WorldWideScience

Sample records for fission foil detectors

  1. Mica fission detectors

    International Nuclear Information System (INIS)

    Wong, C.; Anderson, J.D.; Hansen, L.; Lehn, A.V.; Williamson, M.A.

    1977-01-01

    The present development status of the mica fission detectors is summarized. It is concluded that the techniques have been refined and developed to a state such that the mica fission counters are a reliable and reproducible detector for fission events

  2. The preparation and characterisation of reference fission foils

    International Nuclear Information System (INIS)

    Audenhove, J. van; Bievre, P. de; Pauwels, J.; Peetermans, F.; Gallet, M.; Verbruggen, A.

    1979-01-01

    Homogeneous and accurately defined uranium and plutonium reference fissionable deposits have been prepared by vacuum deposition of fluorides. The preparation of the fluorides as well as their vacuum deposition on planetary rotating multisubstrate holders are described. The characterisation of the deposits is obtained by relative α-counting and calibration using isotope dilution mass spectrometry. The mass per square centimeter of the deposits is corrected for the border effects and the homogeneity is determined by relative α-counting of small spots. The deposits show excellent adherence and resistance to different mediums. This makes their use as permanently available reference fission foils possible. (orig.)

  3. Fission fragment assisted reactor concept for space propulsion: Foil reactor

    International Nuclear Information System (INIS)

    Wright, S.A.

    1991-01-01

    The concept is to fabricate a reactor using thin films or foils of uranium, uranium oxide and then to coat them on substrates. These coatings would be made so thin as to allow the escaping fission fragments to directly heat a hydrogen propellant. The idea was studied of direct gas heating and direct gas pumping in a nuclear pumped laser program. Fission fragments were used to pump lasers. In this concept two substrates are placed opposite each other. The internal faces are coated with thin foil of uranium oxide. A few of the advantages of this technology are listed. In general, however, it is felt that if one look at all solid core nuclear thermal rockets or nuclear thermal propulsion methods, one is going to find that they all pretty much look the same. It is felt that this reactor has higher potential reliability. It has low structural operating temperatures, very short burn times, with graceful failure modes, and it has reduced potential for energetic accidents. Going to a design like this would take the NTP community part way to some of the very advanced engine designs, such as the gas core reactor, but with reduced risk because of the much lower temperatures

  4. Properties of polymer foils used as solid-state track detectors

    International Nuclear Information System (INIS)

    Spurny, F.

    1973-05-01

    Polymer foils were studied with a view to their application as solid-state alpha track detectors. The detection efficiency was determined as was its alpha energy dependence and the quality of the surface and the natural background of the foils were evaluated. The kinetics of etching was studied in three selected type of foils. Characteristic constants for the selected foils and methods of etching were calculated. The possible applications of the foils as track detectors are discussed and the effect is dealt with of the selected foil and of the method of chemical etching on the foil applicability in nuclear sciences, especially in fast neutron dosimetry and in alpha spectrometry. (author)

  5. A position sensitive parallel plate avalanche fission detector for use in particle induced fission coincidence measurements

    NARCIS (Netherlands)

    Plicht, J. van der

    1980-01-01

    A parallel plate avalanche detector developed for the detection of fission fragments in particle induced fission reactions is described. The active area is 6 × 10 cm2; it is position sensitive in one dimension with a resolution of 2.5 mm. The detector can withstand a count rate of 25000 fission

  6. Alkaline glass as induced fission fragment detectors

    International Nuclear Information System (INIS)

    Amorim, A.M.M.

    1986-01-01

    The slide glass, registered trade marks INLAB, INVICT and PERFECTA were compared. For the three kinds of glasses the following studies were done: chemical composition; general dissolution rate for hydrofluoric acid solutions of concentrations between 1 and 10M, at 30 0 C and ultrasound shaking; relative efficiency for recording fission fragment tracks from 252 Cf. The INLAB glass was selected due to the better quality of its surface after chemical etching. The HF concentration 2.5M was determined for chemical etching of INLAB glass, and the optimum etching time was chosen between 8 and 10 minutes. The thermal attenuation of latent tracks in the environmental temperature was observed for intervals uo to 31 days between the detector exposure to the fission fragment source and etching of tracks. Several methods were used for determining the detector parameters, such as: critical angle, angle of the cone and efficiency of etching. The effects of gamma irradiation from 60 Co and reactor neutrons in material properties as track detector were studied. Attenuation of latent tracks and saturation of color centers were observed for doses over 100M Rad. Since this kind of material contains uranium as impurity, uniformely distributed, slide glass were calibrated to be applied as a monitor of thermal neutron flux in nuclear reactor. (Author) [pt

  7. An Effort to Improve U Foil Fabrication Technology of Roll-casting for Fission Mo Target

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Kyu; Woo, Yun Myeong; Kim, Ki Hwan; Oh, Jong Myeong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Sim, Moon Soo [Chungnam University, Green Energy Technology, Daejeon (Korea, Republic of)

    2010-10-15

    Mo-99 isotope has been produced mainly by extracting fission products of {sup 235}U. The targets for irradiating in reactor have used as stainless tube coated with highly enriched UO{sub 2} at the inside surface and highly enriched UAlx plate cladded with aluminum. In connection with non-proliferation policy the RERTR program developed a new process of Mo-99 using low enriched uranium (LEU) instead of highly enriched uranium (HEU). LEU should be put about five times more quantity than HEU because the {sup 235}U contents of LEU and HEU are 20% and higher than 90%, respectively. Accordingly pure uranium metal foil target was adopted as a promising target material due to high uranium density. ANL and BATAN developed a Cintichem process using uranium metal foil target of 130 {mu}m in thickness jointly and the RERTR program is trying to disseminate the new process world-widely. However, uranium foil is made by lots of times rolling work on uranium plate, which is laborious and tedious. In order to avoid this difficulty KAERI developed a new process of making foil directly from uranium melt by roll casting. This process is very much simple, productive, and cost-effective. But the outside surface of foil is generally very rough. A typical transverse cross section had a minimum thickness of 65 {mu}m and a maximum thickness of 205 {mu}m. This roughness could affect (1) target fabrication, where the U foil, or the Ni foil might be damaged during drawing, and (2) irradiation behavior, where gaps between the target walls and the U metal might affect cooling of the target

  8. Measurements of Pu239:U235 fission ratio using foils at temperatures up to 400 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Carter, D H; Puckett, B J; Richards, A E [General Reactor Physics Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1964-05-15

    The paper describes the use of activation foils for the measurement of Pu239:U235 fission ratios in subcritical lattices at temperatures up to 390 deg C. Counting techniques and the method of analysis of the results are described in detail and the results are compared with fission chamber measurements. (author) 4 refs., 6 figs., 7 tabs.

  9. Detector for gaseous nuclear fission products

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro; Kubo, Katsumi.

    1979-01-01

    Purpose: To facilitate the fabrication of a precipitator type detector, as well as improve the reliability. Constitution: Gas to be measured flown in an anode is stored in a gas processing system. By applying a voltage between the anode and the cathode, if positively charged Rb or Cs which is the daughter products of gaseous fission products are present in the gas to be measured, the daughter products are successively deposited electrostatically to the cathode. The daughter products issue beta-rays and gamma-rays to ionize the argon gas at the anode, whereby ionizing current flows between both of the electrodes. Pulses are generated from the ionizing current, and presence or absence, as well as the amount of the gaseous fission products are determined by the value recorded for the number of the pulses to thereby detect failures in the nuclear fuel elements. After the completion of the detection, the inside of the anode is evacuated and the cathode is heated to evaporate and discharge the daughter products externally. This eliminates the effects of the former detection to the succeeding detection. (Moriyama, K.)

  10. The use of polyimide foils to prevent contamination from self-sputtering of {sup 252}Cf deposits in high-accuracy fission counting

    Energy Technology Data Exchange (ETDEWEB)

    Gilliam, David M. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)], E-mail: david.gilliam@nist.gov; Yue, Andrew [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN (United States); Scott Dewey, M. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2008-06-01

    It is demonstrated that a thin polyimide foil can be employed to prevent contamination from the self-sputtering of a {sup 252}Cf source under vacuum, with small energy loss of the emitted fission fragments, with very small effect on the efficiency of counting the fission fragments, and with a long lifetime of the plastic foils.

  11. Application of pulse shape discrimination in Si detector for fission ...

    Indian Academy of Sciences (India)

    Pulse shape discrimination (PSD) with totally depleted transmission type Si surface barrier detector in reverse mount has been investigated to identify fission fragments in the presence of elastic background in heavy ion-induced fission reactions by both numerical simulation and experimental studies. The PSD method is ...

  12. Neutron detector for detecting rare events of spontaneous fission

    International Nuclear Information System (INIS)

    Ter-Akop'yan, G.M.; Popeko, A.G.; Sokol, E.A.; Chelnokov, L.P.; Smirnov, V.I.; Gorshkov, V.A.

    1981-01-01

    The neutron detector for registering rare events of spontaneous fission by detecting multiple neutron emission is described. The detector represents a block of plexiglas of 550 mm diameter and 700 mm height in the centre of which there is a through 160 mm diameter channel for the sample under investigation. The detector comprises 56 3 He filled counters (up to 7 atm pressure) with 1% CO 2 addition. The counters have a 500 mm length and a 32 mm diameter. The sampling of fission events is realized by an electron system which allows determining the number of detected neutrons, numbers of operated counters, signal amplitude and time for fission event detecting. A block diagram of a neutron detector electron system is presented and its operation principle is considered. For protection against cosmic radiation the detector is surronded by a system of plastic scintillators and placed behind the concrete shield of 6 m thickness. The results of measurements of background radiation are given. It has been found that the background radiation of single neutron constitutes about 150 counts per hour, the detecting efficiency of single neutron equals 0.483 +- 0.005, for a 10l detector sensitive volume. By means of the detector described the parameters of multiplicity distribution of prompt neutrons for 256 Fm spontaneous fission are measured. The average multiplicity equals 3.59+-0.06 the dispersion being 2.30+-0.65

  13. Connection factor calculation for isotopic neutron flux measurements with foil detectors

    International Nuclear Information System (INIS)

    Avila L, J.

    1987-01-01

    Thermal and resonance neutron self-shielding factors, neutron flux distortion and edge effects as well as a connection factor for neutron flux profile around a foil detector have been calculated. A general expression for resonance self shielding factor is presented in order to take into account the most important resonances for a given isotope. A computer program SPRESYTER.BAS was written and results for In-115 and Au-197 foils are given

  14. Neutron threshold activation detectors (TAD) for the detection of fissions

    Science.gov (United States)

    Gozani, Tsahi; Stevenson, John; King, Michael J.

    2011-10-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons (≈3 vs. ≈0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron "flash") where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector material. The technique

  15. Neutron threshold activation detectors (TAD) for the detection of fissions

    International Nuclear Information System (INIS)

    Gozani, Tsahi; Stevenson, John; King, Michael J.

    2011-01-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons (∼3 vs. ∼0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron 'flash') where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector material. The technique

  16. Neutron threshold activation detectors (TAD) for the detection of fissions

    Energy Technology Data Exchange (ETDEWEB)

    Gozani, Tsahi, E-mail: tgozani@rapiscansystems.com [Rapiscan Laboratories, Inc., 520 Almanor Ave., Sunnyvale, CA 94085 (United States); Stevenson, John; King, Michael J. [Rapiscan Laboratories, Inc., 520 Almanor Ave., Sunnyvale, CA 94085 (United States)

    2011-10-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons ({approx}3 vs. {approx}0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron 'flash') where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector

  17. Calibration of a special neutron dosemeter based on solid-state track detectors and fission radiators in various neutron fields

    International Nuclear Information System (INIS)

    Doerschel, B.; Krusche, M.; Schuricht, V.

    1980-01-01

    The calibration of a personnel neutron dosemeter in different neutron fields is described. The badge-like dosemeter contains 5 detectors: polycarbonate foil (10 μm, Makrofol KG), 232 Th, natural uranium, natural uranium with boron, and natural uranium with cadmium. Detector sensitivity and calibration factors have been calculated and measured in radiation fields of 252 Cf fission neutrons, WWR-S reactor neutrons with and without Cd and Fe shielding, 3-MeV (d,t) generator neutrons, and 238 PuBe neutrons. Measurement range and achievable accuracy are discussed from the point of view of applying the dosemeter in routine and emergency uses

  18. Foil cycling technique for the VESUVIO spectrometer operating in the resonance detector configuration

    International Nuclear Information System (INIS)

    Schooneveld, E. M.; Mayers, J.; Rhodes, N. J.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Gorini, G.; Perelli-Cippo, E.; Tardocchi, M.

    2006-01-01

    This article reports a novel experimental technique, namely, the foil cycling technique, developed on the VESUVIO spectrometer (ISIS spallation source) operating in the resonance detector configuration. It is shown that with a proper use of two foils of the same neutron absorbing material it is possible, in a double energy analysis process, to narrow the width of the instrumental resolution of a spectrometer operating in the resonance detector configuration and to achieve an effective subtraction of the neutron and gamma backgrounds. Preliminary experimental results, obtained from deep inelastic neutron scattering measurements on lead, zirconium hydride, and deuterium chloride samples, are presented

  19. Foil cycling technique for the VESUVIO spectrometer operating in the resonance detector configuration

    Science.gov (United States)

    Schooneveld, E. M.; Mayers, J.; Rhodes, N. J.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Gorini, G.; Perelli-Cippo, E.; Tardocchi, M.

    2006-09-01

    This article reports a novel experimental technique, namely, the foil cycling technique, developed on the VESUVIO spectrometer (ISIS spallation source) operating in the resonance detector configuration. It is shown that with a proper use of two foils of the same neutron absorbing material it is possible, in a double energy analysis process, to narrow the width of the instrumental resolution of a spectrometer operating in the resonance detector configuration and to achieve an effective subtraction of the neutron and gamma backgrounds. Preliminary experimental results, obtained from deep inelastic neutron scattering measurements on lead, zirconium hydride, and deuterium chloride samples, are presented.

  20. Nickel Foil as Transmutation Detector for Neutron Fluence Measurements

    Directory of Open Access Journals (Sweden)

    Klupák Vít

    2016-01-01

    Full Text Available Activation detectors are very often used for determination of the neutron fluence in reactor dosimetry. However, there are few disadvantages concerning these detectors; it is the demand of the knowledge of the irradiation history and a loss of information due to a radioactive decay in time. Transmutation detectors TMD could be a solution in this case. The transmutation detectors are materials in which stable or long-lived nuclides are produced by nuclear reactions with neutrons. From a measurement of concentration of these nuclides, neutron fluence can be evaluated regardless of the cooling time.

  1. SAPhIR: a fission-fragment detector

    International Nuclear Information System (INIS)

    Theisen, Ch.; Gautherin, C.; Houry, M.; Korten, W.; Le Coz, Y.; Lucas, R.; Barreau, G.; Doan, T. P.; Belier, G.; Meot, V.; Ethvignot, Th.; Cahan, B.; Le Coguie, A.; Coppolani, X.; Delaitre, B.; Le Bourlout, P.; Legou, Ph.; Maillard, O.; Durand, G.; Bouillac, A.

    1998-01-01

    SAPhIR is the acronym for S a clay A q uitaine P ho tovoltaic cells for I s omer R e search. It consists of solar cells, used for fission-fragment detection. It is a collaboration between 3 laboratories: CEA Saclay, CENBG Bordeaux and CEA Bruyeres le Chatel. The coupling of a highly efficient fission-fragment detector like SAPhIR with EUROBALL will provide new insights in the study of very deformed nuclear matter and in the spectroscopy of neutron-rich nuclei

  2. Industrial development of neutron detectors, fission chambers, self powered detectors, ionization chambers

    International Nuclear Information System (INIS)

    Constans, H.; Coville, P.; Guerre, J.

    1975-01-01

    Reactor control requires the determination of neutron flux at all times. The needed characteristics lead to use of several types of detectors: boron lined counters, boron lined ionization chambers, fission ionization chambers and self powered detectors. The principle of the reaction involved the fabrication requirements, the different modes of utilization and the characteristics obtained are examined for each detector. The problem of electric connections in the active area has been solved by developing ''integrated cables'' [fr

  3. Electroplating fission-recoil barriers onto LEU-metal foils for 99Mo-production targets

    International Nuclear Information System (INIS)

    Smaga, J.A.; Sedlet, J.; Conner, C.; Liberatore, M.W.; Walker, D.E.; Wygmans, D.G.; Vandegrift, G.F.

    1997-01-01

    Electroplating experiments on uranium foil have been conducted in order to develop low-enriched uranium composite targets suitable for the production of 99 Mo. Preparation of the foil surface prior to plating was found to play a key role in the quality of the resultant coating. A surface preparation procedure was developed that produces both zinc and nickel coatings with the desired level of coating adherence and coverage. Modifications of the existing plating processes now need investigation to improve to uniformity of the plating thickness, especially at the foil perimeter. (author)

  4. Electroplating fission-recoil barriers onto LEU-metal foils for 99Mo-production targets

    International Nuclear Information System (INIS)

    Smaga, J.A.; Sedlet, J.; Conner, C.; Liberatore, M.W.; Walker, D.E.; Wygmans, D.G.; Vandegrift, G.F.

    1997-10-01

    Electroplating experiments on uranium foil have been conducted in order to develop low-enriched uranium composite targets suitable for the production of 99 Mo. Preparation of the foil surface prior to plating was found to play a key role in the quality of the resultant coating. A surface preparation procedure was developed that produces both zinc and nickel coatings with the desired level of coating adherence and coverage. Modifications of the existing plating processes now need investigation to improve to uniformity of the plating thickness, especially at the foil perimeter

  5. Cerenkov Detectors for Fission Product Monitoring in Reactor Coolant Water

    Energy Technology Data Exchange (ETDEWEB)

    Strindehag, O

    1967-09-15

    The expected properties of Cerenkov detectors when used for fission product monitoring in water cooled reactors and test loops are discussed from the point of view of the knowledge of the sensitivity of these detectors to some beta emitting isotopes. The basic theory for calculation of the detector response is presented, taking the optical transmission in the sample container and the properties of the photomultiplier tube into account. Special attention is paid to the energy resolution of this type of Cerenkov detector. For the design of practical detectors the results from several investigations of various window and reflector materials are given, and the selection of photomultiplier tubes is briefly discussed. In the case of optical reflectors and photomultiplier tubes reference is made to two previous reports by the author. The influence of the size and geometry of the sample container on the energy resolution follows from a separate investigation, as well as the relative merits of sample containers with transparent inner walls. Provided that the energy resolution of the Cerenkov detector is sufficiently high, there are several reasons for using this detector type for failed-fuel-element detection. It seems possible to attain the desired energy resolution by careful detector design.

  6. Comparison of Americium-Beryllium neutron spectrum obtained using activation foil detectors and NE-213 spectrometer

    International Nuclear Information System (INIS)

    Sunny, Sunil; Subbaiah, K.V.; Selvakumaran, T.S.

    1999-01-01

    Neutron spectrum of Americium - Beryllium (α,n) source is measured with two different spectrometers vis-a-vis activation foils (foil detectors) and NE-213 organic scintillator. Activity induced in the foils is measured with 4π-β-γ sodium iodide detector by integrating counts under photo peak and the saturation activity is found by correcting to elapsed time before counting. The data on calculated activity is fed into the unfolding code, SAND-II to obtain neutron spectrum. In the case of organic scintillator, the pulse height spectrum is obtained using MCA and this is processed with unfolding code DUST in order to get neutron spectrum. The Americium - Beryllium (α,n) neutron spectrum thus obtained by two different methods is compared. It is inferred that the NE-213 scintillator spectrum is in excellent agreement with the values beyond 1MeV. Neutron spectrum obtained by activation foils depends on initial guess spectrum and is found to be in reasonable agreement with NE-213 spectrum. (author)

  7. Multiplicity counting from fission detector signals with time delay effects

    Science.gov (United States)

    Nagy, L.; Pázsit, I.; Pál, L.

    2018-03-01

    In recent work, we have developed the theory of using the first three auto- and joint central moments of the currents of up to three fission chambers to extract the singles, doubles and triples count rates of traditional multiplicity counting (Pázsit and Pál, 2016; Pázsit et al., 2016). The objective is to elaborate a method for determining the fissile mass, neutron multiplication, and (α, n) neutron emission rate of an unknown assembly of fissile material from the statistics of the fission chamber signals, analogous to the traditional multiplicity counting methods with detectors in the pulse mode. Such a method would be an alternative to He-3 detector systems, which would be free from the dead time problems that would be encountered in high counting rate applications, for example the assay of spent nuclear fuel. A significant restriction of our previous work was that all neutrons born in a source event (spontaneous fission) were assumed to be detected simultaneously, which is not fulfilled in reality. In the present work, this restriction is eliminated, by assuming an independent, identically distributed random time delay for all neutrons arising from one source event. Expressions are derived for the same auto- and joint central moments of the detector current(s) as in the previous case, expressed with the singles, doubles, and triples (S, D and T) count rates. It is shown that if the time-dispersion of neutron detections is of the same order of magnitude as the detector pulse width, as they typically are in measurements of fast neutrons, the multiplicity rates can still be extracted from the moments of the detector current, although with more involved calibration factors. The presented formulae, and hence also the performance of the proposed method, are tested by both analytical models of the time delay as well as with numerical simulations. Methods are suggested also for the modification of the method for large time delay effects (for thermalised neutrons).

  8. A novel monolithic LEU foil target based on a PVD manufacturing process for 99Mo production via fission.

    Science.gov (United States)

    Hollmer, Tobias; Petry, Winfried

    2016-12-01

    99 Mo is the most widely used radioactive isotope in nuclear medicine. Its main production route is the fission of uranium. A major challenge for a reliable supply is the conversion from highly enriched uranium (HEU) to low enriched uranium (LEU). A promising candidate to realize this conversion is the cylindrical LEU irradiation target. The target consists of a uranium foil encapsulated between two coaxial aluminum cladding cylinders. This target allows a separate processing of the irradiated uranium foil and the cladding when recovering the 99 Mo. Thereby, both the costs and the volume of highly radioactive liquid waste are significantly reduced compared to conventional targets. The presented manufacturing process is based on the direct coating of the uranium on the inside of the outer cladding cylinder. This process was realized by a cylindrical magnetron enhanced physical vapor deposition (PVD) technique. The method features a highly automated process, a good quality of the resulting uranium foils and a high material utilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Critical angles for fission fragment registrations in some solid state track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, A D; Bahromi, I I; Beresina, N V [AN Uzbekskoj SSR, Tashkent. Inst. Yadernoj Fiziki; and others

    1980-03-01

    In studies of the registration efficiency of various solid state track detectors (polycarbonate, polyethyleneterephthalate, cellulose nitrate and muscovite) the detectors were irradiated with spontaneous fission fragments from /sup 252/Cf and with fission fragments from /sup 235/U separated according to mass and energy. Experimental details are given. Critical angles for the registration of fission fragments in the various detectors are given for specified energies and masses.

  10. Amplifier channel for a fission fragment semiconductor detector

    International Nuclear Information System (INIS)

    Tyurin, G.P.

    1981-01-01

    To compensate the decrease of the transformation coefficient of fission fragment semiconductor detector (SCD) developed is a special amplification channel with controlled transfer coefficient. The block diagram of the channel is presented, the main functional units of which are as follows: preamplifying head with charge-sensitive and timing preamplifiers, linear amplifier and the circuit of spectrum position stabilization, which includes a differential discriminator, integrator and reference signal generator. The amplification channel is made in the CAMAC standard and has the following specifications: dinamical input capacitance of charge-sensitive amplifier c=10000 n PHI, signal amplitude at output of the linear amplifier at energy of fission fragments of 120 MeV has negative polarity and is equal to 5 V. Pulse amplitude change at SCD sensitivity decrease to 50% constitutes not more than 1%. Timing preamplifier has the gain factor at voltage of K=80 at front duration of 3.5 nc. Time resolution of the amplification channel is not worse than 1 nc. Dimensions of preamplifying head are 40x40x15 mm. The amplification channel permitted to use SCD for long-term measurements of fission fragment spectra [ru

  11. Fission/milligram of 235U in BIG-10 Tests A, C, E, and B

    International Nuclear Information System (INIS)

    Gilliam, D.M.; Grundl, J.A.; Hansen, G.E.

    1976-01-01

    The entire series of dosimetry foil tests at BIG-10 (including the preliminary Test A, five fission foil set irradiations--Tests C, five non-fission foil set irradiations--Tests E, and five track-etch detector irradiations--Tests B) were monitored continuously by the NBS double fission chamber PP5 in the central test cavity. The accuracy of the absolute fission counting data (fissions/milligram of 235 U) is estimated to be 1.4% for Tests A, C, and E and 1.5% for Test B. Deposit mass assay uncertainties remain the dominant error

  12. NEET Micro-Pocket Fission Detector. Final Project report

    Energy Technology Data Exchange (ETDEWEB)

    Unruh, T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rempe, Joy [Idaho National Lab. (INL), Idaho Falls, ID (United States); McGregor, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ugorowski, Philip [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reichenberger, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ito, Takashi [Idaho National Lab. (INL), Idaho Falls, ID (United States); Villard, J. -F. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    A collaboration between the Idaho National Laboratory (INL), the Kansas State University (KSU), and the French Alternative Energies and Atomic Energy Commission, Commissariat à l'Énergie Atomique et aux Energies Alternatives, (CEA), is funded by the Nuclear Energy Enabling Technologies (NEET) program to develop and test Micro-Pocket Fission Detectors (MPFDs), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package. When deployed, these sensors will significantly advance flux detection capabilities for irradiation tests in US Material Test Reactors (MTRs). Ultimately, evaluations may lead to a more compact, more accurate, and longer lifetime flux sensor for critical mock-ups, and high performance reactors, allowing several Department of Energy Office of Nuclear Energy (DOE-NE) programs to obtain higher accuracy/higher resolution data from irradiation tests of candidate new fuels and materials. Specifically, deployment of MPFDs will address several challenges faced in irradiations performed at MTRs: Current fission chamber technologies do not offer the ability to measure fast flux, thermal flux and temperature within a single compact probe; MPFDs offer this option. MPFD construction is very different than current fission chamber construction; the use of high temperature materials allow MPFDs to be specifically tailored to survive harsh conditions encountered in-core of high performance MTRs. The higher accuracy, high fidelity data available from the compact MPFD will significantly enhance efforts to validate new high-fidelity reactor physics codes and new multi-scale, multi-physics codes. MPFDs can be built with variable sensitivities to survive the lifetime of an experiment or fuel assembly in some MTRs, allowing for more efficient and cost effective power monitoring. The small size of the MPFDs allows multiple sensors to be deployed, offering the potential to

  13. Measurement of fission track of uranium particle by solid state nuclear track detector

    International Nuclear Information System (INIS)

    Son, S. C.; Pyo, H. W.; Ji, K. Y.; Kim, W. H.

    2002-01-01

    In this study, we discussed results of the measurement of fission tracks for the uranium containing particles by solid state nuclear track detector. Uranium containing silica and uranium oxide particles were prepared by uranium sorption onto silica powder in weak acidic medium and laser ablation on uranium pellet, respectively. Fission tracks for the uranium containing silica and uranium oxide particles were detected on Lexan plastic detector. It was found that the fission track size and shapes depend on the particle size uranium content in particles. Correlation of uranium particle diameter with fission track radius was also discussed

  14. Fission studies of gold induced by (1665 MeV) π- using a CR-39 detector

    International Nuclear Information System (INIS)

    Muhammad Ikram Shahzad; Yasin, Zafar; Sher, Gul

    2012-01-01

    The fission cross section and fission probability of 197 Au, induced by (1665 MeV) π'-, have been studied using CR-39 track detectors. A 4π-geometry was used to count track statistics. A beam of negative pions of 1665 MeV was produced at AGS of Brookhaven National Laboratory, USA, and allowed to fall normally on the stack. Two detectors from the stack were scanned for fission fragment tracks after etching in 6N NaOH at 70 ℃. The statistics of fission fragment tracks in both detectors were obtained. It was found that there was a marked asymmetry of registered tracks with respect to the forward and backward hemispheres. This asymmetry could be partly accounted for on the basis of momentum transfer to the struck nucleus. On the basis of counting statistics fission cross section was measured, and fission probability was determined by dividing the fission cross section with the reaction cross section. The fission cross-section and fission probability were compared with the computed values using the cascade-exciton model code CEM95. (authors)

  15. Fission distribution measurements of Atucha's fuel pellets with solid state track detectors

    International Nuclear Information System (INIS)

    Ricabarra, M.D. Bovisio de; Waisman, Dina.

    1979-08-01

    Distribution of fissions in a UO 2 rod has been measured by means of solid state detectors. Mica muscovite and Makrofol-N detectors were used in the experiment. The merits of mica muscovite relative to the Makrofol-N for the detection of fission fragments have been verified. However both fission track detectors closely agree (0,5%) in the final fission distribution of the UO 2 rod. Sensitivity of the detectors shows to be linear in the range between 50.000and 360.000 fission tracks per square centimeter. Due to the high spatial resolution this method is better than any other technique. Determination were made in UO 2 pellets similar to the fuel element of the Atucha reactor. The average fission rate in the rod has been measured within 0,8% error, and provides an accurate determination for the distribution of fissions in the rod wich is needed for the determination of energy liberated per fission in the natural uranium rod.(author) [es

  16. Detection alpha particles and Cf-252 fission fragments with track solid detectors and with surface barrier detectors: efficiency determination

    International Nuclear Information System (INIS)

    Khouri, M.T.F.C.; Koskinas, M.F.; Andrade, C. de; Vilela, E.C.; Hinostroza, H.; Kaschiny, J.R.A.; Costa, M.S. da; Rizzo, P.; Santos, W.M.S.

    1990-01-01

    The technique of particle detection by solid track detectors, types of developing and analysis of results are presented. Efficiency measurements of alpha particle detection with Makrofol e and surface barrier detector are made. Detection of Cf-252 fission fragments is shown. (L.C.)

  17. Detection of alpha particles and Cf-252 fission fragments with solid track detectors and surface barrier detector. Efficiency calculation

    International Nuclear Information System (INIS)

    Khouri, M.T.F.C.; Koskinas, M.F.; Andrade, C. de; Vilela, E.C.; Hinostroza, H.; Kaschiny, J.E.A.; Costa, M.S. da; Rizzo, P.; Santos, W.M.S.

    1990-01-01

    A technique for particle detection by using track solid detector and also types of revealing and result analysis are presented concerned to Cf-252 fission fragments detection. Measurements of alpha particles detection efficiency using Makrofol E and surface barrier detector are performed. (L.C.J.A.)

  18. Characteristics of diallyl phthalate resin as a fission track detector

    CERN Document Server

    Tsuruta, T

    1999-01-01

    Diallyl phthalate (DAP) resin plates were irradiated with fission fragments, and then etched in aqueous solution of KOH. Etched tracks were observed and counted by using an optical microscope. The detection efficiency of fission fragments was about 100% for both perpendicular and random incidence. DAP plates were insensitive to alpha particles and fast neutrons. These characteristics are suitable for detecting selected fission fragments, which coexist with alpha particles or fast neutrons. DAP plates are valuable for quantitative analysis of fissionable materials and neutron dosimetry. DAP and allyl diglycol carbonate (CR-39) were formed into copolymers in various ratios. The copolymers showed intermediate characteristics between DAP and CR-39. The fabrication of the copolymers made it possible to control the discrimination level for detection of heavy charged particles.

  19. Microstructured boron foil scintillating G-GEM detector for neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Takeshi, E-mail: fujiwara-t@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan); Center for Advanced Photonics, Neutron Beam Technology Team, RIKEN, Saitama (Japan); Bautista, Unico [Department of Nuclear Engineering and Management, The University of Tokyo, Tokyo (Japan); Philippine Nuclear Research Institute-Department of Science and Technology (PNRI-DOST), Commonwealth Avenue, Diliman, Quezon City (Philippines); Mitsuya, Yuki [Nuclear Professional School, The University of Tokyo, Tokai-mura, Naka-gun, Ibaraki (Japan); Takahashi, Hiroyuki [Department of Nuclear Engineering and Management, The University of Tokyo, Tokyo (Japan); Yamada, Norifumi L. [Neutron Science Laboratory, Institute of Material Structure Science, High Energy Accelerator Research Organization (KEK) (Japan); Otake, Yoshie; Taketani, Atsushi [Center for Advanced Photonics, Neutron Beam Technology Team, RIKEN, Saitama (Japan); Uesaka, Mitsuru [Nuclear Professional School, The University of Tokyo, Tokai-mura, Naka-gun, Ibaraki (Japan); Toyokawa, Hiroyuki [Research Institute for Measurement and Analytical Instrumentation, Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan)

    2016-12-01

    In this study, a new simple neutron imaging gaseous detector was successfully developed by combining a micro-structured {sup 10}B foil, a glass gas electron multiplier (G-GEM), and a mirror–lens–charge-coupled device (CCD)–camera system. The neutron imaging system consists of a chamber filled with Ar/CF{sub 4} scintillating gas mixture. Inside this system, the G-GEM is mounted for gas multiplication. The neutron detection in this system is based on the reaction between {sup 10}B and neutrons. A micro-structured {sup 10}B is developed to overcome the issue of low detection efficiency. Secondary electrons excite Ar/CF{sub 4} gas molecules, and high-yield visible photons are emitted from those excited gas molecules during the gas electron multiplication process in the G-GEM holes. These photons are easily detected by a mirror–lens–CCD–camera system. A neutron radiograph is then simply formed. We obtain the neutron images of different materials with a compact accelerator-driven neutron source. We confirm that the new scintillating G-GEM-based neutron imager works properly with low gamma ray sensitivity and exhibits a good performance as a new simple digital neutron imaging device.

  20. Micro-strip Metal Foil Detectors for the Beam Profile Monitoring

    CERN Document Server

    Pugatch, V M; Fedorovitch, O A; Mikhailenko, A V; Prystupa, S V; Pylypchenko, Y

    2005-01-01

    The Micro-strip Metal Foil Detectors (MMFD) designed and used for the Beam Profile Monitoring (BPM) are discussed. Fast particles hitting a metal strip initiate Secondary Electron Emission (SEE) which occurs at 10 - 50 nm surface layers of a strip. The SEE yield is measured by a sensitive Charge Integrator with built-in current-to-frequency converter (1 Hz per 1 fA). The MMFD (deposited onto the 20 μm thick Si-wafer) with 32 Al strips (10 μm wide, 32 μm pitch) has been used for the BPM of the 32 MeV alpha-particle beam at the MPIfK (Heidelberg) Tandem generator for Single-Event-Upset studies of the BEETLE micro-chip. Similar MMFD (0.5 μm thick Ni-strips) with totally removed Si-wafer (by plasma-chemistry, at the working area of 8 x 10 mm2) has been applied for the on-line X-ray BPM at the HASYLAB (DESY). The number of photons (11.3 GeV, mean X-ray energy 18 keV) producing out of a strip a single SEE was evaluated as (1.5 ±0.5)* 104. MMFD has demonstrated stable...

  1. Improved fission neutron energy discrimination with {sup 4}He detectors through pulse filtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ting, E-mail: ting.zhu@ufl.edu [University of Florida, Gainesville, FL (United States); Liang, Yinong; Rolison, Lucas; Barker, Cathleen; Lewis, Jason; Gokhale, Sasmit [University of Florida, Gainesville, FL (United States); Chandra, Rico [Arktis Radiation Detectors Ltd., Räffelstrasse 11, Zürich (Switzerland); Kiff, Scott [Sandia National Laboratories, CA (United States); Chung, Heejun [Korean Institute for Nuclear Nonproliferation and Control, 1534 Yuseong-daero, Yuseong-gu, Daejeon (Korea, Republic of); Ray, Heather; Baciak, James E.; Enqvist, Andreas; Jordan, Kelly A. [University of Florida, Gainesville, FL (United States)

    2017-03-11

    This paper presents experimental and computational techniques implemented for {sup 4}He gas scintillation detectors for induced fission neutron detection. Fission neutrons are produced when natural uranium samples are actively interrogated by 2.45 MeV deuterium-deuterium fusion reaction neutrons. Fission neutrons of energies greater than 2.45 MeV can be distinguished by their different scintillation pulse height spectra since {sup 4}He detectors retain incident fast neutron energy information. To enable the preferential detection of fast neutrons up to 10 MeV and suppress low-energy event counts, the detector photomultiplier gain is lowered and trigger threshold is increased. Pile-up and other unreliable events due to the interrogating neutron flux and background radiation are filtered out prior to the evaluation of pulse height spectra. With these problem-specific calibrations and data processing, the {sup 4}He detector's accuracy at discriminating fission neutrons up to 10 MeV is improved and verified with {sup 252}Cf spontaneous fission neutrons. Given the {sup 4}He detector's ability to differentiate fast neutron sources, this proof-of-concept active-interrogation measurement demonstrates the potential of special nuclear materials detection using a {sup 4}He fast neutron detection system.

  2. Analysis for In-situ Fission Rate Measurements using 4He Gas Scintillation Detectors

    International Nuclear Information System (INIS)

    Lewis, Jason M.; Raetz, Dominik; Jordan, Kelly A.; Murer, David

    2013-06-01

    Active neutron interrogation is a powerful NDA technique that relies on detecting and analyzing fission neutrons produced in a fuel sample by an interrogating high neutron flux. 4 He scintillation gas fast neutron detectors are investigated in this paper for use in a novel fission rate measurement technique The He-4 detectors have excellent gamma rejection, a fast response time, and give significant information on incident neutron energy allowing for energy cuts to be applied to the detected signal. These features are shown in this work to allow for the detection of prompt fission neutrons in-situ during active neutron interrogation of a 238 U sample. The energy spectrum from three different neutrons sources ( 252 Cf, AmBe, AmLi) is measured using the 4 He detection system and analyzed. An initial response matrix for the detector is determined using these measurements and the kinematic interaction properties of the elastic scattering with the 4 He. (authors)

  3. Foil activation detectors - some remarks on the choice of detectors, the adjustment of cross-sections and the unfolding of flux spectra

    International Nuclear Information System (INIS)

    McCracken, A.K.; Packwood, A.

    1978-01-01

    Neutron spectroscopy in a favourable environment can yield without supporting calculations a wealth of spectral detail which cannot be approached by the multiple foil analysis (MFA) method. On the other hand in hostile environments only MFA methods are available and they require validation and/or improvement by exposing them to comparison with other types of measurement and definitive calculation in tightly controlled test neutron spectra. This paper considers some problems related to MFA unfolding of flux spectra, systematic and random errors in detector measurements and the choice of detectors which will be of maximum use in all environments of current interest

  4. A suspended boron foil multi-wire proportional counter neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Kyle A.; Edwards, Nathaniel S.; Hinson, Niklas J.; Wayant, Clayton D.; McGregor, Douglas S.

    2014-12-11

    Three natural boron foils, approximately 1.0 cm in diameter and 1.0 µm thick, were obtained from The Lebow Company and suspended in a multi-wire proportional counter. Suspending the B foils allowed the alpha particle and Li ion reaction products to escape simultaneously, one on each side of the foil, and be measured concurrently in the gas volume. The thermal neutron response pulse-height spectrum was obtained and two obvious peaks appear from the 94% and 6% branches of the {sup 10}B(n,α){sup 7}Li neutron reaction. Scanning electron microscope images were collected to obtain the exact B foil thicknesses and MCNP6 simulations were completed for those same B thicknesses. Pulse-height spectra obtained from the simulations were compared to experimental data and matched well. The theoretical intrinsic thermal–neutron detection efficiency for enriched {sup 10}B foils was calculated and is presented. Additionally, the intrinsic thermal neutron detection efficiency of the three natural B foils was calculated to be 3.2±0.2%.

  5. A suspended boron foil multi-wire proportional counter neutron detector

    Science.gov (United States)

    Nelson, Kyle A.; Edwards, Nathaniel S.; Hinson, Niklas J.; Wayant, Clayton D.; McGregor, Douglas S.

    2014-12-01

    Three natural boron foils, approximately 1.0 cm in diameter and 1.0 μm thick, were obtained from The Lebow Company and suspended in a multi-wire proportional counter. Suspending the B foils allowed the alpha particle and Li ion reaction products to escape simultaneously, one on each side of the foil, and be measured concurrently in the gas volume. The thermal neutron response pulse-height spectrum was obtained and two obvious peaks appear from the 94% and 6% branches of the 10B(n,α)7Li neutron reaction. Scanning electron microscope images were collected to obtain the exact B foil thicknesses and MCNP6 simulations were completed for those same B thicknesses. Pulse-height spectra obtained from the simulations were compared to experimental data and matched well. The theoretical intrinsic thermal-neutron detection efficiency for enriched 10B foils was calculated and is presented. Additionally, the intrinsic thermal neutron detection efficiency of the three natural B foils was calculated to be 3.2±0.2%.

  6. Antineutrino detector for anti ν oscillation studies at fission weapon tests and at LAMPF

    International Nuclear Information System (INIS)

    Kruse, H.W.; Loncoski, R.; Mack, J.

    1980-01-01

    Two anti ν oscillation experiments are planned, incorporating large volume (4200 l) liquid scintillation detectors 1) at large distances (450 to 800 m) from fission weapon tests and 2) at 12 to 50 m from LAMPF beam dump where significant anti ν/sub e/ events are detected only if some oscillation operates, such as ν/sub μ/ → ν/sub e/. Design criteria, detector characteristics, and experimental considerations are given

  7. Using New Fission Data with the Multi-detector Analysis System for Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    A. V. Ramayya; A.V. Daniel (Joint Institute for Nuclear Research); C. J. Beyer (Vanderbilt Univ.); E. L. Reber; G. M. Ter-Akopian; G.S. Popeko; J. D. Cole; J. H. Hamilton; J. K. Jewell (INEEL); M. W. Drigert; R. Aryaeinejad; Ts.Yu. Oganessian

    1998-11-01

    New experiments using an array of high purity germanium detectors and fast liquid scintillation detectors has been performed to observe the radiation emitted from the induced fission of 235U with a beam of thermal neutrons. The experiment was performed at the Argonne National Laboratory Intense Pulsed Neutron Source. Preliminary observations of the data are presented. A nondestructive analysis system for the characterization of DOE spent nuclear fuel based on these new data is presented.

  8. Using New Fission Data with the Multi-detector Analysis System for Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Jerald Donald

    1998-11-01

    New experiments using an array of high purity germanium detectors and fast liquid scintillation detectors has been performed to observe the radiation emitted from the induced fission of 235U with a beam of thermal neutrons. The experiment was performed at the Argonne National Laboratory Intense Pulsed Neutron Source. Preliminary observations of the data are presented. A nondestructive analysis system for the characterization of DOE spent nuclear fuel based on these new data is presented.

  9. Detection of fission fragments using thick samples in contact with solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Lima, D.A. de; Martins, J.B.; Tavares, O.A.P.

    1987-01-01

    Whenever use is made of thick samples in contact with solid state nuclear track detectors for determining fission yields, one of the fundamental problems is the evaluation of the effective number of target nuclei which contributes to the fraction of the number of fission events that will be recorded. The evaluation of the effective number of target nuclei which contributes to recorded events is based on the effective thickness of the sample. A method for evaluating effective thickness of thick samples for binary fission modes, is presented. A cross section equation which takes into account all the necessary corrections due to fragment attenuation effects by a thick target for calculation induced fission yields, was obtained. (Author) [pt

  10. Study of ternary and quaternary spontaneous fission of 252Cf with the NESSI detector

    International Nuclear Information System (INIS)

    Tishchenko, V.G.; Jahnke, U.; Herbach, C.M.; Hilscher, D.

    2002-11-01

    Ternary and quaternary spontaneous decay of 252 Cf was studied with the NESSI detector, a combination of two 4π detectors for charged particles, neutrons and γ-rays. The applied method of particle identification by measuring the energies and relative time-of-flights of the decay products is shown to be very effective for the study of rare decay modes. The energy and angular distributions of the decay products, the associated neutron multiplicities, the total energy of the prompt γ-radiation as well as correlations between the various observables were measured for the first time in a single full-scale experiment. The characteristics of ternary fission known from previous investigations are confirmed in the frame of a methodically independent experiment. Preliminary estimates of the quaternary fission yield are presented. An attempt is made to determine the mechanism of quaternary fission. (orig.)

  11. Time-zero fission-fragment detector based on low-pressure multiwire proportional chambers

    CERN Document Server

    Assamagan, Ketevi A; Bayatyan, G L; Carlini, R; Danagulyan, S; Eden, T; Egiyan, K; Ent, R; Fenker, H; Gan, L; Gasparian, A; Grigoryan, N K; Greenwood, Z; Gueye, P; Hashimoto, O; Johnston, K; Keppel, C; Knyazyan, S; Majewski, S; Margaryan, A; Margaryan, Yu L; Marikian, G G; Martoff, J; Mkrtchyan, H G; Parlakyan, L; Sato, Y; Sawafta, R; Simicevic, N; Tadevosyan, V; Takahashi, T; Tang, L; Vartanian, G S; Vulcan, W; Wells, S; Wood, S

    1999-01-01

    A time-zero fission fragment (FF) detector, based on the technique of low-pressure multiwire proportional chambers (LPMWPC), has been designed and constructed for the heavy hypernuclear lifetime experiment (E95-002) at Thomas Jefferson National Accelerator Facility. Its characteristics and the method of time-zero reconstruction were investigated using fission fragments from a sup 2 sup 5 sup 2 Cf spontaneous fission source. The influence of the ionization energy loss was also studied. It is shown that Heptane, Hexane, and Isobutane gases at a pressure of 1-2 Torr are all suitable for such a FF detector. As desired by experiment, a timing resolution of about 200 ps (FWHM) for a chamber size of 21x21 cm sup 2 was achieved.

  12. Time-zero fission-fragment detector based on low-pressure multiwire proportional chambers

    International Nuclear Information System (INIS)

    Assamagan, K.; Baker, K.; Bayatyan, G.; Carlini, R.; Danagoulian, S.; Eden, T.; Egiyan, K.; Ent, R.; Fenker, H.; Gan, L.; Gasparian, A.; Grigoryan, N.; Greenwood, Z.; Gueye, P.; Hashimoto, O.; Johnston, K.; Keppel, C.; Knyazyan, S.; Majewski, S.; Margaryan, A.; Margaryan, Yu.; Marikyan, G.; Martoff, J.; Mkrtchyan, H.; Parlakyan, L.; Sato, Y.; Sawafta, R.; Simicevic, N.; Tadevosyan, V.; Takahashi, T.; Tang, L.; Vartanyan, G.; Vulcan, W.; Wells, S.; Wood, S.

    1999-01-01

    A time-zero fission fragment (FF) detector, based on the technique of low-pressure multiwire proportional chambers (LPMWPC), has been designed and constructed for the heavy hypernuclear lifetime experiment (E95-002) at Thomas Jefferson National Accelerator Facility. Its characteristics and the method of time-zero reconstruction were investigated using fission fragments from a 252 Cf spontaneous fission source. The influence of the ionization energy loss was also studied. It is shown that Heptane, Hexane, and Isobutane gases at a pressure of 1-2 Torr are all suitable for such a FF detector. As desired by experiment, a timing resolution of about 200 ps (FWHM) for a chamber size of 21x21 cm 2 was achieved

  13. Energy deposition measurements in fast reactor safety experiments with fission thermocouple detectors

    International Nuclear Information System (INIS)

    Wright, S.A.; Scott, H.L.

    1979-01-01

    The investigation of phenomena occurring in in-pile fast reactor safety experiments requires an accurate measurement of the time dependent energy depositions within the fissile material. At Sandia Laboratories thin-film fission thermocouples are being developed for this purpose. These detectors have high temperature capabilities (400 to 500 0 C), are sodium compatible, and have milli-second time response. A significant advantage of these detectors for use as energy deposition monitors is that they produce an output voltage which is directly dependent on the temperature of a small chip of fissile material within the detectors. However, heat losses within the detector make it necessary to correct the response of the detector to determine the energy deposition. A method of correcting the detector response which uses an inverse convolution procedure has been developed and successfully tested with experimental data obtained in the Sandia Pulse Reactor (SPR-II) and in the Annular Core Research Reactor

  14. Timing characteristics of a two-dimensional multi-wire cathode strip detector for fission fragments

    International Nuclear Information System (INIS)

    Vind, R.P.; Joshi, B.N.; Jangale, R.V.; Inkar, A.L.; Prajapati, G.K.; John, B.V.; Biswas, D.C.

    2014-01-01

    In the recent past, a gas filled two-dimensional multi-wire cathode strip detector (MCSD) was developed for the detection of fission fragments (FFs). The position resolution was found to be about 1.0 and 1.5 mm in X and Y directions respectively. The detector has three electrode planes consisting of cathode strip (X-plane), anode wires and split-cathode wires (Y-plane). Each thin wire of the anode plane placed between the two cathode planes is essentially independent and behaves like a proportional counter. The construction of the detector in detail has been given in our earlier paper. The position information has been obtained by employing high impedance discrete delay line read out method for extracting position information in X and Y-directions. In this work, the timing characteristics of MCSD detector are reported to explore the possible use of this detector for the measurement of the mass of the fission fragments produced in heavy ion induced fission reactions

  15. In-reactor testing of self-powered neutron detectors and miniature fission chambers

    International Nuclear Information System (INIS)

    Duchene, J.; LeMeur, R.; Verdant, R.

    1975-01-01

    The CEA has tested a variety of ''slow'' self-powered neutron detectors with rhodium, silver and vanadium emitters. Currently there are 120 vanadium detectors in the EL4 heavy water reactor. In addition, ''fast'' detectors with cobalt emitters have been tested at Saclay and 50 of these are in reactor. Other studies are concerned with 6 mm diameter miniature fission chambers. Two fast response chambers with argon-nitrogen filling gas became slow during irradiation, but operated to 600 deg C. An argon filled chamber of 4.7 mm diameter, for traversing in core system in pressurized water reactor, has shown satisfactory test results. (author)

  16. Effect of high gamma background on neutron sensitivity of fission detectors

    International Nuclear Information System (INIS)

    Balagi, V.; Prasad, K.R.; Kataria, S.K.

    2004-01-01

    Tests were performed on two parallel plate and two cylindrical fission detectors in pulse and dc mode. The effect of gamma background on neutron sensitivity was studied in thermal neutron flux from 30 nv to 60 nv over which gamma field intensity ranging from 230 kR/h to 3.7 MR/h was superposed. In the case of one of the parallel plate detectors the fall in neutron sensitivity was observed to be 3.7% at 1 MR/h and negligible below 1 MR/h. In the case of one of the cylindrical counters the fall in neutron sensitivity was negligible below 500 kR/h and 37% at 1 MR/h. The data was used to derive the design parameters for a wide range fission detector to be procured for PFBR instrumentation for operation at 600 degC and gamma background of 1 MR/h. (author)

  17. Fission signal detection using helium-4 gas fast neutron scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, J. M., E-mail: lewisj@ufl.edu; Kelley, R. P.; Jordan, K. A. [Nuclear Engineering Program, University of Florida, Gainesville, Florida 32611 (United States); Murer, D. [Arktis Radiation Detectors Ltd., 8045 Zurich (Switzerland)

    2014-07-07

    We demonstrate the unambiguous detection of the fission neutron signal produced in natural uranium during active neutron interrogation using a deuterium-deuterium fusion neutron generator and a high pressure {sup 4}He gas fast neutron scintillation detector. The energy deposition by individual neutrons is quantified, and energy discrimination is used to differentiate the induced fission neutrons from the mono-energetic interrogation neutrons. The detector can discriminate between different incident neutron energies using pulse height discrimination of the slow scintillation component of the elastic scattering interaction between a neutron and the {sup 4}He atom. Energy histograms resulting from this data show the buildup of a detected fission neutron signal at higher energies. The detector is shown here to detect a unique fission neutron signal from a natural uranium sample during active interrogation with a (d, d) neutron generator. This signal path has a direct application to the detection of shielded nuclear material in cargo and air containers. It allows for continuous interrogation and detection while greatly minimizing the potential for false alarms.

  18. Fiber Bragg Grating sensors for deformation monitoring of GEM foils in HEP detectors

    CERN Document Server

    AUTHOR|(CDS)2071648; Bianco, S; Caponero, M; Muhammad, S; Passamonti, L; Piccolo, D; Pierluigi, D; Raffone, G; Russo, A; Saviano, G

    2015-01-01

    Fiber Bragg Grating (FBG) sensors have been so far mainly used in high energy physics (HEP) as high precision positioning and re-positioning sensors and as low cost, easy to mount, radiation hard and low space- consuming temperature and humidity devices. FBGs are also commonly used for very precise strain measurements. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide Gas Electron Multiplier (GEM) foils of the GE1/1 chambers of the Compact Muon Solenoid (CMS) experiment at Large Hadron Collider (LHC) of CERN. A network of FBG sensors has been used to determine the optimal mechanical tension applied and to characterize the mechanical stress applied to the foils. The preliminary results of the test performed on a full size GE1/1 final prototype and possible future developments will be discussed.

  19. Studies of isothermal annealing of fission fragment and alpha particle tracks in Cr-39 polymer detectors

    International Nuclear Information System (INIS)

    Zaky, M.F.; Youssef, A.A.

    2002-01-01

    Two groups of CR-39 detectors samples are exposed to two types of charged particle radiation. The first group are severe damaged with fission fragment tracks from 2 52C f source. The second accepted alpha particles resulting from the interaction of highly energetic 1 9F -ions and a copper disk with thickness 1 cm, which are of less damage tracks than fission fragments. , The isothermal annealing of tracks in the temperature range from 175 to 300 degree C in step 25 degree C for annealing time of 10,15,20,25 and 30 minutes has been investigated. The changes introduced in the track density and track diameter for two types of irradiation in the detector have been observed and compared between them. The results indicate that the track density and the size of the tracks are considerably changed due to annealing

  20. Application of fission track detectors to californium-252 neutron dosimetry in tissue near the radiation source

    International Nuclear Information System (INIS)

    Oswald, R.A.; Lanzl, L.H.; Rozenfeld, M.

    1981-01-01

    Fission track detectors were applied to a unique problem in neutron dosimetry. Measurements of neutron doses were required at locations within a tumor of 1 cm diameter implanted on the back of a mouse and surrounded by a square array of four 252 Cf medical sources. Measurements made in a tissue-equivalent mouse phantom showed that the neutron dose rate to the center of the tumor was 2.18 rads mg -1 h -1 +- 8.4%. The spatial variation of neutron dose to the tumor ranged from 1.88 to 2.55 rads mg -1 h -1 . These measurements agree with calculated values of neutron dose to those locations in the phantom. Fission track detectors have been found to be a reliable tool for neutron dosimetry for geometries in which one wishes to know neutron dose values which may vary considerably over distances of 1 cm or less

  1. Application of fission track detectors to californium-252 neutron dosimetry in tissue near the radiation source

    International Nuclear Information System (INIS)

    Oswald, R.A.; Lanzl, L.H.; Rozenfeld, M.

    1981-01-01

    Fission track detectors were applied to a unique problem in neutron dosimetry. Measurements of neutron doses were required at locations within a tumor of 1 cm diameter implanted on the back of a mouse and surrounded by a square array of four 252 Cf medical sources. Measurements made in a tissue-equivalent mouse phantom showed that the neutron dose rate to the center of the tumor was 2.18 rads micrograms-1 h-1 +/- 8.4%. The spatial variation of neutron dose to the tumor ranged from 1.88 to 2.55 rads micrograms-1 h-1. These measurements agree with calculated values of neutron dose to those locations in the phantom. Fission track detectors have been found to be a reliable tool for neutron dosimetry for geometries in which one wishes to know neutron dose values which may vary considerably over distances of 1 cm or less

  2. A twin Frisch-grid ionization chamber as a selective detector for the delayed gamma-spectroscopy of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Gaudefroy, L., E-mail: laurent.gaudefroy@cea.fr [CEA, DAM, DIF, F-91297 Arpajon (France); Roger, T., E-mail: roger@ganil.fr [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Pancin, J., E-mail: pancin@ganil.fr [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Spitaels, C. [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Aupiais, J. [CEA, DAM, DIF, F-91297 Arpajon (France); Mottier, J. [Institut de Physique Nucléaire, Université Paris-Sud-11-CNRS-IN2P3, F-91406 Orsay (France)

    2017-05-21

    We present a twin Frisch-grid ionization chamber. The detector is meant to provide high selective power for the study of delayed gamma-ray spectroscopy of fission fragments produced via {sup 252}Cf spontaneous fission. A mean energy resolution on the kinetic energy of fission fragments of 675 keV (FWHM) is achieved and allows us to resolve masses of fragments for fission events where neutron emission is not energetically possible. The mean mass resolution measured for these particular events amounts to 0.54 mass units (FWHM). For fission events with neutron emission a resolution of 4 mass units (FWHM) is reported. Information on fragment emission angle is measured with a resolution of 0.1 on the difference of the cosines determined for both halves of the detector. A charge resolution of 4.5 charge units (FWHM) is also demonstrated.

  3. Fission-product yields for thermal-neutron fission of 243Cm determined from measurements with a high-resolution low-energy germanium gamma-ray detector

    International Nuclear Information System (INIS)

    Merriman, L.D.

    1984-04-01

    Cumulative fission-product yields have been determined for 13 gamma rays emitted during the decay of 12 fission products created by thermal-neutron fission of 243 Cm. A high-resolution low-energy germanium detector was used to measure the pulse-height spectra of gamma rays emitted from a 77-nanogram sample of 243 Cm after the sample had been irradiated by thermal neutrons. Analysis of the data resulted in the identification and matching of gamma-ray energies and half-lives to individual radioisotopes. From these results, 12 cumulative fission product yields were deduced for radionuclides with half-lives between 4.2 min and 84.2 min. 7 references

  4. On Use of Multi-Chambered Fission Detectors for In-Core, Neutron Spectroscopy

    Science.gov (United States)

    Roberts, Jeremy A.

    2018-01-01

    Presented is a short, computational study on the potential use of multichambered fission detectors for in-core, neutron spectroscopy. Motivated by the development of very small fission chambers at CEA in France and at Kansas State University in the U.S., it was assumed in this preliminary analysis that devices can be made small enough to avoid flux perturbations and that uncertainties related to measurements can be ignored. It was hypothesized that a sufficient number of chambers with unique reactants can act as a real-time, foilactivation experiment. An unfolding scheme based on maximizing (Shannon) entropy was used to produce a flux spectrum from detector signals that requires no prior information. To test the method, integral, detector responses were generated for singleisotope detectors of various Th, U, Np, Pu, Am, and Cs isotopes using a simplified, pressurized-water reactor spectrum and fluxweighted, microscopic, fission cross sections, in the WIMS-69 multigroup format. An unfolded spectrum was found from subsets of these responses that had a maximum entropy while reproducing the responses considered and summing to one (that is, they were normalized). Several nuclide subsets were studied, and, as expected, the results indicate inclusion of more nuclides leads to better spectra but with diminishing improvements, with the best-case spectrum having an average, relative, group-wise error of approximately 51%. Furthermore, spectra found from minimum-norm and Tihkonov-regularization inversion were of lower quality than the maximum entropy solutions. Finally, the addition of thermal-neutron filters (here, Cd and Gd) provided substantial improvement over unshielded responses alone. The results, as a whole, suggest that in-core, neutron spectroscopy is at least marginally feasible.

  5. Actinide Foil Production for MPACT Research

    Energy Technology Data Exchange (ETDEWEB)

    Beller, Denis

    2012-10-30

    Sensitive fast-neutron detectors are required for use in lead slowing down spectrometry (LSDS), an active interrogation technique for used nuclear fuel assay for Materials Protection, Accounting, and Controls Technologies (MPACT). During the past several years UNLV sponsored a research project at RPI to investigate LSDS; began development of fission chamber detectors for use in LSDS experiments in collaboration with INL, LANL, and Oregon State U.; and participated in a LSDS experiment at LANL. In the LSDS technique, research has demonstrated that these fission chamber detectors must be sensitive to fission energy neutrons but insensitive to thermal-energy neutrons. Because most systems are highly sensitive to large thermal neutron populations due to the well-known large thermal cross section of 235U, even a miniscule amount of this isotope in a fission chamber will overwhelm the small population of higher-energy neutrons. Thus, fast-fission chamber detectors must be fabricated with highly depleted uranium (DU) or ultra-pure thorium (Th), which is about half as efficient as DU. Previous research conducted at RPI demonstrated that the required purity of DU for assay of used nuclear fuel using LSDS is less than 4 ppm 235U, material that until recently was not available in the U.S. In 2009 the PI purchased 3 grams of ultra-depleted uranium (uDU, 99.99998% 238U with just 0.2 ± 0.1 ppm 235U) from VNIIEF in Sarov, Russia. We received the material in the form of U3O8 powder in August of 2009, and verified its purity and depletion in a FY10 MPACT collaboration project. In addition, chemical processing for use in FC R&D was initiated, fission chamber detectors and a scanning alpha-particle spectrometer were developed, and foils were used in a preliminary LSDS experiment at a LANL/LANSCE in Sept. of 2010. The as-received U3O8 powder must be chemically processed to convert it to another chemical form while maintaining its purity, which then must be used to electro-deposit U

  6. Optimizing moderation of He-3 neutron detectors for shielded fission sources

    Energy Technology Data Exchange (ETDEWEB)

    Rees, Lawrence B., E-mail: Lawrence_Rees@byu.edu [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602 (United States); Czirr, J. Bart, E-mail: czirr@juno.com [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602 (United States)

    2012-11-01

    The response of a {sup 3}He neutron detector is highly dependent on the amount of moderator incorporated into the detector system. If there is too little moderation, neutrons will not react with the {sup 3}He. If there is too much moderation, neutrons will not reach the {sup 3}He. In applications for portal or border monitors where {sup 3}He detectors are used to interdict illicit importation of plutonium, the fission source is always shielded to some extent. Since the energy distribution of neutrons emitted from the source depends on the amount and type of shielding present, the optimum placement of moderating material around {sup 3}He tubes is a function of shielding. In this paper, we use Monte Carlo techniques to model the response of {sup 3}He tubes placed in polyethylene boxes for moderation. To model the shielded fission neutron source, we use a point {sup 252}Cf source placed in the center of polyethylene spheres of varying radius. Detector efficiency as a function of box geometry and shielding is explored. We find that increasing the amount of moderator behind and to the sides of the detector generally improves the detector response, but that incremental benefits are minimal if the thickness of the polyethylene moderator is greater than about 5-7 cm. The thickness of the moderator in front of the {sup 3}He tubes, however, is very important. For bare sources, about 4-5 cm of moderator is optimum, but as the shielding increases, the optimum thickness of this moderator decreases to 0.5-1 cm. Similar conclusions can be applied to polyethylene boxes employing two {sup 3}He tubes. Two-tube boxes with front moderators of non-uniform thickness may be useful for detecting neutrons over a wide energy range.

  7. A fission ionization detector for neutron flux measurements at a spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Wender, S.A. (Los Alamos National Lab., Los Alamos, NM (United States)); Balestrini, S. (Los Alamos National Lab., Los Alamos, NM (United States)); Brown, A. (Los Alamos National Lab., Los Alamos, NM (United States)); Haight, R.C. (Los Alamos National Lab., Los Alamos, NM (United States)); Laymon, C.M. (Los Alamos National Lab., Los Alamos, NM (United States)); Lee, T.M. (Los Alamos National Lab., Los Alamos, NM (United States)); Lisowski, P.W. (Los Alamos National Lab., Los Alamos, NM (United States)); McCorkle, W. (Los Alamos National Lab., Los Alamos, NM (United States)); Nelson, R.O. (Los Alamos National Lab., Los Alamos, NM (United States)); Parker, W. (Los Alamos National Lab., Los Alamos, NM (United States)); Hill, N.W. (Oak Ridge National Lab., Oak Ridge, TN (United States))

    1993-11-15

    The construction of a neutron flux monitor that can measure absolute neutron intensities in the neutron energy range from below 1 MeV to over 500 MeV is described. The detector consists of an ionization chamber with several thin deposits of fissionable material. The ionization chamber is thin enough that it does not significantly affect the neutron beam and may be left in the neutron flight path during experimental measurements to continuously monitor the beam flux. The use of this monitor at the continuous-energy spallation neutron source at the WNR target area at LAMPF is described. (orig.)

  8. A fission ionization detector for neutron flux measurements at a spallation source

    International Nuclear Information System (INIS)

    Wender, S.A.; Balestrini, S.; Brown, A.; Haight, R.C.; Laymon, C.M.; Lee, T.M.; Lisowski, P.W.; McCorkle, W.; Nelson, R.O.; Parker, W.; Hill, N.W.

    1993-01-01

    The construction of a neutron flux monitor that can measure absolute neutron intensities in the neutron energy range from below 1 MeV to over 500 MeV is described. The detector consists of an ionization chamber with several thin deposits of fissionable material. The ionization chamber is thin enough that it does not significantly affect the neutron beam and may be left in the neutron flight path during experimental measurements to continuously monitor the beam flux. The use of this monitor at the continuous-energy spallation neutron source at the WNR target area at LAMPF is described. (orig.)

  9. Detection of fission fragments and alpha particles using the solid trace detector CR-39

    International Nuclear Information System (INIS)

    Santos, R.C.

    1988-01-01

    The technique of detecting charged particles using the solid track detector CR-39 is employed to establish some characteristics of fission fragments and alpha particles emitted from a Cf-252 source. Results are presented and discussed on the following aspects i) distribution of the track diameters; ii) variations on the track diameters to the chemical attack; iii) variations of the chemical attack velocity with respect to concentration and temperature. iv) activation energy of the developping process; v) induction time; vi) critical angle and efficiency on track developping. (A.C.A.S.) [pt

  10. $\\bar{p}$-Induced Fission Studies with Plastic Track Detectors Using 4$\\pi$-Geometry

    CERN Multimedia

    2002-01-01

    % EMU20 \\\\ \\\\ The annihilation of a stopped antiproton on the surface of a target nucleus produces on the average five pions with a mean energy of 230~MeV. The high excitation of the nuclei with low angular momentum transfer can also be achieved by direct pion-nucleus interactions. The fission probabilities of highly excited nuclei can be explained on the basis of high energy limit of statistical theory. Previously the binary fission and higher multiplicity break-up of various nuclei caused by the absorption of pions has been studied by our group. The mechanism of nuclear excitation may still be the same when an antiproton annihilates in a nucleus and produces pions. It would be interesting to see whether the $\\bar{p}$ annihilation produces high enough excitation energies for nuclear phase-transition to take place. If so, then the fragmentation would overwhelm binary and ternary fission process. \\\\ \\\\The use of a highly sensitive plastic detector, CR-39, was made by our group in a number of studies involving ...

  11. Fabrication and Testing of a Modular Micro-Pocket Fission Detector Instrumentation System for Test Nuclear Reactors

    Science.gov (United States)

    Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Roberts, Jeremy A.; Unruh, Troy C.; McGregor, Douglas S.

    2018-01-01

    Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Measurement of the neutron-flux distribution within the reactor core provides a more complete understanding of the operating conditions in the reactor than typical ex-core sensors. Micro-Pocket Fission Detectors have been developed and tested previously but have been limited to single-node operation and have utilized highly specialized designs. The development of a widely deployable, multi-node Micro-Pocket Fission Detector assembly will enhance nuclear research capabilities. A modular, four-node Micro-Pocket Fission Detector array was designed, fabricated, and tested at Kansas State University. The array was constructed from materials that do not significantly perturb the neutron flux in the reactor core. All four sensor nodes were equally spaced axially in the array to span the fuel-region of the reactor core. The array was filled with neon gas, serving as an ionization medium in the small cavities of the Micro-Pocket Fission Detectors. The modular design of the instrument facilitates the testing and deployment of numerous sensor arrays. The unified design drastically improved device ruggedness and simplified construction from previous designs. Five 8-mm penetrations in the upper grid plate of the Kansas State University TRIGA Mk. II research nuclear reactor were utilized to deploy the array between fuel elements in the core. The Micro-Pocket Fission Detector array was coupled to an electronic support system which has been specially developed to support pulse-mode operation. The Micro-Pocket Fission Detector array composed of four sensors was used to monitor local neutron flux at a constant reactor power of 100 kWth at different axial locations simultaneously. The array was positioned at five different radial locations within the core to emulate the deployment of multiple arrays and develop a 2-dimensional measurement of

  12. Thermal flow in detectors of CNA-II with spontaneous fissions source of 238U

    International Nuclear Information System (INIS)

    Mascitti, J. A

    2012-01-01

    The thermal flux in the position of ex-core and in-core CNA-II Nuclear Power Plant (CNA-II) detectors is estimated considering neutron from the 238 U spontaneous fissions as the source, for the reactor cold state (isothermal state with both coolant and moderator at a temperature of 60 o C, a pressure of 35 ata and 15.46 ppm of natural Boron), and 24% inserted control rods (slightly sub-critical). Results are obtained for two different situations: with and without photo-neutrons due to the (γ,n) reaction in D 2 O. It is concluded that the thermal flux is under the detection limit of the boron trifluoride 104-SR or 282-IB detectors (≅10 -1 cm-2.s -1 ). These detectors are located in opposite positions in the inner concrete shielding, having the lowest detection limit among all ex-core detectors. A significant difference is verified in neutron fluxes between both cases, which suggest that photo-neutrons in large heavy water reactors such as CNA-II should not be ignored. The total neutron flux attenuation factor between the inner and outer region of the reactor pressure vessel was estimated to be 7.0 x 10 -7 . It should be mentioned that none of the results here presented has been affected by any correction factor. Each value has a percentage relative error representing the statistical uncertainty due to the probabilistic Monte Carlo method used to obtain it (author)

  13. Solid state nuclear track detectors in the measurement of alpha to fission branching ratios of heavy actinides

    International Nuclear Information System (INIS)

    Pandey, A.K.; Sharma, R.C.; Padalkar, S.K.; Kalsi, P.C.; Iyer, R.H.

    1992-01-01

    A sequential etching procedure for revelation of alpha and fission tracks in CR-39 was developed and optimized. Using this technique alpha and fission tracks can be differentiated unambiguously because of significant differences in their sizes and etching times. This registration and revelation procedure for alpha and fission tracks may be used for the studies of half lives, alpha to fission branching ratios and identification of radionuclides based on their decay schemes. It has the added advantage that both alpha decay and fission events can be studied using one detector and hence uncertainties related to efficiency, registration geometry, registration times, amount of radionuclides etc can be eliminated or minimized. The effects of neutron, gamma and alpha radiations on the alpha and fission fragment tracks registration and revelation properties of CR-39 detectors [CR-39, CR-39 (DOP)] were also studied. The IR spectra were also studied to find out the nature of chemical changes produced by these radiations on CR-39. (author). 32 refs., 7 figs., 4 tabs

  14. NEET Enhanced Micro Pocket Fission Detector for High Temperature Reactors - FY15 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Unruh, Troy [Idaho National Lab. (INL), Idaho Falls, ID (United States); McGregor, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ugorowski, Phil [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reichenberger, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ito, Takashi [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    A new project, that is a collaboration between the Idaho National Laboratory (INL), the Kansas State University (KSU), and the French Atomic Energy Agency, Commissariat à l'Énergie Atomique et aux Energies Alternatives, (CEA), has been initiated by the Nuclear Energy Enabling Technologies (NEET) Advanced Sensors and Instrumentation (ASI) program for developing and testing High Temperature Micro-Pocket Fission Detectors (HT MPFD), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package for temperatures up to 800 °C. The MPFD technology utilizes a small, multi-purpose, robust, in-core parallel plate fission chamber and thermocouple. As discussed within this report, the small size, variable sensitivity, and increased accuracy of the MPFD technology represent a revolutionary improvement over current methods used to support irradiations in US Material Test Reactors (MTRs). Previous research conducted through NEET ASI1-3 has shown that the MPFD technology could be made robust and was successfully tested in a reactor core. This new project will further the MPFD technology for higher temperature regimes and other reactor applications by developing a HT MPFD suitable for temperatures up to 800 °C. This report summarizes the research progress for year one of this three year project. Highlights from research accomplishments include: A joint collaboration was initiated between INL, KSU, and CEA. Note that CEA is participating at their own expense because of interest in this unique new sensor. An updated HT MPFD design was developed. New high temperature-compatible materials for HT MPFD construction were procured. Construction methods to support the new design were evaluated at INL. Laboratory evaluations of HT MPFD were initiated. Electrical contact and fissile material plating has been performed at KSU. Updated detector electronics are undergoing evaluations at KSU. A

  15. NEET Enhanced Micro-Pocket Fission Detector for High Temperature Reactors - FY16 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Unruh, Troy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reichenberger, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Stevenson, Sarah [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tsai, Kevin [Idaho National Lab. (INL), Idaho Falls, ID (United States); McGregor, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    A collaboration between the Idaho National Laboratory (INL), the Kansas State University (KSU), and the French Atomic Energy Agency, Commissariat à l'Énergie Atomique et aux Energies Alternatives, (CEA), has been initiated by the Nuclear Energy Enabling Technologies (NEET) Advanced Sensors and Instrumentation (ASI) program for developing and testing High Temperature Micro-Pocket Fission Detectors (HT MPFD), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package for temperatures up to 800 °C. The MPFD technology utilizes a small, multi-purpose, robust, in-core fission chambers and thermocouple. As discussed within this report, the small size, variable sensitivity, and increased accuracy of the MPFD technology represent a revolutionary improvement over current methods used to support irradiations in US Material Test Reactors (MTRs). Previous research conducted through NEET ASI1-3 has shown that the MPFD technology could be made robust and was successfully tested in a reactor core. This new project will further the MPFD technology for higher temperature regimes and other reactor applications by developing a HT MPFD suitable for temperatures up to 800 °C. This report summarizes the research progress for year two of this three year project. Highlights from research accomplishments include: • Continuation of a joint collaboration between INL, KSU, and CEA. Note that CEA is participating at their own expense because of interest in this unique new sensor. • An updated parallel wire HT MPFD design was developed. • Program support for HT MPFD deployments was given to Accident Tolerant Fuels (ATF) and Advanced Gas-cooled Reactor (AGR) irradiation test programs. • Quality approved materials for HT MPFD construction were procured by irradiation test programs for upcoming deployments. • KSU improved and performed electrical contact and fissile material plating.

  16. Two specialized delayed-neutron detector designs for assays of fissionable elements in water and sediment samples

    International Nuclear Information System (INIS)

    Balestrini, S.J.; Balagna, J.P.; Menlove, H.O.

    1976-01-01

    Two specialized neutron-sensitive detectors are described which are employed for rapid assays of fissionable elements by sensing for delayed neutrons emitted by samples after they have been irradiated in a nuclear reactor. The more sensitive of the two detectors, designed to assay for uranium in water samples, is 40% efficient; the other, designed for sediment sample assays, is 27% efficient. These detectors are also designed to operate under water as an inexpensive shielding against neutron leakage from the reactor and neutrons from cosmic rays. (Auth.)

  17. Compact time-zero detector for heavy ions

    International Nuclear Information System (INIS)

    Weissenberger, E.; Kast, W.; Goennenwein, F.

    1979-01-01

    A time-zero detector for flight-time measurements with heavy ions is described. The ions traverse a thin foil and the secondary electrons splashed from the foil are detected in a channel plate multiplier. A timing signal is derived from the multiplier pulse. The novel features of the detector are its simplicity and compactness of design. The time resolution achieved for the full energy and mass span of fission fragments from the spontaneous fission of 252 Cf used as a heavy ion source is 115 ps (fwhm). (Auth.)

  18. A new fission-fragment detector to complement the CACTUS-SiRi setup at the Oslo Cyclotron Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Tornyi, T.G., E-mail: tornyitom@atomki.hu [Department of Physics, University of Oslo (Norway); Institute of Nuclear Research of the Hungarian Academy of Sciences (MTA Atomki), Debrecen (Hungary); Görgen, A.; Guttormsen, M.; Larsen, A.C.; Siem, S. [Department of Physics, University of Oslo (Norway); Krasznahorkay, A. [Institute of Nuclear Research of the Hungarian Academy of Sciences (MTA Atomki), Debrecen (Hungary); Csige, L. [Institute of Nuclear Research of the Hungarian Academy of Sciences (MTA Atomki), Debrecen (Hungary); Max-Planck-Institute for Quantum Optics, D-85748 Garching (Germany)

    2014-02-21

    An array of Parallel Plate Avalanche Counters (PPAC) for the detection of heavy ions has been developed. The new device, NIFF (Nuclear Instrument for Fission Fragments), consists of four individual detectors and covers 60% of 2π. It was designed to be used in conjunction with the SiRi array of ΔE−E silicon telescopes for light charged particles and fits into the CACTUS array of 28 large-volume NaI scintillation detectors at the Oslo Cyclotron Laboratory. The low-pressure gas-filled PPACs are sensitive for the detection of fission fragments, but are insensitive to scattered beam particles of light ions or light-ion ejectiles. The PPAC detectors of NIFF have good time resolution and can be used either to select or to veto fission events in in-beam experiments with light-ion beams and actinide targets. The powerful combination of SiRi, CACTUS, and NIFF provides new research opportunities for the study of nuclear structure and nuclear reactions in the actinide region. The new setup is particularly well suited to study the competition of fission and γ decay as a function of excitation energy.

  19. Thorium-uranium fission radiography

    Science.gov (United States)

    Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.

    1976-01-01

    Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.

  20. Irradiation effects in fused quartz 'Suprasil' as a detector of fission fragments under high flux of reactor neutrons

    International Nuclear Information System (INIS)

    Moraes, O.M.G. de.

    1984-01-01

    A systematic study about the registration characteristics of synthetic fused quartz 'Suprasil I' use as a detector of fission fragments under high flux of reactor neutrons and the effects of irradiation on it was performed. Fission fragments of 252 Cf, gamma radiation doses of of 60 Co up to 150 MGy, and integrated neutrons fluxes up to 10 20 n/cm 2 were used. A model to explain the effects on track registration and development characteristics of 'Suprasil I' irradiated on reactors were proposed, based on the obtained results for efficiency an for annealing. (C.G.C.) [pt

  1. The VERDI fission fragment spectrometer

    Directory of Open Access Journals (Sweden)

    Frégeau M.O.

    2013-12-01

    Full Text Available The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution.

  2. A thin foil Faraday collector as a lost alpha detector for high yield d-t tokamak fusion plasmas

    International Nuclear Information System (INIS)

    Cecil, F. Ed

    2011-01-01

    This report summarizes the accomplishment of sixteen years of work toward the development of thin foil Faraday collectors as a lost energetic ion diagnostic for high temperature magnetic confinement fusion plasmas. Following initial, proof of principle accelerator based studies, devices have been tested on TFTR, NSTX, ALCATOR, DIII-D, and JET (KA-1 and KA-2). The reference numbers refer to the attached list of publications. The JET diagnostic KA-2 continues in operation and hopefully will provide valuable diagnostic information during a possible d-t campaign on JET in the coming years. A thin Faraday foil spectrometer, by virtue of its radiation hardness, may likewise provide a solution to the very challenging problem of lost alpha particle measurements on ITER and other future burning plasma machines.

  3. Response study of fission track detectors using two different moderator designs in a high-energy radiation field

    International Nuclear Information System (INIS)

    Mayer, S.; Boschung, M.; Fiechtner, A.; Fuerstner, M.; Wernli, C.

    2008-01-01

    Fission track detectors in the center of moderating spheres are routinely used to measure the ambient dose equivalent due to neutrons in the environmental dosimetry at Paul Scherrer Institut (PSI). Originally, the system was designed to cope with neutrons from skyshine effects. Later, the system was also adapted behind the shielding of PSI's accelerators. Nowadays, as a consequence of continuously upgrading accelerator energies and intensities, the neutron energy behind thick shielding can range from fractions of eV to about 1 GeV (e.g. at CERN). For this reason a measurement campaign in a high-energy stray radiation field at CERN's High-Energy Reference Field Facility (CERF) was initiated to study and compare the response of the already existing detector-moderator configuration and a new design, the 'GSI ball'. Employing an additional lead layer in a moderator sphere of 32.5 cm diameter, the GSI ball was primarily designed for the use with thermoluminescent based dosimeters in its center in order to optimize the response for the measurement of H*(10) to higher neutron energies. In this work, the measurement results for fission track detectors using two different radiator materials in the PSI and the GSI moderator are presented. Based on these studies, on the one hand, field calibration factors for the use in presumably similar high-energy fields around accelerators could be deduced. On the other hand, it could be shown that there is no need to replace the established PSI moderator by the GSI moderator since the combination of fission track detector and GSI moderator does not result in a significant sensitivity improvement

  4. Response study of fission track detectors using two different moderator designs in a high-energy radiation field

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, S. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)], E-mail: Sabine.Mayer@psi.ch; Boschung, M.; Fiechtner, A. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Fuerstner, M. [CERN, CH-1211 Geneva 23 (Switzerland); Wernli, C. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2008-02-15

    Fission track detectors in the center of moderating spheres are routinely used to measure the ambient dose equivalent due to neutrons in the environmental dosimetry at Paul Scherrer Institut (PSI). Originally, the system was designed to cope with neutrons from skyshine effects. Later, the system was also adapted behind the shielding of PSI's accelerators. Nowadays, as a consequence of continuously upgrading accelerator energies and intensities, the neutron energy behind thick shielding can range from fractions of eV to about 1 GeV (e.g. at CERN). For this reason a measurement campaign in a high-energy stray radiation field at CERN's High-Energy Reference Field Facility (CERF) was initiated to study and compare the response of the already existing detector-moderator configuration and a new design, the 'GSI ball'. Employing an additional lead layer in a moderator sphere of 32.5 cm diameter, the GSI ball was primarily designed for the use with thermoluminescent based dosimeters in its center in order to optimize the response for the measurement of H*(10) to higher neutron energies. In this work, the measurement results for fission track detectors using two different radiator materials in the PSI and the GSI moderator are presented. Based on these studies, on the one hand, field calibration factors for the use in presumably similar high-energy fields around accelerators could be deduced. On the other hand, it could be shown that there is no need to replace the established PSI moderator by the GSI moderator since the combination of fission track detector and GSI moderator does not result in a significant sensitivity improvement.

  5. A method for the measurement of fission rates in fast neutron fields using solid state track detectors

    International Nuclear Information System (INIS)

    Hansen, W.; Vogel, W.

    1984-04-01

    Solid state track detectors (SSTDs) are increasingly used for the registration of radiation in different fields of nuclear physics. Because of their small sizes and masses and the absence of any electronics during exposure SSTDs do not cause distortions in the system to be investigated and are useful for measurements at such places being difficult of access. The elaboration of a method is described for fission rate measurements in fast neutron fields applying SSTDs and different fissionable isotopes which were electrodeposited on stainless steel backings. Experiences of the electrodeposition and results of quality checks are presented. The evaluation of the etched tracks is performed with spark counter technique. The dependence of the counting result on essential influence parameters is discussed. (author)

  6. Enlarging the fission fragment tracks in glass detectors by etching in weak solutions of HF - a safe etchant

    International Nuclear Information System (INIS)

    Singh, V.P.; Sharma, A.P.

    1982-01-01

    The effect of etchant concentration and temperature on track revelation properties of soda glass detectors has been studied. Etch rate ratio, maximum observable diameter and the energy resolution of the fission fragment tracks of 252 Cf in glasses are increased when the samples are etched in 1.25 vol% HF as compared to higher concentrations of HF and other etching solutions. The critical angle of etching is found to decrease with decrease in etchant concentration. The activation energies for bulk etching and track etching have also been estimated. Better results were obtained by using lower etching temperatures. (author)

  7. Comparison of Thermal Neutron Flux Measured by Uranium 235 Fission Chamber and Rhodium Self-Powered Neutron Detector in MTR

    International Nuclear Information System (INIS)

    Fourmentel, D.; Filliatre, P.; Barbot, L.; Villard, J.-F.; Lyoussi, A.; Geslot, B.; Malo, J.-Y.; Carcreff, H.; Reynard-Carette, C.

    2013-06-01

    Thermal neutron flux is one of the most important nuclear parameter to be measured on-line in Material Testing Reactors (MTRs). In particular two types of sensors with different physical operating principles are commonly used: self-powered neutron detectors (SPND) and fission chambers with uranium 235 coating. This work aims to compare on one hand the thermal neutron flux evaluation given by these two types of sensors and on the other hand to compare these evaluations with activation dosimeter measurements, which are considered as the reference for absolute neutron flux assessment. This study was conducted in an irradiation experiment, called CARMEN-1, performed during 2012 in OSIRIS reactor (CEA Saclay - France). The CARMEN-1 experiment aims to improve the neutron and photon flux and nuclear heating measurements in MTRs. In this paper we focus on the thermal neutron flux measurements performed in CARMEN-1 experiment. The use of fission chambers to measure the absolute thermal neutron flux in MTRs is not very usual. An innovative calibration method for fission chambers operated in Campbell mode has been developed at the CEA Cadarache (France) and tested for the first time in the CARMEN-1 experiment. The results of these measurements are discussed, with the objective to measure with the best accuracy the thermal neutron flux in the future Jules Horowitz Reactor. (authors)

  8. Fission products collecting devices

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshi

    1979-01-01

    Purpose: To enable fission products trap with no contamination to coolants and cover gas by the provision of a fission products trap above the upper part of a nuclear power plant. Constitution: Upon fuel failures in a reactor core, nuclear fission products leak into coolants and move along the flow of the coolants to the coolants above the reactor core. The fission products are collected in a trap container and guided along a pipeline into fission products detector. The fission products detector monitors the concentration of the fission products and opens the downstream valve of the detector when a predetermined concentration of the fission products is detected to introduce the fission products into a waste gas processing device and release them through the exhaust pipe. (Seki, T.)

  9. Measurement of the energy spectrum of {sup 252}Cf fission fragments using nuclear track detectors and digital image processing

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, G.; Golzarri, J. I. [UNAM, Instituto de Fisica, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Castano, V. M. [UNAM, Centro de Fisica Aplicada y Tecnologia Avanzada, Boulevard Juriquilla 3001, Santiago de Queretaro, 76230 Queretaro (Mexico); Gaso, I. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Mena, M.; Segovia, N. [UNAM, Instituto de Geofisica, Circuito de la Investigacion Cientifica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2010-02-15

    The energy spectrum of {sup 252}Cf fission fragments was measured using nuclear track detectors and digital image analysis system. The detection material was fused silica glass. The detectors were chemically etched in an 8% HF solution. After experimenting with various etching time, it was found that the best resolution of the track diameter distribution was obtained after 30 minutes of etching. Both Gaussian and Lorentzian curves were fit to the track diameter distribution histograms and used to determine the basic parameters of the distribution of the light (N{sub L}) and heavy (N{sub H}) formed peaks and the minimum of the central valley (N{sub V}). Advantages of the method presented here include the fully-automated analysis process, the low cost of the nuclear track detectors and the simplicity of the nuclear track method. The distribution resolution obtained by this method is comparable with the resolution obtained by electronic analysis devices. The descriptive variables calculated were very close to those obtained by other methods based on the use of semiconductor detectors. (Author)

  10. Development and simulation of a Ge/Si multi-detector spectrometer for fission products traces detection in the environment

    International Nuclear Information System (INIS)

    Cagniant, Antoine

    2015-01-01

    For the verification of the Comprehensive nuclear Test Ban Treaty (CTBT), the measurement of fission products trace levels in the environment is fundamental. Such measurement is a key indicator of a nuclear explosion. For constant amelioration of these measurements, the CEA/DAM-Ile de France has developed and installed a new dedicated surface spectrometer. Named GAMMA3, it is equipped with three germanium detectors, two silicon detectors (integrated in a dedicated gas cell, the PIPSBox) and includes an optimized shielding.This shielding reduces greatly the interference of environmental photons, muons and neutrons with the detectors. The residual radiological background measured inside the shielding is the community's lowest for a surface laboratory. This set of high energy resolution detectors allows the operator to optimize a measurement according to the sample geometry, activity or nature. More precisely, a radioactive noble gas can be measured by photon/electron coincidence, an active sample can be measured by photon/photon coincidence, and a low-active sample can be measured in a high-efficiency configuration. Combining optimized shielding and optimized measurement, Minimum Detectable Activities required for CTBT certification are obtained quickly. Specifically, MDA is reached in 5 hours for 140-Ba (24 mBq), in 6h30 hours for 131m/133m-Xe (5 mBq) and in 7h15 for 133-Xe (5 mBq), when CTBT requirement is in 6 days. (author) [fr

  11. BIG-10 fission product generation and reaction rates

    International Nuclear Information System (INIS)

    Rogers, J.W.

    1976-01-01

    Fission product generation rates for high quality fission foils and reaction rates of nonfission foils have been measured by gamma ray activation analyses. These foils were irradiated in the BIG-10 facility and the activities were measured by NaI counting techniques

  12. Preparation of the in-house neutron detectors and the software needed to process experimental data

    International Nuclear Information System (INIS)

    Haddad, Kh.; Haj-Hassan, H.; Helal, W.

    2007-04-01

    In - house neutron activation detectors were prepared in this work using pure commercial gold. The neutron self-shielding factors in the foils for both thermal and epithermal neutrons have been determined experimentally. The work shows good results repeatability and good agreement with certified activation monitors. the software KHW for neutron flux measurements using local and standards gold foils was designed and performed locally. it deals as well with irradiated uranium spectrums to calculate some important fission product ratios for neutron flux measurement. Some experiments were performed to investigate the possibility of using uranium, produced in the pilot plant, as fission neutron detector. The results shows the possibility of using fission product ratios to determine the cooling time of the samples. It shows also the possibility of using fission and activation product ratios as an indicators of neutron fluences ratios.(author)

  13. Natural uranium impurities in fission track detectors and associated geocronological parameters

    International Nuclear Information System (INIS)

    Ricabarra, G.H.; Bovisio de Ricabarra, M.D.; Waisman, Dina; Faradjie de Turjanski, Rosa

    1981-01-01

    A technique, based in counting neutron induced fission tracks, has been developed for the measurement of uranium impurities in mica. Uranium concentrations of 10 -10 and 10 -9 (U atom/mica atom) have been measured. As a part of the development of this technique, the mica geological age was also measured, by fossil and induced track detection. The agreement obtained by this method, T = (472+-52) x 10 6 years with that of (450+-15) x 10 6 years obtained by the Ar-K technique is satisfactory and is an indirect test of the fission track technique used. A careful analysis of the neutron field parameters and nuclear data used in the age determination was made. This analysis is useful for applications in geocronology. According to this analysis a value of lambdasub(f)=(7.1+-0.1) x 10 -17 years -1 is recommended for the spontaneous fission of U238. However, in order to compare the results, the quoted age, T=(472+-52) x 10 6 years, was obtained with the generally accepted value of lambdasub(f)=(6.85-0.20) x 10 -17 years -1 (Fleischer and Price 1964). (author) [es

  14. Preliminary results of fission induced by (1068 MeV) pi in Cu, Sn, Au and Bi using CR-39 detectors

    CERN Document Server

    Khan, H A; Shahzad, M I; Manzoor, S; Farooq, M A; Sher, G; Khan, E U; Peterson, R J

    1999-01-01

    Fission probabilities in pion induced reactions exhibit characteristic variations with respect to pion energies and target fissility values. At incident energies well above the pion-nucleon resonances, the statistical model seems to give good description of the observed data. We have used negative pions of energy 1068 MeV, in order to study fission induced in four target materials with fissility values [(Z-1)2/A] ranging from 12 to 32. All targets were arranged in a single stack in such a way that each target coated on a CR-39 detector was sandwiched by another uncoated CR-39 detector plate. The stack was irradiated at the AGS of Brookhaven National Laboratory (USA). This set-up ensures solid angle coverage of almost 4 pi degrees, so that for each fission event one of the fission fragments is expected to be trapped by the forward detector and one by the detector covering backward hemisphere. The effect of pion momentum transfer to the struck nucleus was observed in the form of asymmetry between events counted...

  15. Analysis of Mechanical Properties for GEM Foil

    CERN Document Server

    Chin, Yuk Ming

    2016-01-01

    In view of new assembly technique of the GEM detector; in which three foils stack is stretched to get the uniform gaps among the foils. We studied the mechanical properties of the foil material. We conditioned the samples in different environments to make them extra dry and wet. As holes are the major source of the charge amplification their deformation can effect the detector performance. Therefore in our studies we also studied at which level of the stress the holes deformation is seen. These tensile and holes deformation studies can help to optimize the stress during detector assembly.

  16. Detection of fission fragments by secondary emission; Detection des fragments de fission par emission secondaire

    Energy Technology Data Exchange (ETDEWEB)

    Audias, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    This fission fragment detecting apparatus is based on the principle that fragments traversing a thin foil will cause emission of secondary electrons. These electrons are then accelerated (10 kV) and directly detected by means of a plastic scintillator and associated photomultiplier. Some of the advantages of such a detector are, its rapidity, its discriminating power between alpha particles and fission fragments, its small energy loss in detecting the fragments and the relatively great amount of fissionable material which it can contain. This paper is subdivided as follows: a) theoretical considerations b) constructional details of apparatus and some experimental details and c) a study of the secondary emission effect itself. (author) [French] Le detecteur de fragments de fission que nous avons realise est base sur le principe de l'emission secondaire produite par les fragments de fission traversant une feuille mince: les electrons secondaires emis sont acceleres a des tensions telles (de l'ordre de 10 kV), qu'ils soient directement detectables par un scintillateur plastique associe a un photomultiplicateur. L'interet d'un tel detecteur reside: dans sa rapidite, sa tres bonne discrimination alpha, fission, la possibilite de detecter les fragments de fission avec une perte d'energie pouvant rester relativement faible, et la possibilite d'introduire des quantites de matiere fissile plus importantes que dans les autres types de detecteurs. Ce travail comporte: -) un apercu bibliographique de la theorie du phenomene, -) realisation et mise au point du detecteur avec etude experimentale de quelques parametres intervenant dans l'emission secondaire, -) etude de l'emission secondaire (sur la face d'emergence des fragments de fission) en fonction de l'energie du fragment et en fonction de l'epaisseur de matiere traversee avant emission secondaire, et -) une etude comparative de l'emission secondaire sur la face d'incidence et sur la face d'emergence des fragments de

  17. Review of some problems encountered with In-Core Fission chambers and Self-Powered Neutron Detectors in PWR's. Tests - Present use - Outlook on the near future

    International Nuclear Information System (INIS)

    Duchene, Jean; Verdant, Robert.

    1979-01-01

    The working conditions of in-core detectors are investigated as well as some reliability problems which depend on nuclear environment (such as decrease of sensibility, loss of insulation...). Then we review the long-term irradiation tests in experimental reactor that have been carried out by the CEA these last years, with fission chambers (FC) and Self-Powered Detectors (SPD). The travelling probe system with moveable FC used in the 900 MWe PWR is briefly described. Finally an outlook on future possibilities is given; for instance the use of fixed SPD and a moveable FC in the same thimble, allowing recalibration of the fixed detectors [fr

  18. Passive detectors for neutron fluence measurement

    International Nuclear Information System (INIS)

    Holt, P.D.

    1985-01-01

    The use of neutron activation detectors (slow neutron detectors and threshold detectors) and fission track detectors for radiological protection purposes, principally in criticality dosimetry, dosimetry of pulsed accelerators and calibration of neutron fluxes is discussed. References are given to compilations of cross sections. For the determination of the activity induced, either beta ray or gamma ray counting may be used. For beta-ray counting, thin foils are usually necessary which result in low neutron sensitivity. When fission track detectors are used, it is necessary to know the efficiency of track registration. Alternatively, a detector-counter system may be calibrated by exposure to a known flux of monoenergetic neutrons. Usually, the sensitivity of activation detectors is low because small foils are used. For criticality dosimetry, calibration work and shielding studies on accelerators, low sensitivity is acceptable. However, there are some instances where, by the use of long integration times, or very large quantities of detector material with gamma ray detection, neutron fluences in operational areas have been measured. (author)

  19. Ternary fission

    International Nuclear Information System (INIS)

    Wagemans, C.

    1991-01-01

    Since its discovery in 1946, light (charged) particle accompanied fission (ternary fission) has been extensively studied, for spontaneous as well as for induced fission reactions. The reason for this interest was twofold: the ternary particles being emitted in space and time close to the scission point were expected to supply information on the scission point configuration and the ternary fission process was an important source of helium, tritium, and hydrogen production in nuclear reactors, for which data were requested by the nuclear industry. Significant experimental progress has been realized with the advent of high-resolution detectors, powerful multiparameter data acquisition systems, and intense neutron and photon beams. As far as theory is concerned, the trajectory calculations (in which scission point parameters are deduced from the experimental observations) have been very much improved. An attempt was made to explain ternary particle emission in terms of a Plateau-Rayleigh hydrodynamical instability of a relatively long cylindrical neck or cylindrical nucleus. New results have also been obtained on the so-called open-quotes trueclose quotes ternary fission (fission in three about-equal fragments). The spontaneous emission of charged particles has also clearly been demonstrated in recent years. This chapter discusses the main characteristics of ternary fission, theoretical models, light particle emission probabilities, the dependence of the emission probabilities on experimental variables, light particle energy distributions, light particle angular distributions, correlations between light particle accompanied fission observables, open-quotes trueclose quotes ternary fission, and spontaneous emission of heavy ions. 143 refs., 18 figs., 8 tabs

  20. Fission fragment driven neutron source

    Science.gov (United States)

    Miller, Lowell G.; Young, Robert C.; Brugger, Robert M.

    1976-01-01

    Fissionable uranium formed into a foil is bombarded with thermal neutrons in the presence of deuterium-tritium gas. The resulting fission fragments impart energy to accelerate deuterium and tritium particles which in turn provide approximately 14 MeV neutrons by the reactions t(d,n).sup.4 He and d(t,n).sup.4 He.

  1. LENA Conversion Foils Using Single-Layer Graphene, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Implementing graphene foils in existing neutral atom detector designs will increase their angular and energy resolution, and also improve their mass discrimination...

  2. Fission of intermediate mass nuclei by photons of stopping radiation in the maximum energy range 0,8 - 1,8 MeV

    International Nuclear Information System (INIS)

    Lima, D.A. de.

    1983-07-01

    The fission of intermediate mass nuclei in Al - Ta interval, induced by stopping radiation phtons of maximum energies between 0,8 and 1.8 GeV is studied. Nd and Sm thin targets and Al, Ti, Co, Zr, Nb, Ag, In and Ta thick targets were used, considering all peculiarities inherent to absorption of fission fragments in the target. The samples were exposed into the 2.5 GeV Electron Synchrotron in Bonn Univerity. The fission fragment tracks were registered in foil type detectors using mica muscovite for Sm and Nd, CR-39 for Al and Ti and makrofol for Co, Zr; Nb, Ag, In, Nd and Ta. The track length and track depth angle distributions were measured for determining fission efficiencies. The fission cross sections and nuclear fissionable of the studied elements were evaluated. (M.C.K.) [pt

  3. Chemical effects of fission recoils

    International Nuclear Information System (INIS)

    Meisels, G.G.; Freeman, J.P.; Gregory, J.P.; Richardson, W.C.; Sroka, G.J.

    1978-01-01

    The production of nitrogen from nitrous oxide at high density was employed to investigate the energy deposition efficiency of fission recoils produced from fission of U 235 in uranium-palladium foils clad with platinum. Nitrogen production varied linearly with fission recoil dose from 1.1 x 10 20 to 9.0 x 10 20 eV, and was independent of density between 12.5 and 127.5 g l -1 N 2 O. 16.2 +- 0.8% of the fission recoil energy was deposited external to the foil. Electron microprobe analysis showed some unevenness of new foil and polymer buildup on the surface after irradiation of ethylene-oxygen mixtures. Subsequent irradiation in the presence of nitrous oxide restored some of the original efficiency. This is ascribed to chemical oxidation of the polymer induced by reactive intermediates produced from nitrous oxide. (author)

  4. Study on the effect factor of the absolute fission rates measured by depleted uranium fission chamber

    International Nuclear Information System (INIS)

    Jiang Li; Liu Rong; Wang Dalun; Wang Mei; Lin Jufang; Wen Zhongwei

    2003-01-01

    The absolute fission rates was measured by the depleted uranium fission chamber. The efficiency of the fission fragments recorded in the fission chamber was analyzed. The factor influencing absolute fission rates was studied in the experiment, including the disturbing effect between detectors and the effect of the structural of the fission chamber, etc

  5. Post-foil interaction in foil-induced molecular dissociation

    International Nuclear Information System (INIS)

    Faibis, A.; Kanter, E.P.; Koenig, W.; Plesser, I.; Vager, Z.

    1985-01-01

    The authors have investigated the foil-induced dissociation of 175- 250- keV/amu CH + , NH + , and OH + , FH + and NeH + ions by coincident detection of the fragment atoms. The dissociation energies corresponding to in-foil and post-foil interactions were deduced from the measured relative flight times of the fragment pairs to a set of detectors downstream from the target. The authors considered final states consisting of a) a proton and a heavy-ion and, b) a hydrogen atom and a heavy-ion. Surprisingly, in both cases the energy released in the post-target interaction shows a similar linear increase with the charge state of the heavy partner

  6. A high-resolution time-of-flight spectrometer for fission fragments and ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kosev, Krasimir Milchev

    2007-07-01

    For the purpose of fission-fragment detection a double time-of-flight (TOF) spectrometer has been developed. The key component of the TOF spectrometer is a TOF detector consisting of multichannel-plate (MCP) detectors with a position-sensitive readout, a foil for secondary electron (SE) production and an electrostatic mirror. The fission fragments are detected by measuring the SEs impinging on the position-sensitive anode after emission from the foil, acceleration and deflection by the electrostatic mirror. The functionality of the different detector components is proven in detail. Optimised schemes for the high-voltage supplies of the MCP detectors have been implemented successfully. In order to process the multichannel-plate detector signals optimally, a new state-of-the-art constant-fraction discriminator based on the amplitude and rise time compensated technique with very low threshold capabilities and optimised walk properties has been developed and incorporated into the setup. In a setup consisting of two mirror MCP detectors, we could successfully observe the TOF spectrum of a mixed ({sup 226}Ra,{sup 222}Rn,{sup 210}Po,{sup 218}Po,{sup 214}Po) {alpha}-source. Testing photo-fission experiments were performed at the bremsstrahlung facility at the ELBE accelerator. The setup consisted of two mirror detectors (first arm) and a 80 mm diameter MCP detector (second arm) with a {sup 238}U target positioned in between. TOF measurements with two bremsstrahlung end-point energies of 12.9 and 16.0 MeV were carried out. A clear cut separation of the TOF peaks for the medium-mass and heavy fission fragments was observed. (orig.)

  7. A high-resolution time-of-flight spectrometer for fission fragments and ion beams

    International Nuclear Information System (INIS)

    Kosev, Krasimir Milchev

    2007-01-01

    For the purpose of fission-fragment detection a double time-of-flight (TOF) spectrometer has been developed. The key component of the TOF spectrometer is a TOF detector consisting of multichannel-plate (MCP) detectors with a position-sensitive readout, a foil for secondary electron (SE) production and an electrostatic mirror. The fission fragments are detected by measuring the SEs impinging on the position-sensitive anode after emission from the foil, acceleration and deflection by the electrostatic mirror. The functionality of the different detector components is proven in detail. Optimised schemes for the high-voltage supplies of the MCP detectors have been implemented successfully. In order to process the multichannel-plate detector signals optimally, a new state-of-the-art constant-fraction discriminator based on the amplitude and rise time compensated technique with very low threshold capabilities and optimised walk properties has been developed and incorporated into the setup. In a setup consisting of two mirror MCP detectors, we could successfully observe the TOF spectrum of a mixed ( 226 Ra, 222 Rn, 210 Po, 218 Po, 214 Po) α-source. Testing photo-fission experiments were performed at the bremsstrahlung facility at the ELBE accelerator. The setup consisted of two mirror detectors (first arm) and a 80 mm diameter MCP detector (second arm) with a 238 U target positioned in between. TOF measurements with two bremsstrahlung end-point energies of 12.9 and 16.0 MeV were carried out. A clear cut separation of the TOF peaks for the medium-mass and heavy fission fragments was observed. (orig.)

  8. Sequential fission process observed in the reaction (16.7 MeV/u) 238U + nat.Au using mica as dielectric track detector

    International Nuclear Information System (INIS)

    Shahzad, Muhammad Ikram; Qureshi, Imtinan Elahi; Manzoor, Shahid; Khan, Hameed Ahmed

    1999-01-01

    The evidence of sequential fission has been found in the heavy-ion reaction (16.7 MeV/u) 238 U + nat. Au, using muscovite mica as Dielectric Track Detector (DTD) placed in a 2π-geometry configuration. The reaction products originating from the interactions of 238 U ions with the atoms of gold were registered in the detector in the form of tracks and identified for performing a detailed kinematical analysis. For this purpose the spherical polar coordinates of the correlated tracks of the multipronged events have been analyzed on an event-by-event basis. Automatic, semi-automatic and manual measuring methods have been employed to collect and manipulate the track data. The known characteristics of binary and ternary events observed in the reaction have been used for the calibration of the detectors. The computed masses, Q-values and relative velocities of the reaction products determined in this analysis are compared with theoretical predictions based on sequential fission process. Agreement within one standard deviation with respect to the experimental values has been found for the majority of analyzed events. Therefore, it is concluded that three particles in the exit channel of the reaction are produced in two successive steps. In the first step of the reaction, two intermediate nuclei are formed as a result of an inelastic collision between projectile and target atoms while in the second step the fission of one of the intermediate nuclei of the previous step takes place. Furthermore no proximity effects have been observed

  9. Fission meter

    Science.gov (United States)

    Rowland, Mark S [Alamo, CA; Snyderman, Neal J [Berkeley, CA

    2012-04-10

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source.

  10. Present and future isochronous mass spectrometry at GSI-FAIR. 25 new masses of fission fragments novel analysis method design of a new time-of-flight detector system

    Energy Technology Data Exchange (ETDEWEB)

    Diwisch, Marcel

    2015-07-01

    the time stamps at N{sub max}/2, where N{sub max} represents the maximum number of turns an individual ion has reached circulating in the ESR. Contrary to previous analysis works no restriction was applied and thus the most exotic nuclides with naturally low statistics were included here. The accuracy for the new mass values are about 180 keV which is mainly determined by the systematic error and the statistics. The performance of the ToF detector, the extraction of the time stamps, and the ion-optical properties determine the accuracy and limitation of IMS including CMM. These different contributions were investigated in the present work by systematic simulations and test experiments. A main result of these studies is that for ions that circulate 200 turns or more the present timing performance of the ToF detector has a minor influence on the possible mass accuracy but the ion-optics of the ring. MOCADI simulations with first- and third-order matrices clearly demonstrate the latter statement, especially for m/q values far from the isochronous ion. In future IMS experiments this requirement can be fulfilled with the new dual ToF detector system designed in the frame work of this doctoral thesis. The timing performance of the present ESR ToF detector has been substantially improved by increasing the electric field strength from 156 V/mm to 300 V/mm. This change has decreased the time spread from 45 ps to 35 ps. The results were obtained in simulations and verified in test experiments with alpha particles. The excellent agreement between measurements and simulations has been the basis for the design of the future dual time-of-flight detector system which will be installed in the Collector Ring of FAIR. The two ToF detectors will be installed about 22 m apart and allow a velocity determination of better than 10{sup -4} which is needed for accurate mass determination. The new ToF detector is a big challenge because the foil diameter has to be doubled compared to the

  11. Present and future isochronous mass spectrometry at GSI-FAIR. 25 new masses of fission fragments novel analysis method design of a new time-of-flight detector system

    International Nuclear Information System (INIS)

    Diwisch, Marcel

    2015-01-01

    stamps at N max /2, where N max represents the maximum number of turns an individual ion has reached circulating in the ESR. Contrary to previous analysis works no restriction was applied and thus the most exotic nuclides with naturally low statistics were included here. The accuracy for the new mass values are about 180 keV which is mainly determined by the systematic error and the statistics. The performance of the ToF detector, the extraction of the time stamps, and the ion-optical properties determine the accuracy and limitation of IMS including CMM. These different contributions were investigated in the present work by systematic simulations and test experiments. A main result of these studies is that for ions that circulate 200 turns or more the present timing performance of the ToF detector has a minor influence on the possible mass accuracy but the ion-optics of the ring. MOCADI simulations with first- and third-order matrices clearly demonstrate the latter statement, especially for m/q values far from the isochronous ion. In future IMS experiments this requirement can be fulfilled with the new dual ToF detector system designed in the frame work of this doctoral thesis. The timing performance of the present ESR ToF detector has been substantially improved by increasing the electric field strength from 156 V/mm to 300 V/mm. This change has decreased the time spread from 45 ps to 35 ps. The results were obtained in simulations and verified in test experiments with alpha particles. The excellent agreement between measurements and simulations has been the basis for the design of the future dual time-of-flight detector system which will be installed in the Collector Ring of FAIR. The two ToF detectors will be installed about 22 m apart and allow a velocity determination of better than 10 -4 which is needed for accurate mass determination. The new ToF detector is a big challenge because the foil diameter has to be doubled compared to the present ESR detector. The

  12. Gamma-ray multiplicity measurement of the spontaneous fission decay of 252Cf in a segmented HPGe/BGO detector array

    Energy Technology Data Exchange (ETDEWEB)

    Bleuel, D L; Bernstein, L A; Burke, J T; Gibelin, J; Heffner, M D; Mintz, J; Norman, E B; Phair, L; Scielzo, N D; Sheets, S A; Snyderman, N J; Stoyer, M A; Wiedeking, M

    2008-04-23

    Coincident {gamma} rays from a {sup 252}Cf source were measured using an array of six segmented high-purity germanium (HPGe) Clover detectors each enclosed by 16 bismuth-germanate (BGO) detectors. The detectors were arranged in a cubic pattern around a 1 {micro}Ci {sup 252}Cf source to cover a large solid angle for {gamma}-ray measurement with a reasonable reconstruction of the multiplicity. Neutron multiplicity was determined in certain cases by identifying the prompt {gamma} rays from individual fission fragment pairs. Multiplicity distributions from previous experiments and theoretical models were convolved with the response function of the array and compared to the present results. These results suggest a {gamma}-ray multiplicity spectrum broader than previous measurements and models, and provide no evidence of correlation with neutron multiplicity.

  13. Study of electrochemical corrosion parameters in the detection of fission fragments in solid state trace detectors (SSTD)

    International Nuclear Information System (INIS)

    Silva Oliveira, S. da; Rogers, J.D.

    1980-01-01

    The basic properties of the electrochemical corrosion method, for the Makrofol E plastic, irradiated with fission fragments from a 252 Cf source were studied and discussed in this paper. (A.C.A.S.) [pt

  14. Sequential fission process observed in the reaction (16.7 MeV/u) {sup 238}U + {sup nat.}Au using mica as dielectric track detector

    Energy Technology Data Exchange (ETDEWEB)

    Shahzad, Muhammad Ikram; Qureshi, Imtinan Elahi; Manzoor, Shahid; Khan, Hameed Ahmed

    1999-01-04

    The evidence of sequential fission has been found in the heavy-ion reaction (16.7 MeV/u) {sup 238}U + {sup nat.}Au, using muscovite mica as Dielectric Track Detector (DTD) placed in a 2{pi}-geometry configuration. The reaction products originating from the interactions of {sup 238}U ions with the atoms of gold were registered in the detector in the form of tracks and identified for performing a detailed kinematical analysis. For this purpose the spherical polar coordinates of the correlated tracks of the multipronged events have been analyzed on an event-by-event basis. Automatic, semi-automatic and manual measuring methods have been employed to collect and manipulate the track data. The known characteristics of binary and ternary events observed in the reaction have been used for the calibration of the detectors. The computed masses, Q-values and relative velocities of the reaction products determined in this analysis are compared with theoretical predictions based on sequential fission process. Agreement within one standard deviation with respect to the experimental values has been found for the majority of analyzed events. Therefore, it is concluded that three particles in the exit channel of the reaction are produced in two successive steps. In the first step of the reaction, two intermediate nuclei are formed as a result of an inelastic collision between projectile and target atoms while in the second step the fission of one of the intermediate nuclei of the previous step takes place. Furthermore no proximity effects have been observed.

  15. Thorium content of a mineral ore from Morro do Ferro by fission track technique

    International Nuclear Information System (INIS)

    Oliveira, C.A.N. de.

    1980-10-01

    The feasibility to determine thorium concentrations by fission track technique in samples of mineral ore has been demonstrated. The literature registers only the application of the fission track technique to mineral ore in the case where the fissionable element is uranium. The technique was applied to determine the thorium concentration of an ore sample from Morro do Ferro, taking advantage of the high thorium to uranium ratio in that mineral. The sample analysed presented a thorium concentration of 2467 +- 400 mg Th/Kg ore. The so called wet method was adopted by using the Bayer made Makrofol KG 10μm thick, as the detector foil, immersed in the thorium solution. The technique is also useful to determine thorium concentrations in environmental samples because of the following aspects: high sensitivity; fast chemical separation of interfering elements; low cost; and operational simplicity. (Author) [pt

  16. (n,xn cross section measurements for Y-89 foils used as detectors for high energy neutron measurements in the deeply subcritical assembly “QUINTA”

    Directory of Open Access Journals (Sweden)

    Bielewicz Marcin

    2017-01-01

    Full Text Available Study of the deep subcritical systems (QUINTA using relativistic beams is performed within the project “Energy and Transmutation of Radioactive Wastes” (E&T – RAW. The experiment assembly was irradiated by deuteron/proton beam (Dubna NUCLOTRON. We calculated the neutron energy spectrum inside the whole assembly by using threshold energy (n,xn reactions in yttrium (Y-89 foils. There are almost no experimental cross section data for those reactions. New Y-89(n,xn cross section measurements were carried out at The Svedberg laboratory (TSL in Uppsala, Sweden in 2015. In this paper we present preliminary results of those experiments.

  17. Foil changing apparatus

    International Nuclear Information System (INIS)

    Crist, C.E.; Ives, H.C.; Leifeste, G.T.; Miller, R.B.

    1988-01-01

    A self-contained foil changer apparatus for replenishing foil material across the path of a high energy particle beam is described comprising: a cylindrical hermetically sealed housing comprising an end plate having an aperture defining a beam passageway therethrough; foil supply means disposed inside the housing for storing a foil web and supporting a portion of the web across the beam passageway to form a plane perpendicular to the beam path; a barrel assembly disposed inside the housing; web control means extending through the housing and operably connected to the foil supply means for selectively advancing the foil web to replenish a portion across the beam passageway; and barrel control means extending through the housing and operably connected to the barrel assembly for selectively moving the barrel to and from the advanced and retracted positions

  18. Absolute calibration technique for spontaneous fission sources

    International Nuclear Information System (INIS)

    Zucker, M.S.; Karpf, E.

    1984-01-01

    An absolute calibration technique for a spontaneously fissioning nuclide (which involves no arbitrary parameters) allows unique determination of the detector efficiency for that nuclide, hence of the fission source strength

  19. Probability of ternary fission of 93Nb andnat Ag nuclei induced by 0.8-1.8 GeV photons

    International Nuclear Information System (INIS)

    Lima, D.A. de; Milomen, W.C.C.; Tavares, O.A.P.

    1989-01-01

    The yields of ternary fission of 93 Nb and nat Ag nuclei induced by bremsstrahlung photons of 0.8, 1.0, 1.4 and 1.8 GeV end-point energies have been measured by using the 2 Π-forward geometry with thick target metal foils in contact with makrofol polycarbonate sheets as fission-track detectors. Absolute mean cross sections per photon in the range 0.8-1.8 GeV have been obtained as 0.3 ± 0.3 μb and 0.5 ± μb, respectively, for 93 Nb and nat Ag nuclei. These correspond to a probability of ternary fission of approx. 10 -5 for both nuclei. Results are discussed and compared with previous ternary fission data obtained for nuclei of A [pt

  20. Nuclear fission and neutron-induced fission cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    James, G.D.; Lynn, J.E.; Michaudon, A.; Rowlands, J.; de Saussure, G.

    1981-01-01

    A general presentation of current knowledge of the fission process is given with emphasis on the low energy fission of actinide nuclei and neutron induced fission. The need for and the required accuracy of fission cross section data in nuclear energy programs are discussed. A summary is given of the steps involved in fission cross section measurement and the range of available techniques. Methods of fission detection are described with emphasis on energy dependent changed and detector efficiency. Examples of cross section measurements are given and data reduction is discussed. The calculation of fission cross sections is discussed and relevant nuclear theory including the formation and decay of compound nuclei and energy level density is introduced. A description of a practical computation of fission cross sections is given.

  1. Intermediate energy nuclear fission

    International Nuclear Information System (INIS)

    Hylten, G.

    1982-01-01

    Nuclear fission has been investigated with the double-kinetic-energy method using silicon surface barrier detectors. Fragment energy correlation measurements have been made for U, Th and Bi with bremsstrahlung of 600 MeV maximum energy. Distributions of kinetic energy as a function of fragment mass are presented. The results are compared with earlier photofission data and in the case of bismuth, with calculations based on the liquid drop model. The binary fission process in U, Yb, Tb, Ce, La, Sb, Ag and Y induced by 600 MeV protons has been investigated yielding fission cross sections, fragment kinetic energies, angular correlations and mass distributions. Fission-spallation competition calculations are used to deduce values of macroscopic fission barrier heights and nuclear level density parameter values at deformations corresponding to the saddle point shapes. We find macroscopic fission barriers lower than those predicted by macroscopic theories. No indication is found of the Businaro Gallone limit expected to occur somewhere in the mass range A = 100 to A = 140. For Ce and La asymmetric mass distributions similar to those in the actinide region are found. A method is described for the analysis of angular correlations between complementary fission products. The description is mainly concerned with fission induced by medium-energy protons but is applicable also to other projectiles and energies. It is shown that the momentum and excitation energy distributions of cascade residuals leading to fission can be extracted. (Author)

  2. Delayed fission

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukawa, Yuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-07-01

    Delayed fission is a nuclear decay process that couples {beta} decay and fission. In the delayed fission process, a parent nucleus undergoes {beta} decay and thereby populates excited states in the daughter. If these states are of energies comparable to or greater than the fission barrier of the daughter, then fission may compete with other decay modes of the excited states in the daughter. In this paper, mechanism and some experiments of the delayed fission will be discussed. (author)

  3. Measurement of home-made LaCl3 : Ce scintillation detector sensitivity with different energy points in range of fission energy

    International Nuclear Information System (INIS)

    Hu Mengchun; Li Rurong; Si Fenni

    2010-01-01

    Gamma rays of different energy were obtained in the range of fission energy by Compton scattering in intense 60 Co gamma source and the standard isotopic gamma sources which are 0.67 MeV 137 Cs and l.25 MeV 60 Co sources of point form. Sensitivity of LaCl 3 : Ce scintillator was measured in these gamma ray energy by a fast response scintillation detector with the home-made LaCl 3 : Ce scintillator. Results were normalized by the sensitivity to 0.67 MeV gamma ray. Sensitivity of LaCl 3 : Ce to 1.25 MeV gamma ray is about l.28. For ø40 mm × 2 mm LaCl 3 : Ce scintillator, the biggest sensitivity is l.18 and the smallest is 0.96 with gamma ray from 0.39 to 0.78 MeV. And for ø40 mm × 10 mm LaCl 3 : Ce scintillator, the biggest sensitivity is l.06 and the smallest is 0.98. The experimental results can provide references for theoretical study of the LaCl 3 : Ce scintillator and data to obtain the compounded sensitivity of LaCl 3 : Ce scintillator in the range of fission energy. (authors)

  4. Beam-foil study of neon in the EUV with foils of carbon, silver and gold

    International Nuclear Information System (INIS)

    Demarest, J.A.; Watson, R.L.; Texas A and M Univ., College Station

    1988-01-01

    A beam-foil study of 40 MeV neon was conducted in the EUV with a 1-meter grazing incidence spectrometer configured with a position sensitive microchannel plate detector. A number of new lines of Ne IX, mainly from transitions to n = 3 levels, were detected in the wavelength region covering 50-350 A. Comparison of the spectra obtained using the different foils revealed that the average charge state of the neon projectiles was nearly one unit higher with carbon than with either of the two metals. Measurements of line intensities versus distance from the foils showed that cascade contributions were greatly reduced for the metals. It was also found that n = 3 states of low l were overpopulated relative to a statistical distribution, irrespective of the foil material. (orig.)

  5. Barium 139 as Fission Indicator

    Energy Technology Data Exchange (ETDEWEB)

    Broda, E.

    1943-07-01

    This report is based on a measurement performed at the Cavendish Laboratory (Cambridge) by E. Broda in December 1943 where a technique has been worked out for measuring the fission density in a uranium containing medium in relative units by determining the amount of a suitable fission product formed. Generally a given fission product will be formed in natural uranium by slow neutron fission of U235 or by fast neutron fission of either U235 or U238. It is intended to translate the relative units into absolute units by comparison of the Ba yield with the indication of UF6 fission chamber in the same medium. This has to be done separately for fast and slow neutron fission as the yields may be different. Another application of the technique developed is the measurement of thermal neutron density in an uraniferous medium without using a detector subject to variations of sensitivity according to the properties of the medium. (nowak)

  6. Neutron multiplicity of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Abdelrahman, Y S [Physics department, mu` rah university Al-Karak, (Jordan)

    1995-10-01

    The total average neutron multiplicity of the fission fragments produced by the spontaneous fission of {sup 248} Cm has been measured. This measurement has been done by using a new experimental technique. This technique mainly depends on {gamma}-{gamma} coincidence using a very high resolution high purity germanium (HPGe) detector. 2 figs.

  7. Optimization of the recoil-shadow projection method for the investigation of short-lived fission isomers

    Energy Technology Data Exchange (ETDEWEB)

    Helmecke, M.; Thirolf, P.G.; Habs, D.; Gartzke, E.; Kolhinen, V.; Lang, C.; Szerypo, J.; Trepl, L. [Fakultaet f. Physik, LMU Muenchen (Germany); Maier-Leibnitz Laboratory, Garching (Germany)

    2009-07-01

    Spectroscopic studies of super- and hyperdeformed actinide nuclei offer the possibility to gain insight into the multiple-humped fission barrier landscape. With the identification of deep third minima in {sup 234}U and {sup 236}U the systematics of fission isomers in light actinides was revisited, especially searching for isomers in light uranium isotopes with half-lives in the pico-second range. Using the recoil-shadow projection method and solid state nuclear track detectors, an experimental search for their observation has been started. This well-established detection technique nowadays benefits from an efficient analysis technology based on a PC-controlled auto-focus microscope and a CCD camera together with pattern recognition software. The flatness and the definition of the shadow edge of the target is the critical point of this method: Due to the energy loss of the beam the target carrier foil (1{mu}m Ni) may develop thermal distortions in the {mu}m range, leading to misinterpretations of isomeric fission fragments. Therefore the flatness of the target foil is continuously monitored via a capacitance measurement. First results applying this method to the search of a fission isomer in {sup 234}U via the {sup 232}Th({alpha},2n) reaction are presented.

  8. Mapping of uranium and thorium in radioactive rocks using nuclear track solid detectors

    International Nuclear Information System (INIS)

    Bouch, C.M.

    1982-01-01

    α-Autoradiography and studies of induced fission in a research nuclear reactor (IEA-R1, IPEN, Sao Paulo) were done, employing Solid-State Nuclear Track detectors, in order to study the distribution of α-emitters, U and Th in rocks. Polished sections of rocks were prepared and photographed. Etching conditions were studied in order to adapt the detectors to the studies of microdistribution and macrodistribution of tracks. Polycarbonate foils (Bayer, Makrofol) were chosen as fission-fragments detectors and the technique of fission induced with reactor neutrons to obtain the distribution of U and Th were studied. Uranium and thorium standards evaporated on the surface of the detectors, as well as thorite and uraninite grains, were irradiated in order to measure the integrated flux of neutrons, the effective cross sections for fission with reactor neutrons for 232 Th(0,05b) and 238 U(0,30b) and to study the contribution of 238 U fission in thorium mapping. A technique for determination of uranium and thorium in minerals was studied and applied to Mica, for which were determined the contents of 4,2 ppb U e 58 ppb Th. (Author) [pt

  9. Design innovations in neutron and gamma detectors

    International Nuclear Information System (INIS)

    Prasad, K.R.

    2003-01-01

    Neutron and gamma radiation needs to be monitored in most nuclear installations since it is highly penetrating. On-line monitoring of these radiations is very important for the safe and controlled operation of nuclear reactors, accelerators etc. Several design innovations have been carried out on gas ionisation detectors such as boron-lined proportional counters and ion chambers, fission detectors, gamma ion chambers as well as self-powered detectors. The use of additional structures within boron-lined detectors has enhanced their neutron sensitivity without a corresponding increase in the unwanted gamma sensitivity. The neutron sensitivity of fission counters can be enhanced by designing them as transmission line devices. Ion chambers with two and six pairs of electrodes have been developed for monitoring pulsed x-ray background at accelerator areas. Ion chambers have been employed at gamma fields up to 80 kR/h by deriving the exposure levels on-line using microcontroller devices programmed on the basis of theoretical and empirical formulas. The use of gas electron multiplier foils is proposed for charge multiplication in ion chambers. Self-powered detectors with new emitter materials like Hi, Ni and Inconel have been developed. (author)

  10. Irradiation tests of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.; Suripto, A.; Nasution, H.; Lufti-Amin, D.; Gogo, A.

    1996-01-01

    Most of the world's supply of 99 mTc for medical purposes is currently produced from the decay of 99 Mo derived from the fissioning of high-enriched uranium (HEU). Substitution of low-enriched uranium (LEU) metal foils for the HEU UO 2 used in current target designs will allow equivalent 99 Mo yields with little change in target geometries. Substitution of uranium metal for uranium alloy and aluminide in other target designs will also allow the conversion of HEU to LEU. Several uranium-metal-foil targets have been fabricated at ANL and irradiated to prototypic burnup in the Indonesian RSG-GAS reactor. Postirradiation examination of the initial test indicated that design modifications were required to allow the irradiated foil to be removed for chemical processing. The latest test has shown good irradiation behavior, satisfactory dismantling and foil removal when the U-foil is separated from its containment by metallic, fission-recoil absorbing barriers. (author)

  11. Irradiation tests of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.; Suripto, A.; Nasution, H.; Lufti-Amin, D.; Gogo, A.

    1996-01-01

    Most of the world's supply of 99m Tc for medical purposes is currently produced form the decay of 99 Mo derived from the fissioning of high-enriched uranium (HEU). Substitution of low-enriched uranium (LEU) metal foils for the HEU UO 2 used in current target designs will allow equivalent 99 Mo yields with little change in target geometries. Substitution of uranium metal for uranium alloy and aluminide in other target designs will also allow the conversion of HEU to LEU. Several uranium-metal-foil targets have been fabricated at ANL and irradiated to prototypic burnup in the Indonesian RSG-GAS reactor. Postirradiation examination of the initial test indicated that design modifications were required to allow the irradiated foil to be removed for chemical processing. The latest test has shown good irradiation behavior, satisfactory dismantling and foil removal when the U-foil is separated from its containment by metallic, fission-recoil absorbing barriers

  12. Studies of the Fission Integrals of U-{sup 235} and Pu-{sup 239} with Cadmium and Filters

    Energy Technology Data Exchange (ETDEWEB)

    Hellstrand, E

    1965-04-15

    The resonance fissions in U{sup 235} and Pu{sup 239} have been studied using cadmium and boron filters. Fission chambers were used as detectors and the experiments were performed in beam geometry. The neutron energy distribution in the beams transmitted through the different filters was determined with a fast chopper. From the cadmium filter, measurements the fission resonance integrals were determined. The values obtained were 278{+-}9 b for U{sup 235} and 301{+-}10 b for Pu{sup 239}; 0.5 eV < E < 1 MeV. Complementary Pu{sup 239} measurements were made in which the fission events were detected from the fission product activity in irradiated foils. Contrary to what has been reported elsewhere the value of the Pu{sup 239} resonance integral, found in this way, agreed well with that obtained from the fission chamber measurement. The experiments with the boron filters yielded results which, for the thin filter, agreed well with those calculated from the cross section data given in the Karlsruhe compilation. The discrepancy was larger for the thick filter but the values did not disagree outside the common limits of error.

  13. Nuclear fission

    International Nuclear Information System (INIS)

    Kodama, T.

    1981-01-01

    The nuclear fission process is pedagogically reviewed from a macroscopic-microscopic point of view. The Droplet model is considered. The fission dynamics is discussed utilizing path integrals and semiclassical methods. (L.C.) [pt

  14. Gas electron multiplier (GEM) foil test, repair and effective gain calculation

    Science.gov (United States)

    Tahir, Muhammad; Zubair, Muhammad; Khan, Tufail A.; Khan, Ashfaq; Malook, Asad

    2018-06-01

    The focus of my research is based on the gas electron multiplier (GEM) foil test, repairing and effective gain calculation of GEM detector. During my research work define procedure of GEM foil testing short-circuit, detection short-circuits in the foil. Study different ways to remove the short circuits in the foils. Set and define the GEM foil testing procedures in the open air, and with nitrogen gas. Measure the leakage current of the foil and applying different voltages with specified step size. Define the Quality Control (QC) tests and different components of GEM detectors before assembly. Calculate the effective gain of GEM detectors using 109Cd and 55Fe radioactive source.

  15. Fabrication and testing of a 4-node micro-pocket fission detector array for the Kansas State University TRIGA Mk. II research nuclear reactor

    Science.gov (United States)

    Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Unruh, Troy C.; McGregor, Douglas S.; Roberts, Jeremy A.

    2017-08-01

    Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Micro-Pocket Fission Detectors (MPFDs) have been fabricated and tested previously, but successful testing of these prior detectors was limited to single-node operation with specialized designs. Described in this work is a modular, four-node MPFD array fabricated and tested at Kansas State University (KSU). The four sensor nodes were equally spaced to span the length of the fuel-region of the KSU TRIGA Mk. II research nuclear reactor core. The encapsulated array was filled with argon gas, serving as an ionization medium in the small cavities of the MPFDs. The unified design improved device ruggedness and simplified construction over previous designs. A 0.315-in. (8-mm) penetration in the upper grid plate of the KSU TRIGA Mk. II research nuclear reactor was used to deploy the array between fuel elements in the core. The MPFD array was coupled to an electronic support system which has been developed to support pulse-mode operation. Neutron-induced pulses were observed on all four sensor channels. Stable device operation was confirmed by testing under steady-state reactor conditions. Each of the four sensors in the array responded to changes in reactor power between 10 kWth and full power (750 kWth). Reactor power transients were observed in real-time including positive transients with periods of 5, 15, and 30 s. Finally, manual reactor power oscillations were observed in real-time.

  16. Densities of carbon foils

    International Nuclear Information System (INIS)

    Stoner, J.O. Jr.

    1991-01-01

    The densities of arc-evaporated carbon target foils have been measured by several methods. The density depends upon the method used to measure it; for the same surface density, values obtained by different measurement techniques may differ by fifty percent or more. The most reliable density measurements are by flotation, yielding a density of 2.01±0.03 g cm -3 , and interferometric step height with the surface density known from auxiliary measurements, yielding a density of 2.61±0.4 g cm -3 . The difference between these density values mayy be due in part to the compressive stresses that carbon films have while still on their substrates, uncertainties in the optical calibration of surface densities of carbon foils, and systematic errors in step-height measurements. Mechanical thickness measurements by micrometer caliper are unreliable due to nonplanarity of these foils. (orig.)

  17. Experiments with activated metal foils

    Energy Technology Data Exchange (ETDEWEB)

    Malati, M A [Medway and Maidstone Coll. of Tech., Chatham (UK)

    1978-09-01

    Experiments based on the activation of metal foils by slow neutron bombardment which can be used to demonstrate various aspects of artificial radioactivity are described and discussed. Suitable neutron sources and foils are considered.

  18. Monolithic exploding foil initiator

    Science.gov (United States)

    Welle, Eric J; Vianco, Paul T; Headley, Paul S; Jarrell, Jason A; Garrity, J. Emmett; Shelton, Keegan P; Marley, Stephen K

    2012-10-23

    A monolithic exploding foil initiator (EFI) or slapper detonator and the method for making the monolithic EFI wherein the exploding bridge and the dielectric from which the flyer will be generated are integrated directly onto the header. In some embodiments, the barrel is directly integrated directly onto the header.

  19. Neutron-induced fission cross-section measurement of 234U with quasi-monoenergetic beams in the keV and MeV range using micromegas detectors

    Science.gov (United States)

    Tsinganis, A.; Kokkoris, M.; Vlastou, R.; Kalamara, A.; Stamatopoulos, A.; Kanellakopoulos, A.; Lagoyannis, A.; Axiotis, M.

    2017-09-01

    Accurate data on neutron-induced fission cross-sections of actinides are essential for the design of advanced nuclear reactors based either on fast neutron spectra or alternative fuel cycles, as well as for the reduction of safety margins of existing and future conventional facilities. The fission cross-section of 234U was measured at incident neutron energies of 560 and 660 keV and 7.5 MeV with a setup based on `microbulk' Micromegas detectors and the same samples previously used for the measurement performed at the CERN n_TOF facility (Karadimos et al., 2014). The 235U fission cross-section was used as reference. The (quasi-)monoenergetic neutron beams were produced via the 7Li(p,n) and the 2H(d,n) reactions at the neutron beam facility of the Institute of Nuclear and Particle Physics at the `Demokritos' National Centre for Scientific Research. A detailed study of the neutron spectra produced in the targets and intercepted by the samples was performed coupling the NeuSDesc and MCNPX codes, taking into account the energy spread, energy loss and angular straggling of the beam ions in the target assemblies, as well as contributions from competing reactions and neutron scattering in the experimental setup. Auxiliary Monte-Carlo simulations were performed with the FLUKA code to study the behaviour of the detectors, focusing particularly on the reproduction of the pulse height spectra of α-particles and fission fragments (using distributions produced with the GEF code) for the evaluation of the detector efficiency. An overview of the developed methodology and preliminary results are presented.

  20. A new recoil filter for {gamma}-detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    Heese, J; Lahmer, W; Maier, K H [Hahn-Meitner-Institut Berlin GmbH (Germany); Janicki, M; Meczynski, W; Styczen, J [Institute of Nuclear Physics, Cracow (Poland)

    1992-08-01

    A considerable improvement of gamma spectra recorded in heavy ion induced fusion evaporation residues can be achieved when gamma rays are detected in coincidence with the recoiling evaporations residues. This coincidence suppresses gamma rays from fission processes, Coulombic excitation, and reactions with target contaminations, and therefore cleans gamma spectra and improves the peak to background ratio. A sturdy detector for evaporation residues has been designed as an additional detector for the OSIRIS spectrometer. The recoil filter consists of two rings of six and twelve detector elements. In each detector element, nuclei hitting a thin Mylar foil produce secondary electrons, which are electrostatically accelerated and focussed onto a thin plastic scintillator. Recoiling evaporation residues are discriminated from other reaction products and scattered beam by the pulse height of the scintillation signal and time of flight. The detector signal is fast enough to allow the detection of an evaporation residue even if the scattered beam hits the detector first. In-beam experiment were performed with the reactions {sup 40}Ar+{sup 124}Sn, {sup 40}Ar+{sup 152}Sm at 185 MeV beam energy, and {sup 36}Ar+{sup 154,156}Gd at 175 MeV. In the latter two cases, fission amount to 50-75% of the total fusion cross section. 10 refs., 4 figs.

  1. Smoke detectors

    International Nuclear Information System (INIS)

    Macdonald, E.

    1976-01-01

    A smoke detector is described consisting of a ventilated ionisation chamber having a number of electrodes and containing a radioactive source in the form of a foil supported on the surface of the electrodes. This electrode consists of a plastic material treated with graphite to render it electrically conductive. (U.K.)

  2. Process for anodizing aluminum foil

    International Nuclear Information System (INIS)

    Ball, J.A.; Scott, J.W.

    1984-01-01

    In an integrated process for the anodization of aluminum foil for electrolytic capacitors including the formation of a hydrous oxide layer on the foil prior to anodization and stabilization of the foil in alkaline borax baths during anodization, the foil is electrochemically anodized in an aqueous solution of boric acid and 2 to 50 ppm phosphate having a pH of 4.0 to 6.0. The anodization is interrupted for stabilization by passing the foil through a bath containing the borax solution having a pH of 8.5 to 9.5 and a temperature above 80 0 C. and then reanodizing the foil. The process is useful in anodizing foil to a voltage of up to 760 V

  3. The spark counting of etched fission-fragment tracks in polycarbonate for a personal neutron dosimetry system

    International Nuclear Information System (INIS)

    Harrison, K.G.; Hancock, I.B.; Holt, P.D.; Wylie, J.W.

    1977-10-01

    A new type of personal neutron dosimeter, in which neutron-induced fissions in a thin 237 Np foil are detected by a polycarbonate track-detector, is under development at Harwell for use in a nuclear-fuel reprocessing plant. As part of the development programme, an experimental dosimeter, etching facility and spark counter have been used to study the spark-counting method for counting fission-fragment tracks in polycarbonate. Emphasis has been placed on developing operating procedures for the counter consistent with good overall reproducibility. Existing methods for the optimizing and testing of spark counters is briefly reviewed and a practical operational testing procedure is devised. The optimized system is found to be relatively foolproof in operation and gives good results in unskilled use as well as under carefully-controlled laboratory conditions. (author)

  4. Automatic spark counting of alpha-tracks in plastic foils

    International Nuclear Information System (INIS)

    Somogyi, G.; Medveczky, L.; Hunyadi, I.; Nyako, B.

    1976-01-01

    The possibility of alpha-track counting by jumping spark counter in cellulose acetate and polycarbonate nuclear track detectors was studied. A theoretical treatment is presented which predicts the optimum residual thickness of the etched foils in which completely through-etched tracks (i.e. holes) can be obtained for alpha-particles of various energies and angles of incidence. In agreement with the theoretical prediction it is shown that a successful spark counting of alpha-tracks can be performed even in polycarbonate foils. Some counting characteristics, such as counting efficiency vs particle energy at various etched foil thicknesses, surface spark density produced by electric breakdowns in unexposed foils vs foil thickness, etc. have been determined. Special attention was given to the spark counting of alpha-tracks entering thin detectors at right angle. The applicability of the spark counting technique is demonstrated in angular distribution measurements of the 27 Al(p,α 0 ) 24 Mg nuclear reaction at Ep = 1899 keV resonance energy. For this study 15 μm thick Makrofol-G foils and a jumping spark counter of improved construction were used. (orig.) [de

  5. Double-beta decay measurement of 100Mo to the excited 01+ state of 100Ru in the NEMO3 experiment - R/D program for SuperNEMO: development of a BiPo detector to measure ultra low contaminations in the source foils

    International Nuclear Information System (INIS)

    Chapon, A.

    2011-10-01

    The NEMO3 detector was designed for the study of double beta decay and in particular the search for neutrinoless double beta decay (ββ0ν). The quantity of 100 Mo in the detector (7 kg) allows also a competitive measurement of the two-neutrino double beta decay (ββ2ν) of 100 Mo to the excited 0 1 + state of 100 Ru (eeNγ channel). Monte-Carlo simulations of the effect and of all the possible sources of background have been studied in order to determine their contributions to the full NEMO3 experimental data (2003-2011). These one have then been analysed: the ββ2ν decay half-life has been measured, and a limit on the ββ0ν decay has been obtained. Moreover, the SuperNEMO experiment aims to reach a sensitivity up to 10 26 years on the half-life of neutrinoless double beta decay. The SuperNEMO detector radioactivity has to be as low as possible. Especially radio-purity levels of 2 μBq*kg -1 in 208 Tl and 10 μBq*kg -1 in 214 Bi are required for the source foils. The gamma-spectrometry can not measure such low contamination levels. Hence, a BiPo dedicated detector has been developed to measure 208 Tl and 214 Bi contaminations, identifying the Bi→Po→Pb β-α chains. A proof of principle has been performed and the detector background has been measured. Assuming these values, a full BiPo detector of 3.6 m 2 can achieve the required sensitivities for the SuperNEMO source foils within six months of measurement. (author)

  6. In-beam test of Neutron detector array facility at IUAC

    International Nuclear Information System (INIS)

    Sugathan, P.; Jhingan, A.; Saneesh, S.

    2014-01-01

    A new experimental facility dedicated for the study of fission dynamics has been installed and commissioned recently at Inter University Accelerator Centre (IUAC), New Delhi. The facility, National Array of Neutron Detectors (NAND) is used for the systematic studies on fission dynamics around Coulomb barrier energies using heavy ion beams from the Tandem plus LINAC accelerator facilities. The detector array consists 100 neutron detectors mounted on a geodesic dome structure at a radial distance of 175 cm from the target and multi wire proportional counters (MWPC) for detection of fission fragments. Each neutron detector is made of 5'' x 5'' cylindrical cell filled with BC501A organic liquid scintillator and coupled to a 5'' photo multiplier tube. A 100 cm diameter spherical vacuum chamber has been installed at the center of the array to house the targets, fission fragment detectors and other ancillary charged particle detectors. The vacuum chamber is made of 4mm thick steel and has target ladder with linear and rotary movements. The detector array is installed on a dedicated beam line of LINAC accelerator facilities at beam hall II. The neutrons are discriminated from gamma rays using pulse shape discrimination (PSD) technique based on conventional analog electronics and the energies of neutrons are measured by the time of flight (TOF) method. For this purpose, custom made electronics modules have been built to process signal from each detector. This module contains the integrated electronics for n - γ discrimination, time of flight (TOF) and light output. The fission fragments are detected in low pressure MWPCs mounted inside the spherical vacuum chamber. The MWPC has been built based on the conventional design using three electrodes, having a central cathode foil electrode sandwiched between two position sensing anode wire/strip frames. In order to acquire data from detector array, the data acquisition system has been implemented using VME based hardware systems

  7. Transmutation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Viererbl, L., E-mail: vie@ujv.c [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Lahodova, Z. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Klupak, V. [Nuclear Research Institute Rez plc (Czech Republic); Sus, F. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Kucera, J. [Research Centre Rez Ltd. (Czech Republic); Nuclear Physics Institute, Academy of Sciences of the Czech Republic (Czech Republic); Kus, P.; Marek, M. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic)

    2011-03-11

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  8. Transmutation detectors

    International Nuclear Information System (INIS)

    Viererbl, L.; Lahodova, Z.; Klupak, V.; Sus, F.; Kucera, J.; Kus, P.; Marek, M.

    2011-01-01

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  9. Measurement of Fission Product Yields from Fast-Neutron Fission

    Science.gov (United States)

    Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Henderson, R.; Kenneally, J.; Macri, R.; McNabb, D.; Ryan, C.; Sheets, S.; Stoyer, M. A.; Tonchev, A. P.; Bhatia, C.; Bhike, M.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.

    2014-09-01

    One of the aims of the Stockpile Stewardship Program is a reduction of the uncertainties on fission data used for analyzing nuclear test data [1,2]. Fission products such as 147Nd are convenient for determining fission yields because of their relatively high yield per fission (about 2%) and long half-life (10.98 days). A scientific program for measuring fission product yields from 235U,238U and 239Pu targets as a function of bombarding neutron energy (0.1 to 15 MeV) is currently underway using monoenergetic neutron beams produced at the 10 MV Tandem Accelerator at TUNL. Dual-fission chambers are used to determine the rate of fission in targets during activation. Activated targets are counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. To date, data have been collected at neutron bombarding energies 4.6, 9.0, 14.5 and 14.8 MeV. Experimental methods and data reduction techniques are discussed, and some preliminary results are presented.

  10. Development of single mask GEM foils in India

    International Nuclear Information System (INIS)

    Pant, L.M.; Mohanty, A.K.; Pinto, O.J.; Gadhadharan, S.; Menon, Pradeep; Sharma, Archana; Oliveira, Rui De; )

    2014-01-01

    There are various techniques available around the globe for making punch through holes for Micro Pattern Gas Detectors (MPGDs), such as Gas Electron Multipliers (GEMs). The GEM foils consists of 5 μm of Cu clad on both the sides of 50 μm polymide (PMMA/kapton) (5/50/5). At present these foils are developed in South Korea without having any adhesive between the Cu and polymide. The available techniques range from chemical etching, reactive plasma etching and laser etching. However, for GEM detectors, having an active area upto 5000 cm 2 , the chemical etching process using a Single Mask has been developed at CERN which is faster from the viewpoint of mass production of such foils for the upgrades which are foreseen in a couple of years with the Large Hadron Collider facility at CERN

  11. Efficiency and rate capability studies of the time-of-flight detector for isochronous mass measurements of stored short-lived nuclei with the FRS-ESR facility

    Energy Technology Data Exchange (ETDEWEB)

    Kuzminchuk-Feuerstein, Natalia; Fabian, Benjamin [II. Physikalisches Institut, Justus-Liebig-Universität, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Diwisch, Marcel [II. Physikalisches Institut, Justus-Liebig-Universität, 35392 Gießen (Germany); Plaß, Wolfgang R., E-mail: Wolfgang.R.Plass@exp2.physik.uni-giessen.de [II. Physikalisches Institut, Justus-Liebig-Universität, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Geissel, Hans; Ayet San Andrés, Samuel; Dickel, Timo; Knöbel, Ronja; Scheidenberger, Christoph [II. Physikalisches Institut, Justus-Liebig-Universität, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Sun, Baohua [II. Physikalisches Institut, Justus-Liebig-Universität, 35392 Gießen (Germany); Weick, Helmut [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany)

    2016-06-11

    A time-of-flight (TOF) detector is used for Isochronous Mass Spectrometry (IMS) with the projectile fragment separator FRS and the heavy-ion storage ring ESR. Exotic nuclei are spatially separated in flight with the FRS at about 70% of the speed of light and are injected into the ESR. The revolution times of the stored ions circulating in the ESR are measured with a thin transmission foil detector. When the ions penetrate the thin detector foil, secondary electrons (SEs) are emitted from the surface and provide the timing information in combination with microchannel plate (MCP) detectors. The isochronous transport of the SEs is performed by perpendicular superimposed electric and magnetic fields. The detection efficiency and the rate capability of the TOF detector have been studied in simulations and experiments. As a result the performance of the TOF detector has been improved substantially: (i) The SE collection efficiency was doubled by use of an optimized set of electric and magnetic field values; now SEs from almost the full area of the foil are transmitted to the MCP detectors. (ii) The rate capability of the TOF detector was improved by a factor of four by the use of MCPs with 5 μm pore size. (iii) With these MCPs and a carbon foil with a reduced thickness of 10 μg/cm{sup 2} the number of recorded revolutions in the ESR has been increased by nearly a factor of 10. The number of recorded revolutions determine the precision of the IMS experiments. Heavy-ion measurements were performed with neon ions at 322 MeV/u and uranium fission fragments at about 370 MeV/u. In addition, measurements with an alpha source were performed in the laboratory with a duplicate of the TOF detector.

  12. Efficiency and rate capability studies of the time-of-flight detector for isochronous mass measurements of stored short-lived nuclei with the FRS-ESR facility

    International Nuclear Information System (INIS)

    Kuzminchuk-Feuerstein, Natalia; Fabian, Benjamin; Diwisch, Marcel; Plaß, Wolfgang R.; Geissel, Hans; Ayet San Andrés, Samuel; Dickel, Timo; Knöbel, Ronja; Scheidenberger, Christoph; Sun, Baohua; Weick, Helmut

    2016-01-01

    A time-of-flight (TOF) detector is used for Isochronous Mass Spectrometry (IMS) with the projectile fragment separator FRS and the heavy-ion storage ring ESR. Exotic nuclei are spatially separated in flight with the FRS at about 70% of the speed of light and are injected into the ESR. The revolution times of the stored ions circulating in the ESR are measured with a thin transmission foil detector. When the ions penetrate the thin detector foil, secondary electrons (SEs) are emitted from the surface and provide the timing information in combination with microchannel plate (MCP) detectors. The isochronous transport of the SEs is performed by perpendicular superimposed electric and magnetic fields. The detection efficiency and the rate capability of the TOF detector have been studied in simulations and experiments. As a result the performance of the TOF detector has been improved substantially: (i) The SE collection efficiency was doubled by use of an optimized set of electric and magnetic field values; now SEs from almost the full area of the foil are transmitted to the MCP detectors. (ii) The rate capability of the TOF detector was improved by a factor of four by the use of MCPs with 5 μm pore size. (iii) With these MCPs and a carbon foil with a reduced thickness of 10 μg/cm 2 the number of recorded revolutions in the ESR has been increased by nearly a factor of 10. The number of recorded revolutions determine the precision of the IMS experiments. Heavy-ion measurements were performed with neon ions at 322 MeV/u and uranium fission fragments at about 370 MeV/u. In addition, measurements with an alpha source were performed in the laboratory with a duplicate of the TOF detector.

  13. The mass transfer mechanism of fissile material due to fission

    International Nuclear Information System (INIS)

    Shafrir, N.H.

    1975-01-01

    A thin 252 Cf source of a mean thickness of an approXimately mono-atomic layer was used as an experimental model for the study of the basic mechanism of the knock-on process taking place in fissile material. Because of the thinness of the source it can be assumed that mainly primary knock-ons are formed. The ejection rate of knock-ons created by direct collisions between fission fragments and source atoms was measured as follows: the ejected atoms were collected in high vacuum on a catcher foil and 252 Cf determined by alpha spectroscopy using a silicon surface barrier detector. The number of 252 Cf ejected from the source in unit time could thus be determined while considering the anisotropy of ejection, geometry and counting efficiency. Taking into account the chemical composition of the source, eta(theor.) = 252 Cf atoms/fission was obtained. This result can be considered in reasonable agreement with experiment confirming that under the experimental conditions described, practically no knock-on cascade is formed. (B.G.)

  14. Design of large size segmented GEM foils and Drift PCB for CBM MUCH

    International Nuclear Information System (INIS)

    Saini, J.; Dubey, A.K.; Chattopadhyay, S.

    2016-01-01

    Triple GEM (Gas Electron Multiplier), sector shaped detectors will be used for Muon tracking in the Compressed Baryonic Matter (CBM) experiment at Anti-proton Ion Research (FAIR) facility at Darmstadt, Germany. The sizes of the detectors modules in the Muon Chambers (MUCH) are of the order of 1 meter with active area of about 75cms. Progressive pad geometry is chosen for the readout from these detectors. In construction of these chambers, three GEM foils are stacked on top of each other in a 3/2/2/2 gap configuration. The GEM foils are double layered copper clad 50μm thin Kapton foil. Each GEM foil has millions of holes on it. Foils of large surface area are prone to damages due to discharges owing to the high capacitance of the foil. Hence, these foils have their top surfaces divided into segments of about 100 sq.cm. Further segmentation may be necessary when there are high rate requirements, as in the case of CBM. For the GEM foils of CBM MUCH, a 24 segment layout has been adopted. Short-circuit in any of the GEM-holes will make entire foil un-usable. To reduce such occurrences, segment to segment isolation using opto-coupler in series with the GEM-foil segments has been introduced. Hence, a novel design for GEM chamber drift-PCB and foils has been made. In this scheme, each segment is powered and controlled individually. At the same time, the design takes into account, the space constraints, not only in x-y plane, but also in the z, due to compact assembly of MUCH detector layers

  15. Neutron induced current pulses in fission chambers

    International Nuclear Information System (INIS)

    Taboas, A.L.; Buck, W.L.

    1978-01-01

    The mechanism of neutron induced current pulse generation in fission chambers is discussed. By application of the calculated detector transfer function to proposed detector current pulse shapes, and by comparison with actually observed detector output voltage pulses, a credible, semi-empirical, trapezoidal pulse shape of chamber current is obtained

  16. Fission product induced swelling of U–Mo alloy fuel

    International Nuclear Information System (INIS)

    Kim, Yeon Soo; Hofman, G.L.

    2011-01-01

    Highlights: ► We measured fuel swelling of U–Mo alloy by fission products at temperatures below 250 °C. ► We quantified the swelling portion of U–Mo by fission gas bubbles. ► We developed an empirical model as a function of fission density. - Abstract: Fuel swelling of U–Mo alloy was modeled using the measured data from samples irradiated up to a fission density of ∼7 × 10 27 fissions/m 3 at temperatures below ∼250 °C. The overall fuel swelling was measured from U–Mo foils with as-fabricated thickness of 250 μm. Volume fractions occupied by fission gas bubbles were measured and fuel swelling caused by the fission gas bubbles was quantified. The portion of fuel swelling by solid fission products including solid and liquid fission products as well as fission gas atoms not enclosed in the fission gas bubbles is estimated by subtracting the portion of fuel swelling by gas bubbles from the overall fuel swelling. Empirical correlations for overall fuel swelling, swelling by gas bubbles, and swelling by solid fission products were obtained in terms of fission density.

  17. Measurements of Fission Cross Sections of Actinides

    CERN Multimedia

    Wiescher, M; Cox, J; Dahlfors, M

    2002-01-01

    A measurement of the neutron induced fission cross sections of $^{237}$Np, $^{241},{243}$Am and of $^{245}$Cm is proposed for the n_TOF neutron beam. Two sets of fission detectors will be used: one based on PPAC counters and another based on a fast ionization chamber (FIC). A total of 5x10$^{18}$ protons are requested for the entire fission measurement campaign.

  18. FOIL ELEMENT FOR NUCLEAR REACTOR

    Science.gov (United States)

    Noland, R.A.; Walker, D.E.; Spinrad, B.I.

    1963-07-16

    A method of making a foil-type fuel element is described. A foil of fuel metal is perforated in; regular design and sheets of cladding metal are placed on both sides. The cladding metal sheets are then spot-welded to each other through the perforations, and the edges sealed. (AEC)

  19. Spatial distribution of the neutron flux in the IEA-R1 reactor core obtained by means of foil activation

    International Nuclear Information System (INIS)

    Mestnik Filho, J.

    1979-01-01

    A three-dimensional distribution of the neutron flux in IEA-R1 reactor, obtained by activating gold foils, is presented. The foils of diameter 8mm and thickness 0,013mm were mounted on lucite plates and located between the fuel element plates. Foil activities were measured using a 3x3 inches Nal(Tl) scintilation detector calibrated against a 4πβγ coincidence detector. Foil positions were chosen to minimize the errors of measurement; the overall estimated error on the measured flux is 5%. (Author) [pt

  20. Measurement of prompt fission gamma-ray spectra in fast neutron-induced fission

    International Nuclear Information System (INIS)

    Laborie, J.M.; Belier, G.; Taieb, J.

    2012-01-01

    Knowledge of prompt fission gamma-ray emission has been of major interest in reactor physics for a few years. Since very few experimental spectra were ever published until now, new measurements would be also valuable to improve our understanding of the fission process. An experimental method is currently being developed to measure the prompt fission gamma-ray spectrum from some tens keV up to 10 MeV at least. The mean multiplicity and total energy could be deduced. In this method, the gamma-rays are measured with a bismuth germanate (BGO) detector which has the advantage to present a high P/T ratio and a high efficiency compared to other gamma-ray detectors. The prompt fission neutrons are rejected by the time of flight technique between the BGO detector and a fission trigger given by a fission chamber or a scintillating active target. Energy and efficiency calibration of the BGO detector were carried out up to 10.76 MeV by means of the Al-27(p, gamma) reaction. First prompt fission gamma-ray spectrum measurements performed for the spontaneous fission of Cf-252 and for 1.7 and 15.6 MeV neutron-induced fission of U-238 at the CEA, DAM, DIF Van de Graaff accelerator, will be presented. (authors)

  1. Determination of the uranium concentration in apatite by the fission - track registration technique

    International Nuclear Information System (INIS)

    D'Oliveira Cardoso, D.

    1983-01-01

    The feasibility of using the fission-track registration technique to determine the uranium content in the phosphate rock beneficiation steps carried on by CompanhiA Arafertil, Araxa, Minas Gerais, Brazil is studied. This determination is of considerable interest to the environmental control of the Arafertil installations as well as of its surroundings or of the areas where these products will be used. The so called wet method was adopted and a 10 μm polycarbonate foil, fabricated by Bayer under the trade name Makrofol KG was used as detector. From the calibration curve obtained, it was possible to determine uranium contents in sample solutions ranging from 21 to 212 μg U/1 with an accuracy of 8 to 14.7%, respectively. The results obtained demonstrated that the technique used is appropriate to the purposes previously aimed at. (Author) [pt

  2. Fission cross section measurements for minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Fursov, B. [IPPE, Obninsk (Russian Federation)

    1997-03-01

    The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)

  3. Gas amplification properties of GEM foils

    International Nuclear Information System (INIS)

    Beck, Jeannine

    2009-01-01

    In the framework of the detector concept International Linear Detector for the future accelerator project International Linear Collider, in which electrons and positrons at c. m. energies of 500 GeV are brought to collision, a time projection chamber shall be applied as central track detector. By the application of such a chamber as track detector a three-dimensional reconstruction of the track points is possible. If a particle passes the gas volume within the chamber it ionizises single gas atoms and the arising electrons move after the amplification in the GEM arrangement to the anode, so that a two-dimensional projection of the particle track is possible. The third dimension is calculated from the drift time of the electrons. The advances of this readout system consist therein that a better position resolution than by a multiwire proportional chamber is reached and the back-drifting ions can be strongly suppressed. Aim of this thesis are studies for a GEM module, which shall be used in a large TPC prototype. Concerning different requirements it is valid to compare different GEMs in order to can meet an optimal choice. In a small prototype present at DESY measurements for the acquisition of GEM-describing parameters were performed. The taking into operation of the test TPC was part of this thesis. Tracks were generated by a radioactive source, by means of which the gas amplification was determined. With the measurement arrangement gas-amplifier foils of different kind were compared in view of their amplification properties and their energy resolution power and systematically studied. Five different GEM performances were studied in the test TPC. These foils differ in their geometrical classification parameters, the fabrication process, or the materials. The GEMs produced at CERN possess in comparison with GEMs of the Japanese firm SciEnergy and a GEM of the US-American firm Tech-Etch the best amplification and resolution properties. Furthermore a new GEM framing

  4. Ternary fission

    Indian Academy of Sciences (India)

    the energy minimization of all possible ternary breakups of a heavy radioactive nucleus. Further, within the TCM we have analysed the competition between different geometries as well as different positioning of the fragments. Also, an attempt was made to calculate the mass distribution of ternary fission process within the ...

  5. Mass dependence of positive pion-induced fission

    International Nuclear Information System (INIS)

    Khan, H.A.; Khan, N.A.; Peterson, R.J.

    1991-01-01

    Fission cross sections for a range of targets have been measured by solid-state track detectors following 80 and 100 MeV π + bombardment. Fission probabilities have been inferred by comparison to computed reaction cross sections. Fission probabilities for heavy targets agree with those for other probes of comparable energy and with statistical calculations. Probabilities for lighter targets are much above those previously observed or computed. Ternary fission cross sections and multiplicities of light fragments have also been determined

  6. A new method for alkaline dissolution of uranium metal foil

    International Nuclear Information System (INIS)

    Mondino, A.V.; Wilkinson, M.V.; Manzini, A.C.

    2001-01-01

    In order to develop a production process of 99 Mo by fission of low-enriched uranium, the first purification step, which consists of dissolution of a uranium metal foil target, was studied. It was found that alkaline NaClO gave good results, reaching the dissolution of up to 300 μm of uranium foil. The different conditions for the dissolution were studied and the optimum ones were found. The influence of NaClO and NaOH concentration, temperature, dissolving solution volume per unit of surface and dissolution time were investigated. During this step, a gas identified as H 2 , was generated, and a precipitate characterized as Na 2 U 2 O 7 was observed. A stoichiometric reaction for this uranium dissolution is proposed. (author)

  7. Device for measuring fission product density

    International Nuclear Information System (INIS)

    Kaneda, Mitsunori.

    1980-01-01

    Purpose: To determine the fission product density of xenon or the like and enable measurement of real time of fission product density in a reactor by calculating the disintegration and annihilation of the fission product on the basis of neutron detected output. Constitution: The neutron flux in a reactor is detected by a detector, and applied to first and second density calculators. Second fission product density signal of xenon or the like outputted from first device is again inputted to the device to form an annihilation signal due to disintegration to determine the present density of the second fission product of xenon or the like corresponding to the decrease of the neutron due to the poison of xeron or the like. Similarly, second device determines the first fission product density of iodine or the like. (Sekiya, K.)

  8. Shielded regenerative neutron detector

    International Nuclear Information System (INIS)

    Terhune, J.H.; Neissel, J.P.

    1978-01-01

    An ion chamber type neutron detector is disclosed which has a greatly extended lifespan. The detector includes a fission chamber containing a mixture of active and breeding material and a neutron shielding material. The breeding and shielding materials are selected to have similar or substantially matching neutron capture cross-sections so that their individual effects on increased detector life are mutually enhanced

  9. Moving foil stripper for a particle accelerator

    International Nuclear Information System (INIS)

    Gorka, A.J. Jr.

    1975-01-01

    Thin foils for stripping a particle beam are stored on the edge of a disk spinning in the accelerator vacuum. Cutting a foil at one edge releases the foil to project beyond the disk for insertion into the beam at a time determined by controlling the phase of the disk. A wiper removes a spent foil from the disk. The foil release and wiper are operable from a remote location. (U.S.)

  10. Optical temperature sensing on flexible polymer foils

    Science.gov (United States)

    Sherman, Stanislav; Xiao, Yanfen; Hofmann, Meike; Schmidt, Thomas; Gleissner, Uwe; Zappe, Hans

    2016-04-01

    In contrast to established semiconductor waveguide-based or glass fiber-based integrated optical sensors, polymerbased optical systems offer tunable material properties, such as refractive index or viscosity, and thus provide additional degrees of freedom for sensor design and fabrication. Of particular interest in sensing applications are fully-integrated optical waveguide-based temperature sensors. These typically rely on Bragg gratings which induce a periodic refractive index variation in the waveguide so that a resonant wavelength of the structure is reflected.1,2 With broad-band excitation, a dip in the spectral output of the waveguide is thus generated at a precisely-defined wavelength. This resonant wavelength depends on the refractive index of the waveguide and the grating period, yet both of these quantities are temperature dependent by means of the thermo-optic effect (change in refractive index with temperature) and thermal expansion (change of the grating period with temperature). We show the design and fabrication of polymer waveguide-integrated temperature sensors based on Bragggratings, fabricated by replication technology on flexible PMMA foil substrates. The 175 μm thick foil serves as lower cladding for a polymeric waveguide fabricated from a custom-made UV-crosslinkable co-monomer composition. The fabrication of the grating structure includes a second replication step into a separate PMMA-foil. The dimensions of the Bragg-gratings are determined by simulations to set the bias point into the near infrared wavelength range, which allows Si-based detectors to be used. We present design considerations and performance data for the developed structures. The resulting sensor's signal is linear to temperature changes and shows a sensitivity of -306 nm/K, allowing high resolution temperature measurements.

  11. Radiochemical studies on nuclear fission at Trombay

    Indian Academy of Sciences (India)

    227Ac to 245Cm were determined by radiochemical methods which involved ... foil, followed by direct γ counting using high resolution Ge(Li) detector was also ... the stiffness to mass asymmetric distortion decreases on either side of lead.Also ...

  12. Study of tracking detector of NEMO3 experiment - simulation of the measurement of the ultra low {sup 208}Tl radioactivity in the source foils used as neutrinoless double beta decay emitters in NEMO3 experiment; Etude du detecteur de traces de l'experience NEMO3. Simulation de la mesure de l'ultra-faible radioactivite en {sup 208}Tl des sources de l'experience NEMO3 candidates a la double desintegration {beta} sans emission de neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Errahmane, K

    2001-04-01

    The purpose of NEMO3 experiment is the research of the neutrinoless double beta decay. This low energy process can sign the massive and Majorana nature of neutrino. This experiment, with a very low radioactive background and containing 10 kg of enriched isotopes, studies mainly {sup 100}Mo. Installed at the Frejus underground laboratory, NEMO3 is a cylindrical detector, which consists in very thin central source foils, in a tracking detector made up of vertical drift cells operating in Geiger mode, in a calorimeter and in a suitable shielding. This thesis is divided in two different parts. The first part is a full study of the features of the tracking detector. With a prototype composed of 9 drift cells, we characterised the longitudinal and transverse reconstruction of position of the ionisation created by a LASER. With the first 3 modules under operation, we used radioactive external neutron sources to measure the transverse resolution of ionisation position in a drift cell for high energy electrons. To study the vertex reconstruction on the source foil, sources of {sup 207}Bi, which produced conversion electrons, were used inside the 3 modules. The second part of this thesis, we show, with simulations, that we can measure, with NEMO3 detector itself, the ultra low level of contamination in {sup 208}Tl of the source foil, which comes from the natural radioactive chain of thorium. Using electron-photons channels, we can obtain the {sup 208}Tl activity in the sources. With an analysis on the energy and on the time of flight of particles, NEMO3 is able to reach a sensitivity of 20{mu}Bq/kg after only 2 months of measurement. This sensitivity is the maximum {sup 208}Tl activity, which we accepted for the sources in the NEMO3 proposal. (author)

  13. Fission neutron spectra measurements at LANSCE - Status and plans

    International Nuclear Information System (INIS)

    Haight, R. C.; Noda, S.; Nelson, R. O.; O'Donnell, J. M.; Devlin, M.; Chatillon, A.; Granier, T.; Taiebb, J.; Laurent, B.; Belier, G.; Becker, J. A.; Wu, C. Y.

    2010-01-01

    A program to measure fission neutron spectra from neutron-induced fission of actinides is underway at the Los Alamos Neutron Science Center (LANSCE) in a collaboration among the CEA laboratory at Bruyeres-le-Chatel, Lawrence Livermore National Laboratory and Los Alamos National Laboratory. The spallation source of fast neutrons at LANSCE is used to provide incident neutron energies from less than 1 MeV to 100 MeV or higher. The fission events take place in a gas-ionization fission chamber, and the time of flight from the neutron source to that chamber gives the energy of the incident neutron. Outgoing neutrons are detected by an array of organic liquid scintillator neutron detectors, and their energies are deduced from the time of flight from the fission chamber to the neutron detector. Measurements have been made of the fission neutrons from fission of 235 U, 238 U, 237 Np and 239 Pu. The range of outgoing energies measured so far is from 0.7 MeV to approximately 8 MeV. These partial spectra and average fission neutron energies are compared with evaluated data and with models of fission neutron emission. Results to date are summarized in this presentation. Future plans are to make significant improvements in the fission chambers, neutron detectors, signal processing, data acquisition and the experimental environment to provide high fidelity data including measurements of fission neutrons below 0.7 MeV and improvements in the data above 8 MeV. (authors)

  14. Uranium Anodic Dissolution under Slightly Alkaline Conditions Progress Report Full-Scale Demonstration with DU Foil

    Energy Technology Data Exchange (ETDEWEB)

    Gelis, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Brown, M. A. [Argonne National Lab. (ANL), Argonne, IL (United States); Wiedmeyer, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, G. F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-02-18

    Argonne National Laboratory (Argonne) is developing an alternative method for digesting irradiated low enriched uranium (LEU) foil targets to produce 99Mo in neutral/alkaline media. This method consists of the electrolytic dissolution of irradiated uranium foil in sodium bicarbonate solution, followed by precipitation of base-insoluble fission and activation products, and uranyl-carbonate species with CaO. The addition of CaO is vital for the effective anion exchange separation of 99MoO42- from the fission products, since most of the interfering anions (e.g., CO32-) are removed from the solution, while molybdate remains in solution. An anion exchange is used to retain and to purify the 99Mo from the filtrate. The electrochemical dissolver has been designed and fabricated in 304 stainless-steel (SS), and tested for the dissolution of a full-size depleted uranium (DU) target, wrapped in Al foil. Future work will include testing with low-burn-up DU foil at Argonne and later with high-burn-up LEU foils at Oak Ridge National Laboratory.

  15. Study on lifetime of C stripping foils

    International Nuclear Information System (INIS)

    Zhang Hongbin; Lu Ziwei; Zhao Yongtao; Li Zhankui; Xu Hushan; Xiao Guoqing; Wang Yuyu; Zhang Ling; Li Longcai; Fang Yan

    2007-01-01

    The carbon stripping foils can be prepared with the AC and DC arc discharge methods, or even sandwiched with AC-DC alternative layers. The lifetime of the carbon stripping foils of 19 μg/cm 2 prepared with different methods and/or structures was measured. The factors affecting the bombarding lifetime of the carbon stripping foils, especially the method of the foil preparation and the structure of the carbon stripping foils, were discussed. It is observed that the foils prepared with the DC arc discharge method have a longer bombarding lifetime than those prepared with the AC arc discharge method. (authors)

  16. Fission coincident neutrons from the reactions p + sup(235,236,238)U with protons between 12,7 and 25.5 MeV

    International Nuclear Information System (INIS)

    Plischke, P.

    1981-01-01

    With the proton beam of the Hamburg isochronous cyclotron (HAIZY) thin uranium targets with the mass numbers 235, 236, and 238 were bombarded. Both fragments from the fission of the Np reaction systems and the neutrons coincident with the fragments were detected in the plane perpendicular to the beam direction. Measured and stored event by event were for all particles the times of flight. The detection of the neutron succeeded in conventional time-of-flight technique with NE213 liquid scintillators. A fission detector system with plastic scintillator foils was developed. It permits high event rates over long measuring times and allows the choice of so long neutron flight paths that a neutron energy resolution between 2% and 4% could be reached. The determination of the fragment masses is in spite of the short flight paths of 15 respectively 21 cm possible to +-2 amu. The isotropic component das discussed under the assumption that it is composed of prefission and scission neutrons which were emitted befor fission respectively during the fragmentation. From the post fission results the distribution of the excitation energy to both fragments was determined in dependence of Esup(*) and the fragment mass. (orig./HSI) [de

  17. Ideological Fission

    DEFF Research Database (Denmark)

    Christiansen, Steen Ledet

    ; it is a materialisation of an ideological fission which attempts to excise certain ideological constructions, yet paradoxically casting them in a form that is recognizable and familiar. The monstrous metonomy which is used shows us glimpses of a horrid being, intended to vilify the attack on New York City. However......, it is a being which is reminiscent of earlier monsters - from Godzilla to The Blob. It is evident that the Cloverfield monster is a paradoxical construction which attempts to articulate fear and loathing about terrorism, but ends up trapped in an ideological dead-end maze, unable to do anything other than...

  18. Hydrogen permeation through metallic foils

    International Nuclear Information System (INIS)

    Bernardi, M.I.B.; Rodrigues, J.A.

    1987-01-01

    The process of electrolytic permeation of hydrogen through metallic foils is studied. A double electrolytic cell, in glass, in which the two compartments of reaction are separated by a metallic foil to be studied, was built. As direct result, the hydrogen diffusion coefficient in the metal is obtained. The hydrogen diffusion coefficients in the palladium and, in austenitic stainless steels 304 and 304 L, used in the Angra-1 reactor, were obtained. Samples of stainless steels with and without welding, were used. (Author) [pt

  19. Measurement of neutron multiplication in Pb by Mn foils

    International Nuclear Information System (INIS)

    Chen Yuan; Liu Rong; Guo Haiping; Jiang Wenmian; Shen Jian

    1994-01-01

    The Leakage neutron multiplication in bulk lead has been measured using the total absorption detector and relative method. The polyethylene sphere of 138 cm in diameter is used as the moderator and total absorption detector. The measured results from 55 Mn foils and 6 Li glass are compared. The neutron multiplication is 1.74 with the lead shell of 23.1 cm thick. The measured result is consistent with the calculated one with ANISN code and ENDF/B-6 evaluated data within the experimental error. (4 figs., 3 tabs.)

  20. Advances on fission chamber modelling

    International Nuclear Information System (INIS)

    Filliatre, Philippe; Jammes, Christian; Geslot, Benoit; Veenhof, Rob

    2013-06-01

    In-vessel, online neutron flux measurements are routinely performed in mock-up and material testing reactors by fission chambers. Those measurements have a wide range of applications, including characterization of experimental conditions, reactor monitoring and safety. Depending on the application, detectors may experience a wide range of constraints, of several magnitudes, in term of neutron flux, gamma-ray flux, temperature. Hence, designing a specific fission chamber and measuring chain for a given application is a demanding task. It can be achieved by a combination of experimental feedback and simulating tools, the latter being based on a comprehensive understanding of the underlying physics. A computation route that simulates fission chambers, named CHESTER, is presented. The retrieved quantities of interest are the neutron-induced charge spectrum, the electronic and ionic pulses, the mean current and variance, the power spectrum. It relies on the GARFIELD suite, originally developed for drift chambers, and makes use of the MAGBOLTZ code to assess the drift parameters of electrons within the filling gas, and the SRIM code to evaluate the stopping range of fission products. The effect of the gamma flux is also estimated. Computations made with several fission chambers exemplify the possibilities of the route. A good qualitative agreement is obtained when comparing the results with the experimental data available to date. In a near future, a comprehensive experimental programme will be undertaken to qualify the route using the known neutron sources, mock-up reactors and wide choice of fission chambers, with a stress on the predictiveness of the Campbelling mode. Depending on the results, a refinement of the modelling and an effort on the accuracy of input data are also to be considered. CHESTER will then make it possible to predict the overall sensitivity of a chamber, and to optimize the design for a given application. Another benefit will be to increase the

  1. Measurements of fission cross-sections. Chapter 4

    International Nuclear Information System (INIS)

    James, G.D.

    1981-01-01

    The steps involved in the measurement of fission cross sections are summarized and the range of techniques available are considered. Methods of fission detection are described with particular emphasis on the neutron energy dependent properties of the fission process and the details of fragment energy loss which can lead to energy-dependent changes in detector efficiency. Selected examples of fission cross-section measurements are presented and methods of data reduction, storage, analysis and evaluation, are examined. Finally requested accuracies for fission cross section data are compared to estimated available accuracies. (U.K.)

  2. Electroplating of Uranium -Foil Target With Ni And Zn

    International Nuclear Information System (INIS)

    Husna AI Hasa, Muhammad; Suripto, Asmedi

    2001-01-01

    The uranium foil target, which was produced by rolling, was subjected to preparation treatment prior to the electroplating. The electroplating produced certain plate thickness on the foil surface. The electroplating was applied to the uranium foil of 71 mm long and 46 mm wide using plating materials of Ni and Zn. The plating is intended to serve as barrier for fission fragment recoils, which are produced during irradiation. The plate thickness produced by the electroplating was measured by a micrometer and an analytical balance. The electroplating with Ni produced plate-thickness of 8,9 mm when measured by the micrometer, or 11.4 mm when measured by the analytical balance, while the Zn electroplating produced greater plate-thickness, i.e. 16.2 mm by the micrometer measurement or 13.7 mm by the analytical balance measurement. The current efficiency of the electroplating was 62 % for Ni and 80 % for Zn. It was observed that the optimum condition for the electroplating depended on the plating materials, plating time, and current density. The plate-thickness produced under the optimum condition was 7-15 mm at 15 mA/cm 2 for Ni and ]0 mA/cm 2 for Zn with plating time of 60 minutes

  3. High-precision spectrometer for studies of ion-induced and spontaneous fission dynamics

    International Nuclear Information System (INIS)

    Batenkov, O.; Elmgren, K.; Majorov, M.; Blomgren, J.; Conde, H.; Hultqvist, S.; Olsson, N.; Rahm, J.; Ramstroem, E.; Smirnov, S.; Veshikov, A.

    1997-01-01

    A spectrometer has been designed and built to investigate the dynamics of spontaneous and ion-induced fission processes. It consists of 8 neutron detectors surrounding a low mass scattering chamber containing the fissionable targets and two fission fragment telescopes. The spectrometer measures neutron spectra, and energy and angular correlations of neutrons, as well as kinetic energy, mass, and relative angle of fission fragments. A 252 Cf fission reference source is used for calibration. (orig.)

  4. Numerical and experimental investigation of bump foil mechanical behaviour

    DEFF Research Database (Denmark)

    Larsen, Jon Steffen; Cerda Varela, Alejandro Javier; Santos, Ilmar

    2014-01-01

    Corrugated foils are utilized in air foil bearings to introduce compliance and damping thus accurate mathematical predictions are important. A corrugated foil behaviour is investigated experimentally as well as theoretically. The experimental investigation is performed by compressing the foil...

  5. The Anomalous Currents In The Front Foils of the JET Lost Alpha Diagnostic KA-2

    International Nuclear Information System (INIS)

    Cecil, F.E.; Kiptily, V.; Salmi, A.; Horton, A.; Fullard, K.; Murari, A.; Darrow, D.; Hill, K.

    2011-01-01

    We have examined the observed currents in the front foils of the JET Faraday cup lost alpha particle diagnostic KA-2. In particular, we have sought to understand the currents during Ohmic plasmas for which the ion flux at the detectors was initially assumed to be negligible. We have considered two sources of this current: plasma ions (both deuterium and impurity) in the vicinity of the detector (including charge exchange neutrals) and photoemission from scattered UV radiation. Based upon modeling and empirical observation, the latter source appears most likely and, moreover, seems to be applicable to the currents in the front foil during ELMy H-mode plasmas. A very thin gold or nickel foil attached to the present detector aperture is proposed as a solution to this problem, and realistic calculations of expected fluxes of lost energetic neutral beam ions during TF ripple experiments are presented as justification of this proposed solution.

  6. The Anomalous Currents In The Front Foils of the JET Lost Alpha Diagnostic KA-2

    Energy Technology Data Exchange (ETDEWEB)

    Cecil, F. E.; Kiptily, V.; Salmi, A.; Horton, A.; Fullard, K.; Murari, A.; Darrow, D.; Hill, K.

    2011-05-04

    We have examined the observed currents in the front foils of the JET Faraday cup lost alpha particle diagnostic KA-2. In particular, we have sought to understand the currents during Ohmic plasmas for which the ion flux at the detectors was initially assumed to be negligible. We have considered two sources of this current: plasma ions both deuterium and impurity in the vicinity of the detector including charge exchange neutrals and photoemission from scattered UV radiation. Based upon modeling and empirical observation, the latter source appears most likely and, moreover, seems to be applicable to the currents in the front foil during ELMy H-mode plasmas. A very thin gold or nickel foil attached to the present detector aperture is proposed as a solution to this problem, and realistic calculations of expected fluxes of lost energetic neutral beam ions during TF ripple experiments are presented as justification of this proposed solution.

  7. Ternary Fission of U235 by Resonance Neutrons

    International Nuclear Information System (INIS)

    Kvitek, I.; Popov, Ju.P.; Rjabov, Ju.V.

    1965-01-01

    Recently a number of papers have appeared indicating considerable variations in the ratio of the ternary-fission cross-section to the binary-fission cross-section of U 235 on transition from one neutron resonance to another. However, such variations have not been discovered in U 233 and Pu 239 . The paper reports investigations of the ternary fission of U 235 by neutrons with an energy of 0.1 to 30 eV. Unlike other investigators of the ternary fission of U 235 , we identified the ternary-fission event by the coincidence of one of the fission fragments with a light long-range particle. This made it passible to separate ternary fissions from the possible contribution of the (n, α)reaction. The measurements were performed at the fast pulsed reactor of the Joint Institute for Nuclear Research by the time-of-flight method. A flight length of 100 m was used, giving a resolution of 0.6 μs/m. Gas scintillation counters filled with xenon at a pressure of 2 atm were used to record the fission fragments and the light long-range particle. A layer of enriched U 235 ∼2 mg/cm 2 thick and ∼300 cm 2 in area was applied to an aluminium foil 20-fim thick. The scintillations from the fission fragments were recorded in the gas volume on one side of the foil and those from the light long-range particles in that on the other. In order to assess the background (e.g . coincidences of the pulse from a fragment with that from a fission gamma quantum or a proton from the (n, p) reaction in the aluminium foil), a measurement was carried out in which the volume recording the long-range particle was shielded with a supplementary aluminium filter 1-mm thick. The results obtained indicate the absence of the considerable variations in the ratio between the ternary-and binary- fission cross-sections for U 235 that have been noted by other authors. Measurements showed no irregularity in the ratio of the cross-sections in the energy range 0.1 to 0.2 eV. The paper discusses the possible effect of

  8. Fission theory and actinide fission data

    Energy Technology Data Exchange (ETDEWEB)

    Michaudon, A.

    1975-06-01

    The understanding of the fission process has made great progress recently, as a result of the calculation of fission barriers, using the Strutinsky prescription. Double-humped shapes were obtained for nuclei in the actinide region. Such shapes could explain, in a coherent manner, many different phenomena: fission isomers, structure in near-threshold fission cross sections, intermediate structure in subthreshold fission cross sections and anisotropy in the emission of the fission fragments. A brief review of fission barrier calculations and relevant experimental data is presented. Calculations of fission cross sections, using double-humped barrier shapes and fission channel properties, as obtained from the data discussed previously, are given for some U and Pu isotopes. The fission channel theory of A. Bohr has greatly influenced the study of low-energy fission. However, recent investigation of the yields of prompt neutrons and γ rays emitted in the resonances of {sup 235}U and {sup 239}Pu, together with the spin determination for many resonances of these two nuclei cannot be explained purely in terms of the Bohr theory. Variation in the prompt neutron and γ-ray yields from resonance to resonance does not seem to be due to such fission channels, as was thought previously, but to the effect of the (n,γf) reaction. The number of prompt fission neutrons and the kinetic energy of the fission fragments are affected by the energy balance and damping or viscosity effects in the last stage of the fission process, from saddle point to scission. These effects are discussed for some nuclei, especially for {sup 240}Pu.

  9. Neutronic analysis for the fission Mo99 production by irradiation of leu targets in TRIGA 14 MW reactor

    International Nuclear Information System (INIS)

    Dulugeac, S. D.; Mladin, M.; Budriman, A. G.

    2013-01-01

    Molybdenum production can be a solution for the future in the utilization of the Romanian TRIGA, taking into account the international market supply needs. Generally, two different techniques are available for Mo 99 production for use in medical Tc 99 generation.The first one is based on neutron irradiation of molybdenum targets of natural isotopic composition or enriched in Mo 98 . In a second process, Mo 99 is obtained as a result of the neutron induced fission of U 235 according to U 235 (n,f) Mo 99 . The objectives of the paper are related to Mo 99 production as a result of fission. Neutron physics parameters are determined and presented, such as: thermal flux axial distribution for the critical reactor at 10 MW inside the irradiation location; reactivity introduced by three Uranium foil containers; neutron fluxes and fission rates in the Uranium foils; released and deposited power in the Uranium foils; Mo 99 activity in the Uranium foils. (authors)

  10. Nuclear fission studies: from LOHENGRIN to FIPPS

    International Nuclear Information System (INIS)

    Chebboubi, Abdelaziz

    2015-01-01

    Nuclear fission consists in splitting a nucleus, in general an actinide, into smaller nuclei. Despite nuclear fission was discovered in 1939 by Hahn and Strassman, fission models cannot predict the fission observables with an acceptable accuracy for nuclear fuel cycle studies for instance. Improvement of fission models is an important issue for the knowledge of the process itself and for the applications. To reduce uncertainties of the nuclear data used in a nuclear reactor simulation, a validation of the models hypothesis is mandatory. In this work, two features of the nuclear fission were investigated in order to test the resistance of the theories. One aspect is the study of the symmetric fission fragments through the measurement of their yield and kinetic energy distribution. The other aspect is the study of the fission fragment angular momentum.Two techniques are available to assess the angular momentum of a fission fragment. The first one is to look at the properties of the prompt gamma. The new spectrometer FIPPS (Fission Product Prompt gamma-ray Spectrometer), is currently under development at the ILL and will combine a fission filter with a large array of gamma and neutron detectors in order to respond to these issues. The first part of this work is dedicated to the study of the properties of a Gas Filled Magnet (GFM) which is the type of fission filter considered for the FIPPS project.The second part of this work deals with the measurement of isomeric yields and evaluations of the angular momentum distribution of fission fragments. The study of the spherical nucleus 132 Sn shed the light on the current limits of fission models. Finally, the last part of this work is about the measurement of the yields and kinetic energy distributions of symmetric fission fragments. Since models predict the existence of fission modes, the symmetry region is a suitable choice to investigate this kind of prediction. In parallel with all these studies, an emphasis on the

  11. Induced-Fission Imaging of Nuclear Material

    International Nuclear Information System (INIS)

    Hausladen, Paul; Blackston, Matthew A.; Mullens, James Allen; McConchie, Seth M.; Mihalczo, John T.; Bingham, Philip R.; Ericson, Milton Nance; Fabris, Lorenzo

    2010-01-01

    This paper presents initial results from development of the induced-fission imaging technique, which can be used for the purpose of measuring or verifying the distribution of fissionable material in an unopened container. The technique is based on stimulating fissions in nuclear material with 14 MeV neutrons from an associated-particle deuterium-tritium (D-T) generator and counting the subsequent induced fast fission neutrons with an array of fast organic scintillation detectors. For each source neutron incident on the container, the neutron creation time and initial trajectory are known from detection of the associated alpha particle of the d + t → α + n reaction. Many induced fissions will lie along (or near) the interrogating neutron path, allowing an image of the spatial distribution of prompt induced fissions, and thereby fissionable material, to be constructed. A variety of induced-fission imaging measurements have been performed at Oak Ridge National Laboratory with a portable, low-dose D-T generator, including single-view radiographic measurements and three-dimensional tomographic measurements. Results from these measurements will be presented along with the neutron transmission images that have been performed simultaneously. This new capability may have applications to a number of areas in which there may be a need to confirm the presence or configuration of nuclear materials, such as nuclear material control and accountability, quality assurance, treaty confirmation, or homeland security applications.

  12. Nuclear fission and reactions

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The nuclear fission research programs are designed to elucidate basic features of the fission process. Specifically, (1) factors determining how nucleons of a fissioning nucleus are distributed between two fission fragments, (2) factors determining kinetic energy and excitation energies of fragments, and (3) factors controlling fission lifetimes. To these ends, fission studies are reported for several heavy elements and include investigations of spontaneous and neutron-induced fission, heavy ion reactions, and high energy proton reactions. The status of theoretical research is also discussed. (U.S.)

  13. Proceedings of the specialists' meeting on physics and engineering of fission and spallation, 1989

    International Nuclear Information System (INIS)

    Nakagome, Yoshihiro

    1990-07-01

    The third meeting was held on August 1, and the fourth meeting was held on December 12, 1989. The reports of the international conferences on 50 years research on nuclear fission in Germany and USA, and the reports on the nuclear data of fission-produced nuclei for evaluating reactor decay heat, the atomic mass formula considering proton-neutron interaction and unstable nuclei, research on short life fission fragments by on-line isotope separation process, the reactor physics on waste annihilation disposal and fuel breeding with an accelerator, the double differential cross section of back neutrons in nuclear spallation reaction, measurement of fission cross section and fission neutron spectra with fast neutrons, U-235 fission spectra by unfolding activation foil data and production mechanisms of intermediate mass fragments from hot nuclei-emission of complex and fission fragments for 84 Kr+ 27 Al at 10.6 MeV/u were made. (K.I.)

  14. The development of uranium foil farication technology utilizing twin roll method for Mo-99 irradiation target

    CERN Document Server

    Kim, C K; Park, H D

    2002-01-01

    MDS Nordion in Canada, occupying about 75% of global supply of Mo-99 isotope, has provided the irradiation target of Mo-99 using the rod-type UAl sub x alloys with HEU(High Enrichment Uranium). ANL (Argonne National Laboratory) through co-operation with BATAN in Indonesia, leading RERTR (Reduced Enrichment for Research and Test Reactors) program substantially for nuclear non-proliferation, has designed and fabricated the annular cylinder of uranium targets, and successfully performed irradiation test, in order to develop the fabrication technology of fission Mo-99 using LEU(Low Enrichment Uranium). As the uranium foils could be fabricated in laboratory scale, not in commercialized scale by hot rolling method due to significant problems in foil quality, productivity and economic efficiency, attention has shifted to the development of new technology. Under these circumstances, the invention of uranium foil fabrication technology utilizing twin-roll casting method in KAERI is found to be able to fabricate LEU or...

  15. Measurements of fission yields

    International Nuclear Information System (INIS)

    Denschlag, H.O.

    2000-01-01

    After some historical introductory remarks on the discovery of nuclear fission and early fission yield determinations, the present status of knowledge on fission yields is briefly reviewed. Practical and fundamental reasons motivating the pursuit of fission yield measurements in the coming century are pointed out. Recent results and novel techniques are described that promise to provide new interesting insights into the fission process during the next century. (author)

  16. Radiochemical studies on fission

    Energy Technology Data Exchange (ETDEWEB)

    None

    1973-07-01

    Research progress is reported on nuclear chemistry; topics considered include: recoil range and kinetic energy distribution in the thermal neutron ftssion of /sup 245/Cm; mass distribution and recoil range measurements in the reactor neutron-induced fission of /sup 232/U; fission yields in the thermal neutron fission of /sup 241/PU highly asymmetric binary fission of uranium induced by reactor neutrons; and nuclear charge distribution in low energy fission. ( DHM)

  17. Zika Vaccine Development: Flavivirus Foils

    Science.gov (United States)

    2016-09-01

    Martins, Bavari, Zika Vaccine Development 1 Zika Vaccine Development: Flavivirus Foils Martins KAO, Bavari S. The current Zika virus...States government. The rapid response to Zika is perhaps the first of its kind, and it undoubtedly has been made possible by the lessons learned from...the response to the 2014 Ebola virus outbreak in West Africa. However, Zika virus is not Ebola virus. As of February 2016 there were only 296

  18. Measurement of the fission ratio for several configurations of uranium oxide rod clusters

    International Nuclear Information System (INIS)

    Pattenden, S.K.; Patterson, C.R.

    1962-02-01

    This report describes measurements of the fission ratio for a single fuel channel of oxide rod clusters in an essentially infinite block of graphite. The measurements were made using the 'catcher-foil' technique, the activities of the catcher foils being measured by β-counting. Results are given, for 37-rod; 18-rod; 7-rod and 3-rod clusters, and are compared with theoretical predictions. (author)

  19. Fission rate measurements in fuel plate type assembly reactor cores

    International Nuclear Information System (INIS)

    Rogers, J.W.

    1988-01-01

    The methods, materials and equipment have been developed to allow extensive and precise measurement of fission rate distributions in water moderated, U-Al fuel plate assembly type reactor cores. Fission rate monitors are accurately positioned in the reactor core, the reactor is operated at a low power for a short time, the fission rate monitors are counted with detectors incorporating automated sample changers and the measurements are converted to fission rate distributions. These measured fission rate distributions have been successfully used as baseline information related to the operation of test and experimental reactors with respect to fission power and distribution, fuel loading and fission experiments for approximately twenty years at the Idaho National Engineering Laboratory (INEL). 7 refs., 8 figs

  20. Ultrathin foils used for low-energy neutral atom imaging of the terrestrial magnetosphere

    International Nuclear Information System (INIS)

    Funsten, H.O.; McComas, D.J.; Barraclough, B.L.

    1993-01-01

    Magnetospheric imaging by remote detection of low-energy neutral atoms (LENAs) that are created by charge exchange between magnetospheric plasma ions and neutral geocoronal atoms has been proposed as a method to provide global information of magnetospheric dynamics. For LENA detecting, carbon foils can be implemented to (1) ionize the LENAs and electrostatically remove them from the large background of solar UV scattered by the geocorona to which LENA detectors (e.g., microchannel plates) are sensitive and (2) generate secondary electrons to provide coincidence and/or LENA trajectory information. Quantification of LENA-foil interactions are crucial in defining LENA imager performance. The authors present equilibrium charge state distributions due to foil contamination from exposure to air. Angular scattering that results from the projectile-foil interaction is quantified and is shown to be independent of the charge state distribution

  1. Energy released in fission

    International Nuclear Information System (INIS)

    James, M.F.

    1969-05-01

    The effective energy released in and following the fission of U-235, Pu-239 and Pu-241 by thermal neutrons, and of U-238 by fission spectrum neutrons, is discussed. The recommended values are: U-235 ... 192.9 ± 0.5 MeV/fission; U-238 ... 193.9 ± 0.8 MeV/fission; Pu-239 ... 198.5 ± 0.8 MeV/fission; Pu-241 ... 200.3 ± 0.8 MeV/fission. These values include all contributions except from antineutrinos and very long-lived fission products. The detailed contributions are discussed, and inconsistencies in the experimental data are pointed out. In Appendix A, the contribution to the total useful energy release in a reactor from reactions other than fission are discussed briefly, and in Appendix B there is a discussion of the variations in effective energy from fission with incident neutron energy. (author)

  2. HAC and fission reactors

    International Nuclear Information System (INIS)

    Fujiwara, I.; Moriyama, H.; Tachikawa, E.

    1984-01-01

    In the fission process, newly formed fission products undergo hot atom reactions due to their energetic recoil and abnormal positive charge. The hot atom reactions of the fission products are usually accompanied by secondary effects such as radiation damage, especially in condensed phase. For reactor safety it is valuable to know the chemical behaviour and the release behaviour of these radioactive fission products. Here, the authors study the chemical behaviour and the release behaviour of the fission products from the viewpoint of hot atom chemistry (HAC). They analyze the experimental results concerning fission product behaviour with the help of the theories in HAC and other neighboring fields such as radiation chemistry. (Auth.)

  3. Antiproton Induced Fission and Fragmentation of Nuclei

    CERN Multimedia

    2002-01-01

    The annihilation of slow antiprotons with nuclei results in a large highly localized energy deposition primarily on the nuclear surface. \\\\ \\\\ The study of antiproton induced fission and fragmentation processes is expected to yield new information on special nuclear matter states, unexplored fission modes, multifragmentation of nuclei, and intranuclear cascades.\\\\ \\\\ In order to investigate the antiproton-nucleus interaction and the processes following the antiproton annihilation at the nucleus, we propose the following experiments: \\item A)~Measurement of several fragments from fission and from multifragmentation in coincidence with particle spectra, especially neutrons and kaons. \\item B)~Precise spectra of $\\pi$, K, n, p, d and t with time-of-flight techniques. \\item C)~Installation of the Berlin 4$\\pi$ neutron detector with a 4$\\pi$ Si detector placed inside for fragments and charged particles. This yields neutron multiplicity distributions and consequently distributions of thermal excitation energies and...

  4. Radon-thoron discrimination using a polythene foil: an application in uranium exploration

    International Nuclear Information System (INIS)

    Ramola, R.C.; Singh, M.; Sandhu, A.S.; Singh, S.; Virk, H.S.

    1989-01-01

    Integrated measurements of radon concentrations in subsurface soil are being used extensively for uranium exploration and earthquake prediction. For uranium exploration only the radon signals are needed; however, a part of the α-activity may derive from thoron. To exclude thoron, a polythene foil has been used as an anti-thoron membrane to delay the entry of thoron into the detector system so that only the longer lived isotope 222 Rn survives to be measured. A long term integrated measurement has been carried out using LR-115 and CR-39 plastic track detectors. The observed track density has been determined as a function of foil thickness. It is found that a polythene foil of appropriate thickness could be successfully employed for the separation of radon and thoron in soil. (author)

  5. Alpha and fission autoradiography of uranium rods

    International Nuclear Information System (INIS)

    Copic, M.; Ilicj, R.; Najzher, M.; Rant, J.

    1977-01-01

    Macro and micro-distribution of uranium minerals in ore bodies are investigated by alpha autoradiography and by neutron induced fission autoradiography using LR 115 solid state track detector. Optimal conditions are determined experimentally for both methods and examples presented. For field applications the alpha autoradiography (author)

  6. Fusion welding of thin metal foils

    International Nuclear Information System (INIS)

    Casey, H.

    1975-01-01

    Aspects of fusion welding of thin metal foils are reviewed and the current techniques employed at LASL to join foils are described. Techniques for fusion welding approximately 0.025-mm-thick foils of copper, aluminum, and stainless steels have been developed using both electron beam and laser welding equipment. These techniques, together with the related aspects of joint design, tooling and fixturing, joint preparation, and modifications to the commercially available welding equipment, are included in the review. (auth)

  7. Monte-Carlo Generation of Time Evolving Fission Chains

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, Jerome M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kim, Kenneth S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Prasad, Manoj K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, Neal J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-08-01

    About a decade ago, a computer code was written to model neutrons from their “birth” to their final “death” in thermal neutron detectors (3He tubes): SrcSim had enough physics to track the neutrons in multiplying systems, appropriately increasing and decreasing the neutron population as they interacted by absorption, fission and leakage. The theory behind the algorithms assumed that all neutrons produced in a fission chain were all produced simultaneously, and then diffused to the neutron detectors. For cases where the diffusion times are long compared to the fission chains, SrcSim is very successful. Indeed, it works extraordinarily well for thermal neutron detectors and bare objects, because it takes tens of microseconds for fission neutrons to slow down to thermal energies, where they can be detected. Microseconds are a very long time compared to the lengths of the fission chains. However, this inherent assumption in the theory prevents its use to cases where either the fission chains are long compared to the neutron diffusion times (water-cooled nuclear reactors, or heavily moderated object, where the theory starts failing), or the fission neutrons can be detected shortly after they were produced (fast neutron detectors). For these cases, a new code needs to be written, where the underlying assumption is not made. The purpose of this report is to develop an algorithm to generate the arrival times of neutrons in fast neutron detectors, starting from a neutron source such as a spontaneous fission source (252Cf) or a multiplying source (Pu). This code will be an extension of SrcSim to cases where correlations between neutrons in the detectors are on the same or shorter time scales as the fission chains themselves.

  8. Technical Development Path for Gas Foil Bearings

    Science.gov (United States)

    Dellacorte, Christopher

    2016-01-01

    Foil gas bearings are in widespread commercial use in air cycle machines, turbocompressors and microturbine generators and are emerging in more challenging applications such as turbochargers, auxiliary power units and propulsion gas turbines. Though not well known, foil bearing technology is well over fifty years old. Recent technological developments indicate that their full potential has yet to be realized. This paper investigates the key technological developments that have characterized foil bearing advances. It is expected that a better understanding of foil gas bearing development path will aid in future development and progress towards more advanced applications.

  9. INJECTION CARBON STRIPPING FOIL ISSUES IN THE SNS ACCUMULATOR RING

    International Nuclear Information System (INIS)

    BEEBE-WANG, J.; LEE, Y.Y.; RAPARIA, D.; WEI, J.

    2001-01-01

    We are reporting the results of studies on issues related to the injection stripping foil in the Spallation Neutron Source (SNS) accumulator ring. The problems related to foil heating and foil lifetime, such as current density distribution and temperature distribution in the foil, are investigated. The impact of injection errors on the beam losses at the foil is studied. The particle traversal rate and the beam losses due to scattering in the foil are summarized. Finally, SNS end-to-end simulation results of the foil-missing rate, the foil-hitting rate and the maximum foil temperature are presented

  10. WINDOWS: a program for the analysis of spectral data foil activation measurements

    International Nuclear Information System (INIS)

    Stallmann, F.W.; Eastham, J.F.; Kam, F.B.K.

    1978-12-01

    The computer program WINDOWS together with its subroutines is described for the analysis of neutron spectral data foil activation measurements. In particular, the unfolding of the neutron differential spectrum, estimated windows and detector contributions, upper and lower bounds for an integral response, and group fluxes obtained from neutron transport calculations. 116 references

  11. WINDOWS: a program for the analysis of spectral data foil activation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Stallmann, F.W.; Eastham, J.F.; Kam, F.B.K.

    1978-12-01

    The computer program WINDOWS together with its subroutines is described for the analysis of neutron spectral data foil activation measurements. In particular, the unfolding of the neutron differential spectrum, estimated windows and detector contributions, upper and lower bounds for an integral response, and group fluxes obtained from neutron transport calculations. 116 references. (JFP)

  12. Radiation lifetimes and failure mechanisms of carbon stripper foils

    International Nuclear Information System (INIS)

    Auble, R.L.

    1981-01-01

    Measurements of lifetimes of thin carbon foils under heavy-ion irradiation are compiled and recent advances in stripper foil technology are reviewed. The impact of recent foil lifetime improvements, many by more than an order of magnitude, on heavy-ion electrostatic accelerators is discussed. Foil inhomogeneities, particularly those caused by sputtering are suggested to be a prime factor in usable foil lifetimes

  13. Fission Research at IRMM

    Directory of Open Access Journals (Sweden)

    Al-Adili A.

    2010-03-01

    Full Text Available Fission Research at JRC-IRMM has a longstanding tradition. The present paper is discussing recent investigations of fission fragment properties of 238 U(n,f, 234 U(n,f, prompt neutron emission in fission of 252 Cf(SF as well as the prompt fission neutron spectrum of 235 U(n,f and is presenting the most important results.

  14. Investigation of exotic fission modes

    International Nuclear Information System (INIS)

    Poenaru, D. N.; Gherghescu, R. A.; Greiner, W.; Nagame, Y.; Hamilton, J. H.; Ramayya, A. V.

    2002-01-01

    Fission approach to the cluster radioactivities and α-decay has been systematically developed during the last two decades. A more complex process, the ternary fission, was observed since 1946 both in neutron-induced and spontaneous fission. We obtained interesting results concerning the binary fission saddle-point reflection asymmetric nuclear shapes, and we can explain how a possible nuclear quasimolecular state is formed during the 10 Be accompanied cold fission of 252 Cf. The equilibrium nuclear shapes in fission theory are usually determined by minimizing the deformation energy for a given surface equation. We developed a method allowing to obtain a very general saddle-point shape as a solution of a differential equation without an a priori introduction of a shape parametrization. In the approach based on a liquid drop model (LDM), saddle-point shapes are always reflection symmetric: the deformation energy increases with the mass-asymmetry parameter η = (A 1 - A 2 )/(A 1 + A 2 ). By adding the shell corrections to the LDM deformation energy, we obtained minima at a finite mass asymmetry for parent nuclei 238 U, 232,228 Th in agreement with experiments. This correction was calculated phenomenologically. A technique based on the fragment identification by using triple γ coincidences in the large arrays of Ge-detectors, like GAMMASPHERE, was employed at Vanderbilt University to discover new characteristics of the fission process, and new decay modes. The possibility of a whole family of new decay modes, the multicluster accompanied fission, was envisaged. Besides the fission into two or three fragments, a heavy or superheavy nucleus spontaneously breaks into four, five or six nuclei of which two are asymmetric or symmetric heavy fragments and the others are light clusters, e.g. α-particles, 10 Be, 14 C, or combinations of them. Examples were presented for the two-, three- and four cluster accompanied cold fission of 252 Cf and 262 Rf, in which the emitted

  15. Investigation of the heavy nuclei fission with anomalously high values of the fission fragments total kinetic energy

    Science.gov (United States)

    Khryachkov, Vitaly; Goverdovskii, Andrei; Ketlerov, Vladimir; Mitrofanov, Vecheslav; Sergachev, Alexei

    2018-03-01

    Binary fission of 232Th and 238U induced by fast neutrons were under intent investigation in the IPPE during recent years. These measurements were performed with a twin ionization chamber with Frisch grids. Signals from the detector were digitized for further processing with a specially developed software. It results in information of kinetic energies, masses, directions and Bragg curves of registered fission fragments. Total statistics of a few million fission events were collected during each experiment. It was discovered that for several combinations of fission fragment masses their total kinetic energy was very close to total free energy of the fissioning system. The probability of such fission events for the fast neutron induced fission was found to be much higher than for spontaneous fission of 252Cf and thermal neutron induced fission of 235U. For experiments with 238U target the energy of incident neutrons were 5 MeV and 6.5 MeV. Close analysis of dependence of fission fragment distribution on compound nucleus excitation energy gave us some explanation of the phenomenon. It could be a process in highly excited compound nucleus which leads the fissioning system from the scission point into the fusion valley with high probability.

  16. Equilibrium fission model calculations

    International Nuclear Information System (INIS)

    Beckerman, M.; Blann, M.

    1976-01-01

    In order to aid in understanding the systematics of heavy ion fission and fission-like reactions in terms of the target-projectile system, bombarding energy and angular momentum, fission widths are calculated using an angular momentum dependent extension of the Bohr-Wheeler theory and particle emission widths using angular momentum coupling

  17. Study of nuclear tracks on different polycarbonate foils and their feasibility for use in personnel monitoring

    International Nuclear Information System (INIS)

    Jayalakshmi, V.; Rohatgi, Rupali; Sathian, Deepa; Marathe, P.K.; Nair, Sarala; Chourasiya, G.; Kannan, S.

    2009-01-01

    CR-39 (PDAC) a solid state nuclear track detector, is used as a routine personnel monitor. 1800 workers are being monitored quarterly for fast neutron using CR-39 foils. These foils procured from Pershore Mouldings, UK are very expensive and indigenous development will make the foils cost effective. The aim of this paper is to find a suitable alternative to the imported CR-39 foils for use in personnel monitoring. The foils from three different manufacturers have been compared with CR-39 foils from Pershore Moulding, UK, presently in use. Out of the three, only sample no 1 is promising. It has a background and sensitivity comparable with CR-39 presently used. The sample 2 is CR-39 being developed in India, has a relatively high background and poor sensitivity. Efforts are being made to improve the quality of this sample. The sample 3 was a poly carbonate from local manufacturer which produced very few tracks and the standard deviation of track counts was very large and hence not useful for personnel monitoring. (author)

  18. Fission neutron spectra measurements at LANSCE - status and plans

    International Nuclear Information System (INIS)

    Haight, Robert C.; Noda, Shusaku; Nelson, Ronald O.; O' Donnell, John M.; Devlin, Matt; Chatillon, Audrey; Granier, Thierry; Taieb, Julien; Laurent, Benoit; Belier, Gilbert; Becker, John A.; Wu, Ching-Yen

    2009-01-01

    A program to measure fission neutron spectra from neutron-induced fission of actinides is underway at the Los Alamos Neutron Science Center (LANSCE) in a collaboration among the CEA laboratory at Bruyeres-le-Chatel, Lawrence Livermore National Laboratory and Los Alamos National Laboratory. The spallation source of fast neutrons at LANSCE is used to provide incident neutron energies from less than 1 MeV to 100 MeV or higher. The fission events take place in a gas-ionization fission chamber, and the time of flight from the neutron source to that chamber gives the energy of the incident neutron. Outgoing neutrons are detected by an array of organic liquid scintillator neutron detectors, and their energies are deduced from the time of flight from the fission chamber to the neutron detector. Measurements have been made of the fission neutrons from fission of 235 U, 238 U, 237 Np and 239 Pu. The range of outgoing energies measured so far is from 1 MeV to approximately 8 MeV. These partial spectra and average fission neutron energies are compared with evaluated data and with models of fission neutron emission. Results to date will be presented and a discussion of uncertainties will be given in this presentation. Future plans are to make significant improvements in the fission chambers, neutron detectors, signal processing, data acquisition and the experimental environment to provide high fidelity data including mea urements of fission neutrons below 1 MeV and improvements in the data above 8 MeV.

  19. Chromic acid anodizing of aluminum foil

    Science.gov (United States)

    Dursch, H.

    1988-01-01

    The success of the Space Station graphite/epoxy truss structure depends on its ability to endure long-term exposure to the LEO environment, primarily the effects of atomic oxygen and the temperture cycling resulting from the 94 minute orbit. This report describes the development and evaluation of chromic acid anodized (CAA) aluminum foil as protective coatings for these composite tubes. Included are: development of solar absorptance and thermal emittance properties required of Al foil and development of CAA parameters to achieve these optical properties; developing techniques to CAA 25 ft lengths of Al foil; developing bonding processes for wrapping the Al foil to graphite/epoxy tubes; and atomic oxygen testing of the CAA Al foil. Two specifications were developed and are included in the report: Chromic Acid Anodizing of Aluminum Foil Process Specification and Bonding of Anodized Aluminum Foil to Graphite/Epoxy Tubes. Results show that CAA Al foil provides and excellent protective and thermal control coating for the Space Station truss structure.

  20. Determination of the fission products yields, lanthanide and yttrium, in the fission of 238U with neutrons of fission spectra

    International Nuclear Information System (INIS)

    Nicoli, I.G.

    1981-06-01

    A radiochemical investigation is performed to measure the cumulative fission product yields of several lantanides and yttrium nuclides in the 238 U by fission neutron spectra. Natural and depleted uranium are irradiated under the same experimental conditions in order to find a way to subtract the contribution of the 235 U fission. 235 U percentage in the natural uranium was 3.5 times higher than in the depleted uranium. Uranium oxides samples are irradiated inside the core of the Argonaut Reactor, at the Instituto de Engenharia Nuclear, and the lantanides and yttrium are chemically separated. The fission products gamma activities were detected, counted and analysed in a system constituted by a high resolution Ge(Li) detector, 4096 multichannel analyser and a PDP-11 computer. Cumulative yields for fission products with half-lives between 1 to 33 hours are measured: 93 Y, 141 La, 142 La, 143 Ce and 149 Nd. The chain total yields are calculated. The cumulative fission yields measured for 93 Y, 141 La, 142 La, 143 Ce and 149 Nd are 4,49%, 4,54%, 4,95%, 4,16% and 1,37% respectively and they are in good agreement with the values found in the literature. (Author) [pt

  1. Low-energy foil aberration corrector

    International Nuclear Information System (INIS)

    Aken, R.H. van; Hagen, C.W.; Barth, J.E.; Kruit, P.

    2002-01-01

    A spherical and chromatic aberration corrector for electron microscopes is proposed, consisting of a thin foil sandwiched between two apertures. The electrons are retarded at the foil to almost zero energy, so that they can travel ballistically through the foil. It is shown that such a low-voltage corrector has a negative spherical aberration for not too large distances between aperture and foil, as well as a negative chromatic aberration. For various distances the third- and fifth-order spherical aberration coefficients and the first- and second-order chromatic aberration coefficients are calculated using ray tracing. Provided that the foils have sufficient electron transmission the corrector is able to correct the third-order spherical aberration and the first-order chromatic aberration of a typical low-voltage scanning electron microscope. Preliminary results show that the fifth-order spherical aberration and the second-order chromatic aberration can be kept sufficiently low

  2. Insights into nuclear structure and the fission process from spontaneous fission

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, J.H.; Butler-Moore, K.; Ramayya, A.V. [Vanderbilt Univ., Nashville, TN (United States)] [and others

    1993-12-31

    The {gamma}-rays emitted following spontaneous and induced fission are rich sources of information about the structure of neutron-rich nuclei and about the fission process itself. The study of spontaneous fissioning isotopes with large Ge detector arrays are providing a wealth of such information as seen, for example, in recent reports. In this paper we present some of our most recent results on nuclear structure studies and conclusions on the fission process itself. In our work, we have employed in spontaneous fission, a triple gamma coincidence study for the first time and a high resolution, X-ray detector-{gamma}-coincidence study. These data provide powerful ways of separating the gamma rays which belong to a particular nucleus. The triple coincidence technique was used to uniquely identify the levels in {sup 136}Te and higher spin states in its N=84 isotones, {sup 138}Xe and {sup 140}Ba{sup 171}. Some other examples of the level structures observed in the low and high mass partners are presented, including a detailed analysis of the backbending of the moment of inertia in {sup 112,114,116}Pd. Finally, we present the first examples of how our analysis allows one to extract a detailed picture of the dependence of the angular momentum on the mass and atomic numbers of the fission fragments and of the long-sought neutron multiplicity distribution from zero-n to ten-n as a function of the charge and mass asymmetry.

  3. Circuit design on plastic foils

    CERN Document Server

    Raiteri, Daniele; Roermund, Arthur H M

    2015-01-01

    This book illustrates a variety of circuit designs on plastic foils and provides all the information needed to undertake successful designs in large-area electronics.  The authors demonstrate architectural, circuit, layout, and device solutions and explain the reasons and the creative process behind each. Readers will learn how to keep under control large-area technologies and achieve robust, reliable circuit designs that can face the challenges imposed by low-cost low-temperature high-throughput manufacturing.   • Discusses implications of problems associated with large-area electronics and compares them to standard silicon; • Provides the basis for understanding physics and modeling of disordered material; • Includes guidelines to quickly setup the basic CAD tools enabling efficient and reliable designs; • Illustrates practical solutions to cope with hard/soft faults, variability, mismatch, aging and bias stress at architecture, circuit, layout, and device levels.

  4. Lifetimes of carbon foils deposited on etched substrates

    International Nuclear Information System (INIS)

    Stoner, J.O. Jr.; Bashkin, S.; Hartog, P.D.; Thomas, G.; Yntema, J.L.

    1981-01-01

    The methods currently in use for producing long-lived carbon foils are listed. The possible common factors which are important in making long lasting foils are a) making a strong, coherent, continuous layer, b) making a foil slack, loose, or baggy, and c) making a foil whose molecular structure minimizes shrinkage. The behavior of foils deposited on etched substrates is compared with foils deposited upon conventional microscope slides

  5. New intensifier foils in roentgenologic diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, H K; Schulze, B

    1981-09-01

    The main components of the foils are the carrier layer and the luminescent layer, which are in direct contact through an adhesive layer. Carrier layer and adhesive layer absorb and reflect parts of the light. In order to reduce this effect, modern foils are slightly dyed, mostly in the complementary colour of the emitted light. The luminescent layer is attached to the carrier layer by means of a binder. The mean binder content of the luminescent layer is about 10% of the weight of the luminescent material. The particle or crystal range between 5 and 10 ..mu..m. The luminescent layer thickness varies between 0.1 and 0.5 mm, according to the intensification. The imposing with luminescents consequently increases from 20 up to 100 mg/cm/sup 2/. In most cases the luminescent layer is protected by a thin layer (10 to 20 ..mu..m thick) of a very resistant and well-transparent synthetic resin. A foil combination consists of a front and a rear foil, the rear foil often providing a higher degree of intensification than the front foil. Foil quality is mainly defined by the intensification factor, quality on its part is characterized by the modulation transmission function and by the particle structure of the luminescent layer. Quality indicators are also the durability of the foils and the steadiness of the crystal arrangement in the luminescent layer. The representation quality is deteriorated also by the irregular blackening of the roentgen film, resulting from the statistic fluctuations of the roentgen quantums, which are absorbed in the luminescent layer. This unfavourable feature, termed quantum noise, increases with decreasing irradiation intensity, with increasing film gradation, and with increasing sensivity of the film-foil-system. Moreover, an optimal image quality is only possible when film and foil are in good contact conditions (in the cassette).

  6. Foil deposition alpha collector probe for TFTR's D-T phase

    International Nuclear Information System (INIS)

    Hermann, H.W.; Darrow, D.S.; Timberlake, J.; Zweben, S.J.; Chong, G.P.; Pitcher, C.S.; Macaulay-Newcombe, R.G.

    1995-03-01

    A new foil deposition alpha collector sample probe has been developed for TFTR's D-T phase. D-T fusion produced alpha particles escaping from the plasma are implanted in nickel foils located in a series of collimating ports on the detector. The nickel foils are removed from the tokamak after exposure to one or more plasma discharges and analyzed for helium content. This detector is intended to provide improved alpha particle energy resolution and pitch angle coverage over existing lost alpha detectors, and to provide an absolutely calibrated cross-check with these detectors. The ability to resolve between separate energy components of alpha particle loss is estimated to be ∼ 20%. A full 360 degree of pitch angle coverage is provided for by 8 channels having an acceptance range of ∼ 53 degree per channel. These detectors will be useful in characterizing classical and anomalous alpha losses and any collective alpha instabilities that may be excited during the D-T campaign of TFTR

  7. Fission level densities

    International Nuclear Information System (INIS)

    Maslov, V.M.

    1998-01-01

    Fission level densities (or fissioning nucleus level densities at fission saddle deformations) are required for statistical model calculations of actinide fission cross sections. Back-shifted Fermi-Gas Model, Constant Temperature Model and Generalized Superfluid Model (GSM) are widely used for the description of level densities at stable deformations. These models provide approximately identical level density description at excitations close to the neutron binding energy. It is at low excitation energies that they are discrepant, while this energy region is crucial for fission cross section calculations. A drawback of back-shifted Fermi gas model and traditional constant temperature model approaches is that it is difficult to include in a consistent way pair correlations, collective effects and shell effects. Pair, shell and collective properties of nucleus do not reduce just to the renormalization of level density parameter a, but influence the energy dependence of level densities. These effects turn out to be important because they seem to depend upon deformation of either equilibrium or saddle-point. These effects are easily introduced within GSM approach. Fission barriers are another key ingredients involved in the fission cross section calculations. Fission level density and barrier parameters are strongly interdependent. This is the reason for including fission barrier parameters along with the fission level densities in the Starter File. The recommended file is maslov.dat - fission barrier parameters. Recent version of actinide fission barrier data obtained in Obninsk (obninsk.dat) should only be considered as a guide for selection of initial parameters. These data are included in the Starter File, together with the fission barrier parameters recommended by CNDC (beijing.dat), for completeness. (author)

  8. Hyaluronan-lecithin foils and their properties

    International Nuclear Information System (INIS)

    BiaIopiotrowicz, Tomasz; Janczuk, BronisIaw; Fiedorowicz, Maciej; Khachatryan, Gohar; Tomasik, Piotr; Bakos, Dusan

    2006-01-01

    Thin, elastic foils of good resistance to the air exposure, patented as wound healing aids, were prepared by evaporation of a blend of lecithin (L) and sodium hyaluronan (H) taken under varying proportions. The contact angle for water, glycerol, formamide, ethylene glycol and diiodomethane, was determined for these foils. The contact angle was correlated against the H:L foil composition. For all liquids but formamide the highest contact angle was noted for the H:L = 2:1 (g g -1 ) ratio. The contact angles provided estimation of the work of adhesion. At the same L:H ratio the work of adhesion was the lowest. It was suggested that lecithin cross-linked hyaluronan. Since the work of adhesion of the studied liquids was similar to that of diiodomethane, it could be concluded that almost all functional groups on the foil surface were completely blocked. Perhaps, at H:L = 2:1 (g g -1 ) a stoichiometric complex of hyaluronic acid with lecithin was formed, and polar functional groups from both reagents were involved. Foils seem to be electrostatic complexes of H with L. Foils with the H:L equal to 2:1 exhibited specific properties confirmed by the IR reflectance spectra of the foils. The thermogravimetry (TG/DTG) also revealed unique thermal behaviour confirming other specific properties of the foil of this composition. For the same ratio a thorough inspection of the scanning electron micrographs (SEM) revealed few irregularly distributed perforations of 1-2 μm in diameter seen as black points, which can be recognized as pores. Properties of the foils determined in the contact angle measurements are nicely backed by the results from thermogravimetric and scanning electron microscopic studies

  9. Measurement of neutron flux by semiconductor detector; Merenje raspodele neutronskog fluksa poluprovodnickim detektorom

    Energy Technology Data Exchange (ETDEWEB)

    Obradovic, D; Bosevski, T [The Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-07-01

    Using semiconductor detectors for measuring the neutron flux distribution is considered suitable and faster than using activation foils. Results of radial neutron flux distribution obtained by semiconductor detectors are presented.

  10. Detector instrumentation for nuclear fission studies

    Indian Academy of Sciences (India)

    2015-09-03

    Sep 3, 2015 ... Both the spectrometers detect fusion products at their focal plane. MWPC. MWPC can be fabricated ... More details ... measurements and subsequent extraction of their mass, angular and total kinetic energy. 486. Pramana – J.

  11. Study of electron-capture delayed fission in Am-232

    International Nuclear Information System (INIS)

    Kreek, S.A.; Hall, H.L.; Hoffman, D.C.; Strellis, D.; Gregorich, K.E.

    1996-01-01

    An automated x-ray-fission coincidence system was designed and constructed by LLNL and Lawrence Berkeley National Laboratory (LBNL) for use inside the Gammasphere high efficiency gamma-ray detector array at LBNL. The x-ray-fission coincidence apparatus detection station consists of two surface barrier detectors (for detection of fission fragments) and two high-purity Ge (HPGe) planar x-ray detectors (for measurement of x-rays and low-energy gamma rays). The detection station is placed inside Gammasphere at the 88-Inch Cyclotron at LBNL and used in conjunction with Gammasphere to measure the x-rays, low-energy gamma-rays and fission fragments resulting from the ECDF process. A series of collaborative experiment between LLNL, LBNL, and LANL utilizing various components of the x-ray-fission coincidence apparatus to measure x-rays and gamma-rays in the decay of a stationary 252 Cf source were performed to test the various components of the x-ray-fission coincidence apparatus. The test experiments have been completed and the data is currently being analyzed by LBNL. Preliminary test results indicate that the system performed better than expected (e.g., the x-ray detectors performed better than expected with no evidence of microphonic noise that would reduce the photon energy resolution)

  12. Irradiation of Methane by Recoiling Fission-Fragments

    Energy Technology Data Exchange (ETDEWEB)

    Hall, G. R.; Galley, M. R. [Imperial College of Science and Technology, London (United Kingdom)

    1963-11-15

    Pure methane gas (containing <0.003% oxygen and <5 mg H{sub 2}O per m{sup 3}) has been irradiated at pressures ranging from 5 to 50 atmospheres pressure and at 30{sup o}C with recoiling fission - fragments. The gas is contained in a silica ampoule of volume about 9 cm{sup 3} and which also contains a platinum cylinder coated on the inside with 0.5 mg/cm{sup 2} highly enriched uranium oxide. When the ampoule is irradiated in a nuclear reactor with thermal neutrons, about half the fission-fragments recoil from the uranium and dissipate their energy in the methane. In a typical irradiation, methane at 10 atm pressure receives a dose of 5 x 10{sup 21} eV at an integrated reactor flux of 5 x 10{sup 15} neutrons/cm{sup 2}. Neutron flux i s measured by means of a gold-foil flux monitor. The activity of the Au{sup 198} is counted in a 4 {pi} proportional counter. The irradiation products have been detected by using beta-ionization detectors for gas-phase chromatography with suitable columns. The following products have been found: hydrogen, ethane, propane, n-butane, isobutane, n-pentane, iso-pentane, neo-pentane, the seven hexanes. Traces of higher hydrocarbons are undoubtedly present but the analysis of these has not been attempted. Hydrogen is present in greatest yield and the yields of the hydrocarbons decrease in the order given above. Despite previously reported yields of ethylene (G-value-0.1) from gamma and fast - electron irradiations, no ethylene or other unsaturated products have been detected in this work. It would have been possible to detect 10 ppm in the products. This is to be expected as any double bonds which may be produced would almost immediately be hydrogenated by the hydrogen present. Yields for hydrogen, ethane and propane lie within the range of values that have been reported by other workers for gamma and fast electron irradiations. (author)

  13. Fast fission phenomena

    International Nuclear Information System (INIS)

    Gregoire, Christian.

    1982-03-01

    Experimental studies of fast fission phenomena are presented. The paper is divided into three parts. In the first part, problems associated with fast fission processes are examined in terms of interaction potentials and a dynamic model is presented in which highly elastic collisions, the formation of compound nuclei and fast fission appear naturally. In the second part, a description is given of the experimental methods employed, the observations made and the preliminary interpretation of measurements suggesting the occurence of fast fission processes. In the third part, our dynamic model is incorporated in a general theory of the dissipative processes studied. This theory enables fluctuations associated with collective variables to be calculated. It is applied to highly inelastic collisions, to fast fission and to the fission dynamics of compound nuclei (for which a schematic representation is given). It is with these calculations that the main results of the second part can be interpreted [fr

  14. Energy Dependence of Fission Product Yields from 235U, 238U and 239Pu for Incident Neutron Energies Between 0.5 and 14.8 MeV

    Science.gov (United States)

    Gooden, M. E.; Arnold, C. W.; Becker, J. A.; Bhatia, C.; Bhike, M.; Bond, E. M.; Bredeweg, T. A.; Fallin, B.; Fowler, M. M.; Howell, C. R.; Kelley, J. H.; Krishichayan; Macri, R.; Rusev, G.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.; Tornow, W.; Vieira, D. J.; Wilhelmy, J. B.

    2016-01-01

    Fission Product Yields (FPY) have historically been one of the most observable features of the fission process. They are known to have strong variations that are dependent on the fissioning species, the excitation energy, and the angular momentum of the compound system. However, consistent and systematic studies of the variation of these FPY with energy have proved challenging. This is caused primarily by the nature of the experiments that have traditionally relied on radiochemical procedures to isolate specific fission products. Although radiochemical procedures exist that can isolate all products, each element presents specific challenges and introduces varying degrees of systematic errors that can make inter-comparison of FPY uncertain. Although of high importance in fields such as nuclear forensics and Stockpile Stewardship, accurate information about the energy dependence of neutron induced FPY are sparse, due primarily to the lack of suitable monoenergetic neutron sources. There is a clear need for improved data, and to address this issue, a collaboration was formed between Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL) and the Triangle Universities Nuclear Laboratory (TUNL) to measure the energy dependence of FPY for 235U, 238U and 239Pu. The measurements have been performed at TUNL, using a 10 MV Tandem Van de Graaff accelerator to produce monoenergetic neutrons at energies between 0.6 MeV to 14.8 MeV through a variety of reactions. The measurements have utilized a dual-fission chamber, with thin (10-100 μg/cm2) reference foils of similar material to a thick (100-400 mg) activation target held in the center between the chambers. This method allows for the accurate determination of the number of fissions that occurred in the thick target without requiring knowledge of the fission cross section or neutron fluence on target. Following activation, the thick target was removed from the dual-fission chamber and gamma

  15. Energy Dependence of Fission Product Yields from {sup 235}U, {sup 238}U and {sup 239}Pu for Incident Neutron Energies Between 0.5 and 14.8 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Gooden, M.E., E-mail: m_gooden@lanl.gov [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Arnold, C.W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Becker, J.A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Bhatia, C. [McMaster University, Ontario (Canada); Bhike, M. [Department of Physics, Duke University,Durham, North Carolina 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708 (United States); Bond, E.M.; Bredeweg, T.A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Fallin, B. [Department of Physics, Duke University,Durham, North Carolina 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708 (United States); Fowler, M.M. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Howell, C.R. [Department of Physics, Duke University,Durham, North Carolina 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708 (United States); Kelley, J.H. [Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708 (United States); Department of Physics, North Carolina State University, Raleigh, North Carolina 27605 (United States); Krishichayan [Department of Physics, Duke University,Durham, North Carolina 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708 (United States); Macri, R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Rusev, G. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Ryan, C.; Sheets, S.A.; Stoyer, M.A.; Tonchev, A.P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Tornow, W. [Department of Physics, Duke University,Durham, North Carolina 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708 (United States); and others

    2016-01-15

    Fission Product Yields (FPY) have historically been one of the most observable features of the fission process. They are known to have strong variations that are dependent on the fissioning species, the excitation energy, and the angular momentum of the compound system. However, consistent and systematic studies of the variation of these FPY with energy have proved challenging. This is caused primarily by the nature of the experiments that have traditionally relied on radiochemical procedures to isolate specific fission products. Although radiochemical procedures exist that can isolate all products, each element presents specific challenges and introduces varying degrees of systematic errors that can make inter-comparison of FPY uncertain. Although of high importance in fields such as nuclear forensics and Stockpile Stewardship, accurate information about the energy dependence of neutron induced FPY are sparse, due primarily to the lack of suitable monoenergetic neutron sources. There is a clear need for improved data, and to address this issue, a collaboration was formed between Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL) and the Triangle Universities Nuclear Laboratory (TUNL) to measure the energy dependence of FPY for {sup 235}U, {sup 238}U and {sup 239}Pu. The measurements have been performed at TUNL, using a 10 MV Tandem Van de Graaff accelerator to produce monoenergetic neutrons at energies between 0.6 MeV to 14.8 MeV through a variety of reactions. The measurements have utilized a dual-fission chamber, with thin (10-100 μg/cm2) reference foils of similar material to a thick (100-400 mg) activation target held in the center between the chambers. This method allows for the accurate determination of the number of fissions that occurred in the thick target without requiring knowledge of the fission cross section or neutron fluence on target. Following activation, the thick target was removed from the dual-fission chamber

  16. Measurements of Short-Lived Fission Isomers

    Science.gov (United States)

    Finch, Sean; Bhike, Megha; Howell, Calvin; Krishichayan, Fnu; Tornow, Werner

    2016-09-01

    Fission yields of the short lived isomers 134mTe (T1 / 2 = 162 ns) and 136mXe (T1 / 2 = 2 . 95 μs) were measured for 235U and 238U. The isomers were detected by the γ rays associated with the decay of the isomeric states using high-purity germanium detectors. Fission was induced using both monoenergetic γ rays and neutrons. At TUNL's High-Intensity Gamma-ray Source (HI γS), γ rays of 9 and 11 MeV were produced . Monoenergetic 8 MeV neutrons were produced at TUNL's tandem accelerator laboratory. Both beams were pulsed to allow for precise time-gated spectroscopy of both prompt and delayed γ rays following fission. This technique offers a non-destructive probe of special nuclear materials that is sensitive to the isotopic identity of the fissile material.

  17. Determination of low-energy ion-induced electron yields from thin carbon foils

    International Nuclear Information System (INIS)

    Allegrini, Frederic; Wimmer-Schweingruber, Robert F.; Wurz, Peter; Bochsler, Peter

    2003-01-01

    Ion beams crossing thin carbon foils can cause electron emission from the entrance and exit surface. Thin carbon foils are used in various types of time-of-flight (TOF) mass spectrometers to produce start pulses for TOF measurements. The yield of emitted electrons depends, among other parameters, on the energy of the incoming ion and its mass, and it has been experimentally determined for a few projectile elements. The electron emission yield is of great importance for deriving abundance ratios of elements and isotopes in space plasmas using TOF mass spectrometers. We have developed a detector for measuring ion-induced electron yields, and we have extended the electron yield measurements for oxygen to energies relevant for solar wind research. We also present first measurements of the carbon foil electron emission yield for argon and iron in the solar wind energy range

  18. Fission product yields

    International Nuclear Information System (INIS)

    Valenta, V.; Hep, J.

    1978-01-01

    Data are summed up necessary for determining the yields of individual fission products from different fissionable nuclides. Fractional independent yields, cumulative and isobaric yields are presented here for the thermal fission of 235 U, 239 Pu, 241 Pu and for fast fission (approximately 1 MeV) of 235 U, 238 U, 239 Pu, 241 Pu; these values are included into the 5th version of the YIELDS library, supplementing the BIBFP library. A comparison is made of experimental data and possible improvements of calculational methods are suggested. (author)

  19. Fission neutron multiplicity calculations

    International Nuclear Information System (INIS)

    Maerten, H.; Ruben, A.; Seeliger, D.

    1991-01-01

    A model for calculating neutron multiplicities in nuclear fission is presented. It is based on the solution of the energy partition problem as function of mass asymmetry within a phenomenological approach including temperature-dependent microscopic energies. Nuclear structure effects on fragment de-excitation, which influence neutron multiplicities, are discussed. Temperature effects on microscopic energy play an important role in induced fission reactions. Calculated results are presented for various fission reactions induced by neutrons. Data cover the incident energy range 0-20 MeV, i.e. multiple chance fission is considered. (author). 28 refs, 13 figs

  20. Radioactivity analysis in niobium activation foils

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, G.E.

    1995-06-01

    The motivation for this study was to measure and analyze the activity of six (6) niobium (Nb) foils (the x-rays from an internal transition in Nb-93m) and apply this information with previously obtained activation foil data. The niobium data was used to determine the epithermal to MeV range for the neutron spectrum and fluence. The foil activation data was re-evaluated in a spectrum analysis code (STAY`SL) to provide new estimates of the exposure at the Los Alamos Spallation Radiation Effect Facility (LASREF). The activity of the niobium foils was measured and analyzed at the University of Missouri-Columbia (UMC) under the direction of Professor William Miller. The spectrum analysis was performed at the University of Missouri-Rolla (UMR) by Professor Gary Mueller.

  1. A state enumeration of the foil knot

    OpenAIRE

    Ramaharo, Franck; Rakotondrajao, Fanja

    2017-01-01

    We split the crossings of the foil knot and enumerate the resulting states with a generating polynomial. Unexpectedly, the number of such states which consist of two components are given by the lazy caterer's sequence. This sequence describes the maximum number of planar regions that is obtained with a given number of straight lines. We then establish a bijection between this partition of the plane and the concerned foil splits sequence.

  2. Light Barrier for Non-Foil Packaging

    Science.gov (United States)

    2010-12-16

    foil and all-plastic materials were retorted and a second set of all-plastic packaged entrees were Microwave Sterilized on the Washington State...Copolymers for Retort Applications; SPE Polyolefins and Flexible Packaging Conference: Society of Plastics Engineers. Newtown. CT, 43pp. Thellen C...Final Scientific Report Light Barrier for Non-Foil Packaging Contract No. W911QY-08-C-0132 Final Scientific Report Contract No. W911QY-08-C-0132

  3. Correlated Production and Analog Transport of Fission Neutrons and Photons using Fission Models FREYA, FIFRELIN and the Monte Carlo Code TRIPOLI-4® .

    Science.gov (United States)

    Verbeke, Jérôme M.; Petit, Odile; Chebboubi, Abdelhazize; Litaize, Olivier

    2018-01-01

    Fission modeling in general-purpose Monte Carlo transport codes often relies on average nuclear data provided by international evaluation libraries. As such, only average fission multiplicities are available and correlations between fission neutrons and photons are missing. Whereas uncorrelated fission physics is usually sufficient for standard reactor core and radiation shielding calculations, correlated fission secondaries are required for specialized nuclear instrumentation and detector modeling. For coincidence counting detector optimization for instance, precise simulation of fission neutrons and photons that remain correlated in time from birth to detection is essential. New developments were recently integrated into the Monte Carlo transport code TRIPOLI-4 to model fission physics more precisely, the purpose being to access event-by-event fission events from two different fission models: FREYA and FIFRELIN. TRIPOLI-4 simulations can now be performed, either by connecting via an API to the LLNL fission library including FREYA, or by reading external fission event data files produced by FIFRELIN beforehand. These new capabilities enable us to easily compare results from Monte Carlo transport calculations using the two fission models in a nuclear instrumentation application. In the first part of this paper, broad underlying principles of the two fission models are recalled. We then present experimental measurements of neutron angular correlations for 252Cf(sf) and 240Pu(sf). The correlations were measured for several neutron kinetic energy thresholds. In the latter part of the paper, simulation results are compared to experimental data. Spontaneous fissions in 252Cf and 240Pu are modeled by FREYA or FIFRELIN. Emitted neutrons and photons are subsequently transported to an array of scintillators by TRIPOLI-4 in analog mode to preserve their correlations. Angular correlations between fission neutrons obtained independently from these TRIPOLI-4 simulations, using

  4. Mock-up experiment at Birmingham University for BNCT project of Osaka University – Neutron flux measurement with gold foil

    International Nuclear Information System (INIS)

    Tamaki, S.; Sakai, M.; Yoshihashi, S.; Manabe, M.; Zushi, N.; Murata, I.; Hoashi, E.; Kato, I.; Kuri, S.; Oshiro, S.; Nagasaki, M.; Horiike, H.

    2015-01-01

    Mock-up experiment for development of accelerator based neutron source for Osaka University BNCT project was carried out at Birmingham University, UK. In this paper, spatial distribution of neutron flux intensity was evaluated by foil activation method. Validity of the design code system was confirmed by comparing measured gold foil activities with calculations. As a result, it was found that the epi-thermal neutron beam was well collimated by our neutron moderator assembly. Also, the design accuracy was evaluated to have less than 20% error. - Highlights: • Accelerator based neutron source for BNCT is being developed in Osaka University. • Mock-up experiment was carried out at Birmingham University, UK. • Neutronics performance of our assembly was evaluated from gold foil activation. • Gold foil activation was determined by using HPGe detectors. • Validity of the neutronics design code system was confirmed.

  5. Fission in intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.; Boissevain, J.; Fowler, M.M.; Gavron, A.; Jacak, B.V.; Lysaght, P.S.; Britt, H.C.; Fields, D.J.; Hansen, L.F.; Lanier, R.G.; Massoletti, D.J.; Namboodiri, M.M.; Remington, B.A.; Sangster, T.C.; Struble, G.L.; Webb, M.L.; Chan, Y.D.; Dacai, A.; Harmon, A.; Leyba, J.; Pouliot, J.; Stokstad, R.G.; Hansen, O.; Levine, M.J.; Thorn, C.E.; Trautmann, W.; Dichter, B.; Kaufman, S.; Videbaek, F.; Fraenkel, Z.; Mamane, G.; Cebra, D.; Westfall, G.D.

    1989-01-01

    A systematic study of reaction mechanisms at intermediate energies (50-100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: The reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicty of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. (orig.)

  6. Fission in intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.

    1989-01-01

    A systematic study of reaction mechanisms at intermediate energies (50--100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: the reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicity of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. 7 figs

  7. Fission neutron output measurements at LANSCE

    International Nuclear Information System (INIS)

    Nelson, Ronald Owen; Haight, Robert C.; Devlin, Matthew J.; Fotiadis, Nikolaos; Laptev, Alexander; O'Donnell, John M.; Taddeucci, Terry N.; Tovesson, Fredrik; Ullmann, J.L.; Wender, Stephen A.; Bredeweg, T.A.; Jandel, M.; Vieira, D.J.; Wu, Ching-Yen; Becker, J.A.; Stoyer, M.A.; Henderson, R.; Sutton, M.; Belier, Gilbert; Chatillon, A.; Granier, Thierry; Laurent, Benoit; Taieb, Julien

    2010-01-01

    Accurate data for both physical properties and fission properties of materials are necessary to properly model dynamic fissioning systems. To address the need for accurate data on fission neutron energy spectra, especially at outgoing neutron energies below about 200 keV and at energies above 8 MeV, ongoing work at LANSCE involving collaborators from LANL, LLNL and CEA Bruyeres-le-Chatel is extending the energy range, efficiency and accuracy beyond previous measurements. Initial work in the outgoing neutron energy range from 1 to 7 MeV is consistent with current evaluations and provides a foundation for extended measurements. As part of these efforts, a new fission fragment detector that reduces backgrounds and improves timing has been designed fabricated and tested, and new neutron detectors are being assessed for optimal characteristics. Simulations of experimental designs are in progress to ensure that accuracy goals are met. Results of these measurements will be incorporated into evaluations and data libraries as they become available.

  8. Gas permeability of thin polyimide foils prepared by in-situ polymerisation

    International Nuclear Information System (INIS)

    Stolarz, Anna; Varlam, Mihai; Wellum, Roger

    2008-01-01

    The entrance windows to the gas detector chambers as well as to the target containers used in high-energy and high-intensity accelerators must be as thin as possible to minimise energy losses of the particles used in astrophysics and nuclear physics studies. Because of their good physical properties, polyimide foils are often considered as suitable material for such windows, but commercially available foils, having a thickness greater than 7-8 μm (>1 mg/cm 2 ), would cause energy losses of particles significant for some nuclear reactions studied. Foils prepared by in-situ polymerisation can, however, be as thin as 0.07 μm (∼10 μg/cm 2 ). The permeability of 4 μm foils produced by in-situ polymerisation has been measured at room temperature for He and Ar. For He measurements were performed in the pressure range of 4-70 mbar and for Ar in the range of 20-140 mbar and the permeability was found to be in good agreement with the values published for the thicker commercial foils

  9. Neutron detector using sol-gel absorber

    Science.gov (United States)

    Hiller, John M.; Wallace, Steven A.; Dai, Sheng

    1999-01-01

    An neutron detector composed of fissionable material having ions of lithium, uranium, thorium, plutonium, or neptunium, contained within a glass film fabricated using a sol-gel method combined with a particle detector is disclosed. When the glass film is bombarded with neutrons, the fissionable material emits fission particles and electrons. Prompt emitting activated elements yielding a high energy electron contained within a sol-gel glass film in combination with a particle detector is also disclosed. The emissions resulting from neutron bombardment can then be detected using standard UV and particle detection methods well known in the art, such as microchannel plates, channeltrons, and silicon avalanche photodiodes.

  10. Reference and standard benchmark field consensus fission yields for U.S. reactor dosimetry programs

    International Nuclear Information System (INIS)

    Gilliam, D.M.; Helmer, R.G.; Greenwood, R.C.; Rogers, J.W.; Heinrich, R.R.; Popek, R.J.; Kellogg, L.S.; Lippincott, E.P.; Hansen, G.E.; Zimmer, W.H.

    1977-01-01

    Measured fission product yields are reported for three benchmark neutron fields--the BIG-10 fast critical assembly at Los Alamos, the CFRMF fast neutron cavity at INEL, and the thermal column of the NBS Research Reactor. These measurements were carried out by participants in the Interlaboratory LMFBR Reaction Rates (ILRR) program. Fission product generation rates were determined by post-irradiation analysis of gamma-ray emission from fission activation foils. The gamma counting was performed by Ge(Li) spectrometry at INEL, ANL, and HEDL; the sample sent to INEL was also analyzed by NaI(Tl) spectrometry for Ba-140 content. The fission rates were determined by means of the NBS Double Fission Ionization Chamber using thin deposits of each of the fissionable isotopes. Four fissionable isotopes were included in the fast neutron field measurements; these were U-235, U-238, Pu-239, and Np-237. Only U-235 was included in the thermal neutron yield measurements. For the fast neutron fields, consensus yields were determined for three fission product isotopes--Zr-95, Ru-103, and Ba-140. For these fission product isotopes, a separately activated foil was analyzed by each of the three gamma counting laboratories. The experimental standard deviation of the three independent results was typically +- 1.5%. For the thermal neutron field, a consensus value for the Cs-137 yield was also obtained. Subsidiary fission yields are also reported for other isotopes which were studied less intensively (usually by only one of the participating laboratories). Comparisons with EBR-II fast reactor yields from destructive analysis and with ENDF/B recommended values are given

  11. Fission fragment angular distributions in proton-induced fission of 209Bi (p,f) and 197Au (p,f)

    International Nuclear Information System (INIS)

    Soheily, S.; Noshad, H.; Lamehi-Rashti, M.

    2002-01-01

    The fission fragment angular distributions have been measured for proton-induced fission of 209 B i and 197 A u nuclei using surface barrier detectors at several energies between 25 MeV and 30 MeV. The experimental anisotropies are found to be in agreement with the predictions of the Standard Saddle-Point Statistical Model. The fission cross sections of 209 B i and 197 A u nuclei were also measured and compared with the previous works

  12. The nuclear fission

    International Nuclear Information System (INIS)

    Fiorentino, J.

    1983-01-01

    The nuclear fission process considering initially the formation of compound nucleus and finishing with radioactive decay of fission products is studied. The process is divided in three parts which consist of the events associated to the nucleus of intermediate transitional state, the scission configuration, and the phenomenum of post scission. (M.C.K.) [pt

  13. Fission gas detection system

    International Nuclear Information System (INIS)

    Colburn, R.P.

    1984-01-01

    A device for collecting fission gas released by failed fuel rods which device uses a filter adapted to pass coolant but to block passage of fission gas bubbles due to the surface tension of the bubbles. The coolant may be liquid metal. (author)

  14. Muon-induced fission

    International Nuclear Information System (INIS)

    Polikanov, S.

    1980-01-01

    A review of recent experimental results on negative-muon-induced fission, both of 238 U and 232 Th, is given. Some conclusions drawn by the author are concerned with muonic atoms of fission fragments and muonic atoms of the shape isomer of 238 U. (author)

  15. Relativistic Coulomb Fission

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.

  16. Fusion-fission of superheavy nuclei at low excitation energies

    International Nuclear Information System (INIS)

    Itkis, M.G.; Oganesyan, Yu.Ts.; Kozulin, E.M.

    2000-01-01

    The process of fusion-fission of superheavy nuclei with Z = 102 -122 formed in the reactions with 22 Ne, 26 Mg, 48 Ca, 58 Fe and 86 Kr ions at energies near and below the Coulomb barrier has been studied. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR) using a time-of-flight spectrometer of fission fragments CORSET and a neutron multi-detector DEMON. As a result of the experiments, mass and energy distributions of fission fragments, fission and quasi-fission cross sections, multiplicities of neutrons and gamma-rays and their dependence on the mechanism of formation and decay of compound superheavy systems have been studied

  17. Fission and the discovery of isotopes

    International Nuclear Information System (INIS)

    Thoennessen, M.

    2014-01-01

    The discovery of new isotopes requires new developments in accelerator and detector technology. The new RI Beam Factory at RIKEN and the future projects FAIR at GSI and FRIB at MSU promise to expand the nuclear horizon even further. In the talk a short history of the role that fission played in the discovery of isotopes will be presented and future perspectives will be discussed

  18. Low-temperature relative reflectivity measurements of reflective and scintillating foils used in rare event searches

    Science.gov (United States)

    Langenkämper, A.; Ulrich, A.; Defay, X.; Feilitzsch, F. v.; Lanfranchi, J.-C.; Mondragón, E.; Münster, A.; Oppenheimer, C.; Potzel, W.; Roth, S.; Schönert, S.; Steiger, H.; Trinh Thi, H. H.; Wawoczny, S.; Willers, M.; Zöller, A.

    2018-03-01

    In this work we investigate the reflectivity of highly reflective multilayer polymer foils used in the CRESST experiment. The CRESST experiment searches directly for dark matter via operating scintillating CaWO4 crystals as targets for elastic dark matter-nucleon scattering. In order to suppress background events, the experiment employs the so-called phonon-light technique which is based on the simultaneous measurement of the heat signal in the main CaWO4 target crystal and of the emitted scintillation light with a separate cryogenic light detector. Both detectors are surrounded by a highly reflective and scintillating multilayer polymer foil to increase the light collection efficiency and to veto surface backgrounds. While this study is motivated by the CRESST experiment, the results are also relevant for other rare event searches using scintillating cryogenic bolometers in the field of the search of dark matter and neutrinoless double beta decay (0 νββ). In this work a dedicated experiment has been set up to determine the relative reflectivity at 300 K and 20 K of three multilayer foils ("VM2000", "VM2002", "Vikuiti") produced by the company 3M. The intensity of a light beam reflected off the foil is measured with a CCD camera. The ratio of the intensities at 300 K and 20 K corresponds to the relative reflectivity change. The measurements performed in this work show no variation of the reflectivity with temperature at a level of ∼1%.

  19. Tungsten foil laminate for structural divertor applications – Analyses and characterisation of tungsten foil

    International Nuclear Information System (INIS)

    Reiser, Jens; Rieth, Michael; Dafferner, Bernhard; Hoffmann, Andreas; Yi Xiaoou; Armstrong, David E.J.

    2012-01-01

    It has been attempted for several years to synthesise a tungsten material with a low brittle-to-ductile transition temperature and a high fracture toughness that can be used for structural parts. It was shown in our previous work that tungsten foil is ductile at room temperature and that this ductility can be transformed to bulk by synthesising a tungsten laminate. In this work we want to focus on tungsten foil and assess the microstructure as well as the mechanical properties of the foil. The assessment of the microstructure of 0.1 mm tungsten foil will be performed using electron microscopy. It will be shown that the grains of the tungsten foil have a dimension of 0.5 μm × 3 μm × 15 μm and a clear texture in (1 0 0) 〈0 1 1〉. This texture becomes even more pronounced by annealing. Three-point-bending tests with tungsten foil, as-received, will define the barriers: ductile at room temperature and brittle in liquid nitrogen (−196 °C). This shows that the ductility is a thermally activated process. Recrystallised tungsten foil (annealed for 1 h/2700 °C) shows ductile material behaviour at 200 °C. The paper closes with a discussion on the reasons of the ductility of 0.1 mm tungsten foil. These might be the ultra fine grained (UFG) microstructure or, in other words, a nano microstructure (see tungsten foil as-received), the high amount of mobile edge dislocations, and/or the foil effect, which means that dislocations can move to the surface and are annihilated (see tungsten foil recrystallised).

  20. Study of hypernuclei fission

    International Nuclear Information System (INIS)

    Malek, F.

    1990-01-01

    This work is about PS177 experience made on LEAR machine at CERN in 1988. The annihilation reaction of anti protons on a target of Bismuth or Uranium is studied. Lambda particles are produced by this reaction, in the nucleus in 2% of cases 7.1 10 -3 hypernuclei by stopped antiproton in the target are produced. The prompt hypernucleus fission probability of uranium is 75% and that of Bismuth 10%. The mass distribution of fission fragments is symmetrical ((≡ the excitation energy of the nucleus is very high). If the nucleus hasn't fissioned, the non-mesonic lambda decay, gives it an energy of 100 MeV, what allows to fission later. This fission is delayed because the hypernucleus lifetime is 1.3 +0.25 -0.21 10 -10 sec for Bismuth [fr

  1. The nuclear fission process

    International Nuclear Information System (INIS)

    Wagemans, C.

    1991-01-01

    Fifty years after its discovery, the nuclear fission phenomenon is of recurring interest. When its fundamental physics aspects are considered, fission is viewed in a very positive way, which is reflected in the great interest generated by the meetings and large conferences organized for the 50th anniversary of its discovery. From a purely scientific and practical point of view, a new book devoted to the (low energy) nuclear fission phenomenon was highly desirable considering the tremendous amount of new results obtained since the publication of the book Nuclear Fission by Vandenbosch and Huizenga in 1973 (Academic Press). These new results could be obtained thanks to the growth of technology, which enabled the construction of powerful new neutron sources, particle and heavy ion accelerators, and very performant data-acquisition and computer systems. The re-invention of the ionization chamber, the development of large fission fragment spectrometers and sophisticated multiparameter devices, and the production of exotic isotopes also contributed significantly to an improved understanding of nuclear fission. This book is written at a level to introduce graduate students to the exciting subject of nuclear fission. The very complete list of references following each chapter also makes the book very useful for scientists, especially nuclear physicists. The book has 12 chapters covering the fission barrier and the various processes leading to fission as well as the characteristics of the various fission reaction products. In order to guarantee adequate treatment of the very specialized research fields covered, several distinguished scientists actively involved in some of these fields were invited to contribute their expertise as authors or co-authors of the different chapters

  2. Silicon vertex detector for superheavy elements identification

    Directory of Open Access Journals (Sweden)

    Bednarek A.

    2012-07-01

    Full Text Available Silicon vertex detector for superheavy elements (SHE identification has been proposed. It will be constructed using very thin silicon detectors about 5 μm thickness. Results of test of 7.3 μm four inch silicon strip detector (SSD with fission fragments and α particles emitted by 252Cf source are presented

  3. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

  4. Capture and fission with DANCE and NEUANCE

    Energy Technology Data Exchange (ETDEWEB)

    Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T.A.; Chadwick, M.B.; Couture, A.; Fowler, M.M.; Hayes, A.; Kawano, T.; Mosby, S.; Stetcu, I.; Taddeucci, T.N.; Talou, P.; Ullmann, J.L.; Vieira, D.J.; Wilhelmy, J.B. [Los Alamos National Laboratory, Los Alamos, New Mexico (United States)

    2015-12-15

    A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on {sup 235}U are focused on quantifying the population of short-lived isomeric states in {sup 236}U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables. (orig.)

  5. Advanced foil activation techniques for the measurement of within-pin distributions of the 63Cu(n,γ)64Cu reaction rate in nuclear fuel

    International Nuclear Information System (INIS)

    Macku, K.; Jatuff, F.; Murphy, M.F.; Joneja, O.P.; Bischofberger, R.; Chawla, R.

    2006-01-01

    Different foil activation techniques have been used for measuring spatial distributions of the 63 Cu(n,γ) 64 Cu reaction within two pins of a SVEA-96 Optima2 boiling water reactor fuel assembly, at the critical facility PROTEUS. This reaction is of interest because its 1/v cross-section gives it a good representation of the 235 U fission rate. Initially, radial capture rate profiles were measured with mechanically punched copper foils. More detailed profiles were then determined by using a 0.2 mm copper wire spiral (∼200 μm resolution), as well as 5-, 10-, and 20-ring UV-lithography, electroplating, and molding (UV-LIGA) foils (up to a 100 μm resolution). For azimuthal measurements, apart from manually cut activation foils (into 8 sectors), 8- and 12-sector LIGA foils were used. The highly versatile LIGA foils have the additional advantage of being very easily separated into individual pieces after irradiation without the use of punches or other cutting tools. In order to account for the invasive character of the foil activation techniques, corrections to account for sample perturbations and for self-shielding effects were determined via simplified Monte Carlo (MCNP4C) modeling of the experimental setup. The final results from the various measurements of 63 Cu(n,γ) 64 Cu within-pin distributions have been compared with MCNP computations employing a detailed model of the full SVEA Optima2 fuel assembly

  6. Baby fission chambers; Etude de chambres a fission miniatures

    Energy Technology Data Exchange (ETDEWEB)

    Guery, U; Tachon, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    The present report is intended, on the one band, as a study of the main types of fission chambers produced to date, and on the other, to deal more generally with this type of detector. Originally, it was with a view to the charting of neutron scatter in 'Proserpine' that the authors undertook the study of these chambers. During the course of the task, it was considered worth tbe trouble of developing its scope to include a more general application: neutron scatter measurement of various energy neutrons within a reduced volume with slight local disturbance. (author) [French] Le present rapport se propose, d'une part, d'exposer les principales realisations de chambres a fission, d'autre part de faire une mise au point a caractere plus general sur ces detecteurs. Au depart, c'est surtout en vue des mesures de densite neutronique dans 'Proserpine' que les auteurs ont etudie ces chambres; au cours de la mise au point, il a paru interessant de developper leur etude pour des applications plus generales: mesures de densites de neutrons de differentes energies dans un element de volume tres reduit et avec faible perturbation locale. (auteur)

  7. Baby fission chambers; Etude de chambres a fission miniatures

    Energy Technology Data Exchange (ETDEWEB)

    Guery, U.; Tachon, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    The present report is intended, on the one band, as a study of the main types of fission chambers produced to date, and on the other, to deal more generally with this type of detector. Originally, it was with a view to the charting of neutron scatter in 'Proserpine' that the authors undertook the study of these chambers. During the course of the task, it was considered worth tbe trouble of developing its scope to include a more general application: neutron scatter measurement of various energy neutrons within a reduced volume with slight local disturbance. (author) [French] Le present rapport se propose, d'une part, d'exposer les principales realisations de chambres a fission, d'autre part de faire une mise au point a caractere plus general sur ces detecteurs. Au depart, c'est surtout en vue des mesures de densite neutronique dans 'Proserpine' que les auteurs ont etudie ces chambres; au cours de la mise au point, il a paru interessant de developper leur etude pour des applications plus generales: mesures de densites de neutrons de differentes energies dans un element de volume tres reduit et avec faible perturbation locale. (auteur)

  8. Fission 2009 4. International Workshop on Nuclear Fission and Fission Product Spectroscopy - Compilation of slides

    International Nuclear Information System (INIS)

    2009-01-01

    This conference is dedicated to the last achievements in experimental and theoretical aspects of the nuclear fission process. The topics include: mass, charge and energy distribution, dynamical aspect of the fission process, nuclear data evaluation, quasi-fission and fission lifetime in super heavy elements, fission fragment spectroscopy, cross-section and fission barrier, and neutron and gamma emission. This document gathers the program of the conference and the slides of the presentations

  9. Mass distribution of fission fragments using SSNTDs based image analysis system

    International Nuclear Information System (INIS)

    Kolekar, R.V.; Sharma, D.N.

    2006-01-01

    Lexan polycarbonate track detector was used to obtain mass distribution of fission fragments from 252 Cf planchette source, Normally, if the fission fragments are incident perpendicular to the lexan surface, the diameter of heavy fragment is greater than that of lighter fragment. In practical problems fission fragments are incident on the detector at all angles. So, in the present experiment, lexan detector was exposed to 252 Cf planchette source in 2π geometry. Fission fragments were incident on the detector with various angles. So the projected fission track length for fission fragment of same energy is different because of different angle of incidence. Image analysis software was used to measure the projected track length. But the problem is that for fission fragment having greater angle of incidence the entire track length is not focused on the surface. So reduced track length is measured. This problem is solved by taking two images, one at the surface and one at the tip of track and then overlapping both the images using image analysis software. The projected track length and the depth of the track were used to get the angle of incidence. Fission track lengths were measured for same angle of incidence. In all 500 track lengths were measured and plot for mass distribution for fission fragment was obtained.(author)

  10. Mass distributions in monoenergetic-neutron-induced fission of 232Th

    International Nuclear Information System (INIS)

    Glendenin, L.E.; Gindler, J.E.; Ahmad, I.; Henderson, D.J.; Meadows, J.W.

    1980-01-01

    Fission product yields for 38 masses were determined for the fission of 232 Th with essentially monoenergetic neutrons of 2.0, 3.0, 4.0, 5.9, 6.4, 6.9, 7.6, and 8.0 MeV. Fission product activities were measured by Ge(Li) γ-ray spectrometry of irradiated 232 Th foils and by chemical separation of the fission product elements followed by β counting. The mass yield data for 232 Th(n,f ) show a sensitive increase of fission yields in the near-symmetric mass region (valley) with increasing incident neutron energy E/sub n/ and a pronounced dip in yield at the onset of second-chance fission just above the neutron binding energy (at approx. 6 MeV) where the excitation energy is lowered by competition with neutron evaporation prior to fission. The effect of second-chance fission is also seen in the yields of asymmetric peak products. A distinct third peak is observed at symmetry in the valley of the mass distribution, and enhanced yields are observed in the asymmetric peaks at masses associated with even Z (proton pairing effect). The fission yeilds of 232 Th(n,f ) are compared with those of 238 U(n,f ) and 232 Th

  11. Cryostat with Foil and MLI

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Peter K.F.; Gung, Chen-yu

    2005-10-06

    Induction cores are used to accelerate heavy ion beam array, which are built around the outer diameter of the cryostat housing the superconducting quadruple array. Compact cryostat is highly desirable to reduce the cost of the induction cores. Recent experiences in fabrication of a cryostat for single beam transport revealed that it is possible to reduce the spacing in the cryostat vacuum jacket by using low-emissivity thermal insulation material instead of conventional MLI. However, it is labor-intensive to install the new type of insulation as compared with using MLI. It is promising to build a cost-effective compact cryostat for quadruple magnet array for heavy ion beam array transport by using low-emissivity material combined with conventional MLI as radiation insulation. A matrix of insulation designs and tests will be performed as the feasibility study and for the selection of the optimal thermal insulation as the Phase I work. The selected mixed insulation will be used to build prototype compact cryostats in the Phase II project, which are aiming for housing quadruple doublet array. In this STTR phase I study, a small cryostat has been designed and built to perform calorimetric characterization of the heat load in a liquid helium vessel insulated with a vacuum layer with a nominal clearance of 3.5 mm. The vacuum clearance resembled that used in the warm-bore beam tube region in a prototype cryostat previously built for the heavy ion beam transport experiment. The vacuum clearance was geometrically restricted with a heater shell with the temperature controlled at near 300 K. Various combinations of radiation and thermal shields were installed in the tight vacuum clearance for heat load measurements. The measured heat loads are reported and compared with previous test result using a compact vacuum layer. Further developments of the thermal insulations used in the present study are discussed. The compact cryostat with foil and MLI insulation may be used in the

  12. Measurement of fission yields for 232-Th (n,f) at 14,7 MeV by direct gamma spectrometric method

    International Nuclear Information System (INIS)

    Chouak, K.; Berrada, M.; Embarech, K.

    1994-01-01

    Fission yields for the reaction 232-Th (n,f) were measured at 14,7 MeV using the activation technique with direct gamma spectrometric method. Neutrons were produced via the T(d,n) sup 4 He reaction. The neutron fluences were determined relative to the well-known sup 2 sup 7 Al(n,p) sup 2 sup 7 Mg or sup 2 sup 7 Al(n,alpha) sup 2 sup 4 Na cross section, according to the irradiation time. Yields of fission products were determined by measuring the induced gamma ray activities of the irradiated Th foils, using a calibrated Ge(Li) detector. All necessary corrections were taken into account: self absorption, coincidence losses and natural gamma rays. Fifty six cumulative yields were measured and only twenty one corresponding results were found in the literature (Crouch,1977). A satisfactory agreement is observed between our results and the published data with the exception of the masses:A=134 and A=140. 1 tab., 2 refs. (author)

  13. Gas permeability through thin-foil x-ray filters

    Science.gov (United States)

    Tveekrem, June L.; Keski-Kuha, Ritva A.; Webb, Andrew T.

    1997-10-01

    We have measured the permeation rates of helium and water through thin-foil UV-blocking filters used in the ASTRO-E/x- ray spectrometer (XRS) instrument. In the XRS program, there is a concern that outgassed contaminants such as water could permeate through the outermost filter which will be at room temperature and freeze on the inner filters which will be at cryogenic temperatures. The filters tested consisted of approximately 1000 angstroms Al on approximately 1000 angstroms of either Lexan or polyimide. Measurements were made using a vacuum apparatus consisting essentially of two small chambers separated by the filter under test. A helium leak detector was used to measure helium permeation rates, and a residual gas analyzer (RGA) was used to detect water. Results discussed include permeation rate as a function of pressure difference across a filter, the ratio of helium permeation rate over water permeation rate, and the effect of the aluminum layer thickness on permeation.

  14. Additional security features for optically variable foils

    Science.gov (United States)

    Marshall, Allan C.; Russo, Frank

    1998-04-01

    For thousands of years, man has exploited the attraction and radiance of pure gold to adorn articles of great significance. Today, designers decorate packaging with metallic gold foils to maintain the prestige of luxury items such as perfumes, chocolates, wine and whisky, and to add visible appeal and value to wide range of products. However, today's products do not call for the hand beaten gold leaf of the Ancient Egyptians, instead a rapid production technology exists which makes use of accurately coated thin polymer films and vacuum deposited metallic layers. Stamping Foils Technology is highly versatile since several different layers may be combined into one product, each providing a different function. Not only can a foil bring visual appeal to an article, it can provide physical and chemical resistance properties and also protect an article from human forms of interference, such as counterfeiting, copying or tampering. Stamping foils have proved to be a highly effective vehicle for applying optical devices to items requiring this type of protection. Credit cards, bank notes, personal identification documents and more recently high value packaged items such as software and perfumes are protected by optically variable devices applied using stamping foil technology.

  15. CMS GEM detector material study for the HL-LHC

    CERN Document Server

    Muhammad, Saleh

    2017-01-01

    A study on the Gaseous Electron Multiplier (GEM) foil material is performed to determine the moisture diffusion rate and saturation level and the moisture effects on its mechanical properties. The study is focused on the foil contact with ambient air and moisture to determine the value of the diffusion coefficient of water in the detector polyimide. The presence of water inside the detector foil can determine the changes in its mechanical and electrical properties. A simulated model is developed by taking into account the real GEM foil (hole dimensions, shapes and material), which describes the adsorption on a sample. This work describes the model, its experimental verification, the water diffusion within the entire sheet geometry of the GEM foil, thus gaining concentration profiles and the time required to saturate the system and the effects on the mechanical properties.

  16. Lead foil wrapping of the plastic scintillators for the gamma ray detection: optical reflector or spectrum intensifier?

    International Nuclear Information System (INIS)

    Taheri, A.; Askari, M.; Sasanpour, M. Taghan

    2017-01-01

    This paper studies the effect of lead wrapping on the response of the plastic scintillators as gamma detectors. Experimental tests and Geant4 simulations showed that lead wrapping cannot increase the gamma absorption efficiency of the detector but, as a reflector, it can improve the optical properties of the detector. The reflectivity of the lead foil as an optical reflector was determined equal to 66% using an experimental-simulation combined method. Based on the obtained results, the optical collection efficiency of the detector was also increased about 4% after employing the lead reflector.

  17. Fission product yield measurements using monoenergetic photon beams

    Science.gov (United States)

    Krishichayan; Bhike, M.; Tonchev, A. P.; Tornow, W.

    2017-09-01

    Measurements of fission products yields (FPYs) are an important source of information on the fission process. During the past couple of years, a TUNL-LANL-LLNL collaboration has provided data on the FPYs from quasi monoenergetic neutron-induced fission on 235U, 238U, and 239Pu and has revealed an unexpected energy dependence of both asymmetric fission fragments at energies below 4 MeV. This peculiar FPY energy dependence was more pronounced in neutron-induced fission of 239Pu. In an effort to understand and compare the effect of the incoming probe on the FPY distribution, we have carried out monoenergetic photon-induced fission experiments on the same 235U, 238U, and 239Pu targets. Monoenergetic photon beams of Eγ = 13.0 MeV were provided by the HIγS facility, the world's most intense γ-ray source. In order to determine the total number of fission events, a dual-fission chamber was used during the irradiation. These irradiated samples were counted at the TUNL's low-background γ-ray counting facility using high efficient HPGe detectors over a period of 10 weeks. Here we report on our first ever photofission product yield measurements obtained with monoenegetic photon beams. These results are compared with neutron-induced FPY data.

  18. Fission product yield measurements using monoenergetic photon beams

    Directory of Open Access Journals (Sweden)

    Krishichayan

    2017-01-01

    Full Text Available Measurements of fission products yields (FPYs are an important source of information on the fission process. During the past couple of years, a TUNL-LANL-LLNL collaboration has provided data on the FPYs from quasi monoenergetic neutron-induced fission on 235U, 238U, and 239Pu and has revealed an unexpected energy dependence of both asymmetric fission fragments at energies below 4 MeV. This peculiar FPY energy dependence was more pronounced in neutron-induced fission of 239Pu. In an effort to understand and compare the effect of the incoming probe on the FPY distribution, we have carried out monoenergetic photon-induced fission experiments on the same 235U, 238U, and 239Pu targets. Monoenergetic photon beams of Eγ = 13.0 MeV were provided by the HIγS facility, the world's most intense γ-ray source. In order to determine the total number of fission events, a dual-fission chamber was used during the irradiation. These irradiated samples were counted at the TUNL's low-background γ-ray counting facility using high efficient HPGe detectors over a period of 10 weeks. Here we report on our first ever photofission product yield measurements obtained with monoenegetic photon beams. These results are compared with neutron-induced FPY data.

  19. Composite Design for a Foiling Optimist Dinghy

    Directory of Open Access Journals (Sweden)

    Carolyn Oddy

    2018-02-01

    Full Text Available In April 2017, a foiling Optimist dingy designed entirely by students, was successfully tested under standard sailing conditions in the waters outside Gothenburg. In order to achieve take of wind speeds as low as 6 m/s, a stiff and lightweight design of the dinghy and its foiling components was necessary. There have been few successful attempts to make an Optimist foil in a stable manner, as such there were no standards or recommendations available for the design. Therefore, a simulation driven structural design methodology for hydrofoils, centreboards, centreboard-to-hull connections, and necessary hull reinforcements using sandwich structures was adopted. The proposed design was then manufactured, allowing for a significantly stiffer hull and a 20% decrease in weight over a conventional Optimist. Excluding the rig and sail, the final weight came to 27 kg.

  20. High voltage distribution scheme for large size GEM detector

    International Nuclear Information System (INIS)

    Saini, J.; Kumar, A.; Dubey, A.K.; Negi, V.S.; Chattopadhyay, S.

    2016-01-01

    Gas Electron Multiplier (GEM) detectors will be used for Muon tracking in the Compressed Baryonic Matter (CBM) experiment at the Facility for Anti-proton Ion Research (FAIR) at Darmstadt, Germany. The sizes of the detector modules in the Muon chambers are of the order of 1 metre x 0.5 metre. For construction of these chambers, three GEM foils are used per chamber. These foils are made by two layered 50μm thin kapton foil. Each GEM foil has millions of holes on it. In such a large scale manufacturing of the foils, even after stringent quality controls, some of the holes may still have defects or defects might develop over the time with operating conditions. These defects may result in short-circuit of the entire GEM foil. A short even in a single hole will make entire foil un-usable. To reduce such occurrences, high voltage (HV) segmentation within the foils has been introduced. These segments are powered either by individual HV supply per segment or through an active HV distribution to manage such a large number of segments across the foil. Individual supplies apart from being costly, are highly complex to implement. Additionally, CBM will have high intensity of particles bombarding on the detector causing the change of resistive chain current feeding the GEM detector with the variation in the intensity. This leads to voltage fluctuations across the foil resulting in the gain variation with the particle intensity. Hence, a low cost active HV distribution is designed to take care of the above discussed issues

  1. Fission in a Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Younes, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-26

    A three-year theory project was undertaken to study the fission process in extreme astrophysical environments, such as the crust of neutron stars. In the first part of the project, the effect of electron screening on the fission process was explored using a microscopic approach. For the first time, these calculations were carried out to the breaking point of the nucleus. In the second part of the project, the population of the fissioning nucleus was calculated within the same microscopic framework. These types of calculations are extremely computer-intensive and have seldom been applied to heavy deformed nuclei, such as fissioning actinides. The results, tools and methodologies produced in this work will be of interest to both the basic-science and nuclear-data communities.

  2. Disintegration constant of uranium-238 by spontaneous fission redetermined by glass track method

    International Nuclear Information System (INIS)

    Lima Medeiros, E. de.

    1978-01-01

    The disintegration constant of U 238 by spontaneous fission using glass as fission fragment detector was redetermined. A film of natural uranium (UO 3 ) prepared by chemical methods on the glass lamina was used in a long time experience of exposure (about 16 years). The good conditions of sample preparation and storage allow to observe, after chemical etching, fission fragment tracks. (M.C.K.) [pt

  3. The study of prompt neutron spectra of 238U fission induced by fast neutron

    International Nuclear Information System (INIS)

    Li Anli; Bai Xixiang; Wang Yufeng; Wang Xiaozhong; Men Jiangchen; Huang Shengnian

    1990-01-01

    The measurements of prompt neutron time-of-flight spectra of U fission induced by 11 MeV neutrons were carried out at HI-13 Tandem Van de Graaff Accelerator Laboratory in 1989. The block diagram of the electronics is shown. A fission neutron TOF spectrum for the sixth section of the fission plates and the left detector at low bias is given. The data accumulation time is 60 h

  4. Thrust augmentation in tandem flapping foils by foil-wake interaction

    Science.gov (United States)

    Anderson, Erik; Lauder, George

    2006-11-01

    Propulsion by pitching and heaving airfoils and hydrofoils has been a focus of much research in the field of biologically inspired propulsion. Organisms that use this sort of propulsion are self-propelled, so it is difficult to use standard experimental metrics such as thrust and drag to characterize performance. We have constructed a flapping foil robot mounted in a flume on air-bearings that allows for the determination of self-propelled speed as a metric of performance. We have used a pair of these robots to examine the impact of an upstream flapping foil on a downstream flapping foil as might apply to tandem fins of a swimming organism or in-line swimming of schooling organisms. Self-propelled speed and a force transducer confirmed significant thrust augmentation for particular foil-to-foil spacings, phase differences, and flapping frequencies. Flow visualization shows the mechanism to be related to the effective angle of attack of the downstream foil due to the structure of the wake of the upstream foil. This confirms recent computational work and the hypotheses by early investigators of fish fluid dynamics.

  5. Microscopic Theory of Fission

    International Nuclear Information System (INIS)

    Younes, W; Gogny, D

    2008-01-01

    In recent years, the microscopic method has been applied to the notoriously difficult problem of nuclear fission with unprecedented success. In this paper, we discuss some of the achievements and promise of the microscopic method, as embodied in the Hartree-Fock method using the Gogny finite-range effective interaction, and beyond-mean-field extensions to the theory. The nascent program to describe induced fission observables using this approach at the Lawrence Livermore National Laboratory is presented

  6. Fusion-fission dynamics

    International Nuclear Information System (INIS)

    Blocki, J.; Planeta, R.; Brzychczyk, J.; Grotowski, K.

    1992-01-01

    Classical dynamical calculations of the heavy ion induced fission processes have been performed for the reactions 40 Ar+ 141 Pr, 20 Ne+ 165 Ho and 12 C+ 175 Lu leading to the iridium like nucleus. As a result prescission lifetimes were obtained and compared with the experimental values. The comparison between the calculated and experimental lifetimes indicates that the one-body dissipation picture is much more relevant in describing the fusion-fission dynamics than the two-body one. (orig.)

  7. Spectra from foil-excited molybdenum ions

    International Nuclear Information System (INIS)

    Johnson, B.M.; Jones, K.W.; Cecchi, J.L.; Kruse, T.H.

    1978-01-01

    The extreme-ultraviolet spectra (5 to 55 nm) for foil-excited molybdenum ions have been measured using 22 to 200 MeV beams from the Brookhaven National Laboratory MP tandem Van de Graaff accelerator facility, 20 μg/cm 2 C stripping foils, and a grazing incidence spectrometer. The mean ion charge states (13 to 28) and the narrow distribution widths (about 2 charge states) were accurately predictable from experimental parameters. Where possible, comparisons are given with Mo radiation from tokamaks, vacuum sparks, and laser-excited plasmas

  8. Calculation of electron transmission through aluminium foil

    International Nuclear Information System (INIS)

    Abroyan, M.A.; Mel'ker, A.I.; Mikhajlin, A.I.; Sirotinkin, V.V.; Tokmakov, I.L.

    1987-01-01

    Calculated by Monte Carlo method energy and angular distributions of electrons transmitted through aluminium foil with 50 μm thickness are presented. 200-500 electron energy ranges and angles of electron incidence on foil from 0 to 40 deg C are considered. That allows to use results for more universal accelerator group, for example, for accelerators with scanning beam used in industry. The received values of angular and energy characteristics allow to increase essentially estimation accuracy of accelerator extraction devices and dose distribution on irradiating item

  9. Compressor ported shroud for foil bearing cooling

    Science.gov (United States)

    Elpern, David G [Los Angeles, CA; McCabe, Niall [Torrance, CA; Gee, Mark [South Pasadena, CA

    2011-08-02

    A compressor ported shroud takes compressed air from the shroud of the compressor before it is completely compressed and delivers it to foil bearings. The compressed air has a lower pressure and temperature than compressed outlet air. The lower temperature of the air means that less air needs to be bled off from the compressor to cool the foil bearings. This increases the overall system efficiency due to the reduced mass flow requirements of the lower temperature air. By taking the air at a lower pressure, less work is lost compressing the bearing cooling air.

  10. Irradiation positions for fission-track dating in the University of Pavia TRIGA Mark II nuclear reactor

    International Nuclear Information System (INIS)

    Oddone, Massimo; Meloni, Sandro; Balestrieri, Maria Laura; Bigazzi, Giulio

    2002-01-01

    An irradiation position arranged is described in the present paper for fission-track dating in the Triga Mark II reactor of the University of Pavia. Fluence values determined using the NIST glass standard SRM 962a for fission-track dating and the traditional metal foils are compared. Relatively good neutron thermalization (φ th /φ f = 0.956) and lack of significant fluence spatial gradients are good factors for fission-track dating. Finally, international age standards (or putative age standards) irradiated in this new position yielded results consistent with independent reference ages. (author)

  11. Spallation Neutron Source SNS Diamond Stripper Foil Development

    International Nuclear Information System (INIS)

    Shaw, Robert W.; Plum, Michael A.; Wilson, Leslie L.; Feigerle, Charles S.; Borden, Michael J.; Irie, Y.; Sugai, I.; Takagi, A.

    2007-01-01

    Diamond stripping foils are under development for the SNS. Freestanding, flat 300 to 500 (micro)g/cm 2 foils as large as 17 x 25 mm 2 have been prepared. These nano-textured polycrystalline foils are grown by microwave plasma-assisted chemical vapor deposition in a corrugated format to maintain their flatness. They are mechanically supported on a single edge by a residual portion of their silicon growth substrate; fine foil supporting wires are not required for diamond foils. Six foils were mounted on the SNS foil changer in early 2006 and have performed well in commissioning experiments at reduced operating power. A diamond foil was used during a recent experiment where 15 (micro)C of protons, approximately 64% of the design value, were stored in the ring. A few diamond foils have been tested at LANSCE/PSR, where one foil was in service for a period of five months (820 C of integrated injected charge) before it was replaced. Diamond foils have also been tested in Japan at KEK (640 keV H - ) where their lifetimes slightly surpassed those of evaporated carbon foils, but fell short of those for Sugai's new hybrid boron carbon (HBC) foils.

  12. SU-E-T-557: Measuring Neutron Activation of Cardiac Devices Irradiated During Proton Therapy Using Indium Foils

    Energy Technology Data Exchange (ETDEWEB)

    Avery, S; Christodouleas, J; Delaney, K; Diffenderfer, E; Brown, K [University of Pennsylvania, Sicklerville, NJ (United States)

    2014-06-01

    Purpose: Measuring Neutron Activation of Cardiac devices Irradiated during Proton Therapy using Indium Foils Methods: The foils had dimensions of 25mm x 25mm x 1mm. After being activated, the foils were placed in a Canberra Industries well chamber utilizing a NaI(Tl) scintillation detector. The resulting gamma spectrum was acquired and analyzed using Genie 2000 spectroscopy software. One activation foil was placed over the upper, left chest of RANDO where a pacemaker would be. The rest of the foils were placed over the midline of the patient at different distances, providing a spatial distribution over the phantom. Using lasers and BBs to align the patient, 200 MU square fields were delivered to various treatment sites: the brain, the pancreas, and the prostate. Each field was shot at least a day apart, giving more than enough time for activity of the foil to decay (t1=2 = 54.12 min). Results: The net counts (minus background) of the three aforementioned peaks were used for our measurements. These counts were adjusted to account for detector efficiency, relative photon yields from decay, and the natural abundance of 115-In. The average neutron flux for the closed multi-leaf collimator irradiation was measured to be 1.62 x 106 - 0.18 x 106 cm2 s-1. An order of magnitude estimate of the flux for neutrons up to 1 keV from Diffenderfer et al. gives 3 x 106 cm2 s-1 which does agree on the order of magnitude. Conclusion: Lower energy neutrons have higher interaction cross-sections and are more likely to damage pacemakers. The thermal/slow neutron component may be enough to estimate the overall risk. The true test of the applicability of activation foils is whether or not measurements are capable of predicting cardiac device malfunction. For that, additional studies are needed to provide clinical evidence one way or the other.

  13. Report on Fission Time Projection Chamber M3FT-12IN0210052

    Energy Technology Data Exchange (ETDEWEB)

    James K. Jewell

    2012-08-01

    The Time Projection Chamber is a collaborative effort to implement an innovative approach and deliver unprecedented fission measurements to DOE programs. This 4?-detector system will provide unrivaled 3-D data about the fission process. Shown here is a half populated TPC (2?) at the LLNL TPC laboratory as it undergoes testing before being shipped to LANSCE for beam experiments.

  14. Photon-induced Fission Product Yield Measurements on 235U, 238U, and 239Pu

    Science.gov (United States)

    Krishichayan, Fnu; Bhike, M.; Tonchev, A. P.; Tornow, W.

    2015-10-01

    During the past three years, a TUNL-LANL-LLNL collaboration has provided data on the fission product yields (FPYs) from quasi-monoenergetic neutron-induced fission of 235U, 238U, and 239Pu at TUNL in the 0.5 to 15 MeV energy range. Recently, we have extended these experiments to photo-fission. We measured the yields of fission fragments ranging from 85Kr to 147Nd from the photo-fission of 235U, 238U, and 239Pu using 13-MeV mono-energetic photon beams at the HIGS facility at TUNL. First of its kind, this measurement will provide a unique platform to explore the effect of the incoming probe on the FPYs, i.e., photons vs. neutrons. A dual-fission ionization chamber was used to determine the number of fissions in the targets and these samples (along with Au monitor foils) were gamma-ray counted in the low-background counting facility at TUNL. Details of the experimental set-up and results will be presented and compared to the FPYs obtained from neutron-induced fission at the same excitation energy of the compound nucleus. Work supported in part by the NNSA-SSAA Grant No. DE-NA0001838.

  15. Fission Detection Using the Associated Particle Technique

    International Nuclear Information System (INIS)

    R.P. Keegan; J.P. Hurley; J.R. Tinsley; R. Trainham; S.C. Wilde

    2008-01-01

    A beam of tagged 14 MeV neutrons from the deuterium-tritium (DT) reaction is used to induce fission in a target composed of depleted uranium. The generator yield is 10 7 neutrons/second radiated into a 4 x 4 in. NaI detectors are used for gamma-ray detection. The fission process is known to produce multiple gamma-rays and neutrons. Triple coincidences (α-γ-γ) are measured as a function of neutron flight time up to 90 ns after fission, where the α-particle arises from the DT reaction. A sudden increase in the triple coincidence rate at the location of the material is used to localize and detect fission in the interrogated target. Comparisons are made with experiment runs where lead, tungsten, and iron were used as target materials. The triple coincidence response profile from depleted uranium is noted to be different to those observed from the other target materials. The response from interrogation targets composed of fissile material is anticipated to be even more unique than that observed from depleted uranium

  16. An investigative approach to explore optimum assembly process design for annular targets carrying LEU foil

    Science.gov (United States)

    Hoyer, Annemarie

    Technetium-99m is the most widely used nuclear isotope in the medical field, with nearly 80 to 85% of all diagnostic imaging procedures. The daughter isotope of molybdenum-99 is currently produced using weapons-grade uranium. A suggested design for aluminum targets carrying low-enriched uranium (LEU) foil is presented for the fulfillment of eliminating highly enriched uranium (HEU) for medical isotope production. The assembly process that this research focuses on is the conventional draw-plug process which is currently used and lastly the sealing process. The research is unique in that it is a systematic approach to explore the optimal target assembly process to produce those targets with the required quality and integrity. Conducting 9 parametric experiments, aluminum tubes with a nickel foil fission-barrier and a surrogate stainless steel foil are assembled, welded and then examined to find defects, to determine residual stresses, and to find the best cost-effective target dimensions. The experimental design consists of 9 assembly combinations that were found through orthogonal arrays in order to explore the significance of each factor. Using probabilistic modeling, the parametric study is investigated using the Taguchi method of robust analysis. Depending on the situation, optimal conditions may be a nominal, a minimized or occasionally a maximized condition. The results will provide the best target design and will give optimal quality with little or no assembly defects.

  17. Study of fission fragments produced by 14N + 235U reaction

    International Nuclear Information System (INIS)

    Yalcinkaya, M.; Erduran, M.N.; Ganioglu, E.; Akkus, B.; Bostan, M.; Gurdal, G.; Erturk, S.; Balabanski, D.; Minkova, A.; Danchev, M.

    2005-01-01

    This work was performed to understand the structure of neutron rich fission fragments around ∼ 130 region. A thin metallic 235 U target was bombarded by 14 N beam with 10 MeV/A from the Separated Sector Cyclotron at the National Accelerator Centre, Cape Town, South Africa. The main goal to detect and identify fission fragments and to obtain their mass distribution was achieved by using Solar Cell detectors in the AFRODITE (African Omnipurpose Detector for Innovative Techniques and Experiments) spectrometer. The X-rays emitted from fission fragments were detected by LEP detectors and γ rays emitted from excited states of the fission fragments were detected by CLOVER detectors in the spectrometer. (author)

  18. Automatic counting of fission fragments tracks using the gas permeation technique

    CERN Document Server

    Yamazaki, I M

    1999-01-01

    An automatic counting system for fission tracks induced in a polycarbonate plastic Makrofol KG (10 mu m thickness) is described. The method is based on the gas transport mechanism proposed by Knudsen, where the gas permeability for a porous membrane is expected to be directly related to its track density. In this work, nitrogen permeabilities for several Makrofol films, with different fission track densities, have been measured using an adequate gas permeation system. The fission tracks were produced by irradiating Makrofol foils with a 252Cf calibrated source in a 2 pi geometry. A calibration curve fission track number versus nitrogen permeability has been obtained, for track densities higher than 1000/cm sup 2 , where the spark gap technique and the visual methods employing a microscope, are not appropriate for track counting.

  19. LENA Conversion Foils Using Single-Layer Graphene, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Our key innovation will be the use of single-layer graphene as LENA conversion foils, with appropriate microgrids and nanogrids to support the foils. Phase I...

  20. Particle velocity measurements in laser irradiated foils using ORVIS

    International Nuclear Information System (INIS)

    Sheffield, S.A.; Fisk, G.A.

    1983-01-01

    Aluminum foils from 2- to 200-μm thick have been subjected to a Nd:YAG laser pulse of low irradiance (10 9 W/cm 2 , approx. 10 ns pulse) to produce laser-driven shocks in the foils. The particle velocity history of the foil side opposite the laser deposition was monitored with nanosecond resolution by a velocity interferometer system called ORVIS. These histories indicate a shock reverberation process accelerates the foil. Peak foil velocities can be adequately calculated using a ricket propulsion model developed from experiments at much higher irradiances. A velocity of 1 km/s was developed in a 2-μm-thick free foil in a time of 50 ns. Water-confined foils attained peak particle velocities about three times higher than those of free foils

  1. Production and thickness determination of thin plastic scintillator foils

    International Nuclear Information System (INIS)

    Xiao, B.; Lee, S.; Hagel, K.; Haddad, F.; Li, J.; Lou, Y.; Mdeiwayeh, N.; Tezkratt, R.; Wada, R.; Utley, D.; Natowitz, J.B.

    1995-01-01

    A method of making large thin plastic scintillator foils with good uniformity is presented. The use of Fourier Transform Infrared Spectroscopy (FTIR) to test the foil uniformity and to establish an empirical thickness calibration curve is described. ((orig.))

  2. Examination of the picture properties of luminescence memory foils

    International Nuclear Information System (INIS)

    Ewert, U.; Heine, S.; Nockemann, C.; Stade, J.; Tillack, G.R.; Wessel, H.; Zscherpel, U.; Mattis, A.

    1995-01-01

    Luminescence memory foils are a new medium for radiography without films. They are known by the name of image plates or digital memory foils. The suitability of such systems for industrial radiography is examined. (orig.) [de

  3. Yields of fission products produced by thermal-neutron fission of 229Th

    International Nuclear Information System (INIS)

    Dickens, J.K.; McConnell, J.W.

    1983-01-01

    Absolute yields have been determined for 47 gamma rays emitted in the decay of 37 fission products representing 25 mass chains created during thermal-neutron fission of 229 Th. Using a Ge(Li) detector, spectra were obtained of gamma rays emitted between 15 min and 0.4 yr after very short irradiations by thermal neutrons of a 15-μg sample of 229 Th. On the basis of measured gamma-ray yields and known nuclear data, yields for cumulative production of 37 fission products were deduced. The absolute overall normalization uncertainty is 235 U, we postulate a simple functional dependence sigma = sigma(Z/sub p/), and using this dependence obtain values of Z/sub p/(A) for 15 mass chains created during fission of 229 Th. Values of Z/sub p/(A) were estimated for other mass chains based upon results of a recent study of Z/sub p/(A). Charge distributions determined using the deduced mass distribution and the deduced sets of Z/sub p/(A) and sigma(Z/sub p/) are in very good agreement with recent measurements, exhibiting a pronounced even-odd effect in elemental yields. These results may be used to predict unmeasured yields for 229 Th fission

  4. Shell effects in fission and quasi-fission of heavy and superheavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Itkis, M.G. E-mail: itkis@flnr.jinr.ru; Aeystoe, J.; Beghini, S.; Bogachev, A.A.; Corradi, L.; Dorvaux, O.; Gadea, A.; Giardina, G.; Hanappe, F.; Itkis, I.M.; Jandel, M.; Kliman, J.; Khlebnikov, S.V.; Kniajeva, G.N.; Kondratiev, N.A.; Kozulin, E.M.; Krupa, L.; Latina, A.; Materna, T.; Montagnoli, G.; Oganessian, Yu.Ts.; Pokrovsky, I.V.; Prokhorova, E.V.; Rowley, N.; Rubchenya, V.A.; Rusanov, A.Ya.; Sagaidak, R.N.; Scarlassara, F.; Stefanini, A.M.; Stuttge, L.; Szilner, S.; Trotta, M.; Trzaska, W.H.; Vakhtin, D.N.; Vinodkumar, A.M.; Voskressenski, V.M.; Zagrebaev, V.I

    2004-04-05

    Results of the experiments aimed at the study of fission and quasi-fission processes in the reactions {sup 12}C+{sup 204}Pb, {sup 48}Ca+{sup 144,154}Sm, {sup 168}Er, {sup 208}Pb, {sup 244}Pu, {sup 248}Cm; {sup 58}Fe+{sup 208}Pb, {sup 244}Pu, {sup 248}Cm, and {sup 64}Ni+{sup 186}W, {sup 242}Pu are presented in the work. The choice of the above-mentioned reactions was inspired by recent experiments on the production of the isotopes {sup 283}112, {sup 289}114 and {sup 283}116 at Dubna [1],[2] using the same reactions. The {sup 58}Fe and {sup 64}Ni projectiles were chosen since the corresponding projectile-target combinations lead to the synthesis of even heavier elements. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR, Russia), the XTU Tandem accelerator of the National Laboratory of Legnaro (LNL, Italy) and the Accelerator of the Laboratory of University of Jyvaskyla (JYFL, Finland) using the time-of-flight spectrometer of fission fragments CORSET[3] and the neutron multi-detector DEMON[4],[5]. The role of shell effects and the influence of the entrance channel on the mechanism of the compound nucleus fusion-fission and the competitive process of quasi-fission are discussed.

  5. The Fluid Foil: The Seventh Simple Machine

    Science.gov (United States)

    Mitts, Charles R.

    2012-01-01

    A simple machine does one of two things: create a mechanical advantage (lever) or change the direction of an applied force (pulley). Fluid foils are unique among simple machines because they not only change the direction of an applied force (wheel and axle); they convert fluid energy into mechanical energy (wind and Kaplan turbines) or vice versa,…

  6. Foil Panel Mirrors for Nonimaging Applications

    Science.gov (United States)

    Kuyper, D. J.; Castillo, A. A.

    1984-01-01

    Large durable, lightweight mirrors made by bonding thick aluminum foil to honeycomb panels or other rigid, flat backings. Mirrors suitable for use as infrared shields, telescope doors, solar-furnance doors, advertising displays, or other reflectors that require low thermal emissivity and high specularity but do not require precise surface figure necessary for imaging.

  7. Vortex wakes of a flapping foil

    DEFF Research Database (Denmark)

    Schnipper, Teis; Andersen, Anders Peter; Bohr, Tomas

    2009-01-01

    We present an experimental study of a symmetric foil performing pitching oscillations in a vertically flowing soap film. By varying the frequency and amplitude of the oscillation we visualize a variety of wakes with up to 46 vortices per oscillation period, including von Karman vortex street...

  8. Potentials of fissioning plasmas

    International Nuclear Information System (INIS)

    Karlheinz, Thom.

    1979-01-01

    Successful experiments with the nuclear pumping of lasers have demonstrated that in gaseous medium the kinetic energy of fission fragments can be converted directly into non-equilibrium optical radiation. This confirms the concept that the fissioning medium in a gas-phase nuclear reactor shows an internal structure such as a plasma in nearly thermal equilibrium varying up to a state of extreme-non-equilibrium. The accompanying variations of temperatures, pressure and radiative spectrum suggest wide ranges of applications. For example, in the gas-phase fission reactor concept enriched uranium hexafluoride or an uranium plasma replaces conventional fuel elements and permits operation above the melting point of solid materials. This potential has been motivation for the US National Aeronautics and Space Administration (NASA) to conduct relevant research for high specific impulse propulsion in space. The need to separate the high temperature gaseous fuel from the surfaces of a containing vessel and to protect them against thermal radiation has led to the concept of an externally moderated reactor in which the fissioning gaseous material is suspended by fluid dynamic means and the flow of opaque buffer gas removes the power. The gaseous nuclear fuel can slowly be circulated through the reactor for continuous on-site reprocessing including the annihilation of transuranium actinides at fission when being fed back into the reactor. An equilibrium of the generation and destruction of such actinides at fission when being fed back into the reactor. An equilibrium of the generation and destruction of such actinides can thus be achieved. These characteristics and the unique radiative properties led to the expectation that the gas-phase fission reactor could feature improved safety, safeguarding and economy, in addition to new technologies such as processing, photochemistry and the transmission of power over large distances in space

  9. Radiation detectors for reactors

    International Nuclear Information System (INIS)

    Balagi, V.

    2005-01-01

    Detection and measurement of radiation plays a vital role in nuclear reactors from the point of view of control and safety, personnel protection and process control applications. Various types of radiation are measured over a wide range of intensity. Consequently a variety of detectors find use in nuclear reactors. Some of these devices have been developed in Electronics Division. They include gas-filled detectors such as 10 B-lined proportional counters and chambers, fission detectors and BF 3 counters are used for the measurement of neutron flux both for reactor control and safety, process control as well as health physics instrumentation. In-core neutron flux instrumentation employs the use detectors such as miniature fission detectors and self-powered detectors. In this development effort, several indigenous materials, technologies and innovations have been employed to suit the specific requirement of nuclear reactor applications. This has particular significance in view of the fact that several new types of reactors such as P-4, PWR and AHWR critical facilities, FBTR, PFBR as well as the refurbishment of old units like CIRUS are being developed. The development work has sought to overcome some difficulties associated with the non-availability of isotopically enriched neutron-sensing materials, achieving all-welded construction etc. The present paper describes some of these innovations and performance results. (author)

  10. Self-powered detectors with thulium emitter

    International Nuclear Information System (INIS)

    Haller, P.; Klar, E.

    1978-01-01

    In addition to fission chambers, prompt-indicating self-powered (SPN) detectors are used for measuring the neutron flux density in the core of power reactors. Although current SPN detectors with a cobalt emitter give satisfactora results, detectors with other emitter materials have been analyzed and tested. The author describes the properties and decay pattern of the nuclide thulium and presents the results of measurements made while testing thulium detectors. (orig.) [de

  11. Forming of electron beams from a betatron by foils scatterers

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, A P; Shishov, V A [N.N. Petrov Research Inst. of Oncology, Leningrad (USSR). Laboratory of High Energics

    1976-12-01

    The technique of forming electron beams by one scattering foil and one compensating foil is discussed. This method provides a means for producing large-size uniform dose distributions with much smaller losses in dose rate as compared with conventional beam forming by ine foil. Moreover, the energy losses involved in this process and the background of concomitant bremsstrahlung are much less. A techinque of calculation to determine approximate parameters of the compensating foils is described.

  12. Tungsten foil laminate for structural divertor applications – Joining of tungsten foils

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, Jens, E-mail: jens.reiser@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP) (Germany); Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP) (Germany); Mrotzek, Tobias; Hoffmann, Andreas [PLANSEE SE, Reutte (Austria); Armstrong, D.E.J.; Yi, Xiaoou [University of Oxford, Department of Materials (United Kingdom)

    2013-05-15

    This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.

  13. Tungsten foil laminate for structural divertor applications - Joining of tungsten foils

    Science.gov (United States)

    Reiser, Jens; Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan; Mrotzek, Tobias; Hoffmann, Andreas; Armstrong, D. E. J.; Yi, Xiaoou

    2013-05-01

    This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.

  14. GLASS AND SILICON FOILS FOR X-RAY SPACE TELESCOPE MIRRORS

    Directory of Open Access Journals (Sweden)

    M. MIKA

    2011-12-01

    Full Text Available Unique observations delivered by space X-ray imaging telescopes have been significantly contributing to important discoveries of current astrophysics. The telescopes’ most crucial part is a high throughput, heavily nested mirror array reflecting X-rays and focusing them to a detector. Future astronomical projects on large X-ray telescopes require novel materials and technologies for the construction of the reflecting mirrors. The future mirrors must be lightweight and precisely shaped to achieve large collecting area with high angular resolution of a few arc sec. The new materials and technologies must be cost-effective as well. Currently, the most promising materials are glass or silicon foils which are commercially produced on a large scale. A thermal forming process was used for the precise shaping of these foils. The forced and free slumping of the foils was studied in the temperature range of hot plastic deformation and the shapes obtained by the different slumping processes were compared. The shapes and the surface quality of the foils were measured by a Taylor Hobson contact profilemeter, a ZYGO interferometer and Atomic Forced Microscopy. In the experiments, both heat-treatment temperature and time were varied following our experiment design. The obtained data and relations can be used for modelling and optimizing the thermal forming procedure.

  15. High temperature fission chambers. Fast breeder reactor research and development program

    International Nuclear Information System (INIS)

    Berlin, C.; Perrigueur, J.C.

    1984-04-01

    Development of a high temperature fission chamber and experimentations of measuring channels (detectors and electronic devices) in similar conditions as those of power plants: development of measuring channels (impulses and current) of the Super Phenix neutronic measures auxiliary system, development of a measuring channel with impulses for the surveillance system of the clad failures, based on integrated detectors, and development of a fission chamber for experimentations in similar conditions as in Superphenix [fr

  16. Scaling laws for radial foil bearings

    Science.gov (United States)

    Honavara Prasad, Srikanth

    The effects of fluid pressurization, structural deformation of the compliant members and heat generation in foil bearings make the design and analysis of foil bearings very complicated. The complex fluid-structural-thermal interactions in foil bearings also make modeling efforts challenging because these phenomena are governed by highly non-linear partial differential equations. Consequently, comparison of various bearing designs require detailed calculation of the flow fields (velocities, pressures), bump deflections (structural compliance) and heat transfer phenomena (viscous dissipation in the fluid, frictional heating, temperature profile etc.,) resulting in extensive computational effort (time/hardware). To obviate rigorous computations and aid in feasibility assessments of foil bearings of various sizes, NASA developed the "rule of thumb" design guidelines for estimation of journal bearing load capacity. The guidelines are based on extensive experimental data. The goal of the current work is the development of scaling laws for radial foil bearings to establish an analytical "rule of thumb" for bearing clearance and bump stiffness. The use of scale invariant Reynolds equation and experimentally observed NASA "rule of thumb" yield scale factors which can be deduced from first principles. Power-law relationships between: a. Bearing clearance and bearing radius, and b. bump stiffness and bearing radius, are obtained. The clearance and bump stiffness values obtained from scaling laws are used as inputs for Orbit simulation to study various cases. As the clearance of the bearing reaches the dimensions of the material surface roughness, asperity contact breaks the fluid film which results in wear. Similarly, as the rotor diameter increases (requiring larger bearing diameters), the load capacity of the fluid film should increase to prevent dry rubbing. This imposes limits on the size of the rotor diameter and consequently bearing diameter. Therefore, this thesis aims

  17. Determination of 233U, 235U, 238U and 239Pu fission yields induced by fission and 14.7 MeV neutrons

    International Nuclear Information System (INIS)

    Laurec, Jean; Adam, Albert; Bruyne, Thierry de.

    1981-12-01

    The 233 U, 235 U, 238 U, 239 Pu fission yields have been determined by a radiochemical method. A target and a fission chamber made of same fissible material are irradied together. The total fission number is measured from the fission chamber. The fission product activities are directly measured on the target using calibrated Ge-Li detectors. The fissible material masses are determined by alpha and mass spectrometries. The irradiations were made on the critical assemblies PROSPERO and CALIBAN and on the 14 MeV neutron generator of C.E. VALDUC. 3 to 5% fission yield errors are got for the most measured nuclides: 95 Zr, 97 Zr, 99 Mo, 103 Ru, 131 I, 132 Te, 140 Ba, 141 Ce, 143 Ce, 144 Ce, 147 Nd [fr

  18. Finding Interstellar Particle Impacts on Stardust Aluminium Foils: The Safe Handling, Imaging, and Analysis of Samples Containing Femtogram Residues

    Science.gov (United States)

    Kearsley, A. T.; Westphal, A. J.; Stadermann, F. J.; Armes, S. P.; Ball, A. D.; Borg, J.; Bridges, J. C.; Brownlee, D. E.; Burchell, M. J.; Chater, R. J.; hide

    2010-01-01

    Impact ionisation detectors on a suite of spacecraft have shown the direction, velocity, flux and mass distribution of smaller ISP entering the Solar System. During the aphelion segments of the Stardust flight, a dedicated collector surface was oriented to intercept ISP of beta = 1, and returned to Earth in January 2006. In this paper we describe the probable appeareance and size of IS particle craters from initial results of experimental impacts and numerical simulation, explain how foils are being prepared and mounted for crater searching by automated acquisition of high magnification electron images (whilst avoiding contamination of the foils) and comment on appropriate analytical techniques for Preliminary Examination (PE).

  19. Stripping foils for the PSB H- injection system

    CERN Document Server

    Aiba, M; Goddard, B; Weterings, W

    2009-01-01

    Beam physics considerations for the stripping foil of the PSB H- injection system are described, including the arguments for the foil type, thickness, geometry and positioning. The foil performance considerations are described, including expected stripping efficiency, emittance growth, energy straggling, temperature and lifetime. The required movement ranges and tolerances are detailed, together with the assumptions used.

  20. Multi-sensor radiation detector system

    International Nuclear Information System (INIS)

    Foster, R.G.; Cyboron, R.D.

    1975-01-01

    The invention is a multi-sensor radiation detection system including a self-powered detector and an ion or fission chamber, preferably joined as a unitary structure, for removable insertion into a nuclear reactor. The detector and chamber are connected electrically in parallel, requiring but two conductors extending out of the reactor to external electrical circuitry which includes a load impedance, a voltage source, and switch means. The switch means are employed to alternately connect the detector and chamber either with th load impedance or with the load impedance and the voltage source. In the former orientation, current through the load impedance indicates flux intensity at the self-powered detector and in the latter orientation, the current indicates flux intensity at the detector and fission chamber, though almost all of the current is contributed by the fission chamber. (auth)

  1. A compact multi-plate fission chamber for the simultaneous measurement of 233U capture and fission cross-sections

    Directory of Open Access Journals (Sweden)

    Bacak M.

    2017-01-01

    Full Text Available 233U plays the essential role of fissile nucleus in the Th-U fuel cycle. A particularity of 233U is its small neutron capture cross-section which is about one order of magnitude lower than the fission cross-section on average. Therefore, the accuracy in the measurement of the 233U capture cross-section essentially relies on efficient capture-fission discrimination thus a combined setup of fission and γ-detectors is needed. At CERN n_TOF the Total Absorption Calorimeter (TAC coupled with compact fission detectors is used. Previously used MicroMegas (MGAS detectors showed significant γ-background issues above 100 eV coming from the copper mesh. A new measurement campaign of the 233U capture cross-section and alpha ratio is planned at the CERN n_TOF facility. For this measurement, a novel cylindrical multi ionization cell chamber was developed in order to provide a compact solution for 14 active targets read out by 8 anodes. Due to the high specific activity of 233U fast timing properties are required and achieved with the use of customized electronics and the very fast ionizing gas CF4 together with a high electric field strength. This paper describes the new fission chamber and the results of the first tests with neutrons at GELINA proving that it is suitable for the 233U measurement.

  2. Irradiated microstructure of U-10Mo monolithic fuel plate at very high fission density

    Science.gov (United States)

    Gan, J.; Miller, B. D.; Keiser, D. D.; Jue, J. F.; Madden, J. W.; Robinson, A. B.; Ozaltun, H.; Moore, G.; Meyer, M. K.

    2017-08-01

    Monolithic U-10Mo alloy fuel plates with Al-6061 cladding are being developed for use in research and test reactors as low enrichment fuel (RERTR-9B experiment. This paper discusses the TEM characterization results for this U-10Mo/Zr/Al6061 monolithic fuel plate (∼59% U-235 enrichment) irradiated in Advanced Test Reactor at Idaho National Laboratory with an unprecedented high local fission density of 9.8E+21 fissions/cm3. The calculated fuel foil centerline temperature at the beginning of life and the end of life is 141 and 194 °C, respectively. TEM lamellas were prepared using focus ion beam lift-out technique. The estimated U-Mo fuel swelling, based on the fuel foil thickness change from SEM, is approximately 76%. Large bubbles (>1 μm) are distributed evenly in U-Mo and interlink of these bubbles is evident. The average size of subdivided grains at this fission density appears similar to that at 5.2E+21 fissions/cm3. The measured average Mo and Zr content in the fuel matrix is ∼30 at% and ∼7 at%, respectively, in general agreement with the calculated Mo and Zr from fission density.

  3. Fission Product Yield Study of 235U, 238U and 239Pu Using Dual-Fission Ionization Chambers

    Science.gov (United States)

    Bhatia, C.; Fallin, B.; Howell, C.; Tornow, W.; Gooden, M.; Kelley, J.; Arnold, C.; Bond, E.; Bredeweg, T.; Fowler, M.; Moody, W.; Rundberg, R.; Rusev, G.; Vieira, D.; Wilhelmy, J.; Becker, J.; Macri, R.; Ryan, C.; Sheets, S.; Stoyer, M.; Tonchev, A.

    2014-05-01

    To resolve long-standing differences between LANL and LLNL regarding the correct fission basis for analysis of nuclear test data [M.B. Chadwick et al., Nucl. Data Sheets 111, 2891 (2010); H. Selby et al., Nucl. Data Sheets 111, 2891 (2010)], a collaboration between TUNL/LANL/LLNL has been established to perform high-precision measurements of neutron induced fission product yields. The main goal is to make a definitive statement about the energy dependence of the fission yields to an accuracy better than 2-3% between 1 and 15 MeV, where experimental data are very scarce. At TUNL, we have completed the design, fabrication and testing of three dual-fission chambers dedicated to 235U, 238U, and 239Pu. The dual-fission chambers were used to make measurements of the fission product activity relative to the total fission rate, as well as for high-precision absolute fission yield measurements. The activation method was employed, utilizing the mono-energetic neutron beams available at TUNL. Neutrons of 4.6, 9.0, and 14.5 MeV were produced via the 2H(d,n)3He reaction, and for neutrons at 14.8 MeV, the 3H(d,n)4He reaction was used. After activation, the induced γ-ray activity of the fission products was measured for two months using high-resolution HPGe detectors in a low-background environment. Results for the yield of seven fission fragments of 235U, 238U, and 239Pu and a comparison to available data at other energies are reported. For the first time results are available for neutron energies between 2 and 14 MeV.

  4. A standard fission neutron irradiation facility

    International Nuclear Information System (INIS)

    Sahasrabudhe, S.G.; Chakraborty, P.P.; Iyer, M.R.; Kirthi, K.N.; Soman, S.D.

    1979-01-01

    A fission neutron irradiation facility (FISNIF) has been set up at the thermal column of the CIRUS reactor at BARC. The spectrum and the flux have been measured using threshold detectors. The paper describes the setting up of the facility, measurement and application. A concentric cylinder containing UO 2 powder sealed inside surrounds the irradiation point of a pneumatic sample transfer system located in the thermal column of the reactor. Samples are loaded in a standard aluminium capsule with cadmium lining and transported pneumatically. A sample transfer time of 1 s can be achieved in the facility. Typical applications of the facility for studying activation of iron and sodium in fission neutrons are also discussed. (Auth.)

  5. Angular distribution in the neutron-induced fission of actinides

    Directory of Open Access Journals (Sweden)

    Leong L.S.

    2013-12-01

    Full Text Available Above 1 MeV of incident neutron energy the fission fragment angular distribution (FFAD has generally a strong anisotropic behavior due to the combination of the incident orbital momentum and the intrinsic spin of the fissioning nucleus. This effect has to be taken into account for the efficiency estimation of devices used for fission cross section measurements. In addition it bears information on the spin deposition mechanism and on the structure of transitional states. We designed and constructed a detection device, based on Parallel Plate Avalanche Counters (PPAC, for measuring the fission fragment angular distributions of several isotopes, in particular 232Th. The measurement has been performed at n_TOF at CERN taking advantage of the very broad energy spectrum of the neutron beam. Fission events were recognized by back to back detection in coincidence in two position-sensitive detectors surrounding the targets. The detection efficiency, depending mostly on the stopping of fission fragments in backings and electrodes, has been computed with a Geant4 simulation and validated by the comparison to the measured case of 235U below 3 keV where the emission is isotropic. In the case of 232Th, the result is in good agreement with previous data below 10 MeV, with a good reproduction of the structures associated to vibrational states and the opening of second chance fission. In the 14 MeV region our data are much more accurate than previous ones which are broadly scattered.

  6. Neutronic and thermal hydraulic analysis for production of fission molybdenum-99 at Pakistan Research Reactor-1

    Energy Technology Data Exchange (ETDEWEB)

    Mushtaq, A. [Isotope Production Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)], E-mail: mushtaqa@pinstech.org.pk; Iqbal, Massod; Bokhari, Ishtiaq Hussain; Mahmood, Tariq; Mahmood, Tayyab; Ahmad, Zahoor; Zaman, Qamar [Nuclear Engineering Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)

    2008-02-15

    Neutronic and thermal hydraulic analysis for the fission molybdenum-99 production at PARR-1 has been performed. Low enriched uranium foil (<20% {sup 235}U) will be used as target material. Annular target designed by ANL (USA) will be irradiated in PARR-1 for the production of 100 Ci of molybdenum-99 at the end of irradiation, which will be sufficient to prepare required {sup 99}Mo/{sup 99m}Tc generators at PINSTECH and its supply in the country. Neutronic and thermal hydraulic analysis were performed using various codes. Data shows that annular targets can be safely irradiated in PARR-1 for production of required amount of fission molybdenum-99.

  7. Optical fiber sensors embedded in flexible polymer foils

    Science.gov (United States)

    van Hoe, Bram; van Steenberge, Geert; Bosman, Erwin; Missinne, Jeroen; Geernaert, Thomas; Berghmans, Francis; Webb, David; van Daele, Peter

    2010-04-01

    In traditional electrical sensing applications, multiplexing and interconnecting the different sensing elements is a major challenge. Recently, many optical alternatives have been investigated including optical fiber sensors of which the sensing elements consist of fiber Bragg gratings. Different sensing points can be integrated in one optical fiber solving the interconnection problem and avoiding any electromagnetical interference (EMI). Many new sensing applications also require flexible or stretchable sensing foils which can be attached to or wrapped around irregularly shaped objects such as robot fingers and car bumpers or which can even be applied in biomedical applications where a sensor is fixed on a human body. The use of these optical sensors however always implies the use of a light-source, detectors and electronic circuitry to be coupled and integrated with these sensors. The coupling of these fibers with these light sources and detectors is a critical packaging problem and as it is well-known the costs for packaging, especially with optoelectronic components and fiber alignment issues are huge. The end goal of this embedded sensor is to create a flexible optical sensor integrated with (opto)electronic modules and control circuitry. To obtain this flexibility, one can embed the optical sensors and the driving optoelectronics in a stretchable polymer host material. In this article different embedding techniques for optical fiber sensors are described and characterized. Initial tests based on standard manufacturing processes such as molding and laser structuring are reported as well as a more advanced embedding technique based on soft lithography processing.

  8. The evaluation for reference fission yield of 238U fission

    International Nuclear Information System (INIS)

    Liang Qichang; Liu Tingjin

    1998-01-01

    In the fission yield data evaluation and measurement, the reference yield is very important, good or poor recommended or measurement values depend upon the reference data to a great extent. According to the CRP's requirement, the evaluation of reference fission yields have been and will be carried out in CNDC, as a part of the whole work (contract No.9504/R 0 /Regular Budget Fund), the evaluation for 29 reference fission yields of 15 product nuclides from 238 U fission have been completed

  9. Fission fragment angular momentum

    International Nuclear Information System (INIS)

    Frenne, D. De

    1991-01-01

    Most of the energy released in fission is converted into translational kinetic energy of the fragments. The remaining excitation energy will be distributed among neutrons and gammas. An important parameter characterizing the scission configuration is the primary angular momentum of the nascent fragments. Neutron emission is not expected to decrease the spin of the fragments by more than one unit of angular momentum and is as such of less importance in the determination of the initial fragment spins. Gamma emission is a suitable tool in studying initial fragment spins because the emission time, number, energy, and multipolarity of the gammas strongly depend on the value of the primary angular momentum. The main conclusions of experiments on gamma emission were that the initial angular momentum of the fragments is large compared to the ground state spin and oriented perpendicular to the fission axis. Most of the recent information concerning initial fragment spin distributions comes from the measurement of isomeric ratios for isomeric pairs produced in fission. Although in nearly every mass chain isomers are known, only a small number are suitable for initial fission fragment spin studies. Yield and half-life considerations strongly limit the number of candidates. This has the advantage that the behavior of a specific isomeric pair can be investigated for a number of fissioning systems at different excitation energies of the fragments and fissioning nuclei. Because most of the recent information on primary angular momenta comes from measurements of isomeric ratios, the global deexcitation process of the fragments and the calculation of the initial fragment spin distribution from measured isomeric ratios are discussed here. The most important results on primary angular momentum determinations are reviewed and some theoretical approaches are given. 45 refs., 7 figs., 2 tabs

  10. Fission product detection

    International Nuclear Information System (INIS)

    Liatard, E.; Akrouf, S.; Bruandet, J.F

    1987-01-01

    The response of photovoltaic cells to heavy ions and fission products have been tested on beam. Their main advantages are their extremely low price, their low sensitivity to energetic light ions with respect to fission products, and the possibility to cut and fit them together to any shape without dead zone. The time output signals of a charge sensitive preamplifier connected to these cells allows fast coincidences. A resolution of 12ns (F.W.H.M.) have been measured between two cells [fr

  11. Low energy nuclear fission

    International Nuclear Information System (INIS)

    Nifenecker, H.

    1982-02-01

    In these lectures we present the liquid drop model of fission and compare some of its prediction with experiment. The liquid drop analogy allows to define in a rather simple and intuitive way a number of useful concepts and possible observables. We then discuss, using the example of the oscillator model, the generality of shell effects. We show how a synthesis of the liquid drop model and of the shell model can be made using the Strutinsky shell averaging procedure. Some experimental data related to the existence of shape isomers are presented and discussed. We conclude by discussing some aspects, both experimental and theoretical, of fission dynamics

  12. Fission of heavy hypernuclei

    International Nuclear Information System (INIS)

    Nifenecker, H.

    1993-01-01

    The results on delayed and prompt fission of heavy hypernuclei obtained by the LEAR PS177 collaboration are recalled and discussed. It is shown that the hypernuclei life-times can be explained in term of a weak strangeness violating lambda-nucleon interaction with a cross section close to 6.0 10 -15 barns. The lambda attachment function is shown to be sensitive to the scission configuration, just before fission, and to the neck dynamics. This function provides a new way to study the nuclear scission process. (author)

  13. Fission gas measuring technology

    International Nuclear Information System (INIS)

    Lee, Hyung Kwon; Kim, Eun Ka; Hwang, Yong Hwa; Lee, Eun Pyo; Chun, Yong Bum; Seo, Ki Seog; Park, Dea Gyu; Chu, Yong Sun; Ahn, Sang Bok.

    1998-02-01

    Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs

  14. Fission gas measuring technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyung Kwon; Kim, Eun Ka; Hwang, Yong Hwa; Lee, Eun Pyo; Chun, Yong Bum; Seo, Ki Seog; Park, Dea Gyu; Chu, Yong Sun; Ahn, Sang Bok

    1998-02-01

    Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs.

  15. Fission modelling with FIFRELIN

    International Nuclear Information System (INIS)

    Litaize, Olivier; Serot, Olivier; Berge, Leonie

    2015-01-01

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ, e - ). The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the

  16. Low energy nuclear fission

    International Nuclear Information System (INIS)

    Nifenecker, H.

    1980-08-01

    In these lectures the liquid drop model of fission is presented and some of its predictions compared with experiment. The liquid drop analogy allows to define in a rather simple and intuitive way a number of useful concepts and possible observables. It is shown how a synthesis of the liquid drop model and of the shell model can be made using the Strutinsky shell averaging procedure. Some experimental data related to the existence of shape isomers are presented and discussed. We conclude by discussing some aspects, both experimental and theoretical, of fission dynamics

  17. Characterization of beryllium foil produced by hot rolling

    International Nuclear Information System (INIS)

    Wittenauer, J.; Nieh, T.G.; Waychunas, G.

    1992-01-01

    Beryllium foil is important for a number of aerospace applications including honeycomb structures and metal-matrix composites. In this study, a method of producing beryllium foil directly from powder or flake is demonstrated. A variety of foils were produced in the thickness range 90-300 μm, free from defects such as pinholes and excessive surface roughness, and exhibiting sufficient formability for honeycomb manufacture. Foil produced directly from powder or flake exhibits crystallographic texture, microstructure, and formability equivalent to foil produced from more massive precursors. (Author)

  18. Nuclear target foil fabrication for the Romano Event

    International Nuclear Information System (INIS)

    Weed, J.W.; Romo, J.G. Jr.; Griggs, G.E.

    1984-01-01

    The Vacuum Processes Lab, of LLNL's M.E. Dept. - Material Fabrication Division, was requested to provide 250 coated Parylene target foils for a nuclear physics experiment titled the ROMANO Event. Due to the developmental nature of some of the fabrication procedures, approximately 400 coated foils were produced to satisfy the event's needs. The foils were used in the experiment as subkilovolt x-ray, narrow band pass filters, and wide band ultraviolet filters. This paper is divided into three sections describing: (1) nuclear target foil fabrication, (2) Parylene substrate preparation and production, and (3) foil and substrate inspections

  19. Collodion-reinforcement and plasma-cleaning of target foils

    Science.gov (United States)

    Stoner, John O.

    2002-03-01

    The preparation of evaporated target foils can often be facilitated by use of collodion coatings either on the substrate sides or on the exterior surfaces of the foils. Later, such coatings must usually be removed. Cleaning of a foil is necessary if thin layers of adhesives have crept onto the foil. Removal and/or cleaning can often be done satisfactorily with an oxygen plasma. Apparatus and procedures used for this are described. Foils that were cleaned successfully, and some that were incompatible with the cleaning process are listed.

  20. Collodion-reinforcement and plasma-cleaning of target foils

    International Nuclear Information System (INIS)

    Stoner, John O.

    2002-01-01

    The preparation of evaporated target foils can often be facilitated by use of collodion coatings either on the substrate sides or on the exterior surfaces of the foils. Later, such coatings must usually be removed. Cleaning of a foil is necessary if thin layers of adhesives have crept onto the foil. Removal and/or cleaning can often be done satisfactorily with an oxygen plasma. Apparatus and procedures used for this are described. Foils that were cleaned successfully, and some that were incompatible with the cleaning process are listed

  1. Fission Product Library and Resource

    Energy Technology Data Exchange (ETDEWEB)

    Burke, J. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Padgett, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-29

    Fission product yields can be extracted from an irradiated sample by performing gamma ray spectroscopy on the whole sample post irradiation. There are several pitfalls to avoid when trying to determine a specific isotope's fission product yield.

  2. Spontaneous fission of superheavy nuclei

    Indian Academy of Sciences (India)

    The fission-like configurations are used for the total deformation energy calculations. A ... oscillator potential for the two fission fragment regions reads as ... Beyond this limit, the contribution of more remote levels is negligible. Once the density ...

  3. Mirror fusion--fission hybrids

    International Nuclear Information System (INIS)

    Lee, J.D.

    1978-01-01

    The fusion-fission concept and the mirror fusion-fission hybrid program are outlined. Magnetic mirror fusion drivers and blankets for hybrid reactors are discussed. Results of system analyses are presented and a reference design is described

  4. Computational modeling of plasma-flow switched foil implosions

    International Nuclear Information System (INIS)

    Lindemuth, I.R.

    1985-01-01

    A ''plasma-flow'', or ''commutator'', switch has been proposed as a means of achieving high dI/dt in a radially imploding metallic foil plasma. In this concept, an axially moving foil provides the initial coaxial gun discharge path for the prime power source and provides and ''integral'' inductive storage of magnetic energy. As the axially moving foil reaches the end of the coaxial gun, a radially imploding load foil is switched into the circuit. The authors have begun two-dimensional computer modeling of the two-foil implosion system. They use a magnetohydrodynamic (MHD) model which includes tabulated state and transport properties of the metallic foil material. Moving numerical grids are used to achieve adequate resolution of the moving foils. A variety of radiation models are used to compute the radiation generated when the imploding load foil converges on axis. These computations are attempting to examine the interaction of the switching foil with the load foil. In particular, they examine the relationship between foil placement and implosion quality

  5. Failed fuel detector

    International Nuclear Information System (INIS)

    Kogure, Sumio; Seya, Toru; Watanabe, Masaaki.

    1976-01-01

    Purpose: To enhance the reliability of a failed fuel detector which detects radioactivity of nuclear fission products leaked out from fuel elements in cooling water. Constitution: Collected specimen is introduced into a separator and co-existing material considered to be an impediment is separated and removed by ion exchange resins, after which this specimen is introduced into a container housing therein a detector to systematically measure radioactivity. Thereby, it is possible to detect a signal lesser in variation in background, and inspection work also becomes simple. (Kawakami, Y.)

  6. Carbon stripper foils held in place with carbon fibers

    International Nuclear Information System (INIS)

    Jolivet, Connie S.; Miller, Shawn A.; Stoner, John O.; Ladd, Peter

    2008-01-01

    The Spallation Neutron Source (SNS) currently under construction at Oak Ridge National Laboratory, Oak Ridge, Tennessee, is planned to initially utilize carbon stripper foils having areal densities approximately 260 μg/cm 2 . The projected design requires that each foil be supported by only one fixed edge. For stability of the foil, additional support is to be provided by carbon fibers. The feasibility of manufacturing and shipping such mounted carbon foils produced by arc evaporation was studied using two prototypes. Production of the foils is described. Fibers were chosen for satisfactory mechanical strength consistent with minimal interference with the SNS beam. Mounting of the fibers, and packaging of the assemblies for shipping are described. Ten completed assemblies were shipped to SNS for further testing. Preliminary evaluation of the survivability of the foils in the SNS foil changer is described

  7. Process for treating fission waste

    International Nuclear Information System (INIS)

    Rohrmann, C.A.; Wick, O.J.

    1983-01-01

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste

  8. Pion-induced fission of 209Bi and 119Sn: measurements, calculations, analyses and comparison

    International Nuclear Information System (INIS)

    Rana, M.A.; Sher, G.; Manzoor, S.; Shehzad, M.I.

    2011-01-01

    Cross-sections for the π - -induced fission of 209 Bi and 119 Sn have been measured using the most sensitive CR-39 solid-state nuclear track detector. In experiments, target–detector stacks were exposed to negative pions of energy 500, 672, 1068, and 1665 MeV at the Brookhaven National Laboratory, USA. An important aspect of the present paper is the comparison of pion-induced fission fragment spectra of above mentioned nuclei with the spontaneous fission fragment spectra of 252 Cf. This comparison is made in terms of fission fragment track lengths in the CR-39 detectors. Measurement results are compared with calculations of Monte Carlo and statistical weight functions methods using the computer code CEM95. Agreement between measurements and calculations is fairly good for 209 Bi target nuclei whereas it is indigent for the case of 119 Sn. The possibilities of the trustworthy calculations, using the computer code CEM95, comparable with measurements of pion-induced fission in intermediate and heavy nuclei are explored by employing various systematics available in the code. Energy dependence of pion-induced fission in 119 Sn and 209 Bi is analyzed employing a newly defined parameter geometric-size-normalized fission cross-section (χ f g ). It is found that the collective nuclear excitations, which may lead to fission, become more probable for both 209 Bi and 119 Sn nuclei with increasing energy of negative pions from 500 to 1665 MeV. (author)

  9. Measurements of fission cross-sections and of neutron production rates; Mesures de sections efficaces de fission et du nombre de neutrons prompts emis par fission

    Energy Technology Data Exchange (ETDEWEB)

    Billaud, P; Clair, C; Gaudin, M; Genin, R; Joly, R; Leroy, J L; Michaudon, A; Ouvry, J; Signarbieux, C; Vendryes, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    a) Measurements of neutron induced fission cross-sections in the low energy region. The variation of the fission cross sections of several fissile isotopes has been measured and analysed, for neutron energies below 0,025 eV. The monochromator was a crystal spectrometer used in conjunction with a mechanical velocity selector removing higher order Bragg reflections. The fissile material was laid down on the plates of a fission chamber by painting technic. An ionization chamber, having its plates coated with thin {sup 10}B layers, was used as the neutron flux monitor. b) Measurement of the fission cross section of {sup 235}U. We intend to measure the variation of the neutron induced fission cross section of {sup 235}U over the neutron energy range from 1 keV by the time of flight method. The neutron source is the uranium target of a pulsed 28 MeV electron linear accelerator. The detector is a large fission chamber, with parallel plates, containing about 10 g of {sup 235}U (20 deposits of 25 cm diameter). The relative fission data were corrected for the neutron spectrum measured with a set of BF{sub 3} proportional counters. c) Mean number {nu} of neutrons emitted in neutron induced fission. We measured the value of {nu} for several fissile isotopes in the case of fission induced by 14 MeV neutrons. The 14 MeV neutrons were produced by D (t, n) {alpha} reaction by means of a 300 kV Cockcroft Walton generator. (author)Fren. [French] a) Mesures de sectionficaces de fission a basse energie. Nous avons mesure et analyse la variation de la section efficace de fission de divers isotopes fissiles pour des neutrons d'energie inferieure a 0,025 eV. Le monochromateur est constitue par un spectrometre a cristal auquel est associe un selecteur mecanique destine a eliminer les diffractions de Bragg d'ordre superieur au premier. Le materiau fissile est contenu dans une chambre a fission sous forme de depots realises par peinture; une chambre d'ionisation a depots minces de B{sub 10

  10. Expectations for the Laguna foil implosion experiments

    International Nuclear Information System (INIS)

    Greene, A.; Brownell, J.; Caird, R.; Goforth, J.; Price, R.; Trainor, J.

    1987-01-01

    Building on the results achieved in the Pioneer shot series, the Los Alamos Trailmaster project is embarking on the Laguna foil implosion experiments. In this series a Mark-IX helical generator will be coupled to an explosively formed fuse opening switch, a surface-tracking closing switch, and a vacuum power flow and load chamber. In this paper the system design will be discussed and results from zero-, one-, and two-dimensional MHD simulations will be presented. It is anticipated that the generator will provide more than 10 MA of which ∼5.5 MA will be switched to the 5-cm-radius, 2-cm-high, 250-nm-thick aluminum foil load. This should give rise to a 1 μs implosion with more than 100 kJ of kinetic energy

  11. Composite metal foil and ceramic fabric materials

    Science.gov (United States)

    Webb, Brent J.; Antoniak, Zen I.; Prater, John T.; DeSteese, John G.

    1992-01-01

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed.

  12. 50 years of nuclear fission

    International Nuclear Information System (INIS)

    Hilscher, D.

    1989-01-01

    The article tells the story of the discovery of nuclear fission in Berlin 50 years ago by Otto Hahn and Fritz Strassmann in cooperation with Lise Meitner. 50 years later nuclear fission is still a subject of research. Some question remain unanswered. Selected new research results are used to discuss the dynamics of the collective movement of the elementary nuclear fission process. (orig.) [de

  13. Fission dynamics of hot nuclei

    Indian Academy of Sciences (India)

    2014-04-05

    Apr 5, 2014 ... across the fission barrier is very small or in other words, the fission barrier is much ... of this shape evolution, the gross features of the fissioning nucleus can be described ..... [7] Y Abe, C Gregoire and H Delagrange, J. Phys.

  14. Status of fission yield measurements

    International Nuclear Information System (INIS)

    Maeck, W.J.

    1979-01-01

    Fission yield measurement and yield compilation activities in the major laboratories of the world are reviewed. In addition to a general review of the effort of each laboratory, a brief summary of yield measurement activities by fissioning nuclide is presented. A new fast reactor fission yield measurement program being conducted in the US is described

  15. Measurements by activation foils and comparative computations by MCNP code

    International Nuclear Information System (INIS)

    Kyncl, J.

    2008-01-01

    Systematic study of the radioactive waste minimisation problem is subject of the SPHINX project. Its idea is that burning or transmutation of the waste inventory problematic part will be realized in a nuclear reactor the fuel of which is in the form of liquid fluorides. In frame of the project, several experiments have been performed with so-called inserted experimental channel. The channel was filled up by the fluorides mixture, surrounded by six fuel assemblies with moderator and placed into LR-0 reactor vessel. This formation was brought to critical state and measurement with activation foil detectors were carried out at selected positions of the inserted channel. Main aim of the measurements was to determine reaction rates for the detectors mentioned. For experiment evaluation, comparative computations were accomplished by code MCNP4a. The results obtained show that very often, computed values of reaction rates differ substantially from the values that were obtained from the experiment. This contribution deals with analysis of the reasons of these differences from the point of view of computations by Monte Carlo method. The analysis of concrete cases shows that the inaccuracy of reaction rate computed is caused mostly by three circumstances:-space region that is occupied by detector is relatively very small;- microscopic effective cross-section R(E) of the reaction changes strongly with energy just in the energy interval that gives the greatest contribution to the reaction; - in the energy interval that gives the greatest contribution to reaction rate, the error of the computed neutron flux is great. These circumstances evoke that the computation of reaction rate with casual accuracy submits extreme demands on computing time. (Author)

  16. Solid State Track Recorder fission rate measurements in low power light water reactor pressure vessel mockups

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Roberts, J.H.; Kellogg, L.S.

    1985-01-01

    The results of extensive SSTR measurements made at the Pool Critical Assembly (PCA) facility at Oak Ridge National Laboratory have been reported previously. Measurements were made at key locations in PCA which is an idealized mockup of the water gap, thermal shield, pressure vessel geometry of a light water reactor. Recently, additional SSTR fission rate measurements have been carried out for 237-Np, 238-U, and 235-U in key locations in the NESTOR Shielding and Dosimetry Improvement Program (NESDIP) mockup facility located at Winfrith, England. NESDIP is a replica of the PCA facility, and comparisons will be made between PCA and NESDIP measurements. The results of measurements made at the engineering mockup at the VENUS critical assembly at CEN/SCK, Mol, Belgium will also be reported. Measurements were made at selected radial and azimuthal locations in VENUS, which models the in-core and near-core regions of a pressurized water reactor. Comparisons of absolute SSTR fission rates with absolute fission rates made with the Mol miniature fission chamber will be reported. Absolute fission rate comparisons have also been made between the NBS fission chamber, radiometric fission foils, and SSTRs, and these results will be summarized

  17. Dual-chamber/dual-anode proportional counter incorporating an intervening thin-foil solid neutron converter

    International Nuclear Information System (INIS)

    Boatner, Lynn A.; Neal, John S.; Blackston, Matthew A.; Kolopus, James A.; Ramey, Joanne O.

    2012-01-01

    A dual-chamber/dual-anode gas proportional counter utilizing thin solid 6 LiF or 10 B neutron converters coated on a 2-micon-thick Mylar film that is positioned between the two counter chambers and anodes has been designed, fabricated, and tested using a variety of fill gases—including naturally abundant helium. In this device, neutron conversion products emitted from both sides of the coated converter foil are detected—rather than having half of the products absorbed in the wall of a conventional tube-type counter where the solid neutron converter is deposited on the tube wall. Geant4-based radiation transport calculations were used to determine the optimum neutron converter coating thickness for both isotopes. Solution methods for applying these optimized-thickness coatings on a Mylar film were developed that were carried out at room temperature without any specialized equipment and that can be adapted to standard coating methods such as silk screen or ink jet printing. The performance characteristics of the dual-chamber/dual-anode neutron detector were determined for both types of isotopically enriched converters. The experimental performance of the 6 LiF-converter-based detector was described well by modeling results from Geant4. Additional modeling studies of multiple-foil/multiple-chamber/anode configurations addressed the basic issue of the relatively longer absorption range of neutrons versus the shorter range of the conversion products for 6 LiF and 10 B. Combined with the experimental results, these simulations indicate that a high-performance neutron detector can be realized in a single device through the application of these multiple-foil/solid converter, multiple-chamber detector concepts.

  18. Solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Medeiros, J.A.; Carvalho, M.L.C.P. de

    1992-12-01

    Solid state nuclear track detectors (SSNTD) are dielectric materials, crystalline or vitreous, which registers tracks of charged nuclear particles, like alpha particles or fission fragments. Chemical etching of the detectors origin tracks that are visible at the optical microscope: track etching rate is higher along the latent track, where damage due to the charged particle increase the chemical potential, and etching rate giving rise to holes, the etched tracks. Fundamental principles are presented as well as some ideas of main applications. (author)

  19. Testing conformal mapping with kitchen aluminum foil

    OpenAIRE

    Haas, S.; Cooke, D. A.; Crivelli, P.

    2016-01-01

    We report an experimental verification of conformal mapping with kitchen aluminum foil. This experiment can be reproduced in any laboratory by undergraduate students and it is therefore an ideal experiment to introduce the concept of conformal mapping. The original problem was the distribution of the electric potential in a very long plate. The correct theoretical prediction was recently derived by A. Czarnecki (Can. J. Phys. 92, 1297 (2014)).

  20. The discovery of fission

    International Nuclear Information System (INIS)

    McKay, H.A.C.

    1978-01-01

    In this article by the retired head of the Separation Processes Group of the Chemistry Division, Atomic Energy Research Establishment, Harwell, U.K., the author recalls what he terms 'an exciting drama, the unravelling of the nature of the atomic nucleus' in the years before the Second World War, including the discovery of fission. 12 references. (author)

  1. Angular scattering of 1–50 keV ions through graphene and thin carbon foils: Potential applications for space plasma instrumentation

    International Nuclear Information System (INIS)

    Ebert, Robert W.; Allegrini, Frédéric; Fuselier, Stephen A.; Nicolaou, Georgios; Bedworth, Peter; Sinton, Steve; Trattner, Karlheinz J.

    2014-01-01

    We present experimental results for the angular scattering of ∼1–50 keV H, He, C, O, N, Ne, and Ar ions transiting through graphene foils and compare them with scattering through nominal ∼0.5 μg cm −2 carbon foils. Thin carbon foils play a critical role in time-of-flight ion mass spectrometers and energetic neutral atom sensors in space. These instruments take advantage of the charge exchange and secondary electron emission produced as ions or neutral atoms transit these foils. This interaction also produces angular scattering and energy straggling for the incident ion or neutral atom that acts to decrease the performance of a given instrument. Our results show that the angular scattering of ions through graphene is less pronounced than through the state-of-the-art 0.5 μg cm −2 carbon foils used in space-based particle detectors. At energies less than 50 keV, the scattering angle half width at half maximum, ψ 1/2 , for ∼3–5 atoms thick graphene is up to a factor of 3.5 smaller than for 0.5 μg cm −2 (∼20 atoms thick) carbon foils. Thus, graphene foils have the potential to improve the performance of space-based plasma instruments for energies below ∼50 keV

  2. Destruction of metallic foils under laser radiation

    International Nuclear Information System (INIS)

    Khokhlov, N.P.; Lisitsyn, Yu.V.; Mineev, V.N.; Ivanov, A.G.

    1975-01-01

    Experimental results are presented which illustrate the process of destruction of aluminium, lead and tantalum foils under irradiation of a neodymium laser, working in free generation regime with a power density varying from 5.10 5 - 5.10 6 wt/sq.cm. Calorimeters and photocells sensitive to the radiation with lambda=1.06 have been used for measuring the energy and recording the shape of the radiation pulse incident onto the target and passing through the disintegration products. The weight of the target has been determined prior to and after the experiment to find out the weight of Δm material expelled from the target. Rates of product scattering and a target destruction period, an amount of the material expelled and parameters of the radiation passing through the disintegration products have been determined as a function of the power density and an angle of the radiation incidence on the surface of the specimens. Average densities and absorption coefficients of the disintegration products of the foils under study have been assessed. A comparison of the characteristics of the metal foil (t 1 j) destruction in Pb-Ta-Al series with the metal thermal properties in this series shows that the destruction characteristics periodically vary as heat capacity, thermal conduction, evaporation heat and melting heat alter. A period of the target destruction becomes longer and the expelled mass smaller as the aforesaid thermal properties of the metals in Pb-Ta-Al series intensity [ru

  3. Brazing Inconel 625 Using the Copper Foil

    Science.gov (United States)

    Chen, Wen-Shiang; Wang, Cheng-Yen; Shiue, Ren-Kae

    2013-12-01

    Brazing Inconel 625 (IN-625) using the copper foil has been investigated in this research. The brazed joint is composed of nanosized CrNi3 precipitates and Cr/Mo/Nb/Ni quaternary compound in the Cu/Ni-rich matrix. The copper filler 50 μm in thickness is enough for the joint filling. However, the application of Cu foil 100 μm in thickness has little effect on the shear strength of the brazed joint. The specimen brazed at 1433 K (1160 °C) for 1800 seconds demonstrates the best shear strength of 470 MPa, and its fractograph is dominated by ductile dimple fracture with sliding marks. Decreasing the brazing temperature slightly decreases the shear strength of the brazed joint due to the presence of a few isolated solidification shrinkage voids smaller than 15 μm. Increasing the brazing temperature, especially for the specimen brazed at 1473 K (1200 °C), significantly deteriorates the shear strength of the joint below 260 MPa because of coalescence of isothermal solidification shrinkage voids in the joint. The Cu foil demonstrates potential in brazing IN-625 for industrial application.

  4. Self-propulsion of a pitching foil

    Science.gov (United States)

    Das, Anil; Shukla, Ratnesh; Govardhan, Raghuraman

    2017-11-01

    Undulatory motions serve as a fundamental mechanism for bio-locomotion at moderate and high Reynolds numbers. An understanding of the interactions between self-propelling undulatory motions and the surrounding fluid, not only provides insight into the efficiency of bio-locomotion, but also yields valuable pointers for the design of autonomous under-water and micro-aerial vehicles. Here, we investigate a simplified model of a self-propelling pitching foil that undergoes time-periodic oscillations about its quarter chord. We consider two-dimensional configurations in which the foil is free to propel along only longitudinal and both transverse and longitudinal directions. In both the configurations, the time-averaged self-propelling velocity increases monotonically with the Reynolds number Re (based on trailing edge speed and chord as the characteristic velocity and length). The rate of increase is particularly pronounced in the low Re regime (Re spaced wake vortices dissipate within a few chord lengths. At moderate and high Re, the wake exhibits increasingly complex structure in both the configurations. For a fixed Re, the foil with a single translational degree of freedom propels at a higher speed for a higher input power requirement. Differences between the two configurations will be discussed within the context of undulatory self-propulsion observed in nature.

  5. Neutron energy response measurement of scintillation detectors

    International Nuclear Information System (INIS)

    Yang Hongqiong; Peng Taiping; Yang Jianlun; Tang Zhengyuan; Yang Gaozhao; Li Linbo; Hu Mengchun; Wang Zhentong; Zhang Jianhua; Li Zhongbao; Wang Lizong

    2004-01-01

    Neutron sensitivities of detectors composed of plastic scintillator ST401, ST1422, ST1423 and phyotomultiplier tube in primary energy range of fission neutron are calibrated by direct current. The energy response curve of the detectors is obtained in this experiment. The experimental result has been compared with the theoretical calculation and they are in agreement within measuring uncertainty. (authors)

  6. Multiplicity counting from fission chamber signals in the current mode

    Energy Technology Data Exchange (ETDEWEB)

    Pázsit, I. [Chalmers University of Technology, Department of Physics, Division of Subatomic and Plasma Physics, SE-412 96 Göteborg (Sweden); Pál, L. [Centre for Energy Research, Hungarian Academy of Sciences, 114, POB 49, H-1525 Budapest (Hungary); Nagy, L. [Chalmers University of Technology, Department of Physics, Division of Subatomic and Plasma Physics, SE-412 96 Göteborg (Sweden); Budapest University of Technology and Economics, Institute of Nuclear Techniques, H-1111 Budapest (Hungary)

    2016-12-11

    In nuclear safeguards, estimation of sample parameters using neutron-based non-destructive assay methods is traditionally based on multiplicity counting with thermal neutron detectors in the pulse mode. These methods in general require multi-channel analysers and various dead time correction methods. This paper proposes and elaborates on an alternative method, which is based on fast neutron measurements with fission chambers in the current mode. A theory of “multiplicity counting” with fission chambers is developed by incorporating Böhnel's concept of superfission [1] into a master equation formalism, developed recently by the present authors for the statistical theory of fission chamber signals [2,3]. Explicit expressions are derived for the first three central auto- and cross moments (cumulants) of the signals of up to three detectors. These constitute the generalisation of the traditional Campbell relationships for the case when the incoming events represent a compound Poisson distribution. Because now the expressions contain the factorial moments of the compound source, they contain the same information as the singles, doubles and triples rates of traditional multiplicity counting. The results show that in addition to the detector efficiency, the detector pulse shape also enters the formulas; hence, the method requires a more involved calibration than the traditional method of multiplicity counting. However, the method has some advantages by not needing dead time corrections, as well as having a simpler and more efficient data processing procedure, in particular for cross-correlations between different detectors, than the traditional multiplicity counting methods.

  7. Irradiated microstructure of U-10Mo monolithic fuel plate at very high fission density

    Energy Technology Data Exchange (ETDEWEB)

    Gan, J.; Miller, B. D.; Keiser, D. D.; Jue, J. F.; Madden, J. W.; Robinson, A. B.; Ozaltun, H.; Moore, G.; Meyer, M. K.

    2017-08-01

    Monolithic U-10Mo alloy fuel plates with Al-6061 cladding are being developed for use in research and test reactors as low enrichment fuel (< 20% U-235 enrichment) as a result of its high uranium loading capacity compared to that of U-7Mo dispersion fuel. These fuel plates contain a Zr diffusion barrier between the U-10Mo fuel and Al-6061 cladding that suppresses the interaction between the U-Mo fuel foil and Al alloy cladding that is known to be problematic under irradiation. This paper discusses the TEM results of the U-10Mo/Zr/Al6061 monolithic fuel plate (Plate ID: L1P09T, ~ 59% U-235 enrichment) irradiated in Advanced Test Reactor at Idaho National Laboratory as part of RERTR-9B irradiation campaign with an unprecedented high local fission density of 9.8E+21 fissions/cm3. The calculated fuel foil centerline temperature at the beginning of life and the end of life is 141 and 194 C, respectively. A total of 5 TEM lamellas were prepared using focus ion beam lift-out technique. The estimated U-Mo fuel swelling, based on the fuel foil thickness change from SEM, is approximately 76%. Large bubbles (> 1 µm) are distributed evenly in U-Mo and interlink of these bubbles is evident. The average size of subdivided grains at this fission density appears similar to that at 5.2E+21 fissions/cm3. The measured average Mo and Zr content in the fuel matrix is ~ 30 at% and ~ 7 at%, respectively, in general agreement with the calculated Mo and Zr from fission density.

  8. Technological aspects of gaseous pixel detectors fabrication

    NARCIS (Netherlands)

    Blanco Carballo, V.M.; Salm, Cora; Smits, Sander M.; Schmitz, Jurriaan; Melai, J.; Chefdeville, M.A.; van der Graaf, H.

    2007-01-01

    Integrated gaseous pixel detectors consisting of a metal punctured foil suspended in the order of 50μm over a pixel readout chip by means by SU-8 insulating pillars have been fabricated. SU-8 is used as sacrificial layer but metallization over uncrosslinked SU-8 presents adhesion and stress

  9. Neutron detectors for nuclear reactor control

    International Nuclear Information System (INIS)

    Duchene, Jean; Verdant, Robert.

    1974-01-01

    In view of the importance of in-core measurements the distinction is made between detectors used outside and inside the core. In the former case proportional counters, fission chambers and boron chambers are reviewed in turn. The only in-core detectors considered are those giving a direct measurement, i.e. supplying an electric signal representative of the neutron fluence rate while in the measurement position at the point given. Two kinds of detectors are used for direct measurements: miniature fission chambers and collectors, known also as neutron-electron converters [fr

  10. Elastocapillary Instability in Mitochondrial Fission

    Science.gov (United States)

    Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien

    2015-08-01

    Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.

  11. A threshold for dissipative fission

    International Nuclear Information System (INIS)

    Thoennessen, M.; Bertsch, G.F.

    1993-01-01

    The empirical domain of validity of statistical theory is examined as applied to fission data on pre-fission data on pre-fission neutron, charged particle, and γ-ray multiplicities. Systematics are found of the threshold excitation energy for the appearance of nonstatistical fission. From the data on systems with not too high fissility, the relevant phenomenological parameter is the ratio of the threshold temperature T thresh to the (temperature-dependent) fission barrier height E Bar (T). The statistical model reproduces the data for T thresh /E Bar (T) thresh /E Bar (T) independent of mass and fissility of the systems

  12. Foam radiators for transition radiation detectors

    International Nuclear Information System (INIS)

    Chernyatin, V.; Dolgoshein, B.; Gavrilenko, I.; Potekhin, M.; Romaniouk, A.; Sosnovtsev, V.

    1993-01-01

    A wide variety of foam radiators, potentially useful in the design of a transition radiation detector, the possible particle identification tool in collider experiments, have been tested in the beam. Various characteristics of these radiators are compared, and the conclusion is reached that certain brands of polyethylene foam are best suited for use in the detector. Comparison is made with a 'traditional' radiator, which is a periodic structure of plastic foils. (orig.)

  13. Foil changer for the Chalk River superconducting cyclotron

    International Nuclear Information System (INIS)

    Hoffmann, C.R.; Kilborn, R.I.; Mouris, J.E.; Proulx, D.R.; Weaver, J.F.

    1985-01-01

    Capture of an injected beam in the Chalk River superconducting cyclotron requires that a carbon stripping foil be accurately placed in a dee to intercept the incoming beam. Foil radial position must be precisely adjustable and foils must be easily replaced. A foil changing apparatus has been designed, built and tested to meet these requirements. The main components are a supply magazine, a transport system, and unloading and loading mechanisms. The magazine is on top of the cyclotron. It holds 300 foils and can be isolated from machine vacuum for refilling. Each foil is mounted on a stainless steel frame. A stainless steel roller chain fitted with 33 copper sleeves (shrouds) carries foils, one per shroud, down a dee stem to the midplane. A 12-bit absolute optical shaft encoder senses foil position. To replace a foil a shroud is positioned at the top of the cyclotron, a foil is removed, and another is transferred from the magazine to the empty shroud. Three stepping motors and associated electronics provide mechanical drive and are interfaced with a CAMAC control system

  14. Foil changer for the Chalk River superconducting cyclotron

    International Nuclear Information System (INIS)

    Hoffmann, C.R.; Kilborn, R.I.; Mouris, J.F.; Proulx, D.R.; Weaver, J.F.

    1985-01-01

    Capture of an injected beam in the Chalk River superconducting cyclotron requires that a carbon stripping foil be accurately placed in a dee to intercept the incoming beam. Foil radial position must be precisely adjustable and foils must be easily replaced. A foil changing apparatus has been designed, built and tested to meet these requirements. The main components are a supply magazine, a transport system, and unloading and loading mechanisms. The magazine is on top of the loading mechanisms. The magazine is on top of the cyclotron. It holds 300 foils and can be isolated from machine vacuum for refilling. Each foil is mounted on a stainless steel frame. A stainless steel roller chain fitted with 33 copper sleeves (shrouds) carries foils, one per shroud, down a dee stem to the midplane. A 12-bit absolute optical shaft encoder senses foil position. To replace a foil a shroud is positioned at the top of the cyclotron, a foil is removed, and another is transferred from the magazine to the empty shroud. Three stepping motors and associated electronics provide mechanical drive and are interfaced with a CAMAC control system

  15. Monitoring the degradation of partly decomposable plastic foils

    Directory of Open Access Journals (Sweden)

    Rétháti Gabriella

    2014-11-01

    Full Text Available We have monitored the behaviour of different polyethylene foils including virgin medium density polyethylene (MDPE, MDPE containing pro-oxydative additives (238, 242 and MDPE with pro-oxydative additives and thermoplastic starch (297 in the soil for a period of one year. A foil based on a blend of polyester and polylactic acid (BASF Ecovio served as degradable control. The experiment was carried out by weekly measurements of conductivity and capacity of the soil, since the setup was analogous to a condenser, of which the insulating layer was the foil itself. The twelve replications allowed monthly sampling; the specimen taken out from the soil each month were tested visually for thickness, mechanical properties, morphological and structural changes, and molecular mass. Based on the obtained capacity values, we found that among the polyethylene foils, the one that contained thermoplastic starch extenuated the most. This foil had the greatest decrease in tensile strength and elongation at break due to the presence of thermoplastic starch. The starch can completely degrade in the soil; thus, the foil had cracks and pores. The polyethylene foils that contained pro-oxydant additives showed smaller external change compared to the virgin foil, since there was no available UV radiation and oxygen for their degradation. The smallest change occurred in the virgin polyethylene foil. Among the five examined samples, the commercially available BASF foil showed the largest extenuation and external change, and it deteriorated the most in the soil.

  16. Study of transfer induced fission and fusion-fission reactions for 28 Si + 232 Th system at 340 MeV

    International Nuclear Information System (INIS)

    Prete, G.; Rizzi, V.; Fioretto, E.; Cinausero, M.; Shetty, D.V.; Pesente, S.; Brondi, A.; La Rana, G.; Moro, R.; Vardaci, E.; Boiano, A.; Ordine, A.; Gelli, N.; Lucarelli, F.; Bortignon, P.F.; Saxena, A.; Nayak, B.K.; Biswas, D.C.; Choudhury, R.K.; Kapoor, R.S.

    2001-01-01

    Full text: Fission induced by nucleons transfer has been investigated in the reaction 28 Si + 232 Th at 340 MeV. Looking at the projectile-like-fragments (PLF), the fission yield increases as the transfer increases, but a decreases is observed for transfers with DZ . Light charged particles in coincidence with PLF and Fission have been detected with large solid angle and show an increasing multiplicity as the Z of PLF is reduced and a constant value when fission is requested. The present results indicate inhibition of transfer induced fission reaction for higher Z transfer and increasing probability for decay through charged particle evaporation. Fission is the dominant decay process in heavy reactions involving fissile systems but the dynamical evolution of the composite system is largely governed by the formation and decay mechanisms. Important insight into the formation and the survival probability of the heavy composite nuclei formed in heavy ion collisions can be gained by simultaneously investigate the fission process and light particle emission over a continuous range of excitation energy, angular momentum and fissility. This can be achieved by studying fission induced by transfer of nucleons between the interacting projectile and the target nucleus. In the present work, we have carried out measurements on multinucleon transfer induced fission reactions in 28 Si + 232 Th system at Elab = 340 MeV. The experiment has been performed at the Laboratori Nazionale di Legnaro (LNL) using the 8pLP detector in its final configuration with 257 DE-E telescopes. The backward detectors were used to measure both light charged particles and fission fragments. The projectile-like fragments were detected using separate DE-E telescopes around the grazing angle. Two neutron detectors were placed at a distance of 115.5 cm from the target to measure neutrons emitted in coincidence with fission fragments. Here we present the results of the data analysis of transfer induced fission

  17. Early results utilizing high-energy fission product gamma rays to detect fissionable material in cargo

    International Nuclear Information System (INIS)

    Slaughter, D.R.; Accatino, M.R.; Alford, O.J.; Bernstein, A.; Descalle, M.; Gosnell, T.B.; Hall, J.M.; Loshak, A.; Manatt, D.R.; McDowell, M.R.; Moore, T.L.; Petersen, D.C.; Pohl, B.A.; Pruet, J.A.; Prussin, S.G.

    2004-01-01

    Full text: A concept for detecting the presence of special nuclear material ( 235 U or 239 Pu) concealed in inter modal cargo containers is described. It is based on interrogation with a pulsed beam of 6-8 MeV neutrons and fission events are identified between beam pulses by their β-delayed neutron emission or β -delayed high-energy γ-radiation. The high-energy γ-ray signature is being employed for the first time. Fission product γ-rays above 3 MeV are distinct from natural radioactivity and from nearly all of the induced activity in a normal cargo. High-energy γ-radiation is nearly 10X more abundant than the delayed neutrons and penetrates even thick cargo's readily. The concept employs two large (8x20 ft) arrays of liquid scintillation detectors that have high efficiency for the detection of both delayed neutrons and delayed γ-radiation. Detector backgrounds and potential interferences with the fission signature radiation have been identified and quantified. This information, together with predicted signature strength, has been applied to the estimation of detection probability for the nuclear material and estimation of false alarm rates. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48

  18. Retention of fission products in air filters

    International Nuclear Information System (INIS)

    Sobnack, R.

    1986-01-01

    The plume from the Chernobyl nuclear reactor reached London in the morning of 1st May. Less than two weeks later, the Physics Department, University of Surrey, reported a measurable level of radioactivity in air filters. On 15th May air filters from within the air conditioning plant of the Radioisotope Department at the London Hospital were removed for radiation checks. Crude tests with a geiger counter gave readings of 5-10 times higher than background levels. Gamma-ray spectroscopy of the departmental air filters (AF1) using a 127 mm NaI detector revealed a pattern characteristic of emissions of fission products from a nuclear reactor. Another air filter (AF2), from the home of a member of staff, was much less active. Because of the complexity of the gamma-ray spectrum and the relatively high level of emission from the departmental air filter, a thorough investigation was carried out using a high purity germanium detector. (author)

  19. Capillary self-alignment of mesoscopic foil components for sensor-systems-in-foil

    International Nuclear Information System (INIS)

    Arutinov, Gari; Smits, Edsger C P; Van Heck, Gert; Van den Brand, Jeroen; Schoo, Herman F M; Mastrangeli, Massimo; Dietzel, Andreas

    2012-01-01

    This paper reports on the effective use of capillary self-alignment for low-cost and time-efficient assembly of heterogeneous foil components into a smart electronic identification label. Particularly, we demonstrate the accurate (better than 50 µm) alignment of cm-sized functional foil dies. We investigated the role played by the assembly liquid, by the size and the weight of assembling dies and by their initial offsets in the self-alignment performance. It was shown that there is a definite range of initial offsets allowing dies to align with high accuracy and within approximately the same time window, irrespective of their initial offset. (paper)

  20. Measurement of MA fission cross sections at YAYOI

    Energy Technology Data Exchange (ETDEWEB)

    Ohkawachi, Yasushi; Ohki, Shigeo; Wakabayashi, Toshio [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-03-01

    Fission cross section ratios of minor actinide nuclides (Am-241, Am-243) relative to U-235 in the fast neutron energy region have been measured using a back-to-back (BTB) fission chamber at YAYOI fast neutron source reactor. A small BTB fission chamber was developed to measure the fission cross section ratios in the center of the core at YAYOI reactor. Dependence of the fission cross section ratios on neutron spectra was investigated by changing the position of the detector in the reactor core. The measurement results were compared with the fission cross sections in the JENDL-3.2, ENDF/B-VI and JEF-2.2 libraries. It was found that calculated values of Am-241 using the JENDL-3.2, ENDF/B-VI and JEF-2.2 data are lower by about 15% than the measured value in the center of the core (the neutron average energy is 1.44E+6(eV)). And, good agreement can be seen the measured value and calculated value of Am-243 using the JENDL-3.2 data in the center of the core (the neutron average energy is 1.44E+6)(eV), but calculated values of Am-243 using the ENDF/B-VI and JEF-2.2 data are lower by 11% and 13% than the measured value. (author)

  1. The micro slit gas detector

    Energy Technology Data Exchange (ETDEWEB)

    Claude Labbe, J.; Gomez, F. E-mail: fgomez@cern.ch; Nunez, T.; Pazos, A.; Vazquez, P

    1999-06-01

    We describe the first tests with a new proportional gas detector. Its geometry consists of slits opened in a copper metallized kapton foil with 30 {mu}m anode strips suspended in these openings. In this way, the multiplication process is similar to a standard MSGC. The fundamental difference is the absence of an insulating substrate around the anode. Also the material budget is significantly reduced, and the problems related to charging-up or polarization are removed. Ageing properties of this detector are under study.

  2. The micro slit gas detector

    International Nuclear Information System (INIS)

    Claude Labbe, J.; Gomez, F.; Nunez, T.; Pazos, A.; Vazquez, P.

    1999-01-01

    We describe the first tests with a new proportional gas detector. Its geometry consists of slits opened in a copper metallized kapton foil with 30 μm anode strips suspended in these openings. In this way, the multiplication process is similar to a standard MSGC. The fundamental difference is the absence of an insulating substrate around the anode. Also the material budget is significantly reduced, and the problems related to charging-up or polarization are removed. Ageing properties of this detector are under study

  3. Fusion-fission dynamics

    International Nuclear Information System (INIS)

    Blocki, J.; Planeta, R.; Brzychczyk, J.; Grotowski, K.

    1991-04-01

    Classical dynamical calculations of the heavy ion induced fission process for the reactions 40 Ar+ 141 Pr, 20 Ne+ 165 Ho and 12 C+ 175 Lu leading to the iridium like nucleus have been performed. As a result prescission lifetimes were obtained and compared with the experimental values. The agreement between the calculated and experimental lifetimes indicates that the one-body dissipation picture is much more relevant in describing the fusion-fission dynamics than the two-body one. Somewhat bigger calculated times than the experimental ones in case of the C+Lu reaction at 16 MeV/nucleon may be a signal on the energy range applicability of the one-body dissipation model. (author)

  4. Microfabricated Segmented-Involute-Foil Regenerator for Stirling Engines

    Science.gov (United States)

    Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gedeon, David; Qiu, Songgang; Wood, Gary; Kelly, Kevin; McLean, Jeffrey

    2010-01-01

    An involute-foil regenerator was designed, microfabricated, and tested in an oscillating-flow test rig. The concept consists of stacked involute-foil nickel disks (see figure) microfabricated via a lithographic process. Test results yielded a performance of about twice that of the 90-percent random-fiber currently used in small Stirling converters. The segmented nature of the involute- foil in both the axial and radial directions increases the strength of the structure relative to wrapped foils. In addition, relative to random-fiber regenerators, the involute-foil has a reduced pressure drop, and is expected to be less susceptible to the release of metal fragments into the working space, thus increasing reliability. The prototype nickel involute-foil regenerator was adequate for testing in an engine with a 650 C hot-end temperature. This is lower than that required by larger engines, and high-temperature alloys are not suited for the lithographic microfabrication approach.

  5. The fission track method

    International Nuclear Information System (INIS)

    Hansen, K.

    1990-01-01

    During the last decade fission track (FT) analysis has evolved as an important tool in exploration for hydrocarbon resources. Most important is this method's ability to yield information about temperatures at different times (history), and thus relate oil generation and time independently of other maturity parameters. The purpose of this paper is to introduce the basics of the method and give an example from the author's studies. (AB) (14 refs.)

  6. [Fission product yields of 60 fissioning reactions]. Final report

    International Nuclear Information System (INIS)

    Rider, B.F.

    1995-01-01

    In keeping with the statement of work, I have examined the fission product yields of 60 fissioning reactions. In co-authorship with the UTR (University Technical Representative) Talmadge R. England ''Evaluation and Compilation of Fission Product Yields 1993,'' LA-UR-94-3106(ENDF-349) October, (1994) was published. This is an evaluated set of fission product Yields for use in calculation of decay heat curves with improved accuracy has been prepared. These evaluated yields are based on all known experimental data through 1992. Unmeasured fission product yields are calculated from charge distribution, pairing effects, and isomeric state models developed at Los Alamos National Laboratory. The current evaluation has been distributed as the ENDF/B-VI fission product yield data set

  7. Yields of fission products produced by thermal-neutron fission of 249Cf

    International Nuclear Information System (INIS)

    Dickens, J.K.; McConnell, J.W.

    1981-01-01

    Absolute yields have been determined for 107 gamma rays emitted in the decay of 97 fission products representing 54 mass chains created during thermal-neutron fission of 249 Cf. These results include 14 mass chains for which no prior yield data exist. Using a Ge(Li) detector, spectra were obtained of gamma rays emanating from a 0.4 μg sample of 249 Cf between 45 s and 0.4 yr after very short irradiations of the 249 Cf by thermal neutrons. On the basis of measured gamma-ray yields and known nuclear data, total chain mass yields and relative uncertainties were obtained for 51 masses between 89 and 156. The absolute overall normalization uncertainty is approx.8%. The measured A-chain cumulative yields make up 77% of the total light mass (A 249 Cf

  8. Fabrication and utilization of semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Lemos Junior, Orlando Ferreira

    1969-01-01

    This paper describes the assembly of the equipment for the fabrication of Ge-Li drifted detectors and the technique used in the preparation of a Planar detector of 7 cm 2 x 0,5 cm for the Laboratory of the Linear Accelerator at the University of Sao Paulo, as well as the utilization of a 22 cm 3 coaxial detector for the analysis of fission product gamma rays at the Instituto de Engenharia Nuclear, Rio de Janeiro, R J, Brazil. (author)

  9. Stresses in the foil of an electron accelerator extraction channel

    International Nuclear Information System (INIS)

    Abroyan, M.A.; Makarenko, T.I.; Tokmakov, I.L.

    1983-01-01

    Stresses in the foil of an electron accelerator extraction channel are assessed with account of contributions of thermal expansion and stress concentrations during switchings. Optimization of extraction grid parameters of the electron accelerator extraction channel and choice of foil material for high current electron beam is conducted. It is suggested that an extraction grid with circular cells and Al-Mg foil should be used. A simple formula applicable for design calculations is proposed for evaluation of stress concentration coefficient during phase switchings

  10. Radiation detectors

    International Nuclear Information System (INIS)

    2013-01-01

    This sixth chapter presents the operational principles of the radiation detectors; detection using photographic emulsions; thermoluminescent detectors; gas detectors; scintillation detectors; liquid scintillation detectors; detectors using semiconductor materials; calibration of detectors; Bragg-Gray theory; measurement chain and uncertainties associated to measurements

  11. A new position-sensitive detector for thermal and epithermal neutrons

    International Nuclear Information System (INIS)

    Jeavons, A.P.; Ford, N.L.; Lindberg, B.; Sachot, R.

    1977-01-01

    A new two-dimensional position-sensitive neutron detector is described. It is based on (n,γ) neutron resonance capture in a foil with subsequent detection of internal conversion electrons with a high-density proportional chamber. Large-area detectors with a 1 mm spatial resolution are feasible. A detection efficiency of 50% is possible for thermal neutrons using gadolinium-157 foil and for epithermal neutrons using hafnium-177. (Auth.)

  12. Radiation pressure acceleration of ultrathin foils

    Energy Technology Data Exchange (ETDEWEB)

    Macchi, Andrea; Veghini, Silvia; Pegoraro, Francesco [Department of Physics ' E. Fermi' , Largo B Pontecorvo 3, 56127 Pisa (Italy); Liseykina, Tatyana V, E-mail: macchi@df.unipi.i [Max Planck Institute for Nuclear Physics, Heidelberg (Germany)

    2010-04-15

    The acceleration of sub-wavelength, solid-density plasma foils by the ultraintense radiation pressure of circularly polarized laser pulses is investigated analytically and with simulations. An improved 'Light Sail' or accelerating mirror model, accounting for nonlinear self-induced transparency effects, is used for estimating the optimal thickness for acceleration. The model predictions are in good agreement with one-dimensional simulations. These latter are analyzed in detail to unfold the dynamics and self-organization of electrons and ions during the acceleration. Two-dimensional simulations are also performed to address the effects of target bending and of laser intensity inhomogeneity.

  13. Foil focusing of relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Jr., Carl August [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-26

    When an intense relativistic electron beams (IREB) passes through a grounded metal foil, the transverse electric field due to the beam space charge is locally shorted out, and the beam is focused by the magnetic field of its current. The effect can be treated as focusing by a thin lens with first order aberration. Expressions for the focal length and aberration coefficient of the equivalent thin lens are developed in this note. These are then applied to practical examples representative of IREB research at Los Alamos National Laboratory.

  14. The Los Alamos foil implosion project

    International Nuclear Information System (INIS)

    Brownell, J.; Parker, J.; Bartsch, R.; Benage, J.; Bowers, R.; Cochrane, J.; Forman, P.; Goforth, J.; Greene, A.; Kruse, H.

    1993-01-01

    The goal of the Los Alamos foil implosion project is to produce an intense (>100 TW), multi-megajoule, laboratory soft x-ray source for material studies and fusion experiments. The concept involves the implosion of annular, current-carrying, cylindrical metallic plasmas via their self-magnetic forces. The project features inductive storage systems using both capacitor banks and high explosive-driven flux compression generators as prime energy sources. Fast opening switches are employed to shorten the electrical pulses. The program will be described and activities to date will be summarized

  15. GEM Foil Quality Assurance For The ALICE TPC Upgrade

    Directory of Open Access Journals (Sweden)

    Brücken Erik

    2018-01-01

    Full Text Available The ALICE (A Large Ion Collider Experiment experiment at the Large Hadron Collider (LHC at CERN is dedicated to heavy ion physics to explore the structure of strongly interacting matter. The Time Projection Chamber (TPC of ALICE is a tracking detector located in the central region of the experiment. It offers excellent tracking capabilities as well as particle identification. After the second long shutdown (LS2 the LHC will run at substantially higher luminosities. To be able to increase the data acquisition rate by a factor of 100, the ALICE TPC experiment has to replace the Multi-Wire Proportional Chamber (MWPC –based readout chambers. The MWPC are operated with gating grid that limits the rate to O(kHz. The new ReadOut Chamber (ROC design is based on Gas Electron Multiplier (GEM technology operating in continuous mode. The current GEM productions scheme foresees the production of more than 800 GEM foils of different types. To fulfill the requirements on the performance of the GEM TPC readout, necessitates thorough Quality Assurance (QA measures. The QA scheme, developed by the ALICE collaboration, will be presented in detail.

  16. GEM Foil Quality Assurance For The ALICE TPC Upgrade

    Science.gov (United States)

    Brücken, Erik; Hildén, Timo

    2018-02-01

    The ALICE (A Large Ion Collider Experiment) experiment at the Large Hadron Collider (LHC) at CERN is dedicated to heavy ion physics to explore the structure of strongly interacting matter. The Time Projection Chamber (TPC) of ALICE is a tracking detector located in the central region of the experiment. It offers excellent tracking capabilities as well as particle identification. After the second long shutdown (LS2) the LHC will run at substantially higher luminosities. To be able to increase the data acquisition rate by a factor of 100, the ALICE TPC experiment has to replace the Multi-Wire Proportional Chamber (MWPC) -based readout chambers. The MWPC are operated with gating grid that limits the rate to O(kHz). The new ReadOut Chamber (ROC) design is based on Gas Electron Multiplier (GEM) technology operating in continuous mode. The current GEM productions scheme foresees the production of more than 800 GEM foils of different types. To fulfill the requirements on the performance of the GEM TPC readout, necessitates thorough Quality Assurance (QA) measures. The QA scheme, developed by the ALICE collaboration, will be presented in detail.

  17. Ti foil light in the ATA [Advanced Test Accelerator] beam

    International Nuclear Information System (INIS)

    Slaughter, D.R.; Chong, Y.P.; Goosman, D.R.; Rule, D.W.; Fiorito, R.B.

    1987-09-01

    An experiment is in progress to characterize the visible light produced when a Ti foil is immersed in the ATA 2 kA, 43 MeV beam. Results obtained to date indicate that the optical condition of the foil surface is a critical determinant of these characteristics, with a very narrow angular distribution obtained when a highly polished and flat foil is used. These data are consistent with the present hypothesis that the light is produced by transition radiation. Incomplete experiments to determine the foil angle dependence of the detected light and its polarization are summarized and remaining experiments are described

  18. Characterization of U-Mo Foils for AFIP-7

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Danny J.; Ermi, Ruby M.; Schemer-Kohrn, Alan L.; Overman, Nicole R.; Henager, Charles H.; Burkes, Douglas; Senor, David J.

    2012-11-07

    Twelve AFIP in-process foil samples, fabricated by either Y-12 or LANL, were shipped from LANL to PNNL for potential characterization using optical and scanning electron microscopy techniques. Of these twelve, nine different conditions were examined to one degree or another using both techniques. For this report a complete description of the results are provided for one archive foil from each source of material, and one unirradiated piece of a foil of each source that was irradiated in the Advanced Test Reactor. Additional data from two other LANL conditions are summarized in very brief form in an appendix. The characterization revealed that all four characterized conditions contained a cold worked microstructure to different degrees. The Y-12 foils exhibited a higher degree of cold working compared to the LANL foils, as evidenced by the highly elongated and obscure U-Mo grain structure present in each foil. The longitudinal orientations for both of the Y-12 foils possesses a highly laminar appearance with such a distorted grain structure that it was very difficult to even offer a range of grain sizes. The U-Mo grain structure of the LANL foils, by comparison, consisted of a more easily discernible grain structure with a mix of equiaxed and elongated grains. Both materials have an inhomogenous grain structure in that all of the characterized foils possess abnormally coarse grains.

  19. Apparatus and process for ultrasonic seam welding stainless steel foils

    Science.gov (United States)

    Leigh, Richard W.

    1992-01-01

    An ultrasonic seam welding apparatus having a head which is rotated to form contact, preferably rolling contact, between a metallurgically inert coated surface of the head and an outside foil of a plurality of layered foils or work materials. The head is vibrated at an ultrasonic frequency, preferably along a longitudinal axis of the head. The head is constructed to transmit vibration through a contacting surface of the head into each of the layered foils. The contacting surface of the head is preferably coated with aluminum oxide to prevent the head from becoming welded to layered stainless steel foils.

  20. Investigation of electrically exploded large area foil for current switching

    International Nuclear Information System (INIS)

    Chernyshev, V.K.; Boyko, A.M.; Kostyukov, V.N.; Kuzyaev, A.I.; Kulagin, A.A.; Mamyshev, V.I.; Mezhevov, A.B.; Nechaev, A.I.; Petrukhin, A.A.; Protasov, M.S.; Shevtsov, V.I.; Yakubov, V.B.

    1990-01-01

    The possibility of microsecond ∼40 MA current switching from EMG into a quasiconstant inductive load by an electrically exploded foil is investigated. The copper foil of large area, S ∼ 10 4 cm 2 , was placed between thin-walled insulators into a coaxial transmission line (TL). This paper shows a conceptual device scheme. To feed a foil opening switch (FOS), a disc explosive magnetic generator (DEMG) with 20 μs current rise time was employed. An inductive coaxial load was connected to a FOS at a moment, that was close to the foil vaporization start by means of an axisymmetric explosive current commutator (ECC)

  1. Thermohydrodynamic analysis of airfoil bearing based on bump foil structure

    Directory of Open Access Journals (Sweden)

    S.Y. Maraiy

    2016-09-01

    Full Text Available The load carrying capacity of the gas foil bearing depends on the material properties and the configuration of the underlying bump strip’s structure. This paper presents three different cases for selecting the dimensions of the foil bearing to guarantee the highest possible load carrying capacity. It focuses on three main parameters that affect the compliance number; these parameters are the length of bump in θ direction, the pitch of bump foil, and the thickness of bump foil. It also studies the effect of changing these parameters on load carrying capacity according to both isothermal and thermohydrodynamic approaches.

  2. High resolution, position sensitive detector for energetic particle beams

    International Nuclear Information System (INIS)

    Marsh, E.P.; Strathman, M.D.; Reed, D.A.; Odom, R.W.; Morse, D.H.; Pontau, A.E.

    1993-01-01

    The performance and design of an imaging position sensitive, particle beam detector will be presented. The detector is minimally invasive, operates a wide dynamic range (>10 10 ), and exhibits high spatial resolution. The secondary electrons produced when a particle beam passes through a thin foil are imaged using stigmatic ion optics onto a two-dimensional imaging detector. Due to the low scattering cross section of the 6 nm carbon foil the detector is a minimal perturbation on the primary beam. A prototype detector with an image resolution of approximately 5 μm for a field of view of 1 mm has been reported. A higher resolution detector for imaging small beams (<50 μm) with an image resolution of better than 0.5 μm has since been developed and its design is presented. (orig.)

  3. High resolution, position sensitive detector for energetic particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, E P [Charles Evans and Associates, Redwood City, CA (United States); Strathman, M D [Charles Evans and Associates, Redwood City, CA (United States); Reed, D A [Charles Evans and Associates, Redwood City, CA (United States); Odom, R W [Charles Evans and Associates, Redwood City, CA (United States); Morse, D H [Sandia National Labs., Livermore, CA (United States); Pontau, A E [Sandia National Labs., Livermore, CA (United States)

    1993-05-01

    The performance and design of an imaging position sensitive, particle beam detector will be presented. The detector is minimally invasive, operates a wide dynamic range (>10[sup 10]), and exhibits high spatial resolution. The secondary electrons produced when a particle beam passes through a thin foil are imaged using stigmatic ion optics onto a two-dimensional imaging detector. Due to the low scattering cross section of the 6 nm carbon foil the detector is a minimal perturbation on the primary beam. A prototype detector with an image resolution of approximately 5 [mu]m for a field of view of 1 mm has been reported. A higher resolution detector for imaging small beams (<50 [mu]m) with an image resolution of better than 0.5 [mu]m has since been developed and its design is presented. (orig.)

  4. Development of ionization technique for measurement of fast neutron induced fission products yields of {sup 237}Np

    Energy Technology Data Exchange (ETDEWEB)

    Goverdovski, A.A.; Khryachkov, V.A.; Ketlerov, V.V.; Mitrofanov, V.F.; Ostapenko, Yu.B.; Semenova, N.N.; Fomichev, A.N.; Rodina, L.F. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-03-01

    Twin gridded ionization chamber and corresponding software was designed for measurements of masses, kinetic energies and nuclear charges of fission fragments from fast neutron induced fission of {sup 237}Np. The ionization detector design, electronics, data acquisition and processing system and the test results are presented in this paper. (J.P.N.)

  5. Study of mechanical deformations and holes of large, asymmetric GE1/1 foils

    CERN Document Server

    Moutinho Goes, Anna Beatriz

    2017-01-01

    A CMS upgrade requires the installation of GEM detectors, namely the GE1/1. Its installation will take place in 2018 during the LS2. However, such a project demands a collaboration of different teams. The part assigned to me was done in collaboration with Chamini SHAMMI and consisted of studying how much deformation there was after stretching the GE1/1 foils. For that, an analysis code was written to calculation the diameter evolution and its deviation, according to the forces applied.

  6. Coulomb fission and transfer fission at heavy ion collisions

    International Nuclear Information System (INIS)

    Himmele, G.

    1981-01-01

    In the present thesis the first direct evidence of nuclear fission after inelastic scattering of heavy ions (sup(183,184)W, 152 Sm → 238 U; 184 W → 232 Th; 184 W, 232 Th → 248 Cm) is reported. Experiments which were performed at the UNILAC of the Gesellschaft fuer Schwerionenforschung in Darmstadt show the observed heavy ion induced fission possesses significant properties of the Coulomb fission. The observed dependence of the fission probability for inelastic scattering on the projectile charge proves that the nuclear fission is mediated by the electromagnetic interaction between heavy ions. This result suggests moreover a multiple Coulomb-excitation preceding the fission. Model calculations give a first indication, that the Coulomb fission proceeds mainly from the higher β phonons. In the irradiation with 184 W the fission probability of 232 Th is for all incident energies about 40% smaller that at 238 U. The target dependence of the Coulomb fission however doesn't allow, to give quantitative statements about the position and B(E2)-values of higher lying β phonons. (orig./HSI) [de

  7. Binary and ternary fission yields induced by 12C and 20Ne ions on 238U targets

    International Nuclear Information System (INIS)

    Otto, R.J.

    1974-01-01

    Evidence for ternary fission of 250 Cf* and 258 No* compound nuclei has been found. Relative cross section data for nuclides with masses between 24 Na and 161 Tb have been determined for 12 C bombardments of natural uranium at laboratory energies of 122 MeV, 113 MeV and 105 MeV. Relative cross section data for 8 nuclides between 24 Na and 66 Ni were sought for 20 Ne bombardments of natural uranium at 150 MeV laboratory energies. The binary fission fragment mass distribution for 238 U( 12 C,f) was determined by analysis of fission fragment recoil collection foils using radiochemical techniques and high resolution gamma ray spectroscopy. The results indicated the existence of a ternary fission branch similar to mass distributions obtained for He induced fission of Th, U, and Pu nuclei at intermediate energies. Comparison of the data with He induced ternary fission data obtained previously in this laboratory indicated an increase in the ternary fission probability with increasing Z 2 /A of the compound nucleus and with excitation energy. A shift of the binary-ternary fission product intersection point to lower mass numbers with increasing Z 2 /A and excitation energy of the compound nucleus was also observed. (Diss. Abstr. Int., B)

  8. Development of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.

    1997-01-01

    The Reduced Enrichment Research and Test Reactor Program has continued its effort in the past 3 yr to develop use of low-enriched uranium (LEU) to produce the fission product 99 Mo. This work comprises both target and chemical processing development and demonstration. Two major target systems are now being used to produce 99 Mo with highly enriched uranium-one employing research reactor fuel technology (either uranium-aluminum alloy or uranium aluminide-aluminum dispersion) and the other using a thin deposit of UO 2 on the inside of a stainless steel (SST) tube. This paper summarizes progress in irradiation testing of targets based on LEU uranium metal foils. Several targets of this type have been irradiated in the Indonesian RSG-GAS reactor operating at 22.5 MW

  9. Yields of fission products produced by thermal-neutron fission of 245Cm

    International Nuclear Information System (INIS)

    Dickens, J.K.; McConnell, J.W.

    1981-01-01

    Absolute yields have been determined for 105 gamma rays emitted in the decay of 95 fission products representing 54 mass chains created during thermal-neutron fission of 245 Cm. These results include 17 mass chains for which no prior yield data exist. Using a Ge(Li) detector, spectra were obtained of gamma rays between 30 sec and 0.3 yr after very short irradiations of thermal neutrons on a 1 μg sample of 245 Cm. On the basis of measured gamma-ray yields and known nuclear data, total chain mass yields and relative uncertainties were obtained for 51 masses between 84 and 156. The absolute overall normalization uncertainty is 239 Pu and for 252 Cf(s.f.); the influences of the closed shells Z=50, N=82 are not as marked as for thermal-neutron fission of 239 Pu but much more apparent than for 252 Cf(s.f.). Information on the charge distribution along several isobaric mass chains was obtained by determining fractional yields for 12 fission products. The charge distribution width parameter, based upon data for the heavy masses, A=128 to 140, is independent of mass to within the uncertainties of the measurements. Gamma-ray assignments were made for decay of short-lived fission products for which absolute gamma-ray transition probabilities are either not known or in doubt. Absolute gamma-ray transition probabilities were determined as (51 +- 8)% for the 374-keV gamma ray from decay of 110 Rh, (35 +- 7)% for the 1096-keV gamma ray from decay of 133 Sb, and (21.2 +- 1.2)% for the 255-keV gamma ray from decay of 142 Ba

  10. Status update on the NIFFTE high precision fission cross section measurement program

    International Nuclear Information System (INIS)

    Laptev, Alexander B.; Tovesson, Fredrik; Burgett, Eric; Greife, Uwe; Grimes, Steven; Heffner, Michael D.; Hertel, Nolan E.; Hill, Tony; Isenhower, Donald; Klay, Jennifer L.; Kornilov, Nickolay; Kudo, Ryuho; Loveland, Walter; Massey, Thomas; McGrath, Chris; Pickle, Nathan; Qu, Hai; Sharma, Sarvagya; Snyder, Lucas; Thornton, Tyler; Towell, Rusty S.; Watson, Shon

    2010-01-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) program has been underway for nearly two years. The program's mission is to measure fission cross sections of the primary fissionable and fissile materials ( 235 U, 239 Pu, 238 U) as well as the minor actinides across energies from approximately 50 keV up to 20 MeV with an absolute uncertainty of less than one percent while investigating energy ranges from below an eV to 600 MeV. This basic nuclear physics data is being reinvestigated to support the next generation power plants and a fast burner reactor program. Uncertainties in the fast, resolved and unresolved resonance regions in plutonium and other transuranics are extremely large, dominating safety margins in the next generation nuclear power plants and power plants of today. This basic nuclear data can be used to support all aspects of the nuciear renaissance. The measurement campaign is utilizing a Time Projection Chamber or TPC as the tool to measure these cross sections to these unprecedented levels. Unlike traditional fission cross section measurements using time-of-flight and a multiple fission foil configurations in which fission cross sections in relation to that of 235 U are performed, the TPC project uses time-of-flight and hydrogen as the benchmark cross section. Using the switch to hydrogen, a simple, smooth cross section that can be used which removes the uncertainties associated with the resolved and unresolved resonances in 235 U.

  11. Qβ measurements with a total absorption detector

    International Nuclear Information System (INIS)

    Shibata, Michihiro; Kawade, Kiyoshi; Shindou, Terumasa; Kojima, Yasuaki; Taniguchi, Akihiro; Kawase, Yoichi; Ichikawa, Shin-ichi

    2003-01-01

    For Q β determination, we have developed a newly total absorption detector that can detect almost all radiation from the radioactive nuclei. The detector is composed of large volume and low background twin BGO scintillation detectors. The estimated efficiency is more than two orders of magnitude larger than those of Ge or Si detectors. The Q β s of some fission products of 235 U were successfully measured using an on-line mass separator for the first time (KUR-ISOL). We have proposed the possibility of determination Q β up to about 10 MeV using the detector without the knowledge of the decay scheme. (author)

  12. A large area transition radiation detector for the NOMAD experiment

    Science.gov (United States)

    Bassompierre, G.; Bermond, M.; Berthet, M.; Bertozzi, T.; Détraz, C.; Dubois, J.-M.; Dumps, L.; Engster, C.; Fazio, T.; Gaillard, G.; Gaillard, J.-M.; Gouanère, M.; Manola-Poggioli, E.; Mossuz, L.; Mendiburu, J.-P.; Nédélec, P.; Palazzini, E.; Pessard, H.; Petit, P.; Petitpas, P.; Placci, A.; Sillou, D.; Sottile, R.; Valuev, V.; Verkindt, D.; Vey, H.; Wachnik, M.

    1998-02-01

    A transition radiation detector to identify electrons at 90% efficiency with a rejection factor against pions of 10 3 on an area of 2.85 × 2.85 m 2 has been constructed for the NOMAD experiment. Each of its 9 modules includes a 315 plastic foil radiator and a detector plane of 176 vertical straw tubes filled with a xenon-methane gas mixture. Details of the design, construction and operation of the detector are given.

  13. A large area transition radiation detector for the NOMAD experiment

    CERN Document Server

    Bassompierre, Gabriel; Berthet, M; Bertozzi, T; Détraz, C; Dubois, J M; Dumps, Ludwig; Engster, Claude; Fazio, T; Gaillard, G; Gaillard, Jean-Marc; Gouanère, M; Manola-Poggioli, E; Mossuz, L; Mendiburu, J P; Nédélec, P; Palazzini, E; Pessard, H; Petit, P; Petitpas, P; Placci, Alfredo; Sillou, D; Sottile, R; Valuev, V Yu; Verkindt, D; Vey, H; Wachnik, M

    1997-01-01

    A transition radiation detector to identify electrons at 90% efficiency with a rejection factor against pions of 10 3 on an area of 2.85 × 2.85 m 2 has been constructed for the NOMAD experiment. Each of its 9 modules includes a 315 plastic foil radiator and a detector plane of 176 vertical straw tubes filled with a xenon-methane gas mixture. Details of the design, construction and operation of the detector are given.

  14. A small flat fission chamber

    International Nuclear Information System (INIS)

    Li Yijun; Wang Dalun; Chen Suhe

    1999-01-01

    With fission materials of depleted uranium, natural uranium, enriched uranium, 239 Pu, and 237 Np, the authors have designed and made a series of small flat fission chamber. The authors narrated the construction of the fission chamber and its technological process of manufacture, and furthermore, the authors have measured and discussed the follow correct factor, self-absorption, boundary effect, threshold loss factor, bottom scatter and or so

  15. Fission barriers of light nuclei

    International Nuclear Information System (INIS)

    Grotowski, K.; Planeta, R.; Blann, M.; Komoto, T.

    1989-01-01

    Experimental fission excitation functions for compound nuclei /sup 52/Fe, /sup 49/Cr, /sup 46/V, and /sup 44/Ti formed in heavy-ion reactions are analyzed in the Hauser-Feshbach/Bohr-Wheeler formalism using fission barriers based on the rotating liquid drop model of Cohen et al. and on the rotating finite range model of Sierk. We conclude that the rotating finite range approach gives better reproduction of experimental fission yields, consistent with results found for heavier systems

  16. Micro fission chamber for the ITER neutron monitor

    International Nuclear Information System (INIS)

    Yamauchi, Michinori; Nishitani, Takeo; Ochiai, Kentaro; Ebisawa, Katsuyuki

    2004-01-01

    This paper describes the design and the fabrication of a prototype micro-fission chamber and test results under ITER relevant conditions including wide neutron spectrum and intense gamma-rays, and the performance as a ITER power monitor is discussed. A micro-fission chamber with 12 mg UO 2 and a dummy chamber without uranium were designed and fabricated for the in-vessel neutron flux monitoring of ITER. The measurement ability was tested with the FNS facility for 14 MeV neutrons and the 60 Co gamma-ray irradiation facility at JAERI-Takasaki. Employing the Campbelling mode in the electronics, the ITER requirement for the temporal resolution was satisfied. The excellent linearity of the detector output versus the neutron flux was confirmed in the temperature range from 20degC to 250degC. As a result, it was concluded that the developed micro-fission chamber is applicable for ITER. (author)

  17. An Effort to Improve Uranium Foil Target Fabrication Technology by Single Roll Method

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Moon Soo; Lee, Jong Hyeon [Chungnam National University, Daejeon (Korea, Republic of); Kim, Chang Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Technetium-99({sup 99m}Tc) is the most commonly used radioisotope in nuclear medicine for diagnostic procedures. It is produced from the decay of its parent Mo-99, which is sent to the hospital or clinic in the form of a generator. Recently, all of the major providers of Mo-99 have used high-enrichment uranium (HEU) as a target material in a research and test reactor. As a part of a nonproliferation effort, the RERTR program has investigated the production of the fission isotope Mo-99 using low-enrichment uranium(LEU) instead of HEU since 1993, a parent nuclide of {sup 99m}Tc , which is a major isotope for a medical diagnosis. As uranium foils have been produced by the conventional method on a laboratory scale by a repetitive hot-rolling method with significant problems in foil quality, productivity and economic efficiency, attention has shifted to the planar flow casting(PFC) method. In KAERI, many experiments are performed using depleted uranium(DU).

  18. Nuclear Forensics and Radiochemistry: Fission

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-07

    Radiochemistry has been used to study fission since it’ discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution.

  19. Micro plate fission chamber development

    International Nuclear Information System (INIS)

    Wang Mei; Wen Zhongwei; Lin Jufang; Jiang Li; Liu Rong; Wang Dalun

    2014-01-01

    To conduct the measurement of neutron flux and the fission rate distribution at several position in assemblies, the micro plate fission chamber was designed and fabricated. Since the requirement of smaller volume and less structure material was taken into consideration, it is convinient, commercial and practical to use fission chamber to measure neutron flux in specific condition. In this paper, the structure of fission chamber and process of fabrication were introduced and performance test result was presented. The detection efficiency is 91.7%. (authors)

  20. Fission yield measurements at IGISOL

    Science.gov (United States)

    Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.

    2016-06-01

    The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  1. Fission yield measurements at IGISOL

    Directory of Open Access Journals (Sweden)

    Lantz M.

    2016-01-01

    Full Text Available The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f and Th(p,f have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  2. Fusion-fission type collisions

    International Nuclear Information System (INIS)

    Oeschler, H.

    1980-01-01

    Three examples of fusion-fission type collisions on medium-mass nuclei are investigated whether the fragment properties are consistent with fission from equilibrated compound nuclei. Only in a very narrow band of angular momenta the data fulfill the necessary criteria for this process. Continuous evolutions of this mechnism into fusion fission and into a deep-inelastic process and particle emission prior to fusion have been observed. Based on the widths of the fragment-mass distributions of a great variety of data, a further criterion for the compound-nucleus-fission process is tentatively proposed. (orig.)

  3. Measurement of 14 MeV neutron cross section of {sup 129}I with foil activation method

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Isao; Nakano, Daisuke; Takahashi, Akito [Osaka Univ., Suita (Japan). Faculty of Engineering

    1997-03-01

    The {sup 129}I, which is one of the most famous fission products (FPs), is of very important concern from the standpoint of waste transmutation due to its extremely long half life. The accurate reaction cross section data of {sup 129}I induced by 14 MeV neutrons are indispensable when evaluating the performance to transmute it in a fusion reactor. However, there was no available experimental data reported until now. We measured 14 MeV neutron induced reaction cross sections of {sup 129}I to give the reference cross section data for evaluation of transmutation performance and nuclear data, using OKTAVIAN facility of Osaka university, Japan. Since the available amount of {sup 129}I as a sample is quite small, probably less than 1 mg, the foil activation method was adopted in the measurement. The sample was a sealed source of {sup 129}I and the {gamma}-rays from the irradiated sample were measured with a Hp-Ge detector. Several {gamma}-rays peaks which could be expected to be caused by two nuclear reactions of {sup 129}I(n,2n) and {sup 129}I(n,{gamma}) were observed. We confirmed that these peaks corresponded to those of {sup 128}I and {sup 130}I through ascertaining each energy and half life. From the measurement, the cross section of {sup 129}I(n,2n) and the effective production cross section of {sup 130}I produced by the {sup 129}I(n,{gamma}){sup 130}I reaction including the contribution of {sup 129}I(n,{gamma}){sup 130m}I reaction, that were estimated to be 1.1{+-}0.1 b and 0.032{+-}0.003 b, respectively at 14.8 MeV, were obtained with an acceptable accuracy of about 10 %, though the errors caused by the uncertainty of {gamma} decay scheme data still existed. The measured cross sections were compared with the evaluated nuclear data of JENDL-3.2 and ENDF/B-VI. For the {sup 129}I(n,2n) reaction, the evaluations overestimate the cross section by 30-40 %, while for the {sup 129}I(n,{gamma}) reaction, the evaluations underestimate by at least one order of magnitude

  4. Energy from nuclear fission()

    Science.gov (United States)

    Ripani, M.

    2015-08-01

    The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.

  5. Preliminary results utilizing high-energy fission product γ-rays to detect fissionable material in cargo

    Science.gov (United States)

    Slaughter, D. R.; Accatino, M. R.; Bernstein, A.; Church, J. A.; Descalle, M. A.; Gosnell, T. B.; Hall, J. M.; Loshak, A.; Manatt, D. R.; Mauger, G. J.; Moore, T. L.; Norman, E. B.; Pohl, B. A.; Pruet, J. A.; Petersen, D. C.; Walling, R. S.; Weirup, D. L.; Prussin, S. G.; McDowell, M.

    2005-12-01

    A concept for detecting the presence of special nuclear material (235U or 239Pu) concealed in intermodal cargo containers is described. It is based on interrogation with a pulsed beam of 7 MeV neutrons that produce fission events and their β-delayed neutron emission or β-delayed high-energy γ radiation between beam pulses provide the detection signature. Fission product β-delayed γ-rays above 3 MeV are nearly 10 times more abundant than β-delayed neutrons and are distinct from natural radioactivity and from nearly all of the induced activity in a normal cargo. Detector backgrounds and potential interferences with the fission signature radiation have been identified and quantified.

  6. Measurement of the 235U/238U fission cross section ratio in the 235U fission neutron spectrum

    International Nuclear Information System (INIS)

    Azimi-Garakani, D.; Bagheri-Darbandi, M.

    1983-06-01

    Fission cross section ratio of 235 U to 238 U has been measured in the fast neutron field generated by the 235 U fission plate installed on the thermal column of the Tehran Research Reactor (TRR) with a Makrofol solid state nuclear track detector. The experiments were carried out with a set of total six enriched 235 U and depleted 238 U deposits with different masses and Makrofol films of 0.025mm and 0.060mm thicknesses. The chemically etched tracks were counted by an optical microscope. No significant differences were observed with the thin and the thick films. The results showed that the average fission cross section ratio is 3.83+-0.25. (author)

  7. Measurements of fission cross-sections and of neutron production rates

    International Nuclear Information System (INIS)

    Billaud, P.; Clair, C.; Gaudin, M.; Genin, R.; Joly, R.; Leroy, J.L.; Michaudon, A.; Ouvry, J.; Signarbieux, C.; Vendryes, G.

    1958-01-01

    a) Measurements of neutron induced fission cross-sections in the low energy region. The variation of the fission cross sections of several fissile isotopes has been measured and analysed, for neutron energies below 0,025 eV. The monochromator was a crystal spectrometer used in conjunction with a mechanical velocity selector removing higher order Bragg reflections. The fissile material was laid down on the plates of a fission chamber by painting technic. An ionization chamber, having its plates coated with thin 10 B layers, was used as the neutron flux monitor. b) Measurement of the fission cross section of 235 U. We intend to measure the variation of the neutron induced fission cross section of 235 U over the neutron energy range from 1 keV by the time of flight method. The neutron source is the uranium target of a pulsed 28 MeV electron linear accelerator. The detector is a large fission chamber, with parallel plates, containing about 10 g of 235 U (20 deposits of 25 cm diameter). The relative fission data were corrected for the neutron spectrum measured with a set of BF 3 proportional counters. c) Mean number ν of neutrons emitted in neutron induced fission. We measured the value of ν for several fissile isotopes in the case of fission induced by 14 MeV neutrons. The 14 MeV neutrons were produced by D (t, n) α reaction by means of a 300 kV Cockcroft Walton generator. (author) [fr

  8. Prompt Gamma Radiation from Fragments in the Thermal Fission of 235U

    International Nuclear Information System (INIS)

    Albinsson, H.; Lindow, L.

    1970-06-01

    Measurements were made on the gamma radiation emitted from fission fragments in slow neutron induced fission of 235 U. The fragments were detected with solid state detectors of the surface barrier type and the gamma radiation with a Nal(Tl) scintillator. Mass selection was used so that the gamma radiation could be measured as a function of fragment mass. Time discrimination between the fission gammas and the prompt neutrons released in the fission process was employed to reduce the background. The gamma radiation emitted during different time intervals after the fission event was studied with the help of a collimator, the position of which was changed along the path of the fission fragments. In this way a decay curve was obtained from which the life-time of one of the gamma-emitting states could be estimated. The relative yield of the gamma-rays was determined as a function of mass for different gamma-ray energy portions and two specific time intervals after the fission events. Comparisons were made with data obtained from 252 Cf-fission. Attention is drawn to some features which seem to be the same in 235 U and 252 Cf-fission

  9. Prompt Gamma Radiation from Fragments in the Thermal Fission of {sup 235}U

    Energy Technology Data Exchange (ETDEWEB)

    Albinsson, H [Chalmers Univ. of Technology, Goteborg (Sweden); Lindow, L [AB Atomenergi, Nykoeping (Sweden)

    1970-06-15

    Measurements were made on the gamma radiation emitted from fission fragments in slow neutron induced fission of {sup 235}U. The fragments were detected with solid state detectors of the surface barrier type and the gamma radiation with a Nal(Tl) scintillator. Mass selection was used so that the gamma radiation could be measured as a function of fragment mass. Time discrimination between the fission gammas and the prompt neutrons released in the fission process was employed to reduce the background. The gamma radiation emitted during different time intervals after the fission event was studied with the help of a collimator, the position of which was changed along the path of the fission fragments. In this way a decay curve was obtained from which the life-time of one of the gamma-emitting states could be estimated. The relative yield of the gamma-rays was determined as a function of mass for different gamma-ray energy portions and two specific time intervals after the fission events. Comparisons were made with data obtained from {sup 252} Cf-fission. Attention is drawn to some features which seem to be the same in {sup 235}U and {sup 252} Cf-fission.

  10. Past and future application of solid-state detectors in manned spaceflight

    International Nuclear Information System (INIS)

    Reitz, G.

    2006-01-01

    The radiation exposure in space missions can be reduced by careful mission planning and appropriate measures, such as provision of a radiation shelter, but it cannot be eliminated. The reason for that is the high penetration capability of the radiation components owing to their high energies. Radiation is therefore an acknowledged primary concern for manned spaceflight and is a potentially limiting factor for long-term orbital and interplanetary missions. The radiation environment is a complex mixture of charged particles of solar and galactic origin and of the radiation belts, as well as of secondary particles produced in interactions of the galactic cosmic particles with the nuclei of atmosphere of the earth. The complexity even increases by placing a spacecraft into this environment owing to the interaction of the radiation components with the shielding material. Therefore it is a challenge to provide for appropriate measurements in this radiation field, coping with the limited resources on experiment power and mass. Solid-state dosemeters were already chosen for measurements in the first manned flights. Thermoluminescence dosemeters (TLDs) and plastic nuclear track detectors (PNTD) especially found a preferred application because they are light-weighted, need no power supply and they are tissue-equivalent. Most of the data available until 1996 were gathered by using these passive detectors; this especially holds for heavy ion particle spectra. The systems, supplemented by converter foils or fission detectors and bubble detectors, provide information on dose, particle flux-, energy- and linear energy transfer spectra of the ionising radiation and neutron fluxes and doses. From 1989, silicon detectors were used for dose and flux measurements and later on for particle spectrometry. Silicon detectors were demonstrated as a powerful tool for the description of space radiation environment. Optical simulated luminescence (OSL) detectors have now been introduced as a

  11. Characterization of laser-cut copper foil X-pinches

    Science.gov (United States)

    Collins, G. W.; Valenzuela, J. C.; Hansen, S. B.; Wei, M. S.; Reed, C. T.; Forsman, A. C.; Beg, F. N.

    2016-10-01

    Quantitative data analyses of laser-cut Cu foil X-pinch experiments on the 150 ns quarter-period, ˜250 kA GenASIS driver are presented. Three different foil designs are tested to determine the effects of initial structure on pinch outcome. Foil X-pinch data are also presented alongside the results from wire X-pinches with comparable mass. The X-ray flux and temporal profile of the emission from foil X-pinches differed significantly from that of wire X-pinches, with all emission from the foil X-pinches confined to a ˜3 ns period as opposed to the delayed, long-lasting electron beam emission common in wire X-pinches. Spectroscopic data show K-shell as well as significant L-shell emission from both foil and wire X-pinches. Fits to synthetic spectra using the SCRAM code suggest that pinching foil X's produced a ˜1 keV, ne ≥ 1023 cm-3 plasma. The spectral data combined with the improved reliability of the source timing, flux, and location indicate that foil X-pinches generate a reproducible, K-shell point-projection radiography source that can be easily modified and tailored to suit backlighting needs across a variety of applications.

  12. Process for producing molybdenum foil and collapsible tubing

    Science.gov (United States)

    Bretts, G. R.; Gavert, R. B.; Groschke, G. F.

    1971-01-01

    Manufacturing process produces molybdenum foil 0.002 cm thick and 305 m long, and forms foil into high-strength, thin-walled tubing which can be flattened for storage on a spool. Desirable metal properties include high thermal conductivity stiffness, yield and tensile stress, and low thermal expansion coeffecient.

  13. Foil fabrication for the ROMANO event. Revision 1

    International Nuclear Information System (INIS)

    Romo, J.G. Jr.; Weed, J.W.; Griggs, G.E.; Brown, T.G.; Tassano, P.L.

    1984-01-01

    The Vacuum Processes Lab (VPL), of LLNL's M.E. Dept. - Material Fabrication Division (MFD), conducted various vacuum related support activities for the ROMANO nuclear physics experiment. This report focuses on the foil fabrication activities carried out between July and November 1983 for the ROMANO event. Other vacuum related activities for ROMANO, such as outgassing tests of materials, are covered in separate documentation. VPL was asked to provide 270 coated Parylene foils for the ROMANO event. However, due to the developmental nature of some of the procedures, approximately 400 coated foils were processed. In addition, VPL interacted with MFD's Plastics Shop to help supply Parylene substrates to other organizations (i.e., LBL and commercial vendors) which had also been asked to provide coated foils for ROMANO. The purposes of this report are (A) to document the processes developed and the techniques used to produce the foils, and (B) to suggest future directions. The report is divided into four sections describing: (1) nuclear target foil fabrication, (2) Parylene substrate preparation and production, (3) calibration foil fabrication, and (4) foil and substrate inspections

  14. Practical and research aspects of beam-foil spectroscopy

    International Nuclear Information System (INIS)

    Bashkin, S.

    1974-01-01

    Practical aspects of the application of low-energy accelerators to research in beam-foil spectroscopy are discussed, and the kinds of equipment and associated costs are described in some detail. Some typical beam-foil experiments, emphasizing the most recent studies, are treated so as to show how relatively simple facilities can be used to produce physics of great interest

  15. Tip model of cold fission

    International Nuclear Information System (INIS)

    Goennenwein, F.; Boersig, B.

    1991-01-01

    Cold fission is defined to be the limiting case of nuclear fission where virtually all of the available energy is converted into the total kinetic energy of the fragments. The fragments have, therefore, to be born in or at least close to their respective ground states. Starting from the viewpoint that cold fission corresponds to most compact scission configurations, energy constraints have been exploited to calculate minimum tip distances between the two nascent fragments in binary fission. Crucial input parameters to this tip model of cold fission are the ground-state deformations of fragment nuclei. It is shown that the minimum tip distances being compatible with energy conservation vary strongly with both the mass and charge fragmentation of the fission prone nucleus. The tip distances refer to nuclei with equivalent sharp surfaces. In keeping with the size of the surface width of leptodermous nuclei, only configurations where the tip distances are smaller than a few fm may be considered as valid scission configurations. From a comparison with experimental data on cold fission this critical tip distance appears to be 3.0 fm for the model parameters chosen. Whenever the model calculation yields tip distances being smaller than the critical value, a necessary condition for attaining cold fission is considered to be fulfilled. It is shown that this criterion allows to understand in fair agreement with experiment which mass fragmentations are susceptible to lead to cold fission and which fragment-charge divisions are the most favored in each isobaric mass chain. Being based merely on energy arguments, the model cannot aim at predicting fragment yields in cold fission. However, the tip model proposed appears well suited to delineate the phase space where cold fission phenomena may come into sight. (orig.)

  16. Post-scission fission theory: Neutron emission in fission

    International Nuclear Information System (INIS)

    Madland, D.G.

    1997-01-01

    A survey of theoretical representations of two of the observables in neutron emission in fission is given, namely, the prompt fission neutron spectrum N (E) and the average prompt neutron multiplicity bar ν p . Early representations of the two observables are presented and their deficiencies are discussed. This is followed by summaries and examples of recent theoretical models for the calculation of these quantities. Emphasis is placed upon the predictability and accuracy of the recent models. In particular, the dependencies of N (E) and bar ν p upon the fissioning nucleus and its excitation energy are treated. Recent work in the calculation of the prompt fission neutron spectrum matrix N (E, E n ), where E n is the energy of the neutron inducing fission, is then discussed. Concluding remarks address the current status of our ability to calculate these observables with confidence, the direction of future theoretical efforts, and limitations to current (and future) approaches

  17. Thin foil expansion into a vacuum

    International Nuclear Information System (INIS)

    Mora, P.

    2005-01-01

    Plasma expansion into a vacuum is an old problem which has been renewed recently in various contexts: expansion of ultra-cold plasmas, cluster expansion, of dust grains, expansion of thin foils. In this presentation I will first discuss the physics of the expansion of a thin foil irradiated by an ultra-short ultra-intense laser pulse. The expansion results in the formation of high energy ions. For an infinitely steep plasma-vacuum interface the fastest ions are located in the outer part of the expansion and their velocity is given by ν m ax∼ 2 C s (In ω p it) where c s (Zk B T e /m i )''1/2 is the ion-acoustic velocity ω p i=(n e 0Ze''2/m i e 0 )''1/2 is the ion plasma frequency, n e 0 is the electron density in the unperturbed plasma, Z is the ion charge number. In the above expression, t is either the pulse duration or the effective acceleration time (in particular t∼L/2c s , where L is the width of the foil, when the electron cooling is taken into account). A salient characteristic of the expansion is the occurrence of a double layer structure and a peak of the accelerating electric field at the ion front. I will explain the origin of the peak and predict its temporal behavior. This peak has been diagnosed in recent experiments. I will also discuss the effect of a 2-temperatures electron distribution function on the expansion, showing the dominant role of the hot electron component. Finally I will discuss the occurrence of ion spikes in the expansion when the initial density profile is smooth. The ion spike is due to a wave breaking which cannot be handled in a satisfactory way by a fluid code and requires a kinetic description. A. simple collisionless particle code has been used to treat the evolution of the spike after the wave breaking and the results will be shown. (Author)

  18. Spatial- and Time-Correlated Detection of Fission Fragments

    Directory of Open Access Journals (Sweden)

    Platkevic M.

    2012-02-01

    Full Text Available With the goal to measure angular correlations of fission fragments in rare fission decay (e.g. ternary and quaternary fission, a multi-detector coincidence system based on two and up to four position sensitive pixel detectors Timepix has been built. In addition to the high granularity, wide dynamic range and per pixel signal threshold, these devices are equipped with per pixel energy and time sensitivity providing more information (position, energy, time, enhances particle-type identification and selectivity of event-by-event detection. Operation of the device with the integrated USB 2.0 based readout interface FITPix and the control and data acquisition software tool Pixelman enables online visualization and flexible/adjustable operation for a different type of experiments. Spatially correlated fission fragments can be thus registered in coincidence. Similarly triggered measurements are performed using an integrated spectrometric module with analogue signal chain electronics. The current status of development together with demonstration of the technique with a 252Cf source is presented.

  19. Measurement of the neutron-induced fission cross-section of 240,242Pu

    International Nuclear Information System (INIS)

    Salvador-Castineira, P.; Hambsch, F.J.; Brys, T.; Oberstedt, S.; Vidali, M.; Pretel, C.

    2014-01-01

    Fast spectrum neutron-induced fission cross-section data for transuranic isotopes are in high demand in the nuclear data community. In particular, highly accurate data are needed for the new Generation-IV nuclear applications. The aim is to obtain precise neutron-induced fission cross-sections for 240 Pu and 242 Pu. In this context accurate data on spontaneous fission half-lives have also been measured. To minimise the total uncertainty on the fission cross-sections the detector efficiency has been studied in detail. Both isotopes have been measured using a twin Frisch-grid ionisation chamber (TFGIC) due to its superiority compared to other detector systems in view of radiation hardness, 2 x 2π solid angle coverage and very good energy resolution. (authors)

  20. Fission product range effects on HEU fissile gas monitoring for UF6 gas

    International Nuclear Information System (INIS)

    Munro, J.K. Jr.; Valentine, T.E.; Perez, R.B.

    1997-01-01

    The amount of 235 U in UF 6 flowing in a pipe can be monitored by counting gamma rays emitted from fission fragments carried along by the flowing gas. Neutron sources are mounted in an annular sleeve that is filled with moderator material and surrounds the pipe. This provides a source of thermal neutrons to produce the fission fragments. Those fragments that remain in the gas stream following fission are carried past a gamma detector. A typical fragment will be quite unstable, giving up energy as it decays to a more stable isotope with a significant amount of this energy being emitted in the form of gamma rays. A given fragment can emit several gamma rays over its lifetime. The gamma ray emission activity level of a distribution of fission fragments decreases with time. The monitoring system software uses models of these processes to interpret the gamma radiation counting data measured by the gamma detectors

  1. Gamma ray transitions in de-excitation of 252Cf spontaneous fission fragments

    International Nuclear Information System (INIS)

    Khan, N.A.; Rashid, K.; Ahmad, M.; Qureshi, I.E.; Alam, G.D.; Ali, A.; Bhatti, N.; Horsch, F.

    1983-11-01

    Gamma rays in the range from 60 keV to 730 keV have been observed following the spontaneous fission of 252 Cf, with high resolution Ge(Li) detector, full width at half maximum (FWHM) of 700 eV at 122 keV, in coincidence with the two fission fragments observed with surface barrier detectors. A total number of 18, 636, 549 events were recorded over a run period of about 150 hours stretching over three weeks. The events were sorted to generate gamma ray spectra belonging to 2 amu intervals gamma of the fragment masses and 6 MeV intervals of the total kinetic energy released. Some of the prominent gamma lines belonging to various masses of the fission fragments have been identified. For some gamma lines, the intensities have been evaluated as a function of the total kinetic energy of the fission fragments. (authors)

  2. Fabrication of beta particles detector for RMS

    International Nuclear Information System (INIS)

    Lee, W. G.; Kim, Y. G.; Kim, J. B.; Jeong, J. E.; Hong, S. B.

    2003-01-01

    The beta particles detector for RMS (radiation monitoring system) was fabricated to detect charged beta particles. The plastic scintillator was cutted, shaped, polished to make plastic disk for beta particles. The diameter of completed plastic scintillator disk is 40 mm and thickness is 1.5 mm. The mylar film and aluminium foil were used the front of plastic scintillator to intercept light and moisture. The completed plastic detector for RMS consist of the discriminator and counter were made by ULS (Co.). The absolute efficiency of plastic detector was 45.51% for beta particles (Sr/Y - 90)

  3. Nuclear structure via isomer tagging of fission fragments

    Science.gov (United States)

    Wu, C. Y.; Cline, D.; Simon, M. W.; Stoyer, M. A.

    1997-10-01

    The high efficiency for detecting high-fold γ rays by large Ge arrays makes it possible to study the detailed spectroscopy of many neutron-rich nuclei produced by fission. Major progress has been made using sealed spontaneous fission sources. Considerable improvement in selectivity is provided, with an open source, both by gating on isomers and by detection of both fission fragments in coincidence with the deexcitation γ rays (see the preceding contribution). The reconstructed kinematics allows a measure of fragment mass and the Doppler shift correction of γ rays. In a recent experiment, fission fragments were detected using half of the CHICO array and an annular PPAC in coincidence with deexcitation γ rays detected by the Rochester array of eight Compton-suppressed Ge detectors. The annular PPAC was located only 1.0" from a 3.7 μCi ^252Cf source for efficient isomer tagging. The correlation was studied between delayed, within a time window between 150 ns and 10 μs after a fission occurring, and prompt γ rays. Several prominent feeding patterns to isomers in the mass region around 100 and 130 are identified by such correlation study. Experimental details and results will be presented.

  4. Preparation of selenium coatings onto beryllium foils

    International Nuclear Information System (INIS)

    Erikson, E.D.; Tassano, P.L.; Reiss, R.H.; Griggs, G.E.

    1984-09-01

    A technique for preparing selenium films onto 50.8 microns thick beryllium foils is described. The selenium was deposited in vacuum from a resistance heated evaporation source. Profilometry measurements of the coatings indicate deposit thicknesses of 5.5, 12.9, 37.5, 49.8 and 74.5 microns. The control of deposition rate and of coating thickness was facilitated using a commercially available closed-loop programmable thin film controller. The x-ray transmission of the coated substrates was measured using a tritiated zirconium source. The transmissivities of the film/substrate combination are presented for the range of energies from 4 to 20 keV. 15 references, 3 figures

  5. Fission throughout the periodic table

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1989-04-01

    The dualistic view of fission and evaporation as two distinct compound nucleus processes is substituted with a unified view in which fission, complex fragment emission, and light particle evaporation are seen as different aspects of a single process. 47 refs., 22 figs

  6. Design considerations for foil windows for PET radioisotope targets

    International Nuclear Information System (INIS)

    Hughey, B.J.; Shefer, R.E.; Klinkowstein, R.E.; Welch, M.J.

    1992-01-01

    This paper describes the results of a study performed at SRL to develop analytical and computational techniques for optimizing the design of conduction-cooled foil windows for PET targets. Single foil conduction cooled windows have been found to be good target entrance windows for both low energy accelerators and medium energy cyclotrons. Detailed thermal analysis has given an approximate analytical expression for the maximum temperature reached in a foil window under conditions of realistic ion beam bombardment. The effects of 'hot spots' in the beam density profile were investigated. It was shown that a factor of two safety margin in window design should be adequate to compensate for any possible beam hot spots. In addition, the reduction of foil stress by slack mounting was verified by experiments. The properties of conventional and novel foil materials were investigated for use in conduction cooled windows. Novel foil materials include two-component Al/Ti and Al/Havar foil. Results on the testing of candidate foil materials for thermal conductivity and mechanical strength at elevated temperature were presented. Two optimum foil window geometries were analyzed: a high aspect ratio window and a multiply slotted window. The multiply slotted window combines the advantages of a high aspect ratio foil window with a circular beam strike and is a promising window design for both TCA and cyclotron targets. A multiply slotted window for a N 2 gas target for 15 O production was designed using the methodologies discussed above. This prototype target was successfully tested using the TCA beam at SRL. (author) 6 figs., 3 tabs., 10 refs

  7. Fission product concentration evolution in sodium pool following a fuel subassembly failure in an LMFBR

    International Nuclear Information System (INIS)

    Natesan, K.; Velusamy, K.; Selvaraj, P.; Kasinathan, N.; Chellapandi, P.; Chetal, S.; Bhoje, S.

    2003-01-01

    During a fuel element failure in a liquid metal cooled fast breeder reactor, the fission products originating from the failed pins mix into the sodium pool. Delayed Neutron Detectors (DND) are provided in the sodium pool to detect such failures by way of detection of delayed neutrons emitted by the fission products. The transient evolution of fission product concentration is governed by the sodium flow distribution in the pool. Transient hydraulic analysis has been carried out using the CFD code PHOENICS to estimate fission product concentration evolution in hot pool. k- ε turbulence model and zero laminar diffusivity for the fission product concentration have been considered in the analysis. Times at which the failures of various fuel subassemblies (SA) are detected by the DND are obtained. It has been found that in order to effectively detect the failure of every fuel SA, a minimum of 8 DND in hot pool are essential

  8. High-energy Neutron-induced Fission Cross Sections of Natural Lead and Bismuth-209

    CERN Document Server

    Tarrio, D; Carrapico, C; Eleftheriadis, C; Leeb, H; Calvino, F; Herrera-Martinez, A; Savvidis, I; Vlachoudis, V; Haas, B; Koehler, P; Vannini, G; Oshima, M; Le Naour, C; Gramegna, F; Wiescher, M; Pigni, M T; Audouin, L; Mengoni, A; Quesada, J; Becvar, F; Plag, R; Cennini, P; Mosconi, M; Rauscher, T; Couture, A; Capote, R; Sarchiapone, L; Vlastou, R; Domingo-Pardo, C; Dillmann, I; Pavlopoulos, P; Karamanis, D; Krticka, M; Jericha, E; Ferrari, A; Martinez, T; Trubert, D; Oberhummer, H; Karadimos, D; Plompen, A; Isaev, S; Terlizzi, R; Cortes, G; Cox, J; Cano-Ott, D; Pretel, C; Colonna, N; Berthoumieux, E; Vaz, P; Heil, M; Lopes, I; Lampoudis, C; Walter, S; Calviani, M; Gonzalez-Romero, E; Embid-Segura, M; Stephan, C; Igashira, M; Papachristodoulou, C; Aerts, G; Tavora, L; Berthier, B; Rudolf, G; Andrzejewski, J; Villamarin, D; Ferreira-Marques, R; Tain, J L; O'Brien, S; Reifarth, R; Kadi, Y; Neves, F; Poch, A; Kerveno, M; Rubbia, C; Lazano, M; Dahlfors, M; Wisshak, K; Salgado, J; Dridi, W; Ventura, A; Andriamonje, S; Assimakopoulos, P; Santos, C; Voss, F; Ferrant, L; Patronis, N; Chiaveri, E; Guerrero, C; Perrot, L; Vicente, M C; Lindote, A; Praena, J; Baumann, P; Kappeler, F; Rullhusen, P; Furman, W; David, S; Marrone, S; Tassan-Got, L; Gunsig, F; Alvarez-Velarde, F; Massimi, C; Mastinu, P; Pancin, J; Papadopoulos, C; Tagliente, G; Haight, R; Chepel, V; Kossionides, E; Badurek, G; Marganiec, J; Lukic, S; Pavlik, A; Goncalves, I; Duran, I; Alvarez, H; Abbondanno, U; Fujii, K; Milazzo, P M; Moreau, C

    2011-01-01

    The CERN Neutron Time-Of-Flight (n\\_TOF) facility is well suited to measure small neutron-induced fission cross sections, as those of subactinides. The cross section ratios of (nat)Pb and (209)Bi relative to (235)U and (238)U were measured using PPAC detectors. The fragment coincidence method allows to unambiguously identify the fission events. The present experiment provides the first results for neutron-induced fission up to 1 GeV for (nat)Pb and (209)Bi. A good agreement with previous experimental data below 200 MeV is shown. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross section is close to 1 GeV.

  9. Development and manufacturing of special fission chambers for in-core measurement requirements in nuclear reactors

    International Nuclear Information System (INIS)

    Geslot, B.; Berhouet, F.; Oriol, L.; Breaud, S.; Jammes, C.; Filliatre, P.; Villard, J. F.

    2009-01-01

    The Dosimetry Command control and Instrumentation Laboratory (LDCI) at CEA/Cadarache is specialized in the development, design and manufacturing of miniature fission chambers (from 8 mm down to 1.5 mm in diameter). The LDCI fission chambers workshop specificity is its capacity to manufacture and distribute special fission chambers with fissile deposits other than U 235 (typically Pu 242 , Np 237 , U 238 , Th 232 ). We are also able to define the characteristics of the detector for any in-core measurement requirements: sensor geometry, fissile deposit material and mass, filling gas composition and pressure, operating mode (pulse, current or Campbelling) with associated cable and electronics. The fission chamber design relies on numerical simulation and modeling tools developed by the LDCI. One of our present activities in fission chamber applications is to develop a fast neutron flux instrumentation using Campbelling mode dedicated to measurements in material testing reactors. (authors)

  10. Development and manufacturing of special fission chambers for in-core measurement requirements in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Geslot, B.; Berhouet, F.; Oriol, L.; Breaud, S.; Jammes, C.; Filliatre, P.; Villard, J. F. [CEA, DEN, Dosimetry Command Control and Instrumentation Laboratory, F-13109 Saint-Paul-lez-Durance (France)

    2009-07-01

    The Dosimetry Command control and Instrumentation Laboratory (LDCI) at CEA/Cadarache is specialized in the development, design and manufacturing of miniature fission chambers (from 8 mm down to 1.5 mm in diameter). The LDCI fission chambers workshop specificity is its capacity to manufacture and distribute special fission chambers with fissile deposits other than U{sup 235} (typically Pu{sup 242}, Np{sup 237}, U{sup 238}, Th{sup 232}). We are also able to define the characteristics of the detector for any in-core measurement requirements: sensor geometry, fissile deposit material and mass, filling gas composition and pressure, operating mode (pulse, current or Campbelling) with associated cable and electronics. The fission chamber design relies on numerical simulation and modeling tools developed by the LDCI. One of our present activities in fission chamber applications is to develop a fast neutron flux instrumentation using Campbelling mode dedicated to measurements in material testing reactors. (authors)

  11. Study of gain variation as a function of physical parameters of GEM foil

    CERN Document Server

    Das, Supriya

    2015-01-01

    The ALICE experiment at LHC has planned to upgrade the TPC by replacing the MWPC with GEM based detecting elements to restrict the IBF to a tolerable value. However the variation of the gain as a function of physical parameters of industrially produced large size GEM foils is needed to be studied as a part of the QA procedure for the detector. The size of the electron avalanche and consequently the gain for GEM based detectors depend on the electric field distribution inside the holes. Geometry of a hole plays an important role in defining the electric field inside it. In this work we have studied the variation of the gain as a function of the hole diameters using Garfield++ simulation package.

  12. Design and validation of a photon insensitive multidetector neutron spectrometer based on Dysprosium activation foils

    International Nuclear Information System (INIS)

    Gómez-Ros, J.M.; Bedogni, R.; Palermo, I.; Esposito, A.; Delgado, A.; Angelone, M.; Pillon, M.

    2011-01-01

    This communication describes a photon insensitive passive neutron spectrometer consisting of Dysprosium (Dy) activation foils located along three perpendicular axes within a single moderating polyethylene sphere. The Monte Carlo code MCNPX 2.6 was used to optimize the spatial arrangement of the detectors and to derive the spectrometer response matrix. Nearly isotropic response in terms of neutron fluence for energies up to 20 MeV was obtained by combining the readings of the detectors located at the same radius value. The spectrometer was calibrated using a previously characterized 14 MeV neutron beam produced in the ENEA Frascati Neutron Generator (FNG). The overall uncertainty of the spectrometer response matrix at 14 MeV, assessed on the basis of this experiment, was ±3%.

  13. Fission-product energy release for times following thermal-neutron fission of 235U between 2 and 14000 seconds

    International Nuclear Information System (INIS)

    Dickens, J.K.; Emery, J.F.; Love, T.A.; McConnell, J.W.; Northcutt, K.J.; Peelle, R.W.; Weaver, H.

    1977-10-01

    Fission-product decay energy-releases rates were measured for thermal-neutron fission of 235 U. Samples of mass 1 to 10 μg were irradiated for 1 to 100 sec by use of the fast pneumatic-tube facility at the Oak Ridge Research Reactor. The resulting beta- and gamma-ray emissions were counted for times-after-fission between 2 and 14,000 seconds. The data were obtained for beta and gamma rays separately as spectral distributions, N(E/sub γ/) vs E/sub γ/ and N(E/sub beta/) vs E/sub β/. For the gamma-ray data the spectra were obtained by using a NaI detector, while for the beta-ray data the spectra were obtained by using an NE-110 detector with an anticoincidence mantle. The raw data were unfolded to provide spectral distributions of modest resolution. These were integrated over E/sub γ/ and E/sub β/ to provide total yield and energy integrals as a function of time after fission. Results are low compared to the present 1973 ANS Decay-heat standard. A complete description of the experimental apparatus and data-reduction techniques is presented. The final integral data are given in tabular and graphical form and are compared with published data. 41 figures, 13 tables

  14. Controlled isotropic fission fragment sources on the base of nuclear-physical facilities

    International Nuclear Information System (INIS)

    Sevast'yanov, V.D.; Maslov, G.N.

    1995-01-01

    Isotropic fission fragment sources (IFFS) are developed on the base of a neutron generator and pulse fast reactor. IFFS permit to calibrate fission fragment detectors. The IFFS consist of radiators with 235 U. The radiators are placed in a thermal neutron field of the neutron generator or in the reactor core center. The fragment activity is controlled by indications of an α-particle counter or by indications of a monitor of energy release in the core. 14 refs.; 1 fig.; 1 tab

  15. Mathematical processing of experimental data on neutron yield from separate fission fragments

    International Nuclear Information System (INIS)

    Basova, B.G.; Rabinovich, A.D.; Ryazanov, D.K.

    1975-01-01

    The algorithm is described for processing the multi-dimensional experiments on measurements of prompt emission of neutrons from separate fission fragments. While processing the data the effect of a number of experimental corrections is correctly taken into account; random coincidence background, neutron spectrum, neutron detector efficiency, instrument angular resolution. On the basis of the described algorithm a program for BESM-4 computer is realized and the treatment of experimental data is performed according to the spontaneous fission of 252 Cf

  16. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    Science.gov (United States)

    Norman, Eric B [Oakland, CA; Prussin, Stanley G [Kensington, CA

    2009-01-27

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  17. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, M.

    1984-09-01

    This is the tenth issue of a report series on Fission Product Data, which informs us about all the activities in this field, which are planned, ongoing, or have recently been completed. The types of activities included are measurements, compilations and evaluations of: fission product yields (neutron induced and spontaneous fission), neutron reaction cross sections of fission products, data related to the radioactive decay of fission products, delayed neutron data of fission products, lumped fission product data (decay heat, absorption, etc.). There is also a section with recent references relative to fission product nuclear data

  18. Mechanisms of fission neutron emission

    International Nuclear Information System (INIS)

    Maerten, H.

    1991-01-01

    The time evolution in fission is the starting point for discussing not only the main mechanism of fission neutron emission, the evaporation from fully accelerated fragments, but also possible secondary ones connected with dynamical features of nuclear fission. ''Asymptotic'' conditions as relevant for describing the particle release from highly excited, rapidly moving fragments are defined. Corresponding statistical model approaches to fission neutron emission, based on the adequate consideration of the intricate fragment occurrence probability, reproduce most of the experimental data. The remarkable influence of fission modes on neutron observables is analyzed in the framework of a macroscopic-microscopic scission point model consistent with energy conservation. Finally, chances and deficiencies for solving the mechanism puzzle are summarized. (author). 87 refs, 21 figs

  19. The stopping powers and energy straggling of heavy ions in polymer foils

    Energy Technology Data Exchange (ETDEWEB)

    Mikšová, R., E-mail: miksova@ujf.cas.cz [Nuclear Physics Institute of the Academy of Sciences of the Czech Republic, v.v.i., 250 68 Rez (Czech Republic); Department of Physics, Faculty of Science, J.E. Purkinje University, Ceske Mladeze 8, 400 96 Usti nad Labem (Czech Republic); Macková, A.; Malinský, P. [Nuclear Physics Institute of the Academy of Sciences of the Czech Republic, v.v.i., 250 68 Rez (Czech Republic); Department of Physics, Faculty of Science, J.E. Purkinje University, Ceske Mladeze 8, 400 96 Usti nad Labem (Czech Republic); Hnatowicz, V. [Nuclear Physics Institute of the Academy of Sciences of the Czech Republic, v.v.i., 250 68 Rez (Czech Republic); Slepička, P. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic)

    2014-07-15

    The stopping power and energy straggling of {sup 7}Li, {sup 12}C and {sup 16}O ions in thin poly(etheretherketone) (PEEK), polyethylene terephthalate (PET) and polycarbonate (PC) foils were measured in the incident beam energy range of 9.4–11.8 MeV using an indirect transmission method. Ions scattered from a thin gold target at an angle of 150° were registered by a partially depleted PIPS detector, partly shielded with a polymer foil placed in front of the detector. Therefore, the signals from both direct and slowed down ions were visible in the same energy spectrum, which was evaluated by the ITAP code, developed at our laboratory. The ITAP code was employed to perform a Gaussian-fitting procedure to provide a complete analysis of each measured spectrum. The measured stopping powers were compared with the predictions obtained from the SRIM-2008 and MSTAR codes and with previous experimental data. The energy straggling data were compared with those calculated by using Bohr’s, Lindhard–Scharff and Bethe–Livingston theories.

  20. The stopping powers and energy straggling of heavy ions in polymer foils

    International Nuclear Information System (INIS)

    Mikšová, R.; Macková, A.; Malinský, P.; Hnatowicz, V.; Slepička, P.

    2014-01-01

    The stopping power and energy straggling of 7 Li, 12 C and 16 O ions in thin poly(etheretherketone) (PEEK), polyethylene terephthalate (PET) and polycarbonate (PC) foils were measured in the incident beam energy range of 9.4–11.8 MeV using an indirect transmission method. Ions scattered from a thin gold target at an angle of 150° were registered by a partially depleted PIPS detector, partly shielded with a polymer foil placed in front of the detector. Therefore, the signals from both direct and slowed down ions were visible in the same energy spectrum, which was evaluated by the ITAP code, developed at our laboratory. The ITAP code was employed to perform a Gaussian-fitting procedure to provide a complete analysis of each measured spectrum. The measured stopping powers were compared with the predictions obtained from the SRIM-2008 and MSTAR codes and with previous experimental data. The energy straggling data were compared with those calculated by using Bohr’s, Lindhard–Scharff and Bethe–Livingston theories

  1. Implants with 32P-foils for LDR-brachytherapy of benign stenosis in urology and gastroenterology

    International Nuclear Information System (INIS)

    Assmann, Walter; Becker, Ricarda; Otto, Henrike

    2013-01-01

    For LDR-brachytherapy, a limited number of implant geometries and materials are available. To avoid wound healing related hyper-proliferation (stenosis, keloids) a novel radioactive foil system was developed based on beta emitting 32 P, which can be easily integrated in existing implants such as urethral catheters or bile duct stents. As substrate material for these foils PEEK (polyetherethercetone) was chosen because of its radiation hardness during neutron activation of 32 P. The activity was determined by liquid scintillation counting and gamma spectroscopy, dose distributions were measured with scintillation detectors and radiochromic films. The correlation between activity and dose was checked by Monte-Carlo-simulations (Geant4). Prototypes of the 32 P-implants have shown in wash-out tests the required tightness for sealed radioactive sources. In animal tests on urethra and bile duct, the uncomplicated and save application of 32 P-foils mounted on standard implants has been demonstrated, which is almost unchanged due to the simple radiation protection with plexiglass. This concept of radioactive implants with integrated 32 P-foils could extend essentially the application possibilities of LDR-brachytherapy. (orig.)

  2. [Implants with 32P-foils for LDR-brachytherapy of benign stenosis in urology and gastroenterology].

    Science.gov (United States)

    Assmann, Walter; Becker, Ricarda; Otto, Henrike; Bader, Markus; Clemente, Lucas; Reinhardt, Sabine; Schäfer, Claus; Schirra, Jörg; Uschold, Stephanie; Welzmüller, Andreas; Sroka, Ronald

    2013-02-01

    For LDR-brachytherapy, a limited number of implant geometries and materials are available. To avoid wound healing related hyper-proliferation (stenosis, keloids) a novel radioactive foil system was developed based on beta emitting (32)P, which can be easily integrated in existing implants such as urethral catheters or bile duct stents. As substrate material for these foils PEEK (polyetherethercetone) was chosen because of its radiation hardness during neutron activation of (32)P. The activity was determined by liquid scintillation counting and gamma spectroscopy, dose distributions were measured with scintillation detectors and radiochromic films. The correlation between activity and dose was checked by Monte-Carlo-simulations (Geant4). Prototypes of the (32)P-implants have shown in wash-out tests the required tightness for sealed radioactive sources. In animal tests on urethra and bile duct, the uncomplicated and save application of (32)P-foils mounted on standard implants has been demonstrated, which is almost unchanged due to the simple radiation protection with plexiglass. This concept of radioactive implants with integrated (32)P-foils could extend essentially the application possibilities of LDR-brachytherapy. Copyright © 2012. Published by Elsevier GmbH.

  3. Fifty years with nuclear fission

    International Nuclear Information System (INIS)

    Behrens, J.W.; Carlson, A.D.

    1989-01-01

    The news of the discovery of nuclear fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fifieth anniversary of its discovery by holding a topical meeting entitled, ''Fifty Years with Nuclear Fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent development in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicated a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two fully days of sessions (April 27 and 28) at the main site of the NIST in Gaithersburg, Maryland. The wide range of topics covered in this Volume 1 by this topical meeting included plenary invited, and contributed sessions entitled: Preclude to the First Chain Reaction -- 1932 to 1942; Early Fission Research -- Nuclear Structure and Spontaneous Fission; 50 Years of Fission, Science, and Technology; Nuclear Reactors, Secure Energy for the Future; Reactors 1; Fission Science 1; Safeguards and Space Applications; Fission Data; Nuclear Fission -- Its Various Aspects; Theory and Experiments in Support of Theory; Reactors and Safeguards; and General Research, Instrumentation, and By-Product. The individual papers have been cataloged separately

  4. The 4π neutron detector CARMEN

    Energy Technology Data Exchange (ETDEWEB)

    Ledoux, X., E-mail: Xavier.ledoux@ganil.fr [CEA/DAM/DIF, F-91297 Arpajon (France); GANIL, CEA/DRF-CNRS/IN2P3, Caen, F-14076 France (France); Laborie, J.-M.; Pras, P.; Lantuéjoul-Thfoin, I.; Varignon, C. [CEA/DAM/DIF, F-91297 Arpajon (France)

    2017-02-01

    CARMEN is a 4π neutron detector filled with a gadolinium-loaded liquid scintillator built to measure neutron multiplicity distributions. It is used to study fission and (n,xn) reactions. In addition to neutron multiplicity measurements, CARMEN can be used to measure neutron energy spectra with the time-of-flight technique, thanks to the time properties of the prompt signal. The detector, detection technique and efficiency determination are presented in detail. Two examples are also presented: the measurement of {sup 252}Cf spontaneous fission neutron multiplicity probability distribution and the measurement of the neutron energy spectrum emitted by an Am-Be radioactive source.

  5. Development of thin foil Faraday collector as a lost alpha particle diagnostic for high yield D-T tokamak fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Van Belle, P; Jarvis, O N; Sadler, G J [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Cecil, F E [Colorado School of Mines, Golden, CO (United States)

    1994-07-01

    Alpha particle confinement is necessary for ignition of a D-T tokamak fusion plasma and for first wall protection. Due to high radiation backgrounds and temperatures, scintillators and semiconductor detectors may not be used to study alpha particles which are lost to the first wall during the D-T programs on JET and ITER. An alternative method of charged particle spectrometry capable of operation in these harsh environments, is proposed: it consists of thin foils of electrically isolated conductors with the flux of alpha particles determined by the positive current flowing from the foils. 2 refs., 3 figs.

  6. Mechanism of fission of neutron-deficient actinoids nuclides

    International Nuclear Information System (INIS)

    Sueki, Keisuke; Nakahara, Hiromichi; Tanase, Masakazu; Nagame, Yuichiro; Shinohara, Nobuo; Tsukada, Kazuaki.

    1996-01-01

    A heavy ion reaction ( 19 F+ 209 Bi) is selected. The reaction produces neutron-deficient 228 U which is compound nucleus with a pair of Rb(z=37) and Cs(Z=55). Energy dissipation problem of nucleus was studied by measuring the isotope distribution of two fissile nuclides. Bismuth metal evaporated on aluminium foil was irradiated by 19 F with the incident energy of 105-128 MeV. We concluded from the results that the excess energy of reaction system obtained with increasing the incident energy is consumed by (1) light Rb much more than Cs and (2) about 60% of energy is given to two fission fragments and the rest 40% to the translational kinetic energy or unknown anomalous γ-ray irradiation. (S.Y.)

  7. Mechanism of fission of neutron-deficient actinoids nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Sueki, Keisuke; Nakahara, Hiromichi [Tokyo Metropolitan Univ., Hachioji (Japan). Faculty of Science; Tanase, Masakazu; Nagame, Yuichiro; Shinohara, Nobuo; Tsukada, Kazuaki

    1996-01-01

    A heavy ion reaction ({sup 19}F+{sup 209}Bi) is selected. The reaction produces neutron-deficient {sup 228}U which is compound nucleus with a pair of Rb(z=37) and Cs(Z=55). Energy dissipation problem of nucleus was studied by measuring the isotope distribution of two fissile nuclides. Bismuth metal evaporated on aluminium foil was irradiated by {sup 19}F with the incident energy of 105-128 MeV. We concluded from the results that the excess energy of reaction system obtained with increasing the incident energy is consumed by (1) light Rb much more than Cs and (2) about 60% of energy is given to two fission fragments and the rest 40% to the translational kinetic energy or unknown anomalous {gamma}-ray irradiation. (S.Y.)

  8. Irradiation tests in BR2 of miniature fission chambers in pulse, Campbelling and current mode

    Energy Technology Data Exchange (ETDEWEB)

    Vermeeren, L. [SCK.CEN, Boeretang 200, B-2400 Mol (Belgium); Geslot, B.; Breaud, S.; Filliatre, P.; Jammes, C. [CEA/DEN/SPEx/LDCI, Centre de Cadarache, F-13109 Saint-Paul-lez-Durance (France); Legrand, A. [CEA/DEN/DRSN/SIREN/LASPI Saclay, F-91191 Gif sur Yvette Cedex (France); Barbot, L. [CEA/DEN/SPEx/LDCI, Centre de Cadarache, F-13109 Saint-Paul-lez-Durance (France)

    2011-07-01

    The FNDS system ('Fast Neutron Detection System') for the on-line in-pile detection of the fast neutron flux in the presence of a significant thermal neutron flux and a high gamma dose rate is being developed in the framework of the SCK.CEN-CEA Laboratoire Commun. The system has been patented in 2008. The system consists of a miniature Pu-242 fission chamber as main detector, complemented by a U-235 fission chamber or a rhodium Self-Powered Neutron Detector (SPND) for thermal neutron flux monitoring and a dedicated acquisition system that also takes care of the processing of the signals from both detectors to extract fast neutron flux data. This paper describes a FNDS qualification experiment in the SCK.CEN BR2 reactor, with experimental results on a large set of fission chambers in current and Campbelling mode. (authors)

  9. Irradiation tests in BR2 of miniature fission chambers in pulse, Campbelling and current mode

    International Nuclear Information System (INIS)

    Vermeeren, L.; Geslot, B.; Breaud, S.; Filliatre, P.; Jammes, C.; Legrand, A.; Barbot, L.

    2011-01-01

    The FNDS system ('Fast Neutron Detection System') for the on-line in-pile detection of the fast neutron flux in the presence of a significant thermal neutron flux and a high gamma dose rate is being developed in the framework of the SCK.CEN-CEA Laboratoire Commun. The system has been patented in 2008. The system consists of a miniature Pu-242 fission chamber as main detector, complemented by a U-235 fission chamber or a rhodium Self-Powered Neutron Detector (SPND) for thermal neutron flux monitoring and a dedicated acquisition system that also takes care of the processing of the signals from both detectors to extract fast neutron flux data. This paper describes a FNDS qualification experiment in the SCK.CEN BR2 reactor, with experimental results on a large set of fission chambers in current and Campbelling mode. (authors)

  10. How fission was discovered

    International Nuclear Information System (INIS)

    Fluegge, S.

    1989-01-01

    After the great survey of neutron induced radioactivity by Fermi and co-workers, the laboratories in Paris and Berlin-Dahlen tried to disentangle the complex results found in uranium. At that time neutron sources were small, activities low, and equipment very simple. Chemistry beyond uranium still was unknown. Hahn and Meitner believed to have observed three transuranic isomeric chains, a doubtful result even then. Early in 1938, Curie and Savic in Paris found an activity interpreted to be actinium, and Hahn and Meitner another to be radium. Both interpretations seemed impossible from energy considerations. Hahn and Strassmann, therefore, continued this work and succeeded to separate the new activity from radium. There remained no doubt that a barium isotope had been produced, the uranium nucleus splitting in the yet-unknown process we now call fission

  11. Ionization detector

    International Nuclear Information System (INIS)

    Steele, D.S.

    1987-01-01

    An ionization detector having an array of detectors has, for example, grounding pads positioned in the spaces between some detectors (data detectors) and other detectors (reference detectors). The grounding pads are kept at zero electric potential, i.e. grounded. The grounding serves to drain away electrons and thereby prevent an unwanted accumulation of charge in the spaces, and cause the electric field lines to be more perpendicular to the detectors in regions near the grounding pads. Alternatively, no empty space is provided there being additional, grounded, detectors provided between the data and reference detectors. (author)

  12. Integral window/photon beam position monitor and beam flux detectors for x-ray beams

    Science.gov (United States)

    Shu, Deming; Kuzay, Tuncer M.

    1995-01-01

    A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.

  13. Fifty years with nuclear fission

    International Nuclear Information System (INIS)

    Behrens, J.W.; Carlson, A.D.

    1989-01-01

    The news of the discovery of nucler fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fiftieth anniversary of its discovery by holding a topical meeting entitled, ''Fifty years with nuclear fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent developments in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicating a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two full days of sessions (April 27 and 28) at the main sites of the NIST in Gaithersburg, Maryland. The wide range of topics covered by Volume 2 of this topical meeting included plenary invited, and contributed sessions entitled, Nuclear fission -- a prospective; reactors II; fission science II; medical and industrial applications by by-products; reactors and safeguards; general research, instrumentation, and by-products; and fission data, astrophysics, and space applications. The individual papers have been cataloged separately

  14. Ejection of Uranium Atoms from UO{sub 2} by Fission Fragments

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Goesta

    1964-02-15

    The numbers of uranium atoms ejected from the surface of sintered plates of UO{sub 2} by fission fragments have been measured over the fission density range 5x10{sup 15} to 7x10{sup 16} fissions/cm{sup 3}. The number of uranium atoms ejected per escaping fragment was about 9. The measurements were performed by irradiating the plates in vacuum and collecting a fraction of the uranium atoms ejected on catcher foils. The amount collected was determined by fission counting. Saturation of the amount collected, as reported by Rogers and Adam, was not observed. The numbers of uranium atoms ejected as knock-ons under the same experimental conditions have been calculated. The reasonably close agreement between the experimental and theoretical values indicates that, under the prevailing experimental conditions, mainly knock-ons are ejected. Other ejection mechanisms, e. g. evaporation of material in thermal spikes, are probably insignificant; this is in contrast to the usual interpretation of the ejection process. The mean range in UO{sub 2}, of fission products of mass number 140 was found to be 7.37 {+-} 0. 05 mg/cm{sup 2} by direct gamma spectrometric, determination of the fraction of {sup 140}La escaping from the surface of the plates.

  15. Method of fission product beta spectra measurements for predicting reactor anti-neutrino emission

    Energy Technology Data Exchange (ETDEWEB)

    Asner, D.M.; Burns, K.; Campbell, L.W.; Greenfield, B.; Kos, M.S., E-mail: markskos@gmail.com; Orrell, J.L.; Schram, M.; VanDevender, B.; Wood, L.S.; Wootan, D.W.

    2015-03-11

    The nuclear fission process that occurs in the core of nuclear reactors results in unstable, neutron-rich fission products that subsequently beta decay and emit electron antineutrinos. These reactor neutrinos have served neutrino physics research from the initial discovery of the neutrino to today's precision measurements of neutrino mixing angles. The prediction of the absolute flux and energy spectrum of the emitted reactor neutrinos hinges upon a series of seminal papers based on measurements performed in the 1970s and 1980s. The steadily improving reactor neutrino measurement techniques and recent reconsiderations of the agreement between the predicted and observed reactor neutrino flux motivates revisiting the underlying beta spectra measurements. A method is proposed to use an accelerator proton beam delivered to an engineered target to yield a neutron field tailored to reproduce the neutron energy spectrum present in the core of an operating nuclear reactor. Foils of the primary reactor fissionable isotopes placed in this tailored neutron flux will ultimately emit beta particles from the resultant fission products. Measurement of these beta particles in a time projection chamber with a perpendicular magnetic field provides a distinctive set of systematic considerations for comparison to the original seminal beta spectra measurements. Ancillary measurements such as gamma-ray emission and post-irradiation radiochemical analysis will further constrain the absolute normalization of beta emissions per fission. The requirements for unfolding the beta spectra measured with this method into a predicted reactor neutrino spectrum are explored.

  16. Neutron detectors for transmutation of radioactive waste: the state of the art

    International Nuclear Information System (INIS)

    Machrafi, R.

    2002-01-01

    We overview in short the neutron detectors currently used in the investigation of the transmutation of radioactive waste. Such detectors should comply with some specific requirements. In particular, they have to be small enough, non-expensive, easy in use, radiation-resistant and covering sufficiently large energy intervals. These conditions are met to the acceptable extent in the case of activation foils, gas detectors and solid track detectors, which are discussed briefly in our work

  17. Evidence for age-related performance degradation of (241)Am foil sources commonly used in UK schools.

    Science.gov (United States)

    Whitcher, R; Page, R D; Cole, P R

    2014-06-01

    The characteristics of alpha radiation have for decades been demonstrated in UK schools using small sealed (241)Am sources. There is a small but steady number of schools who report a considerable reduction in the alpha count rate detected by an end-window GM detector compared with when the source was new. This cannot be explained by incorrect apparatus or set-up, foil surface contamination, or degradation of the GM detector. The University of Liverpool and CLEAPSS collaborated to research the cause of this performance degradation. The aim was to find what was causing the performance degradation and the ramifications for both the useful and safe service life of the sources. The research shows that these foil sources have greater energy straggling with a corresponding reduction in spectral peak energy. A likely cause for this increase in straggling is a significant diffusion of the metals over time. There was no evidence to suggest the foils have become unsafe, but precautionary checks should be made on old sources.

  18. Nuclear fission and fission-product spectroscopy: 3. International workshop on nuclear fission and fission-product spectroscopy

    International Nuclear Information System (INIS)

    Goutte, Heloise; Fioni, Gabriele; Faust, Herbert; Goutte, Dominique

    2005-01-01

    The present book contains the proceedings of the third workshop in a series of workshops previously held in Seyssins in 1994 and 1998. The meeting was jointly organized by different divisions of CEA and two major international laboratories. In the opening address, Prof. B. Bigot, the French High Commissioner for Atomic Energy, outlined France's energy policy for the next few decades. He emphasized the continuing progress of nuclear fission in both technical and economic terms, allowing it to contribute to the energy needs of the planet even more in the future than it does today. Such progress implies a very strong link between fundamental and applied research based on experimental and theoretical approaches. The workshop gathered the different nuclear communities studying the fission process, including topics as the following: - nuclear fission experiments, - spectroscopy of neutron rich nuclei, - fission data evaluation, - theoretical aspects of nuclear fission, - and innovative nuclear systems and new facilities. The scientific program was suggested by an International Advisory Committee. About 100 scientists from 13 different countries attended the conference in the friendly working atmosphere of the Castle of Cadarache in the heart of the Provence. The proceedings of the workshop were divided into 11 sections addressing the following subject matters: 1. Cross sections and resonances (5 papers); 2. Fission at higher energies - I (5 papers); 3. Fission: mass and charge yields (4 papers); 4. Light particles and cluster emission (4 papers); 5. Spectroscopy of neutron rich nuclei (5 papers); 6. Resonances, barriers, and fission times (5 papers); 7. Fragment excitation and neutron emission (4 papers); 8. Mass and energy distributions (4 papers); 9. Needs for nuclear data and new facilities - I (4 papers); 10. Angular momenta and fission at higher Energies - II (3 papers); 11. New facilities - II (2 papers). A poster session of 8 presentations completed the workshop

  19. Elevated Temperature Tensile Tests on DU–10Mo Rolled Foils

    Energy Technology Data Exchange (ETDEWEB)

    Schulthess, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Tensile mechanical properties for uranium-10 wt.% molybdenum (U–10Mo) foils are required to support modeling and qualification of new monolithic fuel plate designs. It is expected that depleted uranium-10 wt% Mo (DU–10Mo) mechanical behavior is representative of the low enriched U–10Mo to be used in the actual fuel plates, therefore DU-10Mo was studied to simplify material processing, handling, and testing requirements. In this report, tensile testing of DU-10Mo fuel foils prepared using four different thermomechanical processing treatments were conducted to assess the impact of foil fabrication history on resultant tensile properties.

  20. Effects of the Addictives on Etching Characteristics of Aluminum Foil

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.K.; Jang, J.M.; Chi, C.S. [Kookmin University, Seoul (Korea); Shin, D.C. [Sungnam Polytechnic, Sungnam (Korea); Lee, J.H.; Oh, H.J. [Hanseo University, Seosan (Korea)

    2001-01-01

    The effects of additives in the HCI etching solution on etching behaviors of aluminium foil as dielectric film for electrolytic capacitors were investigated. The etch pits formed in 1M hydrochloric acid containing ethylene glycol as an additive contain more fine and homogeneous etch tunnels compared to thoese in 1 M hydrochloric acid only, which led to the increase in the effective internal surface area of aluminum foil. After anodizing of aluminum foil etched in etching solutions, the LCR meter results have shown that the capacitance of dielectric film etched in hydrochloric acid with ethylene glycol was increased remarkably compared to that etched in hydrochloric acid only. (author). 21 refs., 10 figs.

  1. Preparation of self-supporting metallic foils of nickel isotopes

    International Nuclear Information System (INIS)

    Sugai, Isao.

    1975-01-01

    This is the fourth report on the practical methods of target preparation for use in low energy nuclear experiments following the previous one (INS-J-150). An electroplating method has been developed as a dependable and reproducible technique for making self-supporting metallic foils of nickel in the thickness range of 0.5 to 10 mg/cm 2 . The procedures minimized the necessary amount of material so that nickel isotopes could be processed economically. Impurity contamination of the nickel foils during the electroplating process was less than 500 ppm, and the thickness variation in each foil was less than 3% of the central thickness. (auth.)

  2. Method of fabricating a uranium-bearing foil

    Science.gov (United States)

    Gooch, Jackie G [Seymour, TN; DeMint, Amy L [Kingston, TN

    2012-04-24

    Methods of fabricating a uranium-bearing foil are described. The foil may be substantially pure uranium, or may be a uranium alloy such as a uranium-molybdenum alloy. The method typically includes a series of hot rolling operations on a cast plate material to form a thin sheet. These hot rolling operations are typically performed using a process where each pass reduces the thickness of the plate by a substantially constant percentage. The sheet is typically then annealed and then cooled. The process typically concludes with a series of cold rolling passes where each pass reduces the thickness of the plate by a substantially constant thickness amount to form the foil.

  3. Hybrid-type long-lived carbon stripper foils

    International Nuclear Information System (INIS)

    Sugai, Isao; Kato, Hajime

    1989-01-01

    A new method for the preparation of hybrid-type long-lived carbon stripper foils was developed. The new procedure is based on a modification of our controlled dc arc-discharge method. The carbon foils are of the multilayer type and the layers are composed of carbon particles emitted from the electrodes in the ac arc-discharge and from the cathode in the dc arc-discharge. With this simple and powerful method long lived carbon stripper foils can be prepared with higher reliability and reproducibility than with the previous procedure. (orig.)

  4. Gamma Radiation from Fission Fragments

    International Nuclear Information System (INIS)

    Higbie, Jack

    1969-10-01

    The gamma radiation from the fragments of the thermal neutron fission of 235 U has been investigated, and the preliminary data are presented here with suggestions for further lines of research and some possible interpretations of the data. The data have direct bearing on the fission process and the mode of fragment de-excitation. The parameters measured are the radiation decay curve for the time interval (1 - 7) x 10 -10 sec after fission, the photon yield, the total gamma ray energy yield, and the average photon energy. The last three quantities are measured as a function of the fragment mass

  5. Energy partition in nuclear fission

    International Nuclear Information System (INIS)

    Ruben, A.; Maerten, H.; Seeliger, D.

    1990-01-01

    A scission point model (two spheroid model TSM) including semi-empirical temperature-dependent shell correction energies for deformed fragments at scission is presented. It has been used to describe the mass-asymmetry-dependent partition of the total energy release on both fragments from spontaneous and induced fission. Characteristic trends of experimental fragment energy and neutron multiplicity data as function of incidence energy in the Th-Cf region of fissioning nuclei are well reproduced. Based on model applications, information on the energy dissipated during the descent from second saddle of fission barrier to scission point have been deduced. (author). 39 refs, 13 figs

  6. Gamma Radiation from Fission Fragments

    Energy Technology Data Exchange (ETDEWEB)

    Higbie, Jack

    1969-10-15

    The gamma radiation from the fragments of the thermal neutron fission of {sup 235}U has been investigated, and the preliminary data are presented here with suggestions for further lines of research and some possible interpretations of the data. The data have direct bearing on the fission process and the mode of fragment de-excitation. The parameters measured are the radiation decay curve for the time interval (1 - 7) x 10{sup -10} sec after fission, the photon yield, the total gamma ray energy yield, and the average photon energy. The last three quantities are measured as a function of the fragment mass.

  7. Fission-product source terms

    International Nuclear Information System (INIS)

    Lorenz, R.A.

    1981-01-01

    This presentation consists of a review of fission-product source terms for light water reactor (LWR) fuel. A source term is the quantity of fission products released under specified conditions that can be used to calculate the consequences of the release. The source term usually defines release from breached fuel-rod cladding but could also describe release from the primary coolant system, the reactor containment shell, or the site boundary. The source term would be different for each locality, and the chemical and physical forms of the fission products could also differ

  8. The spectroscopy of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, W.R. [Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    High-resolution measurements on {gamma} rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author) 24 refs., 8 figs., 1 tab.

  9. The spectroscopy of fission fragments

    International Nuclear Information System (INIS)

    Phillips, W.R.

    1998-01-01

    High-resolution measurements on γ rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author)

  10. Dosimetry of fission neutrons in a 1-W reactor, UTR-KINKI

    CERN Document Server

    Endo, S; Yoshitake, Y

    2002-01-01

    The energy spectrum of fission neutrons in the biological irradiation field of the Kinki University reactor, UTR-KINKI, has been determined by a multi-foil activation analysis coupled with artificial neural network techniques and a Au-foil activation method. The mean neutron energy was estimated to be 1.26+-0.05 MeV from the experimentally determined spectrum. Based on this energy value and other information, the neutron dose rate was estimated to be 19.7+-1.4 cGy/hr. Since this dose rate agrees with that measured by a pair of ionizing chambers (21.4 cGy/hr), we conclude that the mean neutron energy could be estimated with reasonable accuracy in the irradiation field of UTR-KINKI. (author)

  11. Experimental verification of the fission chamber gamma signal suppression by the Campbelling mode

    Energy Technology Data Exchange (ETDEWEB)

    Vermeeren, L.; Weber, M. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Oriol, L.; Breaud, S.; Filliatre, P.; Geslot, B.; Jammes, C. [CEA, Centre de Cadarache, F-13109 Saint-Paul-lez-Durance (France); Normand, S.; Lescop, B. [CEA, Centre de Saclay, F-91191 Gif sur Yvette Cedex (France)

    2009-07-01

    For the on-line monitoring of high fast neutron fluxes in the presence of a strong thermal neutron component, SCK-CEN and CEA are jointly developing a Fast Neutron Detector System, based on {sup 242}Pu fission chambers as sensors and including dedicated electronics and data processing systems. Irradiation tests in the BR2 reactor of {sup 242}Pu fission chambers operating in current mode showed that in typical MTR (Materials Test Reactors) conditions the fission chamber currents are dominated by the gamma contribution. In order to reduce the gamma contribution to the signal, it was proposed to use the fission chambers in Campbelling mode. An irradiation experiment in the BR2 reactor with a {sup 242}Pu and a {sup 235}U fission chamber, both equipped with a suitable cable for measurements in Campbelling mode, proved the effectiveness of the suppression of the gamma-induced signal component by the Campbelling mode: gamma contribution reduction factors of 26 for the {sup 235}U fission chamber and more than 80 for the {sup 242}Pu fission chamber were obtained. The experimental data also prove that photofission contributions are negligibly small. Consequently, in typical MTR conditions the gamma contribution to the fission chamber Campbelling signal can be neglected. (authors)

  12. Experimental Verification of the Fission Chamber Gamma Signal Suppression by the Campbelling Mode

    International Nuclear Information System (INIS)

    Vermeeren, L.; Weber, M.; Oriol, L.; Breaud, S.; Filliatre, P.; Geslot, B.; Jammes, C.; Normand, S.; Lescop, B.

    2011-01-01

    For the on-line monitoring of high fast neutron fluxes in the presence of a strong thermal neutron component, SCK-CEN and CEA are jointly developing a Fast Neutron Detector System, based on 242 Pu fission chambers as sensors and including dedicated electronics and data processing systems. Irradiation tests in the BR2 reactor of 242 Pu fission chambers operating in current mode showed that in typical MTR conditions the fission chamber currents are dominated by the gamma contribution. In order to reduce the gamma contribution to the signal, it was proposed to use the fission chambers in Campbelling mode. An irradiation experiment in the BR2 reactor with a 242 Pu and a 235 U fission chamber, both equipped with a suitable cable for measurements in Campbelling mode, proved the effectiveness of the suppression of the gamma-induced signal component by the Campbelling mode: gamma contribution reduction factors of 26 for the 235 U fission chamber and more than 80 for the 242 Pu fission chamber were obtained. The experimental data also prove that photofission contributions are negligibly small. Consequently, in typical MTR conditions the gamma contribution to the fission chamber Campbelling signal can be neglected. (authors)

  13. Diallyl phthalate (DAP) solid state nuclear track detector

    CERN Document Server

    Koguchi, Y; Ashida, T; Tsuruta, T

    2003-01-01

    Diallyl phthalate (DAP) solid state nuclear track detector is suitable for detecting heavy ions such as fission fragments, because it is insensitive to right ions such as alpha particles and protons. Detection efficiency of fission tracks is about 100%, which is unaffected under conditions below 240degC lasting for 1h or below 1 MGy of gamma-ray irradiation. Optimum etching condition for the DAP detector for detection of fission fragments is 2-4 h using 30% KOH aqueous solution at 90degC or 8-15 min using PEW-65 solution at 60degC. DAP detector is useful in detecting induced fission tracks for dating of geology or measuring intense heavy ions induced by ultra laser plasma. The fabrication of copolymers of DAP and CR-39 makes it possible to control the discrimination level for detection threshold of heavy ions. (author)

  14. Fission dynamics with systems of intermediate fissility

    Indian Academy of Sciences (India)

    results concerning nuclear dissipation and fission time-scale obtained from several of these studies. In particular ... alent to the assumption that fission is delayed, namely, that the fission probability is not .... parameters to be adjusted on the experimental data. ..... (b) Time distribution of all fission events for the 132Ce nucleus.

  15. Silicon detectors

    International Nuclear Information System (INIS)

    Klanner, R.

    1984-08-01

    The status and recent progress of silicon detectors for high energy physics is reviewed. Emphasis is put on detectors with high spatial resolution and the use of silicon detectors in calorimeters. (orig.)

  16. Prompt fissionγ-ray characteristics from neutron-induced fission on 239Pu and the time-dependence of prompt-γray emission

    Science.gov (United States)

    Gatera, Angélique; Göök, Alf; Hambsch, Franz-Josef; Moens, André; Oberstedt, Andreas; Oberstedt, Stephan; Sibbens, Goedele; Vanleeuw, David; Vidali, Marzio

    2018-03-01

    Recent years have seen an increased interest in prompt fission γ-ray (PFG) measurements motivated by a high priority request of the OECD/NEA for high precision data, mainly for the nuclear fuel isotopes 235U and 239Pu. Our group has conducted a PFG measurement campaign using state-of-the-art lanthanum halide detectors for all the main actinides to a precision better than 3%. The experiments were performed in a coincidence setup between a fission trigger and γ-ray detectors. The time-of-flight technique was used to discriminate photons, traveling at the speed of light, and prompt fission neutrons. For a full rejection of all neutrons below 20 MeV, the PFG time window should not be wider than a few nanoseconds. This window includes most PFG, provided that no isomeric states were populated during the de-excitation process. When isomeric states are populated, PFGs can still be emitted up to 1 yus after the instant of fission or later. To study these γ-rays, the detector response to neutrons had to be determined and a correction had to be applied to the γ-ray spectra. The latest results for PFG characteristics from the reaction 239Pu(nth,f) will be presented, together with an analysis of PFGs emitted up to 200 ns after fission in the spontaneous fission of 252Cf as well as for thermal-neutron induced fission on 235U and 239Pu. The results are compared with calculations in the framework of the Hauser-Feshbach Monte Carlo code CGMF and FIFRELIN.

  17. Recent Results from Lohengrin on Fission Yields and Related Decay Properties

    Science.gov (United States)

    Serot, O.; Amouroux, C.; Bidaud, A.; Capellan, N.; Chabod, S.; Ebran, A.; Faust, H.; Kessedjian, G.; Köester, U.; Letourneau, A.; Litaize, O.; Martin, F.; Materna, T.; Mathieu, L.; Panebianco, S.; Regis, J.-M.; Rudigier, M.; Sage, C.; Urban, W.

    2014-05-01

    The Lohengrin mass spectrometer is one of the 40 instruments built around the reactor of the Institute Laue-Langevin (France) which delivers a very intense thermal neutron flux. Usually, Lohengrin was combined with a high-resolution ionization chamber in order to obtain good nuclear charge discrimination within a mass line, yielding an accurate isotopic yield determination. Unfortunately, this experimental procedure can only be applied for fission products with a nuclear charge less than about 42, i.e. in the light fission fragment region. Since 2008, a large collaboration has started with the aim of studying various fission aspects, mainly in the heavy fragment region. For that, a new experimental setup which allows isotopic identification by γ-ray spectrometry has been developed and validated. This technique was applied on the 239Pu(nth,f) reaction where about 65 fission product yields were measured with an uncertainty that has been reduced on average by a factor of 2 compared with what was that previously available in nuclear data libraries. The same γ-ray spectrometric technique is currently being applied to the study of the 233U(nth,f) reaction. Our aim is to deduce charge and mass distributions of the fission products and to complete the experimental data that exist mainly for light fission fragments. The measurement of 41 mass yields from the 241Am(2nth,f) reaction has been also performed. In addition to these activities on fission yield measurements, various new nanosecond isomers were discovered. Their presence can be revealed from a strong deformed ionic charge distribution compared to a 'normal' Gaussian shape. Finally, a new neutron long-counter detector designed to have a detection efficiency independent of the detected neutron energy has been built. Combining this neutron device with a Germanium detector and a beta-ray detector array allowed us to measure the beta-delayed neutron emission probability Pn of some important fission products for reactor

  18. The resonant detector and its application to epithermal neutron spectroscopy

    International Nuclear Information System (INIS)

    Gorini, G.; Perelli-Cippo, E.; Tardocchi, M.; Andreani, C.; D'Angelo, A.; Pietropaolo, A.; Senesi, R.; Imberti, S.; Bracco, A.; Previtali, E.; Pessina, G.; Rhodes, N.J.; Schooneveld, E.M.

    2004-01-01

    New perspectives for epithermal neutron spectroscopy are being opened by the development of the resonant detector (RD) and its use on inverse geometry time of flight spectrometers at spallation sources. The RD was first proposed in the 1980s and was recently brought to a performance level exceeding conventional neutron-sensitive Li-glass scintillator detectors. It features a photon counter coupled to a neutron analyzer foil. Resonant neutron absorption in the foil results in the emission of prompt gamma rays that are detected in the photon counter. The dimensions of the RD set the spatial resolution that can be achieved, ranging from a fraction of a cm to several cm. It can thus be tailored to the construction of detector arrays of different geometry. The main results of the research on this kind of detector are reported leading to the present optimized RD design based on a combination of YAP scintillation photon counter and uranium or gold analyzer foils. This detector has already been selected for application in the upgrade of the VESUVIO spectrometer on ISIS. A special application is the Very Low Angle Detector (VLAD) bank, which will extend the kinematical region for neutron scattering to low momentum transfer ( -1 ) whilst still keeping energy transfer >1 eV, thus allowing new experimental studies in condensed matter systems. The first results of tests made with prototype VLAD detectors are presented, confirming the usefulness of the RD for measurements at scattering angles as low as 2-5 deg

  19. Fission gas in thoria

    Energy Technology Data Exchange (ETDEWEB)

    Kuganathan, Navaratnarajah, E-mail: n.kuganathan@imperial.ac.uk [Department of Materials, Faculty of Engineering, Imperial College, London, SW7 2AZ (United Kingdom); Ghosh, Partha S. [Material Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Galvin, Conor O.T. [Department of Materials, Faculty of Engineering, Imperial College, London, SW7 2AZ (United Kingdom); Arya, Ashok K. [Material Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Dutta, Bijon K. [Homi Bhabha National Institute, Trombay, Mumbai 400 094 (India); Dey, Gautam K. [Material Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Grimes, Robin W. [Department of Materials, Faculty of Engineering, Imperial College, London, SW7 2AZ (United Kingdom)

    2017-03-15

    The fission gases Xe and Kr, formed during normal reactor operation, are known to degrade fuel performance, particularly at high burn-up. Using first-principles density functional theory together with a dispersion correction (DFT + D), in ThO{sub 2} we calculate the energetics of neutral and charged point defects, the di-vacancy (DV), different neutral tri-vacancies (NTV), the charged tetravacancy (CTV) defect cluster geometries and their interaction with Xe and Kr. The most favourable incorporation point defect site for Xe or Kr in defective ThO{sub 2} is the fully charged thorium vacancy. The lowest energy NTV in larger supercells of ThO{sub 2} is NTV3, however, a single Xe atom is most stable when accommodated within a NTV1. The di-vacancy (DV) is a significantly less favoured incorporation site than the NTV1 but the CTV offers about the same incorporation energy. Incorporation of a second gas atom in a NTV is a high energy process and more unfavourable than accommodation within an existing Th vacancy. The bi-NTV (BNTV) cluster geometry studied will accommodate one or two gas atoms with low incorporation energies but the addition of a third gas atom incurs a high energy penalty. The tri-NTV cluster (TNTV) forms a larger space which accommodates three gas atoms but again there is a penalty to accommodate a fourth gas atom. By considering the energy to form the defect sites, solution energies were generated showing that in ThO{sub 2−x} the most favourable solution equilibrium site is the NTV1 while in ThO{sub 2} it is the DV. - Highlights: • We have considered Xe and Kr in point defects and defect clusters (neutral and charged) using Density Functional Theory (DFT) with a dispersion correction. • The most favourable charge state for a point defect (vacancy or interstitial) is that with full ionic charge and we have found that in all cases gas atoms occupy the fully charged vacancy sites. • The number of fission gas atoms accommodated in ThO{sub 2} is

  20. Extraction chromatography of fission products

    International Nuclear Information System (INIS)

    Bonnevie-Svendsen, M.; Goon, K.

    1978-01-01

    Various cases of using extraction chromatography during analysis of fission products are reviewed. The use of the extraction chromatography method is considered while analysing reprocessed products of nuclear fuel for quantitative radiochemical analysis and control of fission product and actinoide separation during extraction and their chemical state in production solutions. The method is used to obtain pure fractions of typical burnup monitors (neodymium, molybdenum, cerium, cesium, europium, lanthanides) during determination of nuclear fuel burnup degree. While studying the nature of nuclear reactions the method is used to separate quickly short-life isotopes, to purify β-radiator fractions before measuring their half-life periods, to enrich isotopes forming with low output during fission. Examples of using extraction chromatography are given to separate long half-life or stable fission products from spent solutions, to control environment object contamination