for measurements of promptly emitted fission neutrons in coincidence with fission fragments from 252 Cf(sf). A double Frisch-grid ionization chamber is used as fission fragment detector. The promptly emitted neutrons are detected by a NE213 liquid scintillation detector. This work displays how delicate analysis of the digitalized signals permitted us to infer the mass and kinetic energy distributions of the fission fragments as well as the neutron energy spectrum and multiplicity. The outline of this thesis is as follows: Chapter 2 gives an overview of the experimental tools used in this work. Chapter 3 explains the analysis procedure of the digitalized anode signal from an ionization chamber. Chapter 4 gives a detailed explanation of the analysis procedure of the digitalized signal from a neutron detector. In Chapter 5 the analysis procedure of the fission fragment events in coincidence with neutrons is given
Energy Technology Data Exchange (ETDEWEB)
Zhao, Yunmei [Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433 (China); Ding, Shurong, E-mail: dsr1971@163.com [Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433 (China); Zhang, Xunchao; Wang, Canglong; Yang, Lei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)
2016-12-15
The micro-scale finite element models for CERCER pellets with different-sized fuel particles are developed. With consideration of a grain-scale mechanistic irradiation swelling model in the fuel particles and the irradiation creep in the matrix, numerical simulations are performed to explore the effects of the particle size and the fission-fragment-enhanced irradiation creep on the thermo-mechanical behavior of CERCER pellets. The enhanced irradiation creep effect is applied in the 10 μm-thick fission fragment damage matrix layer surrounding the fuel particles. The obtained results indicate that (1) lower maximum temperature occurs in the cases with smaller-sized particles, and the effects of particle size on the mechanical behavior in pellets are intricate; (2) the first principal stress and radial axial stress remain compressive in the fission fragment damage layer at higher burnup, thus the mechanism of radial cracking found in the experiment can be better explained. - Highlights: • A grain-scale gas swelling model considering the development of recrystallization and resolution is adopted for particles. • The influence of fission-gas-induced porosity is considered in the constitutive relations for particles. • A simulation method is developed for the multi-scale thermo-mechanical behavior. • The effects of fuel particle size and fission-fragment-enhanced irradiation creep are investigated in pellets.
Ingle, Rebecca A; Karsili, Tolga N V; Dennis, Gregg J; Staniforth, Michael; Stavros, Vasilios G; Ashfold, Michael N R
2016-04-28
H atom loss following near ultraviolet photoexcitation of gas phase 2-thiophenethiol molecules has been studied experimentally, by photofragment translational spectroscopy (PTS) methods, and computationally, by ab initio electronic structure calculations. The long wavelength (277.5 ≥ λ(phot) ≥ 240 nm) PTS data are consistent with S-H bond fission after population of the first (1)πσ* state. The partner thiophenethiyl (R) radicals are formed predominantly in their first excited Ã(2)A' state, but assignment of a weak signal attributable to H + R(X˜(2)A'') products allows determination of the S-H bond strength, D0 = 27,800 ± 100 cm(-1) and the Ã-X˜ state splitting in the thiophenethiyl radical (ΔE = 3580 ± 100 cm(-1)). The deduced population inversion between the Ã and X˜ states of the radical reflects the non-planar ground state geometry (wherein the S-H bond is directed near orthogonal to the ring plane) which, post-photoexcitation, is unable to planarise sufficiently prior to bond fission. This dictates that the dissociating molecules follow the adiabatic fragmentation pathway to electronically excited radical products. π* ← π absorption dominates at shorter excitation wavelengths. Coupling to the same (1)πσ* potential energy surface (PES) remains the dominant dissociation route, but a minor yield of H atoms attributable to a rival fragmentation pathway is identified. These products are deduced to arise via unimolecular decay following internal conversion to the ground (S0) state PES via a conical intersection accessed by intra-ring C-S bond extension. The measured translational energy disposal shows a more striking change once λ(phot) ≤ 220 nm. Once again, however, the dominant decay pathway is deduced to be S-H bond fission following coupling to the (1)πσ* PES but, in this case, many of the evolving molecules are deduced to have sufficiently near-planar geometries to allow passage through the conical intersection at extended S-H bond
A method for prediction of prompt fission neutron spectra
International Nuclear Information System (INIS)
Grashin, A.F.; Lepeshkin, M.V.
1988-01-01
Three-parameter formula for the prompt-fission-neutron integral spectrum is derived from a thermodynamical model. Two parameters, scission-neutron weight p = 11 % and anisotropy factor for accelerated fragments b = 10 %, are determined from experimental data, the same values being assumed for any type of fission. The thermodynamical theory provides the value of the third parameter, temperature τ, thus prognozing neutron spectrum and average energy with an error about 1 %. (author)
Energy Technology Data Exchange (ETDEWEB)
Montoya, M.; Rojas, J. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, Lima 41 (Peru); Lobato, I. [Facultad de Ciencias, Universidad Nacional de Ingenieria, Av. Tupac Amaru 210, Apartado Postal 31-139, Lima (Peru)]. e-mail: mmontoya@ipen.gob.pe
2008-07-01
The standard deviation of the final kinetic energy distribution ({sigma}{sub e}) as a function of mass of final fragments (m) from low energy fission of {sup 234}U, measured with the Lohengrin spectrometer by Belhafaf et al., presents a peak around m = 109 and another around m = 122. The authors attribute the first peak to the evaporation of a large number of neutrons around the corresponding mass number, i.e. there is no peak on the standard deviation of the primary kinetic energy distribution ({sigma}{sub E}) as a function of primary fragment mass (A). The second peak is attributed to a real peak on {sigma}{sub E}(A). However, theoretical calculations related to primary distributions made by H.R. Faust and Z. Bao do not suggest any peak on {sigma}{sub E}(A). In order to clarify this apparent controversy, we have made a numerical experiment in which the masses and the kinetic energy of final fragments are calculated, assuming an initial distribution of the kinetic energy without structures on the standard deviation as function of fragment mass. As a result we obtain a pronounced peak on {sigma}{sub e} (m) curve around m = 109, a depletion from m = 121 to m = 129, and an small peak around m = 122, which is not as great as that measured by Belhafaf et al. Our simulation also reproduces the experimental results on the yield of the final mass Y(m), the average number of emitted neutrons as a function of the provisional mass (calculated from the values of the final kinetic energy of the complementary fragments) and the average value of fragment kinetic energy as a function of the final mass. From our results we conclude that there are no peaks on the {sigma}{sub E} (A) curve, and the observed peaks on {sigma}{sub e} (m) are due to the emitted neutron multiplicity and the variation of the average fragment kinetic energy as a function of primary fragment mass. (Author)
Angular distribution of oriented nucleus fission neutrons
International Nuclear Information System (INIS)
Barabanov, A.L.; Grechukhin, D.P.
1982-01-01
Calculations of anisotropy of angular distribution of oriented 235 U nuclei thermal fission neutrons have been carried out. the neutrons were assumed to evaporate isotropically by completely accelerated fragements in the fragment system with only its small part, i. e. fission-producing neutrons, emitted at the moment of neck break. It has been found out that at low energies of neutrons Esub(n)=1-2 MeV the sensitivity of the angular distribution anisotropy to variations of spectrum of neutron evaporation from fragments and the magnitude of a share of fission-producing neutrons reaches approximately 100%, which at high energies, Esub(n) > 5 MeV it does not exceed approximately 20%. Therefore the angular distribution of fast neutrons to a greater degree of confidence may be used for restoring the angular distribution anisotropy of fragments while the angular distribution of low energy neutrons may be used for deriving information on the fission process, but only in case 6f the experiment accuracy is better than approximately 3%
Directory of Open Access Journals (Sweden)
Carjan Nicolae
2017-01-01
Full Text Available Prompt fission neutrons (PFN angular and energy distributions for the reaction 235U(nth,f are calculated as a function of the mass asymmetry of the fission fragments using two extreme assumptions: 1 PFN are released during the neck rupture due to the diabatic coupling between the neutron degree of freedom and the rapidly changing neutron-nucleus potential. These unbound neutrons are faster than the separation of the nascent fragments and most of them leave the fissioning system in few 10−21 sec. i.e., at the begining of the acceleration phase. Surrounding the fissioning nucleus by a sphere one can calculate the radial component of the neutron current density. Its time integral gives the angular distribution with respect to the fission axis. The average energy of each emitted neutron is also calculated using the unbound part of each neutron wave packet. The distribution of these average energies gives the general trends of the PFN spectrum: the slope, the range and the average value. 2 PFN are evaporated from fully accelerated, fully equilibrated fission fragments. To follow the de-excitation of these fragments via neutron and γ-ray sequential emissions, a Monte Carlo sampling of the initial conditions and a Hauser-Feshbach statistical approach is used. Recording at each step the emission probability, the energy and the angle of each evaporated neutron one can construct the PFN energy and the PFN angular distribution in the laboratory system. The predictions of these two methods are finally compared with recent experimental results obtained for a given fragment mass ratio.
International Nuclear Information System (INIS)
Thackray, M.
1973-01-01
A method is described for reproducing a photographic image on a normally non-photo-receptive surface comprising the steps of: 1) toning the photograph with substances which combine with or replace the silver grains so that the photograph emits either spontaneously or indirectly fission fragments or alpha particles in amounts related to the distribution of the silver grains in the photograph; 2) placing the toned photograph contiguous with the surface on which the image is to be reproduced, for sufficient time for the emissions from the photograph to reproduce the image as a radiation-damage image on the surface, the damage areas having a close positional relationship to the silver grains in the original photograph. (author)
International Nuclear Information System (INIS)
Thackray, M.
1976-01-01
A method is described for producing a photographic image on a normally non-photo-receptive surface comprising the steps of 1) toning the photograph with substances which combine with or replace the silver grains so that the photograph emits either spontaneously or indirectly fission fragments or alpha particles in amounts related to the distribution of the silver grains in the photograph, 2) placing the toned photograph contiguous with the surface on which the image is to be reproduced, for sufficient time for the emissions from the photograph to reproduce the image as a radiation-damage image on the surface, the damage areas having a close positional relationship to the silver grains in the original photograph. (author)
Directory of Open Access Journals (Sweden)
Porta A.
2016-01-01
Full Text Available Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland using Total Absorption Spectroscopy (TAS. TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.
Directory of Open Access Journals (Sweden)
K. Nishio
2015-09-01
Full Text Available Mass distributions of fission fragments from the compound nuclei 180Hg and 190Hg formed in fusion reactions 36Ar + 144Sm and 36Ar + 154Sm, respectively, were measured at initial excitation energies of E⁎(Hg180=33–66 MeV and E⁎(Hg190=48–71 MeV. In the fission of 180Hg, the mass spectra were well reproduced by assuming only an asymmetric-mass division, with most probable light and heavy fragment masses A¯L/A¯H=79/101. The mass asymmetry for 180Hg agrees well with that obtained in the low-energy β+/EC-delayed fission of 180Tl, from our earlier ISOLDE(CERN experiment. Fission of 190Hg is found to proceed in a similar way, delivering the mass asymmetry of A¯L/A¯H=83/107, throughout the measured excitation energy range. The persistence as a function of excitation energy of the mass-asymmetric fission for both proton-rich Hg isotopes gives strong evidence for the survival of microscopic effects up to effective excitation energies of compound nuclei as high as 40 MeV. This behavior is different from fission of actinide nuclei and heavier mercury isotope 198Hg.
International Nuclear Information System (INIS)
Val'skij, G.V.; Zvezdkina, T.K.; Nikolaev, D.V.; Petrova, V.I.; Petrov, G.A.; Petukhov, A.K.; Pleva, Yu.S.; Tyukavin, V.A.
1982-01-01
Asymmetry violating parity in the fragment emission from fission of 239 Pu induced by polarized neutrons at six energy points in the interval 0.01 <= E <0.3 eV was measured. The results providing with an evidence in favour of the hypothesis that the asymmetry is independent on energy are discussed in view of the existing theoretical picture
Four lectures on fission. Fragments of a dynamic theory of collective motion in nuclei
International Nuclear Information System (INIS)
Pauli, H.C.
1975-01-01
It is dared to try an accumulative, however, not complete presentation of the phenomenological, collective model, with a special emphasis on fission. The various phenomenological approaches are discussed and some of them are presented in detail together with a comparison to experimental data. To the extent we know how to treat them, the dynamical aspects are stressed and reviewed. A natural definition of shape degrees of freedom in terms of density moments is suggested, without using them in detail. Last but not least we suggest to interpret collective variables as being ''time-like'' and not ''space-like'', as implied by the generator coordinate method, in the sense that they are not redundant coordinates, but rather clocks for the time. In the framework of time-dependent Hartree-Fock theory, we are able to define unambiguously a collective and a potential energy. The formalism is preliminary and unmatured, but links to classical principles do not seem unlikely. (author)
Final report: Accelerated beta decay for disposal of fission fragment wastes
International Nuclear Information System (INIS)
Reiss, Howard R.
2000-01-01
The fundamental theory of the interaction of intense, low-frequency electromagnetic fields with certain radioactive nuclei has been fully formulated. The nuclei are of the type that exists in high-level radioactive wastes that are end products of the production of energy from nuclear fission. The basic physical mechanisms that underlie the coupling of the applied field to the nucleus have been identified. Both the basic theory and numerical predictions that stem from it support the conclusion that high-level radioactive wastes can be disposed of by substantially accelerating the rate of radioactive decay. Some old experiments on the acceleration of this type of radioactivity, with results that were not understood at the time, have been re-examined. Their interpretation is now clear, and the experiments are found to be in agreement with the theory
Fragment angular momentum and descent dynamics in {sup 252}Cf spontaneous fission
Energy Technology Data Exchange (ETDEWEB)
Popeko, G.S.; Ter-Akopian, G.M.; Daniel, A.V.; Oganessian, Y.T.; Kliman, J. [JINR, Dubna, 141980 (Russia); Ter-Akopian, G.M.; Hamilton, J.H.; Kormicki, J.; Daniel, A.V.; Ramayya, A.V.; Hwang, J.K.; Sandulescu, A.; Florescu, A.; Greiner, W. [Vanderbilt University, Nashville, Tennessee 37235 (United States); Ter-Akopian, G.M.; Daniel, A.V.; Florescu, A.; Greiner, W. [JIHIR, Oak Ridge, Tennessee 37831 (United States); Greiner, W. [ITP, J.W. Goethe University, D-60054, Frankfurt am Main (Germany); Florescu, A. [IAP, Bucharest, P.O. Box MG-6, (Russian Federation); Kliman, J.; Morhac, M. [IP SASc, Bratislava (Slovak Republic); Rasmussen, J.O. [LBNL, Berkeley, California 94720 (United States); Stoyer, M.A. [LLNL, Livermore , California 94550 (United States); Cole, J.D. [INEL, Idaho Falls, Idaho 83415 (United States)
1998-12-01
Fragment angular momenta as a function of neutron multiplicity were extracted for the first time for the Mo-Ba and Zr-Ce charge splits of {sup 252}Cf by studying prompt coincident {gamma}-rays. The obtained primary fragment angular momenta do not continuously rise with the increase in the number of neutrons evaporated. In frame of the scission point bending oscillation model such regularity is explained due the decrease of the bending temperature. Adiabatic bending oscillations (T=0) are obtained at large ({nu}{sub tot}{gt}5) and small ({nu}{sub tot}=0) scission point elongation. These oscillations are excited to the temperature of 2{endash}3 MeV for the most probable scission configurations indicating a weak coupling between collective and internal degrees of freedom. A strong coupling between the collective bending and dipole oscillations was found. {copyright} {ital 1998 American Institute of Physics.}
Multi-parameter spectroscopy of fission fragments and related emission products
International Nuclear Information System (INIS)
Ruben, A.; Jahnke, U.
1993-01-01
An exclusive measurement of the 252 C f(sf) fragment distribution in mass and energy in coincidence with the related emission products by combining a twin ionization chamber with a 4π-neutron tank, a n-γ-detector, and a solid-state detector telescope is presented. The experimental set-up, data handling and acquisition is described followed by a discussion of the raw data evaluation. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Reiter, Moritz Pascal
2015-07-01
High precision experiments and decay spectroscopy of exotic nuclei are of great interest for nuclear structure and nuclear astro-physics. They allow for studies of the nuclear structure far from stability, test of fundamental interactions and symmetries and give important input for the understanding of the nuclear synthesis in the universe. In the context of this work a second generation stopping cell for the low energy branch of the Super-FRS was commissioned at the FRS at GSI and significant improvements were made to the device. The prototype stopping cell is designed as a cryogenic stopping cell (CSC), featuring enhanced cleanliness and high area density. The CSC was brought into full operation and its performance characteristics were investigated including the maximal area density, extraction times, cleanliness and extraction efficiencies. In three commissioning experiments at the current GSI FRS facility in 2011, 2012 and 2014 up to 22 isotopes from 14 elements produced by in-flight projectile fragmentation and fission of {sup 238}U could be thermalized and extracted with high efficiency. For the first time projectile and fission fragmentation produced at 1000 MeV/u could be thermalized in a stopping cell and provided as a low-energy beam of high brilliance for high precision experiments. The technical improvements of the CSC, such as an improved RF carpet, new cryocooler-based cooling system, a monitoring system of the cleanliness and the high density operation, made it possible to thermalize heavy {sup 238}U projectile fragments with total efficiencies of about 20% in the 2014 experiment. In addition the improvements lead to an increase in the stability and reliability of the CSC and the performance of the CSC during online experiments at the FRS Ion Catcher showed that the utilized techniques are ready for the final CSC for the low-energy branch of the Super-FRS at FAIR. The CSC was operated with an area density of up to 6.3 mg/cm{sup 2} helium during
International Nuclear Information System (INIS)
Reiter, Moritz Pascal
2015-01-01
High precision experiments and decay spectroscopy of exotic nuclei are of great interest for nuclear structure and nuclear astro-physics. They allow for studies of the nuclear structure far from stability, test of fundamental interactions and symmetries and give important input for the understanding of the nuclear synthesis in the universe. In the context of this work a second generation stopping cell for the low energy branch of the Super-FRS was commissioned at the FRS at GSI and significant improvements were made to the device. The prototype stopping cell is designed as a cryogenic stopping cell (CSC), featuring enhanced cleanliness and high area density. The CSC was brought into full operation and its performance characteristics were investigated including the maximal area density, extraction times, cleanliness and extraction efficiencies. In three commissioning experiments at the current GSI FRS facility in 2011, 2012 and 2014 up to 22 isotopes from 14 elements produced by in-flight projectile fragmentation and fission of "2"3"8U could be thermalized and extracted with high efficiency. For the first time projectile and fission fragmentation produced at 1000 MeV/u could be thermalized in a stopping cell and provided as a low-energy beam of high brilliance for high precision experiments. The technical improvements of the CSC, such as an improved RF carpet, new cryocooler-based cooling system, a monitoring system of the cleanliness and the high density operation, made it possible to thermalize heavy "2"3"8U projectile fragments with total efficiencies of about 20% in the 2014 experiment. In addition the improvements lead to an increase in the stability and reliability of the CSC and the performance of the CSC during online experiments at the FRS Ion Catcher showed that the utilized techniques are ready for the final CSC for the low-energy branch of the Super-FRS at FAIR. The CSC was operated with an area density of up to 6.3 mg/cm"2 helium during online
Energy Technology Data Exchange (ETDEWEB)
Fernandez-Dominguez, B
2003-03-01
The aim of this work is the study of the fission fragments produced in the spallation reaction {sup 208}Pb + p at 500 AMeV. The fission fragments from Z=23 up to Z=59 have been detected and identified by using the inverse kinematics technique with the high-resolution spectrometer FRS. The production cross sections and the recoil velocities of 430 nuclei have been measured. The measured data have been compared with previous data. The isotopic distributions show a high precision. However, the absolute value of the fission cross section is higher than expected. From the experimental data the characteristics of the average fissioning system have been reconstructed (Z{sub fis}, A{sub fis}, E*{sub fis}). In addition, the number of post-fission neutrons emitted from the fission fragments, v{sub post}, has been determined by using a new method. The experimental data have been compared to the two-steps models describing the spallation reaction. The impact of the model parameters on the observables has been analysed and the reasons Leading to the observed differences between the codes are also presented. This analyse shows a good agreement with the INCL4+ABLA code. (author)
International Nuclear Information System (INIS)
Modesto, Montoya
2014-01-01
The Coulomb effects hypothesis is used to interpret even-odd effects of maximum total kinetic energy as a function of mass and charge of fragments from thermal neutron induced fission of 235 U. Assuming spherical fragments at scission, the Coulomb interaction energy between fragments (C sph ) is higher than the Q-value, the available energy. Therefore at scission the fragments must be deformed, so that the Coulomb interaction energy does not exceed the Q-value. The fact that the even-odd effects in the maximum total kinetic energy as a function of the charge and mass, respectively, are lower than the even-odd effects of Q is consistent with the assumption that odd mass fragments are softer than the even-even fragments. Even-odd effects of charge distribution in super asymmetric fragmentation also are interpreted with the Coulomb effect hypothesis. Because the difference between C sph and Q increases with asymmetry, fragmentations require higher total deformation energy to occur. Higher deformation energy of the fragments implies lower free energy to break pairs of nucleons. This explains why in the asymmetric fragmentation region, the even-odd effects of the distribution of proton number and neutron number increases with asymmetry. (author).
Energy Technology Data Exchange (ETDEWEB)
Varapai, N
2006-12-15
The present work demonstrates the application of the digital technique for nuclear measurements. This new technique is based on the digitalization of the signals from the detectors and has several advantages. This technique allows us to extract the maximum amount of information contained in the signal shape. In the case of an ionization chamber this signal contains the necessary information on the particle kinetic energy, emission angle and mass. This method has been implemented for measurements of promptly emitted fission neutrons in coincidence with fission fragments from {sup 252}Cf(sf). A double Frisch-grid ionization chamber is used as fission fragment detector. The promptly emitted neutrons are detected by a NE213 liquid scintillation detector. This work displays how delicate analysis of the digitalized signals permitted us to infer the mass and kinetic energy distributions of the fission fragments as well as the neutron energy spectrum and multiplicity. The outline of this thesis is as follows: Chapter 2 gives an overview of the experimental tools used in this work. Chapter 3 explains the analysis procedure of the digitalized anode signal from an ionization chamber. Chapter 4 gives a detailed explanation of the analysis procedure of the digitalized signal from a neutron detector. In Chapter 5 the analysis procedure of the fission fragment events in coincidence with neutrons is given.
International Nuclear Information System (INIS)
Anon.
1975-01-01
The nuclear fission research programs are designed to elucidate basic features of the fission process. Specifically, (1) factors determining how nucleons of a fissioning nucleus are distributed between two fission fragments, (2) factors determining kinetic energy and excitation energies of fragments, and (3) factors controlling fission lifetimes. To these ends, fission studies are reported for several heavy elements and include investigations of spontaneous and neutron-induced fission, heavy ion reactions, and high energy proton reactions. The status of theoretical research is also discussed. (U.S.)
Energy Technology Data Exchange (ETDEWEB)
Espinosa, G.; Golzarri, J. I. [UNAM, Instituto de Fisica, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Castano, V. M. [UNAM, Centro de Fisica Aplicada y Tecnologia Avanzada, Boulevard Juriquilla 3001, Santiago de Queretaro, 76230 Queretaro (Mexico); Gaso, I. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Mena, M.; Segovia, N. [UNAM, Instituto de Geofisica, Circuito de la Investigacion Cientifica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)
2010-02-15
The energy spectrum of {sup 252}Cf fission fragments was measured using nuclear track detectors and digital image analysis system. The detection material was fused silica glass. The detectors were chemically etched in an 8% HF solution. After experimenting with various etching time, it was found that the best resolution of the track diameter distribution was obtained after 30 minutes of etching. Both Gaussian and Lorentzian curves were fit to the track diameter distribution histograms and used to determine the basic parameters of the distribution of the light (N{sub L}) and heavy (N{sub H}) formed peaks and the minimum of the central valley (N{sub V}). Advantages of the method presented here include the fully-automated analysis process, the low cost of the nuclear track detectors and the simplicity of the nuclear track method. The distribution resolution obtained by this method is comparable with the resolution obtained by electronic analysis devices. The descriptive variables calculated were very close to those obtained by other methods based on the use of semiconductor detectors. (Author)
Directory of Open Access Journals (Sweden)
Minato Futoshi
2016-01-01
Full Text Available Nuclear β-decay and delayed neutron (DN emission is important for the r-process nucleosynthesis after the freeze-out, and stable and safe operation of nuclear reactors. Even though radioactive beam facilities have enabled us to measure β-decay and branching ratio of neutron-rich nuclei apart from the stability line in the nuclear chart, there are still a lot of nuclei which one cannot investigate experimentally. In particular, information on DN is rather scarce than that of T1/2. To predict T1/2 and the branching ratios of DN for next JENDL decay data, we have developed a method which comprises the quasiparticle-random-phase-approximation (QRPA and the Hauser-Feshbach statistical model (HFSM. In this work, we calculate fission fragments with T1/2 ≤ 50 sec. We obtain the rms deviation from experimental half-life of 3:71. Although the result is still worse than GT2 which has been adopted in JENDL decay data, DN spectra are newly calculated. We also discuss further subjects to be done in future for improving the present approach and making next generation of JENDL decay data.
International Nuclear Information System (INIS)
Zhu Shoupeng; Zheng Siying; Wang Liuyi; Yang Shujin
1989-01-01
The purpose of the present study is to ascertain comparative retention of fission fragment 147 Pm in regenerated and fetal liver on induction of chromosome aberrations in these cells. The results indicated that retention of 147 Pm in regenerated liver was about 700 times than in fetal liver. The cumulative absorption dose in regenerated liver was about 2.87 Gy, while in fetal liver-only 0.004 Gy. Under the same conditions, the incidence rate of chromosome aberrations in regenerated liver cells induced by 147 Pm was 50.2%, and in fetal liver cells-about 28.3%. It should be concluded that the radiosensitivity to 147 Pm was not uniform among the regenerated and fetal liver cells. The study suggested that fetal liver cells show to be more radiosensitive to 147 Pm than regenerated liver cells. Among the type of aberrations in both cells induced by 147 Pm, chromatid breakages were predominant, accompanied with a few chromosome breakages
Nuclear dynamics in heavy ion induced fusion-fission reactions
International Nuclear Information System (INIS)
Kapoor, S.S.
1992-01-01
Heavy ion induced fission and fission-like reactions evolve through a complex nuclear dynamics encountered in the medium energy nucleus-nucleus collisions. In the recent years, measurements of the fragment-neutron and fragment-charged particle angular correlations in heavy ion induced fusion-fission reactions, have provided new information on the dynamical times of nuclear deformations of the initial dinuclear complex to the fission saddle point and the scission point. From the studies of fragment angular distributions in heavy ion induced fission it has been possible to infer the relaxation times of the dinuclear complex in the K-degree of freedom and our recent measurements on the entrance channel dependence of fragment anisotropies have provided an experimental signature of the presence of fissions before K-equilibration. This paper reviews recent experimental and theoretical status of the above studies with particular regard to the questions relating to dynamical times, nuclear dissipation and the effect of nuclear dissipation on the K-distributions at the fission saddle in completely equilibrated compound nucleus. (author). 19 refs., 9 figs
Energy Technology Data Exchange (ETDEWEB)
Knoebel, R.; Litvinov, Yu.A.; Weick, H.; Bosch, F.; Boutin, D.; Dimopoulou, C.; Dolinskii, A.; Franczak, B.; Franzke, B.; Kozhuharov, C.; Kurcewicz, J.; Litvinov, S.A.; Matos, M.; Mazzocco, M.; Muenzenberg, G.; Nociforo, C.; Nolden, F.; Stadlmann, J.; Steck, M.; Winkler, M. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Diwisch, M. [Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Geissel, H.; Plass, W.R.; Scheidenberger, C.; Chen, L. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Patyk, Z. [National Centre for Nuclear Research - NCBJ Swierk, Warszawa (Poland); Sun, B. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); Hausmann, M. [Michigan State University, East Lansing, MI (United States); Nakajima, S.; Suzuki, T.; Yamaguchi, T. [Saitama University, Department of Physics, Saitama (Japan); Ohtsubo, T. [Niigata University, Department of Physics, Niigata (Japan); Ozawa, A. [University of Tsukuba, Institute of Physics, Ibaraki (Japan); Walker, P.M. [University of Surrey, Department of Physics, Guildford (United Kingdom)
2016-05-15
Masses of uranium fission fragments have been measured with the FRagment Separator (FRS) combined with the Experimental Storage Ring (ESR) at GSI. A 410-415 MeV/u {sup 238}U projectile beam was fast extracted from the synchrotron SIS-18 with an average intensity of 10{sup 9}/spill. The projectiles were focused on a 1g/cm{sup 2} beryllium target at the entrance of the FRS to create neutron-rich isotopes via abrasion-fission. The fission fragments were spatially separated with the FRS and injected into the isochronous storage ring ESR for fast mass measurements without applying cooling. The Isochronous Mass Spectrometry (IMS) was performed under two different experimental conditions, with and without B ρ-tagging at the high-resolution dispersive central focal plane of the FRS. The evaluation has been done for the combined data sets from both experiments with a new method of data analysis. The use of a correlation matrix has provided experimental mass values for 23 different neutron-rich isotopes for the first time and 6 masses with improved values. The new masses were obtained for nuclides in the element range from Se to Ce. The applied analysis has given access even to rare isotopes detected with an intensity of a few atoms per week. The novel data analysis and systematic error determination are described and the results are compared with extrapolations of experimental values and theoretical models. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Simutkin, V.D. [Uppsala University, P.O Box 525, SE-751 20 Uppsala (Sweden)
2008-07-01
Conceptual analysis of accelerator-driven systems assumes extensive use of nuclear data on neutron-induced reactions at intermediate energies. In particular, information about the fission fragment yields from the {sup 238}U(n,f) and {sup 232}Th(n,f) reactions is of particular interest at neutron energies from 10 to 200 MeV. However, there is a lack of such data for both {sup 238}U and {sup 232}Th. Up to now, the intermediate energy measurements have been performed for {sup 238}U only, and there are no data for the {sup 232}Th(n,f) reaction. The aim of the work is to provide such data. Fission fragment mass distributions for the {sup 232}Th(n,f) and {sup 238}U(n,f) reactions have been measured for the incident neutron energies 32.8 MeV, 45.3 MeV and 59.9 MeV. The experiments have been performed at the neutron beam facility of the Universite Catholique de Louvain, Belgium. A multi-section Frisch-gridded ionization chamber has been used as a fission fragment detector. The data obtained have been interpreted in terms of the multimodal random neck-rupture model (MMRNRM). (authors)
International Nuclear Information System (INIS)
Tarantin, N.I.
2001-01-01
Data on nuclear masses provide a basis for creating and testing various nuclear models. A tandem system of FLNR comprised of the U-400M cyclotron, the COMBAS magnetic separator and the mass-spectrometric ion trap of an 'in-flight capture' type is considered as a possible complex for producing of the short-lived nuclei in fragmentation reactions by heavy ions and for precise mass measurement of these nuclei. The plan of scientific and technical FLNR research includes a project DRIBs for producing beams of accelerated radioactive nuclear reaction products and photofission fragments. This project proposes also precise mass measurements of the fission fragment with the help of the ion trap. The in-flight entrance of the ions and their capture in the mass-spectrometric ion trap using the monochromatizing degrader, the static electric and magnetic fields and a new invention, a magnetic unidirectional transporting ventil, is considered
Energy Technology Data Exchange (ETDEWEB)
Régis, J.-M., E-mail: regis@ikp.uni-koeln.de [Institut für Kernphysik der Universität zu Köln, Zülpicher Str. 77, 50937 Köln (Germany); Simpson, G.S., E-mail: Gary.Simpson@uws.ac.uk [Laboratoire de Physique Subatomique et de Cosmologie Grenoble, 53, rue des Martyrs, 38026 Grenoble Cedex (France); School of Engineering, University of the West of Scotland, Paisley PA1 2BE, Scotland (United Kingdom); Blanc, A. [Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9 (France); France, G. de [Grand Accélérateur National d' Ions Lourds, Bd Henri Becquerel, BP 55027, 14076 Caen Cedex 05 (France); Jentschel, M.; Köster, U.; Mutti, P. [Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9 (France); Paziy, V. [Grupo de Física Nuclear, FAMN, Universidad Complutense, CEI Moncloa, 28040 Madrid (Spain); Saed-Samii, N. [Institut für Kernphysik der Universität zu Köln, Zülpicher Str. 77, 50937 Köln (Germany); Soldner, T. [Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9 (France); Ur, C.A. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Urban, W. [Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9 (France); Faculty of Physics, University of Warsaw, ul. Hoza 69, PL-00-681 Warsaw (Poland); Bruce, A.M. [School of Computing, Engineering and Mathematics, University of Brighton, Lewes Road, Brighton BN2 4GJ (United Kingdom); Drouet, F. [Laboratoire de Physique Subatomique et de Cosmologie Grenoble, 53, rue des Martyrs, 38026 Grenoble Cedex (France); and others
2014-11-01
A high-granularity mixed spectrometer consisting of high-resolution Ge and very fast LaBr{sub 3}(Ce)-scintillator detectors has been installed around a fission target at the cold-neutron guide PF1B of the high-flux reactor of the Institut Laue–Langevin. Lifetimes of excited states in the range of 10 ps to 10 ns can be measured in around 100 exotic neutron-rich fission fragments using Ge-gated LaBr{sub 3}(Ce)–LaBr{sub 3}(Ce) or Ge–Ge–LaBr{sub 3}(Ce)–LaBr{sub 3}(Ce) coincidences. We report on various characteristics of the EXILL and FATIMA spectrometer for the energy range of 40 keV up to 6.8 MeV and present results of ps-lifetime test measurements in a fission fragment. The results are discussed with respect to possible systematic errors induced by background contributions.
International Nuclear Information System (INIS)
Vives, F.
1998-01-01
The 238 U(n,f) reaction has been studied at various incident neutrons energies from 1,2 at 5,8 MeV. The author shows that the vibrational resonances presence in the cross section threshold area and the protons parity effect, lead to variations in the fission fragments properties. The mass, the total kinetic energy (TKE) and the fragments angular distribution have been obtained thanks a ionisation double chamber use. Mass function changes in the mass and kinetic energy distributions and their respectively contributions to the TKE variations, have also been studied. The two-dimension distributions adjustments mass-TKE have been compared to the theoretical calculus, compiled with the multi-modal random neck-rupture model: two solutions are possible. Meanwhile, only one leads to significant physical interpretation in terms of layers effects. (A.L.B.)
Indian Academy of Sciences (India)
the energy minimization of all possible ternary breakups of a heavy radioactive nucleus. Further, within the TCM we have analysed the competition between different geometries as well as different positioning of the fragments. Also, an attempt was made to calculate the mass distribution of ternary fission process within the ...
Energy Technology Data Exchange (ETDEWEB)
Montoya, M. [Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Rímac, Lima (Peru)
2016-07-07
Even-odd effects of the maximal total kinetic energy (K{sub max}) as a function of charge (Z) and mass (A) of fragments from thermal neutron induced fission of actinides are questioned by other authors. In this work, visiting old results on thermal neutron induced fission of {sup 235}U, those even-odd effects are reconfirmed. The cases seeming to contradict even-odd effects are interpreted with the Coulomb effect hypothesis. According to Coulomb effect hypothesis, K{sub max} is equal to the Coulomb interaction energy of the most compact scission configuration. As a consequence, between two isobaric charge splits with similar Q-values, the more asymmetrical one will get the more compact scission configuration and then it will reach the higher K{sub max}-value. In some cases, the more asymmetrical charge split corresponds, by coincidence, to an odd charge split; consequently its higher K{sub max}-value may be misinterpreted as anti-even-odd effect. Another experimental result reported in the literature is the increasing of even-odd effects on charge distribution on the more asymmetrical fragmentations region. In this region, the difference between K{sub max} and Q-values increases with asymmetry, which means that the corresponding scission configuration needs higher total deformation energy to occur. Higher deformation energy of the fragments implies lower free energy to break nucleon pairs. Consequently, in the asymmetric fragmentation region, the even-odd effects of the distribution of proton number and neutron number must increase with asymmetry.
Energy Technology Data Exchange (ETDEWEB)
Ayet San Andres, Samuel [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Justus Liebig Universitaet, Giessen (Germany); Collaboration: FRS Ion Catcher-Collaboration
2016-07-01
At the FRS Ion Catcher at GSI, a relativistic beam of {sup 238}U at 1GeV/u was used to produce fission and projectile fragments on a beryllium target. The ions were separated in-flight at the FRS, thermalized in a cryogenic stopping cell and transferred to a multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) where high precision mass measurements were performed. The masses of several fission and projectile fragments were measured (including short-lived nuclei with half-lives down to 18 ms) and the possibility of tailoring an isomerically clean beam for other experiments was demonstrated. With the demonstrated performance of the MR-TOF-MS and the expected production rates of exotic nuclei far from stability at the next-generation facilities such as FAIR, novel mass measurements of nuclei close to the neutron drip line will be possible and key information for understanding the r-process will be available. The results from the last experiment and an outlook of possible future mass measurements close to the neutron drip line at FAIR with the MR-TOF-MS are presented.
Directory of Open Access Journals (Sweden)
F Golian
2017-02-01
Full Text Available The heat transfer process from pellet to coolant is one of the important issues in nuclear reactor. In this regard, the fuel to clad gap and its physical and chemical properties are effective factors on heat transfer in nuclear fuel rod discussion. So, the energy distribution function of electrons with an energy about 0.5 MeV in fuel rod gap in Busherhr’s VVER-1000 nuclear reactor was investigated in this paper. Also, the effect of fission fragments such as Krypton, Bromine, Xenon, Rubidium and Cesium on the electron energy distribution function as well as the heat conduction via electrons in the fuel rod gap have been studied. For this purpose, the Fokker- Planck equation governing the stochastic behavior of electrons in absorbing gap element has been applied in order to obtain the energy distribution function of electrons. This equation was solved via Runge-Kutta numerical method. On the other hand, the electron energy distribution function was determined by using Monte Carlo GEANT4 code. It was concluded that these fission fragments have virtually insignificant effect on energy distribution of electrons and therefore, on thermal conductivity via electrons in the fuel to clad gap. It is worth noting that this result is consistent with the results of other experiments. Also, it is shown that electron relaxation in gap leads to decrease in thermal conductivity via electrons
International Nuclear Information System (INIS)
2009-01-01
This conference is dedicated to the last achievements in experimental and theoretical aspects of the nuclear fission process. The topics include: mass, charge and energy distribution, dynamical aspect of the fission process, nuclear data evaluation, quasi-fission and fission lifetime in super heavy elements, fission fragment spectroscopy, cross-section and fission barrier, and neutron and gamma emission. This document gathers the program of the conference and the slides of the presentations
Directory of Open Access Journals (Sweden)
Al-Adili A.
2010-03-01
Full Text Available Fission Research at JRC-IRMM has a longstanding tradition. The present paper is discussing recent investigations of fission fragment properties of 238 U(n,f, 234 U(n,f, prompt neutron emission in fission of 252 Cf(SF as well as the prompt fission neutron spectrum of 235 U(n,f and is presenting the most important results.
International Nuclear Information System (INIS)
Rentenier, A; Bordenave-Montesquieu, D; Moretto-Capelle, P; Bordenave-Montesquieu, A
2003-01-01
Multifragmentation and asymmetric fission (AF) of the C 60 molecule induced by H + , H 2 + , H 3 + and He + ions at medium collision energies (2-130 keV) are considered. Momenta and kinetic energies of C n + fragment ions (n = 1- 12) are deduced from an analysis of time-of-flight spectra. In multifragmentation processes, momenta are found to be approximately constant when n > 2, a behaviour which explains that the most probable kinetic energy, as well as the width of the kinetic energy distributions, is found to be inversely proportional to the fragment size n; both momenta and kinetic energies are independent of the velocity and nature of the projectile, and hence of the energy deposit. A specific study of the AF shows that the kinetic energies of C 2 + , C 4 + and C 6 + fragments are also independent of the collision velocity and projectile species; a quantitative agreement is found with values deduced from kinetic energy release measurements by another group in electron impact experiments, and the observed decrease when the mass of the light fragment increases is also reproduced. A quantitative comparison of AF and multifragmentation for the n = 2, 4 and 6 fragment ions shows that kinetic energies in AF exceed that in multifragmentation, a result which explains the oscillations observed when momenta or kinetic energies of fragments are plotted against the n-value. The AF yield is also found to scale with the energy deposit in the collision velocity range extending below the velocity at the maximum of the electronic stopping power; except for protons, it remains negligible with respect to multifragmentation as soon as the total energy deposit exceeds about 100 eV
International Nuclear Information System (INIS)
Wagemans, C.
1991-01-01
Since its discovery in 1946, light (charged) particle accompanied fission (ternary fission) has been extensively studied, for spontaneous as well as for induced fission reactions. The reason for this interest was twofold: the ternary particles being emitted in space and time close to the scission point were expected to supply information on the scission point configuration and the ternary fission process was an important source of helium, tritium, and hydrogen production in nuclear reactors, for which data were requested by the nuclear industry. Significant experimental progress has been realized with the advent of high-resolution detectors, powerful multiparameter data acquisition systems, and intense neutron and photon beams. As far as theory is concerned, the trajectory calculations (in which scission point parameters are deduced from the experimental observations) have been very much improved. An attempt was made to explain ternary particle emission in terms of a Plateau-Rayleigh hydrodynamical instability of a relatively long cylindrical neck or cylindrical nucleus. New results have also been obtained on the so-called open-quotes trueclose quotes ternary fission (fission in three about-equal fragments). The spontaneous emission of charged particles has also clearly been demonstrated in recent years. This chapter discusses the main characteristics of ternary fission, theoretical models, light particle emission probabilities, the dependence of the emission probabilities on experimental variables, light particle energy distributions, light particle angular distributions, correlations between light particle accompanied fission observables, open-quotes trueclose quotes ternary fission, and spontaneous emission of heavy ions. 143 refs., 18 figs., 8 tabs
International Nuclear Information System (INIS)
Jiang Li; Liu Rong; Wang Dalun; Wang Mei; Lin Jufang; Wen Zhongwei
2003-01-01
The absolute fission rates was measured by the depleted uranium fission chamber. The efficiency of the fission fragments recorded in the fission chamber was analyzed. The factor influencing absolute fission rates was studied in the experiment, including the disturbing effect between detectors and the effect of the structural of the fission chamber, etc
Harris, Christopher; Stace, Anthony J
2018-03-15
A series of experiments have been undertaken on the fragmentation of multiply charged ammonia clusters, (NH 3 ) n z+ , where z ≤ 8 and n ≤ 850, to establish Rayleigh instability limits, whereby clusters at certain critical sizes become unstable due to Coulomb repulsion between the resident charges. Experimental results on size-selected clusters are found to be in excellent agreement with theoretical predictions of Rayleigh instability limits at all values of the charge. Electrostatic theory has been used to help identify fragmentation patterns on the assumption that the clusters separate into two dielectric spheres, and the predicted Coulomb repulsion energies used to establish pathways and the sizes of cluster fragments. The results show that fragmentation is very asymmetric in terms of both the numbers of molecules involved and the amount of charge each fragment accommodates. For clusters carrying a charge ≤+4, the results show that fragmentation proceeds via the loss of small, singly charged clusters. When clusters carry a charge of +5 or more, the experimental observations suggest a marked switch in behavior. Although the laboratory measurements equate to fragmentation via the loss of a large dication cluster, electrostatic theory supports an interpretation that involves the sequential loss of two smaller, singly charged clusters possibly accompanied by the extensive evaporation of neutral molecules. It is suggested that this change in fragmentation pattern is driven by the channelling of Coulomb repulsion energy into intermolecular modes within these larger clusters. Overall, the results appear to support the ion evaporation model that is frequently used to interpret electrospray experiments.
International Nuclear Information System (INIS)
Maslyuk, V.T.
2012-01-01
A new approach to the problem of nucleosynthesis based on assumption of a nuclear matter or superheavy nuclei series fragmentation up to atomic nuclei is proposed. It is shown that studies of the mass (charge) fragments yields (MCFY) after nuclear matter disintegration is possible within proposed statistical theory. The data of MCFY calculation for exotic superheavy nuclei multifragmentation with A=300, 900 and 1200 and arbitrary Z values are demonstrated
Spontaneous fission of superheavy nuclei
Indian Academy of Sciences (India)
The fission-like configurations are used for the total deformation energy calculations. A ... oscillator potential for the two fission fragment regions reads as ... Beyond this limit, the contribution of more remote levels is negligible. Once the density ...
Li, Qing; Li, Chun-Min; Xu, Hong-Liang; Su, Zhong-Min
2017-08-01
A graphene nanoflake (GNF) is a polycyclic aromatic hydrocarbon (PAH) with a huge two-dimensional π-conjugated carbon material in which a central benzene ring is surrounded by identical benzene-type rings through infinite alternant method. In this paper, we explore the structure-aromaticity relationship of the GNFs and the GNFs with hollow sites (GNFHs) by combining the nucleus-independent chemical shifts (NICS) with the anisotropy of the current induced density (ACID). Firstly, the benzene is a typical aromatic molecule (NICS = -9.671 ppm), GNFs 1-6 is darned with benzene and the corresponding GNFHs 1'-6'. Secondly, the NICS values of GNFs 1-6 alternately vary: -1.214 (1) > -13.847 (2) -14.530 (4) -13.978 (6) ppm, the GNFs (2, 4, 6) with even fragments of annulene have larger aromaticity than that of GNFs (1, 3, 5) with odd fragments of annulene. Significantly, the NICS values of GNFs 1-6 can also be fragment analyzed by the NICS values and ACID of benzene and corresponding GNFHs 1'-6'. The NICS values for GNFs (2, 4, 6) can be roughly estimated by the NICS value of benzene minus the NICS value of the GNFHs (2', 4', 6'), respectively. The NICS values for GNFs (1, 3, 5) can be roughly estimated by the NICS value of the GNFHs (1', 3', 5') minus the NICS value of benzene, respectively. We hope that the present work can provide a simple and reliable method for the rational design of the GNF with aromaticity, which may be used to understand the origin of the graphene nanoflake aromatic properties.
International Nuclear Information System (INIS)
Bruechle, W.
1976-01-01
In this paper, chemical separation processes are described permitting fast and neat isolation of short-lived palladium and silver nuclides from fusion product mixtures. The process for palladium is based on the stability of palladium diethyldithiophosphate. From fission products of the reactions 238 U(n,f) and 249 Cf(nth,f), the following palladium niclides could be studied for the first time by gamma spectroscopy: 1.66 min 113 Pd, 2.45 min 114 Pd, 29 sec sup(115a)Pd, 54 sec sup(115b)Pd, 12.5 sec 116 Pd. 113 Pd could also be indentified according to the reaction 116 Cd(n,α) 113 Pd. The separation of silver is based on the fast isotopic exchange on AgCl. With this process, the following nuclides have been separated from fission product mixtures and studied by gamma spectroscopy: 70 sec sup(113m)Ag, 5.0 sec 114 Ag, 19.2 sec sup(115m)Ag, 2.65 min sup(116g)Ag, 10.5 sec sup(116m)Ag, 1.3 min sup(117g)Ag, 6.0 sec sup(117m)Ag, 4.0 sec 118 Ag. (orig./WL) [de
Energy Technology Data Exchange (ETDEWEB)
Heinrich, S
2006-07-01
Nucleus fission process is a very complex phenomenon and, even nowadays, no realistic models describing the overall process are available. The work presented here deals with a theoretical description of fission fragments distributions in mass, charge, energy and deformation. We have reconsidered and updated the B.D. Wilking Scission Point model. Our purpose was to test if this statistic model applied at the scission point and by introducing new results of modern microscopic calculations allows to describe quantitatively the fission fragments distributions. We calculate the surface energy available at the scission point as a function of the fragments deformations. This surface is obtained from a Hartree Fock Bogoliubov microscopic calculation which guarantee a realistic description of the potential dependence on the deformation for each fragment. The statistic balance is described by the level densities of the fragment. We have tried to avoid as much as possible the input of empirical parameters in the model. Our only parameter, the distance between each fragment at the scission point, is discussed by comparison with scission configuration obtained from full dynamical microscopic calculations. Also, the comparison between our results and experimental data is very satisfying and allow us to discuss the success and limitations of our approach. We finally proposed ideas to improve the model, in particular by applying dynamical corrections. (author)
Sequential character of low-energy ternary and quaternary nuclear fission
Energy Technology Data Exchange (ETDEWEB)
Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Bulychev, A. O. [Voronezh State University (Russian Federation)
2016-09-15
An analysis of low-energy true ternary (quaternary) nuclear fission leads to the conclusion that these fission modes have a sequential two-step (three-step) character such that the emission of a third particle (third and fourth particles) and the separation of fission fragments occur at distinctly different instants, in contrast to the simultaneous emergence of all fission products in the case of onestep ternary (quaternary) fission. This conclusion relies on the following arguments. First, the emission of a third particle (third and fourth particles) from a fissile nucleus is due to a nonevaporative mechanism associated with a nonadiabatic character of the collective deformation motion of this nucleus at the stages preceding its scission. Second, the axial symmetry of the deformed fissile compound nucleus and the direction of its symmetry axis both remain unchanged at all stages of ternary (quaternary) fission. This circumstancemakes it possible to explain themechanism of the appearance of observed anisotropies and T — odd asymmeries in the angular distributions of products of ternary (quaternary) nuclear fission. Third, the T —odd asymmetry discovered experimentally in ternary nuclear fission induced by cold polarized neutrons obeys the T —invariance condition only in the case of a sequential two-step (three-step) character of true ternary (quaternary) nuclear fission. At the same time, this asymmetry is not a T —invariant quantity in the case of the simultaneous emission of products of true ternary (quaternary) nuclear fission from the fissile compound nucleus.
Sequential character of low-energy ternary and quaternary nuclear fission
International Nuclear Information System (INIS)
Kadmensky, S. G.; Bulychev, A. O.
2016-01-01
An analysis of low-energy true ternary (quaternary) nuclear fission leads to the conclusion that these fission modes have a sequential two-step (three-step) character such that the emission of a third particle (third and fourth particles) and the separation of fission fragments occur at distinctly different instants, in contrast to the simultaneous emergence of all fission products in the case of onestep ternary (quaternary) fission. This conclusion relies on the following arguments. First, the emission of a third particle (third and fourth particles) from a fissile nucleus is due to a nonevaporative mechanism associated with a nonadiabatic character of the collective deformation motion of this nucleus at the stages preceding its scission. Second, the axial symmetry of the deformed fissile compound nucleus and the direction of its symmetry axis both remain unchanged at all stages of ternary (quaternary) fission. This circumstancemakes it possible to explain themechanism of the appearance of observed anisotropies and T — odd asymmeries in the angular distributions of products of ternary (quaternary) nuclear fission. Third, the T —odd asymmetry discovered experimentally in ternary nuclear fission induced by cold polarized neutrons obeys the T —invariance condition only in the case of a sequential two-step (three-step) character of true ternary (quaternary) nuclear fission. At the same time, this asymmetry is not a T —invariant quantity in the case of the simultaneous emission of products of true ternary (quaternary) nuclear fission from the fissile compound nucleus.
Lantz, M; Al-Adili, A; Jokinen, A; Kolhinen, V; Mattera, A; Rinta-Antila, S; Penttilä, H; Pomp, S; Rakoupoulos, V; Simutkin, V; Solders, A
2014-01-01
The ERINDA funded scientific visit has enabled the groups at U ppsala Uni- versity and University of Jyväskylä to work closer together on the design of a neutron converter that will be used as neutron source in fissi on yield studies at the IGISOL-JYFLTRAP facility at the University of Jyväsk ylä. The design is based on simulations with both deterministic codes and Mo nte Carlo codes, and an ERINDA funded benchmark measurement. In order to obta in a com- petitive count rate the fission targets will be placed very cl ose to the neutron converter. The intention is to have a flexible design that wil l enable neutron fields with different energy distributions. In this report t he progression and the present status of the design work will be discussed, togethe r with an outlook of the future plans
International Nuclear Information System (INIS)
Denschlag, H.O.; Braun, H.; Wolfsberg, K.
1979-01-01
The fission product yields of the members of the decay chains 132 to 137, 99, and 102 in 235 U(n/sub th/,f) were measured at various kinetic energies and ionic charge states of the fragments using the mass separator for unslowed fission products LOHENGRIN. The results are discussed with respect to four aspects: A preferential formation of neutron rich chain members found at high kinetic energy of the fragments is predominantly due to decreasing prompt neutron evaporation. A particularly large effect in chain 132 is attributed to the double shell closure in Sn-132. The persistence of an even-odd pairing effect in the yields throughout the range of kinetic energies studied leads to the conclusion that the high internal excitation energy of the fragments is tied up mainly in the form of collective energy (e.g., deformation energy) rather than single particle excitation. Generally, the yield distribution at constant kinetic energy is invariant with respect to the ionic charge state of the isotopes separated. Deviations from this behavior found in chains 99, 102, 133, and 136 are interpreted as being due to Auger events following a converted transition in the decay of ns-isomers taking place in the vacuum of the separator. A pronounced variation of the independent formation ratio of single isomeric states with the kinetic energy of the fragments is providing direct information on the controversial topic of the change of angular momentum of fission fragments as a function of deformation (scission distance). 34 references
Collins, Steven J; Tumpach, Carolin; Groveman, Bradley R; Drew, Simon C; Haigh, Cathryn L
2018-03-24
Neurogenesis continues in the post-developmental brain throughout life. The ability to stimulate the production of new neurones requires both quiescent and actively proliferating pools of neural stem cells (NSCs). Actively proliferating NSCs ensure that neurogenic demand can be met, whilst the quiescent pool makes certain NSC reserves do not become depleted. The processes preserving the NSC quiescent pool are only just beginning to be defined. Herein, we identify a switch between NSC proliferation and quiescence through changing intracellular redox signalling. We show that N-terminal post-translational cleavage products of the prion protein (PrP) induce a quiescent state, halting NSC cellular growth, migration, and neurite outgrowth. Quiescence is initiated by the PrP cleavage products through reducing intracellular levels of reactive oxygen species. First, inhibition of redox signalling results in increased mitochondrial fission, which rapidly signals quiescence. Thereafter, quiescence is maintained through downstream increases in the expression and activity of superoxide dismutase-2 that reduces mitochondrial superoxide. We further observe that PrP is predominantly cleaved in quiescent NSCs indicating a homeostatic role for this cascade. Our findings provide new insight into the regulation of NSC quiescence, which potentially could influence brain health throughout adult life.
International Nuclear Information System (INIS)
Polikanov, S.
1980-01-01
A review of recent experimental results on negative-muon-induced fission, both of 238 U and 232 Th, is given. Some conclusions drawn by the author are concerned with muonic atoms of fission fragments and muonic atoms of the shape isomer of 238 U. (author)
Intermediate energy nuclear fission
International Nuclear Information System (INIS)
Hylten, G.
1982-01-01
Nuclear fission has been investigated with the double-kinetic-energy method using silicon surface barrier detectors. Fragment energy correlation measurements have been made for U, Th and Bi with bremsstrahlung of 600 MeV maximum energy. Distributions of kinetic energy as a function of fragment mass are presented. The results are compared with earlier photofission data and in the case of bismuth, with calculations based on the liquid drop model. The binary fission process in U, Yb, Tb, Ce, La, Sb, Ag and Y induced by 600 MeV protons has been investigated yielding fission cross sections, fragment kinetic energies, angular correlations and mass distributions. Fission-spallation competition calculations are used to deduce values of macroscopic fission barrier heights and nuclear level density parameter values at deformations corresponding to the saddle point shapes. We find macroscopic fission barriers lower than those predicted by macroscopic theories. No indication is found of the Businaro Gallone limit expected to occur somewhere in the mass range A = 100 to A = 140. For Ce and La asymmetric mass distributions similar to those in the actinide region are found. A method is described for the analysis of angular correlations between complementary fission products. The description is mainly concerned with fission induced by medium-energy protons but is applicable also to other projectiles and energies. It is shown that the momentum and excitation energy distributions of cascade residuals leading to fission can be extracted. (Author)
Fission neutron multiplicity calculations
International Nuclear Information System (INIS)
Maerten, H.; Ruben, A.; Seeliger, D.
1991-01-01
A model for calculating neutron multiplicities in nuclear fission is presented. It is based on the solution of the energy partition problem as function of mass asymmetry within a phenomenological approach including temperature-dependent microscopic energies. Nuclear structure effects on fragment de-excitation, which influence neutron multiplicities, are discussed. Temperature effects on microscopic energy play an important role in induced fission reactions. Calculated results are presented for various fission reactions induced by neutrons. Data cover the incident energy range 0-20 MeV, i.e. multiple chance fission is considered. (author). 28 refs, 13 figs
Refinements in the Los Alamos model of the prompt fission neutron spectrum
Energy Technology Data Exchange (ETDEWEB)
Madland, D.G., E-mail: dgm@lanl.gov; Kahler, A.C.
2017-01-15
This paper presents a number of refinements to the original Los Alamos model of the prompt fission neutron spectrum and average prompt neutron multiplicity as derived in 1982. The four refinements are due to new measurements of the spectrum and related fission observables many of which were not available in 1982. They are also due to a number of detailed studies and comparisons of the model with previous and present experimental results including not only the differential spectrum, but also integral cross sections measured in the field of the differential spectrum. The four refinements are (a) separate neutron contributions in binary fission, (b) departure from statistical equilibrium at scission, (c) fission-fragment nuclear level-density models, and (d) center-of-mass anisotropy. With these refinements, for the first time, good agreement has been obtained for both differential and integral measurements using the same Los Alamos model spectrum.
Study of scission shapes in spontaneous ternary fission of 252Cf
International Nuclear Information System (INIS)
Singer, P.; Schwalm, D.; Thirolf, P.; Goennenwein, F.; Hesse, M.
1995-06-01
A new kinematic study on the ternary fission of 252 Cf has been conducted by registering prompt neutrons and fission γ rays coincidence with light charged particles (LCP) and fission fragments. The aim is to investigate changes in fragment deformation energy between the binary and ternary fission modes from measured prompt neutron angular distributions and multiplicities, and to explore the influence of light particle emission on the energy distribution, multiplicity and angular anisotropy of γ rays emitted during fragment de-excitation. The experiment was performed at the MPI Heidelberg using the Darmstadt-Heidelberg crystal ball spectrometer as γ-ray and neutron detector. Fragments were identified by a double-E measurement with an angular sensitive twin ionization chamber (IC). Light charged particles from fission were measured by ΔE-E telescopes composed of ΔE ICs and silicon PIN diodes. The telescopes enable to identify various LCPs which are emitted much more rarely than ternary α particles. The parameters of the experiment and the method of data analysis are described and first results presented. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Bowman, H. R.; Thompson, S. G.; Watson, R. L.; Kapoor, S. S.; Rasmussen, J. O. [Lawrence Radiation Laboratory, University of California, Berkeley, CA (United States)
1965-07-15
Well-defined prompt gamma-rays, prompt-conversion elections and prompt K-X-rays have been observed in coincidence with moving fission fragments of Cf{sup 252}. In a few cases, the masses and charges of the nuclei emitting the gamma-rays and conversion electrons have been identified. The gamma-ray, prompt-electron and prompt X-ray energies as well as the two fission fragments energies were measured with high-resolution solid-state detectors. The masses of the fragments were deduced from their energies, and the nuclear charges were determined by measuring the K-X - ray energies associated with different masses. The magnitude and sign of the Doppler shift in gamma-ray energy allowed assignment of the gamma-ray lines to single members of fragment pairs. The Doppler shift also provides an independent measure of the fragment velocity and hence the fragment mass after neutron emission. The results of the X-ray measurements are consistent with the view that the majority of the prompt X-rays emitted during the spontaneous fission of Cf{sup 252} are the result of internal conversion during the de-excitation of low-energy collective states of the primary fission fragments. Apart from the specific results discussed above, the most important consequence of these experiments has been the demonstration that it is possible to study the properties of individual fission fragments, as identified by their characteristic radiations, rather than studying the properties of an average fission fragment with an average mass and charge. The consequences of this advance in the technique of studying fission fragments ate being explored. (author) [French] Des rayons gamma instantanes, des electrons de conversions instantanes et des rayons X K instantanes bien definis ont ete observes en coincidences avec des fragments de fission de {sup 252}Cf en mouvement. Dans un petit nombre de cas' Les masses, et charges des noyaux emettant les rayons gamma et les electrons de conversion ont ete identifiees
Angular Distribution of Gamma Rays from the Fission of {sup 235}U Induced by 14-Mev Neutrons
Energy Technology Data Exchange (ETDEWEB)
Jeki, L.; Kluge, Gy.; Lajtai, A. [Central Research Institute for Physics, Hungarian Academy of Sciences (Hungary)
1969-12-15
Experiments are reported which were performed to study the angular distribution of the gamma radiation following fast-neutron-induced nuclear fission. The investigations were, in particular, focussed on the influence which the angular momentum imparted to the compound nucleus by the fast neutrons has on the angular distribution of the {gamma}-rays. The fission of {sup 235}U is induced by 14-MeV-energy neutrons from the T(d, n) {alpha} reaction. The fission fragments are detected by a gas-scintillation counter filled with a mixture of Ar and Ni gases, the {gamma}-rays by 5 cm x 5 cm Nal(Tl) crystal with an energy threshold of 120 keV. The intensity of the {gamma}-rays is measured at 90 Degree-Sign and 174 Degree-Sign to the direction of fragment motion. The flight times of fission neutrons and {gamma}-rays are measured with a 20-ns overlap-type time-to-pulse height converter while the background was covered simultaneously with another converter delayed with respect to the former. The signals from both converters are analysed by a multichannel analyser with divisible memory. The flight path, which is chosen to be about 70 cm, makes it possible to separate the neutron from the gamma counts. The geometry is designed to keep the direction of the outflying fission fragments nearly the same as that of the incident fast neutrons. In this way the angular momenta of the fast neutrons are normal to the flight path of the fragments. The measured gamma intensities are extrapolated to 180 Degree-Sign on a computer using Strutinski's formula n( Greek-Theta-Symbol ) {approx}1 + B sin Greek-Theta-Symbol . On transformation of the measured data from the laboratory system to the system of fragments the anisotropy is found to be A = 1(180 Degree-Sign )/l (90 Degree-Sign ) = 1.33 {+-} 0.05. The main angular momentum of fission fragments is calculated from the anisotropy as 15 h units. As compared with the thermal-neutron-induced fission the present results indicate an additional
Angular distribution of gamma rays from the fission of {sup 235}U induced by 14-MeV neutrons
Energy Technology Data Exchange (ETDEWEB)
Jeki, L; Kluge, G; Lajtai, A [Central Research Institute for Physics, Hungarian Academy of Sciences (Hungary)
1969-12-15
Experiments are reported which were performed to study the angular distribution of the gamma radiation following fast-neutron-induced nuclear fission. The investigations were, in particular, focussed on the influence which the angular momentum imparted to the compound nucleus by the fast neutrons has on the angular distribution of the {gamma}-rays. The fission of {sup 235}U is induced by 14-MeV-energy neutrons from the T(d, n) {alpha} reaction. The fission fragments are detected by a gas-scintillation counter filled with a mixture of Ar and Ni gases, the {gamma}-rays by 5 cm x 5 cm Nal(Tl) crystal with an energy threshold of 120 keV. The intensity of the {gamma}-rays is measured at 90 deg. and 174 deg. to the direction of fragment motion. The flight times of fission neutrons and {gamma}-rays are measured with a 20-ns overlap-type time-to-pulse height converter while the background was covered simultaneously with another converter delayed with respect to the former. The signals from both converters are analysed by a multichannel analyser with divisible memory. The flight path, which is chosen to be about 70 cm, makes it possible to separate the neutron from the gamma counts. The geometry is designed to keep the direction of the outflying fission fragments nearly the same as that of the incident fast neutrons. In this way the angular momenta of the fast neutrons are normal to the flight path of the fragments. The measured gamma intensities are extrapolated to 180 deg on a computer using Strutinski's formula n({theta}) {approx} 1 + B sin {theta}. On transformation of the measured data from the laboratory system to the system of fragments the anisotropy is found to be A = I(180 deg.)/I (90 deg.) = 1.33 {+-} 0.05. The main angular momentum of fission fragments is calculated from the anisotropy as 15 (h/2{pi}) units. As compared with the thermal-neutron-induced fission the present results indicate an additional contribution from the angular momentum of the compound
International Nuclear Information System (INIS)
Goennenwein, F.; Boersig, B.
1991-01-01
Cold fission is defined to be the limiting case of nuclear fission where virtually all of the available energy is converted into the total kinetic energy of the fragments. The fragments have, therefore, to be born in or at least close to their respective ground states. Starting from the viewpoint that cold fission corresponds to most compact scission configurations, energy constraints have been exploited to calculate minimum tip distances between the two nascent fragments in binary fission. Crucial input parameters to this tip model of cold fission are the ground-state deformations of fragment nuclei. It is shown that the minimum tip distances being compatible with energy conservation vary strongly with both the mass and charge fragmentation of the fission prone nucleus. The tip distances refer to nuclei with equivalent sharp surfaces. In keeping with the size of the surface width of leptodermous nuclei, only configurations where the tip distances are smaller than a few fm may be considered as valid scission configurations. From a comparison with experimental data on cold fission this critical tip distance appears to be 3.0 fm for the model parameters chosen. Whenever the model calculation yields tip distances being smaller than the critical value, a necessary condition for attaining cold fission is considered to be fulfilled. It is shown that this criterion allows to understand in fair agreement with experiment which mass fragmentations are susceptible to lead to cold fission and which fragment-charge divisions are the most favored in each isobaric mass chain. Being based merely on energy arguments, the model cannot aim at predicting fragment yields in cold fission. However, the tip model proposed appears well suited to delineate the phase space where cold fission phenomena may come into sight. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Konecny, E.; Opower, H.; Guenther, H.; Goebel, H. [Physik-Department der Technischen Hochschule Muenchen, Munich and II. Physikalisches Institut der Justus Liebig-Universitaet Giessen, Federal Republic of Germany (Germany)
1965-07-15
By a mass spectrometer fission fragments from thermal fission of U{sup 235} are exactly separated with respect to mass and kinetic energy within a time of 10{sup -6} s after fission. The separated fragments are caught in a {beta}-sensitive Ilford G 5 emulsion that is located in the focal plane of the spectrometer. Development of the irradiated emulsions is carried out, if possible, after a time long compared with the longest half-life of the regarded decay chain. Half-lives of days or longer are not taken into account, but corrections can be easily made for them. After development of the emulsions all beta tracks emerging from the end of every fission-fragment track can be seen under the microscope. The possibility of correlating every single {beta}-track with a particular fission-fragment track allows the evaluation of the number n(x) of fission fragments possessing x {beta}-tracks, thus giving not only the mean chain length but also the {beta}-particle distribution. As the stable end product of each decay chain is known, this {beta}-distribution is an exact image of the primary nuclear charge distribution. In the measurements done up to now only {beta}-particles emitted into the half solid angle formed by the emulsion plate were registered, buta simple statistical calculation enables the desired 4{pi}-distribution to be evaluated. By this method {beta}-distributions at fixed kinetic energies near the mean kinetic energy of each fragment mass are given for the masses 132, 134, 136 and 137. For the lower masses 132 and 134 the neutron shell N = 82 is responsible for the most probable primary charges near 50 and 52 respectively. For M = 136 and 137 the primary charge is about 53 and 53.2. Additional approximative corrections in respect of conversion electrons (by omitting very short {beta}-tracks corresponding to very low {beta}-energies) and to delayed neutrons (for mass 137) were not very large. Similar measurements carried out directly in 4{pi}-geometry to avoid
International Nuclear Information System (INIS)
Tudora, A.
2013-01-01
The experimental data of average prompt neutron multiplicity as a function of total kinetic energy of fragments <ν>(TKE) exhibit, especially in the case of 252 Cf(SF), different slopes dTKE/dν and different behaviours at low TKE values. The Point-by-Point (PbP) model can describe these different behaviours. The higher slope dTKE/dν and the flattening of <ν> at low TKE exhibited by a part of experimental data sets is very well reproduced when the PbP multi-parametric matrix ν(A,TKE) is averaged over a double distribution Y(A,TKE). The lower slope and the almost linear behaviour over the entire TKE range exhibited by other data sets is well described when the same matrix ν(A,TKE) is averaged over a single distribution Y(A). In the case of average prompt neutron energy in SCM as a function of TKE, different dTKE/dε slopes are also obtained by averaging the same PbP matrix ε(A,TKE) over Y(A,TKE) and over Y(A). The results are exemplified for 3 fissioning systems benefiting of experimental data as a function of TKE: 252 Cf(SF), 235 U(n th ,f) and 239 Pu(n th ,f). In the case of 234 U(n,f) for the first time it was possible to calculate <ν>(TKE) and <ε>(TKE) at many incident energies by averaging the PbP multi-parametric matrices over the experimental Y(A,TKE) distributions recently measured at IRMM for 14 incident energies in the range 0.3- 5 MeV. The results revealed that the slope dTKE/dν does not vary with the incident energy and the flattening of <ν> at low TKE values is more pronounced at low incident energies. The average model parameters dependences on TKE resulted from the PbP treatment allow the use of the most probable fragmentation approach, having the great advantage to provide results at many TKE values in a very short computing time compared to PbP and Monte Carlo treatments. (author)
International Nuclear Information System (INIS)
Danilyan, G. V.; Klenke, J.; Krakhotin, V. A.; Kopach, Yu. N.; Novitsky, V. V.; Pavlov, V. S.; Shatalov, P. B.
2011-01-01
Study of the T-odd three-vector correlation in the emission of prompt neutrons from 235 U fission by polarized cold neutrons has been continued at the facility MEPHISTO of the FRM II reactor (Technical University of Munich). The sought correlation was not found within experimental error of 2.3 × 10 −5 . The upper limit for the asymmetry coefficient has been set to vertical bar D n vertical bar −5 at 99% confidence level, whereas for ternary fission correlation coefficient D α = (170±20) × 10 −5 . This limit casts doubt on a model that explains the three-vector correlation in ternary fission by the Coriolis mechanism. At the same time, five-vector correlation in the emission of prompt fission neutrons has been measured, which describes the rotation of the fissioning nucleus at the moment it breaks (ROT effect). At the angle 22.5° to the fission axis, the correlation coefficient was found to be (1.57 ± 0.20) × 10 −4 , while at the angle of 67.5° it is zero within the experimental uncertainty. The existence of ROT effect in the emission of prompt fission neutrons can be explained by the anisotropy of neutron emission in the rest frame of the fragment (fission fragments are aligned with respect to the axis of deformation of the fissioning nucleus), similar to the mechanism of ROT effect in the emission of prompt γ-rays.
Fusion-fission type collisions
International Nuclear Information System (INIS)
Oeschler, H.
1980-01-01
Three examples of fusion-fission type collisions on medium-mass nuclei are investigated whether the fragment properties are consistent with fission from equilibrated compound nuclei. Only in a very narrow band of angular momenta the data fulfill the necessary criteria for this process. Continuous evolutions of this mechnism into fusion fission and into a deep-inelastic process and particle emission prior to fusion have been observed. Based on the widths of the fragment-mass distributions of a great variety of data, a further criterion for the compound-nucleus-fission process is tentatively proposed. (orig.)
Theory of nuclear fission: a review
International Nuclear Information System (INIS)
Mosel, U.
1976-01-01
General properties of nuclear fission are reviewed and related to our present knowledge of fission theory. For this purpose the basic reasons for the shape of the fission barriers are discussed and their consequences compared with experimental results on barrier shapes and structures. Special emphasis is put on the asymmetry of the fission barriers and mass-distributions and its relation to the shells of the nascent fragment shells. Finally the problem of calculating fission cross sections is discussed
Angular distributions in quasi-fission reactions
International Nuclear Information System (INIS)
Luetzenkirchen, K.; Kratz, J.V.; Lucas, R.; Poitou, J.; Gregoire, C.; Wirth, G.; Bruechle, W.; Suemmerer, K.
1985-10-01
Angular distributions for fission-like fragments were measured in the systems 50 Ti, 56 Fe + 208 Pb by applying an off-line KX-ray activation technique. The distributions d 2 sigma/dTHETAdZ exhibit forward-backward asymmetries that are strongly Z-dependent. They result from a process (quasi-fission) which yields nearly symmetric masses in times comparable to the rotational period of the composite system. A method for obtaining the variance of the tilting angular momentum, K 0 2 , from these skewed, differential angular distributions is described. The results indicate that the tilting mode is not fully excited in quasi-fission reactions. The results are compared to the sum of the variances of all statistical spin components, measured via γ-multiplicities. Integration of the angular distributions d 2 sigma/dTHETAdZ over all values of Z yields integral angular distributions dsigma/dTHETA and dsigma/dΩ symmetric around 90 0 . The associated unusually large anisotropies do not at all provide an adequate basis for tests or modifications of the transition state theory. A deconvolution of d 2 sigma/dTHETAdZ is performed with gaussian distributions depending on rotational angles ΔTHETA extending over a range of up to 540 0 . From the mean values a time scale for the evolution of K 0 is calculated. (orig.)
Mass and Inertia Parameters for Nuclear Fission
International Nuclear Information System (INIS)
Damgaard, J.; Pauli, H.C.; Strutinsky, V.M.; Wong, C.Y.; Brack, M.; Stenholm-Jensen, A.
1969-01-01
The effective mass parameter and the moments of inertia for a deformed nucleus are evaluated using the cranking-model formalism. Special attention is paid to the dependence of these quantities on the intrinsic structure, which may arise due to shells in deformed nuclei. It is found that these inertial parameters are very much influenced by the shells present. The effective-mass parameter, which appears in an important way in the theory of spontaneous fission, fluctuates in the same manner as the shell-energy corrections. Its values at the fission barrier are up to two or three times larger than those at the equilibrium minima. This correlation comes about because for the effective mass the change in the local density of single-particle states is very important, much more so than the change in the pairing correlation. The moments of inertia which enter in the theory of angular anisotropy of fission fragments, also fluctuate as a function of the deformation. At low temperatures, the fluctuation is large and shows a distinct but more complicated correlation with the shells. At high temperatures, the moments of inertia fluctuate with a smaller amplitude about the rigid-body value in correlation with the energy-shell corrections. For the first-and second barriers, the rigid-body values are essentially reached at a nuclear temperature of 0.8 to 1.0 MeV. (author)
International Nuclear Information System (INIS)
Malek, F.
1990-01-01
This work is about PS177 experience made on LEAR machine at CERN in 1988. The annihilation reaction of anti protons on a target of Bismuth or Uranium is studied. Lambda particles are produced by this reaction, in the nucleus in 2% of cases 7.1 10 -3 hypernuclei by stopped antiproton in the target are produced. The prompt hypernucleus fission probability of uranium is 75% and that of Bismuth 10%. The mass distribution of fission fragments is symmetrical ((≡ the excitation energy of the nucleus is very high). If the nucleus hasn't fissioned, the non-mesonic lambda decay, gives it an energy of 100 MeV, what allows to fission later. This fission is delayed because the hypernucleus lifetime is 1.3 +0.25 -0.21 10 -10 sec for Bismuth [fr
Energy partition in nuclear fission
International Nuclear Information System (INIS)
Ruben, A.; Maerten, H.; Seeliger, D.
1990-01-01
A scission point model (two spheroid model TSM) including semi-empirical temperature-dependent shell correction energies for deformed fragments at scission is presented. It has been used to describe the mass-asymmetry-dependent partition of the total energy release on both fragments from spontaneous and induced fission. Characteristic trends of experimental fragment energy and neutron multiplicity data as function of incidence energy in the Th-Cf region of fissioning nuclei are well reproduced. Based on model applications, information on the energy dissipated during the descent from second saddle of fission barrier to scission point have been deduced. (author). 39 refs, 13 figs
Energy Technology Data Exchange (ETDEWEB)
Hatsukawa, Yuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1997-07-01
Delayed fission is a nuclear decay process that couples {beta} decay and fission. In the delayed fission process, a parent nucleus undergoes {beta} decay and thereby populates excited states in the daughter. If these states are of energies comparable to or greater than the fission barrier of the daughter, then fission may compete with other decay modes of the excited states in the daughter. In this paper, mechanism and some experiments of the delayed fission will be discussed. (author)
Neutron-neutron angular correlations in spontaneous fission of 252Cf and 240Pu
Verbeke, J. M.; Nakae, L. F.; Vogt, R.
2018-04-01
Background: Angular anisotropy has been observed between prompt neutrons emitted during the fission process. Such an anisotropy arises because the emitted neutrons are boosted along the direction of the parent fragment. Purpose: To measure the neutron-neutron angular correlations from the spontaneous fission of 252Cf and 240Pu oxide samples using a liquid scintillator array capable of pulse-shape discrimination. To compare these correlations to simulations combining the Monte Carlo radiation transport code MCNPX with the fission event generator FREYA. Method: Two different analysis methods were used to study the neutron-neutron correlations with varying energy thresholds. The first is based on setting a light output threshold while the second imposes a time-of-flight cutoff. The second method has the advantage of being truly detector independent. Results: The neutron-neutron correlation modeled by FREYA depends strongly on the sharing of the excitation energy between the two fragments. The measured asymmetry enabled us to adjust the FREYA parameter x in 240Pu, which controls the energy partition between the fragments and is so far inaccessible in other measurements. The 240Pu data in this analysis was the first available to quantify the energy partition for this isotope. The agreement between data and simulation is overall very good for 252Cf(sf ) and 240Pu(sf ) . Conclusions: The asymmetry in the measured neutron-neutron angular distributions can be predicted by FREYA. The shape of the correlation function depends on how the excitation energy is partitioned between the two fission fragments. Experimental data suggest that the lighter fragment is disproportionately excited.
Mechanisms of fission neutron emission
International Nuclear Information System (INIS)
Maerten, H.
1991-01-01
The time evolution in fission is the starting point for discussing not only the main mechanism of fission neutron emission, the evaporation from fully accelerated fragments, but also possible secondary ones connected with dynamical features of nuclear fission. ''Asymptotic'' conditions as relevant for describing the particle release from highly excited, rapidly moving fragments are defined. Corresponding statistical model approaches to fission neutron emission, based on the adequate consideration of the intricate fragment occurrence probability, reproduce most of the experimental data. The remarkable influence of fission modes on neutron observables is analyzed in the framework of a macroscopic-microscopic scission point model consistent with energy conservation. Finally, chances and deficiencies for solving the mechanism puzzle are summarized. (author). 87 refs, 21 figs
Energy Technology Data Exchange (ETDEWEB)
Moeller, Peter [Los Alamos National Laboratory, Theoretical Division, Los Alamos, NM (United States); Ichikawa, Takatoshi [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan)
2015-12-15
We propose a method to calculate the two-dimensional (2D) fission-fragment yield Y(Z,N) versus both proton and neutron number, with inclusion of odd-even staggering effects in both variables. The approach is to use the Brownian shape-motion on a macroscopic-microscopic potential-energy surface which, for a particular compound system is calculated versus four shape variables: elongation (quadrupole moment Q{sub 2}), neck d, left nascent fragment spheroidal deformation ε{sub f1}, right nascent fragment deformation ε{sub f2} and two asymmetry variables, namely proton and neutron numbers in each of the two fragments. The extension of previous models 1) introduces a method to calculate this generalized potential-energy function and 2) allows the correlated transfer of nucleon pairs in one step, in addition to sequential transfer. In the previous version the potential energy was calculated as a function of Z and N of the compound system and its shape, including the asymmetry of the shape. We outline here how to generalize the model from the ''compound-system'' model to a model where the emerging fragment proton and neutron numbers also enter, over and above the compound system composition. (orig.)
Fission throughout the periodic table
International Nuclear Information System (INIS)
Moretto, L.G.; Wozniak, G.J.
1989-04-01
The dualistic view of fission and evaporation as two distinct compound nucleus processes is substituted with a unified view in which fission, complex fragment emission, and light particle evaporation are seen as different aspects of a single process. 47 refs., 22 figs
International Nuclear Information System (INIS)
Wagemans, C.
1991-01-01
Fifty years after its discovery, the nuclear fission phenomenon is of recurring interest. When its fundamental physics aspects are considered, fission is viewed in a very positive way, which is reflected in the great interest generated by the meetings and large conferences organized for the 50th anniversary of its discovery. From a purely scientific and practical point of view, a new book devoted to the (low energy) nuclear fission phenomenon was highly desirable considering the tremendous amount of new results obtained since the publication of the book Nuclear Fission by Vandenbosch and Huizenga in 1973 (Academic Press). These new results could be obtained thanks to the growth of technology, which enabled the construction of powerful new neutron sources, particle and heavy ion accelerators, and very performant data-acquisition and computer systems. The re-invention of the ionization chamber, the development of large fission fragment spectrometers and sophisticated multiparameter devices, and the production of exotic isotopes also contributed significantly to an improved understanding of nuclear fission. This book is written at a level to introduce graduate students to the exciting subject of nuclear fission. The very complete list of references following each chapter also makes the book very useful for scientists, especially nuclear physicists. The book has 12 chapters covering the fission barrier and the various processes leading to fission as well as the characteristics of the various fission reaction products. In order to guarantee adequate treatment of the very specialized research fields covered, several distinguished scientists actively involved in some of these fields were invited to contribute their expertise as authors or co-authors of the different chapters
Energy Technology Data Exchange (ETDEWEB)
Rentenier, A; Bordenave-Montesquieu, D; Moretto-Capelle, P; Bordenave-Montesquieu, A [Laboratoire CAR-IRSAMC, UMR 5589 CNRS - Universite Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex (France)
2003-04-28
Multifragmentation and asymmetric fission (AF) of the C{sub 60} molecule induced by H{sup +}, H{sub 2}{sup +}, H{sub 3}{sup +} and He{sup +} ions at medium collision energies (2-130 keV) are considered. Momenta and kinetic energies of C{sub n}{sup +} fragment ions (n = 1- 12) are deduced from an analysis of time-of-flight spectra. In multifragmentation processes, momenta are found to be approximately constant when n > 2, a behaviour which explains that the most probable kinetic energy, as well as the width of the kinetic energy distributions, is found to be inversely proportional to the fragment size n; both momenta and kinetic energies are independent of the velocity and nature of the projectile, and hence of the energy deposit. A specific study of the AF shows that the kinetic energies of C{sub 2}{sup +}, C{sub 4}{sup +} and C{sub 6}{sup +} fragments are also independent of the collision velocity and projectile species; a quantitative agreement is found with values deduced from kinetic energy release measurements by another group in electron impact experiments, and the observed decrease when the mass of the light fragment increases is also reproduced. A quantitative comparison of AF and multifragmentation for the n = 2, 4 and 6 fragment ions shows that kinetic energies in AF exceed that in multifragmentation, a result which explains the oscillations observed when momenta or kinetic energies of fragments are plotted against the n-value. The AF yield is also found to scale with the energy deposit in the collision velocity range extending below the velocity at the maximum of the electronic stopping power; except for protons, it remains negligible with respect to multifragmentation as soon as the total energy deposit exceeds about 100 eV.
True ternary fission in 310126X
International Nuclear Information System (INIS)
Banupriya, B.; Vijayaraghavan, K.R.; Balasubramaniam, M.
2015-01-01
All possible combinations are minimized by the two dimensional minimization process and minimized with respect to neutron numbers and proton numbers of the fragments. Potential energy is low and Q - value is high at true ternary fission region. It shows that true ternary mode is the dominant mode in the ternary fission of superheavy nuclei. Also, the results show that the fragments with neutron magic numbers are the dominant one in the ternary fission of superheavy nuclei whereas the fragments with proton magic numbers are the dominant one in the ternary fission of heavy nuclei
Decay times for second-chance fission of 239U studied by crystal blocking
International Nuclear Information System (INIS)
Andersen, J.U.; Chechenin, N.G.; Jensen, A.S.; Joergensen, K.; Laegsgaard, E.
1979-01-01
Neutron-induced fission of 238 U has been studied by the crystal-blocking technique for neutron energies just below and above the threshold for second-chance fission. In agreement with earlier measurements, in this energy range the lifetime for first-chance fission is found to be too short to have an observable effect on the blocking dips. Above the threshold, however, an appreciable filling-in of the dips is observed. The results are analyzed in the terms of a two-component lifetime distribution and then indicate an average lifetime of a few fsec for second-chance fission at a neutron energy of Esub(n)approximately7.2 MeV, in agreement with results from a simple calculation. It is shown that in this analysis it is important to take into account the anisotropy of the fission-fragment distribution and, in particular, the difference between the angular distributions for first- and second-chance fission. (Auth.)
Fission modelling with FIFRELIN
International Nuclear Information System (INIS)
Litaize, Olivier; Serot, Olivier; Berge, Leonie
2015-01-01
The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ, e - ). The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the
International Nuclear Information System (INIS)
Hulet, E.K.; Wild, J.F.; Lougheed, R.W.; Baisden, P.A.; Landrum, J.H.; Dougan, R.J.; Mustafa, M.; Ghiorso, A.; Nitschke, J.M.
1979-01-01
The mass and kinetic energy distributions of fission fragments from the spontaneous fission of th newly discovered nuclide 259 Md were obtained. 259 Md was identified as the E. C. daughter of 259 No, and was found to decay entirely (> 95%) by spontaneous fission with a 95-min half-life. From the kinetic energies measured for 397 pairs of coincident fragments, a mass distribution was derived that is symmetric with sigma = 13 amu. 259 Md, together with 258 Fm and 259 Fm, form a select group of three nuclides whose mass division in spontaneous fission is highly symmetric. Unlike the total-kinetic-energy (TKE) distributions of 258 Fm and 259 Fm, which peak at approx. = to 240 MeV, this distribution for 259 Md is broad and is 50 MeV lower in energy. Analysis of the mass and energy distributions shows that events near mass symmetry also exhibit a broad TKE distribution, with one-third of the symmetric events having TKEs less than 200 MeV. The associated of low TKEs with symmetric mass division in the fission of very heavy actinides is anomalous and inconsistent with theories based upon the emergence of fragment shells near the scission point. Either three-body fragmentation or peculiar fragment shapes are assumed as the cause for the large consumption of Coulomb energy observed for a significant fraction of symmetric fissions in 259 Md. 6 figures
International Nuclear Information System (INIS)
Kodama, T.
1981-01-01
The nuclear fission process is pedagogically reviewed from a macroscopic-microscopic point of view. The Droplet model is considered. The fission dynamics is discussed utilizing path integrals and semiclassical methods. (L.C.) [pt
Towards a microscopic description of the fission process
Goutte, H; Berger, J F
2010-01-01
One major issue in nuclear physics is to develop a consistent model able to describe on the same footing the different aspects of the fission process, i.e. properties of the fissioning system, fission dynamics and fragment distributions. Microscopic fission studies based on the mean-field approximation are here presented.
International Nuclear Information System (INIS)
Mons, Michel
1988-01-01
In this research thesis, the author reports the use of laser resonance-enhanced multi-photon ionization and of time-of-flight mass spectrometry for a detailed characterization of fragments produced by a photo-dissociation process. The author more particularly addressed the case of a NO 2 molecule excited at low energies above the dissociation threshold. In the first part, the author discusses issues and problems related to molecular photo-dissociation. In the second part, he presents the developed method and shows that the combined use of both techniques allows a precise characterisation of photo-fragments in terms of internal or translational energies as well as in terms of angle distributions. Finally, the author presents and discusses results obtained in the case of NO 2 [fr
Decay and fission of the oriented nuclei
Kadmenskij, S G
2002-01-01
The fragment angular distributions for binary decay of oriented spherical and deformed nuclei with taking into account the correct transformational properties of wave functions under time inversion have been investigated. It has been shown that for description of fragment angular distributions the adiabatic approximation for collective rotational nuclear degrees of freedom is not correct. It has been demonstrated that this approximation is valid for description of spontaneous and induced low-energy nuclear fission. The dependence of partial fission widths on the orientation of the internal axes spins, projections of spins, and relative angular moments of fission fragments has been analyzed. It has been shown that the adiabatic approximation results in coherent interference of wave functions of fragments relative movement. This interference forms fragments the universal angular distributions of fission fragments for oriented nuclei. For these distributions the deviations from A. Bohr's formula have been invest...
Plicht, J. van der
1980-01-01
A parallel plate avalanche detector developed for the detection of fission fragments in particle induced fission reactions is described. The active area is 6 × 10 cm2; it is position sensitive in one dimension with a resolution of 2.5 mm. The detector can withstand a count rate of 25000 fission
International Nuclear Information System (INIS)
Baranov, I.; Jarmiychuk, S.; Kirillov, S.; Novikov, A.; Obnorskii, V.; Pchelintsev, A.; Wien, K.; Reimann, C.
1999-01-01
In this work the charge state of the negatively charged gold nanocluster ions (2-20 nm) that were desorbed from nanodispersed gold islet targets by 252 Cf fission fragments via electronic processes is studied. Mean cluster charge was calculated as a ratio of mean cluster mass to mean mass-to-charge ratio . Cluster masses were measured by means of a collector technique employing transmission electron microscopy and scanning force microscopy, while m/q was measured by means of a tandem TOF-spectrometer. It is shown that the nanocluster ions are mostly multiply charged (2-16e) and the charge increases non-linearly with the cluster size. The results are discussed
Non-compound nucleus fission in actinide and pre-actinide regions
Indian Academy of Sciences (India)
2015-07-22
Jul 22, 2015 ... In this article, some of our recent results on fission fragment/product angular distributions are discussed in the context of non-compound nucleus fission. Measurement of fission fragment angular distribution in 28Si+176Yb reaction did not show a large contribution from the non-compound nucleus fission.
Cold valleys in fusion and fission
International Nuclear Information System (INIS)
Misicu, S.
2003-01-01
The cold fission configuration after the preformation of the fragments resembles a short-lived dinuclear or quasi-molecular system. The most conceivable scission configuration is given by two fission fragments in touching with the symmetry axes aligned (pole-pole orientation). This conclusion was based on the simple argument that this configuration offers the optimal tunneling time, i.e. the difference between the Coulomb barrier and the decay energy Q is minimal. Other orientations are apparently precluded in cold spontaneous fission and should be regarded as quasi-fission doorways in the synthesis of superheavy elements by cold fusion. (orig.)
Potentials of fissioning plasmas
International Nuclear Information System (INIS)
Karlheinz, Thom.
1979-01-01
Successful experiments with the nuclear pumping of lasers have demonstrated that in gaseous medium the kinetic energy of fission fragments can be converted directly into non-equilibrium optical radiation. This confirms the concept that the fissioning medium in a gas-phase nuclear reactor shows an internal structure such as a plasma in nearly thermal equilibrium varying up to a state of extreme-non-equilibrium. The accompanying variations of temperatures, pressure and radiative spectrum suggest wide ranges of applications. For example, in the gas-phase fission reactor concept enriched uranium hexafluoride or an uranium plasma replaces conventional fuel elements and permits operation above the melting point of solid materials. This potential has been motivation for the US National Aeronautics and Space Administration (NASA) to conduct relevant research for high specific impulse propulsion in space. The need to separate the high temperature gaseous fuel from the surfaces of a containing vessel and to protect them against thermal radiation has led to the concept of an externally moderated reactor in which the fissioning gaseous material is suspended by fluid dynamic means and the flow of opaque buffer gas removes the power. The gaseous nuclear fuel can slowly be circulated through the reactor for continuous on-site reprocessing including the annihilation of transuranium actinides at fission when being fed back into the reactor. An equilibrium of the generation and destruction of such actinides at fission when being fed back into the reactor. An equilibrium of the generation and destruction of such actinides can thus be achieved. These characteristics and the unique radiative properties led to the expectation that the gas-phase fission reactor could feature improved safety, safeguarding and economy, in addition to new technologies such as processing, photochemistry and the transmission of power over large distances in space
Display of rotational levels near the fission threshold in 232Th(n,f) reaction
International Nuclear Information System (INIS)
Blons, J.; Mazur, C.; Paya, D.
1975-01-01
The 232 Th(n,f) cross section has been measured relative to that of 235 U up to 5MeV, with a neutron energy resolution of 3keV at 1.6MeV. The angular anisotropy of fission fragments has also been measured in the same energy range with an energy resolution of 6keV at 1,6MeV. The broad vibrational levels located above 1MeV are resolved into sharp structures which are interpreted as rotational states. The rotational constants h 2 /2J of highly deformed 233 Th are found to be 2.45 and 2.65keV at 1.5 and 1.6MeV respectively. These results are interpreted by the possibility of a third minimum in the fission barrier [fr
A theoretical framework is described, allowing to determine the fission barrier height using the observed cross sections of fission induced by the (d,p)-transfer with accuracy, which is not achievable in another type of low-energy fission of neutron-deficient nuclei, the $\\beta$-delayed fission. The primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission of...
Seventy-five years of nuclear fission
Indian Academy of Sciences (India)
technology can play such a vital role in a nation's development subsequently motivated ... fragments with a broad mass distribution is a unique nuclear phenomenon ... low energy and spontaneous fission of actinide nuclei and how these ...
Fission, fusion and photonuclear physics. Chapter 2
International Nuclear Information System (INIS)
Mazur, C.; Ribrag, M.
Pronounced structures in the time of flight distribution of fission fragments, having a given energy, were recently reported. This experiment has been reproduced with a better time resolution and structures are not observed [fr
High-precision spectrometer for studies of ion-induced and spontaneous fission dynamics
International Nuclear Information System (INIS)
Batenkov, O.; Elmgren, K.; Majorov, M.; Blomgren, J.; Conde, H.; Hultqvist, S.; Olsson, N.; Rahm, J.; Ramstroem, E.; Smirnov, S.; Veshikov, A.
1997-01-01
A spectrometer has been designed and built to investigate the dynamics of spontaneous and ion-induced fission processes. It consists of 8 neutron detectors surrounding a low mass scattering chamber containing the fissionable targets and two fission fragment telescopes. The spectrometer measures neutron spectra, and energy and angular correlations of neutrons, as well as kinetic energy, mass, and relative angle of fission fragments. A 252 Cf fission reference source is used for calibration. (orig.)
Nuclear fission studies: from LOHENGRIN to FIPPS
International Nuclear Information System (INIS)
Chebboubi, Abdelaziz
2015-01-01
Nuclear fission consists in splitting a nucleus, in general an actinide, into smaller nuclei. Despite nuclear fission was discovered in 1939 by Hahn and Strassman, fission models cannot predict the fission observables with an acceptable accuracy for nuclear fuel cycle studies for instance. Improvement of fission models is an important issue for the knowledge of the process itself and for the applications. To reduce uncertainties of the nuclear data used in a nuclear reactor simulation, a validation of the models hypothesis is mandatory. In this work, two features of the nuclear fission were investigated in order to test the resistance of the theories. One aspect is the study of the symmetric fission fragments through the measurement of their yield and kinetic energy distribution. The other aspect is the study of the fission fragment angular momentum.Two techniques are available to assess the angular momentum of a fission fragment. The first one is to look at the properties of the prompt gamma. The new spectrometer FIPPS (Fission Product Prompt gamma-ray Spectrometer), is currently under development at the ILL and will combine a fission filter with a large array of gamma and neutron detectors in order to respond to these issues. The first part of this work is dedicated to the study of the properties of a Gas Filled Magnet (GFM) which is the type of fission filter considered for the FIPPS project.The second part of this work deals with the measurement of isomeric yields and evaluations of the angular momentum distribution of fission fragments. The study of the spherical nucleus 132 Sn shed the light on the current limits of fission models. Finally, the last part of this work is about the measurement of the yields and kinetic energy distributions of symmetric fission fragments. Since models predict the existence of fission modes, the symmetry region is a suitable choice to investigate this kind of prediction. In parallel with all these studies, an emphasis on the
Energy Technology Data Exchange (ETDEWEB)
Vandenbosch, R. [University of Washington, Seattle, WA (United States); Unik, J. P.; Huizenga, J. R. [Argonne National Laboratory, Argonne, IL (United States)
1965-07-15
The fission of the compound nucleus U{sup 235} in the neighbourhood of its fission threshold has been studied by means of the U{sup 234} (d.pf) reaction. A three-parameter analyser was used to record simultaneously the two fission-fragment kinetic energies and the proton energy for each coincident event. The excitation energy at which fission occurs is defined by the kinetic energy of the stripped.proton. The variation of angular anisotropy with excitation energy shows considerably more structure than that obtained by Lamphere for the same nucleus resulting from fast-neutron bombardment of U{sup 234}. At least eight fission channels at the saddle point have been observed for the energy region between threshold and 2 MeV above threshold. Nilsson-type calculations of single particle energies for deformed nuclei have been made for the larger deformations more nearly describing the saddle-point configuration. The single particle states identified by Lamphere are consistent with those calculated to be close to the Fermi surface for reasonable saddle-point deformations. The primary motivation for this experiment was to search for a possible correlation between mass asymmetry and angular anisotropy. Mass yields obtained from the correlated fragment energies show no variation of the anisotropy with mass ratio, in contrast with experiments where the excitation energy at which fission is occurring is not fixed and where a dependence of anisotropy on mass ratio has been observed. There is therefore no evidence from anisotropy measurements that the properties of the saddle point influence the final mass division. The average total kinetic energy release in fission varies by less than 0.5% for the different saddle-point channels observed. The variation of total kinetic energy with mass ratio has also been investigated. (author) [French] Les auteurs ont etudie la fission du noyau compose {sup 235}U au voisinage de son seuil de fission par la reaction {sup 234}U(d,pf). A l'aide d
International Nuclear Information System (INIS)
Lorenzelli, Nicole.
1979-09-01
The irradiation by 235 U fission fragments (F.F.) of two iron samples of different purities (the essential impurity being C) have been studied. Comparative measurements of electrical resistivity and dechanneling of 5 MeV α-particles have been made during irradiation and subsequent recovery. The production curves provide, from their slopes at the origin, the following informations: 14000 Frenkel pairs by F.F. (from electrical resistivity); aggregate's rate: 5 per mille (from dechanneling). These curves do not follow a simple law: it seems that one observes the superposition of two saturation mechanisms with very different kinetics. During recovery, the same stages that after electrons or neutrons irradiation are observed, but with very different proportions. Dechanneling puts in evidence: -great modifications in cementite precipitation of an Fe-C alloy, by irradiation; - the recovery stage of loops starting from 800 K and with an activation energy approximately 1 eV; - the preponderant effect of clustering during stages Isub(D), Isub(E), IIsub(C) and IIsub(D) [fr
International Nuclear Information System (INIS)
Barysheva, N.M.; Bochkov, A.V.; Bochkova, N.V.; Grebenkin, K.F.; Kryzhanovskii, V.A.; Magda, E.P.; Neznakhina, A.E.
1992-01-01
Based on measurements of the luminescence intensities of the 5s 2 2 D 5/2 →5p 2 P 3/2 (λ=0.4416 μm) and 5s 2 2 D 3/2 →5p 2 P 1/2 (λ=0.325 μm) lines in a dense He-Cd medium excited by fission fragments, the reaction constant is determined for Cd + (5s 2 2 D 3/2 )+He→Cd + (5s 2 2 D 5/2 )+He. The assumption that the 5s 2 2 D 3/2 state of the Cd II ion is strongly deexcited by collisions with atoms of the buffer gas was not confirmed. The question of quasicontinuous lasing at the 5s 2 2 D 3/2 → 5p 2 P 1/2 (λ=0.325 μm) transition requires further study. 6 refs., 1 fig
International Nuclear Information System (INIS)
Pikulev, A A; Tsvetkov, V M; Sosnin, P V; Sinyanskii, A A
2009-01-01
The operation efficiency of the scheme with successive composition of two laser channels upon excitation of the active medium by uranium-235 fission fragments is studied experimentally and numerically. For the He:Ar:Xe = 380:380:1 mixture (at a pressure of 1 atm and the lasing wavelength λ = 2.03 μm) the maximum lasing power of a double channel (1 kW) is almost twice that of a single channel (540 W). Calculations show that in the case of ideal composition (without losses on mirrors) the lasing power of the double channel can be increased to 1.2 kW. For the Ar:Xe = 380:1 mixture (the pressure is 0.5 atm, λ = 1.73 μm) the maximum lasing power of the double channel (620 W) is slightly above that of the single channel (520 W), which is caused by the losses on aluminum mirrors employed for channel doubling and by a negative effect of optical inhomogeneities. In the case of ideal composition, the lasing power can be increased to 830 W. (lasers)
SYMMETRICAL AND ASYMMETRIC TERNARY FISSION OF HOT NUCLEI
SIWEKWILCZYNSKA, K; WILCZYNSKI, J; LEEGTE, HKW; SIEMSSEN, RH; WILSCHUT, HW; GROTOWSKI, K; PANASIEWICZ, A; SOSIN, Z; WIELOCH, A
Emission of a particles accompanying fusion-fission processes in the Ar-40 + Th-232 reaction at E(Ar-40) = 365 MeV was studied in a wide range of in-fission-plane and out-of-plane angles. The exact determination of the emission angles of both fission fragments combined with the time-of-flight
Viscosity, fission time scale and deformation of Dy-156
van't Hof, G; Bacelar, JCS; Dioszegi, [No Value; Harakeh, MN; Hesselink, WHA; Kalantar-Nayestanaki, N; Kugler, A; van der Ploeg, H; Plompen, AJM; van Schagen, JPS
1998-01-01
In the fusion-fission reaction Ar-40 + Cd-116 --> Dy-156*, fission, at E-b = 216 MeV and 238 MeV, gamma-rays were measured in coincidence with fission fragments. The interpretation of the gamma-ray spectra is done with the help of a modified version of the statistical-model code CASCADE. The spectra
Effective K quantum numbers in fission of oriented 235U
International Nuclear Information System (INIS)
Dabbs, J.W.T.; Eggerman, C.; Cauvin, B.; Michaudon, A.; Sanche, M.
1969-01-01
The angular anisotropy of fission fragments produced in neutron-induced fission of aligned 235 U nuclei has been measured for neutron energies between 0.3 eV and 175 eV, using time-of-flight techniques at the pulsed 45 MeV electron linear accelerator at Saclay. The low-temperature nuclear-alignment apparatus used was a modified version of the apparatus described at the Salzburg conference, and gave an average temperature of 0.61 K for the four UO 2 Rb(NO 3 ) 3 single crystal samples during a measurement period of approximately 220 h. The flight path was 5 m and the election pulse length was 100 ns. Multilevel fits to the observed 0 deg and 90 deg fission cross-sections have been made using the Adler and Adler formalism with the aid of a program developed by G. de Saussure. The most striking result obtained in the analysis of some 16 of 100 levels or groups of levels is a strong correlation between small fission width and an effective value of K ≅ J. All 5 resonances in the group of 16 for which results are final, for which K ≅ J is deduced, have exceptionally small widths. This result suggests that the small widths are associated with a large rotational energy and consequent diminution in available deformation energy, so that these 5 resonances are effectively sub-threshold resonances; such a suggestion is quite in accord with the ideas of Bohr. The preponderance of other resonances so far analysed have effective K values of 1 or 2. An analysis of all resolvable resonances is presented. (author)
(d,p)-transfer induced fission of heavy radioactive beams
Veselsky, Martin
2012-01-01
(d,p)-transfer induced fission is proposed as a tool to study low energy fission of exotic heavy nuclei. Primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission offers a possibility for systematic study the low energy fission of heavy exotic nuclei at the ISOLDE.
Fission mass yields of excited medium heavy nuclei
International Nuclear Information System (INIS)
Sandulescu, A.; Depta, K.; Herrmann, R.; Greiner, W.; Scheid, W.
1985-01-01
The mass distributions resulting from the fission of excited medium mass nuclei are discussed on the basis of the fragmentation theory. It is shown that very asymmetric fission events can be expected with rates which are only a few orders of magnitude smaller than the rates for symmetric fission. As an example a calculation of the fission mass distribution of the excited 172 Yb compound nucleus is presented. This mass distribution reveals observable structures over the entire range of the mass asymmetry due to valleys in the potential energy surface for fission fragments with closed proton and neutron shells
Resonance structure in the fission of ( sup 235 U+n)
Energy Technology Data Exchange (ETDEWEB)
Moore, M.S. (Los Alamos National Lab. (LANL), NM (USA). Physics Div.); Leal, L.C.; De Saussure, G.; Perez, R.B.; Larson, N.M. (Oak Ridge National Lab., TN (USA))
1989-10-09
A new multilevel reduced R-matrix analysis of the neutron-induced resonance cross sections of {sup 235}U has been carried out. We used as a constraint in the analysis the angular anisotropy measurements of Pattenden and Postma, obtaining a Bohr-channel (or J, K channel) representation of the resonances in a two-fission vector space for each spin state. Hambsch et al., have reported definitive measurements of the mass- and kinetic-energy distributions of fission fragments of ({sup 235}U+n) in the resonance region and analyzed their results according to the fission-channel representation of Brosa et al., extracting relative contributions of the two asymmetric and one symmetric Brosa fission channels. We have explored the connection between Bohr-channel and asymmetric Brosa-channel representations. The results suggest that a simple rotation of coordinates in channel space may be the only transformation required; the multilevel fit to the total and partial cross sections is invariant to such a transformation. (orig.).
Directory of Open Access Journals (Sweden)
Retno Hartati
2016-06-01
Full Text Available Transverse induced fission proven could be done in Teripang Tril, Stichopus herrmanni. This present works aimed to analyze wound recovery, regeneration period and growth of Teripang Trill after asexual reproduction by fission using two and three fission plane. Observations were made every day until the sea cucumber body separated into two or more (depending on treatment and reared for 16 weeks. The results showed that there are differences in wound recovery, regeneration period and growth of S. herrmanni depend on their different fission plane. The wound recovery and regeneration period (days of anterior, middle and posterior individu S. herrmanni resulted from two and three fission plane were varied but the two fission plane the anterior individu recover for longer period than posterior part and the wound recover process in both end for thee fission plane was same. Average growth of anterior and posterior fragment were longer for two fission plane than three fission plane. The middle fragment (M1 and M2 both fission plane was able to grow but very low. It showed that three fission plane gave very slow growth in every fragment of the body. Keywords: growth, post-fission, fission plane, Stichopus herrmanni
On the mechanism of fission neutron emission
International Nuclear Information System (INIS)
Maerten, H.; Richter, D.; Seeliger, D.
1986-01-01
This review represents the present knowledge of the mechanism of prompt fission neutron emission. Starting with a brief fission process characterization related with neutron emission, possible emission mechanisms are discussed. It is emphasized that the experimental study of special mechanisms, i.e. scission neutron emission processes, requires a sufficiently correct description of emission probabilities on the base of the main mechanism, i.e. the evaporation from fully accelerated fragments. Adequate statistical-model approaches have to account for the complexity of nuclear fission reflected by an intricate fragment distribution. The present picture of scission neutron emission is not clarified neither experimentally nor theoretically. Deduced data are contradictory and depend on the used analysis procedures often involving rough discriptions of evaporated-neutron distributions. The contribution of two secondary mechanisms of fission neutron emission, i.e. the neutron evaporation during fragment acceleration and neutron emission due to the decay of 5 He after ternary fission, is estimated. We summarize the recent progress of the theoretical description of fission neutron spectra in the framework of statistical models considering the standard spectrum of 252 Cf(sf) neutrons especially. The main experimental basis for the study of fission neutron emission is the accurate measurement of emission probabilities as a function of emission energy and angle (at least) as well as fragment parameters (mass number ratio and kinetic energy). The present status is evaluated. (author)
Investigation of exotic fission modes
International Nuclear Information System (INIS)
Poenaru, D. N.; Gherghescu, R. A.; Greiner, W.; Nagame, Y.; Hamilton, J. H.; Ramayya, A. V.
2002-01-01
Fission approach to the cluster radioactivities and α-decay has been systematically developed during the last two decades. A more complex process, the ternary fission, was observed since 1946 both in neutron-induced and spontaneous fission. We obtained interesting results concerning the binary fission saddle-point reflection asymmetric nuclear shapes, and we can explain how a possible nuclear quasimolecular state is formed during the 10 Be accompanied cold fission of 252 Cf. The equilibrium nuclear shapes in fission theory are usually determined by minimizing the deformation energy for a given surface equation. We developed a method allowing to obtain a very general saddle-point shape as a solution of a differential equation without an a priori introduction of a shape parametrization. In the approach based on a liquid drop model (LDM), saddle-point shapes are always reflection symmetric: the deformation energy increases with the mass-asymmetry parameter η = (A 1 - A 2 )/(A 1 + A 2 ). By adding the shell corrections to the LDM deformation energy, we obtained minima at a finite mass asymmetry for parent nuclei 238 U, 232,228 Th in agreement with experiments. This correction was calculated phenomenologically. A technique based on the fragment identification by using triple γ coincidences in the large arrays of Ge-detectors, like GAMMASPHERE, was employed at Vanderbilt University to discover new characteristics of the fission process, and new decay modes. The possibility of a whole family of new decay modes, the multicluster accompanied fission, was envisaged. Besides the fission into two or three fragments, a heavy or superheavy nucleus spontaneously breaks into four, five or six nuclei of which two are asymmetric or symmetric heavy fragments and the others are light clusters, e.g. α-particles, 10 Be, 14 C, or combinations of them. Examples were presented for the two-, three- and four cluster accompanied cold fission of 252 Cf and 262 Rf, in which the emitted
Mass dependence of positive pion-induced fission
International Nuclear Information System (INIS)
Khan, H.A.; Khan, N.A.; Peterson, R.J.
1991-01-01
Fission cross sections for a range of targets have been measured by solid-state track detectors following 80 and 100 MeV π + bombardment. Fission probabilities have been inferred by comparison to computed reaction cross sections. Fission probabilities for heavy targets agree with those for other probes of comparable energy and with statistical calculations. Probabilities for lighter targets are much above those previously observed or computed. Ternary fission cross sections and multiplicities of light fragments have also been determined
Dynamic effect analysis in 240Pu fission at low energy
International Nuclear Information System (INIS)
Patin, Y.; Lachkar, J.; Sigaud, J.
1975-01-01
The variations of kinetic and excitation energies and fragment masses have been analyzed as a function of the fissioning nucleus excitation energy. Most interest has been taken in the fission of 240 Pu where many experimental data have been reported. The results tend, in the whole, to illustrate the existence of two modes of fission; the first one is superfluid, the other is strongly damped in the last stage of the fission process [fr
International Nuclear Information System (INIS)
Goutte, Heloise; Fioni, Gabriele; Faust, Herbert; Goutte, Dominique
2005-01-01
The present book contains the proceedings of the third workshop in a series of workshops previously held in Seyssins in 1994 and 1998. The meeting was jointly organized by different divisions of CEA and two major international laboratories. In the opening address, Prof. B. Bigot, the French High Commissioner for Atomic Energy, outlined France's energy policy for the next few decades. He emphasized the continuing progress of nuclear fission in both technical and economic terms, allowing it to contribute to the energy needs of the planet even more in the future than it does today. Such progress implies a very strong link between fundamental and applied research based on experimental and theoretical approaches. The workshop gathered the different nuclear communities studying the fission process, including topics as the following: - nuclear fission experiments, - spectroscopy of neutron rich nuclei, - fission data evaluation, - theoretical aspects of nuclear fission, - and innovative nuclear systems and new facilities. The scientific program was suggested by an International Advisory Committee. About 100 scientists from 13 different countries attended the conference in the friendly working atmosphere of the Castle of Cadarache in the heart of the Provence. The proceedings of the workshop were divided into 11 sections addressing the following subject matters: 1. Cross sections and resonances (5 papers); 2. Fission at higher energies - I (5 papers); 3. Fission: mass and charge yields (4 papers); 4. Light particles and cluster emission (4 papers); 5. Spectroscopy of neutron rich nuclei (5 papers); 6. Resonances, barriers, and fission times (5 papers); 7. Fragment excitation and neutron emission (4 papers); 8. Mass and energy distributions (4 papers); 9. Needs for nuclear data and new facilities - I (4 papers); 10. Angular momenta and fission at higher Energies - II (3 papers); 11. New facilities - II (2 papers). A poster session of 8 presentations completed the workshop
The mass transfer mechanism of fissile material due to fission
International Nuclear Information System (INIS)
Shafrir, N.H.
1975-01-01
A thin 252 Cf source of a mean thickness of an approXimately mono-atomic layer was used as an experimental model for the study of the basic mechanism of the knock-on process taking place in fissile material. Because of the thinness of the source it can be assumed that mainly primary knock-ons are formed. The ejection rate of knock-ons created by direct collisions between fission fragments and source atoms was measured as follows: the ejected atoms were collected in high vacuum on a catcher foil and 252 Cf determined by alpha spectroscopy using a silicon surface barrier detector. The number of 252 Cf ejected from the source in unit time could thus be determined while considering the anisotropy of ejection, geometry and counting efficiency. Taking into account the chemical composition of the source, eta(theor.) = 252 Cf atoms/fission was obtained. This result can be considered in reasonable agreement with experiment confirming that under the experimental conditions described, practically no knock-on cascade is formed. (B.G.)
Nuclear data for neutron emission in the fission process
International Nuclear Information System (INIS)
Ganesan, S.
1991-11-01
This document contains the proceedings of the IAEA Consultants' Meeting on Nuclear Data for Neutron Emission in the Fission Process, Vienna, 22 - 24 October 1990. Included are the conclusions and recommendations reached at the meeting and the papers presented by the meeting participants. These papers provide a review of the status of experimental and theoretical data on neutron emission in spontaneous and neutron induced fission with reference to the data needs for reactor applications oriented towards actinide burner studies. The specific topics covered are the following: experimental measurements and theoretical predictions and evaluations of fission neutron energy spectra, average prompt fission neutron multiplicity, correlation in neutron emission from complementary fragments, neutron emission during acceleration of fission fragments, statistical properties of neutron rich nuclei by study of emission spectra of neutrons from the excited fission fragments, integral qualification of nu-bar for the major fissile isotopes, nu-bar total of 239 Pu and 235 U, and related problems. Refs figs and tabs
Fission fragment pumping of CO gas mixtures
International Nuclear Information System (INIS)
McArthur, D.A.
1978-01-01
Some initial experiments on the spectral properties of the room-temperature CO nuclear pumped laser (NPL), and also the results of some parameter optimization experiments are presented. The parameter optimization has resulted in peak laser powers approximately 20 W and laser energies > or approximately equal to 1 mJ, which are greater than those reported thus far for any other room temperature NPL (however, the laser powers and energies of the low-temperature CO NPL are still much higher than those reported here). The spectral properties of the CO laser were studied because they may reveal how energy enters the vibrational level system of the CO molecule, and thus help quantify the amount of vibrational excitation which is occurring
Rowland, Mark S [Alamo, CA; Snyderman, Neal J [Berkeley, CA
2012-04-10
A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source.
Fission dynamics in the proton induced fission of heavy nuclei
Energy Technology Data Exchange (ETDEWEB)
Rubchenya, V.A. E-mail: rubchen@phys.jyu.fi; Trzaska, W.H.; Itkis, I.M.; Itkis, M.G.; Kliman, J.; Kniajeva, G.N.; Kondratiev, N.A.; Kozulin, E.M.; Krupa, L.; Pokrovski, I.V.; Voskressenski, V.M.; Hanappe, F.; Materna, T.; Dorvaux, O.; Stuttge, L.; Chubarian, G.; Khlebnikov, S.V.; Vakhtin, D.N.; Lyapin, V.G
2004-04-05
Multi-parameter correlation study of the reaction {sup 242}Pu(p, f) at E{sub p} 13, 20 and 55 MeV has been carried out. Fission fragment mass and kinetic energy distributions and the double differential neutron spectra have been measured. It was observed that the two-humped shape of mass distributions prevailed up to highest proton energy. Manifestation of the nuclear shell Z 28 near fragment mass A{sub fr} = 70 has been detected. The experimental results were analyzed in the framework of a time-dependent statistical model with inclusion of nuclear friction effects in the fission process. The multi-parameter correlation study of the reaction.
Semiclassical approach to sequential fission in peripheral heavy-ion collisions
Directory of Open Access Journals (Sweden)
Strazzeri Andrea
2016-01-01
Full Text Available A closed-form theoretical approach describing in a single picture both the evaporation component and the fast nonequilibrium component of the sequential fission of projectilelike fragments in a semiperipheral heavy-ion collision is derived and then applied to the dynamical fission observed in the 124Sn+64Ni semiperipheral collision at 35A MeV. Information on opposite polarization effects of the fissioning projectilelike fragments and on their “formation-to-fast fission lifetimes” are obtained.
Different fission behavior induced by heavy ion central and peripheral collisions
International Nuclear Information System (INIS)
Wu Enjiu; Zheng Jiwen; Xiao Zhigang; Zhang Chun; Tan Jilian; Yin Shuzhi; Wang Sufang; Jin Genming; Yin Xu; Song Mingtao; Jin Weiyang; Peng Xingping; Li Zuyu; Wu Heyu; He Zhiyong; Jiang Dongxing; Qian Xing
2000-01-01
Correlated fission fragments from the 40 Ar + 209 Bi reaction and their further correlation with α particles have been studied for peripheral and central collisions simultaneously. The existence of different fission behavior of hot nuclei formed in central and peripheral collisions was found from the systematic analysis of the mass and energy distributions of fission fragments as a function of the initial temperature of hot fissioning nuclei
Mass resolved angular distribution of fission products in 20Ne + 232Th reaction
International Nuclear Information System (INIS)
Tripathi, R.; Sodaye, S.; Sudarshan, K.; Kumar, Amit; Guin, R.
2011-01-01
Mass resolved angular distribution of fission products was measured in 20 Ne + 232 Th reaction at beam energy of 120 MeV. A preliminary analysis of the angular distribution data of fission products shows higher average anisotropy compared to that calculated using statistical theory. A signature of rise in anisotropy near symmetry, as reported in earlier studies in literature, is also seen. Further study is in progress to get more detailed information about the contribution from non-compound nucleus fission and dependence of angular anisotropy on asymmetry of mass division
Physics and chemistry of fission
International Nuclear Information System (INIS)
1979-01-01
models, the nucleus is imagined to be a very small drop of liquid; the theorist then devises many schemes that lead to its splitting into two smaller drops. It is surprising how many detailed features theorists can predict, based on such simple models, and how well these predictions have been confirmed by experiments. The symposium summarized the progress in this field, and indicated how many intricate details can be introduced into a simple liquid drop model to give better agreement with experimental results. Step by step, a picture is emerging and being continuously improved, coming closer and closer to the truth. However, the liquid drop model has several competitors of which the most prominent is the shell model. This model assumes that the constituents of the nucleus are sorted into well defined energy levels, or shells; the distribution of protons and neutrons in these shells, and their movements from one shell to another, can provide an explanation for many experimentally observed facts New theoretical results drawn from these models were reported at the symposium, together with some efforts to combine different theoretical concepts, thereby trying to create a unified picture of nuclear fission. The nucleus is too small for the scientist to be able to observe directly what is happening inside it. There is really only one way for an experimenter to study a process in a nucleus, he must measure the energies of the particles coming out of it. In the case of fission, these 'messengers' can be the fission fragments, i.e. nuclei of elements that are being created from the splitting atom, but they can also be the neutrons or gamma rays which emerge during and after the fission process. Several sessions in the symposium were devoted to reports of such studies. With the help of sophisticated electronics systems, or complicated radiochemical methods, experimenters have measured the energies of fission fragments, neutrons, gamma and X-rays, and other particles emerging from
Ternary fission induced by polarized neutrons
Directory of Open Access Journals (Sweden)
Gönnenwein Friedrich
2013-12-01
Full Text Available Ternary fission of (e,e U- and Pu- isotopes induced by cold polarized neutrons discloses some new facets of the process. In the so-called ROT effect shifts in the angular distributions of ternary particles relative to the fission fragments show up. In the so-called TRI effect an asymmetry in the emission of ternary particles relative to a plane formed by the fragment momentum and the spin of the neutron appear. The two effects are shown to be linked to the components of angular momentum perpendicular and parallel to the fission axis at the saddle point of fission. Based on theoretical models the spectroscopic properties of the collective transitional states at the saddle point are inferred from experiment.
Energy Technology Data Exchange (ETDEWEB)
Diwisch, Marcel
2015-07-01
In this work the basic features of isochronous mass spectroscopy (IMS) for the present facilities at GSI and also for the future experiments at FAIR have been experimentally and theoretically investigated. The prospects and limitations of IMS have been carefully studied with calculations and experiments. The data of two different previous IMS experiments at GSI have been combined and analyzed with a novel correlation-matrix method (CMM). Both experiments were performed with the fragment separator FRS and the experimental ion storage ring ESR. In both experiments fission fragments, created by {sup 238}U projectiles in a beryllium target at the entrance of the FRS, were spatially separated and injected into the isochronous ESR. In the first experiment the full Bρ acceptance of the ESR was used whereas in the second one the Bρ of each fragment was defined by slits in the dispersive central focal plane of the FRS. In this way the magnetic rigidity was well-determined for all injected fragments to ΔBρ/Bρ=1.5.10{sup -4}. The harvest of this analysis is 25 new masses near and at the N=82 shell closure. The comparison of the experimental results with the AME extrapolation and different theoretical models reveal significant differences due to the low theoretical prediction power of the calculations in this mass range. In this respect one has to emphasize that due to the novel analysis method in this work these 25 new masses could be extracted additional to our previously already published results. It is almost needless to mention that the new mass values will contribute to improved r-process calculations which are in progress. In the present analysis the existing matrix method was extended with a variable scaling factor (s). The scaling factor was determined for each mass-to-charge ratio (m/q) of the measured ions and implemented as a function of m/q in the analysis. This has extended the accessible m/q range. The revolution time was determined via a 3rd-order fit of
International Nuclear Information System (INIS)
Diwisch, Marcel
2015-01-01
In this work the basic features of isochronous mass spectroscopy (IMS) for the present facilities at GSI and also for the future experiments at FAIR have been experimentally and theoretically investigated. The prospects and limitations of IMS have been carefully studied with calculations and experiments. The data of two different previous IMS experiments at GSI have been combined and analyzed with a novel correlation-matrix method (CMM). Both experiments were performed with the fragment separator FRS and the experimental ion storage ring ESR. In both experiments fission fragments, created by 238 U projectiles in a beryllium target at the entrance of the FRS, were spatially separated and injected into the isochronous ESR. In the first experiment the full Bρ acceptance of the ESR was used whereas in the second one the Bρ of each fragment was defined by slits in the dispersive central focal plane of the FRS. In this way the magnetic rigidity was well-determined for all injected fragments to ΔBρ/Bρ=1.5.10 -4 . The harvest of this analysis is 25 new masses near and at the N=82 shell closure. The comparison of the experimental results with the AME extrapolation and different theoretical models reveal significant differences due to the low theoretical prediction power of the calculations in this mass range. In this respect one has to emphasize that due to the novel analysis method in this work these 25 new masses could be extracted additional to our previously already published results. It is almost needless to mention that the new mass values will contribute to improved r-process calculations which are in progress. In the present analysis the existing matrix method was extended with a variable scaling factor (s). The scaling factor was determined for each mass-to-charge ratio (m/q) of the measured ions and implemented as a function of m/q in the analysis. This has extended the accessible m/q range. The revolution time was determined via a 3rd-order fit of the time
Measurements of fission cross-sections. Chapter 4
International Nuclear Information System (INIS)
James, G.D.
1981-01-01
The steps involved in the measurement of fission cross sections are summarized and the range of techniques available are considered. Methods of fission detection are described with particular emphasis on the neutron energy dependent properties of the fission process and the details of fragment energy loss which can lead to energy-dependent changes in detector efficiency. Selected examples of fission cross-section measurements are presented and methods of data reduction, storage, analysis and evaluation, are examined. Finally requested accuracies for fission cross section data are compared to estimated available accuracies. (U.K.)
14. International workshop on nuclear fission physics. Proceedings
International Nuclear Information System (INIS)
2000-01-01
The meetings on nuclear fission took place 12-15 October 1998 and was organized by Institute of Physics and Power Engineering. The aim of the workshop was to present and discuss main new both theoretical and experimental results obtained in the area of nuclear fission, dynamical feature, properties of fission fragments and complementary radiation. As usual the program of the workshop was designed to cover a wide range of physical phenomena - from low energy and spontaneous fission to fission of hot rotating nuclei and multifragmentation at intermediate and high energies. Reaction induced by slow and fast neutron, light and heavy ions were discussed [ru
Role of ternary fission in synthesis of bypassed nuclei
International Nuclear Information System (INIS)
Kramarovskij, Ya.M.; Chechev, V.P.
1983-01-01
A possible influence of ternary fission with escape of neutron-enriched light charged particles on the synthesis of bypassed nuclides is considered. It is shown that this concept cannot give explanation of bypassed isotope concentrations, but it can make some contribution, if the probability of ternary fission for superheavy nuclei grows sharply with Z 2 /A parameter. The account of β-delayed fission contributes to the shift of ternary fission fragments into the region of neutron-deficient isotopes. Consistent consideration of the ternary fission role in the nucleosynthesis is possible only with an important accumulation of experimental and theoretical data on this process, particularly for the nuclei with Z > 100
Theoretical study of fission dynamics with muons
International Nuclear Information System (INIS)
Oberacker, V.E.; Umar, A.S.; Bottcher, C.; Strayer, M.R.; Maruhn, J.A.; Frankfurt Univ.
1992-01-01
Following muon capture by actinide atoms, some of the inner shell muonic transitions proceed by inverse internal conversion, i.e. the excitation energy of the muonic atom is transferred to the nucleus. In particular, the muonic E2:(3d→1s) transition energy is close to the peak of the isoscalar giant quadrupole resonance in actinide nuclei which exhibits a large fission width. Prompt fission in the presence of a bound muon allows us to study the dynamics of large-amplitude collective motion. We solve the time-dependent Dirac equation for the muonic spinor wave function in the Coulomb field of the fissioning nucleus on a 3-dimensional lattice and demonstrate that the muon attachment probability to the light fission fragment is a measure of the nuclear energy dissipation between the outer fission barrier and the scission point
Theory of neutron emission in fission
International Nuclear Information System (INIS)
Madland, D.G.
1989-01-01
Following a summary of the observables in neutron emission in fission, a brief history is given of theoretical representations of the prompt fission neutron spectrum N(E) and average prompt neutron multiplicity /bar /nu///sub p/. This is followed by descriptions, together with examples, of modern approaches to the calculation of these quantities including recent advancements. Emphasis will be placed upon the predictability and accuracy of the modern approaches. In particular, the dependence of N(E) and /bar /nu///sub p/ on the fissioning nucleus and its excitation energy will be discussed, as will the effects of and competition between first-, second- and third-chance fission in circumstances of high excitation energy. Finally, properties of neutron-rich (fission-fragment) nuclei are discussed that must be better known to calculate N(E) and /bar /nu///sub p/ with higher accuracy than is currently possible. 17 refs., 11 figs
DEFF Research Database (Denmark)
Christiansen, Steen Ledet
; it is a materialisation of an ideological fission which attempts to excise certain ideological constructions, yet paradoxically casting them in a form that is recognizable and familiar. The monstrous metonomy which is used shows us glimpses of a horrid being, intended to vilify the attack on New York City. However......, it is a being which is reminiscent of earlier monsters - from Godzilla to The Blob. It is evident that the Cloverfield monster is a paradoxical construction which attempts to articulate fear and loathing about terrorism, but ends up trapped in an ideological dead-end maze, unable to do anything other than...
Neutron emission as a probe of fusion-fission and quasi-fission dynamics
International Nuclear Information System (INIS)
Hinde, D.J.
1991-01-01
Pre- and post scission neutron yeilds have been measured as a function of projectile mass, compound nucleus fissility, and fission mass-split and total kinetic energy (TKE) for 27 fusion-fission and quasi-fission reactions induced by beams of 16,18 O, 40 Ar and 64 Ni. A new method of interpretation of experimental pre-scission neutron multiplicities ν-pre and mean kinetic energies ε ν allows the extraction of fission time scales with much less uncertainty than previously, all fusion-fission results being consistent with a dynamical time scale of (35±15) x 10 -21 s for symmetric fission. All reactions show that ν-pre falls quite rapidly with increasing mass-asymmetry; evidence is presented that for fusion-fission reactions this is partly due to a reduction of the dynamical fission time scale with mass-asymmetry. For quasi-fission, the data indicate that the pre-scission multiplicity and mean neutron kinetic energy are very sensitive to the final mass-asymmetry, but that the time scale is virtually independent of mass-asymmetry. It is concluded that for fusion-fission there is no dependence of ν-pre on TKE, whilst for 64 Ni-induced quasi-fission reactions, a strong increase of ν-pre with decreasing TKE is observed, probably largely caused by neutron emission during the acceleration time of the fission fragments in these fast reactions. Interpretation of post-scission multiplicities in terms of fragment excitation energies leads to deduced time scales consistent with those determined from the pre-scission data. 54 refs., 17 tabs., 25 figs
Fission energy of uranium isotopes and transuranium elements
International Nuclear Information System (INIS)
Nemirovskij, P.Eh.; Manevich, L.G.
1981-01-01
A comparison is made between the prompt fission energy, Esub(pr), calculated from the mass and binding energy spectrum and the Esub(pr) value obtained from the experimental data on the kinetic energy of fragments, the energy of prompt neutrons and prompt γ-quanta. Basing on the data on β-decay chains of fission fragments, the energies of neutrinos, γ-quanta and β-electrons are obtained, which permits to calculate the actual energy released during fission. The calculations are performed for thermal neutron-induced fission, fast-neutron induced fission and for fission after bombardment with 14 MeV neutrons. The available experimental data on the fission fragment kinetic energy, prompt γ-quanta energy and fission neutron energy are presented. The comparison of the Esub(pr) values obtained experimentally for the thermal-neutron-induced fission with the calculated Esub(pr) value shows that for 233 U, 239 Pu, 241 Pu the agreement is rather favourable. For 235 U the agreement is within the error limits. As to the Esub(pr) values for the fast-neutron-induced fission, the agreement between the calculated and experimental data for all nuclides is quite good
International Nuclear Information System (INIS)
Wong, C.; Anderson, J.D.; Hansen, L.; Lehn, A.V.; Williamson, M.A.
1977-01-01
The present development status of the mica fission detectors is summarized. It is concluded that the techniques have been refined and developed to a state such that the mica fission counters are a reliable and reproducible detector for fission events
Prompt fission neutron spectra of n + 235U above the (n, nf) fission threshold
International Nuclear Information System (INIS)
Shu Nengchuan; Chen Yongjing; Liu Tingjin; Jia Min
2015-01-01
Calculations of prompt fission neutron spectra (PFNS) from the 235 U(n, f) reaction were performed with a semi-empirical method for En = 7.0 and 14.7 MeV neutron energies. The total PFNS were obtained as a superposition of (n, xnf) pre-fission neutron spectra and post-fission spectra of neutrons which were evaporated from fission fragments, and these two kinds of spectra were taken as an expression of the evaporation spectrum. The contributions of (n, xnf) fission neutron spectra on the calculated PFNS were discussed. The results show that emission of one or two neutrons in the (n, nf) or (n, 2nf) reactions influences the PFNS shape, and the neutron spectra of the (n, xnf) fission-channel are soft compared with the neutron spectra of the (n, f) fission channel. In addition, analysis of the multiple-chance fission component showed that second-chance fission dominates the PFNS with an incident neutron energy of 14.7 MeV whereas first-chance fission dominates the 7 MeV case. (authors)
Dynamic effects in neutron induced fission of 230Th and 232Th
International Nuclear Information System (INIS)
Trochon, J.; Frehaut, J.; Pranal, Y.; Simon, G.; Boldeman, J.W.
1982-09-01
The fission fragment characteristics of the two thorium isotopes 230 Th and 232 Th have been measured in an attempt to study the evolution of the fissioning nucleus from saddle point to scission. The partial fission channel at the saddle point have been deduced from a fission fragment angular distribution and fission cross section analysis. Changes with energy in the average number of prompt neutron (νsub(p)) emitted per fission and the total fragment kinetic energy (TKE) have been observed in the fission threshold region. A rather good fit of νsub(p) and TKE values has been obtained on the basis of a correlation of these quantities and the partial fission channel ratios. This leads to expect for these isotopes a passage from saddle point to scission sufficiently rapid for the coupling between collective and intrinsic excitation to be very weak [fr
International Nuclear Information System (INIS)
Ruben, A.; Maerten, H.; Seeliger, D.
1990-01-01
A complex statistical theory of fission neutron emission combined with a phenomenological fission model has been used to calculate fission neutron data for 238 U. Obtained neutron multiplicities and energy spectra as well as average fragment energies for incidence energies from threshold to 20 MeV (including multiple-chance fission) are compared with traditional data representations. (author). 19 refs, 6 figs
Mass distributions in nucleon-induced fission at intermediate energies
Duijvestijn, M C; Hambsch, F J
2001-01-01
Temperature-dependent fission barriers and fission-fragment mass distributions are calculated in the framework of the multimodal random neck-rupture model (MM-RNRM). It is shown how the distinction between the different fission modes disappears at higher excitation energies, due to the melting of shell effects. The fission-fragment mass yield calculations are coupled to the nuclear reaction code ALICE-91, which takes into account the competition between the other reaction channels and fission. With the combination of the temperature-dependent MM-RNRM and ALICE-91 nucleon-induced fission is investigated at energies between 10 and 200 MeV for nuclei varying from Au to Am. (72 refs).
New experimental approaches to investigate the fission dynamics
Energy Technology Data Exchange (ETDEWEB)
Benlliure, J., E-mail: j.benlliure@usc.es; Rodríguez-Sánchez, J. L.; Alvarez-Pol, H.; Ayyad, Y.; Cortina-Gil, D.; Paradela, C.; Pietras, B.; Ramos, D.; Vargas, J. [Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Audouin, L.; Boutoux, G. [Institut de Physique Nucléaire d’Orsay, F-91406 Orsay (France); Bélier, G.; Chatillon, A.; Gorbinet, T.; Laurent, B.; Martin, J.-F.; Pellereau, E.; Taïeb, J. [CEA, DAM, DIF, F-91297 Arpajon (France); Casarejos, E. [Universidad de Vigo, E-36200 Vigo (Spain); Heinz, A. [Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); and others
2016-07-07
The first ever achieved full identification of both fission fragments, in atomic and mass number, made it possible to define new observables sensitive to the fission dynamics along the fission path up to the scission point. Moreover, proton-induced fission of {sup 208}Pb at high energies offers optimal conditions for the investigation of dissipative, and transient effects, because of the high-excitation energy of the fissioning nuclei, its low angular momentum, and limited shape distortion by the reaction. In this work we show that the charge distribution of the final fission fragments can constrain the ground-to-saddle dynamics while the mass distribution is sensitive to the dynamics until the scission point.
Nuclear molecules in low energy fission of actinides?
International Nuclear Information System (INIS)
Pyatkov, Yu.V.; Pashkevich, V.V.; Tishchenko, V.G.; Unzhakova, A.V.; )
2000-01-01
A comparison is presented of the fine structure (FS) of the both energy-mass and energy-charge distributions of the fission fragments of thermal neutron induced fission of uranium in the data obtained at different spectrometers. Some peculiarities of the FS observed can be treated as a manifestation of two different types of collective vibrations of the fissioning system on its way to scission [ru
Daniel Gogny's vision for a microscopic theory of fission
Younes, W.
2017-05-01
Daniel Gogny made many contributions to our understanding of nuclear fission over a span of 35 years. This paper reviews some of those contributions, focusing in particular on fission dynamics, the challenges of describing scission in a quantum-mechanical context, and the calculation of fragment properties such as their mass, kinetic, and excitation energy distributions. The generator coordinate method provides the common theoretical framework within which these various aspects of fission are formulated.
Delayed fission of the 238U muonic atom
International Nuclear Information System (INIS)
Ganzorig, Dz.; Krogulski, T.; Kuznetsov, V.D.; Polikanov, S.M.; Sabirov, B.M.
1975-01-01
The time distributions of fission and muon free decay events with respect to the moment of the muon-stop event have been measured for double and triple coincidences between these three events. The triple-coincidence time distributions give an indication of the o-curence of two new effects: the delayed fission of muonic 238 U atom and conversion of muons from the fission fragments
Elastic anisotropy of crystals
Directory of Open Access Journals (Sweden)
Christopher M. Kube
2016-09-01
Full Text Available An anisotropy index seeks to quantify how directionally dependent the properties of a system are. In this article, the focus is on quantifying the elastic anisotropy of crystalline materials. Previous elastic anisotropy indices are reviewed and their shortcomings discussed. A new scalar log-Euclidean anisotropy measure AL is proposed, which overcomes these deficiencies. It is based on a distance measure in a log-Euclidean space applied to fourth-rank elastic tensors. AL is an absolute measure of anisotropy where the limiting case of perfect isotropy yields zero. It is a universal measure of anisotropy applicable to all crystalline materials. Specific examples of strong anisotropy are highlighted. A supplementary material provides an anisotropy table giving the values of AL for 2,176 crystallite compounds.
Application of pulse shape discrimination in Si detector for fission ...
Indian Academy of Sciences (India)
Pulse shape discrimination (PSD) with totally depleted transmission type Si surface barrier detector in reverse mount has been investigated to identify fission fragments in the presence of elastic background in heavy ion-induced fission reactions by both numerical simulation and experimental studies. The PSD method is ...
Dynamics of process at the final stage of nuclear fission
International Nuclear Information System (INIS)
Koljari, I.G.; Mavlitov, N.D.
2005-01-01
Numerous experimental data show, that the final stage of nuclear fission near to a scission point plays an essential role at formation of characteristics of fission products. At the description of a final stage of fission there is a number of problems: Definition of the form of the nuclear near the scission point and definition forms of a fission fragments; The account of dynamic processes in compound nuclear directly before of fission. The condition of the quasistatic al adiabatic process - dS/dt=0 - is applied in a point of transition from the uniform compound nuclei to several forms for definition of generalized coordinates and speeds. Calculation of dependence of post neutrons from nuclear mass of fission fragments for reactions is α+ 83 Bi 209 → 85 At 213 (E lab = 45 MeV); α+ 92 U 242 → 94 Pu 242 (E lab = 45 MeV); 8 O 18 + 79 Au 197 → 97 Fr 215 (E lab = 159 MeV). System of equations, which describes behaviour of system in a point of nuclear fission-transition from the uniform form to system of a two (and, probably more) fission fragments is given. The system of the equations allows in a fission point to define the generalized coordinates, and the generalized speeds for each of the generalized coordinates of collective deformation variables
Fission profits of thorium: Distribution in charge and mass
International Nuclear Information System (INIS)
Guarnieri, A.A.
1985-01-01
It is presented the improvement of a semi-empiric model to describe behavior fo the 235 U + thermal neutrons system. The model is applied to fission of the 232 Th case reproducing the distribution of mass profits of fission products from the behavior of independent profits of fragments related the mass and charge, and the emission of prompt neutrons per fragment. (M.C.K.) [pt
Elise: a new facility for unprecedented experimental nuclear fission studies
International Nuclear Information System (INIS)
Taieb, J.; Belier, G.; Chatillon, A.; Granier, T.; Kelic, A.; Ricciardi, V.; Schmidt, K.H.; Voss, B.; Coste-Delclaux, M.; Diop, C.; Jouanne, C.; Schmitt, C.; Aiche, M.; Czajkowski, S.; Jurado, B.; Audouin, L.; Peyre, J.; Rosier, P.; Tassan-Got, L.; Bertoumieux, E.; Dore, D.; Dupont, E.; Letourneau, A.; Panebianco, S.
2009-01-01
A novel experimental program aiming to study the properties of fragments and neutrons emitted in the fission process has been initiated. The experiment will be held at the ELISe electron-ion collider to be constructed at GSI, Darmstadt in the framework of the FAIR extension of the facility. The experiment will take advantage of the inverse kinematics allowing, in particular, a total mass and charge resolution for all fission fragments. (authors)
Nuclear fission: a review of experimental advances and phenomenology
Andreyev, A. N.; Nishio, K.; Schmidt, K.-H.
2018-01-01
In the last two decades, through technological, experimental and theoretical advances, the situation in experimental fission studies has changed dramatically. With the use of advanced production and detection techniques both much more detailed and precise information can now be obtained for the traditional regions of fission research and, crucially, new regions of nuclei have become routinely accessible for fission studies. This work first of all reviews the recent developments in experimental fission techniques, in particular the resurgence of transfer-induced fission reactions with light and heavy ions, the emerging use of inverse-kinematic approaches, both at Coulomb and relativistic energies, and of fission studies with radioactive beams. The emphasis on the fission-fragment mass and charge distributions will be made in this work, though some of the other fission observables, such as prompt neutron and γ-ray emission will also be reviewed. A particular attention will be given to the low-energy fission in the so far scarcely explored nuclei in the very neutron-deficient lead region. They recently became the focus for several complementary experimental studies, such as β-delayed fission with radioactive beams at ISOLDE(CERN), Coulex-induced fission of relativistic secondary beams at FRS(GSI), and several prompt fusion–fission studies. The synergy of these approaches allows a unique insight in the new region of asymmetric fission around {\\hspace{0pt}}180 Hg, recently discovered at ISOLDE. Recent extensive theoretical efforts in this region will also be outlined. The unprecedented high-quality data for fission fragments, completely identified in Z and A, by means of reactions in inverse kinematics at FRS(GSI) and VAMOS(GANIL) will be also reviewed. These experiments explored an extended range of mercury-to-californium elements, spanning from the neutron-deficient to neutron-rich nuclides, and covering both asymmetric, symmetric and transitional fission regions
Correlation studies of neutron multiplicities in the 252Cf spontaneous fission
International Nuclear Information System (INIS)
Alkhazov, I.D.; Dmitriev, V.D.; Kovalenko, S.S.; Kuznetsov, A.V.; Malkin, L.Z.; Petrzhak, K.A.; Petrov, B.F.; Shpakov, V.I.
1988-01-01
Correlations between the numbers of neutrons emitted by the 252 Cf spontaneous fission fragments have been studied as a function of the fragment mass and total kinetic energy. Behaviour of the neutron number dispersions and covariances was studied for the region of symmetric fission. Parameters of the complementary fragment excitation energy distribution (mean values, dispersions, covariances) were determined. Various factors describing correlations between the complementary fragment excitation energies are considered
Measurements of fission yields
International Nuclear Information System (INIS)
Denschlag, H.O.
2000-01-01
After some historical introductory remarks on the discovery of nuclear fission and early fission yield determinations, the present status of knowledge on fission yields is briefly reviewed. Practical and fundamental reasons motivating the pursuit of fission yield measurements in the coming century are pointed out. Recent results and novel techniques are described that promise to provide new interesting insights into the fission process during the next century. (author)
Radiochemical studies on fission
Energy Technology Data Exchange (ETDEWEB)
None
1973-07-01
Research progress is reported on nuclear chemistry; topics considered include: recoil range and kinetic energy distribution in the thermal neutron ftssion of /sup 245/Cm; mass distribution and recoil range measurements in the reactor neutron-induced fission of /sup 232/U; fission yields in the thermal neutron fission of /sup 241/PU highly asymmetric binary fission of uranium induced by reactor neutrons; and nuclear charge distribution in low energy fission. ( DHM)
Correlated prompt fission data in transport simulations
Talou, P.; Vogt, R.; Randrup, J.; Rising, M. E.; Pozzi, S. A.; Verbeke, J.; Andrews, M. T.; Clarke, S. D.; Jaffke, P.; Jandel, M.; Kawano, T.; Marcath, M. J.; Meierbachtol, K.; Nakae, L.; Rusev, G.; Sood, A.; Stetcu, I.; Walker, C.
2018-01-01
Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ-ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and γ-ray spectra, angular distributions of the emitted particles, n - n, n - γ, and γ - γ correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and γ rays from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and γ emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the γ-ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX - PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in
Correlated prompt fission data in transport simulations
Energy Technology Data Exchange (ETDEWEB)
Talou, P.; Jaffke, P.; Kawano, T.; Stetcu, I. [Los Alamos National Laboratory, Nuclear Physics Group, Theoretical Division, Los Alamos, NM (United States); Vogt, R. [Lawrence Livermore National Laboratory, Nuclear and Chemical Sciences Division, Livermore, CA (United States); University of California, Physics Department, Davis, CA (United States); Randrup, J. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Rising, M.E.; Andrews, M.T.; Sood, A. [Los Alamos National Laboratory, Monte Carlo Methods, Codes, and Applications Group, Los Alamos, NM (United States); Pozzi, S.A.; Clarke, S.D.; Marcath, M.J. [University of Michigan, Department of Nuclear Engineering and Radiological Sciences, Ann Arbor, MI (United States); Verbeke, J.; Nakae, L. [Lawrence Livermore National Laboratory, Nuclear and Chemical Sciences Division, Livermore, CA (United States); Jandel, M. [Los Alamos National Laboratory, Nuclear and Radiochemistry Group, Los Alamos, NM (United States); University of Massachusetts, Department of Physics and Applied Physics, Lowell, MA (United States); Meierbachtol, K. [Los Alamos National Laboratory, Nuclear Engineering and Nonproliferation, Los Alamos, NM (United States); Rusev, G.; Walker, C. [Los Alamos National Laboratory, Nuclear and Radiochemistry Group, Los Alamos, NM (United States)
2018-01-15
Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ-ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and γ-ray spectra, angular distributions of the emitted particles, n-n, n-γ, and γ-γ correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and γ rays from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and γ emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the γ-ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX-PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in nonproliferation
Fission observables from 4D Langevin calculations with macroscopic transport coefficients
Directory of Open Access Journals (Sweden)
Usang Mark D.
2018-01-01
Full Text Available We have extended the Langevin equations to 4 dimensions (4D by allowing the independent deformation for the left (δ1 and right fragments (δ2 of the fissioning nucleus. At the moment we are only able to use them in conjunction with the macroscopic transport coefficients. Nevertheless, we can see a considerable improvement in the preliminary results for the fission observables, especially those related to the total kinetic energy (TKE of fission fragments. By plotting the TKE distributions we have revealed the super-long fission modes in 236U and super-short fission modes in 257Fm. By plotting the distribution of δ against the fragment’s TKE we have noted a correlation between the values of δ and Brosa’s fission modes. We have found that the standard fission modes correspond to prolate tips of the light fragments while the complementary heavy fragments have oblate fission tips. On the other hand, if both fragments were prolate at the tips, we get super-long fission modes. If both fragments were oblate at the tips, we get super-short fission modes.
Extraction of potential energy in charge asymmetry coordinate from experimental fission data
Energy Technology Data Exchange (ETDEWEB)
Pasca, H. [Joint Institute for Nuclear Research, Dubna (Russian Federation); ' ' Babes-Bolyai' ' Univ., Cluj-Napoca (Romania); Andreev, A.V.; Adamian, G.G. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Antonenko, N.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Tomsk Polytechnic Univ. (Russian Federation). Mathematical Physics Dept.
2016-12-15
For fissioning isotopes of Ra, Ac, Th, Pa, and U, the potential energies as a function of the charge asymmetry coordinate are extracted from the experimental charge distributions of the fission fragment and compared with the calculated scission-point driving potentials. The role of the potential energy surfaces in the description of the fission charge distribution is discussed. (orig.)
Characteristic relation for the mass and energy distribution of the nuclear fission products
International Nuclear Information System (INIS)
Alexandru, G.
1977-01-01
The dispersion relation for nuclear fission is written in the two part fragmentation approach which allows to obtain the characteristic relation for the mass and energy distribution of the nuclear fission products. One explains the resonance approximation in the mass distribution of the fission products taking into account the high order resonances too. (author)
Effect of fission dynamics on the spectra and multiplicities of prompt fission neutrons
International Nuclear Information System (INIS)
Nix, J.R.; Madland, D.G.; Sierk, A.J.
1985-01-01
With the goal of examining their effect on the spectra and multiplicities of the prompt neutrons emitted in fission, we discuss recent advances in a unified macroscopic-microscopic description of large-amplitude collective nuclear dynamics. The conversion of collective energy into single-particle excitation energy is calculated for a new surface-plus-window dissipation mechanism. By solving the Hamilton equations of motion for initial conditions appropriate to fission, we obtain the average fission-fragment translational kinetic energy and excitation energy. The spectra and multiplicities of the emitted neutrons, which depend critically upon the average excitation energy, are then calculated on the basis of standard nuclear evaporation theory, taking into account the average motion of the fission fragments, the distribution of fission-fragment residual nuclear temperature, the energy dependence of the cross section for the inverse process of compound-nucleus formation, and the possibility of multiple-chance fission. Some illustrative comparisons of our calculations with experimental data are shown
International Nuclear Information System (INIS)
Vijayaraghavan, K.R.; Balasubramaniam, M.; Oertzen, W. von
2014-01-01
Splitting of heavy radioactive nucleus into three fragments is known as ternary fission. If the size of the fragments are almost equal it is referred to as true ternary fission. Recently, Yu. V. Pyatkov et al observed/reported the experimental observation of true ternary fission in 252 Cf. In this work, the possibilities of different true ternary fission modes of 252 Cf through potential energy surface (PES) calculations based on three cluster model (TCM) are discussed. In TCM a condition on the mass numbers of the fission fragments is implied as A 1 ≥ A 2 ≥ A 3 in order to avoid repetition of combinations. Due to this condition, the values of Z 3 vary from 0 to 36 and Z 2 vary from 16 to 51. Of the different pairs having similar (Z 2 , Z 3 ) with different potential energy, a pair possessing minimum potential energy is chosen. Thus identified favourable combinations are plotted. For the PES calculations the arrangement of the fragments is considered in the order of A 1 +A 2 +A 3 . i.e. the heavy and the lightest fragments are kept at the ends. It is seen that the deepest minimum in the PES occurs for Z 3 =2 labelled as (Z 2 ; 2) indicating He accompanied breakup as the most favourable one. Of which, the breakup with Z 2 around 46 to 48 is the least (shown by dashed (Z 1 = 50) and dotted (Z 1 = 52) lines indicating a constant Z 1 value). The other notable minima in the PES are labelled and they correspond to the (Z 2 , Z 3 ) pairs viz., (20, 20), (28, 20), (28, 28) and (32, 32). Of these four minima, the first three are associated with the magic numbers 20 and 28. For Z 3 =20, there are two minimums at (20,20) and (28,20) among them (28,20) is the lowest minimum through which the minimum-path passes, and it is the ternary decay observed by Yu. V. Pyatkov et al. The fourth minima is the most interesting due to the fact that it corresponds to true ternary fission mode with Z 2 =32, Z 3 =32 and Z 1 =34. The minimum potential energy path also goes through this true
Staggering of angular momentum distribution in fission
Tamagno, Pierre; Litaize, Olivier
2018-03-01
We review here the role of angular momentum distributions in the fission process. To do so the algorithm implemented in the FIFRELIN code [?] is detailed with special emphasis on the place of fission fragment angular momenta. The usual Rayleigh distribution used for angular momentum distribution is presented and the related model derivation is recalled. Arguments are given to justify why this distribution should not hold for low excitation energy of the fission fragments. An alternative ad hoc expression taking into account low-lying collectiveness is presented as has been implemented in the FIFRELIN code. Yet on observables currently provided by the code, no dramatic impact has been found. To quantify the magnitude of the impact of the low-lying staggering in the angular momentum distribution, a textbook case is considered for the decay of the 144Ba nucleus with low excitation energy.
Fission properties of very heavy actinides
International Nuclear Information System (INIS)
Hoffman, D.C.
1979-01-01
The existing data on neutron-emission, kinetic-energy and mass distributions, and half-lives for spontaneous fission of the heavy actinides are reviewed. A comparison of the data for the Fm isotopes with heavier and lighter nuclides suggests that the properties of the heavy Fm isotopes may be unique and can qualitatively be explained on the basis of fragment shell effects, i.e., symmetric fission results in two fragments with configurations close to the doubly magic 132 Sn nucleus. The effect of excitation energy and the use of systematics and theoretical predictions of fission properties and half-lives in the identification of new heavy element isotopes is discussed. 54 references
Staggering of angular momentum distribution in fission
Directory of Open Access Journals (Sweden)
Tamagno Pierre
2018-01-01
Full Text Available We review here the role of angular momentum distributions in the fission process. To do so the algorithm implemented in the FIFRELIN code [?] is detailed with special emphasis on the place of fission fragment angular momenta. The usual Rayleigh distribution used for angular momentum distribution is presented and the related model derivation is recalled. Arguments are given to justify why this distribution should not hold for low excitation energy of the fission fragments. An alternative ad hoc expression taking into account low-lying collectiveness is presented as has been implemented in the FIFRELIN code. Yet on observables currently provided by the code, no dramatic impact has been found. To quantify the magnitude of the impact of the low-lying staggering in the angular momentum distribution, a textbook case is considered for the decay of the 144Ba nucleus with low excitation energy.
Probing the time scale of asymmetric fission
International Nuclear Information System (INIS)
Kamanin, D.
1999-12-01
The author describes the measurement of the mass-energy distributions of fission fragments in the reactions 197 Au( 14 N,X) at 34 A.MeV and 232 Th( 7 Li,X) at 43 A.MeV. He presents results on the mass-asymmetry and excitation energy sharing. (HSI)
Proceedings of the specialists' meeting on physics and engineering of fission and spallation, 1989
International Nuclear Information System (INIS)
Nakagome, Yoshihiro
1990-07-01
The third meeting was held on August 1, and the fourth meeting was held on December 12, 1989. The reports of the international conferences on 50 years research on nuclear fission in Germany and USA, and the reports on the nuclear data of fission-produced nuclei for evaluating reactor decay heat, the atomic mass formula considering proton-neutron interaction and unstable nuclei, research on short life fission fragments by on-line isotope separation process, the reactor physics on waste annihilation disposal and fuel breeding with an accelerator, the double differential cross section of back neutrons in nuclear spallation reaction, measurement of fission cross section and fission neutron spectra with fast neutrons, U-235 fission spectra by unfolding activation foil data and production mechanisms of intermediate mass fragments from hot nuclei-emission of complex and fission fragments for 84 Kr+ 27 Al at 10.6 MeV/u were made. (K.I.)
A new technique to measure fission-product diffusion coefficients in UO2 fuel
International Nuclear Information System (INIS)
Hocking, W.H.; Verrall, R.A.; Bushby, S.J.
1999-01-01
This paper describes a new out-reactor technique for the measurement of fission-product diffusion rates in UO 2 . The technique accurately simulates in-reactor fission-fragment effects: a thermal diffusion that is due to localized mixing in the fission track, radiation-enhanced diffusion that is due to point-defect creation by fission fragments, and bubble resolution. The technique utilizes heavy-ion accelerators - low energy (40 keV to 1 MeV) for fission-product implantation, high energy (72 MeV) to create fission-fragment damage effects, and secondary ion mass spectrometry (SIMS) for measuring the depth profile of the implanted species. Preliminary results are presented from annealing tests (not in the 72 MeV ion flux) at 1465 deg. C and 1650 deg. C at low and high concentrations of fission products. (author)
International Nuclear Information System (INIS)
Le Brun, C.; Lecolley, J.F.; Lefebvres, F.; L'Haridon, M.; Osmont, A.; Patry, J.P.; Steckmeyer, J.C.; Chechik, R.; Guilbault, F.
We have measured the angular distribution of the target-like reaction product fission fragments emitted in coincidence with the light projectile like reaction product. For the first time, a sequential fission experiment in deeply inelastic collisions has observed an increase of the width of the out of plane angular distributions with the in-plane angle phi. The in-plane distribution exhibits an anisotropy centered in the recoil direction of the heavy fissionning nucleus, and shows up a dealignment mechanism of the transferred angular comparatively to the normal to the reaction plane. The de-aligned spin components have a gaussian distribution with a r.m.s width of about 10h and are lying preferentially in a plane perpendicular to the recoil direction. The mean value of the aligned component is of about 45h in agreement with the sticking limit with deformed nuclei. The dependence of the target-like reaction product fission probabilities on the total kinetic energy loss and Z of the projectile-like reaction product have been measured [fr
Description of light charged particle emission in ternary fission
International Nuclear Information System (INIS)
Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.; Kuklin, S. N.; Scheid, W.
2010-01-01
We consider the motion of three fragments starting from the scission point of ternary system. In the alpha-accompanied ternary fission the initial conditions are not the free parameters and determined by minimization of potential energy at scission point. In the trajectory calculations the angular distribution and mean value of the kinetic energy of the alpha-particles are well described in the spontaneous ternary fission of 252 Cf. In the Be- and C-accompanied ternary fission we found that the emission of the third particle occurs from one of the heavy fragments after their separation. (authors)
Fission before mass equilibration in heavy ion reactions
International Nuclear Information System (INIS)
Yadav, C.; Thomas, R.G.; Mohanty, A.K.
2013-01-01
For compound nucleus (CN) fission, it is expected that the width of the fragment mass distribution is independent of the entrance channel. In quasifission reaction, however, recent experiments reported anomalous broadening of mass distribution for more symmetric systems forming the same compound nucleus in fissile (fissility ∼ 0.8) and less fissile (fissility ∼ 0.7) systems. These measurements have not shown any mass-angle correlation, but width of fission fragment mass distribution was found to be consistently higher than that expected for fusion-fission
Trajectory calculations for the ternary cold fission of 252Cf
International Nuclear Information System (INIS)
Misicu, S.
1998-01-01
We compute the final kinetic energies of the fragments emitted in the light charged particle accompanied by cold fission of 252 Cf taking into account the deformation and the finite-size effects of the fragments and integrating the equations of motion for a three-body system subjected only to Coulomb forces. The initial conditions for the trajectory calculations were derived in the framework of a deformed cluster model which includes also the effect due to the absorbative nuclear part. Although the distributions of initial kinetic energies are rather broad we show that in cold fission the initial conditions can be better determined than in the usual spontaneous fission
Binary scission configurations in fission of light actinides
Energy Technology Data Exchange (ETDEWEB)
Ohtsuki, Tsutomu [Tohoku Univ., Sendai (Japan). Lab. of Nuclear Science; Nagame, Y.; Nishinaka, I.; Tsukada, K.; Ikezoe, H.; Tanikawa, M.; Zhao, Y.L.; Sueki, K.; Nakahara, H.
1997-07-01
Mass and kinetic energy distributions of fission fragments have been accurately measured by a double velocity time-of-flight technique in the 13 MeV proton-induced fissions of {sup 232}Th and {sup 238}U. A binary structure is observed in total kinetic energy distributions in the fragments with mass number around A=130 for both the fissions, indicating that there are at least two kinds of scission configurations. A correlation between the scission configurations and mass yield distributions reveals that elongated scission configurations are associated with the symmetric mass distribution and compact scission configurations with the asymmetric mass distribution. (author)
Fission products collecting devices
International Nuclear Information System (INIS)
Matsumoto, Hiroshi
1979-01-01
Purpose: To enable fission products trap with no contamination to coolants and cover gas by the provision of a fission products trap above the upper part of a nuclear power plant. Constitution: Upon fuel failures in a reactor core, nuclear fission products leak into coolants and move along the flow of the coolants to the coolants above the reactor core. The fission products are collected in a trap container and guided along a pipeline into fission products detector. The fission products detector monitors the concentration of the fission products and opens the downstream valve of the detector when a predetermined concentration of the fission products is detected to introduce the fission products into a waste gas processing device and release them through the exhaust pipe. (Seki, T.)
International Nuclear Information System (INIS)
James, M.F.
1969-05-01
The effective energy released in and following the fission of U-235, Pu-239 and Pu-241 by thermal neutrons, and of U-238 by fission spectrum neutrons, is discussed. The recommended values are: U-235 ... 192.9 ± 0.5 MeV/fission; U-238 ... 193.9 ± 0.8 MeV/fission; Pu-239 ... 198.5 ± 0.8 MeV/fission; Pu-241 ... 200.3 ± 0.8 MeV/fission. These values include all contributions except from antineutrinos and very long-lived fission products. The detailed contributions are discussed, and inconsistencies in the experimental data are pointed out. In Appendix A, the contribution to the total useful energy release in a reactor from reactions other than fission are discussed briefly, and in Appendix B there is a discussion of the variations in effective energy from fission with incident neutron energy. (author)
International Nuclear Information System (INIS)
Fujiwara, I.; Moriyama, H.; Tachikawa, E.
1984-01-01
In the fission process, newly formed fission products undergo hot atom reactions due to their energetic recoil and abnormal positive charge. The hot atom reactions of the fission products are usually accompanied by secondary effects such as radiation damage, especially in condensed phase. For reactor safety it is valuable to know the chemical behaviour and the release behaviour of these radioactive fission products. Here, the authors study the chemical behaviour and the release behaviour of the fission products from the viewpoint of hot atom chemistry (HAC). They analyze the experimental results concerning fission product behaviour with the help of the theories in HAC and other neighboring fields such as radiation chemistry. (Auth.)
On widths of mass distributions in statistical theory of fission
International Nuclear Information System (INIS)
Volkov, N.G.; Emel'yanov, V.M.
1979-01-01
The process of nucleon tunneling from one fragment to another near the point of the compoUnd-nucleus fragmentation has been studied in the model of a two-center oscillator. The effect of the number of transferred nucleons on the mass distribution of fragments is estimated. Sensitivity of the model to the form of the single-particle potential, excitation eneraies and deformation of fragments is examined. The calculations performed show that it is possible to calculate the mass distributions at the point of fragment contact in the statistical fission model, taking account of the nucleon exchange between fragments
Study of fission mechanism with the reactions 230Th, 231Pa, 235U, 237Np(n,f) and 252Cf(fs)
International Nuclear Information System (INIS)
Benfoughal, T.
1983-01-01
In this work, the different stages of the nuclear fission process have been investigated. The analysis of fission cross-section and fission fragment angular distribution measurements are made using the hypothesis of asymmetrically deformed states. From the correlation between fissioning nucleus excitation energy and fragment total kinetic energy measurement for several fissioning systems, it is shown that the nuclear viscosity is relatively strong during the saddle-point to scission-point transition. The study of the spontaneous fission of 252 Cf shows that the fragment mass and kinetic energy distributions are mainly determinated by the nucleon shell effects and pairing correlations [fr
Fusion-fission of superheavy nuclei at low excitation energies
International Nuclear Information System (INIS)
Itkis, M.G.; Oganesyan, Yu.Ts.; Kozulin, E.M.
2000-01-01
The process of fusion-fission of superheavy nuclei with Z = 102 -122 formed in the reactions with 22 Ne, 26 Mg, 48 Ca, 58 Fe and 86 Kr ions at energies near and below the Coulomb barrier has been studied. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR) using a time-of-flight spectrometer of fission fragments CORSET and a neutron multi-detector DEMON. As a result of the experiments, mass and energy distributions of fission fragments, fission and quasi-fission cross sections, multiplicities of neutrons and gamma-rays and their dependence on the mechanism of formation and decay of compound superheavy systems have been studied
Ternary fission of spontaneously fissile uranium isomers excited by neutrons
International Nuclear Information System (INIS)
Makarenko, V.E.; Molchanov, Y.D.; Otroshchenko, G.A.; Yan'kov, G.B.
1989-01-01
Spontaneously fissile isomers (SFI) of uranium were excited in the reactions 236,238 U(n,n') at an average neutron energy 4.5 MeV. A pulsed electrostatic accelerator and time analysis of the fission events were used. Fission fragments were detected by the scintillation method, and long-range particles from fission were detected by an ionization method. The relative probability of fission of nuclei through a spontaneously fissile isomeric state was measured: (1.30±0.01)·10 -4 ( 236 U) and (1.48±0.02)·10 -4 ( 238 U). Half-lives of the isomers were determined: 121±2 nsec (the SFI 236 U) and 267±13 nsec (the SFI 238 U). In study of the ternary fission of spontaneously fissile isotopes of uranium it was established that the probability of the process amounts to one ternary fission per 163±44 binary fissions of the SFI 236 U and one ternary fission per 49±14 binary fissions of the SFI 238 U. The substantial increase of the probability of ternary fission of SFI of uranium in comparison with the case of ternary fission of nuclei which are not in an isomeric state may be related to a special nucleon configuration of the fissile isomers of uranium
Disintegration constant of uranium-238 by spontaneous fission redetermined by glass track method
International Nuclear Information System (INIS)
Lima Medeiros, E. de.
1978-01-01
The disintegration constant of U 238 by spontaneous fission using glass as fission fragment detector was redetermined. A film of natural uranium (UO 3 ) prepared by chemical methods on the glass lamina was used in a long time experience of exposure (about 16 years). The good conditions of sample preparation and storage allow to observe, after chemical etching, fission fragment tracks. (M.C.K.) [pt
Characteristics of diallyl phthalate resin as a fission track detector
Tsuruta, T
1999-01-01
Diallyl phthalate (DAP) resin plates were irradiated with fission fragments, and then etched in aqueous solution of KOH. Etched tracks were observed and counted by using an optical microscope. The detection efficiency of fission fragments was about 100% for both perpendicular and random incidence. DAP plates were insensitive to alpha particles and fast neutrons. These characteristics are suitable for detecting selected fission fragments, which coexist with alpha particles or fast neutrons. DAP plates are valuable for quantitative analysis of fissionable materials and neutron dosimetry. DAP and allyl diglycol carbonate (CR-39) were formed into copolymers in various ratios. The copolymers showed intermediate characteristics between DAP and CR-39. The fabrication of the copolymers made it possible to control the discrimination level for detection of heavy charged particles.
New type of asymmetric fission in proton-rich nuclei
Andreyev, A N; Huyse, M; Van Duppen, P; Antalic, S; Barzakh, A; Bree, N; Cocolios, T E; Comas, V F; Diriken, J; Fedorov, D; Fedosseev, V; Franchoo, S; Heredia, J A; Ivanov, O; Koster, U; Marsh, B A; Nishio, K; Page, R D; Patronis, N; Seliverstov, M; Tsekhanovich, I; Van den Bergh, P; Van De Walle, J; Venhart, M; Vermote, S; Veselsky, M; Wagemans, C; Ichikawa, T; Iwamoto, A; Moller, P; Sierk, A J
2010-01-01
A very exotic process of ${\\beta}$-delayed fission of $^{180}$Tl is studied in detail by using resonant laser ionization with subsequent mass separation at ISOLDE (CERN). In contrast to common expectations, the fission-fragment mass distribution of the post-${\\beta}$-decay daughter nucleus $^{180}$Hg (N/Z=1.25) is asymmetric. This asymmetry is more surprising since a mass-symmetric split of this extremely neutron-deficient nucleus would lead to two $^{90}$Zr fragments, with magic N=50 and semimagic Z=40. This is a new type of asymmetric fission, not caused by large shell effects related to fragment magic proton and neutron numbers, as observed in the actinide region. The newly measured branching ratio for $\\beta$-delayed fission of $^{180}$Tl is 3.6(7)×10$^{-3}$%, approximately 2 orders of magnitude larger than in an earlier study.
Fission tracks diameters in glasses
International Nuclear Information System (INIS)
Garzon Ruiperez, L.; Veiguela, J.
1974-01-01
Standard glass microscope slides have been irradiated with fission fragments from the uranium. The etching track conditions have been the same for the series, having changed the etching time only for each specimen. For each glass, a minimum of 250 measurements of the tracks diameters have been made, the distributions of which are the bimodal type. Diameters-etching dependence with time is roughly lineal. Energy determinations have been made with the help of the diameters-energy relations. The calculated values agree very well with the know ones. (author) [es
Shape anisotropy: tensor distance to anisotropy measure
Weldeselassie, Yonas T.; El-Hilo, Saba; Atkins, M. S.
2011-03-01
Fractional anisotropy, defined as the distance of a diffusion tensor from its closest isotropic tensor, has been extensively studied as quantitative anisotropy measure for diffusion tensor magnetic resonance images (DT-MRI). It has been used to reveal the white matter profile of brain images, as guiding feature for seeding and stopping in fiber tractography and for the diagnosis and assessment of degenerative brain diseases. Despite its extensive use in DT-MRI community, however, not much attention has been given to the mathematical correctness of its derivation from diffusion tensors which is achieved using Euclidean dot product in 9D space. But, recent progress in DT-MRI has shown that the space of diffusion tensors does not form a Euclidean vector space and thus Euclidean dot product is not appropriate for tensors. In this paper, we propose a novel and robust rotationally invariant diffusion anisotropy measure derived using the recently proposed Log-Euclidean and J-divergence tensor distance measures. An interesting finding of our work is that given a diffusion tensor, its closest isotropic tensor is different for different tensor distance metrics used. We demonstrate qualitatively that our new anisotropy measure reveals superior white matter profile of DT-MR brain images and analytically show that it has a higher signal to noise ratio than fractional anisotropy.
Rupture of the neck in nuclear fission
International Nuclear Information System (INIS)
Davies, K.T.R.; Managan, R.A.; Nix, J.R.; Sierk, A.J.
1977-01-01
We introduce a degree of freedom to describe the rupture of the neck in nuclear fission and calculate the point at which the neck ruptures as the nucleus descends dynamically from its fission saddle point. This is done by mentally slicing the system into two portions at its minimum neck radius and calculating the force required to separate the two portions while keeping their shapes fixed. This force is obtained by differentiating with respect to separation the sum of the Coulomb and nuclear interaction energies between the two portions. For nuclei throughout the Periodic Table we calculate this force along dynamical paths leading from the fission saddle point. The force is initially attractive but becomes repulsive when the neck reaches a critical size. For actinide nuclei the neck radius at which rupture occurs is about 2 fm. This increases the calculated translational kinetic energy of the fission fragments at infinity relative to that calculated for scission occurring at zero neck radius. With the effect of neck rupture taken into account, we calculate and compare with experimental results fission-fragment kinetic energies for two types of nuclear dissipation: ordinary two-body viscosity and one-body dissipation
International Nuclear Information System (INIS)
Benlliure, J.; Armbruster, P.; Bernas, M.
2001-09-01
197 Au(800 A MeV)-on-proton collisions are used to investigate the fission dynamics at high excitation energy. The kinematic properties together with the isotopic identification of the fission fragments allow to determine the mass, charge and excitation energy of the fissioning nucleus at saddle. The comparison of these observables and the measured total fission cross section with model calculations evidences a clear hindrance of fission at high excitation energy that can be explained in terms of nuclear dissipation. Assuming a statistical evaporation for other de-excitation channels than fission, an estimated value of the transient time of fission of (3 ± 1) . 10 -21 s is obtained. (orig.)
Equilibrium fission model calculations
International Nuclear Information System (INIS)
Beckerman, M.; Blann, M.
1976-01-01
In order to aid in understanding the systematics of heavy ion fission and fission-like reactions in terms of the target-projectile system, bombarding energy and angular momentum, fission widths are calculated using an angular momentum dependent extension of the Bohr-Wheeler theory and particle emission widths using angular momentum coupling
International Nuclear Information System (INIS)
Saxon, D.H.
1985-10-01
The paper reviews studies on jet fragmentation. The subject is discussed under the topic headings: fragmentation models, charged particle multiplicity, bose-einstein correlations, identified hadrons in jets, heavy quark fragmentation, baryon production, gluon and quark jets compared, the string effect, and two successful models. (U.K.)
Kinetic-energy distribution for symmetric fission of 236U
International Nuclear Information System (INIS)
Brissot, R.; Bocquet, J.P.; Ristori, C.; Crancon, J.; Guet, C.R.; Nifenecker, H.A.; Montoya, M.
1980-01-01
Fission fragment kinetic-energy distributions have been measured at the Grenoble high-flux reactor with the Lohengrin facility. Spurious events were eliminated in the symmetric region by a coherence test based on a time-of-flight measurement of fragment velocities. A Monte-Carlo calculation is then performed to correct the experimental data for neutron evaporation. The difference between the most probable kinetic energy in symmetric fission and the fission in which the heavy fragment is 'magic' (Zsub(H)=50) is found to be approximately =30 MeV. The results suggest that for the symmetric case the total excitation energy available at scission is shared equally among the fragments. (author)
Fission product range effects on HEU fissile gas monitoring for UF6 gas
International Nuclear Information System (INIS)
Munro, J.K. Jr.; Valentine, T.E.; Perez, R.B.
1997-01-01
The amount of 235 U in UF 6 flowing in a pipe can be monitored by counting gamma rays emitted from fission fragments carried along by the flowing gas. Neutron sources are mounted in an annular sleeve that is filled with moderator material and surrounds the pipe. This provides a source of thermal neutrons to produce the fission fragments. Those fragments that remain in the gas stream following fission are carried past a gamma detector. A typical fragment will be quite unstable, giving up energy as it decays to a more stable isotope with a significant amount of this energy being emitted in the form of gamma rays. A given fragment can emit several gamma rays over its lifetime. The gamma ray emission activity level of a distribution of fission fragments decreases with time. The monitoring system software uses models of these processes to interpret the gamma radiation counting data measured by the gamma detectors
Theoretical descriptions of neutron emission in fission
International Nuclear Information System (INIS)
Madland, D.G.
1991-01-01
Brief descriptions are given of the observables in neutron emission in fission together with early theoretical representations of two of these observables, namely, the prompt fission neutron spectrum N(E) and the average prompt neutron multiplicity ν-bar p . This is followed by summaries, together with examples, of modern approaches to the calculation of these two quantities. Here, emphasis is placed upon the predictability and accuracy of the new approaches. In particular, the dependencies of N(E) and ν-bar p upon the fissioning nucleus and its excitation energy are discussed. Then, recent work in multiple-chance fission and other recent work involving new measurements are presented and discussed. Following this, some properties of fission fragments are mentioned that must be better known and better understood in order to calculate N(E) and ν-bar p with higher accuracy than is currently possible. In conclusion, some measurements are recommended for the purpose of benchmarking simultaneous calculations of neutron emission and gamma emission in fission. (author). 32 refs, 26 figs
General Description of Fission Observables - JEFF Report 24. GEF Model
International Nuclear Information System (INIS)
Schmidt, Karl-Heinz; Jurado, Beatriz; Amouroux, Charlotte
2014-06-01
The Joint Evaluated Fission and Fusion (JEFF) Project is a collaborative effort among the member countries of the OECD Nuclear Energy Agency (NEA) Data Bank to develop a reference nuclear data library. The JEFF library contains sets of evaluated nuclear data, mainly for fission and fusion applications; it contains a number of different data types, including neutron and proton interaction data, radioactive decay data, fission yield data and thermal scattering law data. The General fission (GEF) model is based on novel theoretical concepts and ideas developed to model low energy nuclear fission. The GEF code calculates fission-fragment yields and associated quantities (e.g. prompt neutron and gamma) for a large range of nuclei and excitation energy. This opens up the possibility of a qualitative step forward to improve further the JEFF fission yields sub-library. This report describes the GEF model which explains the complex appearance of fission observables by universal principles of theoretical models and considerations on the basis of fundamental laws of physics and mathematics. The approach reveals a high degree of regularity and provides a considerable insight into the physics of the fission process. Fission observables can be calculated with a precision that comply with the needs for applications in nuclear technology. The relevance of the approach for examining the consistency of experimental results and for evaluating nuclear data is demonstrated. (authors)
Lefevre, Sophie D; Kumar, Sanjeev; van der Klei, Ida J
2015-01-01
Mitochondria are key players in ageing and cell death. It has been suggested that mitochondrial fragmentation, mediated by the Dnm1/Fis1 organelle fission machinery, stimulates ageing and cell death. This was based on the observation that Saccharomyces cerevisiae Δdnm1 and Δfis1 mutants show an
Symmetric and asymmetric ternary fission of hot nuclei
International Nuclear Information System (INIS)
Siwek-Wilczynska, K.; Wilczynski, J.; Leegte, H.K.W.; Siemssen, R.H.; Wilschut, H.W.; Grotowski, K.; Panasiewicz, A.; Sosin, Z.; Wieloch, A.
1993-01-01
Emission of α particles accompanying fusion-fission processes in the 40 Ar + 232 Th reaction at E( 40 Ar) = 365 MeV was studied in a wide range of in-fission-plane and out-of-plane angles. The exact determination of the emission angles of both fission fragments combined with the time-of-flight measurements allowed us to reconstruct the complete kinematics of each ternary event. The coincident energy spectra of α particles were analyzed by using predictions of the energy spectra of the statistical code CASCADE . The analysis clearly demonstrates emission from the composite system prior to fission, emission from fully accelerated fragments after fission, and also emission during scission. The analysis is presented for both symmetric and asymmetric fission. The results have been analyzed using a time-dependent statistical decay code and confronted with dynamical calculations based on a classical one-body dissipation model. The observed near-scission emission is consistent with evaporation from a dinuclear system just before scission and evaporation from separated fragments just after scission. The analysis suggests that the time scale of fission of the hot composite systems is long (about 7x10 -20 s) and the motion during the descent to scission almost completely damped
Angular distribution in the neutron-induced fission of actinides
Directory of Open Access Journals (Sweden)
Leong L.S.
2013-12-01
Full Text Available Above 1 MeV of incident neutron energy the fission fragment angular distribution (FFAD has generally a strong anisotropic behavior due to the combination of the incident orbital momentum and the intrinsic spin of the fissioning nucleus. This effect has to be taken into account for the efficiency estimation of devices used for fission cross section measurements. In addition it bears information on the spin deposition mechanism and on the structure of transitional states. We designed and constructed a detection device, based on Parallel Plate Avalanche Counters (PPAC, for measuring the fission fragment angular distributions of several isotopes, in particular 232Th. The measurement has been performed at n_TOF at CERN taking advantage of the very broad energy spectrum of the neutron beam. Fission events were recognized by back to back detection in coincidence in two position-sensitive detectors surrounding the targets. The detection efficiency, depending mostly on the stopping of fission fragments in backings and electrodes, has been computed with a Geant4 simulation and validated by the comparison to the measured case of 235U below 3 keV where the emission is isotropic. In the case of 232Th, the result is in good agreement with previous data below 10 MeV, with a good reproduction of the structures associated to vibrational states and the opening of second chance fission. In the 14 MeV region our data are much more accurate than previous ones which are broadly scattered.
Contributions to the theory of fission neutron emission
International Nuclear Information System (INIS)
Seeliger, D.; Maerten, H.; Ruben, A.
1990-03-01
This report gives a compilation of recent work performed at Technical University, Dresden by D. Seeliger, H. Maerten and A. Ruben on the topic of fission neutron emission. In the first paper calculated fission neutron spectra are presented using the temperature distribution model FINESSE for fissioning actinide nuclei. In the second paper, starting from a general energy balance, Terrell's approach is generalized to describe average fragment energies as a function of incident energy; trends of fragment energy data in the Th-Pu region are well reproduced. In the third contribution, prompt fission neutron spectra and fragment characteristics for spontaneous fission of even Pu-isotopes are presented and discussed in comparison with experimental data using a phenomenological scission point model including temperature dependent shell effects. In the fourth paper, neutron multiplicities and energy spectra as well as average fragment energies for incident energies from threshold to 20 MeV (including multiple-chance fission) for U-238 are compared with traditional data representations. (author). Refs, figs and tabs
International Nuclear Information System (INIS)
Maslov, V.M.
1998-01-01
Fission level densities (or fissioning nucleus level densities at fission saddle deformations) are required for statistical model calculations of actinide fission cross sections. Back-shifted Fermi-Gas Model, Constant Temperature Model and Generalized Superfluid Model (GSM) are widely used for the description of level densities at stable deformations. These models provide approximately identical level density description at excitations close to the neutron binding energy. It is at low excitation energies that they are discrepant, while this energy region is crucial for fission cross section calculations. A drawback of back-shifted Fermi gas model and traditional constant temperature model approaches is that it is difficult to include in a consistent way pair correlations, collective effects and shell effects. Pair, shell and collective properties of nucleus do not reduce just to the renormalization of level density parameter a, but influence the energy dependence of level densities. These effects turn out to be important because they seem to depend upon deformation of either equilibrium or saddle-point. These effects are easily introduced within GSM approach. Fission barriers are another key ingredients involved in the fission cross section calculations. Fission level density and barrier parameters are strongly interdependent. This is the reason for including fission barrier parameters along with the fission level densities in the Starter File. The recommended file is maslov.dat - fission barrier parameters. Recent version of actinide fission barrier data obtained in Obninsk (obninsk.dat) should only be considered as a guide for selection of initial parameters. These data are included in the Starter File, together with the fission barrier parameters recommended by CNDC (beijing.dat), for completeness. (author)
Ternary Fission of U235 by Resonance Neutrons
International Nuclear Information System (INIS)
Kvitek, I.; Popov, Ju.P.; Rjabov, Ju.V.
1965-01-01
Recently a number of papers have appeared indicating considerable variations in the ratio of the ternary-fission cross-section to the binary-fission cross-section of U 235 on transition from one neutron resonance to another. However, such variations have not been discovered in U 233 and Pu 239 . The paper reports investigations of the ternary fission of U 235 by neutrons with an energy of 0.1 to 30 eV. Unlike other investigators of the ternary fission of U 235 , we identified the ternary-fission event by the coincidence of one of the fission fragments with a light long-range particle. This made it passible to separate ternary fissions from the possible contribution of the (n, α)reaction. The measurements were performed at the fast pulsed reactor of the Joint Institute for Nuclear Research by the time-of-flight method. A flight length of 100 m was used, giving a resolution of 0.6 μs/m. Gas scintillation counters filled with xenon at a pressure of 2 atm were used to record the fission fragments and the light long-range particle. A layer of enriched U 235 ∼2 mg/cm 2 thick and ∼300 cm 2 in area was applied to an aluminium foil 20-fim thick. The scintillations from the fission fragments were recorded in the gas volume on one side of the foil and those from the light long-range particles in that on the other. In order to assess the background (e.g . coincidences of the pulse from a fragment with that from a fission gamma quantum or a proton from the (n, p) reaction in the aluminium foil), a measurement was carried out in which the volume recording the long-range particle was shielded with a supplementary aluminium filter 1-mm thick. The results obtained indicate the absence of the considerable variations in the ratio between the ternary-and binary- fission cross-sections for U 235 that have been noted by other authors. Measurements showed no irregularity in the ratio of the cross-sections in the energy range 0.1 to 0.2 eV. The paper discusses the possible effect of
Maglich, Bogdan; Hester, Tim; Calsec Collaboration
2015-10-01
Uranium-uranium colliding beam experiment1, used fully ionized 238U92+ at energy 100GeV --> accelerated through 3 MV accelerator, will collide beam 240 MeV --> 4 FF + 5n + 430 MeV. Using a simple model1 fission σf ~ 100 b. Suppression of Pu by a factor of 106 will be achieved because NO thermal neutron fission can take place; only fast, 1-3 MeV, where σabs is negligible. Direct conversion of 95% of 430 MeV produced is carried by electrically charged FFs which are magnetically funneled for direct conversion of energy of FFs via electrostatic decelerators4,11. 90% of 930 MeV is electrically recoverable. Depending on the assumptions, we project electric _ power density production of 20 to 200 MWe m-3, equivalent to Thermal 1.3 - 13 GWthm-3. If one-half of unburned U is used for propulsion while rest powers system, heavy FF ion mass provides specific impulse Isp = 106 sec., 103 times higher than current rocket engines.
Ternary fission in an effective liquid drop model
International Nuclear Information System (INIS)
Duarte, Sergio B.; Tavares, Odilon A.P.; Dimarco, A.; Goncalves, Marcello; Guzman, Fernando; Trallero-Herrera, Carlos; Rodriguez, Oscar; Garcia, Fermin
2001-01-01
Full text follows: The nuclear partition in three fragments has been observed in recent experiments for fission process of 252 Cf and 24 '0 Pu. We apply the Effective Liquid Drop Model (ELDM), successfully used for discussing binary cold fission and cluster emissions for a three center geometric shape parametrization, describing the quasi-molecular deformation which can lead to ternary fragmentation. A preliminary calculation for rates of these processes are performed and the results are compared to the rate of the dominant binary fission process. A large range of parent nuclei (spherical and deformed) is covered in the calculation. The purpose is to point out others possible ternary fission process experimentally measurable. (author)
International Nuclear Information System (INIS)
Gregoire, Christian.
1982-03-01
Experimental studies of fast fission phenomena are presented. The paper is divided into three parts. In the first part, problems associated with fast fission processes are examined in terms of interaction potentials and a dynamic model is presented in which highly elastic collisions, the formation of compound nuclei and fast fission appear naturally. In the second part, a description is given of the experimental methods employed, the observations made and the preliminary interpretation of measurements suggesting the occurence of fast fission processes. In the third part, our dynamic model is incorporated in a general theory of the dissipative processes studied. This theory enables fluctuations associated with collective variables to be calculated. It is applied to highly inelastic collisions, to fast fission and to the fission dynamics of compound nuclei (for which a schematic representation is given). It is with these calculations that the main results of the second part can be interpreted [fr
Fission in intermediate energy heavy ion reactions
International Nuclear Information System (INIS)
Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.; Boissevain, J.; Fowler, M.M.; Gavron, A.; Jacak, B.V.; Lysaght, P.S.; Britt, H.C.; Fields, D.J.; Hansen, L.F.; Lanier, R.G.; Massoletti, D.J.; Namboodiri, M.M.; Remington, B.A.; Sangster, T.C.; Struble, G.L.; Webb, M.L.; Chan, Y.D.; Dacai, A.; Harmon, A.; Leyba, J.; Pouliot, J.; Stokstad, R.G.; Hansen, O.; Levine, M.J.; Thorn, C.E.; Trautmann, W.; Dichter, B.; Kaufman, S.; Videbaek, F.; Fraenkel, Z.; Mamane, G.; Cebra, D.; Westfall, G.D.
1989-01-01
A systematic study of reaction mechanisms at intermediate energies (50-100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: The reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicty of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. (orig.)
Fission in intermediate energy heavy ion reactions
International Nuclear Information System (INIS)
Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.
1989-01-01
A systematic study of reaction mechanisms at intermediate energies (50--100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: the reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicity of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. 7 figs
Binary fragmentation based studies for the near super-heavy compound nucleus {sup 256}Rf
Energy Technology Data Exchange (ETDEWEB)
Thakur, Meenu; Behera, B.R.; Mahajan, Ruchi; Kaur, Gurpreet; Sharma, Priya; Kapoor, Kushal; Rani, Kavita [Panjab University, Department of Physics, Chandigarh (India); Saneesh, N.; Dubey, R.; Yadav, A.; Sugathan, P.; Jhingan, A.; Chatterjee, A.; Chatterjee, M.B. [Inter University Accelerator Centre, New Delhi (India); Kumar, Neeraj; Mandal, S. [University of Delhi, Department of Physics and Astrophysics, Delhi (India); Kumar, S. [Andhra University, Department of Nuclear Physics, Visakhapatnam (India); Saxena, A.; Kailas, S. [Bhabha Atomic Research Centre, Nuclear Physics Division, Mumbai (India); Pal, Santanu [CS, Kolkata (India); Nasirov, Avazbek [JINR, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); National University, Department of Physics, Tashkent (Uzbekistan); Kayumov, Bakhodir [National University, Department of Physics, Tashkent (Uzbekistan)
2017-06-15
Binary fragmentation of the near super-heavy compound nucleus {sup 256}Rf has been studied through the reaction {sup 48}Ti + {sup 208}Pb at a bombarding energy well above the Coulomb barrier. For a better understanding of its reaction dynamics, the mass distribution, mass-energy distribution and mass-angle distribution of the fission fragments produced from {sup 256}Rf have been investigated thoroughly. The masses and kinetic energies of the fission fragments were reconstructed event-by-event from their measured velocities and emission angles. From the mass-energy analysis, a sizeable contribution from the asymmetric fission was observed on the edges of symmetric mass distribution. Evidence of asymmetric fission was also clued from the observed correlation between the masses and emission angles of the fission fragments. Contribution of the quasi-fission products has also been estimated by performing the theoretical dinuclear system calculations. (orig.)
International Nuclear Information System (INIS)
Chung, K.C.
1989-01-01
An introduction to nuclear fragmentation, with emphasis in percolation ideas, is presented. The main theoretical models are discussed and as an application, the uniform expansion approximation is presented and the statistical multifragmentation model is used to calculate the fragment energy spectra. (L.C.)
International Nuclear Information System (INIS)
Valenta, V.; Hep, J.
1978-01-01
Data are summed up necessary for determining the yields of individual fission products from different fissionable nuclides. Fractional independent yields, cumulative and isobaric yields are presented here for the thermal fission of 235 U, 239 Pu, 241 Pu and for fast fission (approximately 1 MeV) of 235 U, 238 U, 239 Pu, 241 Pu; these values are included into the 5th version of the YIELDS library, supplementing the BIBFP library. A comparison is made of experimental data and possible improvements of calculational methods are suggested. (author)
Pairing correlations in a fissioning potential well
International Nuclear Information System (INIS)
Krappe, H.J.; Fadeev, S.
1999-01-01
To describe pairing correlations in a fissioning system one commonly projects the BCS wave function separately onto good particle numbers in each fragment in the exit channel, but only onto the total number of particles in the parent system. We propose to interpolate between these limiting situations by the generator-coordinate method with the particle-number difference between the nascent fragments as the generator coordinate. Model calculations are presented for the Hill-Wheeler box potential with a δ-function diaphragm to mimic scission
Fission, fusion and photonuclear physics. Chapter 2
International Nuclear Information System (INIS)
Berlanger, M.; Deleplanque, M.A.; Gerschel, C.; Hanappe, F.; Leblanc, M.; Mayault, J.F.; Ngo, C.; Paya, D.; Perrin, N.; Peter, J.; Tamain, B.; Valentin, L.
The γ-ray multiplicity has been measured for the quasi-fission events in the Cu + Au reaction at 443MeV. Using the usual assumption on the γ-ray multipolarity and estimating the angular momentum carried away by the evaporated particles, a value of 57h is obtained for the angular momentum transferred to the fragments, in agreement with the sticking hypothesis [fr
ISOLDE experiment explores new territory in nuclear fission
CERN Bulletin
2011-01-01
An international collaboration led by the University of Leuven, Belgium, exploiting ISOLDE’s radioactive beams, has recently discovered an unexpected new type of asymmetric nuclear fission, which challenges current theories. The surprising result opens the way for new nuclear structure models and further theories to elucidate the question. Resonance Ionization Laser Ion Source (RILIS) in action at ISOLDE. RILIS was instrumental in providing the pure beam necessary for the successful nuclear fission experiment. In nuclear fission, the nucleus splits into two fragments (daughter nuclei), releasing a huge amount of energy. Nuclear fission is exploited in power plants to produce energy. From the fundamental research point of view, fission is not yet fully understood decades after its discovery and its properties can still surprise nuclear physicists. The way the process occurs can tell us a lot about the internal structure of the nucleus and the interactions taking place inside the com...
Fission of highly excited nuclei investigated in complete kinematic measurements
International Nuclear Information System (INIS)
Rodriguez-Sanchez, J. L.; Benlliure, J.; Taieb, J.; Avarez-Pol, H.; Audouin, L.; Ayyad, Y.; Belier, G.; Boutoux, G.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelic-Heil, A.; Kurz, N.; Laurent, B.; Martin, J. F.; Paradela, C.; Pellereau, E.; Pietras, B.; Prochazka, A.; Ramos, D.; Rodriguez-Tajes, C.; Rossi, D.; Simon, H.; Tassan-Got, L.; Vargas, J.; Voss, B.
2013-01-01
Fission is an extremely complex mechanism that requires a dynamical approach to describe the evolution of the process in terms of intrinsic and collective excitations of the nuclear constituents. In order to determine these effects a complex experimental setup was mounted at GSI, which allowed us for the first time the full identification in charge and mass of all fission fragments thanks to a magnetic separation and the use of the inverse kinematic technique. Moreover, we also measured the neutron multiplicities and the light-charged particles emitted in coincidence with fission. These complete kinematic measurements will be used to define sensitive observables to dissipative and transient effects in fission. In this manuscript we present the first results for the total fission cross sections. (authors)
Energy Technology Data Exchange (ETDEWEB)
Farget, F.; Schmidt, K.H.; Clement, E.; Delaune, O.; Derkx, X.; Dijon, A.; Golabek, C.; Lemasson, A.; Roger, T.; Schmitt, C. [CEA/DSM-CNRS/IN2P3, GANIL, Caen (France); Caamano, M.; Ramos, D.; Benlliure, J.; Cortina, D.; Fernandez-Dominguez, B.; Paradela, C. [Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Rodriguez-Tajes, C. [CEA/DSM-CNRS/IN2P3, GANIL, Caen (France); Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Audouin, L. [Universite Paris-Sud 11, CNRS/IN2P3, Institut de Physique Nucleaire, Orsay (France); Casarejos, E. [Universidade de Vigo, Vigo (Spain); Dore, D.; Salsac, M.D. [Centre de Saclay, CEA, Irfu, Gif-sur-Yvette (France); Gaudefroy, L. [CEA DAM Ile-de-France, BP 12, Bruyeres-le-Chatel (France); Heinz, A. [Chalmers Tekniska Hoegskola, Fundamental Fysik, Goeteborg (Sweden); Jurado, B. [Universite Bordeaux, CENBG, UMR 5797 CNRS/IN2P3, Gradignan (France)
2015-12-15
Inverse kinematics is a new tool to study nuclear fission. Its main advantage is the possibility to measure with an unmatched resolution the atomic number of fission fragments, leading to new observables in the properties of fission-fragment distributions. In addition to the resolution improvement, the study of fission based on nuclear collisions in inverse kinematics beneficiates from a larger view with respect to the neutron-induced fission, as in a single experiment the number of fissioning systems and the excitation energy range are widden. With the use of spectrometers, mass and kinetic-energy distributions may now be investigated as a function of the proton and neutron number sharing. The production of fissioning nuclei in transfer reactions allows studying the isotopic yields of fission fragments as a function of the excitation energy. The higher excitation energy resulting in the fusion reaction leading to the compound nucleus {sup 250}Cf at an excitation energy of 45MeV is also presented. With the use of inverse kinematics, the charge polarisation of fragments at scission is now revealed with high precision, and it is shown that it cannot be neglected, even at higher excitation energies. In addition, the kinematical properties of the fragments inform on the deformation configuration at scission. (orig.)
Recent progress in fission at saddle point and scission point
International Nuclear Information System (INIS)
Blons, J.; Paya, D.; Signarbieux, C.
High resolution measurements of 230 Th and 232 Th fission cross sections for neutrons exhibit a fine structure. Such a structure is interpreted as a superposition of two rotational bands in the third, asymmetric, well of the fission barrier. The fragment mass distribution in the thermal fission of 235 U and 233 U does not show any even-odd effect, even at the highest kinetic energies. This is the mark of a strong viscosity in the descent from saddle point to scission point [fr
Prompt fission neutron spectra and average prompt neutron multiplicities
International Nuclear Information System (INIS)
Madland, D.G.; Nix, J.R.
1983-01-01
We present a new method for calculating the prompt fission neutron spectrum N(E) and average prompt neutron multiplicity anti nu/sub p/ as functions of the fissioning nucleus and its excitation energy. The method is based on standard nuclear evaporation theory and takes into account (1) the motion of the fission fragments, (2) the distribution of fission-fragment residual nuclear temperature, (3) the energy dependence of the cross section sigma/sub c/ for the inverse process of compound-nucleus formation, and (4) the possibility of multiple-chance fission. We use a triangular distribution in residual nuclear temperature based on the Fermi-gas model. This leads to closed expressions for N(E) and anti nu/sub p/ when sigma/sub c/ is assumed constant and readily computed quadratures when the energy dependence of sigma/sub c/ is determined from an optical model. Neutron spectra and average multiplicities calculated with an energy-dependent cross section agree well with experimental data for the neutron-induced fission of 235 U and the spontaneous fission of 252 Cf. For the latter case, there are some significant inconsistencies between the experimental spectra that need to be resolved. 29 references
Insights into nuclear structure and the fission process from spontaneous fission
Energy Technology Data Exchange (ETDEWEB)
Hamilton, J.H.; Butler-Moore, K.; Ramayya, A.V. [Vanderbilt Univ., Nashville, TN (United States)] [and others
1993-12-31
The {gamma}-rays emitted following spontaneous and induced fission are rich sources of information about the structure of neutron-rich nuclei and about the fission process itself. The study of spontaneous fissioning isotopes with large Ge detector arrays are providing a wealth of such information as seen, for example, in recent reports. In this paper we present some of our most recent results on nuclear structure studies and conclusions on the fission process itself. In our work, we have employed in spontaneous fission, a triple gamma coincidence study for the first time and a high resolution, X-ray detector-{gamma}-coincidence study. These data provide powerful ways of separating the gamma rays which belong to a particular nucleus. The triple coincidence technique was used to uniquely identify the levels in {sup 136}Te and higher spin states in its N=84 isotones, {sup 138}Xe and {sup 140}Ba{sup 171}. Some other examples of the level structures observed in the low and high mass partners are presented, including a detailed analysis of the backbending of the moment of inertia in {sup 112,114,116}Pd. Finally, we present the first examples of how our analysis allows one to extract a detailed picture of the dependence of the angular momentum on the mass and atomic numbers of the fission fragments and of the long-sought neutron multiplicity distribution from zero-n to ten-n as a function of the charge and mass asymmetry.
International Nuclear Information System (INIS)
Yamagishi, S.; Tanifuji, T.
1976-01-01
By using post-irradiation techniques, in-pile releases of 133 Xe, sup(85m)Kr, 88 Kr, 87 Kr and 138 Xe from UO 2 fissioning at low temperatures below about 200 0 C are studied: these are analyzed into a time-dependent knock-out and time-independent pseudo-recoil releases. For the latter, a 'self knock-out' mechanism is proposed: when a fission fragment loses thoroughly its energy near the UO 2 surface and stops there, it will knock out the surface substances and accordingly the fragment (i.e. the fission product) will be released. The effective thickness of the layer where the self knock-out occurs is found to be approximately 7A. As for the knock-out release, the following is estimated from its dependence on various factors: the knock-out release of fission products occurs from the surface layer with the effective thickness of approximately 20A: the shape of UO 2 matrix knocked out by one fission fragment passing through the surface is equivalent to a cylinder approximately 32A diameter by approximately 27A thick, (i.e. the knock-out coefficient for UO 2 is approximately 660 uranium atoms per knock-out event). On the basis of the above estimations, the conclusions derived from the past in-pile studies of fission gas releases are evaluated. (Auth.)
International Nuclear Information System (INIS)
Fiorentino, J.
1983-01-01
The nuclear fission process considering initially the formation of compound nucleus and finishing with radioactive decay of fission products is studied. The process is divided in three parts which consist of the events associated to the nucleus of intermediate transitional state, the scission configuration, and the phenomenum of post scission. (M.C.K.) [pt
International Nuclear Information System (INIS)
Colburn, R.P.
1984-01-01
A device for collecting fission gas released by failed fuel rods which device uses a filter adapted to pass coolant but to block passage of fission gas bubbles due to the surface tension of the bubbles. The coolant may be liquid metal. (author)
Norbury, John W.
1992-01-01
Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.
Fission yield calculation using toy model based on Monte Carlo simulation
International Nuclear Information System (INIS)
Jubaidah; Kurniadi, Rizal
2015-01-01
Toy model is a new approximation in predicting fission yield distribution. Toy model assumes nucleus as an elastic toy consist of marbles. The number of marbles represents the number of nucleons, A. This toy nucleus is able to imitate the real nucleus properties. In this research, the toy nucleons are only influenced by central force. A heavy toy nucleus induced by a toy nucleon will be split into two fragments. These two fission fragments are called fission yield. In this research, energy entanglement is neglected. Fission process in toy model is illustrated by two Gaussian curves intersecting each other. There are five Gaussian parameters used in this research. They are scission point of the two curves (R c ), mean of left curve (μ L ) and mean of right curve (μ R ), deviation of left curve (σ L ) and deviation of right curve (σ R ). The fission yields distribution is analyses based on Monte Carlo simulation. The result shows that variation in σ or µ can significanly move the average frequency of asymmetry fission yields. This also varies the range of fission yields distribution probability. In addition, variation in iteration coefficient only change the frequency of fission yields. Monte Carlo simulation for fission yield calculation using toy model successfully indicates the same tendency with experiment results, where average of light fission yield is in the range of 90fission yield is in about 135
Fission yield calculation using toy model based on Monte Carlo simulation
Energy Technology Data Exchange (ETDEWEB)
Jubaidah, E-mail: jubaidah@student.itb.ac.id [Nuclear Physics and Biophysics Division, Department of Physics, Bandung Institute of Technology. Jl. Ganesa No. 10 Bandung – West Java, Indonesia 40132 (Indonesia); Physics Department, Faculty of Mathematics and Natural Science – State University of Medan. Jl. Willem Iskandar Pasar V Medan Estate – North Sumatera, Indonesia 20221 (Indonesia); Kurniadi, Rizal, E-mail: rijalk@fi.itb.ac.id [Nuclear Physics and Biophysics Division, Department of Physics, Bandung Institute of Technology. Jl. Ganesa No. 10 Bandung – West Java, Indonesia 40132 (Indonesia)
2015-09-30
Toy model is a new approximation in predicting fission yield distribution. Toy model assumes nucleus as an elastic toy consist of marbles. The number of marbles represents the number of nucleons, A. This toy nucleus is able to imitate the real nucleus properties. In this research, the toy nucleons are only influenced by central force. A heavy toy nucleus induced by a toy nucleon will be split into two fragments. These two fission fragments are called fission yield. In this research, energy entanglement is neglected. Fission process in toy model is illustrated by two Gaussian curves intersecting each other. There are five Gaussian parameters used in this research. They are scission point of the two curves (R{sub c}), mean of left curve (μ{sub L}) and mean of right curve (μ{sub R}), deviation of left curve (σ{sub L}) and deviation of right curve (σ{sub R}). The fission yields distribution is analyses based on Monte Carlo simulation. The result shows that variation in σ or µ can significanly move the average frequency of asymmetry fission yields. This also varies the range of fission yields distribution probability. In addition, variation in iteration coefficient only change the frequency of fission yields. Monte Carlo simulation for fission yield calculation using toy model successfully indicates the same tendency with experiment results, where average of light fission yield is in the range of 90fission yield is in about 135
Fission-residues produced in the spallation reaction 238U + p at 1 A GeV
International Nuclear Information System (INIS)
Bernas, M.; Armbruster, P.; Benlliure, J.; Boudard, A.; Casarejos, E.; Czajkowski, S.; Enqvist, T.; Legrain, R.; Leray, S.; Mustapha, B.; Napolitani, P.; Pereira, J.; Rejmund, F.; Ricciardi, M.V.; Schmidt, K.H.; Stephan, C.; Taieb, J.; Tassan-Got, L.; Volant, C.
2003-04-01
Fission fragments from 1 A GeV 238 U projectiles irradiating a hydrogen target were investigated by using the fragment separator FRS for magnetic selection of reaction products including ray-tracing and ΔE-ToF techniques. The momentum spectra of identified fragments were analysed to provide isotopic production cross sections, fission-fragment velocities and recoil momenta of the fissioning parent nuclei. Besides their general relevance, these quantities are also demanded for applications. Calculations and simulations with codes commonly used and recently developed or improved are compared to the data. (orig.)
Dissipative effects in fission investigated with proton-on-lead reactions
Directory of Open Access Journals (Sweden)
Rodríguez-Sánchez J. L.
2016-01-01
Full Text Available The complete kinematic measurement of the two fission fragments permitted us to investigate dissipative effects at large deformations, between the saddle-point and the corresponding scission configurations. Up to now, this kind of study has only been performed with fusionfission reactions using a limited number of observables, such as the mass distribution of the fission fragments or the neutron multiplicities. However, the large angular momenta gained by the compound nucleus could affect the conclusions drawn from such experiments. In this work, the use of spallation reactions, where the fissioning systems are produced with low angular momentum, small deformations and high excitation energies, favors the study of dissipation, and allowed us to define new observables, such as postscission neutron multiplicities and the neutron excess of the final fission fragments as a function of the atomic number of the fissioning system. These new observables are used to investigate the dissipation at large deformations.
Oliver, Thomas A A; Zhang, Yuyuan; Ashfold, Michael N R; Bradforth, Stephen E
2011-01-01
Gas-phase H (Rydberg) atom photofragment translational spectroscopy and solution-phase femtosecond-pump dispersed-probe transient absorption techniques are applied to explore the excited state dynamics of p-methylthiophenol connecting the short time reactive dynamics in the two phases. The molecule is excited at a range of UV wavelengths from 286 to 193 nm. The experiments clearly demonstrate that photoexcitation results in S-H bond fission--both in the gas phase and in ethanol solution-and that the resulting p-methythiophenoxyl radical fragments are formed with significant vibrational excitation. In the gas phase, the recoil anisotropy of the H atom and the vibrational energy disposal in the p-MePhS radical products formed at the longer excitation wavelengths reveal the operation of two excited state dissociation mechanisms. The prompt excited state dissociation motif appears to map into the condensed phase also. In both phases, radicals are produced in both their ground and first excited electronic states; characteristic signatures for both sets of radical products are already apparent in the condensed phase studies after 50 fs. No evidence is seen for either solute ionisation or proton coupled electron transfer--two alternate mechanisms that have been proposed for similar heteroaromatics in solution. Therefore, at least for prompt S-H bond fissions, the direct observation of the dissociation process in solution confirms that the gas phase photofragmentation studies indeed provide important insights into the early time dynamics that transfer to the condensed phase.
International Nuclear Information System (INIS)
Vardaci, Emanuele; Kaplan, Morton; Parker, Winifred E.; Moses, David J.; Boger, J.T.; Gilfoyle, G.T.; McMahan, M.A.; Montoya, M.
2000-05-01
A new technique has been applied to coincidence measurements between fission fragments (FF) and intermediate mass fragments (IMF) emitted from the composite system 149 65 Tb at an excitation energy of 224 MeV. The method permits simultaneous observation of IMF emissions along and normal to the FF separation axes. For the integrated total of 0.10 +-0.02 IMF emitted per fission, we find no significant correlation with FF direction, suggesting that IMFs associated with fission reactions are predominantly emitted from the system prior to fission
Modelling the fragmentation mechanisms
International Nuclear Information System (INIS)
Bougault, R.; Durand, D.; Gulminelli, F.
1998-01-01
We have investigated the role of high amplitude collective motion in the nuclear fragmentation by using semi-classical macroscopic, as well as, microscopic simulations (BUU). These studies are motivated by the search of instabilities responsible for nuclear fragmentation. Two cases were examined: the bubble formation following the collective expansion of the compressed nucleus in case of very central reactions and, in the case of the semi-central collisions, the fast fission of the two partners issued from a binary reaction, in their corresponding Coulomb field. In the two cases the fragmentation channel is dominated by the inter-relation between the Coulomb and nuclear fields, and it is possible to obtain semi-quantitative predictions as functions of interaction parameters. The transport equations of BUU type predicts for central reactions formation of a high density transient state. Of much interest is the mechanism subsequent to de-excitation. It seems reasonable to conceive that the pressure stocked in the compressional mode manifests itself as a collective expansion of the system. As the pressure is a increasing function of the available energy one can conceive a variety of energy depending exit channels, starting from the fragmentation due the amplification of fluctuations interior to the spinodal zone up to the complete vaporization of the highly excited system. If the reached pressure is sufficiently high the reaction final state may preserve the memory of the entrance channel as a collective radial energy superimposed to the thermal disordered motion. Distributions of particles in the configuration space for both central and semi-central reactions for the Pb+Au system are presented. The rupture time is estimated to the order of 300 fm/c, and is strongly dependent on the initial temperature. The study of dependence of the rupture time on the interaction parameters is under way
Fission product yield measurements using monoenergetic photon beams
Krishichayan; Bhike, M.; Tonchev, A. P.; Tornow, W.
2017-09-01
Measurements of fission products yields (FPYs) are an important source of information on the fission process. During the past couple of years, a TUNL-LANL-LLNL collaboration has provided data on the FPYs from quasi monoenergetic neutron-induced fission on 235U, 238U, and 239Pu and has revealed an unexpected energy dependence of both asymmetric fission fragments at energies below 4 MeV. This peculiar FPY energy dependence was more pronounced in neutron-induced fission of 239Pu. In an effort to understand and compare the effect of the incoming probe on the FPY distribution, we have carried out monoenergetic photon-induced fission experiments on the same 235U, 238U, and 239Pu targets. Monoenergetic photon beams of Eγ = 13.0 MeV were provided by the HIγS facility, the world's most intense γ-ray source. In order to determine the total number of fission events, a dual-fission chamber was used during the irradiation. These irradiated samples were counted at the TUNL's low-background γ-ray counting facility using high efficient HPGe detectors over a period of 10 weeks. Here we report on our first ever photofission product yield measurements obtained with monoenegetic photon beams. These results are compared with neutron-induced FPY data.
Fission product yield measurements using monoenergetic photon beams
Directory of Open Access Journals (Sweden)
Krishichayan
2017-01-01
Full Text Available Measurements of fission products yields (FPYs are an important source of information on the fission process. During the past couple of years, a TUNL-LANL-LLNL collaboration has provided data on the FPYs from quasi monoenergetic neutron-induced fission on 235U, 238U, and 239Pu and has revealed an unexpected energy dependence of both asymmetric fission fragments at energies below 4 MeV. This peculiar FPY energy dependence was more pronounced in neutron-induced fission of 239Pu. In an effort to understand and compare the effect of the incoming probe on the FPY distribution, we have carried out monoenergetic photon-induced fission experiments on the same 235U, 238U, and 239Pu targets. Monoenergetic photon beams of Eγ = 13.0 MeV were provided by the HIγS facility, the world's most intense γ-ray source. In order to determine the total number of fission events, a dual-fission chamber was used during the irradiation. These irradiated samples were counted at the TUNL's low-background γ-ray counting facility using high efficient HPGe detectors over a period of 10 weeks. Here we report on our first ever photofission product yield measurements obtained with monoenegetic photon beams. These results are compared with neutron-induced FPY data.
International Nuclear Information System (INIS)
Brucker, A.
1986-01-01
In the asymmetric system 318 MeV 28 Si + 141 Pr the angular and energy distributions of α particles and protons were measured in coincidence with fission fragments. Identification and separation of the sources of sequential emission before (CN) and after (F) fission of the compound-nucleus 169 Ta yields following multiplicities: M CN α =0.38±0.04, M CN p =0.6±0.15; M F α =0.16±0.03, M F p =0.54±0.15. Measurement of the cross sections δ ER =(608±81) mb and δ F =(679±159) mb for residual nucleus formation respectively fission fixes the mean angular momentum for fission l F =(94±7)ℎ and the maximal angular momentum l F,max =(110±10)ℎ (sharp cut-off model). From the angular correlation relative to the spin direction of the compound-nucleus an anisotropy parameter of A α =6.7±0.8 and A p =1.3±0.2 for α respectively proton emission from the compound-nucleus is measured, and by means of the semiclassical model of Dossing a quadrupole deformation parameter of the compound-nucleus of vertical strokeδvertical stroke=0.43±0.05 consistent within the uncertainties of the analysis determined. Apart from pre-equilibrium emission under small angles to the beam significant deviations from sequential emission are observed only in the α emission and detailedly studied by means of angular correlation and energy spectra: (I) an strong nuclear shadowing of the fragment emission of 1/7 of its sequential value in a narrow angular range (≅40 0 (FWHM)) in the direction of the detected fission fragment. From this a mean lifetime of the compound nucleus τ CN =(140-240).10 -22 s is obtained. (II) A perpendicularly to the scission axis strongly pronounced surplus M SC α =(1.7±0.4).10 -2 and an observed deficit of equal magnitude in direction of the scission axis. (orig./HSI) [de
Sage, Alan G.; Oliver, Thomas A. A.; King, Graeme A.; Murdock, Daniel; Harvey, Jeremy N.; Ashfold, Michael N. R.
2013-04-01
The wavelength dependences of C-Y and O-H bond fission following ultraviolet photoexcitation of 4-halophenols (4-YPhOH) have been investigated using a combination of velocity map imaging, H Rydberg atom photofragment translational spectroscopy, and high level spin-orbit resolved electronic structure calculations, revealing a systematic evolution in fragmentation behaviour across the series Y = I, Br, Cl (and F). All undergo O-H bond fission following excitation at wavelengths λ ≲ 240 nm, on repulsive ((n/π)σ*) potential energy surfaces (PESs), yielding fast H atoms with mean kinetic energies ˜11 000 cm-1. For Y = I and Br, this process occurs in competition with prompt C-I and C-Br bond cleavage on another (n/π)σ* PES, but no Cl/Cl* products unambiguously attributable to one photon induced C-Cl bond fission are observed from 4-ClPhOH. Differences in fragmentation behaviour at longer excitation wavelengths are more marked. Prompt C-I bond fission is observed following excitation of 4-IPhOH at all λ ≤ 330 nm; the wavelength dependent trends in I/I* product branching ratio, kinetic energy release, and recoil anisotropy suggest that (with regard to C-I bond fission) 4-IPhOH behaves like a mildly perturbed iodobenzene. Br atoms are observed when exciting 4-BrPhOH at long wavelengths also, but their velocity distributions suggest that dissociation occurs after internal conversion to the ground state. O-H bond fission, by tunnelling (as in phenol), is observed only in the cases of 4-FPhOH and, more weakly, 4-ClPhOH. These observed differences in behaviour can be understood given due recognition of (i) the differences in the vertical excitation energies of the C-Y centred (n/π)σ* potentials across the series Y = I increased spin-orbit coupling in, particularly, 4-IPhOH. The present results provide (another) reminder of the risks inherent in extrapolating photochemical behaviour measured for one molecule at one wavelength to other (related) molecules and to
International Nuclear Information System (INIS)
Sage, Alan G.; Oliver, Thomas A. A.; King, Graeme A.; Murdock, Daniel; Harvey, Jeremy N.; Ashfold, Michael N. R.
2013-01-01
The wavelength dependences of C–Y and O–H bond fission following ultraviolet photoexcitation of 4-halophenols (4-YPhOH) have been investigated using a combination of velocity map imaging, H Rydberg atom photofragment translational spectroscopy, and high level spin-orbit resolved electronic structure calculations, revealing a systematic evolution in fragmentation behaviour across the series Y = I, Br, Cl (and F). All undergo O–H bond fission following excitation at wavelengths λ≲ 240 nm, on repulsive ((n/π)σ*) potential energy surfaces (PESs), yielding fast H atoms with mean kinetic energies ∼11 000 cm −1 . For Y = I and Br, this process occurs in competition with prompt C–I and C–Br bond cleavage on another (n/π)σ* PES, but no Cl/Cl* products unambiguously attributable to one photon induced C–Cl bond fission are observed from 4-ClPhOH. Differences in fragmentation behaviour at longer excitation wavelengths are more marked. Prompt C–I bond fission is observed following excitation of 4-IPhOH at all λ≤ 330 nm; the wavelength dependent trends in I/I* product branching ratio, kinetic energy release, and recoil anisotropy suggest that (with regard to C–I bond fission) 4-IPhOH behaves like a mildly perturbed iodobenzene. Br atoms are observed when exciting 4-BrPhOH at long wavelengths also, but their velocity distributions suggest that dissociation occurs after internal conversion to the ground state. O–H bond fission, by tunnelling (as in phenol), is observed only in the cases of 4-FPhOH and, more weakly, 4-ClPhOH. These observed differences in behaviour can be understood given due recognition of (i) the differences in the vertical excitation energies of the C–Y centred (n/π)σ* potentials across the series Y = I < Br < Cl and the concomitant reduction in C–Y bond strength, cf. that of the rival O–H bond, and (ii) the much increased spin-orbit coupling in, particularly, 4-IPhOH. The present results provide (another) reminder of the
Sage, Alan G; Oliver, Thomas A A; King, Graeme A; Murdock, Daniel; Harvey, Jeremy N; Ashfold, Michael N R
2013-04-28
The wavelength dependences of C-Y and O-H bond fission following ultraviolet photoexcitation of 4-halophenols (4-YPhOH) have been investigated using a combination of velocity map imaging, H Rydberg atom photofragment translational spectroscopy, and high level spin-orbit resolved electronic structure calculations, revealing a systematic evolution in fragmentation behaviour across the series Y = I, Br, Cl (and F). All undergo O-H bond fission following excitation at wavelengths λ ≲ 240 nm, on repulsive ((n∕π)σ∗) potential energy surfaces (PESs), yielding fast H atoms with mean kinetic energies ∼11,000 cm(-1). For Y = I and Br, this process occurs in competition with prompt C-I and C-Br bond cleavage on another (n∕π)σ∗ PES, but no Cl∕Cl∗ products unambiguously attributable to one photon induced C-Cl bond fission are observed from 4-ClPhOH. Differences in fragmentation behaviour at longer excitation wavelengths are more marked. Prompt C-I bond fission is observed following excitation of 4-IPhOH at all λ ≤ 330 nm; the wavelength dependent trends in I∕I∗ product branching ratio, kinetic energy release, and recoil anisotropy suggest that (with regard to C-I bond fission) 4-IPhOH behaves like a mildly perturbed iodobenzene. Br atoms are observed when exciting 4-BrPhOH at long wavelengths also, but their velocity distributions suggest that dissociation occurs after internal conversion to the ground state. O-H bond fission, by tunnelling (as in phenol), is observed only in the cases of 4-FPhOH and, more weakly, 4-ClPhOH. These observed differences in behaviour can be understood given due recognition of (i) the differences in the vertical excitation energies of the C-Y centred (n∕π)σ∗ potentials across the series Y = I bond strength, cf. that of the rival O-H bond, and (ii) the much increased spin-orbit coupling in, particularly, 4-IPhOH. The present results provide (another) reminder of the risks inherent in extrapolating photochemical
Daniel Gogny's vision for a microscopic theory of fission
Energy Technology Data Exchange (ETDEWEB)
Younes, W. [Lawrence Livermore National Laboratory, Livermore, CA (United States)
2017-05-15
Daniel Gogny made many contributions to our understanding of nuclear fission over a span of 35 years. This paper reviews some of those contributions, focusing in particular on fission dynamics, the challenges of describing scission in a quantum-mechanical context, and the calculation of fragment properties such as their mass, kinetic, and excitation energy distributions. The generator coordinate method provides the common theoretical framework within which these various aspects of fission are formulated. (orig.)
A uniform semi-classical approach to the Coulomb fission problem
International Nuclear Information System (INIS)
Levit, S.; Smilansky, U.
1978-01-01
A semi-classical theory based on the path integral formalism is applied to the description of Coulomb fission. Complex classical trajectories are used to compute the classically forbidden transitions from the target's ground state to fission. In a simple model the energy spectrum and angular distributions of the fragments are calculated for the Coulomb fission in the Xe + U collision. Theoretical predictions are made which may be checked experimentally. (author)
Dispersions and correlations of the distributions of products of 252Cf spontaneous fission
International Nuclear Information System (INIS)
Vidyakin, G.S.; Vyrodov, V.N.; Gurevich, I.I.; Kirillov, B.F.; Kozlov, Y.V.; Martem'yanov, V.P.; Sukhotin, S.V.; Tarasenkov, V.G.; Khakimov, S.K.
1982-01-01
We report the results of two experiments on study of the dispersions and correlations of the distributions of products of the spontaneous fission of 252 Cf. In each experiment about 10 8 fissions were recorded with simultaneous measurement of the number of neutrons produced and in one case the fragment kinetic energy and in the other case the energy of the prompt #betta# rays. The quantities obtained were the probabilities of production of a given number of neutrons per fission, the dispersions of the distributions of the number of neutrons produced and of the fragment kinetic energy, and the dependence of the average #betta#-ray energy and the average fragment kinetic energy on the number of neutrons produced. A calculation is made of the spectrum of the total energy carried away by fragments and neutrons, and its dispersion is determined. An estimate of the total energy release in the 252 Cf fission process is made
International Nuclear Information System (INIS)
Arnold, Werner
2002-01-01
Contrary to natural fragmentation, controlled fragmentation offers the possibility to adapt fragment parameters like size and mass to the performance requirements in a very flexible way. Known mechanisms like grooves inside the casing, weaken the structure. This is, however, excluded for applications with high accelerations during launch or piercing requirements for example on a semi armor piercing penetrator. Another method to achieve controlled fragmentation with an additional grid layer is presented with which the required grooves are produced 'just in time' inside the casing during detonation of the high explosive. The process of generating the grooves aided by the grid layer was studied using the hydrocode HULL with respect to varying grid designs and material combinations. Subsequent to this, a large range of these theoretically investigated combinations was contemplated in substantial experimental tests. With an optimised grid design and a suitable material selection, the controlled fragment admits a very flexible adaptation to the set requirements. Additional advantages like the increase of perforation performance or incendiary amplification can be realized with the grid layer
Preliminary results of total kinetic energy modelling for neutron-induced fission
International Nuclear Information System (INIS)
Visan, I.; Giubega, G.; Tudora, A.
2015-01-01
The total kinetic energy as a function of fission fragments mass TKE(A) is an important quantity entering in prompt emission calculations. The experimentally distributions of TKE(A) are referring to a limited number of fission systems and incident energies. In the present paper, a preliminary model for TKE calculation in neutron induced fission system is presented. The range of fission fragments is chosen as in the Point by Point treatment. The model needs as input only mass excesses and deformation parameters taken from available nuclear databases being based on the following approximations: total excitation energy of fully accelerated fission fragments TXE is calculated from energy balance of neutron-induced fission systems as sum of the total excitation energy at scission E*sciss and deformation energy Edef. The deformation energy at scission is given by minimizing the potential energy at the scission configuration. At the scission point, the fission system is described by two spheroidal fragments nearly touching by a pre-scission distance or neck caused by the nuclear forces between fragments. Therefore, the Columbian repulsion depending on neck and, consequently, on the fragments deformation at scission, is essentially in TKE determination. An approximation is made based on the fission modes. For the very symmetric fission, the dominant super long channel is characterized by long distance between fragments leading to low TKE values. Due to magic and double-magic shells closure, the dominant S1 fission mode for pairs with heavy fragment mass AH around 130-134 is characterized by spherical heavy fragment shape and easily deformed light fragment. The nearly spherical shape of the complementary fragments are characterized by minimum distance, and consequently to maximum TKE values. The results obtained for TKE(A) are in good agreement with existing experimental data for many neutron induced fission systems, e.g. ''2''3''3&apos
Plasma sheet pressure anisotropies
International Nuclear Information System (INIS)
Stiles, G.S.; Hones, E.W. Jr; Bame, S.J.; Asbridge, J.R.
1978-01-01
The ecliptic plane components of the pressure tensors for low-energy ( or =1.2 approximately 25% of the time. Due to the low energy density of the electrons, however, this anisotropy is not itself sufficient to balance the tension of the magnetic field
CMB anisotropies interpolation
Zinger, S.; Delabrouille, Jacques; Roux, Michel; Maitre, Henri
2010-01-01
We consider the problem of the interpolation of irregularly spaced spatial data, applied to observation of Cosmic Microwave Background (CMB) anisotropies. The well-known interpolation methods and kriging are compared to the binning method which serves as a reference approach. We analyse kriging
Energy Technology Data Exchange (ETDEWEB)
Brax, Philippe [Institut de Physique Théorique, CEA, IPhT, CNRS, URA 2306, F-91191Gif/Yvette Cedex (France); Upadhye, Amol, E-mail: philippe.brax@cea.fr, E-mail: aupadhye@anl.gov [Institute for the Early Universe, Ewha University, International Education, Building #601, 11-1, Daehyun-Dong Seodaemun-Gu, Seoul 120-750 (Korea, Republic of)
2014-02-01
A scalar field dark energy candidate could couple to ordinary matter and photons, enabling its detection in laboratory experiments. Here we study the quantum properties of the chameleon field, one such dark energy candidate, in an ''afterglow'' experiment designed to produce, trap, and detect chameleon particles. In particular, we investigate the possible fragmentation of a beam of chameleon particles into multiple particle states due to the highly non-linear interaction terms in the chameleon Lagrangian. Fragmentation could weaken the constraints of an afterglow experiment by reducing the energy of the regenerated photons, but this energy reduction also provides a unique signature which could be detected by a properly-designed experiment. We show that constraints from the CHASE experiment are essentially unaffected by fragmentation for φ{sup 4} and 1/φ potentials, but are weakened for steeper potentials, and we discuss possible future afterglow experiments.
International Nuclear Information System (INIS)
Brax, Philippe; Upadhye, Amol
2014-01-01
A scalar field dark energy candidate could couple to ordinary matter and photons, enabling its detection in laboratory experiments. Here we study the quantum properties of the chameleon field, one such dark energy candidate, in an ''afterglow'' experiment designed to produce, trap, and detect chameleon particles. In particular, we investigate the possible fragmentation of a beam of chameleon particles into multiple particle states due to the highly non-linear interaction terms in the chameleon Lagrangian. Fragmentation could weaken the constraints of an afterglow experiment by reducing the energy of the regenerated photons, but this energy reduction also provides a unique signature which could be detected by a properly-designed experiment. We show that constraints from the CHASE experiment are essentially unaffected by fragmentation for φ 4 and 1/φ potentials, but are weakened for steeper potentials, and we discuss possible future afterglow experiments
A possible mechanism in heavy ion induced reactions: 'fast fission process'
International Nuclear Information System (INIS)
Borderie, B.; Gardes, D.; Berlanger, M.
1980-01-01
The influence of the orbital angular momentum l on the mass distribution of fission fragments is studied, both on previously available data on heavy ion induced fission and in new specifically planned experiments: systems 40 Ar + 165 Ho and 24 Mg + 181 Ta at bombarding energies ranging from 180 up to 391 MeV and leading to the same fissionning nucleus 205 At wigh different l distributions. When l values corresponding to a vanished fission barrier are reached, the mass distribution broadens. This suggest the existence of a specific process, 'fast fission', at l-values leading to compound nucleus formation and deep inelastic collisions, respectively. This process and its conditions of occurrence are discussed; of special interest are the correlated differences between the limitations to the fission cross-section and the fission mass distributions broadenings, respectively, for the Ar + Ho and Mg + Ta systems
Possible Mechanisms of Ternary Fission in the 197Au+197 Au System at 15 AMeV
International Nuclear Information System (INIS)
Jun-Long, Tian; Xian, Li; Shi-Wei, Yan; Xi-Zhen, Wu; Zhu-Xia, Li
2009-01-01
Ternary fission in 197 Au+ 197 Au collisions at 15 A MeV is investigated by using the improved quantum molecular dynamical (ImQMD) model. The experimental mass distributions for each of the three fragments are reproduced for the first time without any freely adjusting parameters. The mechanisms of ternary fission in central and semi-central collisions are dynamically studied. In direct prolate ternary fission, two necks are found to be formed almost simultaneously and rupture sequentially in a very short time interval. Direct oblate ternary fission is a very rare fission event, in which three necks are formed and rupture simultaneously, forming three equally sized fragments along space-symmetric directions in the reaction plane. In sequential ternary fission a binary division is followed by another binary fission event after hundreds of fm/c. (nuclear physics)
Energy Technology Data Exchange (ETDEWEB)
Younes, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-10-26
A three-year theory project was undertaken to study the fission process in extreme astrophysical environments, such as the crust of neutron stars. In the first part of the project, the effect of electron screening on the fission process was explored using a microscopic approach. For the first time, these calculations were carried out to the breaking point of the nucleus. In the second part of the project, the population of the fissioning nucleus was calculated within the same microscopic framework. These types of calculations are extremely computer-intensive and have seldom been applied to heavy deformed nuclei, such as fissioning actinides. The results, tools and methodologies produced in this work will be of interest to both the basic-science and nuclear-data communities.
Study of electron-capture delayed fission in Am-232
International Nuclear Information System (INIS)
Kreek, S.A.; Hall, H.L.; Hoffman, D.C.; Strellis, D.; Gregorich, K.E.
1996-01-01
An automated x-ray-fission coincidence system was designed and constructed by LLNL and Lawrence Berkeley National Laboratory (LBNL) for use inside the Gammasphere high efficiency gamma-ray detector array at LBNL. The x-ray-fission coincidence apparatus detection station consists of two surface barrier detectors (for detection of fission fragments) and two high-purity Ge (HPGe) planar x-ray detectors (for measurement of x-rays and low-energy gamma rays). The detection station is placed inside Gammasphere at the 88-Inch Cyclotron at LBNL and used in conjunction with Gammasphere to measure the x-rays, low-energy gamma-rays and fission fragments resulting from the ECDF process. A series of collaborative experiment between LLNL, LBNL, and LANL utilizing various components of the x-ray-fission coincidence apparatus to measure x-rays and gamma-rays in the decay of a stationary 252 Cf source were performed to test the various components of the x-ray-fission coincidence apparatus. The test experiments have been completed and the data is currently being analyzed by LBNL. Preliminary test results indicate that the system performed better than expected (e.g., the x-ray detectors performed better than expected with no evidence of microphonic noise that would reduce the photon energy resolution)
Event-by-Event Simulation of Induced Fission
Vogt, Ramona; Randrup, Jørgen
2008-04-01
We are developing a novel code that treats induced fission by statistical (or Monte-Carlo) simulation of individual decay chains. After its initial excitation, the fissionable compound nucleus may either de-excite by evaporation or undergo binary fission into a large number of fission channels each with different energetics involving both energy dissipation and deformed scission pre-fragments. After separation and Coulomb acceleration, each fission fragment undergoes a succession of individual (neutron) evaporations, leading to two bound but still excited fission products (that may further decay electromagnetically and, ultimately, weakly), as well as typically several neutrons. (The inclusion of other possible ejectiles is planned.) This kind of approach makes it possible to study more detailed observables than could be addressed with previous treatments which have tended to focus on average quantities. In particular, any type of correlation observable can readily be extracted from a generated set of events. With a view towards making the code practically useful in a variety of applications, emphasis is being put on making it numerically efficient so that large event samples can be generated quickly. In its present form, the code can generate one million full events in about 12 seconds on a MacBook laptop computer. The development of this qualitatively new tool is still at an early stage and quantitative reproduction of existing data should not be expected until a number of detailed refinement have been implemented.
Event-by-Event Simulation of Induced Fission
International Nuclear Information System (INIS)
Vogt, Ramona; Randrup, Joergen
2008-01-01
We are developing a novel code that treats induced fission by statistical (or Monte-Carlo) simulation of individual decay chains. After its initial excitation, the fissionable compound nucleus may either de-excite by evaporation or undergo binary fission into a large number of fission channels each with different energetics involving both energy dissipation and deformed scission pre-fragments. After separation and Coulomb acceleration, each fission fragment undergoes a succession of individual (neutron) evaporations, leading to two bound but still excited fission products (that may further decay electromagnetically and, ultimately, weakly), as well as typically several neutrons. (The inclusion of other possible ejectiles is planned.) This kind of approach makes it possible to study more detailed observables than could be addressed with previous treatments which have tended to focus on average quantities. In particular, any type of correlation observable can readily be extracted from a generated set of events. With a view towards making the code practically useful in a variety of applications, emphasis is being put on making it numerically efficient so that large event samples can be generated quickly. In its present form, the code can generate one million full events in about 12 seconds on a MacBook laptop computer. The development of this qualitatively new tool is still at an early stage and quantitative reproduction of existing data should not be expected until a number of detailed refinement have been implemented
Fission of Polyanionic Metal Clusters
König, S.; Jankowski, A.; Marx, G.; Schweikhard, L.; Wolfram, M.
2018-04-01
Size-selected dianionic lead clusters Pbn2 -, n =34 - 56 , are stored in a Penning trap and studied with respect to their decay products upon photoexcitation. Contrary to the decay of other dianionic metal clusters, these lead clusters show a variety of decay channels. The mass spectra of the fragments are compared to the corresponding spectra of the monoanionic precursors. This comparison leads to the conclusion that, in the cluster size region below about n =48 , the fission reaction Pbn2 -→Pbn-10 -+Pb10- is the major decay process. Its disappearance at larger cluster sizes may be an indication of a nonmetal to metal transition. Recently, the pair of Pb10- and Pbn-10 - were observed as pronounced fragments in electron-attachment studies [S. König et al., Int. J. Mass Spectrom. 421, 129 (2017), 10.1016/j.ijms.2017.06.009]. The present findings suggest that this combination is the fingerprint of the decay of doubly charged lead clusters. With this assumption, the dianion clusters have been traced down to Pb212 -, whereas the smallest size for the direct observation was as high as n =28 .
International Nuclear Information System (INIS)
Younes, W; Gogny, D
2008-01-01
In recent years, the microscopic method has been applied to the notoriously difficult problem of nuclear fission with unprecedented success. In this paper, we discuss some of the achievements and promise of the microscopic method, as embodied in the Hartree-Fock method using the Gogny finite-range effective interaction, and beyond-mean-field extensions to the theory. The nascent program to describe induced fission observables using this approach at the Lawrence Livermore National Laboratory is presented
International Nuclear Information System (INIS)
Blocki, J.; Planeta, R.; Brzychczyk, J.; Grotowski, K.
1992-01-01
Classical dynamical calculations of the heavy ion induced fission processes have been performed for the reactions 40 Ar+ 141 Pr, 20 Ne+ 165 Ho and 12 C+ 175 Lu leading to the iridium like nucleus. As a result prescission lifetimes were obtained and compared with the experimental values. The comparison between the calculated and experimental lifetimes indicates that the one-body dissipation picture is much more relevant in describing the fusion-fission dynamics than the two-body one. (orig.)
Fission neutron output measurements at LANSCE
International Nuclear Information System (INIS)
Nelson, Ronald Owen; Haight, Robert C.; Devlin, Matthew J.; Fotiadis, Nikolaos; Laptev, Alexander; O'Donnell, John M.; Taddeucci, Terry N.; Tovesson, Fredrik; Ullmann, J.L.; Wender, Stephen A.; Bredeweg, T.A.; Jandel, M.; Vieira, D.J.; Wu, Ching-Yen; Becker, J.A.; Stoyer, M.A.; Henderson, R.; Sutton, M.; Belier, Gilbert; Chatillon, A.; Granier, Thierry; Laurent, Benoit; Taieb, Julien
2010-01-01
Accurate data for both physical properties and fission properties of materials are necessary to properly model dynamic fissioning systems. To address the need for accurate data on fission neutron energy spectra, especially at outgoing neutron energies below about 200 keV and at energies above 8 MeV, ongoing work at LANSCE involving collaborators from LANL, LLNL and CEA Bruyeres-le-Chatel is extending the energy range, efficiency and accuracy beyond previous measurements. Initial work in the outgoing neutron energy range from 1 to 7 MeV is consistent with current evaluations and provides a foundation for extended measurements. As part of these efforts, a new fission fragment detector that reduces backgrounds and improves timing has been designed fabricated and tested, and new neutron detectors are being assessed for optimal characteristics. Simulations of experimental designs are in progress to ensure that accuracy goals are met. Results of these measurements will be incorporated into evaluations and data libraries as they become available.
DEFF Research Database (Denmark)
Kruse Aagaard, Anders
2017-01-01
The PhD project Bespoke Fragments is investigating the space emerging in the exploration of the relationship between digital drawing and fabrication, and the field of materials and their properties and capacities. Through a series of different experiments, the project situates itself in a shuttli...
Energy Technology Data Exchange (ETDEWEB)
Brown, W.S.; Green, S.J.; Hakala, W.W.; Hustrulid, W.A.; Maurer, W.C. (eds.)
1976-01-01
Experts in rock mechanics, mining, excavation, drilling, tunneling and use of underground space met to discuss the relative merits of a wide variety of rock fragmentation schemes. Information is presented on novel rock fracturing techniques; tunneling using electron beams, thermocorer, electric spark drills, water jets, and diamond drills; and rock fracturing research needs for mining and underground construction. (LCL)
Shell effects in fission and quasi-fission of heavy and superheavy nuclei
Energy Technology Data Exchange (ETDEWEB)
Itkis, M.G. E-mail: itkis@flnr.jinr.ru; Aeystoe, J.; Beghini, S.; Bogachev, A.A.; Corradi, L.; Dorvaux, O.; Gadea, A.; Giardina, G.; Hanappe, F.; Itkis, I.M.; Jandel, M.; Kliman, J.; Khlebnikov, S.V.; Kniajeva, G.N.; Kondratiev, N.A.; Kozulin, E.M.; Krupa, L.; Latina, A.; Materna, T.; Montagnoli, G.; Oganessian, Yu.Ts.; Pokrovsky, I.V.; Prokhorova, E.V.; Rowley, N.; Rubchenya, V.A.; Rusanov, A.Ya.; Sagaidak, R.N.; Scarlassara, F.; Stefanini, A.M.; Stuttge, L.; Szilner, S.; Trotta, M.; Trzaska, W.H.; Vakhtin, D.N.; Vinodkumar, A.M.; Voskressenski, V.M.; Zagrebaev, V.I
2004-04-05
Results of the experiments aimed at the study of fission and quasi-fission processes in the reactions {sup 12}C+{sup 204}Pb, {sup 48}Ca+{sup 144,154}Sm, {sup 168}Er, {sup 208}Pb, {sup 244}Pu, {sup 248}Cm; {sup 58}Fe+{sup 208}Pb, {sup 244}Pu, {sup 248}Cm, and {sup 64}Ni+{sup 186}W, {sup 242}Pu are presented in the work. The choice of the above-mentioned reactions was inspired by recent experiments on the production of the isotopes {sup 283}112, {sup 289}114 and {sup 283}116 at Dubna [1],[2] using the same reactions. The {sup 58}Fe and {sup 64}Ni projectiles were chosen since the corresponding projectile-target combinations lead to the synthesis of even heavier elements. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR, Russia), the XTU Tandem accelerator of the National Laboratory of Legnaro (LNL, Italy) and the Accelerator of the Laboratory of University of Jyvaskyla (JYFL, Finland) using the time-of-flight spectrometer of fission fragments CORSET[3] and the neutron multi-detector DEMON[4],[5]. The role of shell effects and the influence of the entrance channel on the mechanism of the compound nucleus fusion-fission and the competitive process of quasi-fission are discussed.
Becker, K.; Shapiro, S.; Stanchits, S.; Dresen, G.; Kaselow, A.; Vinciguerra, S.
2005-12-01
Elastic properties of rocks are sensitive to changes of the in-situ stress and damage state. In particular, seismic velocities are strongly affected by stress-induced formation and deformation of cracks or shear-enhanced pore collapse. The effect of stress on seismic velocities as a result of pore space deformation in isotropic rock at isostatic compression may be expressed by the equation: A+K*P-B*exp (-D*P) (1), where P=Pc-Pp is the effective pressure, the pure difference between confining pressure and pore pressure. The parameter A, K, B and D describe material constants determined using experimental data. The physical meaning of the parameters is given by Shapiro (2003, in Geophysics Vol.68(Nr.2)). Parameter D is related to the stress sensitivity of the rock. A similar relation was derived by Shapiro and Kaselow (2005, in Geophysics in press) for weak anisotropic rocks under arbitrary load. They describe the stress dependent anisotropy in terms of Thomson's (1986, in Geophysics, Vol. 51(Nr.10)) anisotropy parameters ɛ and γ as a function of stress in the case of an initially isotropic rock: ɛ ∝ E2-E3, γ ∝ E3-E2 (2) with Ei=exp (D*Pi). The exponential terms Ei are controlled by the effective stress components Pi. To test this relation, we have conducted a series of triaxial compression tests on dry samples of initially isotropic Etnean Basalt in a servo-controlled MTS loading frame equipped with a pressure cell. Confining pressure was 60, 40 and 20 MPa. Samples were 5 cm in diameter and 10 cm in length. Elastic anisotropy was induced by axial compression of the samples through opening and growth of microcracks predominantly oriented parallel to the sample axis. Ultrasonic P- and S- wave velocities were monitored parallel and normal to the sample axis by an array of 20 piezoceramic transducers glued to the surface. Preamplified full waveform signals were stored in two 12 channel transient recorders. According to equation 2 the anisotropy parameters are
Fission barriers in the quasi-molecular shape path
International Nuclear Information System (INIS)
Royer, G.; Bonilla, C.; Zbiri, K.; Gherghescu, R.A.
2003-01-01
New observed phenomena like asymmetric fission of intermediate mass nuclei, nuclear molecules in light nuclei, super and hyperdeformations, cluster radioactivity, fast-fission of heavy systems and fragmentation have renewed interest in investigating the fusion-like fission valley which leads rapidly to two touching spherical fragments and quasi-molecular shapes. Furthermore, rotating super and hyperdeformed nuclear states and superheavy nuclei can be formed only in heavy-ion collisions for which the initial configuration is two close quasi-spherical nuclei. For these shapes the balance between the Coulomb forces and surface tension forces does not allow to link the sheets of the potential energy surface corresponding to one-body shapes and to two separated fragments, respectively. It is necessary to add another term called proximity energy reproducing the finite-range effects of the nuclear force in the neck or the gap between the nascent fission fragments. A generalized liquid drop model has been developed to take into account this nuclear proximity energy, the mass and charge asymmetry, an accurate nuclear radius and the temperature effects. The initial value of the surface energy coefficient has been kept. Microscopic corrections have been determined within the asymmetric two center shell model or simpler algebraic approximations. With this model and deformation valley first studies had led to the following results: (i) good agreement between the potential barrier heights and the experimental fission barrier heights in the whole mass range; (ii) saddle-point corresponding to two separated fragments maintained in unstable equilibrium by the balance between the repulsive Coulomb forces and the attractive proximity forces; (iii) strong enhancement of the maximal angular momentum against fission; (iv) reasonable agreement with experimental data on the double-humped barriers of actinides. Within this same approach we have recently shown that the calculated potential
Molecular dynamics simulations of cluster fission and fusion processes
DEFF Research Database (Denmark)
Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Ilia
2004-01-01
Results of molecular dynamics simulations of fission reactions Na_10^2+ --> Na_7^+ +Na_3^+ and Na_18^2+ --> 2Na_9^+ are presented. The dependence of the fission barriers on the isomer structure of the parent cluster is analyzed. It is demonstrated that the energy necessary for removing homothetic...... separation of the daughter fragments begins and/or forming a "neck" between the separating fragments. A novel algorithm for modeling the cluster growth process is described. This approach is based on dynamic search for the most stable cluster isomers and allows one to find the optimized cluster geometries...... groups of atoms from the parent cluster is largely independent of the isomer form of the parent cluster. The importance of rearrangement of the cluster structure during the fission process is elucidated. This rearrangement may include transition to another isomer state of the parent cluster before actual...
Cold fission description with constant and varying mass asymmetries
International Nuclear Information System (INIS)
Duarte, S.B.; Rodriguez, O.; Tavares, O.A.P.; Goncalves, M.; Garcia, F.; Guzman, F.
1998-01-01
Different description for varying the mass asymmetry in the fragmentation process are used to calculate the cold fission barrier penetrability. The relevance of the appropriate choice for both the description of the pre-scission phase and inertia coefficient to unify alpha decay, cluster radioactivity, and spontaneous cold fission processes in the same theoretical framework is explicitly shown. We calculate the half-life of all possible partition modes of nuclei of A > 200 following the most recent Mass Table by Audi and Wapstra. It is shown that if one uses the description in which the mass asymmetry is maintained constant during the fragmentation process, the experimental half-life-values and mass yield of 234 U cold fission are satisfactorily reproduced. (author)
Observation for really cold fragmentation of heavy nucleus
International Nuclear Information System (INIS)
Goverdovskij, A.A.; Ketlerov, V.V.; Mitrofanov, V.F.; Ostapenko, Yu.B.; Khryachkov, V.A.
1998-01-01
The results of the detailed study on mass-energy charged correlations of the thorium-232 fission fragments, produced by the 5 MeV neutrons are presented. The event of the thorium nucleus really cold fragmentation into tellurium-134 and strontium-99 at the basic quantum states is identified. It is shown that the whole reaction energy is exhausted by the motion kinetic energy of the fragments in the mutual field
Cluster decay analysis and related structure effects of fissionable ...
Indian Academy of Sciences (India)
2015-08-01
Aug 1, 2015 ... Collective clusterization approach of dynamical cluster decay model (DCM) has been ... fusion–fission process resulting in the emission of symmetric and/or ... represents the relative separation distance between two fragments or clusters ... decay constant λ or decay half-life T1/2 is defined as λ = (ln 2/T1/2) ...
A new prompt heavy-ion-induced fission mode
Indian Academy of Sciences (India)
finement of nuclear systems, methods which are still sometimes used in ... Another type of essentially binary nuclear disintegration of projectile-like fragment ... While the field of nuclear fission research still has a range of questions to investigate, it .... momentum, qualitative to semiquantitative expectations can be formulated ...
Systematic features of mass yield curves in low-energy fission of actinides
International Nuclear Information System (INIS)
Nagame, Yuichiro
1999-01-01
Characteristics of mass yield curves in fission of wide range of nuclides from pre-actinides through transactinides are reviewed and the following points are discussed. (1) Systematic trends of the mass yield distributions in low-energy proton-induced fission of actinides and in spontaneous fission of actinides are discussed in terms of weighted mean mass numbers of the light and heavy asymmetric mass yield peaks and widths of the heavy asymmetric mass yields. (2) Gross features of the two kinds of mass yield curves, symmetric and asymmetric ones, as a function of a fissioning nucleus. (3) Competition between the symmetric and asymmetric fission as a function of not only Z (proton number) but also N (neutron number) of a fissioning nucleus. (4) Experimental verification of the existence of two kinds of deformation paths in low energy fission of actinides; the first path is initiated at higher threshold energy and ends with elongated scission configuration, giving a final mass yield distribution centered around the symmetric mass division, 'symmetric fission path'. In the second path, a fissioning nucleus experiences lower threshold energy and results in more compact scission configuration, which gives a double humped mass distribution always centered around A=140 for the heavier fragment, 'asymmetric fission path'. (5) Interpretation of the 'bimodal fission' observed in the spontaneous fission of heavy actinides as the presence of the two fission paths of the ordinary asymmetric one and a strongly shell-affected symmetric path from the systematic analysis of scission configurations. (6) A dynamical fission process deduced from the analysis of the experimental mass yield curves and the correlation data of neutron multiplicity and fragment mass and total kinetic energy. (7) Prediction of the characteristics of gross properties of fission in superheavy nuclei around 280 114. (8) Characteristics of highly asymmetric fission: formation cross section as a function of
Quarkonium dissociation by anisotropy
Chernicoff, Mariano; Fernández, Daniel; Mateos, David; Trancanelli, Diego
2013-01-01
We compute the screening length for quarkonium mesons moving through an anisotropic, strongly coupled mathcal{N} = 4 super Yang-Mills plasma by means of its gravity dual. We present the results for arbitrary velocities and orientations of the mesons, as well as for arbitrary values of the anisotropy. The anisotropic screening length can be larger or smaller than the isotropic one, and this depends on whether the comparison is made at equal temperatures or at equal entropy densities. For generic motion we find that: (i) mesons dissociate above a certain critical value of the anisotropy, even at zero temperature; (ii) there is a limiting velocity for mesons in the plasma, even at zero temperature; (iii) in the ultra-relativistic limit the screening length scales as (1 - v 2)ɛ with ɛ = 1 /2, in contrast with the isotropic result ɛ = 1 /4.
Nuclear fission: What have we learned in 50 years?
International Nuclear Information System (INIS)
Vandenbosch, R.
1989-01-01
Nuclear fission has captured the imagination of chemists and physicists for half a century now. There are several reasons for this. One of course is that it represents the most drastic rearrangement of nuclear matter known, challenged only recently by collisions induced by very heavy ions. Another is that both statistical and dynamical features come into play. Perhaps one of the most compelling reasons is its never-ending capacity to surprise us: asymmetric mass distributions, the sawtooth dependence of neutron yields in fragment mass, spontaneously fissioning isomers and intermediate structure resonances. Finally, and perhaps most importantly, fission is a rich laboratory within which one can explore the delicate interplay between the macroscopic aspects of bulk nuclear matter and the quantal effects of a finite number of Fermions. It will of course be impossible for me to cover all aspects of fission. I have chosen a limited number of topics to cover, with particular topics being chosen either because the have been associated with persistent puzzles in fission or because they have, or hopefully will, tell us something special about how nuclei behave. After a brief historical note, I organize these topics sequentially according to the various stages of the fission process, starting first with the probability for fission to occur and ending with scission phenomena. 56 refs., 11 figs
New fission valley for 258Fm and nuclei beyond
International Nuclear Information System (INIS)
Moeller, P.; Nix, J.R.; Swiatecki, W.J.
1986-01-01
Experimental results on the fission properties of nuclei close to 264 Fm show sudden and large changes with a change of only one or two neutrons or protons. The nucleus 258 Fm, for instance, undergoes symmetric fission with a half-life of about 0.4 ms and a kinetic energy peaked at about 235 MeV whereas 256 Fm undergoes asymmetric fission with a half-life of about 3 h and a kinetic energy peaked at about 200 MeV. Qualitatively, these sudden changes hve been postulated to be due to the emergence of fragment shells in symmetric fission products close to 132 Sn. A quantitative calculation that shows where high-kinetic-energy symmetric fission occurs and why it is associated with a sudden and large decrease in fission half-lives. The study is based on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. The implications of the new fission valley on the stability of the heaviest elements is discussed. 33 refs., 12 figs
Fission Product Yield Study of 235U, 238U and 239Pu Using Dual-Fission Ionization Chambers
Bhatia, C.; Fallin, B.; Howell, C.; Tornow, W.; Gooden, M.; Kelley, J.; Arnold, C.; Bond, E.; Bredeweg, T.; Fowler, M.; Moody, W.; Rundberg, R.; Rusev, G.; Vieira, D.; Wilhelmy, J.; Becker, J.; Macri, R.; Ryan, C.; Sheets, S.; Stoyer, M.; Tonchev, A.
2014-05-01
To resolve long-standing differences between LANL and LLNL regarding the correct fission basis for analysis of nuclear test data [M.B. Chadwick et al., Nucl. Data Sheets 111, 2891 (2010); H. Selby et al., Nucl. Data Sheets 111, 2891 (2010)], a collaboration between TUNL/LANL/LLNL has been established to perform high-precision measurements of neutron induced fission product yields. The main goal is to make a definitive statement about the energy dependence of the fission yields to an accuracy better than 2-3% between 1 and 15 MeV, where experimental data are very scarce. At TUNL, we have completed the design, fabrication and testing of three dual-fission chambers dedicated to 235U, 238U, and 239Pu. The dual-fission chambers were used to make measurements of the fission product activity relative to the total fission rate, as well as for high-precision absolute fission yield measurements. The activation method was employed, utilizing the mono-energetic neutron beams available at TUNL. Neutrons of 4.6, 9.0, and 14.5 MeV were produced via the 2H(d,n)3He reaction, and for neutrons at 14.8 MeV, the 3H(d,n)4He reaction was used. After activation, the induced γ-ray activity of the fission products was measured for two months using high-resolution HPGe detectors in a low-background environment. Results for the yield of seven fission fragments of 235U, 238U, and 239Pu and a comparison to available data at other energies are reported. For the first time results are available for neutron energies between 2 and 14 MeV.
Supernovae anisotropy power spectrum
Energy Technology Data Exchange (ETDEWEB)
Ghodsi, Hoda; Baghram, Shant [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Habibi, Farhang, E-mail: h.ghodsi@mehr.sharif.ir, E-mail: baghram@sharif.edu, E-mail: habibi@lal.in2p3.fr [LAL-IN2P3/CNRS, BP 34, 91898 Orsay Cedex (France)
2017-10-01
We contribute another anisotropy study to this field of research using Type Ia supernovae (SNe Ia). In this work, we utilise the power spectrum calculation method and apply it to both the current SNe Ia data and simulation. Using the Union2.1 data set at all redshifts, we compare the spectrum of the residuals of the observed distance moduli to that expected from an isotropic universe affected by the Union2.1 observational uncertainties at low multipoles. Through this comparison we find a dipolar anisotropy with tension of less that 2σ towards l = 171° ± 21° and b = −26° ± 28° which is mainly induced by anisotropic spatial distribution of the SNe with z > 0.2 rather than being a cosmic effect. Furthermore, we find a tension of ∼ 4σ at ℓ = 4 between the two spectra. Our simulations are constructed with the characteristics of the upcoming surveys like the Large Synoptic Survey Telescope (LSST), which shall bring us the largest SNe Ia collection to date. We make predictions for the amplitude of a possible dipolar anisotropy that would be detectable by future SNe Ia surveys.
New isomeric states in 152,154,156Nd produced by spontaneous fission of 252Cf
International Nuclear Information System (INIS)
Gautherin, C.; Houry, M.; Korten, W.; Le Coz, Y.; Lucas, R.; Phan, X.H.; Theisen, C.; Belier, G.; Girod, M.; Meot, V.; Peru, S.; Astier, A.; Ducroux, L.; Meyer, M.; Redon, N.
1998-01-01
Isomeric states have been observed in fission-fragments produced by spontaneous fission of 252 Cf. These states are found in neutron rich nuclei of different structure and deformations. About 50 isomeric nuclei have been observed using coincidences between γ-rays identified in EUROGAM II and fission fragments detected in photovoltaic cells (SAPhIR). Lifetimes in the range from 20 ns to 2μs have been measured. Presented calculations based on HFB+D1S force on new measured isomeric states in the 152,154,156 Nd show evidence for K-isomers. (orig.)