WorldWideScience

Sample records for fission energy conversion

  1. Feasibility of Traveling Wave Direct Energy Conversion of Fission Reaction Fragments

    Science.gov (United States)

    Tarditi, A. G.; George, J. A.; Miley, G. H.; Scott, J. H.

    2013-01-01

    Fission fragment direct energy conversion has been considered in the past for the purpose of increasing nuclear power plant efficiency and for advanced space propulsion. Since the fragments carry electric charge (typically in the order of 20 e) and have 100 MeV-range kinetic energy, techniques utilizing very high-voltage DC electrodes have been considered. This study is focused on a different approach: the kinetic energy of the charged fission fragments is converted into alternating current by means of a traveling wave coupling scheme (Traveling Wave Direct Energy Converter, TWDEC), thereby not requiring the utilization of high voltage technology. A preliminary feasibility analysis of the concept is introduced based on a conceptual level study and on a particle simulation model of the beam dynamics.

  2. Energy released in fission

    International Nuclear Information System (INIS)

    James, M.F.

    1969-05-01

    The effective energy released in and following the fission of U-235, Pu-239 and Pu-241 by thermal neutrons, and of U-238 by fission spectrum neutrons, is discussed. The recommended values are: U-235 ... 192.9 ± 0.5 MeV/fission; U-238 ... 193.9 ± 0.8 MeV/fission; Pu-239 ... 198.5 ± 0.8 MeV/fission; Pu-241 ... 200.3 ± 0.8 MeV/fission. These values include all contributions except from antineutrinos and very long-lived fission products. The detailed contributions are discussed, and inconsistencies in the experimental data are pointed out. In Appendix A, the contribution to the total useful energy release in a reactor from reactions other than fission are discussed briefly, and in Appendix B there is a discussion of the variations in effective energy from fission with incident neutron energy. (author)

  3. Intermediate energy nuclear fission

    International Nuclear Information System (INIS)

    Hylten, G.

    1982-01-01

    Nuclear fission has been investigated with the double-kinetic-energy method using silicon surface barrier detectors. Fragment energy correlation measurements have been made for U, Th and Bi with bremsstrahlung of 600 MeV maximum energy. Distributions of kinetic energy as a function of fragment mass are presented. The results are compared with earlier photofission data and in the case of bismuth, with calculations based on the liquid drop model. The binary fission process in U, Yb, Tb, Ce, La, Sb, Ag and Y induced by 600 MeV protons has been investigated yielding fission cross sections, fragment kinetic energies, angular correlations and mass distributions. Fission-spallation competition calculations are used to deduce values of macroscopic fission barrier heights and nuclear level density parameter values at deformations corresponding to the saddle point shapes. We find macroscopic fission barriers lower than those predicted by macroscopic theories. No indication is found of the Businaro Gallone limit expected to occur somewhere in the mass range A = 100 to A = 140. For Ce and La asymmetric mass distributions similar to those in the actinide region are found. A method is described for the analysis of angular correlations between complementary fission products. The description is mainly concerned with fission induced by medium-energy protons but is applicable also to other projectiles and energies. It is shown that the momentum and excitation energy distributions of cascade residuals leading to fission can be extracted. (Author)

  4. Low energy nuclear fission

    International Nuclear Information System (INIS)

    Nifenecker, H.

    1982-02-01

    In these lectures we present the liquid drop model of fission and compare some of its prediction with experiment. The liquid drop analogy allows to define in a rather simple and intuitive way a number of useful concepts and possible observables. We then discuss, using the example of the oscillator model, the generality of shell effects. We show how a synthesis of the liquid drop model and of the shell model can be made using the Strutinsky shell averaging procedure. Some experimental data related to the existence of shape isomers are presented and discussed. We conclude by discussing some aspects, both experimental and theoretical, of fission dynamics

  5. Low energy nuclear fission

    International Nuclear Information System (INIS)

    Nifenecker, H.

    1980-08-01

    In these lectures the liquid drop model of fission is presented and some of its predictions compared with experiment. The liquid drop analogy allows to define in a rather simple and intuitive way a number of useful concepts and possible observables. It is shown how a synthesis of the liquid drop model and of the shell model can be made using the Strutinsky shell averaging procedure. Some experimental data related to the existence of shape isomers are presented and discussed. We conclude by discussing some aspects, both experimental and theoretical, of fission dynamics

  6. Direct Conversion of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Corliss, William R

    1964-01-01

    Topics include: direct versus dynamic energy conversion; laws governing energy conversion; thermoelectricity; thermionic conversion; magnetohydrodynamic conversion; chemical batteries; the fuel cell; solar cells; nuclear batteries; and advanced concepts including ferroelectric conversion and thermomagnetic conversion.

  7. Magnetic Materials Suitable for Fission Power Conversion in Space Missions

    Science.gov (United States)

    Bowman, Cheryl L.

    2012-01-01

    Terrestrial fission reactors use combinations of shielding and distance to protect power conversion components from elevated temperature and radiation. Space mission systems are necessarily compact and must minimize shielding and distance to enhance system level efficiencies. Technology development efforts to support fission power generation scenarios for future space missions include studying the radiation tolerance of component materials. The fundamental principles of material magnetism are reviewed and used to interpret existing material radiation effects data for expected fission power conversion components for target space missions. Suitable materials for the Fission Power System (FPS) Project are available and guidelines are presented for bounding the elevated temperature/radiation tolerance envelope for candidate magnetic materials.

  8. Direct Energy Conversion Fission Reactor, Gaseous Core Reactor with Magnetohydrodynamic (MHD) Generator; Final Report - Part I and Part II

    Energy Technology Data Exchange (ETDEWEB)

    Samim Anghaie; Blair Smith; Travis Knight

    2002-11-12

    This report focuses on the power conversion cycle and efficiency. The technical issues involving the ionization mechanisms, the power management and distribution and radiation shielding and safety will be discussed in future reports.

  9. Importance of direct energy conversion

    International Nuclear Information System (INIS)

    Pavlicek, Z.

    1973-01-01

    Energy reserves of different types (fossil fuels, nuclear fission and fusion reactions, solar and geothermal energy) are listed and their conversion patterns evaluated with regard to economic and ecological factors and to the siting of power plants. The concepts and economy of different types of power plants are discussed. The magnetohydrodynamic conversion is given detailed analysis being the most promising for nuclear power production. MHD power plants are expected to operate as peak plants. The graphs presented show that the combination of an MHD reactor and gas turbines is the least costly

  10. Study on fission blanket fuel cycling of a fusion-fission hybrid energy generation system

    International Nuclear Information System (INIS)

    Zhou, Z.; Yang, Y.; Xu, H.

    2011-01-01

    This paper presents a preliminary study on neutron physics characteristics of a light water cooled fission blanket for a new type subcritical fusion-fission hybrid reactor aiming at electric power generation with low technical limits of fission fuel. The major objective is to study the fission fuel cycling performance in the blanket, which may possess significant impacts on the feasibility of the new concept of fusion-fission hybrid reactor with a high energy gain (M) and tritium breeding ratio (TBR). The COUPLE2 code developed by the Institute of Nuclear and New Energy Technology of Tsinghua University is employed to simulate the neutronic behaviour in the blanket. COUPLE2 combines the particle transport code MCNPX with the fuel depletion code ORIGEN2. The code calculation results show that soft neutron spectrum can yield M > 20 while maintaining TBR >1.15 and the conversion ratio of fissile materials CR > 1 in a reasonably long refuelling cycle (>five years). The preliminary results also indicate that it is rather promising to design a high-performance light water cooled fission blanket of fusion-fission hybrid reactor for electric power generation by directly loading natural or depleted uranium if an ITER-scale tokamak fusion neutron source is achievable.

  11. Power production with direct energy conversion

    International Nuclear Information System (INIS)

    Rochau, G.; Lipinski, R.; Polansky, G.; Seidel, D.; Slutz, S.; Morrow, C.; Anghaie, S.; Beller, D.; Brown, L.; Parish, T.

    2001-01-01

    The direct energy conversion (DEC) project has as its main goal the development of a direct energy conversion process suitable for commercial development. We define direct energy conversion as any fission process that returns usable energy without using an intermediate thermal process. During the first phase of study, nine different concepts were investigated and 3 were selected: 1) quasi-spherical magnetically insulated fission electrode cell, 2) fission fragment magnetic collimator, and 3) gaseous core reactor with MHD generator. Selection was based on efficiency and feasibility. The realization of their potential requires an investment in both technically and commercially oriented research. The DEC project has a process in place to take one of these concepts forward and to outline the road map for further development. (A.C.)

  12. Elements of energy conversion

    CERN Document Server

    Russell, Charles R

    2013-01-01

    Elements of Energy Conversion brings together scattered information on the subject of energy conversion and presents it in terms of the fundamental thermodynamics that apply to energy conversion by any process. Emphasis is given to the development of the theory of heat engines because these are and will remain most important power sources. Descriptive material is then presented to provide elementary information on all important energy conversion devices. The book contains 10 chapters and opens with a discussion of forms of energy, energy sources and storage, and energy conversion. This is foll

  13. Nuclear fission induced by high energy protons

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Shmakov, S.Yu.

    1979-01-01

    The fission of 203 Pb, 232 Th, 238 U, 239 Pu, 209 Br nuclei in the energy region T approximately equal to 0.1-2 GeV is considered on the basis of intranuclear cascade model. The competition between fission and evaporation of excited nuclei remaining after the cascade phase of the interaction is taken into account. Fong's model is used to calculate the fission process. The multiplicity of produced particles (d, t, 3 He, α), the energy spectra of neutrons, the distributions of residual nuclei are discussed. The calculated results are compared with the experiment and with the known theoretical data

  14. Energy conversion alternatives study

    Science.gov (United States)

    Shure, L. T.

    1979-01-01

    Comparison of coal based energy systems is given. Study identifies and compares various advanced energy conversion systems using coal or coal derived fuels for baselaoad electric power generation. Energy Conversion Alternatives Study (ECAS) reports provede government, industry, and general public with technically consistent basis for comparison of system's options of interest for fossilfired electric-utility application.

  15. Physics of energy conversion

    International Nuclear Information System (INIS)

    Rax, Jean-Marcel

    2015-01-01

    This book gathers courses on the physics of energy conversion proposed in France and abroad, and mainly in the Orsay Faculty of Science and in the Ecole Polytechnique. It more particularly addresses the study of concepts and methods related to the physics of irreversible processes, within a perspective of identification and analysis of mechanisms of entropy production, and the description and physical analysis of principles and limitations of magneto-hydrodynamic, thermoelectric, thermo-ionic, photovoltaic and electrochemical generators. The chapters address the following issues and themes: conversion and dissipation (conservation and conversion, collisions, fluctuations and transport), energy and entropy (conservation and evolution, Boltzmann and Gibbs factors), Markovian evolutions (Markovian processes, energy conversion and transitions, Boltzmann and Fokker-Planck kinetic equations), dissipative flows (thermodynamic flows and forces, energy conversion and linear transport), heat and chemical engines (Carnot heat engine, Van't Hoff heat engine, endo-reversible heat engines), magneto hydrodynamic conversion (electro-hydrodynamic conversion, Alfven-Saha plasma model, magneto-hydrodynamic coupling, Hall and Faraday converters), thermo-ionic conversion (Lorentz-Sommerfeld models of metals, Richardson-Dushman relationship, Langmuir and Schottky diodes), thermo-electric conversion (conventional semiconductor model, thermo-electric effects, thermo-electric engines), photovoltaic conversion (Planck model of heat radiation, photovoltaic conversion, photovoltaic P-N junction), and electrochemical conversion (Nernst model of redox equilibrium, over-voltage and polarizations, fuel cells)

  16. Fission cross section measurements at intermediate energies

    International Nuclear Information System (INIS)

    Laptev, Alexander

    2005-01-01

    The activity in intermediate energy particle induced fission cross-section measurements of Pu, U isotopes, minor actinides and sub-actinides in PNPI of Russia is reviewed. The neutron-induced fission cross-section measurements are under way in the wide energy range of incident neutrons from 0.5 MeV to 200 MeV at the GNEIS facility. In number of experiments at the GNEIS facility, the neutron-induced fission cross sections were obtained for many nuclei. In another group of experiments the proton-induced fission cross-section have been measured for proton energies ranging from 200 to 1000 MeV at 100 MeV intervals using the proton beam of PNPI synchrocyclotron. (author)

  17. Energy conversion statics

    CERN Document Server

    Messerle, H K; Declaris, Nicholas

    2013-01-01

    Energy Conversion Statics deals with equilibrium situations and processes linking equilibrium states. A development of the basic theory of energy conversion statics and its applications is presented. In the applications the emphasis is on processes involving electrical energy. The text commences by introducing the general concept of energy with a survey of primary and secondary energy forms, their availability, and use. The second chapter presents the basic laws of energy conversion. Four postulates defining the overall range of applicability of the general theory are set out, demonstrating th

  18. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  19. Energy from nuclear fission an introduction

    CERN Document Server

    De Sanctis, Enzo; Ripani, Marco

    2016-01-01

    This book provides an overview on nuclear physics and energy production from nuclear fission. It serves as a readable and reliable source of information for anyone who wants to have a well-balanced opinion about exploitation of nuclear fission in power plants. The text is divided into two parts; the first covers the basics of nuclear forces and properties of nuclei, nuclear collisions, nuclear stability, radioactivity, and provides a detailed discussion of nuclear fission and relevant topics in its application to energy production. The second part covers the basic technical aspects of nuclear fission reactors, nuclear fuel cycle and resources, safety, safeguards, and radioactive waste management. The book also contains a discussion of the biological effects of nuclear radiation and of radiation protection, and a summary of the ten most relevant nuclear accidents. The book is suitable for undergraduates in physics, nuclear engineering and other science subjects. However, the mathematics is kept at a level that...

  20. Feasibility of Colliding-beam fast-fission reactor via 238U80++238 U80+ --> 4 FF + 5n + 430 MeV beam with suppressed plutonium and direct conversion of fission fragment (FF) energy into electricity and/or Rocket propellant with high specific impulse

    Science.gov (United States)

    Maglich, Bogdan; Hester, Tim; Calsec Collaboration

    2015-10-01

    Uranium-uranium colliding beam experiment1, used fully ionized 238U92+ at energy 100GeV --> accelerated through 3 MV accelerator, will collide beam 240 MeV --> 4 FF + 5n + 430 MeV. Using a simple model1 fission σf ~ 100 b. Suppression of Pu by a factor of 106 will be achieved because NO thermal neutron fission can take place; only fast, 1-3 MeV, where σabs is negligible. Direct conversion of 95% of 430 MeV produced is carried by electrically charged FFs which are magnetically funneled for direct conversion of energy of FFs via electrostatic decelerators4,11. 90% of 930 MeV is electrically recoverable. Depending on the assumptions, we project electric _ power density production of 20 to 200 MWe m-3, equivalent to Thermal 1.3 - 13 GWthm-3. If one-half of unburned U is used for propulsion while rest powers system, heavy FF ion mass provides specific impulse Isp = 106 sec., 103 times higher than current rocket engines.

  1. Physics of energy conversion

    CERN Document Server

    Krischer, Katharina

    2015-01-01

    Covers the physical basis of the most important energy conversion processes used for energy supply. Provides the fundamentals and a scientific understanding of the physics behind thermal power plants, solar cells and power plants, batteries and fuels cells as well as energy storage devices.

  2. Langevin model of low-energy fission

    Science.gov (United States)

    Sierk, Arnold J.

    2017-09-01

    Background: Since the earliest days of fission, stochastic models have been used to describe and model the process. For a quarter century, numerical solutions of Langevin equations have been used to model fission of highly excited nuclei, where microscopic potential-energy effects have been neglected. Purpose: In this paper I present a Langevin model for the fission of nuclei with low to medium excitation energies, for which microscopic effects in the potential energy cannot be ignored. Method: I solve Langevin equations in a five-dimensional space of nuclear deformations. The macroscopic-microscopic potential energy from a global nuclear structure model well benchmarked to nuclear masses is tabulated on a mesh of approximately 107 points in this deformation space. The potential is defined continuously inside the mesh boundaries by use of a moving five-dimensional cubic spline approximation. Because of reflection symmetry, the effective mesh is nearly twice this size. For the inertia, I use a (possibly scaled) approximation to the inertia tensor defined by irrotational flow. A phenomenological dissipation tensor related to one-body dissipation is used. A normal-mode analysis of the dynamical system at the saddle point and the assumption of quasiequilibrium provide distributions of initial conditions appropriate to low excitation energies, and are extended to model spontaneous fission. A dynamical model of postscission fragment motion including dynamical deformations and separation allows the calculation of final mass and kinetic-energy distributions, along with other interesting quantities. Results: The model makes quantitative predictions for fragment mass and kinetic-energy yields, some of which are very close to measured ones. Varying the energy of the incident neutron for induced fission allows the prediction of energy dependencies of fragment yields and average kinetic energies. With a simple approximation for spontaneous fission starting conditions

  3. Fission energy program of the US Department of Energy, FY 1981

    International Nuclear Information System (INIS)

    1980-03-01

    Information is presented concerning the National Energy Plan and fission energy policy; fission energy program management; converter reactor systems; breeder reactor systems; and special nuclear evaluations and systems

  4. Fission energy program of the US Department of Energy, FY 1981

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Robert L.

    1980-03-01

    Information is presented concerning the National Energy Plan and fission energy policy; fission energy program management; converter reactor systems; breeder reactor systems; and special nuclear evaluations and systems.

  5. Direct energy conversion

    International Nuclear Information System (INIS)

    Chalupa, Z.; Kramar, J.

    1975-01-01

    The current state of research of direct energy conversion is briefly discussed and a more detailed description is given of MHD and thermionic energy conversion. Current and prospective values of characteristic variables of various energy conversion methods are listed. MHD generators produce terminal voltage of the same order as turbogenerators while other generators for direct energy conversion only produce voltages of 0.1 to 1.5 V so that the respective elements must be parallel-connected. From the point of view of current density, thermionic conversion having the emitter surface value in the order of 10 A/cm 2 ranks first. As for MHD generators, main attention is devoted to open-cycle generators with combustion products as the working medium. It is envisaged that after 1980 MHD power plants will be commissioned having an electric output of up to 500 MW. By 1990, the construction should be started of basic MHD power plants with a total thermal efficiency of about 55%. The research of thermionic conversion focused on practical applications has mainly been concentrated on nuclear power converters. Nuclear or isotope converters have already been built and used in a number of specific applications as low-power sources, e.g., in space exploration, etc. Preparations are under way for applying high-power sources in telecommunication satellites (USSR, USA). (Z.S.)

  6. Photovoltaic solar energy conversion

    CERN Document Server

    Bauer, Gottfried H

    2015-01-01

    This concise primer on photovoltaic solar energy conversion invites readers to reflect on the conversion of solar light into energy at the most fundamental level and encourages newcomers to the field to help find meaningful answers on how photovoltaic solar energy conversion can work (better), eventually contributing to its ongoing advancement. The book is based on lectures given to graduate students in the Physics Department at the University of Oldenburg over the last two decades, yet also provides an easy-to-follow introduction for doctoral and postdoctoral students from related disciplines such as the materials sciences and electrical engineering. Inspired by classic textbooks in the field, it reflects the author’s own ideas on how to understand, visualize and eventually teach the microscopic physical mechanisms and effects, while keeping the text as concise as possible so as to introduce interested readers to the field and balancing essential knowledge with open questions.

  7. Measurement of fission fragments energy loss

    CERN Document Server

    Benetti, P; Calligarich, E; Cesana, A; Dolfini, R; Ioppolo, T; Raselli, G L; Terrani, M

    2002-01-01

    The mean energy of sup 2 sup 5 sup 2 Cf fission fragments emerging from an absorber and the determination of the capture rate in the absorber itself have been measured using two independent and complementary nuclear techniques. The results can be applied to the measurement of the energy self-absorption in a non-zero thickness source and can be used to validate simulation programs.

  8. Magnetohydrodynamic energy conversion

    International Nuclear Information System (INIS)

    Rosa, R.J.

    1987-01-01

    The object of this book is to present a review of the basic principles and practical aspects of magnetohydrodynamic (MHD) energy conversion. The author has tried to give qualitative semiphysical arguments where possible for the benefit of the reader who is unfamiliar with plasma physics. The aim of MHD energy conversion is to apply to a specific practical goal a part of what has become a vast area of science called plasma physics. The author has attempted to note in the text where a broader view might be fruitful and to give appropriate references

  9. Mass and Charge Distribution in Low-Energy Fission

    International Nuclear Information System (INIS)

    Wahl, A.C.

    1965-01-01

    The mass and charge distributions for thermal-neutron fission of U 235 are discussed in considerable detail and compared with the corresponding distributions in other low-energy fission processes. Points discussed in connection with the mass distributions for binary fission include the positions of the peaks, valley and fine structure in a mass yield curve with respect to filled nuclear shells and the changes in the positions that occur with changing fissioning nucleus and excitation energy. The mass distribution from ternary fission is discussed also. For both binary and ternary fission comments are made concerning the mass distributions of primary fragments (before neutron evaporation) and of fission products (after neutron evaporation). Charge distribution is discussed in terms of charge dispersion among fission products with the same mass number and the variation with mass number of Zp, the ''most probable charge'' (non-integral) for a given mass number. Although direct information about charge distribution is limited to fission products, estimates are presented of charge distribution for primary fission fragments. Knowledge and estimates of mass and charge distribution for a fission process allow estimation of primary yields of all fission products or fragments. Although many estimated primary yields are quite uncertain mainly because of lack of knowledge of charge distribution, especially for fission products formed in low yield; some estimates of primary yields are presented to illustrate the need for and possible practicality of further experimentation. Fission processes other than thermal-neutron fission of U 235 that are discussed include thermal-neutron fission of U 233 and Pu 239 , spontaneous fission of Pu 240 and Cf 252 , 14-MeV neutron fission of U 235 and U 238 , 11-MeV proton fission of Ra 226 and 22-MeV deuteron fission of Bi 209 . (author) [fr

  10. Outlook for nuclear fission energy

    International Nuclear Information System (INIS)

    Anderson, T.D.

    1978-01-01

    The electric utility industry has made a substantial commitment to nuclear power. The industrial capability to produce nuclear plants is large and well established. Nevertheless, nuclear energy in the United States is at the crossroad, and the direction it will take is not at all assured. The postponements, cancellations, and lack of orders for new plants over the past three years raise some serious questions about the future. The present problems of nuclear energy are primarily nontechnical in nature. If the nontechnical issues can be resolved, the future for nuclear looks bright indeed. The LWR and other converters could provide strong competition for coal and other electric power options for a half century or more. If development goals are met, the nuclear breeder offers the prospect of a very large supply of energy at stabilized prices over a time span of centuries

  11. Outlook for nuclear fission energy

    International Nuclear Information System (INIS)

    The electric utility industry has made a substantial commitment to nuclear power. The industrial capability to produce nuclear plants is large and well established. Nevertheless, nuclear energy in the United States is at the crossroad, and the direction it will take is not at all assured. The postponements, cancellations, and lack of orders for new plants over the past three years raise some serious questions about the future. The present problems of nuclear energy are primarily nontechnical in nature. If the nontechnical issues can be resolved, the future for nuclear looks bright indeed. The LWR and other converters could provide strong competition for coal and other electric power options for a half century or more. If development goals are met, the nuclear breeder offers the prospect of a very large supply of energy at stabilized prices over a time span of centuries

  12. Dynamic effect analysis in 240Pu fission at low energy

    International Nuclear Information System (INIS)

    Patin, Y.; Lachkar, J.; Sigaud, J.

    1975-01-01

    The variations of kinetic and excitation energies and fragment masses have been analyzed as a function of the fissioning nucleus excitation energy. Most interest has been taken in the fission of 240 Pu where many experimental data have been reported. The results tend, in the whole, to illustrate the existence of two modes of fission; the first one is superfluid, the other is strongly damped in the last stage of the fission process [fr

  13. Microbial Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Merry [American Society for Microbiology (ASM), Washington, DC (United States); Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2006-10-01

    The American Academy of Microbiology convened a colloquium March 10-12, 2006, in San Francisco, California, to discuss the production of energy fuels by microbial conversions. The status of research into various microbial energy technologies, the advantages and disadvantages of each of these approaches, research needs in the field, and education and training issues were examined, with the goal of identifying routes for producing biofuels that would both decrease the need for fossil fuels and reduce greenhouse gas emissions. Currently, the choices for providing energy are limited. Policy makers and the research community must begin to pursue a broader array of potential energy technologies. A diverse energy portfolio that includes an assortment of microbial energy choices will allow communities and consumers to select the best energy solution for their own particular needs. Funding agencies and governments alike need to prepare for future energy needs by investing both in the microbial energy technologies that work today and in the untested technologies that will serve the world’s needs tomorrow. More mature bioprocesses, such as ethanol production from starchy materials and methane from waste digestors, will find applications in the short term. However, innovative techniques for liquid fuel or biohydrogen production are among the longer term possibilities that should also be vigorously explored, starting now. Microorganisms can help meet human energy needs in any of a number of ways. In their most obvious role in energy conversion, microorganisms can generate fuels, including ethanol, hydrogen, methane, lipids, and butanol, which can be burned to produce energy. Alternatively, bacteria can be put to use in microbial fuel cells, where they carry out the direct conversion of biomass into electricity. Microorganisms may also be used some day to make oil and natural gas technologies more efficient by sequestering carbon or by assisting in the recovery of oil and

  14. Wind energy conversion system

    Science.gov (United States)

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  15. Fusion-fission energy systems evaluation

    International Nuclear Information System (INIS)

    Teofilo, V.L.; Aase, D.T.; Bickford, W.E.

    1980-01-01

    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept

  16. Fusion-fission energy systems evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Teofilo, V.L.; Aase, D.T.; Bickford, W.E.

    1980-01-01

    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept.

  17. Solar energy conversion

    CERN Document Server

    Likhtenshtein, Gertz I

    2012-01-01

    Finally filling a gap in the literature for a text that also adopts the chemist?s view of this hot topic, Prof Likhtenshtein, an experienced author and internationally renowned scientist, considers different physical and engineering aspects in solar energy conversion. From theory to real-life systems, he shows exactly which chemical reactions take place when converting light energy, providing an overview of the chemical perspective from fundamentals to molecular harvesting systems and solar cells. This essential guide will thus help researchers in academia and industry better understa

  18. Thermodynamics and energy conversion

    CERN Document Server

    Struchtrup, Henning

    2014-01-01

    This textbook gives a thorough treatment of engineering thermodynamics with applications to classical and modern energy conversion devices.   Some emphasis lies on the description of irreversible processes, such as friction, heat transfer and mixing, and the evaluation of the related work losses. Better use of resources requires high efficiencies, therefore the reduction of irreversible losses should be seen as one of the main goals of a thermal engineer. This book provides the necessary tools.   Topics include: car and aircraft engines,  including Otto, Diesel and Atkinson cycles, by-pass turbofan engines, ramjet and scramjet;  steam and gas power plants, including advanced regenerative systems, solar tower, and compressed air energy storage; mixing and separation, including reverse osmosis, osmotic powerplants, and carbon sequestration; phase equilibrium and chemical equilibrium, distillation, chemical reactors, combustion processes, and fuel cells; the microscopic definition of entropy.    The book i...

  19. Thermal Energy Conversion Branch

    Science.gov (United States)

    Bielozer, Matthew C.; Schreiber, Jeffrey, G.; Wilson, Scott D.

    2004-01-01

    The Thermal Energy Conversion Branch (5490) leads the way in designing, conducting, and implementing research for the newest thermal systems used in space applications at the NASA Glenn Research Center. Specifically some of the most advanced technologies developed in this branch can be broken down into four main areas: Dynamic Power Systems, Primary Solar Concentrators, Secondary Solar Concentrators, and Thermal Management. Work was performed in the Dynamic Power Systems area, specifically the Stirling Engine subdivision. Today, the main focus of the 5490 branch is free-piston Stirling cycle converters, Brayton cycle nuclear reactors, and heat rejection systems for long duration mission spacecraft. All space exploring devices need electricity to operate. In most space applications, heat energy from radioisotopes is converted to electrical power. The Radioisotope Thermoelectric Generator (RTG) already supplies electricity for missions such as the Cassini Spacecraft. The focus of today's Stirling research at GRC is aimed at creating an engine that can replace the RTG. The primary appeal of the Stirling engine is its high system efficiency. Because it is so efficient, the Stirling engine will significantly reduce the plutonium fuel mission requirements compared to the RTG. Stirling is also being considered for missions such as the lunar/Mars bases and rovers. This project has focused largely on Stirling Engines of all types, particularly the fluidyne liquid piston engine. The fluidyne was developed by Colin D. West. This engine uses the same concepts found in any type of Stirling engine, with the exception of missing mechanical components. All the working components are fluid. One goal was to develop and demonstrate a working Stirling Fluidyne Engine at the 2nd Annual International Energy Conversion Engineering Conference in Providence, Rhode Island.

  20. HYDROKINETIC ENERGY CONVERSION SYSTEMS: PROSPECTS ...

    African Journals Online (AJOL)

    eobe

    hydro-to-electric power system, which is being strongly recognized as a unique and unconventional renewable energy solution, is the marine and hydrokinetic energy conversion technology [8]. Hydrokinetic (In Stream, or water current) energy conversion implies the utilization of the kinetic energy of rivers, streams, tidal ...

  1. Bimodal nature in low-energy fission of light actinides

    International Nuclear Information System (INIS)

    Nagame, Yuichiro; Nishinaka, Ichiro; Tsukada, Kazuaki; Ikezoe, Hiroshi; Otsuki, Tsutomu; Sueki, Keisuke; Nakahara, Hiromichi; Kudo, Hisaaki.

    1995-01-01

    To solve various problems in the mass division process of light actinoids, some experiments on the basis of bimodal fission were carried. Mass and kinetic energy distribution of Th-232 and U-238 were determined. Pa-225 (N= 134) and Pa-227 (N=136), fission nuclei, were produced by Bi-209 + 0-16 and Bi-209 + 0-18 heavy ion nucleus reactions, and the mass yield distribution were determined by the time-of-flight method and the radiochemical procedure. From the results, two independent deforming processes were proved in the fission process of light actinoid nuclei. On the deforming process through the low fission barrier, nucleus fissioned after small deformation under the influence of stabilization of the shell structure of fission product. In the case of process through the high barrier, however, the nucleus fissioned after large deformation. The unsymmetrical mass division was derived from the former and the symmetrical one from the latter. (S.Y.)

  2. Generalized Energy-Dependent Q Values for Fission

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, R

    2010-03-31

    We extend Madland's parameterization of the energy release in fission to obtain the dependence of the fission Q value for major and minor actinides on the incident neutron energies in the range 0 {le} E{sub n} {le} 20 MeV. Our parameterization is based on the actinide evaluations recommended for the ENDF/B-VII.1 release. This paper describes the calculation of energydependent fission Q values based on the calculation of the prompt energy release in fission by Madland. This calculation was adopted for use in the LLNL ENDL database and then generalized to obtain the prompt fission energy release for all actinides. Here the calculation is further generalized to the total energy release in fission. There are several stages in a fission event, depending on the time scale. Neutrons and gammas may be emitted at any time during the fission event.While our discussion here is focussed on compound nucleus creation by an incident neutron, similar parameterizations could be obtained for incident gammas or spontaneous fission.

  3. Fission cross sections in the intermediate energy region

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Ullmann, J.L.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1991-01-01

    Until recently there has been very little cross section data for neutron-induced fission in the intermediate energy region, primarily because no suitable neutron source has existed. At Los Alamos, the WNR target-4 facility provides a high-intensity source of neutrons nearly ideal for fission measurements extending from a fraction of a MeV to several hundred MeV. This paper summarizes the status of fission cross section data in the intermediate energy range (En > 30 MeV) and presents our fission cross section data for 235 U and 238 U compared to intranuclear cascade and statistical model predictions

  4. Fission cross sections in the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Ullmann, J.L.; Balestrini, S.J. (Los Alamos National Lab., NM (USA)); Carlson, A.D.; Wasson, O.A. (National Inst. of Standards and Technology, Gaithersburg, MD (USA)); Hill, N.W. (Oak Ridge National Lab., TN (USA))

    1991-01-01

    Until recently there has been very little cross section data for neutron-induced fission in the intermediate energy region, primarily because no suitable neutron source has existed. At Los Alamos, the WNR target-4 facility provides a high-intensity source of neutrons nearly ideal for fission measurements extending from a fraction of a MeV to several hundred MeV. This paper summarizes the status of fission cross section data in the intermediate energy range (En > 30 MeV) and presents our fission cross section data for {sup 235}U and {sup 238}U compared to intranuclear cascade and statistical model predictions.

  5. Geothermal energy conversion facility

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, C.F.

    1997-12-31

    With the termination of favorable electricity generation pricing policies, the geothermal industry is exploring ways to improve the efficiency of existing plants and make them more cost-competitive with natural gas. The Geothermal Energy Conversion Facility (GECF) at NREL will allow researchers to study various means for increasing the thermodynamic efficiency of binary cycle geothermal plants. This work has received considerable support from the US geothermal industry and will be done in collaboration with industry members and utilities. The GECF is being constructed on NREL property at the top of South Table Mountain in Golden, Colorado. As shown in Figure 1, it consists of an electrically heated hot water loop that provides heating to a heater/vaporizer in which the working fluid vaporizes at supercritical or subcritical pressures as high as 700 psia. Both an air-cooled and water-cooled condenser will be available for condensing the working fluid. In order to minimize construction costs, available equipment from the similar INEL Heat Cycle Research Facility is being utilized.

  6. Ocean energy conversion - A reality

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.

    -depth analysis of application and achievements of OTEC, tidal energy, impact of astronomical forces on tide, prospects of tidal power plants, wave energy conversion and its mathematical approach for both linear and non-linear waves, economic viability, problems...

  7. Fusion--fission energy systems, some utility perspectives

    International Nuclear Information System (INIS)

    Huse, R.A.; Burger, J.M.; Lotker, M.

    1974-01-01

    Some of the issues that are important in assessing fusion-- fission energy systems from a utility perspective are discussed. A number of qualitative systems-oriented observations are given along with some economic quantification of the benefits from fusion--fission hybrids and their allowed capital cost. (U.S.)

  8. The Future of Energy from Nuclear Fission

    International Nuclear Information System (INIS)

    Kim, Son H.; Taiwo, Temitope

    2013-01-01

    Nuclear energy is an important part of our current global energy system, and contributes to supplying the significant demand for electricity for many nations around the world. There are 433 commercial nuclear power reactors operating in 30 countries with an installed capacity of 367 GWe as of October 2011 (IAEA PRIS, 2011). Nuclear electricity generation totaled 2630 TWh in 2010 representing 14% the world's electricity generation. The top five countries of total installed nuclear capacity are the US, France, Japan, Russia and South Korea at 102, 63, 45, 24, and 21 GWe, respectively (WNA, 2012a). The nuclear capacity of these five countries represents more than half, 68%, of the total global nuclear capacity. The role of nuclear power in the global energy system today has been motivated by several factors including the growing demand for electric power, the regional availability of fossil resources and energy security concerns, and the relative competitiveness of nuclear power as a source of base-load electricity. There is additional motivation for the use of nuclear power because it does not produce greenhouse gas (GHG) emissions or local air pollutants during its operation and contributes to low levels of emissions throughout the lifecycle of the nuclear energy system (Beerten, J. et. al., 2009). Energy from nuclear fission primarily in the form of electric power and potentially as a source of industrial heat could play a greater role for meeting the long-term growing demand for energy worldwide while addressing the concern for climate change from rising GHG emissions. However, the nature of nuclear fission as a tremendously compact and dense form of energy production with associated high concentrations of radioactive materials has particular and unique challenges as well as benefits. These challenges include not only the safety and cost of nuclear reactors, but proliferation concerns, safeguard and storage of nuclear materials associated with nuclear fuel cycles

  9. Direct conversion of fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Markus

    2003-03-01

    Deuterium and tritium are expected to be used as fuel in the first fusion reactors. Energy is released as kinetic energy of ions and neutrons, when deuterium reacts with tritium. One way to convert the kinetic energy to electrical energy, is to let the ions and neutrons hit the reactor wall and convert the heat that is caused by the particle bombardment to electrical energy with ordinary thermal conversion. If the kinetic energy of the ions instead is converted directly to electrical energy, a higher efficiency of the energy conversion is possible. The majority of the fusion energy is released as kinetic energy of neutrons, when deuterium reacts with tritium. Fusion reactions such as the D-D reactions, the D-{sup 3}He reaction and the p-{sup 11}B reaction, where a larger part of the fusion energy becomes kinetic energy of charged particles, appears therefore more suitable for direct conversion. Since they have lower reactivity than the D-T reaction, they need a larger {beta}B{sup 2}{sub 0} to give sufficiently high fusion power density. Because of this, the fusion configurations spherical torus (ST) and field-reversed configuration (FRC), where high {beta} values are possible, appear interesting. Rosenbluth and Hinton come to the conclusion that efficient direct conversion isn't possible in closed field line systems and that open geometries, which facilitate direct conversion, provide inadequate confinement for D-{sup 3}He. It is confirmed in this study that it doesn't seem possible to achieve as high direct conversion efficiency in closed systems as in open systems. ST and FRC fusion power plants that utilize direct conversion seem however interesting. Calculations with the help of Maple indicate that the reactor parameters needed for a D-D ST and a D{sub 3} He ST hopefully are possible to achieve. The best energy conversion option for a D-D or D{sub 3} He ST appears to be direct electrodynamic conversion (DEC) together with ordinary thermal conversion

  10. Roadmap on optical energy conversion

    Science.gov (United States)

    Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; Yablonovitch, Eli; Beard, Matthew C.; Okada, Yoshitaka; Lany, Stephan; Gershon, Talia; Zakutayev, Andriy; Tahersima, Mohammad H.; Sorger, Volker J.; Naughton, Michael J.; Kempa, Krzysztof; Dagenais, Mario; Yao, Yuan; Xu, Lu; Sheng, Xing; Bronstein, Noah D.; Rogers, John A.; Alivisatos, A. Paul; Nuzzo, Ralph G.; Gordon, Jeffrey M.; Wu, Di M.; Wisser, Michael D.; Salleo, Alberto; Dionne, Jennifer; Bermel, Peter; Greffet, Jean-Jacques; Celanovic, Ivan; Soljacic, Marin; Manor, Assaf; Rotschild, Carmel; Raman, Aaswath; Zhu, Linxiao; Fan, Shanhui; Chen, Gang

    2016-07-01

    For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in the optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. It is our hope that the roadmap

  11. Energy conversion at dipolarization fronts

    Science.gov (United States)

    Khotyaintsev, Yu. V.; Divin, A.; Vaivads, A.; André, M.; Markidis, S.

    2017-02-01

    We use multispacecraft observations by Cluster in the Earth's magnetotail and 3-D particle-in-cell simulations to investigate conversion of electromagnetic energy at the front of a fast plasma jet. We find that the major energy conversion is happening in the Earth (laboratory) frame, where the electromagnetic energy is being transferred from the electromagnetic field to particles. This process operates in a region with size of the order several ion inertial lengths across the jet front, and the primary contribution to E·j is coming from the motional electric field and the ion current. In the frame of the front we find fluctuating energy conversion with localized loads and generators at sub-ion scales which are primarily related to the lower hybrid drift instability excited at the front; however, these provide relatively small net energy conversion.

  12. Considerations for a sustainable nuclear fission energy in Europe

    International Nuclear Information System (INIS)

    Cognet, G.; Ledermann, P.; Cacuci, D.

    2005-01-01

    Presented is the global energy perspectives and and sustainable development fission vision scenario. Described are the innovative concepts with technological breakthroughs concerning the fuel cycle and evolution of the spent fuel radiotoxic contents

  13. Role of Multichance Fission in the Description of Fission-Fragment Mass Distributions at High Energies

    Science.gov (United States)

    Hirose, K.; Nishio, K.; Tanaka, S.; Léguillon, R.; Makii, H.; Nishinaka, I.; Orlandi, R.; Tsukada, K.; Smallcombe, J.; Vermeulen, M. J.; Chiba, S.; Aritomo, Y.; Ohtsuki, T.; Nakano, K.; Araki, S.; Watanabe, Y.; Tatsuzawa, R.; Takaki, N.; Tamura, N.; Goto, S.; Tsekhanovich, I.; Andreyev, A. N.

    2017-12-01

    Fission-fragment mass distributions were measured for U 237 - 240 , Np 239 - 242 , and Pu 241 - 244 populated in the excitation-energy range from 10 to 60 MeV by multinucleon transfer channels in the reaction O 18 +U 238 at the Japan Atomic Energy Agency tandem facility. Among them, the data for U 240 and Np 240 ,241 ,242 were observed for the first time. It was found that the mass distributions for all the studied nuclides maintain a double-humped shape up to the highest measured energy in contrast to expectations of predominantly symmetric fission due to the washing out of nuclear shell effects. From a comparison with the dynamical calculation based on the fluctuation-dissipation model, this behavior of the mass distributions was unambiguously attributed to the effect of multichance fission.

  14. Fission fragment mass and total kinetic energy distributions of spontaneously fissioning plutonium isotopes

    Science.gov (United States)

    Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.

    2018-03-01

    The fission-fragment mass and total kinetic energy (TKE) distributions are evaluated in a quantum mechanical framework using elongation, mass asymmetry, neck degree of freedom as the relevant collective parameters in the Fourier shape parametrization recently developed by us. The potential energy surfaces (PES) are calculated within the macroscopic-microscopic model based on the Lublin-Strasbourg Drop (LSD), the Yukawa-folded (YF) single-particle potential and a monopole pairing force. The PES are presented and analysed in detail for even-even Plutonium isotopes with A = 236-246. They reveal deep asymmetric valleys. The fission-fragment mass and TKE distributions are obtained from the ground state of a collective Hamiltonian computed within the Born-Oppenheimer approximation, in the WKB approach by introducing a neck-dependent fission probability. The calculated mass and total kinetic energy distributions are found in good agreement with the data.

  15. PHOTOELECTROCHEMICAL SOLAR ENERGY CONVERSION ...

    African Journals Online (AJOL)

    Preferred Customer

    the PEC, which is based on a narrow bandgap semiconductor and a redox couple, optical energy is converted into electrical energy without change of the free energy of the redox electrolyte (ΔG. = 0). The electrochemical reaction occurring at the counter electrode (CE) is opposite to the photoassisted reaction occurring at ...

  16. Investigation of the heavy nuclei fission with anomalously high values of the fission fragments total kinetic energy

    Science.gov (United States)

    Khryachkov, Vitaly; Goverdovskii, Andrei; Ketlerov, Vladimir; Mitrofanov, Vecheslav; Sergachev, Alexei

    2018-03-01

    Binary fission of 232Th and 238U induced by fast neutrons were under intent investigation in the IPPE during recent years. These measurements were performed with a twin ionization chamber with Frisch grids. Signals from the detector were digitized for further processing with a specially developed software. It results in information of kinetic energies, masses, directions and Bragg curves of registered fission fragments. Total statistics of a few million fission events were collected during each experiment. It was discovered that for several combinations of fission fragment masses their total kinetic energy was very close to total free energy of the fissioning system. The probability of such fission events for the fast neutron induced fission was found to be much higher than for spontaneous fission of 252Cf and thermal neutron induced fission of 235U. For experiments with 238U target the energy of incident neutrons were 5 MeV and 6.5 MeV. Close analysis of dependence of fission fragment distribution on compound nucleus excitation energy gave us some explanation of the phenomenon. It could be a process in highly excited compound nucleus which leads the fissioning system from the scission point into the fusion valley with high probability.

  17. Investigation of the heavy nuclei fission with anomalously high values of the fission fragments total kinetic energy

    Directory of Open Access Journals (Sweden)

    Khryachkov Vitaly

    2018-01-01

    Full Text Available Binary fission of 232Th and 238U induced by fast neutrons were under intent investigation in the IPPE during recent years. These measurements were performed with a twin ionization chamber with Frisch grids. Signals from the detector were digitized for further processing with a specially developed software. It results in information of kinetic energies, masses, directions and Bragg curves of registered fission fragments. Total statistics of a few million fission events were collected during each experiment. It was discovered that for several combinations of fission fragment masses their total kinetic energy was very close to total free energy of the fissioning system. The probability of such fission events for the fast neutron induced fission was found to be much higher than for spontaneous fission of 252Cf and thermal neutron induced fission of 235U. For experiments with 238U target the energy of incident neutrons were 5 MeV and 6.5 MeV. Close analysis of dependence of fission fragment distribution on compound nucleus excitation energy gave us some explanation of the phenomenon. It could be a process in highly excited compound nucleus which leads the fissioning system from the scission point into the fusion valley with high probability.

  18. Singlet Fission

    Czech Academy of Sciences Publication Activity Database

    Smith, M. B.; Michl, Josef

    2010-01-01

    Roč. 110, č. 11 (2010), s. 6891-6936 ISSN 0009-2665 Grant - others:Department of Energy(US) DE- FG36 -08GO18017 Institutional research plan: CEZ:AV0Z40550506 Keywords : solar energy conversion * photovoltaics * singlet fission Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 33.033, year: 2010

  19. Flow energy conversion system

    International Nuclear Information System (INIS)

    Sargsyan, R.A.

    2011-01-01

    A cost-effective hydropower system called here Flow Energy Converter was developed, patented, manufactured and tested for water pumping, electricity generation and other purposes especially useful for the rural communities. The system consists of water-driven turbine with plane-surface blades, power transmission means and pump and/or generator. Working sample of the Flow Energy Converter was designed and manufactured at the Institute of Radio Physics and Electronics

  20. Energy conversion and utilization technologies

    International Nuclear Information System (INIS)

    1988-01-01

    The DOE Energy Conversion and Utilization Technologies (ECUT) Program continues its efforts to expand the generic knowledge base in emerging technological areas that support energy conservation initiatives by both the DOE end-use sector programs and US private industry. ECUT addresses specific problems associated with the efficiency limits and capabilities to use alternative fuels in energy conversion and end-use. Research is aimed at understanding and improving techniques, processes, and materials that push the thermodynamic efficiency of energy conversion and usage beyond the state of the art. Research programs cover the following areas: combustion, thermal sciences, materials, catalysis and biocatalysis, and tribology. Six sections describe the status of direct contact heat exchange; the ECUT biocatalysis project; a computerized tribology information system; ceramic surface modification; simulation of internal combustion engine processes; and materials-by-design. These six sections have been indexed separately for inclusion on the database. (CK)

  1. Photovoltaic conversion of laser energy

    Science.gov (United States)

    Stirn, R. J.

    1976-01-01

    The Schottky barrier photovoltaic converter is suggested as an alternative to the p/n junction photovoltaic devices for the conversion of laser energy to electrical energy. The structure, current, output, and voltage output of the Schottky device are summarized. The more advanced concepts of the multilayer Schottky barrier cell and the AMOS solar cell are briefly considered.

  2. Electrochemistry for Energy Conversion

    Science.gov (United States)

    O'Hayre, Ryan

    2010-10-01

    Imagine a laptop computer that runs for 30 hours on a single charge. Imagine a world where you plug your house into your car and power lines are a distant memory. These dreams motivate today's fuel cell research. While some dreams (like powering your home with your fuel cell car) may be distant, others (like a 30-hour fuel cell laptop) may be closer than you think. If you are curious about fuel cells---how they work, when you might start seeing them in your daily life--- this talk is for you. Learn about the state-of-the art in fuel cells, and where the technology is likely to be headed in the next 20 years. You'll also be treated to several ``behind-the scenes'' glimpses of cutting-edge research projects under development in the Renewable Energy Materials Center at the Colorado School of Mines--- projects like an ``ionic transistor'' that works with protons instead of electrons, and a special ceramic membrane material that enables the ``uphill'' diffusion of steam. Associate Professor Ryan O'Hayre's laboratory at the Colorado School of Mines develops new materials and devices to enable alternative energy technologies including fuel cells and solar cells. Prof. O'Hayre and his students collaborate with the Colorado Fuel Cell Center, the Colorado Center for Advanced Ceramics, the Renewable Energy Materials Science and Engineering Center, and the National Renewable Energy Laboratory.[4pt] In collaboration with Ann Deml, Jianhua Tong, Svitlana Pylypenko, Archana Subramaniyan, Micahael Sanders, Jason Fish, Annette Bunge, Colorado School of Mines.

  3. Preliminary fission product energy release measurements for thermal neutron fission of 235U

    International Nuclear Information System (INIS)

    Dickens, J.K.; Love, T.A.; McConnell, J.W.; Emery, J.F.; Peelle, R.W.

    1976-03-01

    An experimental system to measure time-dependent spectra of β and γ rays from fission-product production by thermal neutron fission of 235 U is described, and for each component (β and γ) the system has been tested with a pilot data-accumulation run. Data reduction techniques are described and test results given. Gamma-ray spectra are compared with calculations using ENDF/B-IV data files. Both β- and γ-ray spectra were integrated to give total yields and total energy-release results for times after fission between 3 and 14400 sec. These preliminary integral data are compared with previous measurements and with integral calculations using ENDF/B-IV data files

  4. Prediction of fission barrier height for induced fission reactions with 16O at several energies

    Directory of Open Access Journals (Sweden)

    S Soheyli

    2009-09-01

    Full Text Available We have calculated the fission barrier height for 16O+208Pb, 16O+209Bi, 16O+232Th, 16O+238U and 16O+248Cm systems in energy range between 90 MeV to 215 MeV. This method is based on the experimental data for angular anisotropies of fission fragments. In present work, we have used the transition state model (STM for two different cases: the first case is without neutron emission correction and the second case is with neutron emission correction. In this paper, we have predicted the fission barrier for the two super heavy nuclei that were not reported previously with experimental methods.

  5. Energy Conversion and Storage Program

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  6. Measurement of energy dependence of fission fragment angular anisotropy for resonance neutron induced fission of 235U aligned target

    International Nuclear Information System (INIS)

    Bogdzel, A.A.; Furman, W.I.

    1996-01-01

    The results of the experiment on measuring the energy dependence of fission fragment angular anisotropy in resonance neutron induced fission of 235 U aligned target in energy region up to 42 eV are presented. The agreement with the data of Pattenden and Postma in resonances is good enough, while the theoretical curve, calculated using the R-matrix multilevel two fission channel approach, does not seem to describe the energy dependence of fission fragment angular anisotropy property. The necessity of taking into account the interference between levels with different spins is discussed. 11 refs., 2 figs

  7. Proton induced fission of {sup 232}Th at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Gikal, K. B., E-mail: kgikal@mail.ru; Kozulin, E. M.; Bogachev, A. A. [JINR, Flerov Laboratory of Nuclear Reactions (Russian Federation); Burtebaev, N. T.; Edomskiy, A. V. [Institute of Nuclear Physics of Ministry of Energy of the Republic of Kazakhstan (Kazakhstan); Itkis, I. M.; Itkis, M. G.; Knyazhev, G. N. [JINR, Flerov Laboratory of Nuclear Reactions (Russian Federation); Kovalchuk, K. V.; Kvochkina, T. N. [Institute of Nuclear Physics of Ministry of Energy of the Republic of Kazakhstan (Kazakhstan); Piasecki, E. [Heavy Ion Laboratory of Warsaw University (Poland); Rubchenya, V. A. [University of Jyväskylä, Department of Physics (Finland); Sahiev, S. K. [Institute of Nuclear Physics of Ministry of Energy of the Republic of Kazakhstan (Kazakhstan); Trzaska, W. H. [University of Jyväskylä, Department of Physics (Finland); Vardaci, E. [INFN Napoli, Dipartimento di Scienze Fisiche dell’Università di Napoli (Italy)

    2016-12-15

    The mass-energy distributions and cross sections of proton-induced fission of {sup 232}Th have been measured at the proton energies of 7, 10, 13, 20, 40, and 55 MeV. Experiments were carried out at the proton beam of the K-130 cyclotron of the JYFL Accelerator Laboratory of the University of Jyväskylä and U-150m cyclotron of the Institute of Nuclear Physics, Ministry of Energy of the Republic of Kazakhstan. The yields of fission fragments in the mass range A = 60–170 a.m.u. have been measured up to the level of 10−4%. The three humped shape of the mass distribution up has been observed at higher proton energies. The contribution of the symmetric component grows up with increasing proton incident energy; although even at 55 MeV of proton energy the shoulders in the mass energy distribution clearly indicate the asymmetric fission peaks. Evolution of shell structure was observed in the fission fragment mass distributions even at high excitation energy.

  8. Proton-induced fission at ultra sub-barrier energies

    Energy Technology Data Exchange (ETDEWEB)

    Back, B.B.; Betts, R.R.; Fernandez, P.B.; Gehring, J.C.; Henderson, D.J.; Nagame, Y.

    1991-01-01

    Cross sections for proton-induced fission of {sup 238}U have been measured at seven proton energies ranging from 3.0 to 4.45 MeV using two position sensitive parallel-grid avalanche counters in a kinematic coincidence. In addition, an upper limit for the fission cross section was established at extreme sub-barrier energies down to a level of {approx equal}20 pb at 3 MeV. This result is in contradiction to recent findings of Ajitanand et al., who found that the fission excitation function exhibited a plateaux at about 1000 pb in the energy range from 1.0 to 3.5 MeV. 7 refs., 3 figs., 1 tab.

  9. OPTIMIZATION OF AEOLIAN ENERGY CONVERSION ...

    African Journals Online (AJOL)

    30 juin 2010 ... turbine at optimum speed which corresponds to the maximum power provided by the steady wind turbine. To this end, the object is to preserve the position of any static operating point on the characteristic of optimal. To validate the model and algorithm for optimal conversion of wind energy, a series of.

  10. Perspective on the fusion-fission energy concept

    International Nuclear Information System (INIS)

    Liikala, R.C.; Perry, R.T.; Teofilo, V.L.

    1978-01-01

    A concept which has potential for near-term application in the electric power sector of our energy economy is combining fusion and fission technology. The fusion-fission system, called a hybrid, is distinguished from its pure fusion counterpart by incorporation of fertile materials (uranium or thorium) in the blanket region of a fusion machine. The neutrons produced by the fusion process can be used to generate energy through fission events in the blanket or produce fuel for fission reactors through capture events in the fertile material. The performance requirements of the fusion component of hybrids is perceived as being less stringent than those for pure fusion electric power plants. The performance requirements for the fission component of hybrids is perceived as having been demonstrated or could be demonstrated with a modest investment of research and development funds. This paper presents our insights and observations of this concept in the context of why and where it might fit into the picture of meeting our future energy needs. A bibliography of hybrid research is given

  11. Rupturing the hemi-fission intermediate in membrane fission under tension: Reaction coordinates, kinetic pathways, and free-energy barriers

    Science.gov (United States)

    Zhang, Guojie; Müller, Marcus

    2017-08-01

    Membrane fission is a fundamental process in cells, involved inter alia in endocytosis, intracellular trafficking, and virus infection. Its underlying molecular mechanism, however, is only incompletely understood. Recently, experiments and computer simulation studies have revealed that dynamin-mediated membrane fission is a two-step process that proceeds via a metastable hemi-fission intermediate (or wormlike micelle) formed by dynamin's constriction. Importantly, this hemi-fission intermediate is remarkably metastable, i.e., its subsequent rupture that completes the fission process does not occur spontaneously but requires additional, external effects, e.g., dynamin's (unknown) conformational changes or membrane tension. Using simulations of a coarse-grained, implicit-solvent model of lipid membranes, we investigate the molecular mechanism of rupturing the hemi-fission intermediate, such as its pathway, the concomitant transition states, and barriers, as well as the role of membrane tension. The membrane tension is controlled by the chemical potential of the lipids, and the free-energy landscape as a function of two reaction coordinates is obtained by grand canonical Wang-Landau sampling. Our results show that, in the course of rupturing, the hemi-fission intermediate undergoes a "thinning → local pinching → rupture/fission" pathway, with a bottle-neck-shaped cylindrical micelle as a transition state. Although an increase of membrane tension facilitates the fission process by reducing the corresponding free-energy barrier, for biologically relevant tensions, the free-energy barriers still significantly exceed the thermal energy scale kBT.

  12. Neutron emission and fragment yield in high-energy fission

    International Nuclear Information System (INIS)

    Grudzevich, O. T.; Klinov, D. A.

    2013-01-01

    The KRIS special library of spectra and emission probabilities in the decays of 1500 nuclei excited up to energies between 150 and 250 MeV was developed for correctly taking into account the decay of highly excited nuclei appearing as fission fragments. The emission of neutrons, protons, and photons was taken into account. Neutron emission fromprimary fragments was found to have a substantial effect on the formation of yields of postneutron nuclei. The library was tested by comparing the calculated and measured yields of products originating from the fission of nuclei that was induced by high-energy protons. The method for calculating these yields was tested on the basis of experimental data on the thermal-neutroninduced fission of 235 U nuclei

  13. Algal Energy Conversion and Capture

    Science.gov (United States)

    Hazendonk, P.

    2015-12-01

    We address the potential for energy conversions and capture for: energy generation; reduction in energy use; reduction in greenhouse gas emissions; remediation of water and air pollution; protection and enhancement of soil fertility. These processes have the potential to sequester carbon at scales that may have global impact. Energy conversion and capture strategies evaluate energy use and production from agriculture, urban areas and industries, and apply existing and emerging technologies to reduce and recapture energy embedded in waste products. The basis of biocrude production from Micro-algal feedstocks: 1) The nutrients from the liquid fraction of waste streams are concentrated and fed into photo bioreactors (essentially large vessels in which microalgae are grown) along with CO2 from flue gasses from down stream processes. 2) The algae are processed to remove high value products such as proteins and beta-carotenes. The advantage of algae feedstocks is the high biomass productivity is 30-50 times that of land based crops and the remaining biomass contains minimal components that are difficult to convert to biocrude. 3) The remaining biomass undergoes hydrothermal liquefaction to produces biocrude and biochar. The flue gasses of this process can be used to produce electricity (fuel cell) and subsequently fed back into the photobioreactor. The thermal energy required for this process is small, hence readily obtained from solar-thermal sources, and furthermore no drying or preprocessing is required keeping the energy overhead extremely small. 4) The biocrude can be upgraded and refined as conventional crude oil, creating a range of liquid fuels. In principle this process can be applied on the farm scale to the municipal scale. Overall, our primary food production is too dependent on fossil fuels. Energy conversion and capture can make food production sustainable.

  14. Systematics of fission cross sections at the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Fukahori, Tokio; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    The systematics was obtained with fitting experimental data for proton induced fission cross sections of Ag, {sup 181}Ta, {sup 197}Au, {sup 206,207,208}Pb, {sup 209}Bi, {sup 232}Th, {sup 233,235,238}U, {sup 237}Np and {sup 239}Pu above 20 MeV. The low energy cross section of actinoid nuclei is omitted from systematics study, since the cross section has a complicated shape and strongly depends on characteristic of nucleus. The fission cross sections calculated by the systematics are in good agreement with experimental data. (author)

  15. OPTIMIZATION OF AEOLIAN ENERGY CONVERSION ...

    African Journals Online (AJOL)

    30 juin 2010 ... However, the objective of this paper is to present an algorithm for optimal conversion of wind energy based on a criterion .... V : vitesse du vent. Une turbine est typiquement caractérisée par sa courbe Cp = f (λ), avec λ est le coefficient de vitesse réduite exprimé par la relation suivante: v. R ..Ω. =. (5). Où :.

  16. Role of energy cost in the yield of cold ternary fission of Cf

    Indian Academy of Sciences (India)

    Abstract. The energy costs in the cold ternary fission of 252Cf for various light charged particle emission are calculated by including Wong's correction for Coulomb potential. Energy cost is found to be higher in cold fission than in normal fission. It is found that energy cost always increases with decrease in experimental yield ...

  17. Determination of shell energies. Nuclear deformations and fission barriers

    International Nuclear Information System (INIS)

    Koura, Hiroyuki; Tachibana, Takahiro; Uno, Masahiro; Yamada, Masami.

    1996-01-01

    We have been studying a method of determining nuclear shell energies and incorporating them into a mass formula. The main feature of this method lies in estimating shell energies of deformed nuclei from spherical shell energies. We adopt three assumptions, from which the shell energy of a deformed nucleus is deduced to be a weighted sum of spherical shell energies of its neighboring nuclei. This shell energy should be called intrinsic shell energy since the average deformation energy also acts as an effective shell energy. The ground-state shell energy of a deformed nucleus and its equilibrium shape can be obtained by minimizing the sum of these two energies with respect to variation of deformation parameters. In addition, we investigate the existence of fission isomers for heavy nuclei with use of the obtained shell energies. (author)

  18. Systems Modeling For The Laser Fusion-Fission Energy (LIFE) Power Plant

    International Nuclear Information System (INIS)

    Meier, W.R.; Abbott, R.; Beach, R.; Blink, J.; Caird, J.; Erlandson, A.; Farmer, J.; Halsey, W.; Ladran, T.; Latkowski, J.; MacIntyre, A.; Miles, R.; Storm, E.

    2008-01-01

    A systems model has been developed for the Laser Inertial Fusion-Fission Energy (LIFE) power plant. It combines cost-performance scaling models for the major subsystems of the plant including the laser, inertial fusion target factory, engine (i.e., the chamber including the fission and tritium breeding blankets), energy conversion systems and balance of plant. The LIFE plant model is being used to evaluate design trade-offs and to identify high-leverage R and D. At this point, we are focused more on doing self consistent design trades and optimization as opposed to trying to predict a cost of electricity with a high degree of certainty. Key results show the advantage of large scale (>1000 MWe) plants and the importance of minimizing the cost of diodes and balance of plant cost

  19. High temperature thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Wood, C.

    1986-01-01

    Considerable advances were made in the late '50's and early early '60's in the theory and development of materials for high-temperature thermoelectric energy conversion. This early work culminated in a variety of materials, spanning a range of temperatures, with the product of the figure of merit, Z, and temperature, T, i.e., the dimensionless figure of merit, ZT, of the order of one. This experimental limitation appeared to be universal and led a number of investigators to explore the possibility that a ZT - also represents a theoretical limitation. It was found not to be so

  20. High energy γ rays from 252Cf spontaneous fission

    Science.gov (United States)

    Hofman, D. J.; Back, B. B.; Montoya, C. P.; Schadmand, S.; Varma, R.; Paul, P.

    1993-03-01

    The spontaneous fission decay of 252Cf has been analyzed in a statistical model with emphasis on describing recently reported high energy γ-ray spectra. An enhanced γ emission in the range from 3 to 10 MeV which is observed for nearly symmetric mass splits is readily understood as a result of the different fragment excitation energies. The model includes a viscous motion to the scission point with the possibility of prescission γ emission. It was found that even with saddle-to-scission times of τscneutron multiplicities, prescission γ rays are overwhelmed by fragment γ rays. Thus, the recently reported strong angular anisotropy of γ rays in the range Eγ=8-12 MeV is unexplained within the present understanding of the fission process.

  1. Clean Fossil Energy Conversion Processes

    Science.gov (United States)

    Fan, L.-S.

    2007-03-01

    Absolute and per-capita energy consumption is bound to increase globally, leading to a projected increase in energy requirements of 50% by 2020. The primary source for providing a majority of the energy will continue to be fossil fuels. However, an array of enabling technologies needs to be proven for the realization of a zero emission power, fuel or chemical plants in the near future. Opportunities to develop new processes, driven by the regulatory requirements for the reduction or elimination of gaseous and particulate pollutant abound. This presentation describes the chemistry, reaction mechanisms, reactor design, system engineering, economics, and regulations that surround the utilization of clean coal energy. The presentation will cover the salient features of the fundamental and process aspects of the clean coal technologies in practice as well as in development. These technologies include those for the cleaning of SO2, H2S, NOx, and heavy metals, and separation of CO2 from the flue gas or the syngas. Further, new combustion and gasification processes based on the chemical looping concepts will be illustrated in the context of the looping particle design, process heat integration, energy conversion efficiency, and economics.

  2. Fission cross section and fission fragment angular distribution for oriented nucleus fission by intermediate energy neutrons (epsilon < or approximately 1 Mev)

    International Nuclear Information System (INIS)

    Barabanov, A.L.; Grechukhin, D.P.

    1985-01-01

    General analysis is conducted, and formulae for fission cross section and angular distribution of fission fragments of oriented nuclei by fast neutrons are presented. Geometrical coefficients making up the formulae permitting to carry out calculations for target nuclei with spins I=3/2, 5/2, 7/2 at interaction energies epsilon < or approximately 1 MeV are tabulated. Results of demonstrative calculation of fission fragment angular distribution of oriented sup(235)U nuclei by 0.1 <= epsilon <= 1.0 MeV neutrons reveal that angular distribution weakly depends on the set of permeability factors of neutron waves applied in the calculations

  3. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 2: Power from nuclear fission

    Science.gov (United States)

    Clement, J. D.

    1973-01-01

    Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.

  4. Biomass conversion processes for energy and fuels

    Science.gov (United States)

    Sofer, S. S.; Zaborsky, O. R.

    The book treats biomass sources, promising processes for the conversion of biomass into energy and fuels, and the technical and economic considerations in biomass conversion. Sources of biomass examined include crop residues and municipal, animal and industrial wastes, agricultural and forestry residues, aquatic biomass, marine biomass and silvicultural energy farms. Processes for biomass energy and fuel conversion by direct combustion (the Andco-Torrax system), thermochemical conversion (flash pyrolysis, carboxylolysis, pyrolysis, Purox process, gasification and syngas recycling) and biochemical conversion (anaerobic digestion, methanogenesis and ethanol fermentation) are discussed, and mass and energy balances are presented for each system.

  5. Conversion of light energy in algal culture

    NARCIS (Netherlands)

    Oorschot, van J.L.P.

    1955-01-01

    The conversion of light energy in algal culture was quantitatively studied under various growth conditions. Absorbed light energy during growth and energy fixed in organic material were estimated. The efficiency of the conversion was expressed as percentage of fixed energy (calculated from estimates

  6. Optimization theory for ballistic energy conversion

    NARCIS (Netherlands)

    Xie, Yanbo; Versluis, Michel; Van Den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    The growing demand of renewable energy stimulates the exploration of new materials and methods for clean energy. We recently demonstrated a high efficiency and power density energy conversion mechanism by using jetted charged microdroplets, termed as ballistic energy conversion. Hereby, we model and

  7. Characteristic relation for the mass and energy distribution of the nuclear fission products

    International Nuclear Information System (INIS)

    Alexandru, G.

    1977-01-01

    The dispersion relation for nuclear fission is written in the two part fragmentation approach which allows to obtain the characteristic relation for the mass and energy distribution of the nuclear fission products. One explains the resonance approximation in the mass distribution of the fission products taking into account the high order resonances too. (author)

  8. Tropospheric effects of energy conversion

    International Nuclear Information System (INIS)

    Derwent, R.G.

    1992-01-01

    The tropospheric concentrations of a number of trace gases are increasing due to man's activities. For some trace gases, their atmospheric life cycles are not fully understood and it is difficult to be certain about the role of man's activities. Emissions from the energy industries and energy conversion processes represent an important subset of source terms in these life cycles, along with agriculture, deforestation, cement manufacture, biomass burning, process industries and natural biospheric processes. Global Warming Potentials (GWPs) allow the tropospheric effects of a range of climate forcing trace gases to be assessed on a comparable basis. If a short term view of the commitment to global warming is adopted then the contribution from other trace gases may approach and exceed that of carbon dioxide, itself. Over longer time horizons, the long atmospheric lifetime of carbon dioxide shows through as a major influence and the contributions from the other trace gases appear to be much smaller, representing an additional 13-18% contribution on top of that from CO 2 itself

  9. The Power Makers' Challenge And the Need for Fission Energy

    CERN Document Server

    Nicholson, Martin

    2012-01-01

    The Power Makers - the producers of our electricity - must meet the demands of their customers while also addressing the threat of climate change. There are widely differing views about solutions to electricity generation in an emission constrained world. Some see the problem as relatively straight forward, requiring deep cuts in emissions now by improving energy efficiency, energy conservation and using only renewable resources. Many electricity industry engineers and scientists see the problem as being much more involved.   The Power Makers ’ Challenge: and the need for Fission Energy looks at why using only conventional renewable energy sources is not quite as simple as it seems. Following a general introduction to electricity and its distribution, the author quantifies the reductions needed in greenhouse gas emissions from the power sector in the face of ever increasing world demands for electricity. It provides some much needed background on the many energy sources available for producing electricity ...

  10. Theoretical model application to the evaluation of fission neutron data up to 20 MeV incidence energy

    International Nuclear Information System (INIS)

    Ruben, A.; Maerten, H.; Seeliger, D.

    1990-01-01

    A complex statistical theory of fission neutron emission combined with a phenomenological fission model has been used to calculate fission neutron data for 238 U. Obtained neutron multiplicities and energy spectra as well as average fragment energies for incidence energies from threshold to 20 MeV (including multiple-chance fission) are compared with traditional data representations. (author). 19 refs, 6 figs

  11. Proceedings of the Second Fusion-Fission Energy Systems Review Meeting

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-11-02

    The agenda of the meeting was developed to address, in turn, the following major areas: specific problem areas in nuclear energy systems for application of fusion-fission concepts; current and proposed fusion-fission programs in response to the identified problem areas; target costs and projected benefits associated with fusion-fission energy systems; and technical problems associated with the development of fusion-fission concepts. The greatest emphasis was placed on the characteristics of and problems, associated with fuel producing fusion-fission hybrid reactors.

  12. Fission Fragment Mass Distributions and Total Kinetic Energy Release of 235-Uranium and 238-Uranium in Neutron-Induced Fission at Intermediate and Fast Neutron Energies

    Energy Technology Data Exchange (ETDEWEB)

    Duke, Dana Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-12

    This Ph.D. dissertation describes a measurement of the change in mass distributions and average total kinetic energy (TKE) release with increasing incident neutron energy for fission of 235U and 238U. Although fission was discovered over seventy-five years ago, open questions remain about the physics of the fission process. The energy of the incident neutron, En, changes the division of energy release in the resulting fission fragments, however, the details of energy partitioning remain ambiguous because the nucleus is a many-body quantum system. Creating a full theoretical model is difficult and experimental data to validate existing models are lacking. Additional fission measurements will lead to higher-quality models of the fission process, therefore improving applications such as the development of next-generation nuclear reactors and defense. This work also paves the way for precision experiments such as the Time Projection Chamber (TPC) for fission cross section measurements and the Spectrometer for Ion Determination in Fission (SPIDER) for precision mass yields.

  13. Energy Conversion Alternatives Study (ECAS)

    Science.gov (United States)

    1977-01-01

    ECAS compared various advanced energy conversion systems that can use coal or coal-derived fuels for baseload electric power generation. It was conducted in two phases. Phase 1 consisted of parametric studies. From these results, 11 concepts were selected for further study in Phase 2. For each of the Phase 2 systems and a common set of ground rules, performance, cost, environmental intrusion, and natural resource requirements were estimated. In addition, the contractors defined the state of the associated technology, identified the advances required, prepared preliminary research and development plans, and assessed other factors that would affect the implementation of each type of powerplant. The systems studied in Phase 2 include steam systems with atmospheric- and pressurized-fluidized-bed boilers; combined cycle gas turbine/steam systems with integrated gasifiers or fired by a semiclean, coal derived fuel; a potassium/steam system with a pressurized-fluidized-bed boiler; a closed-cycle gas turbine/organic system with a high-temperature, atmospheric-fluidized-bed furnace; a direct-coal-fired, open- cycle magnetohydrodynamic/steam system; and a molten-carbonate fuel cell/steam system with an integrated gasifier. The sensitivity of the results to changes in the ground rules and the impact of uncertainties in capital cost estimates were also examined.

  14. Principles of energy conversion, second edition

    Energy Technology Data Exchange (ETDEWEB)

    Culp, A.W. Jr. (Missouri Univ., Rolla, MO (United States))

    1991-01-01

    This book is organized under the following headings: Energy classification, sources, utilization, economics and terminology; Principal fuels for energy conversion; Production of thermal energy; Fossil-fuel systems (such as steam generators, etc.); Nuclear reactor design and operation; The environmental impact of power plant operation; Production of mechanical energy; Production of electrical energy; and Energy storage.

  15. Energy conversion and management principles and applications

    CERN Document Server

    Petrecca, Giovanni

    2014-01-01

    This book provides an overall view of energy conversion and management in industry and in buildings by following the streams of energy from the site boundaries to the end users. Written for an audience of both practitioners and faculty/students, Energy Conversion and Management: Principles and Applications presents general principles of energy conversion and energy sources, both traditional and renewable, in a broad range of facilities such as electrical substations, boiler plants, heat and power plants, electrical networks, thermal fluid distributions lines and insulations, pumps and fans, ai

  16. Advances in wind energy conversion technology

    CERN Document Server

    Sathyajith, Mathew

    2011-01-01

    The technology of generating energy from wind has significantly changed during the past five years. The book brings together all the latest aspects of wind energy conversion technology - from wind resource analysis to grid integration of generated electricity.

  17. Research into liquid metal MHD energy conversion

    International Nuclear Information System (INIS)

    Bayer, Z.

    1973-01-01

    The state of research into liquid metal MHD conversion and the problems arising from the processes taking place in the liquid metal-gas mixture are described. The possibilities are pointed out of improving multi-stage heat regeneration MHD systems. The expansion of the number of mixing stages contributes to higher energy conversion efficiency up to a certain driving energy. The relations are presented determining optimal conditions and a calculation method derived for finding the optimal energy distribution and the resulting energy conversion efficiency at any number of stages. (Oy)

  18. Economic implications of fusion-fission energy systems

    International Nuclear Information System (INIS)

    Deonigi, D.E.; Schulte, S.C.

    1979-04-01

    The principal conclusions that can be made based on the estimated costs reported in this paper are twofold. First, hybrid reactors operating symbiotically with conventional fission reactors are a potentially attractive supply alternative. Estimated hybrid energy system costs are slightly greater than estimated costs of the most attractive alternatives. However, given the technological, economic, and institutional uncertainties associated with future energy supply, differences of such magnitude are of little significance. Second, to be economically viable, hybrid reactors must be both fuel producers and electricity producers. A data point representing each hybrid reactor driver-blanket concept is plotted as a function of net electrical production efficiency and annual fuel production. The plots illustrate that the most economically viable reactor concepts are those that produce both fuel and electricity

  19. Sustainable, Full-Scope Nuclear Fission Energy at Planetary Scale

    Directory of Open Access Journals (Sweden)

    Robert Petroski

    2012-11-01

    Full Text Available A nuclear fission-based energy system is described that is capable of supplying the energy needs of all of human civilization for a full range of human energy use scenarios, including both very high rates of energy use and strikingly-large amounts of total energy-utilized. To achieve such “planetary scale sustainability”, this nuclear energy system integrates three nascent technologies: uranium extraction from seawater, manifestly safe breeder reactors, and deep borehole disposal of nuclear waste. In addition to these technological components, it also possesses the sociopolitical quality of manifest safety, which involves engineering to a very high degree of safety in a straightforward manner, while concurrently making the safety characteristics of the resulting nuclear systems continually manifest to society as a whole. Near-term aspects of this nuclear system are outlined, and representative parameters given for a system of global scale capable of supplying energy to a planetary population of 10 billion people at a per capita level enjoyed by contemporary Americans, i.e., of a type which might be seen a half-century hence. In addition to being sustainable from a resource standpoint, the described nuclear system is also sustainable with respect to environmental and human health impacts, including those resulting from severe accidents.

  20. Materials in energy conversion, harvesting, and storage

    CERN Document Server

    Lu, Kathy

    2014-01-01

    First authored book to address materials' role in the quest for the next generation of energy materials Energy balance, efficiency, sustainability, and so on, are some of many facets of energy challenges covered in current research. However, there has not been a monograph that directly covers a spectrum of materials issues in the context of energy conversion, harvesting and storage. Addressing one of the most pressing problems of our time, Materials in Energy Conversion, Harvesting, and Storage illuminates the roles and performance requirements of materials in energy an

  1. Energy dissipation in the process of ternary fission in heavy nuclear reaction

    International Nuclear Information System (INIS)

    Li Xian; Wang Chengqian; Yan Shiwei

    2015-01-01

    We studied the evolution of the collective motion, interaction potential, the total kinetic and excitation energies in ternary fissions of 197 Au + 197 Au system at 15 MeV/u, and discussed energy dissipation of this reaction. Through the comparison with energy-angle correlation data in binary fissions, we preliminarily concluded that the rst fission of ternary fission was an extreme deep-inelastic process. We further analyzed the correlation of the total kinetic energy with impact parameters in both binary and ternary reactions, and found that the total energy of binary reactions systems was lost about 150 MeV more than ternary fission with small impact parameters, and with larger impact parameters the total energy of ternary reactions were lost 300 MeV more than binary reactions. (authors)

  2. Fission cross section calculations for 209Bi target nucleus based on fission reaction models in high energy regions

    Directory of Open Access Journals (Sweden)

    Kaplan Abdullah

    2015-01-01

    Full Text Available Implementation of projects of new generation nuclear power plants requires the solving of material science and technological issues in developing of reactor materials. Melts of heavy metals (Pb, Bi and Pb-Bi due to their nuclear and thermophysical properties, are the candidate coolants for fast reactors and accelerator-driven systems (ADS. In this study, α, γ, p, n and 3He induced fission cross section calculations for 209Bi target nucleus at high-energy regions for (α,f, (γ,f, (p,f, (n,f and (3He,f reactions have been investigated using different fission reaction models. Mamdouh Table, Sierk, Rotating Liquid Drop and Fission Path models of theoretical fission barriers of TALYS 1.6 code have been used for the fission cross section calculations. The calculated results have been compared with the experimental data taken from the EXFOR database. TALYS 1.6 Sierk model calculations exhibit generally good agreement with the experimental measurements for all reactions used in this study.

  3. Simultaneous measurement of neutron-induced fission and capture cross sections for 241Am at neutron energies below fission threshold

    Science.gov (United States)

    Hirose, K.; Nishio, K.; Makii, H.; Nishinaka, I.; Ota, S.; Nagayama, T.; Tamura, N.; Goto, S.; Andreyev, A. N.; Vermeulen, M. J.; Gillespie, S.; Barton, C.; Kimura, A.; Harada, H.; Meigo, S.; Chiba, S.; Ohtsuki, T.

    2017-06-01

    Fission and capture reactions were simultaneously measured in the neutron-induced reactions of 241Am at the spallation neutron facility of the Japan Proton Accelerator Research Complex (J-PARC). Data for the neutron energy range of En=0.1-20 eV were taken with the TOF method. The fission events were observed by detecting prompt neutrons accompanied by fission using liquid organic scintillators. The capture reaction was measured by detecting γ rays emitted in the deexcitation of the compound nuclei using the same detectors, where the prompt fission neutrons and capture γ rays were separated by a pulse shape analysis. The cross sections were obtained by normalizing the relative yields at the first resonance to evaluations or other experimental data. The ratio of the fission to capture cross sections at each resonance is compared with those from an evaluated nuclear data library and other experimental data. Some differences were found between the present values and the library/literature values at several resonances.

  4. Energy Conversion & Storage Program, 1993 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1994-06-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  5. Energy conversion & storage program. 1994 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1995-04-01

    The Energy Conversion and Storage Program investigates state-of-the-art electrochemistry, chemistry, and materials science technologies for: (1) development of high-performance rechargeable batteries and fuel cells; (2) development of high-efficiency thermochemical processes for energy conversion; (3) characterization of complex chemical processes and chemical species; (4) study and application of novel materials for energy conversion and transmission. Research projects focus on transport process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  6. Dependence of Fission-Fragment Properties On Excitation Energy For Neutron-Rich Actinides

    Directory of Open Access Journals (Sweden)

    Ramos D.

    2016-01-01

    Isotopic fission yields of 250Cf, 244Cm, 240Pu, 239Np and 238U are presented in this work. With this information, the average number of neutrons as a function of the atomic number of the fragments is calculated, which reflects the impact of nuclear structure around Z=50, N=80 on the production of fission fragments. The characteristics of the Super Long, Standard I, Standard II, and Standard III fission channels were extracted from fits of the fragment yields for different ranges of excitation energy. The position and contribution of the fission channels as function of excitation energy are presented.

  7. NASA-OAST photovoltaic energy conversion program

    Science.gov (United States)

    Mullin, J. P.; Loria, J. C.

    1984-01-01

    The NASA program in photovoltaic energy conversion research is discussed. Solar cells, solar arrays, gallium arsenides, space station and spacecraft power supplies, and state of the art devices are discussed.

  8. Wind Energy Conversion Systems Technology and Trends

    CERN Document Server

    2012-01-01

    Wind Energy Conversion System covers the technological progress of wind energy conversion systems, along with potential future trends. It includes recently developed wind energy conversion systems such as multi-converter operation of variable-speed wind generators, lightning protection schemes, voltage flicker mitigation and prediction schemes for advanced control of wind generators. Modeling and control strategies of variable speed wind generators are discussed, together with the frequency converter topologies suitable for grid integration. Wind Energy Conversion System also describes offshore farm technologies including multi-terminal topology and space-based wind observation schemes, as well as both AC and DC based wind farm topologies. The stability and reliability of wind farms are discussed, and grid integration issues are examined in the context of the most recent industry guidelines. Wind power smoothing, one of the big challenges for transmission system operators, is a particular focus. Fault ride th...

  9. Compact Energy Conversion Module, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR project delivers a compact vibration-based Energy Conversion Module (ECM) that powers sensors for purposes such as structural health monitoring (SHM). NASA...

  10. Compact energy conversion module, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR project delivers a compact vibration-based Energy Conversion Module (ECM) that powers sensors for purposes like structural health monitoring (SHM). NASA...

  11. Theoretical efficiency limits for energy conversion devices

    International Nuclear Information System (INIS)

    Cullen, Jonathan M.; Allwood, Julian M.

    2010-01-01

    Using energy more efficiently is a key strategy for reducing global carbon dioxide emissions. Due to limitations on time and resources, actions must be focused on the efficiency measures which will deliver the largest gains. Current surveys of energy efficiency measures assess only known technology options developed in response to current economic and technical drivers. However, this ignores opportunities to deliver long-term efficiency gains from yet to be discovered options. In response, this paper aims to calculate the absolute potential for reducing energy demand by improving efficiency, by finding the efficiency limits for individual conversion devices and overlaying these onto the global network of energy flow. The potential efficiency gains for each conversion device are found by contrasting current energy demand with theoretical minimum energy requirements. Further insight is gained by categorising conversion losses according to the underlying loss mechanisms. The result estimates the overall efficiency of global energy conversion to be only 11 per cent; global demand for energy could be reduced by almost 90 per cent if all energy conversion devices were operated at their theoretical maximum efficiency.

  12. Fission energy program of the U. S. Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-01

    The document describes programs managed by the Program Director for Nuclear Energy, Department of Energy, and under the cognizance of the Committee on Science and Technology, United States House of Representatives. The major portion of the document is concerned with civilian nuclear power development, the policy for which has been established by the National Energy Plan of April 1977, but it also includes descriptions of the space applications and naval reactor programs.

  13. Urban energy conversion and its effects

    International Nuclear Information System (INIS)

    Geiger, B.

    1981-01-01

    The extent to which the building up and energy conversion affect the quality and energy economy of living space is shown by the example of Munich. The comparison of the energy economy of various ecological systems give qualified information for assessing the thermal loading in densely inhabited areas and show the basic differences between built-up and country areas. (DG) [de

  14. Fission-product energy release for times following thermal-neutron fission of 235U between 2 and 14000 seconds

    International Nuclear Information System (INIS)

    Dickens, J.K.; Emery, J.F.; Love, T.A.; McConnell, J.W.; Northcutt, K.J.; Peelle, R.W.; Weaver, H.

    1977-10-01

    Fission-product decay energy-releases rates were measured for thermal-neutron fission of 235 U. Samples of mass 1 to 10 μg were irradiated for 1 to 100 sec by use of the fast pneumatic-tube facility at the Oak Ridge Research Reactor. The resulting beta- and gamma-ray emissions were counted for times-after-fission between 2 and 14,000 seconds. The data were obtained for beta and gamma rays separately as spectral distributions, N(E/sub γ/) vs E/sub γ/ and N(E/sub beta/) vs E/sub β/. For the gamma-ray data the spectra were obtained by using a NaI detector, while for the beta-ray data the spectra were obtained by using an NE-110 detector with an anticoincidence mantle. The raw data were unfolded to provide spectral distributions of modest resolution. These were integrated over E/sub γ/ and E/sub β/ to provide total yield and energy integrals as a function of time after fission. Results are low compared to the present 1973 ANS Decay-heat standard. A complete description of the experimental apparatus and data-reduction techniques is presented. The final integral data are given in tabular and graphical form and are compared with published data. 41 figures, 13 tables

  15. Closed Brayton Cycle Power Conversion Unit for Fission Surface Power Phase I Final Report

    Science.gov (United States)

    Fuller, Robert L.

    2010-01-01

    A Closed Brayton cycle power conversion system has been developed to support the NASA fission surface power program. The goal is to provide electricity from a small nuclear reactor heat source for surface power production for lunar and Mars environments. The selected media for a heat source is NaK 78 with water as a cooling source. The closed Brayton cycle power was selected to be 12 kWe output from the generator terminals. A heat source NaK temperature of 850 K plus or minus 25 K was selected. The cold source water was selected at 375 K plus or minus 25 K. A vacuum radiation environment of 200 K is specified for environmental operation. The major components of the system are the power converter, the power controller, and the top level data acquisition and control unit. The power converter with associated sensors resides in the vacuum radiation environment. The power controller and data acquisition system reside in an ambient laboratory environment. Signals and power are supplied across the pressure boundary electrically with hermetic connectors installed on the vacuum vessel. System level analyses were performed on working fluids, cycle design parameters, heater and cooling temperatures, and heat exchanger options that best meet the needs of the power converter specification. The goal is to provide a cost effective system that has high thermal-to-electric efficiency in a compact, lightweight package.

  16. Efficient conversion of 11-deoxycortisol to cortisol (hydrocortisone) by recombinant fission yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Drăgan, Călin-Aurel; Zearo, Silvia; Hannemann, Frank; Bernhardt, Rita; Bureik, Matthias

    2005-04-01

    Genetically engineered microorganisms are being increasingly used for the industrial production of complicated chemical compounds such as steroids; however, there have been few reports on the use of the fission yeast Schizosaccharomyces pombe for this purpose. We previously have demonstrated that this yeast is a unique host for recombinant expression of human CYP11B2 (aldosterone synthase), and here we report the functional production of human CYP11B1 (steroid 11beta-hydroxylase) in S. pombe using our new integration vector pCAD1. In the human adrenal, the mitochondrial cytochrome P450 enzyme CYP11B1 catalyses the conversion of 11-deoxycortisol to cortisol, a key reaction in cortisol biosynthesis that in addition is of fundamental interest for the technical synthesis of glucocorticoids. We observed that the endogenous mitochondrial electron transport system detected previously by us is capable of supplying this enzyme with the reducing equivalents necessary for steroid hydroxylation activity. Under optimised cultivation conditions the transformed yeasts show in vivo the inducible ability to efficiently and reliably convert deoxycortisol to cortisol at an average rate of 201 microM d(-1) over a period of 72h, the highest value published to date for this biotransformation.

  17. Synergistic energy conversion process using nuclear energy and fossil fuels

    International Nuclear Information System (INIS)

    Hori, Masao

    2007-01-01

    Because primary energies such as fossil fuels, nuclear energy and renewable energy are limited in quantity of supply, it is necessary to use available energies effectively for the increase of energy demand that is inevitable this century while keeping environment in good condition. For this purpose, an efficient synergistic energy conversion process using nuclear energy and fossil fuels together converted to energy carriers such are electricity, hydrogen, and synthetic fuels seems to be effective. Synergistic energy conversion processes containing nuclear energy were surveyed and effects of these processes on resource saving and the CO 2 emission reduction were discussed. (T.T.)

  18. Wind energy conversion 1994. Proceedings

    International Nuclear Information System (INIS)

    Elliot, G.

    1995-01-01

    At the British Wind Energy Association's 16th Annual Conference, held in Stirling, over 60 high quality papers were presented, including a session devoted to 'Wind Energy in Scotland'. Under the Non Fossil Fuel Obligation (NFFO) wind energy has experienced rapid growth in England and Wales and with Scotland now having its own 'Scottish Renewables Obligation' (SRO) the opportunity to tap one of Europe's most important renewable energy resources now exists. The main contemporary issues concerning wind farming today, namely technical, social, economic and environmental were examined in the Geoff Pontin Memorial Lecture, which focused on these aspects in the context of grid integrated wind energy development. The remaining conference themes included machine development, aerodynamics and control, small machines, fatigue and dynamics, public attitudes, noise emissions, electrical integration, resource measurement, and standards, safety and planning. (author)

  19. Energy conversion efficiency in nanotube optoelectronics.

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Francois Leonard; Stewart, Derek A.

    2004-09-01

    We present theoretical performance estimates for nanotube optoelectronic devices under bias. Current-voltage characteristics of illuminated nanotube p-n junctions are calculated using a self-consistent nonequilibrium Green's function approach. Energy conversion rates reaching tens of percent are predicted for incident photon energies near the band gap energy. In addition, the energy conversion rate increases as the diameter of the nanotube is reduced, even though the quantum efficiency shows little dependence on nanotube radius. These results indicate that the quantum efficiency is not a limiting factor for use of nanotubes in optoelectronics.

  20. Sequential character of low-energy ternary and quaternary nuclear fission

    Science.gov (United States)

    Kadmensky, S. G.; Bulychev, A. O.

    2016-09-01

    An analysis of low-energy true ternary (quaternary) nuclear fission leads to the conclusion that these fission modes have a sequential two-step (three-step) character such that the emission of a third particle (third and fourth particles) and the separation of fission fragments occur at distinctly different instants, in contrast to the simultaneous emergence of all fission products in the case of onestep ternary (quaternary) fission. This conclusion relies on the following arguments. First, the emission of a third particle (third and fourth particles) from a fissile nucleus is due to a nonevaporative mechanism associated with a nonadiabatic character of the collective deformation motion of this nucleus at the stages preceding its scission. Second, the axial symmetry of the deformed fissile compound nucleus and the direction of its symmetry axis both remain unchanged at all stages of ternary (quaternary) fission. This circumstancemakes it possible to explain themechanism of the appearance of observed anisotropies and T — odd asymmeries in the angular distributions of products of ternary (quaternary) nuclear fission. Third, the T —odd asymmetry discovered experimentally in ternary nuclear fission induced by cold polarized neutrons obeys the T —invariance condition only in the case of a sequential two-step (three-step) character of true ternary (quaternary) nuclear fission. At the same time, this asymmetry is not a T —invariant quantity in the case of the simultaneous emission of products of true ternary (quaternary) nuclear fission from the fissile compound nucleus.

  1. Sustainable and safe nuclear fission energy technology and safety of fast and thermal nuclear reactors

    CERN Document Server

    Kessler, Günter

    2012-01-01

    Unlike existing books of nuclear reactor physics, nuclear engineering and nuclear chemical engineering this book covers a complete description and evaluation of nuclear fission power generation. It covers the whole nuclear fuel cycle, from the extraction of natural uranium from ore mines, uranium conversion and enrichment up to the fabrication of fuel elements for the cores of various types of fission reactors. This is followed by the description of the different fuel cycle options and the final storage in nuclear waste repositories. In addition the release of radioactivity under normal and possible accidental conditions is given for all parts of the nuclear fuel cycle and especially for the different fission reactor types.

  2. Fission energy program of the U.S. Department of Energy. FY 1980

    International Nuclear Information System (INIS)

    1979-04-01

    This document presents the baseline implementation program plan as of January 1979 and is derived from the National Energy Plan and other major policy documents. The document discusses civilian nuclear power development, the policy for which has been established by the National Energy Plan of April 1977 and the National Energy Act of 1978. It derives the fission energy policy and program objectives from the National Energy Plan and Act, describes the overall program strategy, and presents the overall budget. The approach used in managing the program, including the program structure and methods used for program control, is explained. The civilian fission power development implementation programs are described in detail. Other considerations affecting civilian nuclear power development are also discussed

  3. Energy production, conversion, storage, conservation, and coupling

    CERN Document Server

    Demirel, Yaşar

    2012-01-01

    Understanding the sustainable use of energy in various processes is an integral part of engineering and scientific studies, which rely on a sound knowledge of energy systems. Whilst many institutions now offer degrees in energy-related programs, a comprehensive textbook, which introduces and explains sustainable energy systems and can be used across engineering and scientific fields, has been lacking. Energy: Production, Conversion, Storage, Conservation, and Coupling provides the reader with a practical understanding of these five main topic areas of energy including 130 examples and over 600 practice problems. Each chapter contains a range of supporting figures, tables, thermodynamic diagrams and charts, while the Appendix supplies the reader with all the necessary data including the steam tables. This new textbook presents a clear introduction of basic vocabulary, properties, forms, sources, and balances of energy before advancing to the main topic areas of: • Energy production and conversion in importa...

  4. The Generalized Conversion Factor in Einstein's Mass-Energy Equation

    Directory of Open Access Journals (Sweden)

    Ajay Sharma

    2008-07-01

    Full Text Available Einstein's September 1905 paper is origin of light energy-mass inter conversion equation ($L = Delta mc^{2}$ and Einstein speculated $E = Delta mc^{2}$ from it by simply replacing $L$ by $E$. From its critical analysis it follows that $L = Delta mc^{2}$ is only true under special or ideal conditions. Under general cases the result is $L propto Delta mc^{2}$ ($E propto Delta mc^{2}$. Consequently an alternate equation $Delta E = A ub c^{2}Delta M$ has been suggested, which implies that energy emitted on annihilation of mass can be equal, less and more than predicted by $Delta E = Delta mc^{2}$. The total kinetic energy of fission fragments of U-235 or Pu-239 is found experimentally 20-60 MeV less than Q-value predicted by $Delta mc^{2}$. The mass of particle Ds (2317 discovered at SLAC, is more than current estimates. In many reactions including chemical reactions $E = Delta mc^{2}$ is not confirmed yet, but regarded as true. It implies the conversion factor than $c^{2}$ is possible. These phenomena can be explained with help of generalized mass-energy equation $Delta E = A ub c^{2}Delta M$.

  5. Electrochemistry of Nanocomposite Materials for Energy Conversion

    OpenAIRE

    Boni, Alessandro

    2016-01-01

    Energy is the most relevant technological issue that the world experiences today, and the development of efficient technologies able to store and convert energy in different forms is urgently needed. The storage of electrical energy is of major importance and electrochemical processes are particularly suited for the demanding task of an efficient inter-conversion. A potential strategy is to store electricity into the chemical bonds of electrogenerated fuels, like hydrogen and/or energy-den...

  6. Fission fragment yields and total kinetic energy release in neutron-induced fission of235,238U,and239Pu

    Science.gov (United States)

    Tovesson, F.; Duke, D.; Geppert-Kleinrath, V.; Manning, B.; Mayorov, D.; Mosby, S.; Schmitt, K.

    2018-03-01

    Different aspects of the nuclear fission process have been studied at Los Alamos Neutron Science Center (LANSCE) using various instruments and experimental techniques. Properties of the fragments emitted in fission have been investigated using Frisch-grid ionization chambers, a Time Projection Chamber (TPC), and the SPIDER instrument which employs the 2v-2E method. These instruments and experimental techniques have been used to determine fission product mass yields, the energy dependent total kinetic energy (TKE) release, and anisotropy in neutron-induced fission of U-235, U-238 and Pu-239.

  7. Energy technology sources, systems and frontier conversion

    CERN Document Server

    Ohta, Tokio

    1994-01-01

    This book provides a concise and technical overview of energy technology: the sources of energy, energy systems and frontier conversion. As well as serving as a basic reference book for professional scientists and students of energy, it is intended for scientists and policy makers in other disciplines (including practising engineers, biologists, physicists, economists and managers in energy related industries) who need an up-to-date and authoritative guide to the field of energy technology.Energy systems and their elemental technologies are introduced and evaluated from the view point

  8. HYDROKINETIC ENERGY CONVERSION SYSTEMS: PROSPECTS ...

    African Journals Online (AJOL)

    eobe

    hydro-to-electric power system, which is being strongly recognized as a unique and unconventional renewable ... energy from the velocity of flowing water to drive a generator. It can also be defined it as low pressure ... technology for the generation of electric power for rural/off grid areas and for augmenting the production of ...

  9. The fusion-fission and quasi-fission processes in the reaction {sup 48}Ca + {sup 208}Pb at energies near the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Prokhorova, E.V. [Flerov Laboratory of Nuclear Reaction, Joint Institute for Nuclear Research, 141980 Dubna, Moscow region (Russian Federation)], E-mail: elena.prokhorova@jinr.ru; Bogachev, A.A.; Itkis, M.G.; Itkis, I.M.; Knyazheva, G.N.; Kondratiev, N.A.; Kozulin, E.M.; Krupa, L.; Oganessian, Yu.Ts.; Pokrovsky, I.V. [Flerov Laboratory of Nuclear Reaction, Joint Institute for Nuclear Research, 141980 Dubna, Moscow region (Russian Federation); Pashkevich, V.V. [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow region (Russian Federation); Rusanov, A.Ya. [Institute of Nuclear Physics of the National Nuclear Center of Kazakhstan, 480082 Alma-Ata (Kazakhstan)

    2008-04-01

    Mass-energy distributions (MEDs) and capture-fission cross sections have been measured in the reaction {sup 48}Ca + {sup 208}Pb {yields}{sup 256}No at the energies E{sub lab}=206-242 MeV using a double-arm time-of-flight spectrometer CORSET. It has been observed that MED of the fragments consists of two parts, namely, the classical fusion-fission process corresponding to the symmetric fission of {sup 256}No and quasi-fission 'shoulders' corresponding to the light fragment masses {approx}60-90 u and complimentary heavy fragment masses. The quasi-fission 'shoulders' have a higher total kinetic energy (TKE) as compared with that expected for the classical fission. A mathematical formalism was employed for the MEDs fragment decomposition into fusion-fission and quasi-fission components. In the fusion-fission process a high-energy Super-Short mode has been discovered for the masses M{sub H}=130-135 u and the TKE of {approx}233 MeV.

  10. Synchronous generator wind energy conversion control system

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, A.L.R. [Wind Energy Group, Recife (Brazil); Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J. [DEE, Campina Grande (Brazil)

    1996-12-31

    This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.

  11. Polymers for energy storage and conversion

    CERN Document Server

    Mittal, Vikas

    2013-01-01

    One of the first comprehensive books to focus on the role of polymers in the burgeoning energy materials market Polymers are increasingly finding applications in the areas of energy storage and conversion. A number of recent advances in the control of the polymer molecular structure which allows the polymer properties to be more finely tuned have led to these advances and new applications. Polymers for Energy Storage and Conversion assimilates these advances in the form of a comprehensive text that includes the synthesis and properties of a large number of polymer systems for

  12. Energy Conversion: Nano Solar Cell

    Science.gov (United States)

    Yahaya, Muhammad; Yap, Chi Chin; Mat Salleh, Muhamad

    2009-09-01

    Problems of fossil-fuel-induced climate change have sparked a demand for sustainable energy supply for all sectors of economy. Most laboratories continue to search for new materials and new technique to generate clean energy at affordable cost. Nanotechnology can play a major role in solving the energy problem. The prospect for solar energy using Si-based technology is not encouraging. Si photovoltaics can produce electricity at 20-30 c//kWhr with about 25% efficiency. Nanoparticles have a strong capacity to absorb light and generate more electrons for current as discovered in the recent work of organic and dye-sensitized cell. Using cheap preparation technique such as screen-printing and self-assembly growth, organic cells shows a strong potential for commercialization. Thin Films research group at National University Malaysia has been actively involved in these areas, and in this seminar, we will present a review works on nanomaterials for solar cells and particularly on hybrid organic solar cell based on ZnO nanorod arrays. The organic layer consisting of poly[2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEHPPV) and [6, 6]-phenyl C61-butyric acid 3-ethylthiophene ester (PCBE) was spin-coated on ZnO nanorod arrays. ZnO nanorod arrays were grown on FTO glass substrates which were pre-coated with ZnO nanoparticles using a low temperature chemical solution method. A gold electrode was used as the top contact. The device gave a short circuit current density of 2.49×10-4 mA/cm2 and an open circuit voltage of 0.45 V under illumination of a projector halogen light at 100 mW/cm2.

  13. Inverse kinematics technique for the study of fission-fragment isotopic yields at GANIL energies

    International Nuclear Information System (INIS)

    Delaune, O.

    2012-01-01

    The characteristics of the fission-products distributions result of dynamical and quantum properties of the deformation process of the fissioning nucleus. These distributions have also an interest for the conception of new nuclear power plants or for the transmutation of the nuclear wastes. Up to now, our understanding of the nuclear fission remains restricted because of experimental limitations. In particular, yields of the heavy fission products are difficult to get with precision. In this work, an innovative experimental technique is presented. It is based on the use of inverse kinematics coupled to the use of a spectrometer, in which a 238 U beam at 6 or 24 A MeV impinges on light targets. Several actinides, from 238 U to 250 Cf, are produced by transfer or fusion reactions, with an excitation energy ranges from ten to few hundreds MeV depending on the reaction and the beam energy. The fission fragments of these actinides are detected by the VAMOS spectrometer or the LISE separator. The isotopic yields of fission products are completely measured for different fissioning systems. The neutron excess of the fragments is used to characterise the isotopic distributions. Its evolution with excitation energy gives important insights on the mechanisms of the compound-nucleus formation and its deexcitation. Neutron excess is also used to determine the multiplicity of neutrons evaporated by the fragments. The role of the proton and neutron shell effects into the formation of fission fragments is also discussed. (author) [fr

  14. US energy conversion and use characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Imhoff, C.H.; Liberman, A.; Ashton, W.B.

    1982-02-01

    The long-range goal of the Energy Conversion and Utilization Technology (ECUT) Program is to enhance energy productivity in all energy-use sectors by supporting research on improved efficiency and fuel switching capability in the conversion and utilization of energy. Regardless of the deficiencies of current information, a summary of the best available energy-use information is needed now to support current ECUT program planning. This document is the initial draft of this type of summary and serves as a data book that will present current and periodically updated descriptions of the following aspects of energy use: gross US energy consumption in each major energy-use sector; energy consumption by fuel type in each sector; energy efficiency of major equipment/processes; and inventories, replacement rates, and use patterns for major energy-using capital stocks. These data will help the ECUT program staff perform two vital planning functions: determine areas in which research to improve energy productivity might provide significant energy savings or fuel switching and estimate the actual effect that specific research projects may have on energy productivity and conservation. Descriptions of the data sources and examples of the uses of the different types of data are provided in Section 2. The energy-use information is presented in the last four sections; Section 3 contains general, national consumption data; and Sections 4 through 6 contain residential/commercial, industrial, and transportation consumption data, respectively. (MCW)

  15. Chemistry of energy conversion and storage.

    Science.gov (United States)

    Su, Dang Sheng

    2012-03-12

    Energy is a big issue in our society, fueled by growing awareness of the finite resources of liquid fossil fuels and the noticeable changes in our climate resulting from its consumption. The general consensus is that there should be a well-considered roadmap towards a future energy scenario, with the replacement of fossil energy by renewable energies as the final goal. This "Chemistry of Energy Conversion and Storage" issue contains papers dealing with the chemistry behind renewable energies. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Frontiers of Energy Storage and Conversion

    Directory of Open Access Journals (Sweden)

    Jiajun Chen

    2014-09-01

    Full Text Available This special issue of Inorganics features a Forum for novel materials and approaches for electrochemical energy storage and conversion. Diminishing non-renewable fossil fuels and the resulting unattainability of environment have made us search new sustainable energy resources and develop technology for efficient utilization of such resources. Green energy sources, such as solar, hydroelectric, thermal and wind energy are partially replacing fossil fuels as means to generate power. Inorganic (solid state materials are key in the development of advanced devices for the efficient storage and conversion of energy. The grand challenge facing the inorganic chemist is to discover, design rationally and utilize advanced technological materials made from earth-abound elements for these energy storage and conversion processes. Recent spectacular progress in inorganic materials synthesis, characterization, and computational screening has greatly advanced this field, which drove us to edit this issue to provide a window to view the development of this field for the community. This special issue comprises research articles, which highlights some of the most recent advances in new materials for energy storage and conversion. [...

  17. Photon and proton induced fission on heavy nuclei at intermediate energies

    Directory of Open Access Journals (Sweden)

    Andrade-II E.

    2014-04-01

    Full Text Available We present an analysis of fission induced by intermediate energy protons or photons on actinides. The 660 MeV proton induced reactions are on 241Am, 238U, and 237Np targets and the Bremmstrahlung-photons with end-point energies at 50 MeV and 3500 MeV are on 232Th and 238U targets. The study was performed by means of the Monte Carlo simulation code CRISP. A multimodal fission extension was added to the code within an approach which accounts for the contribution of symmetric and asymmetric fission. This procedure allowed the investigation of fission cross sections, fissility, number of evaporated nucleons and fission-fragment charge distributions. The comparison with experimental data show a good agreement between calculations and experiments.

  18. Energy conversion & storage program. 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1996-06-01

    The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

  19. Energy Conversion in Protocells with Natural Nanoconductors

    Directory of Open Access Journals (Sweden)

    Jian Xu

    2012-01-01

    Full Text Available While much nanotechnology leverages solid-state devices, here we present the analysis of designs for hybrid organic-inorganic biomimetic devices, “protocells,” based on assemblies of natural ion channels and ion pumps, “nanoconductors,” incorporated into synthetic supported lipid bilayer membranes. These protocells mimic the energy conversion scheme of natural cells and are able to directly output electricity. The electrogenic mechanisms have been analyzed and designs were optimized using numerical models. The parameters that affect the energy conversion are quantified, and limits for device performance have been found using numerical optimization. The electrogenic performance is compared to conventional and emerging technologies and plotted on Ragone charts to allow direct comparisons. The protocell technologies summarized here may be of use for energy conversion where large-scale ion concentration gradients are available (such as the intersection of fresh and salt water sources or small-scale devices where low power density would be acceptable.

  20. Surface Plasmon-Assisted Solar Energy Conversion.

    Science.gov (United States)

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.

  1. Nuclear energy: fusion and fission - From the atomic nucleus to energy

    International Nuclear Information System (INIS)

    2002-09-01

    Matter is made up of atoms. In 1912, the English physicist Ernest Rutherford (who had shown that the atom had a nucleus), and the Danish physicist Niels Bohr developed a model in which the atom was made up of a positively charged nucleus surrounded by a cloud of electrons. In 1913, Rutherford discovered the proton, and in 1932, the English physicist Chadwick discovered the neutron. In 1938, Hahn and Strassmann discovered spontaneous fission and the French physicist Frederic Joliot-Curie, assisted by Lew Kowarski and Hans Von Halban, showed in 1939 that splitting uranium nuclei caused an intense release of heat. The discovery of the chain reaction would enable the exploitation of nuclear energy. 'It was the Second World War leaders who, by encouraging research for military purposes, contributed to the development of nuclear energy'. During the Second World War, from 1939 to 1945, studies of fission continued in the United States, with the participation of emigre physicists. The Manhattan project was launched, the aim of which was to provide the country with a nuclear weapon (used at Hiroshima and Nagasaki in 1945). After the war ended, research into energy production by the nuclear fission reaction continued for civil purposes. CEA (the French Atomic Energy Commission) was set up in France in 1945 under the impetus of General de Gaulle. This public research body is responsible for giving France mastery of the atom in the research, health, energy, industrial, safety and defense sectors. (authors)

  2. Thermal Energy Conversion in Nanofluids

    Science.gov (United States)

    Taylor, Robert

    2011-12-01

    A relatively simple subset of nanotechnology---nanofluids---can be obtained by adding nanoparticles to conventional base fluids. The promise of these fluids stems from the fact that relatively low particle loadings (typically surface-based absorption. Depending on the particle material, size, shape, and volume fraction, a fluid can be changed from being mostly transparent to sunlight (in the case of water, alcohols, oils, and glycols) to being a very efficient volumetric absorber of sunlight. This research also visualizes, under high levels of irradiation, how nanofluids undergo interesting, localized phase change phenomena. For this, images were taken of bubble formation and boiling in aqueous nanofluids heated by a hot wire and by a laser. Infrared thermography was also used to quantify this phenomenon. Overall, though, this research reveals the possibility for novel solar collectors in which the working fluid directly absorbs light energy and undergoes phase change in a single step. Modeling results indicate that these improvements can increase a solar thermal receiver's efficiency by up to 10%.

  3. Fullerene assemblies toward photo-energy conversions.

    Science.gov (United States)

    Shen, Yanfei; Nakanishi, Takashi

    2014-04-28

    Manipulating molecular interaction and assembly for developing various functional nanostructures with controlled dimensionality, morphology and tailored properties is currently a research focus in molecular science and materials chemistry. Particularly, the self-organization of fullerenes (i.e. C60) to form various functional assemblies has received intense interest since it can provide excellent optoelectronic properties for photo-energy conversion-induced applications such as solar cells and field effect transistors (FET). In this perspective, we describe our recent efforts toward the development in the area of fullerene molecular design and assemblies aimed at improving the photoconductivity and photo-energy (electric and thermal) conversion systems.

  4. Silicon nanowires for photovoltaic solar energy conversion.

    Science.gov (United States)

    Peng, Kui-Qing; Lee, Shuit-Tong

    2011-01-11

    Semiconductor nanowires are attracting intense interest as a promising material for solar energy conversion for the new-generation photovoltaic (PV) technology. In particular, silicon nanowires (SiNWs) are under active investigation for PV applications because they offer novel approaches for solar-to-electric energy conversion leading to high-efficiency devices via simple manufacturing. This article reviews the recent developments in the utilization of SiNWs for PV applications, the relationship between SiNW-based PV device structure and performance, and the challenges to obtaining high-performance cost-effective solar cells.

  5. Anisotropy of the fission fragments from neutron-induced fission in the intermediate energy range of 1-200 MeV

    Science.gov (United States)

    Vorobyev, A. S.; Gagarski, A. M.; Shcherbakov, O. A.; Vaishnene, L. A.; Barabanov, A. L.

    2015-08-01

    Angular distributions of fission fragments from the neutron-induced fission of 232Th, 235U, and 238U have been measured in the energy range 1-200 MeV at the neutron time-of-flight (TOF) spectrometer GNEIS using position sensitive multiwire proportional counters as fission fragment detector. A short description of the experimental equipment and measurement procedure is given. The anisotropy of fission fragments deduced from the data on measured angular distributions is presented in comparison with experimental data of other authors.

  6. Fission-like events in the 12C+169Tm system at low excitation energies

    Science.gov (United States)

    Sood, Arshiya; Singh, Pushpendra P.; Sahoo, Rudra N.; Kumar, Pawan; Yadav, Abhishek; Sharma, Vijay R.; Shuaib, Mohd.; Sharma, Manoj K.; Singh, Devendra P.; Gupta, Unnati; Kumar, R.; Aydin, S.; Singh, B. P.; Wollersheim, H. J.; Prasad, R.

    2017-07-01

    Background: Fission has been found to be a dominating mode of deexcitation in heavy-ion induced reactions at high excitation energies. The phenomenon of heavy-ion induced fission has been extensively investigated with highly fissile actinide nuclei, yet there is a dearth of comprehensive understanding of underlying dynamics, particularly in the below actinide region and at low excitation energies. Purpose: Prime objective of this work is to study different aspects of heavy-ion induced fission ensuing from the evolution of composite system formed via complete and/or incomplete fusion in the 12C+169Tm system at low incident energies, i.e., Elab≈6.4 , 6.9, and 7.4 A MeV, as well as to understand charge and mass distributions of fission fragments. Method: The recoil-catcher activation technique followed by offline γ spectroscopy was used to measure production cross sections of fission-like events. The evaporation residues were identified by their characteristic γ rays and vetted by the decay-curve analysis. Charge and mass distributions of fission-like events were studied to obtain dispersion parameters of fission fragments. Results: In the present work, 26 fission-like events (32 ≤Z ≤49 ) were identified at different excitation energies. The mass distribution of fission fragments is found to be broad and symmetric, manifesting their production via compound nuclear processes. The dispersion parameters of fission fragments obtained from the analysis of mass and isotopic yield distributions are found to be in good accord with the reported values obtained for different fissioning systems. A self-consistent approach was employed to determine the isobaric yield distribution. Conclusions: The present work suggests that fission is one of the competing modes of deexcitation of complete and/or incomplete fusion composites at low excitation energies, i.e., E*≈57 , 63, and 69 MeV, where evaporation of light nuclear particle(s) and/or γ rays are assumed to be the sole

  7. Energy conversion technology by chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, I.W.; Yoon, K.S.; Cho, B.W. [Korea Inst. of Science and Technology, Seoul (Korea, Republic of)] [and others

    1996-12-01

    The sharp increase in energy usage according to the industry development has resulted in deficiency of energy resources and severe pollution problems. Therefore, development of the effective way of energy usage and energy resources of low pollution is needed. Development of the energy conversion technology by chemical processes is also indispensable, which will replace the pollutant-producing and inefficient mechanical energy conversion technologies. Energy conversion technology by chemical processes directly converts chemical energy to electrical one, or converts heat energy to chemical one followed by heat storage. The technology includes batteries, fuel cells, and energy storage system. The are still many problems on performance, safety, and manufacturing of the secondary battery which is highly demanded in electronics, communication, and computer industries. To overcome these problems, key components such as carbon electrode, metal oxide electrode, and solid polymer electrolyte are developed in this study, followed by the fabrication of the lithium secondary battery. Polymer electrolyte fuel cell, as an advanced power generating apparatus with high efficiency, no pollution, and no noise, has many applications such as zero-emission vehicles, on-site power plants, and military purposes. After fabricating the cell components and operating the single cells, the fundamental technologies in polymer electrolyte fuel cell are established in this study. Energy storage technology provides the safe and regular heat energy, irrespective of the change of the heat energy sources, adjusts time gap between consumption and supply, and upgrades and concentrates low grade heat energy. In this study, useful chemical reactions for efficient storage and transport are investigated and the chemical heat storage technology are developed. (author) 41 refs., 90 figs., 20 tabs.

  8. Unified description of neutron-, proton- and photon-induced fission cross sections in intermediate energy region

    International Nuclear Information System (INIS)

    Fukahori, Tokio; Iwamoto, Osamu; Chiba, Satoshi

    2003-01-01

    For an accelerator-driven nuclear waste transmutation system, it is very important to estimate sub-criticality of core system for feasibility and design study of the system. The fission cross section in the intermediate energy range has an important role. A program FISCAL has been developed to calculate neutron-, proton- and photon-induced fission cross sections in the energy region from several tens of MeV to 3 GeV. FISCAL adopts the systematics considering experimental data for Ag- 243 Am. It is found that unified description of neutron-, proton- and photon-induced fission cross sections is available. (author)

  9. Odd-even effect dependence on the excitation energy in low energy fission

    Science.gov (United States)

    Mirea, M.

    2017-09-01

    An inversion of the odd-even effect was observed experimentally in cold fission: the odd-odd fragmentation yields are favored over the even-even ones for excitations energies of the fragments smaller than 4 MeV. This effect is linked to the important problem of quasiparticle excitations during the dynamical evolution of the nuclear system from its ground-state configuration up to scission. An explanation based on the Landau-Zener promotion mechanism generalized for superfluid systems is offered for the inversion of the odd-even effect. In principle, the even-even fission products cannot be produced at very low excitation energies due dynamical quasiparticle excitations produced in the avoided- level-crossing regions. These excitations are produced with a large probability when the nuclear system deforms slowly.

  10. Mixed Magnetism for Refrigeration and Energy Conversion

    NARCIS (Netherlands)

    Dung, Nguyen H.; Ou, Zhi Qiang; Caron, Luana; Zhang, Lian; Cam Thanh, Dinh T.; Wijs, Gilles A. de; Groot, Rob A. de; Buschow, K.H. Jürgen; Brück, Ekkes

    2011-01-01

    The efficient coupling between lattice degrees of freedom and spin degrees of freedom in magnetic materials can be used for refrigeration and energy conversion. This coupling is enhanced in materials exhibiting the giant magnetocaloric effect. First principle electronic structure calculations on

  11. WIND ENERGY CONVERSION SYSTEMS - A TECHNICAL REVIEW

    Directory of Open Access Journals (Sweden)

    N. RAMESH BABU

    2013-08-01

    Full Text Available Wind power production has been under the main focus for the past decade in power production and tremendous amount of research work is going on renewable energy, specifically on wind power extraction. Wind power provides an eco-friendly power generation and helps to meet the national energy demand when there is a diminishing trend in terms of non-renewable resources. This paper reviews the modeling of Wind Energy Conversion Systems (WECS, control strategies of controllers and various Maximum Power Point Tracking (MPPT technologies that are being proposed for efficient production of wind energy from the available resource.

  12. Optical Energy Transfer and Conversion System

    Science.gov (United States)

    Stone, William C. (Inventor); Hogan, Bartholomew P. (Inventor)

    2015-01-01

    An optical power transfer system comprising a fiber spooler, a fiber optic rotary joint mechanically connected to the fiber spooler, and an electrical power extraction subsystem connected to the fiber optic rotary joint with an optical waveguide. Optical energy is generated at and transferred from a base station through fiber wrapped around the spooler, through the rotary joint, and ultimately to the power extraction system at a remote mobility platform for conversion to another form of energy.

  13. Conversion of radiant light energy in photobioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Cornet, J.F.; Dussap, C.G.; Gros, J.B. (Univ. Blase Pascal, Aubiere (France). Lab. de Genie Chimique Biologique)

    1994-06-01

    The conversion of radiant light energy into chemical affinity by microorganisms in photobioreactors is examined. The kinetics of entropy production in the system is theoretically established from entropy and energy balances for the material and photonic phases in the reactor. A negative chemical affinity term compensated for by a radiant energy term at a higher level of energy characterizes photosynthetic organisms. The local volumetric rate of radiant light energy absorbed, which appears in the dissipation function as an irreversible term, is calculated for monodimensional approximations providing analytical solutions and for general tridimensional equations requiring the solution of a new numerical algorithm. Solutions for the blue-green alga Spirulina platensis cultivated in photoreactors with different geometries and light energy inputs are compared. Thermodynamic efficiency of the photosynthesis is calculated. The highest value of 15% found for low radiant energy absorption rates corresponds to a maximum quantum yield in the reactor.

  14. Novel Nuclear Powered Photocatalytic Energy Conversion

    International Nuclear Information System (INIS)

    White, John R.; Kinsmen, Douglas; Regan, Thomas M.; Bobek, Leo M.

    2005-01-01

    The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC) design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and

  15. Organometallics and related molecules for energy conversion

    CERN Document Server

    Wong, Wai-Yeung

    2015-01-01

    This book presents a critical perspective of the applications of organometallic compounds (including those with metal or metalloid elements) and other related metal complexes as versatile functional materials in the transformation of light into electricity (solar energy conversion) and electricity into light (light generation in light emitting diode), in the reduction of carbon dioxide to useful chemicals, as well as in the safe and efficient production and utilization of hydrogen, which serves as an energy storage medium (i.e. energy carrier). This book focuses on recent research developmen

  16. Puzzling features of heavy-ion fission at sub-barrier energies

    Science.gov (United States)

    Samant, A. M.; Kailas, S.

    1996-12-01

    The heavy-ion induced fission fragment angular distributions measured for systems with Th, U and Np as targets have revealed “anomalous” values of anisotropies at energies E≤ V B (fusion barrier) and this feature is observed to be independent of the entrance channel mass-asymmetry. While this puzzling feature is exhibited by the deformed targets like Th, U and Np, most of the fission data measured for the spherical targets like Pb and Bi can be satisfactorily explained using the standard saddle point statistical model with moderate correction for pre-fission neutron emission. Plausible reasons for this anomalous behaviour are explored.

  17. Energy Conversion at Micro and Nanoscale

    International Nuclear Information System (INIS)

    Gammaitoni, Luca

    2014-01-01

    Energy management is considered a task of strategic importance in contemporary society. It is a common fact that the most successful economies of the planet are the economies that can transform and use large quantities of energy. In this talk we will discuss the role of energy with specific attention to the processes that happens at micro and nanoscale. The description of energy conversion processes at these scales requires approaches that go way beyond the standard equilibrium termodynamics of macroscopic systems. In this talk we will address from a fundamental point of view the physics of the dissipation of energy and will focus our attention to the energy transformation processes that take place in the modern micro and nano information and communication devices

  18. Particle Discrimination Experiment for Direct Energy Conversion

    International Nuclear Information System (INIS)

    Yasaka, Y.; Kiriyama, Y.; Yamamoto, S.; Takeno, H.; Ishikawa, M.

    2005-01-01

    A direct energy conversion system designed for D- 3 He fusion reactor based on a field reversed configuration employs a venetian-blind type converter for thermal ions to produce DC power and a traveling wave type converter for fusion protons to produce RF power. It is therefore necessary to separate, discriminate, and guide the particle species. For this purpose, a cusp magnetic field is proposed, in which the electrons are deflected and guided along the field line to the line cusp, while the ions pass through the point cusp. A small-scale experimental device was used to study the basic characteristics of discrimination of electrons and ions in the cusp magnetic field. Ions separated from electrons are guided to an ion collector, which is operated as a one-stage direct energy converter. The conversion efficiency was measured for cases with different values of mean and spread of ion energy. These experiments successfully demonstrate direct energy conversion from plasma beams using particle discrimination by a cusp magnetic field

  19. Ultrafast Electron Dynamics in Solar Energy Conversion.

    Science.gov (United States)

    Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy

    2017-08-23

    Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.

  20. Charge distributions of fission fragments of low- and high-energy fission of Fm, No, and Rf isotopes

    Science.gov (United States)

    Paşca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.

    2018-03-01

    The charge (mass) distributions of fission fragments resulting from low- and high-energy fission of the even-even nuclei 254 -260 ,264Fm , 258 -264No , and 262 -266Rf are studied with the statistical scission-point model. The calculated results are compared with the available experimental data. In contrast to the experimental data, the calculated mass distribution for 258Fm (s.f.) is strikingly similar to the experimental one for 257Fm (s.f.). The transformation of the shape of charge distribution with increasing isospin and excitation energy occurs gradually and in a similar fashion like that of the mass distribution, but slower. For 254Fm(i.f.), 257Fm(nt h,f), and 260Fm (s.f.), the unexpected difference (symmetric or asymmetric) between the shapes of charge and mass distributions is predicted for the first time. At some critical excitation energy, the saturation of the symmetric component of charge (mass) yields is demonstrated.

  1. Total Kinetic Energy and Fragment Mass Distribution of Neutron-Induced Fission of U-233

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, Daniel James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schmitt, Kyle Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Shea Morgan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tovesson, Fredrik [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-29

    Properties of fission in U-233 were studied at the Los Alamos Neutron Science Center (LANSCE) at incident neutron energies from thermal to 40 MeV at both the Lujan Neutron Scattering Center flight path 12 and at WNR flight path 90-Left from Dec 2016 to Jan 2017. Fission fragments are observed in coincidence using a twin ionization chamber with Frisch grids. The average total kinetic energy (TKE) released from fission and fragment mass distributions are calculated from observations of energy deposited in the detector and conservation of mass and momentum. Accurate experimental measurements of these parameters are necessary to better understand the fission process and obtain data necessary for calculating criticality. The average TKE released from fission has been well characterized for several isotopes at thermal neutron energy, however, few measurements have been made at fast neutron energies. This experiment expands on previous successful experiments using an ionization chamber to measure TKE and fragment mass distributions of U-235, U-238, and Pu-239. This experiment requires the full spectrum of neutron energies and can therefore only be performed at a small number of facilities in the world. The required full neutron energy spectrum is obtained by combining measurements from WNR 90L and Lujan FP12 at LANSCE.

  2. Accurate isotopic fission yields of electromagnetically induced fission of 238U measured in inverse kinematics at relativistic energies

    Science.gov (United States)

    Pellereau, E.; Taïeb, J.; Chatillon, A.; Alvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Benlliure, J.; Boutoux, G.; Caamaño, M.; Casarejos, E.; Cortina-Gil, D.; Ebran, A.; Farget, F.; Fernández-Domínguez, B.; Gorbinet, T.; Grente, L.; Heinz, A.; Johansson, H.; Jurado, B.; Kelić-Heil, A.; Kurz, N.; Laurent, B.; Martin, J.-F.; Nociforo, C.; Paradela, C.; Pietri, S.; Rodríguez-Sánchez, J. L.; Schmidt, K.-H.; Simon, H.; Tassan-Got, L.; Vargas, J.; Voss, B.; Weick, H.

    2017-05-01

    SOFIA (Studies On Fission with Aladin) is a novel experimental program, dedicated to accurate measurements of fission-fragment isotopic yields. The setup allows us to fully identify, in nuclear charge and mass, both fission fragments in coincidence for the whole fission-fragment range. It was installed at the GSI facility (Darmstadt), to benefit from the relativistic heavy-ion beams available there, and thus to use inverse kinematics. This paper reports on fission yields obtained in electromagnetically induced fission of 238U.

  3. EPR's energy conversion system. Alstom's solutions

    International Nuclear Information System (INIS)

    Ledermann, P.

    2009-01-01

    ARABELLE steam turbines have been developed by Alstom to be used as the energy conversion system of light water reactors with high output power like the N4 PWR and the EPR. ARABELLE turbines cumulate 200.000 hours of service with a reliability ratio of 99.97 per cent. This series of slides presents the main features of the turbine including: the use of the simple flux, the very large shape of low pressure blades, the technology of welded rotors. The other main equipment like the alternator, the condenser, the moisture separator-reheaters, the circulating pumps that Alstom integrates in the energy conversion system have benefited with technological improvements that are also presented. (A.C.)

  4. Multifunctional Energy Storage and Conversion Devices.

    Science.gov (United States)

    Huang, Yan; Zhu, Minshen; Huang, Yang; Pei, Zengxia; Li, Hongfei; Wang, Zifeng; Xue, Qi; Zhi, Chunyi

    2016-10-01

    Multifunctional energy storage and conversion devices that incorporate novel features and functions in intelligent and interactive modes, represent a radical advance in consumer products, such as wearable electronics, healthcare devices, artificial intelligence, electric vehicles, smart household, and space satellites, etc. Here, smart energy devices are defined to be energy devices that are responsive to changes in configurational integrity, voltage, mechanical deformation, light, and temperature, called self-healability, electrochromism, shape memory, photodetection, and thermal responsivity. Advisable materials, device designs, and performances are crucial for the development of energy electronics endowed with these smart functions. Integrating these smart functions in energy storage and conversion devices gives rise to great challenges from the viewpoint of both understanding the fundamental mechanisms and practical implementation. Current state-of-art examples of these smart multifunctional energy devices, pertinent to materials, fabrication strategies, and performances, are highlighted. In addition, current challenges and potential solutions from materials synthesis to device performances are discussed. Finally, some important directions in this fast developing field are considered to further expand their application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Kevin James [Univ. of California, Berkeley, CA (United States)

    2010-04-08

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 μm of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles

  6. Ocean Thermal Energy Conversion: An overview

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    Ocean thermal energy conversion, or OTEC is a technology that extracts power from the ocean's natural thermal gradient. This technology is being pursued by researchers from many nations; in the United States, OTEC research is funded by the US Department of Energy's Ocean Energy Technology program. The program's goal is to develop the technology so that industry can make a competent assessment of its potential -- either as an alternative or as a supplement to conventional energy sources. Federally funded research in components and systems will help OTEC to the threshold of commercialization. This publication provides an overview of the OTEC technology. 47 refs., 25 figs.

  7. Nanoscale Materials and Architectures for Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Grulke, Eric A. [Univ. of Kentucky, Lexington, KY (United States); Sunkara, Mahendra K. [University of Louisville, KY (United States)

    2011-05-25

    The Kentucky EPSCoR Program supported an inter-university, multidisciplinary energy-related research cluster studying nanomaterials for converting solar radiation and residual thermal energy to electrical energy and hydrogen. It created a collaborative center of excellence based on research expertise in nanomaterials, architectures, and their synthesis. The project strengthened and improved the collaboration between the University of Louisville, the University of Kentucky, and NREL. The cluster hired a new faculty member for ultra-fast transient spectroscopy, and enabled the mentoring of one research scientist, two postdoctoral scholars and ten graduate students. Work was accomplished with three focused cluster projects: organic and photoelectrochemical solar cells, solar fuels, and thermionic energy conversion.

  8. Measurements of angular and energy distributions of prompt neutrons from thermal neutron-induced fission

    Science.gov (United States)

    Vorobyev, A. S.; Shcherbakov, O. A.; Pleva, Yu. S.; Gagarski, A. M.; Val'ski, G. V.; Petrov, G. A.; Petrova, V. I.; Zavarukhina, T. A.

    2009-01-01

    The experimental setup and methodology used to measure prompt neutron angular and energy distributions from thermal neutron-induced fission are described. The neutrons are detected using two scintillation detectors, while the fission fragments are detected by multi-wire proportional detectors in conjunction with the TOF technique. To separate events corresponding to neutrons and γ-quanta, a double discrimination by the pulse shape and the time-of-flight is applied. Some preliminary results of an experiment performed with the 235U target are presented and briefly discussed. The yield of "scission" neutrons has been estimated in the framework of a simple evaporation model and was found not to exceed 5% of the total neutron yield. Including an assumed of anisotropy of the fission neutron angular distribution in the center-of-mass system of fission fragments into the model calculation leads to an increase in the "scission" neutron yields inferred from the data.

  9. Current estimates of the energy released following the fission of actinide nuclides

    Science.gov (United States)

    Sonzogni, Alejandro; McCutchan, Elizabeth

    2017-09-01

    We calculate the energy released following the neutron induced fission of the main fuel nuclides in a reactor, 235U, 238U, 239Pu and 241Pu. These energies are used in a number of fields, but we were particularly motivated by their application in the recent measurements of reactor antineutrinos spectra and yields. The calculations are performed using the best estimates of cumulative fission yields for long-lived fission products and the recently released 2016 Atomic Mass Evaluation by Wang et al. Additionally, we obtain more precise values of the energy taken away by antineutrinos by using the latest Total Absorption Gamma Spectroscopy (TAGS) results. An important part of this project is also to obtain realistic estimates of the uncertainties. A comparison with earlier calculations will be presented. Work at Brookhaven National Laboratory was sponsored by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-AC0298CH10886.

  10. Innovative oxide materials for electrochemical energy conversion

    Science.gov (United States)

    Wachsman, Eric D.

    2012-02-01

    Research in functional materials has progressed from those materials exhibiting structural to electronic functionality. The study of ion conducting ceramics ushers in a new era of ``chemically functional materials.'' This chemical functionality arises out of the defect equilibria of these materials, and results in the ability to transport chemical species and actively participate in chemical reactions at their surface. Moreover, this chemical functionality provides a promise for the future whereby the harnessing of our natural hydrocarbon energy resources can shift from inefficient and polluting combustion - mechanical methods to direct electrochemical conversion. The unique properties of these materials and their applications will be described. The focus will be on the application of ion conducting ceramics to energy conversion and storage, chemical sensors, chemical separation and conversion, and life support systems. Results presented will include development of record high power density (3 kW/kg) solid oxide fuel cells, NOx/CO species selective solid-state sensors, high yield membrane reactors, and regenerative life support systems that reduce CO2 to O2 and solid C.

  11. Angular distributions and anisotropy of fission fragments from neutron-induced fission in intermediate energy range 1–200 MeV

    OpenAIRE

    Vorobyev Alexander S.; Gagarski Alexei M.; Shcherbakov Oleg A.; Vaishnene Larisa A.; Barabanov Alexei L.

    2017-01-01

    Angular distributions of fission fragments from the neutron-induced fission of 232Th, 233U, 235U, 238U and 209Bi have been measured in the energy range 1–200 MeV at the neutron TOF spectrometer GNEIS based on the spallation neutron source at 1 GeV proton synchrocyclotron of the PNPI (Gatchina, Russia). The multiwire proportional counters have been used as a position sensitive fission fragment detector. A description of the experimental equipment and measurement procedure is given. The anisotr...

  12. Ocean energy conversion systems annual research report

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    Alternative power cycle concepts to the closed-cycle Rankine are evaluated and those that show potential for delivering power in a cost-effective and environmentally acceptable fashion are explored. Concepts are classified according to the ocean energy resource: thermal, waves, currents, and salinity gradient. Research projects have been funded and reported in each of these areas. The lift of seawater entrained in a vertical steam flow can provide potential energy for a conventional hydraulic turbine conversion system. Quantification of the process and assessment of potential costs must be completed to support concept evaluation. Exploratory development is being completed in thermoelectricity and 2-phase nozzles for other thermal concepts. Wave energy concepts are being evaluated by analysis and model testing with present emphasis on pneumatic turbines and wave focussing. Likewise, several conversion approaches to ocean current energy are being evaluated. The use of salinity resources requires further research in membranes or the development of membraneless processes. Using the thermal resource in a Claude cycle process as a power converter is promising, and a program of R and D and subsystem development has been initiated to provide confirmation of the preliminary conclusion.

  13. Graphene for thermoelectronic solar energy conversion

    Science.gov (United States)

    De, Dilip K.; Olukunle, Olawole C.

    2017-08-01

    Graphene is a high temperature material which can stand temperature as high as 4600 K in vacuum. Even though its work function is high (4.6 eV) the thermionic emission current density at such temperature is very high. Graphene is a wonderful material whose work function can be engineered as desired. Kwon et al41 reported a chemical approach to reduce work function of graphene using K2CO3, Li2CO3, Rb2CO3, Cs2CO3. The work functions are reported to be 3.7 eV, 3.8 eV, 3.5 eV and 3.4 eV. Even though they did not report the high temperature tolerance of such alkali metal carbonate doped graphene, their works open a great promise for use of pure graphene and doped graphene as emitter (cathode) and collector (anode) in a solar thermionic energy converter. This paper discusses the dynamics of solar energy conversion to electrical energy using thermionic energy converter with graphene as emitter and collector. We have considered parabolic mirror concentrator to focus solar energy onto the emitter to achieve temperature around 4300 K. Our theoretical calculations and the modelling show that efficiency as high as 55% can easily be achieved if space-charge problem can be reduced and the collector can be cooled to certain proper temperature. We have discussed methods of controlling the associated space-charge problems. Richardson-Dushman equation modified by the authors have been used in this modelling. Such solar energy conversion would reduce the dependence on silicon solar panel and has great potential for future applications.

  14. Energy conversion in magneto-rheological elastomers.

    Science.gov (United States)

    Sebald, Gael; Nakano, Masami; Lallart, Mickaël; Tian, Tongfei; Diguet, Gildas; Cavaille, Jean-Yves

    2017-01-01

    Magneto-rheological (MR) elastomers contain micro-/nano-sized ferromagnetic particles dispersed in a soft elastomer matrix, and their rheological properties (storage and loss moduli) exhibit a significant dependence on the application of a magnetic field (namely MR effect). Conversely, it is reported in this work that this multiphysics coupling is associated with an inverse effect (i.e. the dependence of the magnetic properties on mechanical strain), denoted as the pseudo-Villari effect. MR elastomers based on soft and hard silicone rubber matrices and carbonyl iron particles were fabricated and characterized. The pseudo-Villari effect was experimentally quantified: a shear strain of 50 % induces magnetic induction field variations up to 10 mT on anisotropic MR elastomer samples, when placed in a 0.2 T applied field, which might theoretically lead to potential energy conversion density in the mJ cm -3 order of magnitude. In case of anisotropic MR elastomers, the absolute variation of stiffness as a function of applied magnetic field is rather independent of matrix properties. Similarly, the pseudo-Villari effect is found to be independent to the stiffness, thus broadening the adaptability of the materials to sensing and energy harvesting target applications. The potential of the pseudo-Villari effect for energy harvesting applications is finally briefly discussed.

  15. Studies on fission with ALADIN. Precise and simultaneous measurement of fission yields, total kinetic energy and total prompt neutron multiplicity at GSI

    International Nuclear Information System (INIS)

    Martin, Julie-Fiona; Taieb, Julien; Chatillon, Audrey; Belier, Gilbert; Boutoux, Guillaume; Ebran, Adeline; Gorbinet, Thomas; Grente, Lucie; Laurent, Benoit; Pellereau, Eric; Alvarez-Pol, Hector; Ayyad, Yassid; Benlliure, Jose; Cortina Gil, Dolores; Caamano, Manuel; Fernandez Dominguez, Beatriz; Paradela, Carlos; Ramos, Diego; Rodriguez-Sanchez, Jose-Luis; Vargas, Jossitt; Audouin, Laurent; Tassan-Got, Laurent; Aumann, Thomas; Casarejos, Enrique; Farget, Fanny; Rodriguez-Tajes, Carme; Heinz, Andreas; Jurado, Beatriz; Kelic-Heil, Aleksandra; Kurz, Nikolaus; Nociforo, Chiara; Pietri, Stephane; Rossi, Dominic; Schmidt, Karl-Heinz; Simon, Haik; Voss, Bernd; Weick, Helmut

    2015-01-01

    A novel technique for fission studies, based on the inverse kinematics approach, is presented. Following pioneering work in the nineties, the SOFIA Collaboration has designed and built an experimental set-up dedicated to the simultaneous measurement of isotopic yields, total kinetic energies and total prompt neutron multiplicities, by fully identifying both fission fragments in coincidence, for the very first time. This experiment, performed at GSI, permits to study the fission of a wide variety of fissioning systems, ranging from mercury to neptunium, possibly far from the valley of stability. A first experiment, performed in 2012, has provided a large array of unprecedented data regarding the nuclear fission process. An excerpt of the results is presented. With this solid starter, further improvements of the experimental set-up are considered, which are consistent with the expected developments at the GSI facility, in order to measure more fission observables in coincidence. The completeness reached in the SOFIA data, permits to scrutinize the correlations between the interesting features of fission, offering a very detailed insight in this still unraveled mechanism. (orig.)

  16. Studies on fission with ALADIN. Precise and simultaneous measurement of fission yields, total kinetic energy and total prompt neutron multiplicity at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Julie-Fiona; Taieb, Julien; Chatillon, Audrey; Belier, Gilbert; Boutoux, Guillaume; Ebran, Adeline; Gorbinet, Thomas; Grente, Lucie; Laurent, Benoit; Pellereau, Eric [CEA DAM Bruyeres-le-Chatel, Arpajon (France); Alvarez-Pol, Hector; Ayyad, Yassid; Benlliure, Jose; Cortina Gil, Dolores; Caamano, Manuel; Fernandez Dominguez, Beatriz; Paradela, Carlos; Ramos, Diego; Rodriguez-Sanchez, Jose-Luis; Vargas, Jossitt [Universidad de Santiago de Compostela, Santiago de Compostela (Spain); Audouin, Laurent; Tassan-Got, Laurent [CNRS/IN2P3, IPNO, Orsay (France); Aumann, Thomas [Technische Universitaet Darmstadt, Darmstadt (Germany); Casarejos, Enrique [Universidad de Vigo, Vigo (Spain); Farget, Fanny; Rodriguez-Tajes, Carme [CNRS/IN2P3, GANIL, Caen (France); Heinz, Andreas [Chalmers University of Technology, Gothenburg (Sweden); Jurado, Beatriz [CNRS/IN2P3, CENBG, Gradignan (France); Kelic-Heil, Aleksandra; Kurz, Nikolaus; Nociforo, Chiara; Pietri, Stephane; Rossi, Dominic; Schmidt, Karl-Heinz; Simon, Haik; Voss, Bernd; Weick, Helmut [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2015-12-15

    A novel technique for fission studies, based on the inverse kinematics approach, is presented. Following pioneering work in the nineties, the SOFIA Collaboration has designed and built an experimental set-up dedicated to the simultaneous measurement of isotopic yields, total kinetic energies and total prompt neutron multiplicities, by fully identifying both fission fragments in coincidence, for the very first time. This experiment, performed at GSI, permits to study the fission of a wide variety of fissioning systems, ranging from mercury to neptunium, possibly far from the valley of stability. A first experiment, performed in 2012, has provided a large array of unprecedented data regarding the nuclear fission process. An excerpt of the results is presented. With this solid starter, further improvements of the experimental set-up are considered, which are consistent with the expected developments at the GSI facility, in order to measure more fission observables in coincidence. The completeness reached in the SOFIA data, permits to scrutinize the correlations between the interesting features of fission, offering a very detailed insight in this still unraveled mechanism. (orig.)

  17. Carbon aerogel electrodes for direct energy conversion

    Science.gov (United States)

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1997-01-01

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

  18. Improved fission neutron energy discrimination with {sup 4}He detectors through pulse filtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ting, E-mail: ting.zhu@ufl.edu [University of Florida, Gainesville, FL (United States); Liang, Yinong; Rolison, Lucas; Barker, Cathleen; Lewis, Jason; Gokhale, Sasmit [University of Florida, Gainesville, FL (United States); Chandra, Rico [Arktis Radiation Detectors Ltd., Räffelstrasse 11, Zürich (Switzerland); Kiff, Scott [Sandia National Laboratories, CA (United States); Chung, Heejun [Korean Institute for Nuclear Nonproliferation and Control, 1534 Yuseong-daero, Yuseong-gu, Daejeon (Korea, Republic of); Ray, Heather; Baciak, James E.; Enqvist, Andreas; Jordan, Kelly A. [University of Florida, Gainesville, FL (United States)

    2017-03-11

    This paper presents experimental and computational techniques implemented for {sup 4}He gas scintillation detectors for induced fission neutron detection. Fission neutrons are produced when natural uranium samples are actively interrogated by 2.45 MeV deuterium-deuterium fusion reaction neutrons. Fission neutrons of energies greater than 2.45 MeV can be distinguished by their different scintillation pulse height spectra since {sup 4}He detectors retain incident fast neutron energy information. To enable the preferential detection of fast neutrons up to 10 MeV and suppress low-energy event counts, the detector photomultiplier gain is lowered and trigger threshold is increased. Pile-up and other unreliable events due to the interrogating neutron flux and background radiation are filtered out prior to the evaluation of pulse height spectra. With these problem-specific calibrations and data processing, the {sup 4}He detector's accuracy at discriminating fission neutrons up to 10 MeV is improved and verified with {sup 252}Cf spontaneous fission neutrons. Given the {sup 4}He detector's ability to differentiate fast neutron sources, this proof-of-concept active-interrogation measurement demonstrates the potential of special nuclear materials detection using a {sup 4}He fast neutron detection system.

  19. HETFIS: High-Energy Nucleon-Meson Transport Code with Fission

    Energy Technology Data Exchange (ETDEWEB)

    Barish, J.; Gabriel, T.A.; Alsmiller, F.S.; Alsmiller, R.G. Jr.

    1981-07-01

    A model that includes fission for predicting particle production spectra from medium-energy nucleon and pion collisions with nuclei (Z greater than or equal to 91) has been incorporated into the nucleon-meson transport code, HETC. This report is primarily concerned with the programming aspects of HETFIS (High-Energy Nucleon-Meson Transport Code with Fission). A description of the program data and instructions for operating the code are given. HETFIS is written in FORTRAN IV for the IBM computers and is readily adaptable to other systems.

  20. Accelerator-driven thermal fission systems may provide energy supply advantages

    International Nuclear Information System (INIS)

    Linford, R.K.

    1992-01-01

    This presentation discusses the energy supply advantages of using accelerator-driven thermal fission systems. Energy supply issues as related to cost, fuel supply stability, environmental impact, and safety are reviewed. It is concluded that the Los Alamos Accelerator Transmutation of Waste (ATW) concept, discussed here, has the following advantages: improved safety in the form of low inventory and subcriticality; reduced high-level radioactive waste management timescales for both fission products and actinides; and a very long-term fuel supply requiring no enrichment

  1. Direct energy conversion of radiation energy in fusion reactor

    International Nuclear Information System (INIS)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generates electricity by temperature gradient in conductors. A strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy conversion are mentioned. (author)

  2. Nuclear fission energy: the international scene and the outlook for Italy

    International Nuclear Information System (INIS)

    Monti, S.

    2008-01-01

    Because of concerns about the environment, energy security and energy costs, fission nuclear energy is gaining ground again around the world. In Italy, the research community can help relaunch the national nuclear programmes by providing advanced training, recruiting young engineers and researchers for RD activities, and furthering an immediate cooperation of the Italian system in the principal European and international projects on sustainable nuclear energy [it

  3. A Conversation on Zero Net Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, Paul A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Eley, Charles [Consultant; Gupta, Smita [Itron; McHugh, Jon [McHugh Energy Consultants; Lui, Bing [Pacific Northwest National Laboratory; Higgins, Cathy [New Buildings Institute; Iplikci, Jessica [Energy Trust of Oregon; Rosenberg, Michael [Pacific Northwest National Laboratory

    2017-06-01

    Recently, zero net energy (ZNE) buildings have moved from state-of-the-art small project demonstrations to a more widely adopted approach across the country among various building types and sizes. States such as California set policy goals of all new residential construction to be NZE by 2020 and all commercial buildings to be NZE by 2030. However, the market for designing, constructing, and operating ZNE buildings is still relatively small. We bring together distinguished experts to share their thoughts on making ZNE buildings more widespread and mainstream from a broad perspective, including governments, utilities, energy-efficiency research institutes, and building owners. This conversation also presents the benefits of ZNE and ways to achieve that goal in the design and operation of buildings. The following is a roundtable conducted by ASHRAE Journal and Bing Liu with Charles Eley, Smita Gupta, Cathy Higgins, Jessica Iplikci, Jon McHugh, Michael Rosenberg, and Paul Torcellini.

  4. Angular distributions and anisotropy of fission fragments from neutron-induced fission in intermediate energy range 1-200 MeV

    Science.gov (United States)

    Vorobyev, Alexander S.; Gagarski, Alexei M.; Shcherbakov, Oleg A.; Vaishnene, Larisa A.; Barabanov, Alexei L.

    2017-09-01

    Angular distributions of fission fragments from the neutron-induced fission of 232Th, 233U, 235U, 238U and 209Bi have been measured in the energy range 1-200 MeV at the neutron TOF spectrometer GNEIS based on the spallation neutron source at 1 GeV proton synchrocyclotron of the PNPI (Gatchina, Russia). The multiwire proportional counters have been used as a position sensitive fission fragment detector. A description of the experimental equipment and measurement procedure is given. The anisotropy of fission fragments deduced from the data on measured angular distributions is presented in comparison with experimental data of other authors, first of all, the recent data from WNR at LANSCE (Los Alamos, USA) and n_TOF(CERN).

  5. Angular distributions and anisotropy of fission fragments from neutron-induced fission in intermediate energy range 1–200 MeV

    Directory of Open Access Journals (Sweden)

    Vorobyev Alexander S.

    2017-01-01

    Full Text Available Angular distributions of fission fragments from the neutron-induced fission of 232Th, 233U, 235U, 238U and 209Bi have been measured in the energy range 1–200 MeV at the neutron TOF spectrometer GNEIS based on the spallation neutron source at 1 GeV proton synchrocyclotron of the PNPI (Gatchina, Russia. The multiwire proportional counters have been used as a position sensitive fission fragment detector. A description of the experimental equipment and measurement procedure is given. The anisotropy of fission fragments deduced from the data on measured angular distributions is presented in comparison with experimental data of other authors, first of all, the recent data from WNR at LANSCE (Los Alamos, USA and n_TOF(CERN.

  6. Multiplicity and correlated energy of gamma rays emitted in the spontaneous fission of Californium-252

    International Nuclear Information System (INIS)

    Brunson, G.S. Jr.

    1982-06-01

    An array of eight high-speed plastic scintillation detectors has been used to infer a mathematical model for the emission multipliciy of prompt gammas in the spontaneous fission of 252 Cf. Exceptional time resolution and coincidence capability permitted the separation of gammas from fast neutrons over a flight path of approximately 10 cm. About 20 different distribution models were tested. The average energy of the prompt gammas is inversely related to the number emitted; however, this inverse relationship is not strong and the total gamma energy does increase with increasing gamma number. An extension of the experiment incorporated a lithium-drifted germanium gamma spectrometer that resolved nearly 100 discrete gammas associated with fission. Of these gammas, some were preferentially associated with fission in which few gammas were emitted. Certain others were more frequent when many gammas were emitted. Results are presented

  7. Theoretical energy straggling of /sup 252/Cf fission fragments in various absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Al-Bedri, M.B.; Al-Hindawi, K.A.A. (Baghdad Univ. (Iraq). Dept. of Physics)

    1982-07-15

    A new theoretical formula of energy straggling for heavy ions such as /sup 252/Cf fission fragments in various stopping media has been calculated in terms of incident heavy ion energy, differential scattering cross-section, electronic and nuclear stopping cross-section. However, no theory yet exists which is cabable of predicting straggling behaviour of fission fragments. Comparison between our theoretical predictions and the previous work of Al-Bedri and Sykes has been made. Good agreement has been achieved at the beginning of the range of fission fragments but towards the end of the range our theoretical results were greater than the experimental results by about 10-20%. This discrepancy could be caused by the stopping cross-section, because the experimental stopping cross-section is greater than the theoretical data by about 0-30%.

  8. Biomass energy conversion: conventional and advanced technologies

    International Nuclear Information System (INIS)

    Young, B.C.; Hauserman, W.B.

    1995-01-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  9. Four-dimensional Langevin approach to low-energy nuclear fission of 236U

    Science.gov (United States)

    Ishizuka, Chikako; Usang, Mark D.; Ivanyuk, Fedir A.; Maruhn, Joachim A.; Nishio, Katsuhisa; Chiba, Satoshi

    2017-12-01

    We developed a four-dimensional (4D) Langevin model, which can treat the deformation of each fragment independently and applied it to low-energy fission of 236U, the compound system of the reaction n +235U . The potential energy is calculated with the deformed two-center Woods-Saxon (TCWS) and the Nilsson-type potential with the microscopic energy corrections following the Strutinsky method and BCS pairing. The transport coefficients are calculated by macroscopic prescriptions. It turned out that the deformation for the light and heavy fragments behaves differently, showing a sawtooth structure similar to that of the neutron multiplicities of the individual fragments ν (A ) . Furthermore, the measured total kinetic energy TKE (A ) and its standard deviation are reproduced fairly well by the 4D Langevin model based on the TCWS potential in addition to the fission fragment mass distributions. The developed model allows a multiparametric correlation analysis among, e.g., the three key fission observables, mass, TKE, and neutron multiplicity, which should be essential to elucidate several longstanding open problems in fission such as the sharing of the excitation energy between the fragments.

  10. Theory and applications of the fission matrix method for continuous-energy Monte Carlo

    International Nuclear Information System (INIS)

    Carney, Sean; Brown, Forrest; Kiedrowski, Brian; Martin, William

    2014-01-01

    Highlights: • The fission matrix method is implemented into the MCNP Monte Carlo code. • Eigenfunctions and eigenvalues of power distributions are shown and studied. • Source convergence acceleration is demonstrated for a fuel storage vault problem. • Forward flux eigenmodes and relative uncertainties are shown for a reactor problem. • Eigenmodes expansions are performed during source convergence for a reactor problem. - Abstract: The fission matrix method can be used to provide estimates of the fundamental mode fission distribution, the dominance ratio, the eigenvalue spectrum, and higher mode forward and adjoint eigenfunctions of the fission distribution. It can also be used to accelerate the convergence of power method iterations and to provide basis functions for higher-order perturbation theory. The higher-mode fission sources can be used to determine higher-mode forward fluxes and tallies, and work is underway to provide higher-mode adjoint-weighted fluxes and tallies. These aspects of the method are here both theoretically justified and demonstrated, and then used to investigate fundamental properties of the transport equation for a continuous-energy physics treatment. Implementation into the MCNP6 Monte Carlo code is also discussed, including a sparse representation of the fission matrix, which permits much larger and more accurate representations. Properties of the calculated eigenvalue spectrum of a 2D PWR problem are discussed: for a fine enough mesh and a sufficient degree of sampling, the spectrum both converges and has a negligible imaginary component. Calculation of the fundamental mode of the fission matrix for a fuel storage vault problem shows how convergence can be accelerated by over a factor of ten given a flat initial distribution. Forward fluxes and the relative uncertainties for a 2D PWR are shown, both of which qualitatively agree with expectation. Lastly, eigenmode expansions are performed during source convergence of the 2D PWR

  11. Revisit ocean thermal energy conversion system

    International Nuclear Information System (INIS)

    Huang, J.C.; Krock, H.J.; Oney, S.K.

    2003-01-01

    The earth, covered more than 70.8% by the ocean, receives most of its energy from the sun. Solar energy is transmitted through the atmosphere and efficiently collected and stored in the surface layer of the ocean, largely in the tropical zone. Some of the energy is re-emitted to the atmosphere to drive the hydrologic cycle and wind. The wind field returns some of the energy to the ocean in the form of waves and currents. The majority of the absorbed solar energy is stored in vertical thermal gradients near the surface layer of the ocean, most of which is in the tropical region. This thermal energy replenished each day by the sun in the tropical ocean represents a tremendous pollution-free energy resource for human civilization. Ocean Thermal Energy Conversion (OTEC) technology refers to a mechanical system that utilizes the natural temperature gradient that exists in the tropical ocean between the warm surface water and the deep cold water, to generate electricity and produce other economically valuable by-products. The science and engineering behind OTEC have been studied in the US since the mid-seventies, supported early by the U.S. Government and later by State and private industries. There are two general types of OTEC designs: closed-cycle plants utilize the evaporation of a working fluid, such as ammonia or propylene, to drive the turbine-generator, and open-cycle plants use steam from evaporated sea water to run the turbine. Another commonly known design, hybrid plants, is a combination of the two. OTEC requires relatively low operation and maintenance costs and no fossil fuel consumption. OTEC system possesses a formidable potential capacity for renewable energy and offers a significant elimination of greenhouse gases in producing power. In addition to electricity and drinking water, an OTEC system can produce many valuable by-products and side-utilizations, such as: hydrogen, air-conditioning, ice, aquaculture, and agriculture, etc. The potential of these

  12. Simulation of diesel engine energy conversion processes

    Directory of Open Access Journals (Sweden)

    А. С. Афанасьев

    2016-12-01

    Full Text Available In order to keep diesel engines in good working order the troubleshooting methods shall be improved. For their further improvement by parameters of associated processes a need has arisen to develop a diesel engine troubleshooting method based on time parameters of operating cycle. For such method to be developed a computational experiment involving simulation of diesel engine energy conversion processes has been carried out. The simulation was based on the basic mathematical model of reciprocating internal combustion engines, representing a closed system of equations and relationships. The said model has been supplemented with the engine torque dynamics taking into account the current values of in-cylinder processes with different amounts of fuel injected, including zero feed.The torque values obtained by the in-cylinder pressure conversion does not account for mechanical losses, which is why the base simulation program has been supplemented with calculations for the friction and pumping forces. In order to determine the indicator diagram of idle cylinder a transition to zero fuel feed mode and exclusion of the combustion process from calculation have been provisioned.

  13. Role of energy cost in the yield of cold ternary fission of Cf

    Indian Academy of Sciences (India)

    Role of energy cost in the yield of cold ternary fission of. 252. Cf. P V KUNHIKRISHNAN1 and K P SANTHOSH2,∗. 1P.G. Department of Physics, Sree Narayana College, Kannur 670 007, India. 2School of Pure & Applied Physics, Kannur University, Payyanur Campus,. Payyanur 670 327, India. ∗. Corresponding author.

  14. Localized Oscillatory Energy Conversion in Magnetopause Reconnection

    Science.gov (United States)

    Burch, J. L.; Ergun, R. E.; Cassak, P. A.; Webster, J. M.; Torbert, R. B.; Giles, B. L.; Dorelli, J. C.; Rager, A. C.; Hwang, K.-J.; Phan, T. D.; Genestreti, K. J.; Allen, R. C.; Chen, L.-J.; Wang, S.; Gershman, D.; Le Contel, O.; Russell, C. T.; Strangeway, R. J.; Wilder, F. D.; Graham, D. B.; Hesse, M.; Drake, J. F.; Swisdak, M.; Price, L. M.; Shay, M. A.; Lindqvist, P.-A.; Pollock, C. J.; Denton, R. E.; Newman, D. L.

    2018-02-01

    Data from the NASA Magnetospheric Multiscale mission are used to investigate asymmetric magnetic reconnection at the dayside boundary between the Earth's magnetosphere and the solar wind. High-resolution measurements of plasmas and fields are used to identify highly localized ( 15 electron Debye lengths) standing wave structures with large electric field amplitudes (up to 100 mV/m). These wave structures are associated with spatially oscillatory energy conversion, which appears as alternatingly positive and negative values of J · E. For small guide magnetic fields the wave structures occur in the electron stagnation region at the magnetosphere edge of the electron diffusion region. For larger guide fields the structures also occur near the reconnection X-line. This difference is explained in terms of channels for the out-of-plane current (agyrotropic electrons at the stagnation point and guide field-aligned electrons at the X-line).

  15. Systems Engineering Model for ART Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Cruz, Carmen Margarita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rochau, Gary E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, Mollye C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    The near-term objective of the EC team is to establish an operating, commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the NE - STEP demonstration system (demo) with the lowest risk possible. A systems engineering approach is recommended to ensure adequate requirements gathering, documentation, and mode ling that supports technology development relevant to advanced reactors while supporting crosscut interests in potential applications. A holistic systems engineering model was designed for the ART Energy Conversion program by leveraging Concurrent Engineering, Balance Model, Simplified V Model, and Project Management principles. The resulting model supports the identification and validation of lifecycle Brayton systems requirements, and allows designers to detail system-specific components relevant to the current stage in the lifecycle, while maintaining a holistic view of all system elements.

  16. Theoretical and experimental studies of the neutron rich fission product yields at intermediate energies

    Directory of Open Access Journals (Sweden)

    Äystö J.

    2012-02-01

    Full Text Available A new method to measure the fission product independent yields employing the ion guide technique and a Penning trap as a precision mass filter, which allows an unambiguous identification of the nuclides is presented. The method was used to determine the independent yields in the proton-induced fission of 232Th and 238U at 25 MeV. The data were analyzed with the consistent model for description of the fission product formation cross section at the projectile energies up to 100 MeV. Pre-compound nucleon emission is described with the two-component exciton model using Monte Carlo method. Decay of excited compound nuclei is treated within time-dependent statistical model with inclusion of the nuclear friction effect. The charge distribution of the primary fragment isobaric chain was considered as a result of frozen quantal fluctuations of the isovector nuclear density. The theoretical predictions of the independent fission product cross sections are used for normalization of the measured fission product isotopic distributions.

  17. Theoretical efficiency limits for thermoradiative energy conversion

    Science.gov (United States)

    Strandberg, Rune

    2015-02-01

    A new method to produce electricity from heat called thermoradiative energy conversion is analyzed. The method is based on sustaining a difference in the chemical potential for electron populations above and below an energy gap and let this difference drive a current through an electric circuit. The difference in chemical potential originates from an imbalance in the excitation and de-excitation of electrons across the energy gap. The method has similarities to thermophotovoltaics and conventional photovoltaics. While photovoltaic cells absorb thermal radiation from a body with higher temperature than the cell itself, thermoradiative cells are hot during operation and emit a net outflow of photons to colder surroundings. A thermoradiative cell with an energy gap of 0.25 eV at a temperature of 500 K in surroundings at 300 K is found to have a theoretical efficiency limit of 33.2%. For a high-temperature thermoradiative cell with an energy gap of 0.4 eV, a theoretical efficiency close to 50% is found while the cell produces 1000 W/m2 has a temperature of 1000 K and is placed in surroundings with a temperature of 300 K. Some aspects related to the practical implementation of the concept are discussed and some challenges are addressed. It is, for example, obvious that there is an upper boundary for the temperature under which solid state devices can work properly over time. No conclusions are drawn with regard to such practical boundaries, because the work is aimed at establishing upper limits for ideal thermoradiative devices.

  18. OPTIMIZATION OF AEOLIAN ENERGY CONVERSION OPTIMISATION DE LA CONVERSION DE L’ENERGIE EOLIENNE

    Directory of Open Access Journals (Sweden)

    Y. Soufi

    2015-08-01

    Full Text Available The use of renewable energy increases, because people are increasingly concerned with environmental issues. Among renewable, wind power is now widely used. Their study showed that a value of wind speed, there is a maximum mechanical power supplied by the turbine. So, power is supplied are particularly changes with maximum speed.However, the objective of this paper is to present an algorithm for optimal conversion of wind energy based on a criterion optimization that must maintain specific speed of the turbine at optimum speed which corresponds to the maximum power provided by the steady wind turbine. To this end, the object is to preserve the position of any static operating point on the characteristic of optimal.To validate the model and algorithm for optimal conversion of wind energy, a series of numerical simulations carried out using the software MatLab Simulink will be presented is discussed.

  19. Influence of primary fragment excitation energy and spin distributions on fission observables

    Science.gov (United States)

    Litaize, Olivier; Thulliez, Loïc; Serot, Olivier; Chebboubi, Abdelaziz; Tamagno, Pierre

    2018-03-01

    Fission observables in the case of 252Cf(sf) are investigated by exploring several models involved in the excitation energy sharing and spin-parity assignment between primary fission fragments. In a first step the parameters used in the FIFRELIN Monte Carlo code "reference route" are presented: two parameters for the mass dependent temperature ratio law and two constant spin cut-off parameters for light and heavy fragment groups respectively. These parameters determine the initial fragment entry zone in excitation energy and spin-parity (E*, Jπ). They are chosen to reproduce the light and heavy average prompt neutron multiplicities. When these target observables are achieved all other fission observables can be predicted. We show here the influence of input parameters on the saw-tooth curve and we discuss the influence of a mass and energy-dependent spin cut-off model on gamma-rays related fission observables. The part of the model involving level densities, neutron transmission coefficients or photon strength functions remains unchanged.

  20. Science of Nanofluidics and Energy Conversion

    Science.gov (United States)

    Xu, Baoxing

    The emerging subject of nanofluidics, where solids and fluids interact closely at the nanoscale, has exhibited radically different from their macroscopic counterparts (and sometimes counterintuitive), and yet relatively less explored. On the other hand, the resulting unique properties may contribute to a number of innovative functions with fascinating applications. Among various exciting potential applications, an important and ever expanding one is to provide alternative solutions to energy conversion with high efficiency, including energy absorption, actuation and harvesting. In this dissertation, we first report a novel protection mechanism of energy capture through which an intensive impact or blast energy can be effectively mitigated based on a nonwetting liquid-nanoporous material system. The captured energy is stored in nanopores in the form of potential energy of intercalated water molecules for a while, and not necessarily converted to other forms of energy (e.g. heat). At unloading stage, the captured energy will be released gradually due to the hydrophobic inner surfaces of nanopores through the diffusion of water molecules out of nanopores, thus making this system reusable. Several key controlling factors including impacting velocity, nanopore size, nanopore structure, and liquid phase have been investigated on the capacity of energy capture. The molecular mechanism is elucidated through the study of water molecular distributions inside nanpores. These molecular dynamic (MD) findings are quantitatively verified by a parallel blast experiment on a zeolite/water system. During the transport of confined liquid molecules, the friction resistance exerted by solid atoms of nanopores to liquid molecules will dissipate part of energy, and is highly dependent of temperature of liquid molecules and wall morphology of nanopores. Using MD simulations, the effects of temperature and wall roughness on the transport resistance of water molecules inside nanopores are

  1. The Carbon Nanotube Fibers for Optoelectric Conversion and Energy Storage

    Directory of Open Access Journals (Sweden)

    Yongfeng Luo

    2014-01-01

    Full Text Available This review summarizes recent studies on carbon nanotube (CNT fibers for weavable device of optoelectric conversion and energy storage. The intrinsic properties of individual CNTs make the CNT fibers ideal candidates for optoelectric conversion and energy storage. Many potential applications such as solar cell, supercapacitor, and lithium ion battery have been envisaged. The recent advancement in CNT fibers for optoelectric conversion and energy storage and the current challenge including low energy conversion efficiency and low stability and future direction of the energy fiber have been finally summarized in this paper.

  2. Iron disulfide for solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Ennaoui, A. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Fiechter, S. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Pettenkofer, C. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Alonso-Vante, N. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Bueker, K. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Bronold, M. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Hoepfner, C. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Tributsch, H. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany))

    1993-05-01

    Pyrite (E[sub g] = 0.95 eV) is being developed as a solar energy material due to its environmental compatibility and its very high light absorption coefficient. A compilation of material, electronic and interfacial chemical properties is presented, which is considered relevant for quantum energy conversion. In spite of intricate problems existing within material chemistry, high quantum efficiencies for photocurrent generation (> 90%) and high photovoltages ([approx] 500 mV) have been observed with single crystal electrodes and thin layers respectively. The most interesting aspect of this study is the use of pyrite as an ultrathin (10-20 nm) layer sandwiched between large gap p-type and n-type materials in a p-i-n like structure. Such a system, in which the pyrite layer only acts as photon absorber and mediates injection of excited electrons can be defined as sensitization solar cell. The peculiar electron transfer properties of pyrite interfaces, facilitating interfacial coordination chemical pathways, may turn out to be very helpful. Significant research challenges are discussed in the hope of attracting interest in the development of solar cells from this abundant material. (orig.)

  3. Photovoltaic conversion of the solar energy

    International Nuclear Information System (INIS)

    Gordillo G, Gerardo

    1998-01-01

    In this work, a short description of the basic aspect of the performance of homojunction solar cells and of the technological aspects of the fabrication of low cost thin film solar cells is made. Special emphasis on the historical aspects of the evolution of the conversion efficiency of photovoltaic devices based on crystalline silicon, amorphous silicon, Cd Te and CulnSe 2 is also made. The state of art of the technology of photovoltaic devices and modules is additionally presented. The contribution to the development of high efficiency solar cells and modules, carried out by research centers of universities such us: Stuttgart university (Germany), Stockholm university (Sweden), University of South Florida (USA), university of south gales (Australia), by the national renewable energy laboratory of USA and by research centers of companies such us: Matsushita (Japan), BP-solar (England), Boeing (USA), Arco solar (USA), Siemens (Germany) etc. are specially emphasized. Additionally, a section concerning economical aspect of the photovoltaic generation of electric energy is enclosed. In this section an overview of the evolution of price and world market of photovoltaic system is presented

  4. Status of thermoelectronic laser energy conversion, TELEC

    Science.gov (United States)

    Britt, E. J.

    1982-01-01

    A concept known as a thermo-electronic laser energy converter (TELEC), was studied as a method of converting a 10.6 micron CO2 laser beam into electric power. The calculated characteristics of a TELEC seem to be well matched to the requirements of a spacecraft laser energy conversion system. The TELEC is a high power density plasma device which absorbs an intense laser beam by inverse bremsstrahlung with the plasma electrons. In the TELEC process, electromagnetic radiation is absorbed directly in the plasma electrons producing a high electron temperature. The energetic electrons diffuse out of the plasma striking two electrodes which are in contact with the plasma at the boundaries. These two electrodes have different areas: the larger one is designated as the collector, the smaller one is designated as the emitter. The smaller electrode functions as an electron emitter provide continuity of the current. Waste heat is rejected from the collector electrode. An experiment was carried out with a high power laser using a cesium vapor TELEC cell with 30 cm active length. Laser supported plasma were produced in the TELEC device during a number of laser runs over a period of several days. Electric power from the TELEC was observed with currents in the range of several amperes and output potentials of less than 1 volt.

  5. Fission excitation function for 19F + 194,196,198Pt at near and above barrier energies

    Directory of Open Access Journals (Sweden)

    Singh Varinderjit

    2015-01-01

    Full Text Available Fission excitation functions for 19F + 194,196,198Pt reactions populating 213,215,217Fr compound nuclei are reported. Out of these three compound nuclei, 213Fr is a shell closed (N=126 compound nucleus and the other two are away from the shell closure. From a comparison of the experimental fission cross-sections with the statistical model predictions, it is observed that the fission cross-sections are underestimated by the statistical model predictions using shell corrected finite range rotating liquid drop model (FRLDM fission barriers. Further the FRLDM fission barriers are reduced to fit the fission cross-sections over the entire measured energy range.

  6. Energy conversion for megawatt space power systems

    International Nuclear Information System (INIS)

    Ewell, R.

    1983-01-01

    Large nuclear space power systems capable of continuously producing over one megawatt of electrical power for a several year period will be needed in the future. This paper presents the results of a study to compare applicable conversion technologies which were deemed to be ready for a time period of 1995 and beyond. A total of six different conversion technologies were studied in detail and compared on the basis of conversion efficiency, radiator area, overall system mass, and feasibility. Three static, modular conversion technologies were considered; these include: AMTEC, thermionic, and thermoelectric conversion. The other three conversion technologies are heat engines which involve dynamic components. The dynamic systems analyzed were Brayton, Rankine, and the free piston Stirling engine. Each of the conversion techniques was also examined for limiting characteristics and an attempt was made to identify common research needs and enabling technologies

  7. Thermoelectric direct energy conversion system for fast reactors

    International Nuclear Information System (INIS)

    Kambe, Mitsuru

    1995-01-01

    A concept of direct energy conversion system for fast reactors has been presented by using FGM thermoelectric (TE) cell elements combined with FGM compliant pads based on the assumption that energy conversion efficiency of 20% could be achieved. The design involves TE energy conversion modules in which 360 TE cell elements are assembled. These energy conversion modules are connected to sodium and water circuits by cesium heat pipes and water heat pipes, respectively. The following design approach has been demonstrated. 1) Approximately 4100 energy conversion modules installed in a 150 MWt fast reactor can affords 27 MW of electricity. 2) An energy conversion building (single floor, 15 m x 15 m) enables to eliminate intermediate heat exchangers, steam generators and sodium-water reaction counter measures. (author)

  8. Fundamental formulae for wave-energy conversion.

    Science.gov (United States)

    Falnes, Johannes; Kurniawan, Adi

    2015-03-01

    The time-average wave power that is absorbed from an incident wave by means of a wave-energy conversion (WEC) unit, or by an array of WEC units-i.e. oscillating immersed bodies and/or oscillating water columns (OWCs)-may be mathematically expressed in terms of the WEC units' complex oscillation amplitudes, or in terms of the generated outgoing (diffracted plus radiated) waves, or alternatively, in terms of the radiated waves alone. Following recent controversy, the corresponding three optional expressions are derived, compared and discussed in this paper. They all provide the correct time-average absorbed power. However, only the first-mentioned expression is applicable to quantify the instantaneous absorbed wave power and the associated reactive power. In this connection, new formulae are derived that relate the 'added-mass' matrix, as well as a couple of additional reactive radiation-parameter matrices, to the difference between kinetic energy and potential energy in the water surrounding the immersed oscillating WEC array. Further, a complex collective oscillation amplitude is introduced, which makes it possible to derive, by a very simple algebraic method, various simple expressions for the maximum time-average wave power that may be absorbed by the WEC array. The real-valued time-average absorbed power is illustrated as an axisymmetric paraboloid defined on the complex collective-amplitude plane. This is a simple illustration of the so-called 'fundamental theorem for wave power'. Finally, the paper also presents a new derivation that extends a recently published result on the direction-average maximum absorbed wave power to cases where the WEC array's radiation damping matrix may be singular and where the WEC array may contain OWCs in addition to oscillating bodies.

  9. Conceptual design of a hybrid fusion-fission reactor with intrinsic safety and optimized energy productivity

    International Nuclear Information System (INIS)

    Talebi, Hosein; Sadat Kiai, S.M.

    2017-01-01

    Highlights: • Designing a high yield and feasible Dense Plasma Focus for driving the reactor. • Presenting a structural method to design the dual layer cylindrical blankets. • Finding, the blanket production energy, in terms of its geometrical and material parameters. • Designing a subcritical blanket with optimization of energy amplification in detail. - Abstract: A hybrid fission-fusion reactor with a Dense Plasma Focus (DPF) as a fusion core and the dual layer fissionable blanket as the energy multiplier were conceptually designed. A cylindrical DPF, energized by a 200 kJ bank energy, is considered to produce fusion neutron, and these neutrons drive the subcritical fission in the surrounding blankets. The emphasis has been placed on the safety and energy production with considering technical and economical limitations. Therefore, the k eff-t of the dual cylindrical blanket was defined and mathematically, specified. By applying the safety criterion (k eff-t ≤ 0.95), the geometrical and material parameters of the blanket optimizing the energy amplification were obtained. Finally, MCNPX code has been used to determine the detailed dimensions of the blankets and fuel rods.

  10. 2nd Workshop on the Chemistry of Energy Conversion

    CERN Document Server

    2016-01-01

    A sustainable energy future that does not rely on fossil fuels requires the advances of new materials design and development with efficient energy conversion. However, materials development is still at its infancy. There is an imperative to develop new energy conversion strategies. In Nature, plants harness sunlight and convert them into chemical energy. The ability to mimic Nature by combining synthetic nanoscopic and molecular components to produce chemical fuels is the Holy Grail to achieve sustainable energy production.​ The Institute of Advanced Studies (IAS) and the School of Physical and Mathematical Sciences (SPMS), NTU, are jointly organizing this workshop. We aim to create dialogues among scientists in the energy conversion field, with the ultimate goal of facilitating breakthroughs in materials design for energy conversion. It will also bring the expertise on Chemistry of Energy Conversion to the door steps of the materials research community in Singapore and also provide a platform for partic...

  11. Demonstrating Energy Conversion with Piezoelectric Crystals and a Paddle Fan

    Science.gov (United States)

    Rakbamrung, Prissana; Putson, Chatchai; Muensit, Nantakan

    2014-01-01

    A simple energy conversion system--particularly, the conversion of mechanical energy into electrical energy by using shaker flashlights--has recently been presented. This system uses hand generators, consisting of a magnet in a tube with a coil wrapped around it, and acts as an ac source when the magnet passes back and forth through the coil.…

  12. Organohalide Perovskites for Solar Energy Conversion.

    Science.gov (United States)

    Lin, Qianqian; Armin, Ardalan; Burn, Paul L; Meredith, Paul

    2016-03-15

    Lead-based organohalide perovskites have recently emerged as arguably the most promising of all next generation thin film solar cell technologies. Power conversion efficiencies have reached 20% in less than 5 years, and their application to other optoelectronic device platforms such as photodetectors and light emitting diodes is being increasingly reported. Organohalide perovskites can be solution processed or evaporated at low temperatures to form simple thin film photojunctions, thus delivering the potential for the holy grail of high efficiency, low embedded energy, and low cost photovoltaics. The initial device-driven "perovskite fever" has more recently given way to efforts to better understand how these materials work in solar cells, and deeper elucidation of their structure-property relationships. In this Account, we focus on this element of organohalide perovskite chemistry and physics in particular examining critical electro-optical, morphological, and architectural phenomena. We first examine basic crystal and chemical structure, and how this impacts important solar-cell related properties such as the optical gap. We then turn to deeper electronic phenomena such as carrier mobilities, trap densities, and recombination dynamics, as well as examining ionic and dielectric properties and how these two types of physics impact each other. The issue of whether organohalide perovskites are predominantly nonexcitonic at room temperature is currently a matter of some debate, and we summarize the evidence for what appears to be the emerging field consensus: an exciton binding energy of order 10 meV. Having discussed the important basic chemistry and physics we turn to more device-related considerations including processing, morphology, architecture, thin film electro-optics and interfacial energetics. These phenomena directly impact solar cell performance parameters such as open circuit voltage, short circuit current density, internal and external quantum efficiency

  13. Is nuclear fission energy at all needed. I

    International Nuclear Information System (INIS)

    Valvoda, Z.

    1978-01-01

    The history is shown of the primary energy consumption per head of population, the world consumption of primary energy in 1950 and 1970, rough estimate of the past and future demand for primary energy in the world, and the actual and estimated development of the size of population and the demand for primary energy in the world. For comparison, the history is shown of the primary energy consumption per capita in advanced and developing countries in 1955, 1965, 1969, 2000, and the primary energy consumption is compared for industrially advanced and developing countries in 1970. Also shown are energy consumption required for the production of some materials (cement, aluminium, copper, plastics, etc.), ore exploitation in the world in 1953, 1960, 1965 and 1968, the specific energy consumption for different transport systems in terms of petrol, the actual and estimated consumption of electric power in the years 1900 to 2000, gross electric power generation in the world classified in main areas, the history of gross electric power generation per head of population in some countries, and the consumption of electric power in some countries' industries in the years 1969 to 1973. (J.P.)

  14. The Commission's research action programme on the development of nuclear fission energy

    International Nuclear Information System (INIS)

    1984-01-01

    For its 'Framework Programme 1984-1987' the Commission has defined the major goals for a European Scientific and Technical Strategy. One of the means to reduce the energy dependence of the Community, which is an important objective, is to favour the development of nuclear fission energy. As electricity production by nuclear reactors has reached industrial maturity, the Community activities are directed mainly to safety aspects, in order to ensure the protection of workers and the general public, against hazards linked to operations in the nuclear fuel cycle. A description of the main features of the five sub-programmes on nuclear fission energy is given below; these programmes are: reactor safety; nuclear fuels and actinides research; management of radioactive waste; safeguarding and management of fissile materials; decommissioning of nuclear installations. The research and development work is carried out either by the Commission's Joint Research Center or by organizations and companies of the Member Countries, with the Commission's financial support. (author)

  15. The Fukushima nuclear disaster and its effects on media framing of fission and fusion energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Luisa; Horta, Ana; Pereira, Sergio; Delicado, Ana [Institute of Social Sciences of the University of Lisbon, Av. Prof. Anibal de Bettencourt, 9 1600-189 Lisbon (Portugal)

    2015-07-01

    This paper presents results of a comparison of media coverage of fusion and fission energy technologies in three countries (Germany, Spain and Portugal) and in the English language international print media addressing transnational elite, from 2008 to 2012. The analysis showed that the accident in Fukushima in March 2010 did not have significant impact on media framing of nuclear fusion in the major part of print media under investigation. In fact, fusion is clearly dissociated from traditional nuclear (fission) energy and from nuclear accidents. It tends to be portrayed as a safe, clean and unlimited source of energy, although less credited when confronted with research costs, technological feasibility and the possibility to be achieved in a reasonable period of time. On the contrary, fission is portrayed as a hazardous source of energy, expensive when compared to research costs of renewables, hardly a long-term energy option, susceptible to contribute to the proliferation of nuclear weapons or rogue military use. Fukushima accident was consistently discussed in the context of safety problems of nuclear power plants and in many cases appeared not as an isolated event but rather as a reminder of previous nuclear disasters such as Three Miles Island and Chernobyl. (authors)

  16. The Fukushima nuclear disaster and its effects on media framing of fission and fusion energy technologies

    International Nuclear Information System (INIS)

    Schmidt, Luisa; Horta, Ana; Pereira, Sergio; Delicado, Ana

    2015-01-01

    This paper presents results of a comparison of media coverage of fusion and fission energy technologies in three countries (Germany, Spain and Portugal) and in the English language international print media addressing transnational elite, from 2008 to 2012. The analysis showed that the accident in Fukushima in March 2010 did not have significant impact on media framing of nuclear fusion in the major part of print media under investigation. In fact, fusion is clearly dissociated from traditional nuclear (fission) energy and from nuclear accidents. It tends to be portrayed as a safe, clean and unlimited source of energy, although less credited when confronted with research costs, technological feasibility and the possibility to be achieved in a reasonable period of time. On the contrary, fission is portrayed as a hazardous source of energy, expensive when compared to research costs of renewables, hardly a long-term energy option, susceptible to contribute to the proliferation of nuclear weapons or rogue military use. Fukushima accident was consistently discussed in the context of safety problems of nuclear power plants and in many cases appeared not as an isolated event but rather as a reminder of previous nuclear disasters such as Three Miles Island and Chernobyl. (authors)

  17. Conversion of zero point energy into high-energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Ivlev, B. I. [Universidad Autonoma de San Luis Potosi, Instituto de Fisica, Av. Manuel Nava No. 6, Zona Universitaria, 78290 San Luis Potosi, SLP (Mexico)

    2016-11-01

    An unusual phenomenon, observed in experiments is studied. X-ray laser bursts of keV energy are emitted from a metal where long-living states, resulting in population inversion, are totally unexpected. Anomalous electron-photon states are revealed to be formed inside the metal. These states are associated with narrow, 10{sup -11} cm, potential well created by the local reduction of zero point electromagnetic energy. In contrast to analogous van der Waals potential well, leading to attraction of two hydrogen atoms, the depth of the anomalous well is on the order of 1 MeV. The states in that well are long-living which results in population inversion and subsequent laser generation observed. The X-ray emission, occurring in transitions to lower levels, is due to the conversion of zero point electromagnetic energy. (Author)

  18. Disappearance of entrance channel dependence of fission fragment anisotropies at well-above-barrier energies

    Energy Technology Data Exchange (ETDEWEB)

    Vandenbosch, R.; Bierman, J.D.; Lestone, J.P.; Liang, J.F.; Prindle, D.J.; Sonzogni, A.A. [University of Washington, Nuclear Physics Laboratory, Seattle, Washington 98195 (United States); Kailas, S.; Nadkarni, D.M.; Kapoor, S.S. [Nuclear Physics Division, Bhabha Atomic Research Centre, Bombay-400085 (India)

    1996-09-01

    Fission fragment anisotropies have been measured to energies extending well above the barrier for three entrance channels leading to the same compound nucleus {sup 248}Cf. For the {sup 12}C + {sup 236}U and {sup 16}O + {sup 232}Th systems, lying on either side of the Businaro-Gallone critical asymmetry, the mean square angular momentum is matched at an excitation energy of 62 MeV. The anisotropies, although different at lower energies, are in agreement within experimental errors at this excitation energy and thus show no entrance channel dependence. {copyright} {ital 1996 The American Physical Society.}

  19. Direct Energy Conversion for Fast Reactors

    International Nuclear Information System (INIS)

    Brown, N.; Cooper, J.; Vogt, D.; Chapline, G.; Turchi, P.; Barbee Jr., T.; Farmer, J.

    2000-01-01

    Thermoelectric generators (TEG) are a well-established technology for compact low power output long-life applications. Solid state TEGs are the technology of choice for many space missions and have also been used in remote earth-based applications. Since TEGs have no moving parts and can be hermetically sealed, there is the potential for nuclear reactor power systems using TEGs to be safe, reliable and resistant to proliferation. Such power units would be constructed in a manner that would provide decades of maintenance-free operation, thereby minimizing the possibility of compromising the system during routine maintenance operations. It should be possible to construct an efficient direct energy conversion cascade from an appropriate combination of solid-state thermoelectric generators, with each stage in the cascade optimized for a particular range of temperature. Performance of cascaded thermoelectric devices could be further enhanced by exploitation of compositionally graded p-n couples, as well as radial elements to maximize utilization of the heat flux. The Jet Propulsion Laboratory in Pasadena has recently reported segmented unicouples that operate between 300 and 975 K and have conversion efficiencies of 15 percent [Caillat, 2000]. TEGs are used in nuclear-fueled power sources for space exploration, in power sources for the military, and in electrical generators on diesel engines. Second, there is a wide variety of TE materials applicable to a broad range of temperatures. New materials may lead to new TEG designs with improved thermoelectric properties (i.e. ZT approaching 3) and significantly higher efficiencies than in designs using currently available materials. Computational materials science (CMS) has made sufficient progress and there is promise for using these techniques to reduce the time and cost requirements to develop such new TE material combinations. Recent advances in CMS, coupled with increased computational power afforded by the Accelerated

  20. Fission fragment angular distribution measurements for 16O + 194Pt reaction at energies near the Coulomb barrier

    Science.gov (United States)

    Prasad, E.; Varier, K. M.; Thomas, R. G.; Vinodkumar, A. M.; Mahata, K.; Appannababu, S.; Sugathan, P.; Golda, K. S.; Babu, B. R. S.; Saxena, A.; John, B. V.; Kailas, S.

    2012-05-01

    Fission fragment angular distributions have been measured for 16O + 194Pt reaction forming the compound system 210Rn, in the laboratory energy range from 79 to 90 MeV. The measured fission fragment anisotropies as a function of E/VB are compared with the predictions of standard saddle point statistical model (SSPM). Anisotropies calculated using the average excitation energy and angular momentum values could not reasonably fit the experimental data. Statistical model calculations were performed using the PACE with modified fission barrier and level density parameters. Fission probability, evaporation residue cross section and neutron multiplicity were simultaneously used to fix the statistical parameters. Model calculations incorporating the chance nature of fission decay and scaled values of the rotating finite range model (RFRM) moment of inertia could reasonably fit the fragment angular anisotropies.

  1. Critical insight into the influence of the potential energy surface on fission dynamics

    International Nuclear Information System (INIS)

    Mazurek, K.; Schmitt, C.; Wieleczko, J. P.; Ademard, G.; Nadtochy, P. N.

    2011-01-01

    The present work is dedicated to a careful investigation of the influence of the potential energy surface on the fission process. The time evolution of nuclei at high excitation energy and angular momentum is studied by means of three-dimensional Langevin calculations performed for two different parametrizations of the macroscopic potential: the Finite Range Liquid Drop Model (FRLDM) and the Lublin-Strasbourg Drop (LSD) prescription. Depending on the mass of the system, the topology of the potential throughout the deformation space of interest in fission is observed to noticeably differ within these two approaches, due to the treatment of curvature effects. When utilized in the dynamical calculation as the driving potential, the FRLDM and LSD models yield similar results in the heavy-mass region, whereas the predictions can be strongly dependent on the Potential Energy Surface (PES) for medium-mass nuclei. In particular, the mass, charge, and total kinetic energy distributions of the fission fragments are found to be narrower with the LSD prescription. The influence of critical model parameters on our findings is carefully investigated. The present study sheds light on the experimental conditions and signatures well suited for constraining the parametrization of the macroscopic potential. Its implication regarding the interpretation of available experimental data is briefly discussed.

  2. An ionization chamber with Frisch grids for studies of high-energy neutron-induced fission

    Science.gov (United States)

    Tutin, G. A.; Ryzhov, I. V.; Eismont, V. P.; Kireev, A. V.; Condé, H.; Elmgren, K.; Olsson, N.; Renberg, P.-U.

    2001-01-01

    A gridded ionization chamber for fission fragment detection is described. The chamber has been specially designed for use at the quasi-monoenergetic 7Li(p, n) neutron source at the The Svedberg Laboratory, Uppsala, Sweden. The detector permits measurements of fission fragment energy and emission angle for two targets with diameter of up to 10 cm. The time response of the chamber (⩽5 ns FWHM) is adequate to apply time-of-flight discrimination against background events induced by non-peak neutrons. Results of angular anisotropy measurements for the 232Th (n, f) and 238U(n, f) reactions in the 20-160 MeV energy range are given.

  3. Fission rates measured using high-energy gamma-rays from short half-life fission products in fresh and spent nuclear fuel

    International Nuclear Information System (INIS)

    Kroehnert, H.

    2011-02-01

    In recent years, higher discharge burn-ups and initial fuel enrichments have led to more and more heterogeneous core configurations in light water reactors (LWRs), especially at the beginning of cycle when fresh fuel assemblies are loaded next to highly burnt ones. As this trend is expected to continue in the future, the Paul Scherrer Institute has, in collaboration with the Swiss Association of Nuclear Utilities, swissnuclear, launched the experimental programme LIFE(at)PROTEUS. The LIFE(at)PROTEUS programme aims to better characterise interfaces between burnt and fresh UO 2 fuel assemblies in modern LWRs. Thereby, a novel experimental database is to be made available for enabling the validation of neutronics calculations of strongly heterogeneous LWR core configurations. During the programme, mixed fresh and highly burnt UO 2 fuel lattices will be investigated in the zero-power research reactor PROTEUS. One of the main types of investigations will be to irradiate the fuel in PROTEUS and measure the resulting fission rate distributions across the interface between fresh and burnt fuel zones. The measurement of fission rates in burnt fuel re-irradiated in a zero-power reactor requires, however, the development of new experimental techniques which are able to discriminate against the high intrinsic activity of the fuel. The principal goal of the present research work has been to develop such a new measurement technique. The selected approach is based on the detection of high-energy gamma-ray lines above the intrinsic background (i.e. above 2200 keV), which are emitted by short-lived fission products freshly created in the fuel. The fission products 88 Kr, 142 La, 138 Cs, 84 Br, 89 Rb, 95 Y, 90m Rb and 90 Rb, with half-lives between 2.6 min and 2.8 h, have been identified as potential candidates. During the present research work, the gamma-ray activity of short-lived fission products has, for the first time, been measured and quantitatively evaluated for re

  4. Renewable energy systems advanced conversion technologies and applications

    CERN Document Server

    Luo, Fang Lin

    2012-01-01

    Energy conversion techniques are key in power electronics and even more so in renewable energy source systems, which require a large number of converters. Renewable Energy Systems: Advanced Conversion Technologies and Applications describes advanced conversion technologies and provides design examples of converters and inverters for renewable energy systems-including wind turbine and solar panel energy systems. Learn Cutting-Edge Techniques for Converters and Inverters Setting the scene, the book begins with a review of the basics of astronomy and Earth physics. It then systematically introduc

  5. The Fukushima nuclear disaster and its effects on media framing of fission and fusion energy technologies

    OpenAIRE

    Schmidt, Luísa; Horta, Ana; Pereira, Sérgio; Delicado, Ana

    2015-01-01

    Accepted version. This paper presents results of a comparison of media coverage of fusion and fission energy technologies in three countries (Germany, Spain and Portugal) and in the English language international print media addressing transnational elite, from 2008 to 2012. The analysis showed that the accident in Fukushima in March 2010 did not have significant impact on media framing of nuclear fusion in the major part of print media under investigation. In fact, fusion is clearly disso...

  6. Dynamical effects and time scale in fission processes in nuclear collisions in the fermi energy range

    International Nuclear Information System (INIS)

    Colin, J.; Bocage, F.; Louvel, M.; Bellaize, N.; Bougault, R.; Brou, R.; Cussol, D.; Durand, D.; Genouin-Duhamel, E.; Lecolley, J.F.; Le Neindre, N.; Lopez, O.; Nguyen, A.D.; Peter, J.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Brun, C. le; Genoux-Lubain, A.

    1999-01-01

    Recent experimental results concerning heavy systems (Pb+Au, Pb+Ag, Pb+Al, Gd+U, Gd+C, Ta+Au, U+U, U+C, Xe+Sn... o btained at Ganil by the Indra and Nautilus collaborations will be presented. A study of reaction mechanisms has shown the dominant binary and highly dissipative character of the process. The two heavy and excited fragments produced after the first stage of the interaction can experience various decay modes: evaporation, fission, multifragmentation. However, deviations from this simple picture have been found by analysing angular and velocity distributions of light charge particles, IMF's (Intermediate Mass Fragment) and fragments. Indeed, there is an amount of matter in excess emitted in-between the two primary sources suggesting either the existence of a mid-rapidity source similar to the one observed in the relativistic regime (participants) or a strong deformation induced by the dynamics of the collision (neck instability). This last scenario is explored by analysing in details the angular distributions of the fission fragments. More precisely, authors observed two components: The first one is isotropic and consistent with the predictions of a statistical model, the second is aligned along the velocity direction of the fissioning nuclei and has to be compared with the predictions of dynamical calculations. In this talk, authors present the probability associated to each component as a function of the system size, the charge asymmetry of the fission fragments, the incident energy and the impact parameter. From the statistical component authors extract the temperature, the charge and the angular momentum of the fissioning nuclei. From the second component authors propose a scenario to explain such process and authors discuss the physical parameters which can be extracted

  7. Fusion-fission dynamics at high excitation energies studied by neutron emission

    Science.gov (United States)

    Zank, W. P.; Hilscher, D.; Ingold, G.; Jahnke, U.; Lehmann, M.; Rossner, H.

    1986-02-01

    Neutron emission in coincidence with fusion-fission events and evaporation residues was measured in the heavy-ion reactions 141+(316 MeV) 40Ar and 175Lu+(192 MeV) 12C. Both reactions are leading to similar composite systems and excitation energies as the previously investigated reaction 165Ho+ 20Ne. In order to determine the lifetimes of the composite systems prior to scission and to study entrance channel and angular-momentum effects, the results for all three systems are compared. From measured cross sections of fission and evaporation residues, the angular momentum intervals leading to fission are deduced to be 50-109 ħ and 49-62 ħ for Pr+Ar and Lu+C, respectively. The corresponding prescission neutron multiplicities are deduced to be Mnpresc=3.6+/-0.6 and 6.3+/-0.8, whereas the respective postscission multiplicities are Mnpost=4.4+/-0.4 and 3.6+/-0.6. For the system 175Lu+ 12C it is found that 0.5+/-0.2 preequilibrium neutrons are emitted. In contrast to the evaporative neutrons, a strong anisotropy anPE=2.2+/-0.6 relative to the reaction plane defined by one fission fragment and the beam direction is observed. From the prescission neutron multiplicities, the evaporation time of the system prior to scission is deduced using the statistical model to ~=(3-12)×10-20 s. Nucleus deformation effects and neutron emission from not fully accelerated fission fragments are taken into account. The unexpected long prescission lifetimes can be explained as long transition times to the scission point caused by a large two-body viscosity. Under this assumption the viscosity parameter of the highly excited nuclei has been determined in a first approximation to μ~=0.1 TP. The results might be understood also assuming a mixture of a two-body and one-body friction.

  8. Dynamical effects and time scale in fission processes in nuclear collisions in the Fermi energy range

    International Nuclear Information System (INIS)

    Colin, J.; Bocage, F.; Louvel, M.

    1999-10-01

    Recent experimental results concerning heavy systems (Pb+Au, Pb+Ag, Pb+Al, Gd+U, Gd+C, Ta+Au, U+U, U+C, Xe+Sn...) obtained at Ganil by the Indra and Nautilus collaborations will be presented. A study of reaction mechanisms has shown the dominant binary and highly dissipative character of the process. The two heavy and excited fragments produced after the first stage of the interaction can experience various decay modes: evaporation, fission, multifragmentation. However, deviations from this simple picture have been found by analysing angular and velocity distribution of light charge particles, IMF's (Intermediate Mass Fragment) and fragments. Indeed, there is an amount of matter in excess emitted in-between the two primary sources suggesting either the existence of a mi-rapidity source similar to the one observed in the relativistic regime (participants) or a strong deformation induced by the dynamics of the collision (neck instability). This last scenario is explored by analysing in details the angular distributions of the fission fragments. More precisely, we observed two components: the first one is isotropic and consistent with the predictions of a statistical model, the second is aligned along the velocity direction of the fissioning nuclei and has to be compared with the predictions of dynamical calculations. In this talk, we present the probability associated to each component as a function of the system size, the charge asymmetry of the fission fragments, the incident energy and the impact parameter. From the statistical component we extract the temperature, the charge and the angular momentum of the fissioning nuclei. From the second component we propose a scenario to explain such process and we discuss the physical parameters which can be extracted. (authors)

  9. Angular distribution of fragments from neutron-induced fission of 238U in the intermediate energy region

    International Nuclear Information System (INIS)

    Carlsson, Magnus

    2004-06-01

    Areas ranging from nuclear structure models to accelerator-driven systems benefit from improved neutron-induced fission data in the intermediate energy region. In this Master's degree thesis, the fragment angular distribution from fission of 238 U, induced by 21-MeV neutrons, has been analysed from an experiment performed with the Medley/DIFFICILE setup at the The Svedberg Laboratory in Uppsala. The data have been corrected for low energy neutrons in the beam. The results agree with other experiments, as well as with model calculations. The data should be a starting point for further analysis with a goal to deduce the fission cross-section of 238 U

  10. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 1: Bottoming cycles and materials of construction

    Science.gov (United States)

    Shah, R. P.; Solomon, H. D.

    1976-01-01

    Energy conversion subsystems and components were evaluated in terms of advanced energy conversion systems. Results of the bottoming cycles and materials of construction studies are presented and discussed.

  11. Fission of intermediate mass nuclei by bremsstrahlung photons in the energy range 0.8-1.8 GeV

    International Nuclear Information System (INIS)

    Lima, D.A. de.

    1983-01-01

    The fission of intermediate mass nuclei in the Al-Ta internal induced by bremsstrahlung photons of maximum energies between 0,8 to 1,8 GeV is studied. Thin targets of Nd and Sm and dense targets of Al,Ti,Co,Zr,Nb,Ag,In and Ta are utilized, and all the aspects related with the fission fragment absorption by the targets themselves are considered. The samples are exposed in th 2,5 GeV Electron Synchrotron at Bonn University. Muscovite mica, CR-39 and makrofol are used as fission fragments detectors. Fission cross sections and nuclear fissionabilities of the studied elements are estimated. (L.C.) [pt

  12. Experimental Research of a New Wave Energy Conversion Device

    Science.gov (United States)

    Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Chen, Gewei

    2018-01-01

    With the increasing tension of contemporary social energy, the development and utilization of renewable energy has become an important development direction. As an important part of renewable energy, wave energy has the characteristics of green environmental protection and abundant reserves, attracting more investment and research. For small marine equipment energy supply problem, this paper puts forward a micro wave energy conversion device as the basic of heaving motion of waves in the ocean. This paper designed a new type of power output device can solve the micro wave energy conversion problem.

  13. Charged particle emission from 194Hg compound nuclei: Energy and spin dependence of fission-evaporation competition

    International Nuclear Information System (INIS)

    Rajagopalan, M.; Logan, D.; Ball, J.W.; Kaplan, M.; Delagrange, H.; Rivet, M.F.; Alexander, J.M.; Vaz, L.C.; Zisman, M.S.

    1982-01-01

    Twelve reactions have been studied that produce the compound system 194 Hg* at excitation energies of 57--195 MeV and with l/sub crit/ values of 25--142h. Beams of 12 C, 19 F, 20 Ne, and 40 Ar ions in conjunction with appropriate targets have been used to measure cross sections for evaporative H/He, fission, and evaporation residues. These results confirm that most 1 H and 4 He is evaporated prior to fission or instead of fission and very little if any from the fission fragments. The probability of H/He evaporation increases dramatically with excitation energy. The evaporation residue cross sections (sigma/sub ER//πlambda-dash-bar 2 ) indicate fission survival for entrance channel l up to 27--39h. Fission survival becomes stronger and corresponding fission competition becomes weaker for excitation > or =100 MeV; a connection with charged particle emission is suggested. The dimensionless cross section for evaporation residue (sigma/sub ER//πlambda-dash-bar 2 ) depends on both the entrance channel and on energy, indicating that nonequilibrium mechanisms must play an important role, even for l< or approx. =40. Heretofore evaporation residue production has been usually thought to arise from lower partial waves while direct reactions have been thought to dominate only for the higher partial waves

  14. Ternary fission

    International Nuclear Information System (INIS)

    Wagemans, C.

    1991-01-01

    Since its discovery in 1946, light (charged) particle accompanied fission (ternary fission) has been extensively studied, for spontaneous as well as for induced fission reactions. The reason for this interest was twofold: the ternary particles being emitted in space and time close to the scission point were expected to supply information on the scission point configuration and the ternary fission process was an important source of helium, tritium, and hydrogen production in nuclear reactors, for which data were requested by the nuclear industry. Significant experimental progress has been realized with the advent of high-resolution detectors, powerful multiparameter data acquisition systems, and intense neutron and photon beams. As far as theory is concerned, the trajectory calculations (in which scission point parameters are deduced from the experimental observations) have been very much improved. An attempt was made to explain ternary particle emission in terms of a Plateau-Rayleigh hydrodynamical instability of a relatively long cylindrical neck or cylindrical nucleus. New results have also been obtained on the so-called open-quotes trueclose quotes ternary fission (fission in three about-equal fragments). The spontaneous emission of charged particles has also clearly been demonstrated in recent years. This chapter discusses the main characteristics of ternary fission, theoretical models, light particle emission probabilities, the dependence of the emission probabilities on experimental variables, light particle energy distributions, light particle angular distributions, correlations between light particle accompanied fission observables, open-quotes trueclose quotes ternary fission, and spontaneous emission of heavy ions. 143 refs., 18 figs., 8 tabs

  15. Neutron-fragment and Neutron-neutron Correlations in Low-energy Fission

    Energy Technology Data Exchange (ETDEWEB)

    Lestone, J.P., E-mail: lestone@lanl.gov

    2016-01-15

    A computational method has been developed to simulate neutron emission from thermal-neutron induced fission of {sup 235}U and from spontaneous fission of {sup 252}Cf. Measured pre-emission mass-yield curves, average total kinetic energies and their variances, both as functions of mass split, are used to obtain a representation of the distribution of fragment velocities. Measured average neutron multiplicities as a function of mass split and their dependence on total kinetic energy are used. Simulations can be made to reproduce measured factorial moments of neutron-multiplicity distributions with only minor empirical adjustments to some experimental inputs. The neutron-emission spectra in the rest-frame of the fragments are highly constrained by ENDF/B-VII.1 prompt-fission neutron-spectra evaluations. The n-f correlation measurements of Vorobyev et al. (2010) are consistent with predictions where all neutrons are assumed to be evaporated isotropically from the rest frame of fully accelerated fragments. Measured n-f and n-n correlations of others are a little weaker than the predictions presented here. These weaker correlations could be used to infer a weak scission-neutron source. However, the effect of neutron scattering on the experimental results must be studied in detail before moving away from a null hypothesis that all neutrons are evaporated from the fragments.

  16. Energy measurement of prompt fission neutrons in 239Pu(n,f) for incident neutron energies from 1 to 200 MeV

    CERN Document Server

    Chatillon, A; Granier, Th; Laurent, B; Taïeb, J; Noda, S; Haight, R C; Devlin, M; Nelson, R O; O’Donnell, J M

    2010-01-01

    Prompt fission neutron spectra in the neutron-induced fission of 239Pu have been measured for incident neutron energies from 1 to 200 MeV at the Los Alamos Neutron Science Center. Preliminary results are discussed and compared to theoretical model calculation.

  17. Evaluation of DD and DT fusion fuel cycles for different fusion-fission energy systems

    International Nuclear Information System (INIS)

    Gohar, Y.

    1980-01-01

    A study has been carried out in order to investigate the characteristics of an energy system to produce a new source of fissile fuel for existing fission reactors. The denatured fuel cycles were used because it gives additional proliferation resistance compared to other fuel cycles. DT and DD fusion drivers were examined in this study with a thorium or uranium blanket for each fusion driver. Various fuel cycles were studied for light-water and heavy-water reactors. The cost of electricity for each energy system was calculated

  18. Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Neil; Yang, Peidong

    2013-01-23

    Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for wide-scale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.

  19. Neutronics analysis of water-cooled energy production blanket for a fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Jiang Jieqiong; Wang Minghuang; Chen Zhong; Qiu Yuefeng; Liu Jinchao; Bai Yunqing; Chen Hongli; Hu Yanglin

    2010-01-01

    Neutronics calculations were performed to analyse the parameters of blanket energy multiplication factor (M) and tritium breeding ratio (TBR) in a fusion-fission hybrid reactor for energy production named FDS (Fusion-Driven hybrid System)-EM (Energy Multiplier) blanket. The most significant and main goal of the FDS-EM blanket is to achieve the energy gain of about 1 GWe with self-sustaining tritium, i.e. the M factor is expected to be ∼90. Four different fission materials were taken into account to evaluate M in subcritical blanket: (i) depleted uranium, (ii) natural uranium, (iii) enriched uranium, and (iv) Nuclear Waste (transuranic from 33 000 MWD/MTU PWR (Pressurized Water Reactor) and depleted uranium) oxide. These calculations and analyses were performed using nuclear data library HENDL (Hybrid Evaluated Nuclear Data Library) and a home-developed code VisualBUS. The results showed that the performance of the blanket loaded with Nuclear Waste was most attractive and it could be promising to effectively obtain tritium self-sufficiency and a high-energy multiplication.

  20. 20th intersociety energy conversion engineering conference. Volume 2

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    This volume contains information on the mission and status of the DOE's battery energy storage program, the development of an advanced battery electric energy storage system for electric utility load leveling, and the aluminum-air power cell. Plastic-bonded, nonsintered nickel-cadmium batteries for submarines and the cycle life chemistry of ambient-temperature secondary lithium cells are also discussed. The development of zinc-bromine batteries for stationary energy storage, the development of a zinc-chloride battery for 10-kw electric energy storage, and sodium sulfur cells with high conductivity glass electrolytes are discussed. The recovery of lead/acid batteries from abusive deep discharge, and high rate lithium batteries safety testing for U.L. component recognition are reviewed. Enhanced energy recovery, geothermal power, and heat engine cycles are discussed. Hydrogen energy, magnetohydrodynamics and nuclear fission are examined

  1. Linear free energy correlations for fission product release from the Fukushima-Daiichi nuclear accident.

    Science.gov (United States)

    Abrecht, David G; Schwantes, Jon M

    2015-03-03

    This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the initial source of the radionuclides to the environment to be from active reactors rather than the spent fuel pool. Linear correlations of the form In χ = −α ((ΔGrxn°(TC))/(RTC)) + β were obtained between the deposited concentrations, and the reduction potentials of the fission product oxide species using multiple reduction schemes to calculate ΔG°rxn (TC). These models allowed an estimate of the upper bound for the reactor temperatures of TC between 2015 and 2060 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products 90Sr, 121mSn, 147Pm, 144Ce, 152Eu, 154Eu, 155Eu, and 151Sm through atmospheric venting during the first month following the accident were obtained, indicating that large quantities of 90Sr and radioactive lanthanides were likely to remain in the damaged reactor cores.

  2. NASA-OAST program in photovoltaic energy conversion

    Science.gov (United States)

    Mullin, J. P.; Flood, D. J.

    1982-01-01

    The NASA program in photovoltaic energy conversion includes research and technology development efforts on solar cells, blankets, and arrays. The overall objectives are to increase conversion efficiency, reduce mass, reduce cost, and increase operating life. The potential growth of space power requirements in the future presents a major challenge to the current state of technology in space photovoltaic systems.

  3. Recent Progress on Integrated Energy Conversion and Storage Systems.

    Science.gov (United States)

    Luo, Bin; Ye, Delai; Wang, Lianzhou

    2017-09-01

    Over the last few decades, there has been increasing interest in the design and construction of integrated energy conversion and storage systems (IECSSs) that can simultaneously capture and store various forms of energies from nature. A large number of IECSSs have been developed with different combination of energy conversion technologies such as solar cells, mechanical generators and thermoelectric generators and energy storage devices such as rechargeable batteries and supercapacitors. This review summarizes the recent advancements to date of IECSSs based on different energy sources including solar, mechanical, thermal as well as multiple types of energies, with a special focus on the system configuration and working mechanism. With the rapid development of new energy conversion and storage technologies, innovative high performance IECSSs are of high expectation to be realised for diverse practical applications in the near future.

  4. Energy conversion device with support member having pore channels

    Science.gov (United States)

    Routkevitch, Dmitri [Longmont, CO; Wind, Rikard A [Johnstown, CO

    2014-01-07

    Energy devices such as energy conversion devices and energy storage devices and methods for the manufacture of such devices. The devices include a support member having an array of pore channels having a small average pore channel diameter and having a pore channel length. Material layers that may include energy conversion materials and conductive materials are coaxially disposed within the pore channels to form material rods having a relatively small cross-section and a relatively long length. By varying the structure of the materials in the pore channels, various energy devices can be fabricated, such as photovoltaic (PV) devices, radiation detectors, capacitors, batteries and the like.

  5. On the separation of so-called non-volatile uranium fission products of uranium using the conversion of neutron-irradiated uranium dioxide and graphite

    International Nuclear Information System (INIS)

    Elhardt, W.

    1979-01-01

    The investigations are continued in the following work which arose from the concept of separating uranium fission products from uranium. This is achieved in that due to the lattice conversions occurring during the course of solid chemical reactions, fission products can easily pass from the uranium-contained solid to a second solid. The investigations carried out primarily concern the release behaviour of cerium and neodymium in the temperature region of 1200 to 1700 0 C. UO 2 + graphite, both in powder form, are selected as suitable reaction system having the preconditions needed for the lattice conversion for the release effect. The target aimed at from the practical aspect for the improved release of lanthanoids is achieved by an isobar test course - changing temperature from 1200 to 1500 0 C at constant pressure, with a cerium release of 75-80% and a neodynium release of 80-90% (maximum at 1400 0 C). The concepts on the mechanism of the fission product release are related to transport processes in crystal lattices, as well as chemical solid reactions and evaporation processes on the surface of UC 2 grains. (orig./RB) [de

  6. Advanced Reactor Technology/Energy Conversion Project FY17 Accomplishments.

    Energy Technology Data Exchange (ETDEWEB)

    Rochau, Gary E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    The purpose of the ART Energy Conversion (EC) Project is to provide solutions to convert the heat from an advanced reactor to useful products that support commercial application of the reactor designs.

  7. Microfluidic energy conversion by application of two phase flow

    NARCIS (Netherlands)

    Xie, Yanbo

    2013-01-01

    We investigated the energy conversion performance by the streaming potential using totally different approaches. By introducing gas bubbles, which can be considered as perfect insulators, the internal electrical resistance of the system can be increased, decreasing the conduction current. Following

  8. Proceedings of the 23rd intersociety energy conversion engineering conference

    International Nuclear Information System (INIS)

    Goswami, D.Y.

    1988-01-01

    This book covers the proceedings of the 23rd Interscociety Energy Conversion Engineering Conference. The subjects covered here are: Stirling engines, heat engines, thermoelectric power, thermal rejection systems, advanced cycles and systems, nuclear power, and thermionic power

  9. Challenging fission cross section simulation with long standing macro-microscopic model of nucleus potential energy surface

    International Nuclear Information System (INIS)

    Tamagno, Pierre

    2015-01-01

    The work presented here aims to improve models used in the fission cross section evaluation. The results give insights for a significant breakthrough in this field and yielded large extensions of the evaluation code CONRAD. Partial cross sections are inherently strongly correlated together as of the competition of the related reactions must yield the total cross section. Therefore improving fission cross section benefits to all partial cross sections. A sound framework for the simulation of competitive reactions had to be settled in order to further investigate on the fission reaction; this was implemented using the TALYS reference code as guideline. After ensuring consistency and consistency of the framework, focus was made on fission. Perspective resulting from the use of macroscopic-microscopic models such as the FRDM and FRLDM were analyzed; these models have been implemented and validated on experimental data and benchmarks. To comply with evaluation requirements in terms of computation time, several specific numerical methods have been used and parts of the program were written to run on GPU. These macroscopic-microscopic models yield potential energy surfaces that can be used to extract a one-dimensional fission barrier. This latter can then be used to obtained fission transmission coefficients that can be used in a Hauser-Feshbach model. This method has been finally tested for the calculation of the average fission cross section for 239 Pu(n,f). (author) [fr

  10. Achieving sustainable biomass conversion to energy and bio products

    International Nuclear Information System (INIS)

    Matteson, G. C.

    2009-01-01

    The present effort in to maximize biomass conversion-to-energy and bio products is examined in terms of sustain ability practices. New goals, standards in practice, measurements and certification are needed for the sustainable biomass industry. Sustainable practices produce biomass energy and products in a manner that is secure, renewable, accessible locally, and pollution free. To achieve sustainable conversion, some new goals are proposed. (Author)

  11. A summary of USSR thermionic energy conversion activity

    Science.gov (United States)

    Rasor, N. S.

    1978-01-01

    The paper surveys the research and development associated with thermionic energy conversion in the USSR. Consideration is given to the basic physics of the thermionic converter, the development of thermionic nuclear reactors including the three TOPAZ models, radioisotope-heated generators, and the thermionic topping of fossil-fueled electric-power plants. Comparisons are made between U.S. and USSR capabilities in thermionic energy conversion and potential cooperative programs are noted.

  12. Conversion of biomass into energy source

    International Nuclear Information System (INIS)

    Antonescu, S.; Garjoaba, M.; Antonescu, A.

    2005-01-01

    This study assists the identification of possible application and markets of the CHP-plants in the NAS states, and forms the first part of a detailed study on economical and ecological prospects of small scale and large heat pipe reformers in NAS. It is well known that the energy strategy of the European Union, foresees the increase of the participation of the renewable energy from the total of the energy resources of the European Union, up to 12% in 2010. This participation is of a great importance for the adequate reduction of green house effect gases. From the energy production point of view it is proven the fact that in 2010 the production of renewable energy will be: electricity - 675 tWh; heat - 80 Mtoe (930 TWh). From the above mentioned energy demand, the biomass will cover: electricity - 230 TWh-34,1%; heat - 75 Mtoe (93,8%)

  13. Fission modelling with FIFRELIN

    Energy Technology Data Exchange (ETDEWEB)

    Litaize, Olivier; Serot, Olivier; Berge, Leonie [CEA, DEN, DER, SPRC, Saint Paul Lez Durance (France)

    2015-12-15

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ, e{sup -}). The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for

  14. Materials science for solar energy conversion systems

    CERN Document Server

    Granqvist, CG

    1991-01-01

    Rapid advances in materials technology are creating many novel forms of coatings for energy efficient applications in solar energy. Insulating heat mirrors, selective absorbers, transparent insulation and fluorescent concentrators are already available commercially. Radiative cooling, electrochromic windows and polymeric light pipes hold promise for future development, while chemical and photochemical processes are being considered for energy storage. This book investigates new material advances as well as applications, costs, reliability and industrial production of existing materials. Each c

  15. Renewable Energy Operation and Conversion Schemes

    DEFF Research Database (Denmark)

    Spagnuolo, Giovanni; Petrone, Giovanni; Araujo, Samuel Vasconcelos

    2010-01-01

    A short summary of some speeches given during Seminar on Renewable Energy system (SERENE) is presented. The contributions have been mainly focused on power electronics for photovoltaic (PV) and sea wave energies, pointing out some aspects related to efficiency, reliability, and grid integration....... Finally, main issues concerning fuel cell (FC) systems as generators based on hydrogen as a low environmental impact energy vector are presented....

  16. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    Science.gov (United States)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  17. Teaching on ocean-wave-energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Falnes, J. [Norges teknisk-naturvitskaplege univ., Inst. for fysikk, Trondheim (Norway)

    2001-07-01

    Ocean-wave energy utilisation has for 27 years been a university research subject, in which the author has been active from the first year. In this paper he presents some information related to his teaching on the subject during many of these years. This includes teaching on the pre-university level and, in particular, development of the wave-energy module for an educational CD-ROM on sustainable technology and renewable energy. Education of the general public is very important. On the other hand teaching of doctor students and other wave-energy researchers is also a subject of the paper. (au)

  18. Biomass energy conversion workshop for industrial executives

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The rising costs of energy and the risks of uncertain energy supplies are increasingly familiar problems in industry. Bottom line profits and even the simple ability to operate can be affected by spiralling energy costs. An often overlooked alternative is the potential to turn industrial waste or residue into an energy source. On April 9 and 10, 1979, in Claremont, California, the Solar Energy Research Institute (SERI), the California Energy Commission (CEC), and the Western Solar Utilization Network (WSUN) held a workshop which provided industrial managers with current information on using residues and wastes as industrial energy sources. Successful industrial experiences were described by managers from the food processing and forest product industries, and direct combustion and low-Btu gasification equipment was described in detail. These speakers' presentations are contained in this document. Some major conclusions of the conference were: numerous current industrial applications of wastes and residues as fuels are economic and reliable; off-the-shelf technologies exist for converting biomass wastes and residues to energy; a variety of financial (tax credits) and institutional (PUC rate structures) incentives can help make these waste-to-energy projects more attractive to industry. However, many of these incentives are still being developed and their precise impact must be evaluated on a case-by-case basis.

  19. Spontaneous Fission and alpha -Decay Half-Lives of Superheavy Nuclei in Different Macroscopic Energy Models

    CERN Document Server

    Lojewski, Z; Pomorski, K

    2003-01-01

    Spontaneous fission half-lives (T sub s sub f) of the heaviest nuclei are calculated in the macroscopic-microscopic approach based on the deformed Woods-Saxon potential. Four different models of the macroscopic energy are examined and their influence on the results is discussed. The calculations of (T sub s sub f) are performed within WKB approximation. Multi-dimensional dynamical-programming method (MDP) is applied to minimize the action integral in a 3-dimensional space of deformation parameters describing the nuclear shape (beta sub 2 ,beta sub 4 ,beta sub 6).

  20. Energy conversion evolution at lunar polar sites

    Indian Academy of Sciences (India)

    cating the use of polar regions, with or without the putative ice resource, as preferred base locations. (Burke 1978, 1995) primarily because of their more favorable thermal environments. Now this prospect. Keywords. Energy generation; solar energy; electric power; lunar environment. J. Earth Syst. Sci. 114, No. 6, December ...

  1. The Potential Of Fission Nuclear Energy In Resolving Global Climate Change

    International Nuclear Information System (INIS)

    Pevec, D.

    2015-01-01

    There is an international consensus on the need of drastic reduction of carbon emission if very serious global climate changes are to be avoided. At present target is to limit global temperature increase to 2 Degrees of C and to keep CO 2 concentration below 450 ppm, though some recent request by climatologists argue for lower limit of 1.5 Degrees of C. The carbon emission reduction has to be done in the next few decades, as climate effects are essentially determined by integral emission. The integral emissions should not exceed 1000 Gt CO 2 to keep the probability of exceeding global temperature by 2 Degrees of C below 25 percent. Consequently, when we consider energy sources that could produce carbon free energy we have to concentrate on the period not later than 2060-2065. The sources that can take the burden of reduction in the years up to 2065 are Renewable Energy Sources (RES) and nuclear fission energy. The potential of RES has been estimated by many organizations and individuals. Their predictions indicate that RES are not likely to be sufficient to replace carbon emitters and fulfill the 2 Degrees of C limit requirements. The nuclear fission energy can give a very serious and hopefully timely (unlike nuclear fusion) contribution to reduction of emission. Even with proven conventional reactors using once through fuel cycle without fuel reprocessing the nuclear build-up in the years 2025-2065 could reach 3330 GW. With this concept nuclear contribution of 94.5 EJ/y would be reached by 2065, while integral CO 2 emission savings would be about 500 Gt CO 2 by 2065. This shows that essential nuclear contribution is possible without the use of plutonium and fast breeders, technology not ready for climate-critical next 50 years and not acceptable in present political environment. This nuclear fission energy contribution along with contributions from renewable sources, energy saving, and increased efficiency in energy use can solve the climate problems. (author).

  2. Microscopic description of fission in nobelium isotopes with the Gogny-D1M energy density functional

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Guzman, R. [Kuwait University, Physics Department, Kuwait (Kuwait); Robledo, L.M. [Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Madrid (Spain)

    2016-11-15

    Constrained mean-field calculations, based on the Gogny-D1M energy density functional, have been carried out to describe fission in the isotopes {sup 250-260}No. The even-even isotopes have been considered within the standard Hartree-Fock-Bogoliobov (HFB) framework while for the odd-mass ones the Equal Filling Approximation (HFB-EFA) has been employed. Ground state quantum numbers and deformations, pairing energies, one-neutron separation energies, inner and outer barrier heights as well as fission isomer excitation energies are given. Fission paths, collective masses and zero-point quantum vibrational and rotational corrections are used to compute the systematic of the spontaneous fission half-lives t{sub SF} both for even-even and odd-mass nuclei. Though there exists a strong variance of the predicted fission rates with respect to the details involved in their computation, it is shown that both the specialization energy and the pairing quenching effects, taken into account within the self-consistent HFB-EFA blocking procedure, lead to larger t{sub SF} values in odd-mass nuclei as compared with their even-even neighbors. Alpha decay lifetimes have also been computed using a parametrization of the Viola-Seaborg formula. The high quality of the Gogny-D1M functional regarding nuclear masses leads to a very good reproduction of Q{sub α} values and consequently of lifetimes. (orig.)

  3. Rotational energy conversion and thermal evolution of neutron stars

    Science.gov (United States)

    Zhu, Cui; Zhou, Xia; Wang, Na

    2017-12-01

    Pulsars are rapidly spinning, strongly magnetized neutron stars. Their electromagnetic dipole radiation is usually assumed to be at the expense of the rotational energy. In this work, we consider a new channel through which rotational energy could be radiated away directly via neutrinos. With this new energy conversion channel, we can improve the chemical heating mechanism that originates in the deviation from β equilibrium due to spin-down compression. The improved chemical and thermal evolution equations with different magnetic field strengths are solved numerically. The results show that the new energy conversion channel could raise the surface temperature of neutron stars, especially for weak field stars at later stages of their evolution. Moreover, our results indicate that the new energy conversion channel induced by the non-equilibrium reaction processes should be taken into account in the study of thermal evolution. Supported by National Natural Science Foundation of China (11373006) and the West Light Foundation of Chinese Academy of Sciences (ZD201302)

  4. Fission and fragmentation of silver and bromine nuclei by 1-6 GeV energy photons

    International Nuclear Information System (INIS)

    Pinheiro Filho, J. de D.

    1983-01-01

    Fission and fragmentation of silver and bromine nuclei induced by bremsstrahlung photons in the maximum energy range of 1-6 GeV are studied. A special technique of nuclear emulsion for the highly ionizing nuclear fragment detection is used in the discrimination between nuclear fission and fragmentation events. Films of Ilford-KO nuclear emulsion (approximatelly 10 20 atoms/cm 2 of Ag, Br) which had been exposed to bremsstrahlung beams in 'Deutsches Elektronen Synchrotron' (DESY, Hamburg) with total doses of approximatelly 10 11 equivalent photons are used. Through a detailed analysis of range, angular and angle between fragment distributions, and empirical relations which permit to estimate nuclear fragment energy, range and velocity, the discrimination between fission and fragmentation events is made. Results related to fragment range distribution, angular distribution, distribution of angle between fragments, distribution of ratio between ranges, velocity distributions, forward/backward ratio, fission and fragmentation cross sections, nuclear fissionability and ternary fission frequency are presented and discussed. The results show that the mean photofragmentation cross section in the internal 1-6 GeV (0,09+-0,02mb) is significant when compared to the photofission (0,29+-0,05mb). It is also shown that the mean photofission cross section between 1 and 6 GeV is great by a factor of approximatelly 10 when compared to the foreseen by the cascade-evaporation nuclear model for monoenergetic photons of 0,6 GeV. (L.C.) [pt

  5. $\\gamma$-ray energy spectra and multiplicities from the neutron-induced fission of $^{235}$U using STEFF

    CERN Multimedia

    An experiment is proposed to use the STEFF spectrometer at n_TOF to study fragment $\\gamma$-correlations following the neutron-induced fission of $^{235}$U. The STEFF array of 12 NaI detectors will allow measurements of the single $\\gamma$-energy, the $\\gamma$ multiplicity, and the summed $\\gamma$energy distributions as a function of the mass and charge split, and deduced excitation energy in the fission event. These data will be used to study the origin of fission-fragment angular momenta, examining angular distribution eects as a function of incident neutron energy. The principal application of this work is in meeting the NEA high-priority request for improved $\\gamma$ray data from $^{235}$U(n; F). To improve the detection rate and expand the range of detection angles, STEFF will be modied to include two new ssion-fragment detectors each at 45 to the beam direction.

  6. Supramolecular Structures for Photochemical Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Gust, Devens; Moore, Thomas A.; Moore, Ana L.

    2003-08-26

    OAK B188 The goal of this project is to mimic the energy transduction processes by which photosynthetic organisms harvest sunlight and convert it to forms of energy that are more easily used and stored. The results may lead to new technologies for solar energy harvesting based on the natural photosynthetic process. They may also enrich our understanding and control of photosynthesis in living organisms, and lead to methods for increasing natural biomass production, carbon dioxide removal, and oxygen generation. In our work to date, we have learned how to make synthetic antenna and reaction center molecules that absorb light and undergo photoinduced electron transfer to generate long-lived, energetic charge-separated states. We have assembled a prototype system in which artificial reaction centers are inserted into liposomes (artificial cell-like constructs), where they carry out light-driven transmembrane translocation of hydrogen ions to generate proton motive force. By insertion of natural ATP synthase into the liposomal bilayer, this proton motive force has been used to power the synthesis of ATP. ATP is a natural biological energy currency. We are carrying out a systematic investigation of these artificial photosynthetic energy harvesting constructs in order to understand better how they operate. In addition, we are exploring strategies for reversing the direction of the light-powered proton pumping. Most recently, we have extended these studies to develop a light-powered transmembrane calcium ion pump that converts sunlight into energy stored as a calcium ion concentration gradient across a lipid bilayer.

  7. Emerging electrochemical energy conversion and storage technologies

    Science.gov (United States)

    Badwal, Sukhvinder; Giddey, Sarbjit; Munnings, Christopher; Bhatt, Anand; Hollenkamp, Tony

    2014-09-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation and storage; pollution control / monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges.

  8. Emerging electrochemical energy conversion and storage technologies

    Science.gov (United States)

    Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F.

    2014-01-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation, and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time, and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges. PMID:25309898

  9. Advanced Thermal Energy Conversion of Temperature under 300°C by Thermoelectric Conversion Method

    Science.gov (United States)

    Ueda, Tadashi; Uchida, Yoshiyuki; Shingu, Hiroyasu

    Many approaches have been developing for energy conversion throughout the world. However, it is difficult to achieve the global warming countermeasure based on “The Kyoto protocol”. Until now effective utilization of low temperature thermal energy (under 300°C) is not advancing one. For example, effective utilization method has not been established for waste heat energy which arise from industry machine tools, automobiles, internal combustion engines and thermal energy from natural environment, etc. In this paper, we reported the experiment for effective utilizing of low temperature (under 300°C) thermal energy conversion. The device used for the measurement is a copper thermo device. Thermo electromotive force of 150mW/cm2 was obtained at 200°C. The obtained thermo electromotive force is about 15 times higher in comparison with generally used alumal-chromal thermocouple. Our aim is that utilizes low temperature thermal energy effectively by converting into electricity.

  10. Comparative evaluation of solar, fission, fusion, and fossil energy resources, part 3

    Science.gov (United States)

    Clement, J. D.; Reupke, W. A.

    1974-01-01

    The role of nuclear fission reactors in becoming an important power source in the world is discussed. The supply of fissile nuclear fuel will be severely depleted by the year 2000. With breeder reactors the world supply of uranium could last thousands of years. However, breeder reactors have problems of a large radioactive inventory and an accident potential which could present an unacceptable hazard. Although breeder reactors afford a possible solution to the energy shortage, their ultimate role will depend on demonstrated safety and acceptable risks and environmental effects. Fusion power would also be a long range, essentially permanent, solution to the world's energy problem. Fusion appears to compare favorably with breeders in safety and environmental effects. Research comparing a controlled fusion reactor with the breeder reactor in solving our long range energy needs is discussed.

  11. Fission 2009 4. International Workshop on Nuclear Fission and Fission Product Spectroscopy - Compilation of slides

    International Nuclear Information System (INIS)

    2009-01-01

    This conference is dedicated to the last achievements in experimental and theoretical aspects of the nuclear fission process. The topics include: mass, charge and energy distribution, dynamical aspect of the fission process, nuclear data evaluation, quasi-fission and fission lifetime in super heavy elements, fission fragment spectroscopy, cross-section and fission barrier, and neutron and gamma emission. This document gathers the program of the conference and the slides of the presentations

  12. Guest Editorial Advanced Distributed Control of Energy Conversion Devices and Systems

    DEFF Research Database (Denmark)

    Davoudi, Ali; Guerrero, Josep M.; Lewis, Frank

    2014-01-01

    The papers in this special issue on advanced distributed control of energy conversion devices and systems are loosely grouped into three categories: 1) ac energy conversion systems; 2) dc energy conversion systems; and 3) optimization and standards.......The papers in this special issue on advanced distributed control of energy conversion devices and systems are loosely grouped into three categories: 1) ac energy conversion systems; 2) dc energy conversion systems; and 3) optimization and standards....

  13. Laser inertial fusion-based energy: Neutronic design aspects of a hybrid fusion-fission nuclear energy system

    Science.gov (United States)

    Kramer, Kevin James

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 mum of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb 83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles having a packing fraction of 20% in 2 cm diameter fuel pebbles. The fission blanket is cooled by

  14. Rotating flux compressor for energy conversion

    International Nuclear Information System (INIS)

    Chowdhuri, P.; Linton, T.W.; Phillips, J.A.

    1983-01-01

    The rotating flux compressor (RFC) converts rotational kinetic energy into an electrical output pulse which would have higher energy than the electrical energy initially stored in the compressor. An RFC has been designed in which wedge-shaped rotor blades pass through the air gaps between successive turns of a solenoid, the stator. Magnetic flux is generated by pulsing the stator solenoids when the inductance is a maximum, i.e., when the flux fills the stator-solenoid volume. Connecting the solenoid across a load conserves the flux which is compressed within the small volume surrounding the stator periphery when the rotor blades cut into the free space between the stator plates, creating a minimum-inductance condition. The unique features of this design are: (1) no electrical connections (brushes) to the rotor; (2) no conventional windings; and (3) no maintenance. The device has been tested up to 5000 rpm of rotor speed

  15. Physical Limits of Solar Energy Conversion in the Earth System.

    Science.gov (United States)

    Kleidon, Axel; Miller, Lee; Gans, Fabian

    2016-01-01

    Solar energy provides by far the greatest potential for energy generation among all forms of renewable energy. Yet, just as for any form of energy conversion, it is subject to physical limits. Here we review the physical limits that determine how much energy can potentially be generated out of sunlight using a combination of thermodynamics and observed climatic variables. We first explain how the first and second law of thermodynamics constrain energy conversions and thereby the generation of renewable energy, and how this applies to the conversions of solar radiation within the Earth system. These limits are applied to the conversion of direct and diffuse solar radiation - which relates to concentrated solar power (CSP) and photovoltaic (PV) technologies as well as biomass production or any other photochemical conversion - as well as solar radiative heating, which generates atmospheric motion and thus relates to wind power technologies. When these conversion limits are applied to observed data sets of solar radiation at the land surface, it is estimated that direct concentrated solar power has a potential on land of up to 11.6 PW (1 PW=10(15) W), whereas photovoltaic power has a potential of up to 16.3 PW. Both biomass and wind power operate at much lower efficiencies, so their potentials of about 0.3 and 0.1 PW are much lower. These estimates are considerably lower than the incoming flux of solar radiation of 175 PW. When compared to a 2012 primary energy demand of 17 TW, the most direct uses of solar radiation, e.g., by CSP or PV, have thus by far the greatest potential to yield renewable energy requiring the least space to satisfy the human energy demand. Further conversions into solar-based fuels would be reduced by further losses which would lower these potentials. The substantially greater potential of solar-based renewable energy compared to other forms of renewable energy simply reflects much fewer and lower unavoidable conversion losses when solar

  16. A simultaneous measurement of the angular distribution, mass and kinetic energy of uranium-235 and thorium-232 fission fragments

    Science.gov (United States)

    El-Hajje, Refaat

    2000-10-01

    Simultaneous measurements of the angular distribution, mass distribution and average total kinetic energy of fission fragments produced by the neutron-induced fission of 235U and 232Th have been made using a gridded ionisation chamber. The neutron energy range used was thermal to 1.9 MeV for 235U and 1.4 to 1.7 MeV for 232Th. The following topics were investigated: the interdependence of the fission fragment angular and mass distribution; the anomalous behaviour of fragment anisotropy for 235U(n,f) at neutron energies En below 150 keV; the possible existence of a third symmetric mass peak for 232Th(n,f); the mass fine structure in 235 U(n,f) and 232Th(n,f); and the dependence of the fission fragment average total kinetic energy on the excitation energy of the fissioning nucleus. For this study, mono-energetic neutrons were produced by the L73i( p,n)74 Be and H31( p,n)31 He reactions. Four signals produced by the fission chamber were fed into a data acquisition system and processed by a specially modified comprehensive computer program. The results indicate that there is no interdependence between the angular and mass distributions of fragments for 235U(n,f) and for 232Th(n,f). The angular distribution of 235U fission fragments showed an anisotropy of less than one for En below 150 keV. For 232Th, the expected minimum in the anisotropy near En = 1.6 MeV was confirmed. No evidence for a third peak in the mass symmetry region of 232Th(n,f) was observed, within the yield sensitivity limitation of the chamber. Fine structure was observed in the mass yield distributions for 235U(n,f) and 232Th(n,f) at mass locations predicted by theory. The fission fragment average total kinetic energy for 235U(n,f) and 232Th(n,f) showed no significant dependence on the excitation energy of the fissioning nucleus. Possible reasons for some of these results are advanced.

  17. Fission rate of nuclei at high excitation energy and emission of light particles

    International Nuclear Information System (INIS)

    Mersits, E.

    1991-10-01

    Light charged-particle emission has been measured for the reactions α + 238 U, 209 Bi, 232 Th at 118 MeV bombarding energies. The rate of particles detected in coincidence with fission fragments have been determined at high excitation energy. Modified precompound decay models and statistical models (program ALICE) have been used in an attempt to interpret the experimental data. The ratio of the level density parameter af/an was found to be 1.03 and 1.08, the temperature of neutron spectra was found to be 1.58 MeV and 1.33 MeV, for 238 U and 209 Bi, respectively. Analysing the experimental light-charged-particle spectra, there was no evidence for emission from the fission fragments which was in good agreement with calculations for the nucleus 209 Bi. On the other hand the theoretical emission spectra of 238 U predict great parts of such 'postfission' particles. Simplification in the model concerning the time of possible particle emission, that is, before the saddle-point and from the fragments, leads to the assumption of light particle emission between the saddle and the scission point

  18. Determination of the Spectral Index in the Fission Spectrum Energy Regime

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Amy Sarah [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-16

    Neutron reaction cross sections play a vital role in tracking the production and destruction of isotopes exposed to neutron fluence. They are central to the process of reconciling the initial and final atom inventories. Measurements of irradiated samples by radiochemical methods in tangent with an algorithm are used to evaluate the fluence a sample is exposed to over the course of the irradiation. This algorithm is the Isotope Production Code (IPC) created and used by the radiochemistry data assessment team at Los Alamos National Laboratory (LANL). An integral result is calculated by varying the total neutron fluence seen by a sample. A sample, irradiated in a critical assembly, will be exposed to a unique neutron flux defined by the neutron source and distance of the sample from the source. Neutron cross sections utilized are a function of the hardness of the neutron spectrum at the location of irradiation. A spectral index is used an indicator of the hardness of the neutron spectrum. Cross sections fit forms applied in IPC are collapsed from a LANL 30-group energy structure. Several decades of research and development have been performed to formalize the current IPC cross section library. Basis of the current fission spectrum neutron reaction cross section library is rooted in critical assembly experiments performed from the 1950’s through the early 1970’s at LANL. The focus of this report is development of the spectral index used an indicator of the hardness of the neutron spectrum in the fission spectrum energy regime.

  19. Energy analysis of biochemical conversion processes of biomass to bioethanol

    Energy Technology Data Exchange (ETDEWEB)

    Bakari, M.; Ngadi, M.; Bergthorson, T. [McGill Univ., Ste-Anne-de-Bellevue, PQ (Canada). Dept. of Bioresource Engineering

    2010-07-01

    Bioethanol is among the most promising of biofuels that can be produced from different biomass such as agricultural products, waste and byproducts. This paper reported on a study that examined the energy conversion of different groups of biomass to bioethanol, including lignocelluloses, starches and sugar. Biochemical conversion generally involves the breakdown of biomass to simple sugars using different pretreatment methods. The energy needed for the conversion steps was calculated in order to obtain mass and energy efficiencies for the conversions. Mass conversion ratios of corn, molasses and rice straw were calculated as 0.3396, 0.2300 and 0.2296 kg of bioethanol per kg of biomass, respectively. The energy efficiency of biochemical conversion of corn, molasses and rice straw was calculated as 28.57, 28.21 and 31.33 per cent, respectively. The results demonstrated that lignocelluloses can be efficiently converted with specific microorganisms such as Mucor indicus, Rhizopus oryzae using the Simultaneous Saccharification and Fermentation (SSF) methods.

  20. Ternary fission

    Indian Academy of Sciences (India)

    the energy minimization of all possible ternary breakups of a heavy radioactive nucleus. Further, within the TCM we have analysed the competition between different geometries as well as different positioning of the fragments. Also, an attempt was made to calculate the mass distribution of ternary fission process within the ...

  1. Polymer Based Nanocomposites for Solar Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Shaheen, S.; Olson, D.; White, M.; Mitchell, W.; Miedaner, A.; Curtis, C.; Rumbles, G.; Gregg, B.; Ginley, D.

    2005-01-01

    Organic semiconductor-based photovoltaic devices offer the promise of low cost photovoltaic technology that can be manufactured via large-scale, roll-to-roll printing techniques. Existing organic photovoltaic devices are currently limited to solar power conversion efficiencies of 3?5%. This is because of poor overlap between the absorption spectrum of the organic chromophores and the solar spectrum, non-ideal band alignment between the donor and acceptor species, and low charge carrier mobilities. To address these issues, we are investigating the development of dendrimeric organic semiconductors that are readily synthesized with high purity. They also benefit from optoelectronic properties, such as band gap and band positions, which can be easily tuned by substituting different chemical groups into the molecule. Additionally, we are developing nanostructured oxide/conjugated polymer composite photovoltaics. These composites take advantage of the high electron mobilities attainable in oxide semiconductors and can be fabricated using low-temperature solution-based growth techniques. Here, we discuss the synthesis and preliminary device results of these novel materials and composites.

  2. Energy conversion evolution at lunar polar sites

    Indian Academy of Sciences (India)

    Lunar polar environments have many advantages from the standpoint of energy supply to robotic and human surface bases.Sunlight is nearly continuous and always horizontal at peaks of perpetual light,while waste heat rejection is aided by the existence of cold,permanently shadowed regions nearby.In this paper a ...

  3. Direct energy conversion for fusion reactors

    International Nuclear Information System (INIS)

    Barr, W.L.

    1977-01-01

    Complex multistage plasma converters were tested at efficiencies approaching 90% at low energies and powers, and simpler, more cost-effective versions at 65% efficiency. Laboratory tests of neutral-beam direct converters at 15 keV and 2 kW gave 70% efficiency. A 120-keV, 1.5-MW version is being tested

  4. Role of Bioreactors in Microbial Biomass and Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liang [Chongqing University, Chongqing, China; Zhang, Biao [Chongqing University, Chongqing, China; Zhu, Xun [Chongqing University, Chongqing, China; Chang, Haixing [Chongqing University of Technology; Ou, Shawn [ORNL; Wang, HONG [Chongqing University, Chongqing, China

    2018-04-01

    Bioenergy is the world’s largest contributor to the renewable and sustainable energy sector, and it plays a significant role in various energy industries. A large amount of research has contributed to the rapidly evolving field of bioenergy and one of the most important topics is the use of the bioreactor. Bioreactors play a critical role in the successful development of technologies for microbial biomass cultivation and energy conversion. In this chapter, after a brief introduction to bioreactors (basic concepts, configurations, functions, and influencing factors), the applications of the bioreactor in microbial biomass, microbial biofuel conversion, and microbial electrochemical systems are described. Importantly, the role and significance of the bioreactor in the bioenergy process are discussed to provide a better understanding of the use of bioreactors in managing microbial biomass and energy conversion.

  5. PMBLDCG based stand-alone wind energy conversion system for ...

    African Journals Online (AJOL)

    This paper deals with a permanent magnet brushless DC generator (PMBLDCG) based stand-alone wind energy conversion system (WECS) for small scale power generation. A buck-boost DC-DC converter is used for controlling the PMBLDCG speed to achieve optimum energy output from the wind turbine without sensing ...

  6. Requirements and potential development pathways for fission energy supply infrastructures of the 21st century - a systems viewpoint

    International Nuclear Information System (INIS)

    Wade, D. C.

    1999-01-01

    Using an energy supply systems approach, we envision attributes and characteristic needs of a future global fission-based energy supply infrastructure, enumerate potential pathways for meeting those needs, and identify the underlying enabling science and technology developments for R and D efforts to meet the needs

  7. Porous media for catalytic renewable energy conversion

    Science.gov (United States)

    Hotz, Nico

    2012-05-01

    A novel flow-based method is presented to place catalytic nanoparticles into a reactor by sol-gelation of a porous ceramic consisting of copper-based nanoparticles, silica sand, ceramic binder, and a gelation agent. This method allows for the placement of a liquid precursor containing the catalyst into the final reactor geometry without the need of impregnating or coating of a substrate with the catalytic material. The so generated foam-like porous ceramic shows properties highly appropriate for use as catalytic reactor material, e.g., reasonable pressure drop due to its porosity, high thermal and catalytic stability, and excellent catalytic behavior. The catalytic activity of micro-reactors containing this foam-like ceramic is tested in terms of their ability to convert alcoholic biofuel (e.g. methanol) to a hydrogen-rich gas mixture with low concentrations of carbon monoxide (up to 75% hydrogen content and less than 0.2% CO, for the case of methanol). This gas mixture is subsequently used in a low-temperature fuel cell, converting the hydrogen directly to electricity. A low concentration of CO is crucial to avoid poisoning of the fuel cell catalyst. Since conventional Polymer Electrolyte Membrane (PEM) fuel cells require CO concentrations far below 100 ppm and since most methods to reduce the mole fraction of CO (such as Preferential Oxidation or PROX) have CO conversions of up to 99%, the alcohol fuel reformer has to achieve initial CO mole fractions significantly below 1%. The catalyst and the porous ceramic reactor of the present study can successfully fulfill this requirement.

  8. Conversion of solar energy into heat

    International Nuclear Information System (INIS)

    Devin, B.; Etievant, C.

    1975-01-01

    Argument prevails regarding the main parameters involved in the definition of installations designed to convert by means of a thermal machine, solar energy into electrical or mechanical energy. Between the temperature of the cold source and the stagnation temperature, there exists an optimal temperature which makes for the maximum efficiency of the collector/thermal machine unit. The optimal operating conditions for different types of collector are examined. Optimization of the surface of the collector is dealt with in particular. The structure and cost of solar installations are also analyzed with some examples as basis: solar pumps of 1 to 25kW, a 50MWe electrosolar plant. The cost involves three main elements: the collector, the thermal unit and the heat storage device. The latter is necessary for the integration of diurnal and nocturnal fluctuations of isolation. It is shown that thermal storage is economically payable only under certain conditions [fr

  9. Nonequilibrium Molecular Energy Coupling and Conversion Mechanisms

    Science.gov (United States)

    2016-08-28

    N2(v=1) + N2(w-1), due to overpopulation of high vibrational levels, N2(w>2), during the discharge pulse. This results in net vibrational energy...transfer to the low levels in the afterglow, transient overpopulation of N2(v=1), and increase of the “first level” N2 vibrational temperature...it can be seen that the overall trend of transient overpopulation of v=1 and gradual decay of higher level DISTRIBUTION A: Distribution approved for

  10. Photovoltaic and photoelectrochemical conversion of solar energy.

    Science.gov (United States)

    Grätzel, Michael

    2007-04-15

    The Sun provides approximately 100,000 terawatts to the Earth which is about 10000 times more than the present rate of the world's present energy consumption. Photovoltaic cells are being increasingly used to tap into this huge resource and will play a key role in future sustainable energy systems. So far, solid-state junction devices, usually made of silicon, crystalline or amorphous, and profiting from the experience and material availability resulting from the semiconductor industry, have dominated photovoltaic solar energy converters. These systems have by now attained a mature state serving a rapidly growing market, expected to rise to 300 GW by 2030. However, the cost of photovoltaic electricity production is still too high to be competitive with nuclear or fossil energy. Thin film photovoltaic cells made of CuInSe or CdTe are being increasingly employed along with amorphous silicon. The recently discovered cells based on mesoscopic inorganic or organic semiconductors commonly referred to as 'bulk' junctions due to their three-dimensional structure are very attractive alternatives which offer the prospect of very low cost fabrication. The prototype of this family of devices is the dye-sensitized solar cell (DSC), which accomplishes the optical absorption and the charge separation processes by the association of a sensitizer as light-absorbing material with a wide band gap semiconductor of mesoporous or nanocrystalline morphology. Research is booming also in the area of third generation photovoltaic cells where multi-junction devices and a recent breakthrough concerning multiple carrier generation in quantum dot absorbers offer promising perspectives.

  11. Systematics of neutron-induced fission cross sections over the energy range 0.1 through 15 MeV, and at 0.0253 eV

    International Nuclear Information System (INIS)

    Behrens, J.W.

    1977-01-01

    Recent studies have shown straightforward systematic behavior as a function of constant proton and neutron number for neutron-induced fission cross sections of the actinide elements in the incident-neutron energy range 3 to 5 MeV. In this report, the second in a series, fission cross-section values are studied over the MeV incident-neutron energy range, and at 0.0253 eV. Fission-barrier heights and neutron-binding energies are correlated by constant proton and neutron number; however, these systematic behaviors alone do not explain the trends observed in the fission cross-section values

  12. Energy Conversion and Storage Program. 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  13. Chemoelectrical energy conversion of adenosine triphosphate

    Science.gov (United States)

    Sundaresan, Vishnu Baba; Sarles, Stephen Andrew; Leo, Donald J.

    2007-04-01

    Plant and animal cell membranes transport charged species, neutral molecules and water through ion pumps and channels. The energy required for moving species against established concentration and charge gradients is provided by the biological fuel - adenosine triphosphate (ATP) -synthesized within the cell. The adenosine triphosphatase (ATPases) in a plant cell membrane hydrolyze ATP in the cell cytoplasm to pump protons across the cell membrane. This establishes a proton gradient across the membrane from the cell exterior into the cell cytoplasm. This proton motive force stimulates ion channels that transport nutrients and other species into the cell. This article discusses a device that converts the chemical energy stored in adenosine triphosphate into electrical power using a transporter protein, ATPase. The V-type ATPase proteins used in our prototype are extracted from red beet(Beta vulgaris) tonoplast membranes and reconstituted in a bilayer lipid membrane or BLM formed from POPC and POPS lipids. A pH7 medium that can support ATP hydrolysis is provided on both sides of the membrane and ATP is dissolved in the pH7 buffer on one side of the membrane. Hydrolysis of ATP results in the formation of a phosphate ion and adenosine diphosphate. The energy from the reaction activates ATPase in the BLM and moves a proton across the membrane. The charge gradient established across the BLM due to the reaction and ion transport is converted into electrical current by half-cell reference electrodes. The prototype ATPase cell with an effective BLM area of 4.15 mm2 carrying 15 μl of ATPase proteins was observed to develop a steady state peak power output of 70 nW, which corresponds to a specific power of 1.69 μW/cm2 and a current density of 43.4 μA/cm2 of membrane area.

  14. Aerodynamic Aspects of Wind Energy Conversion

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2011-01-01

    This article reviews the most important aerodynamic research topics in the field of wind energy. Wind turbine aerodynamics concerns the modeling and prediction of aerodynamic forces, such as performance predictions of wind farms, and the design of specific parts of wind turbines, such as rotor......-blade geometry. The basics of the blade-element momentum theory are presented along with guidelines for the construction of airfoil data. Various theories for aerodynamically optimum rotors are discussed, and recent results on classical models are presented. State-of-the-art advanced numerical simulation tools...

  15. Geomagnetic activity effects on plasma sheet energy conversion

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2010-10-01

    Full Text Available In this article we use three years (2001, 2002, and 2004 of Cluster plasma sheet data to investigate what happens to localized energy conversion regions (ECRs in the plasma sheet during times of high magnetospheric activity. By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have studied the influence on Concentrated Load Regions (CLRs and Concentrated Generator Regions (CGRs from variations in the geomagnetic disturbance level as expressed by the Kp, the AE, and the Dst indices. We find that the ECR occurrence frequency increases during higher magnetospheric activities, and that the ECRs become stronger. This is true both for CLRs and for CGRs, and the localized energy conversion therefore concerns energy conversion in both directions between the particles and the fields in the plasma sheet. A higher geomagnetic activity hence increases the general level of energy conversion in the plasma sheet. Moreover, we have shown that CLRs live longer during magnetically disturbed times, hence converting more electromagnetic energy. The CGR lifetime, on the other hand, seems to be unaffected by the geomagnetic activity level. The evidence for increased energy conversion during geomagnetically disturbed times is most clear for Kp and for AE, but there are also some indications that energy conversion increases during large negative Dst. This is consistent with the plasma sheet magnetically mapping to the auroral zone, and therefore being more tightly coupled to auroral activities and variations in the AE and Kp indices, than to variations in the ring current region as described by the Dst index.

  16. Experimental investigation of rubble mound breakwaters for wave energy conversion

    DEFF Research Database (Denmark)

    Luppa, C.; Contestabile, P.; Cavallaro, L.

    2015-01-01

    The paper describes recent laboratory investigation on the breakwater integrated device named “OBREC” (Overtopping BReakwater for Energy Conversion). This technology recently appeared on the wave energy converter scene as an executive outcome of improving composite seawalls by including overtopping...... type wave energy converters [1]. Two complementary experimental campaigns were carried out, in 2012 and in 2014. Several geometries and wave conditions were examined. Preliminary comparison of hydraulic behaviour has been summarized, focusing on reflection analysis and overtopping flow rate...

  17. Optimizing Energy Conversion: Magnetic Nano-materials

    Science.gov (United States)

    McIntyre, Dylan; Dann, Martin; Ilie, Carolina C.

    2015-03-01

    We present herein the work started at SUNY Oswego as a part of a SUNY 4E grant. The SUNY 4E Network of Excellence has awarded SUNY Oswego and collaborators a grant to carry out extensive studies on magnetic nanoparticles. The focus of the study is to develop cost effective rare-earth-free magnetic materials that will enhance energy transmission performance of various electrical devices (solar cells, electric cars, hard drives, etc.). The SUNY Oswego team has started the preliminary work for the project and graduate students from the rest of the SUNY 4E team (UB, Alfred College, Albany) will continue the project. The preliminary work concentrates on analyzing the properties of magnetic nanoparticle candidates, calculating molecular orbitals and band gap, and the fabrication of thin films. SUNY 4E Network of Excellence Grant.

  18. Proceedings of the 25th intersociety energy conversion engineering conference

    International Nuclear Information System (INIS)

    Nelson, P.A.; Schertz, W.W.; Till, R.H.

    1990-01-01

    This book contains the proceedings of the 25th intersociety energy conversion engineering conference. Volume 1 is organized under the following headings: space power systems requirements and issues, space power systems; space power systems 2; space nuclear power reactors space nuclear reactor technology I; space nuclear reactor technology II; reactor technology; isotopic fueled power systems I, isotopic fueled power systems II, space power automation; space power automation II, space power automation III; space power automation IV; space power automation V; power systems hardware and design selection, power components, pulse power, power management and distribution, power management and distribution II, power management and distribution III; space energy conversion: solar dynamic, space energy conversion: static and dynamic, space solar array technology, advanced space solar cells

  19. Polyaniline (PANi based electrode materials for energy storage and conversion

    Directory of Open Access Journals (Sweden)

    Huanhuan Wang

    2016-09-01

    Full Text Available Polyaniline (PANi as one kind of conducting polymers has been playing a great role in the energy storage and conversion devices besides carbonaceous materials and metallic compounds. Due to high specific capacitance, high flexibility and low cost, PANi has shown great potential in supercapacitor. It alone can be used in fabricating an electrode. However, the inferior stability of PANi limits its application. The combination of PANi and other active materials (carbon materials, metal compounds or other polymers can surpass these intrinsic disadvantages of PANi. This review summarizes the recent progress in PANi based composites for energy storage/conversion, like application in supercapacitors, rechargeable batteries, fuel cells and water hydrolysis. Besides, PANi derived nitrogen-doped carbon materials, which have been widely employed as carbon based electrodes/catalysts, are also involved in this review. PANi as a promising material for energy storage/conversion is deserved for intensive study and further development.

  20. Functionalization of graphene for efficient energy conversion and storage.

    Science.gov (United States)

    Dai, Liming

    2013-01-15

    As global energy consumption accelerates at an alarming rate, the development of clean and renewable energy conversion and storage systems has become more important than ever. Although the efficiency of energy conversion and storage devices depends on a variety of factors, their overall performance strongly relies on the structure and properties of the component materials. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. As a building block for carbon materials of all other dimensionalities (such as 0D buckyball, 1D nanotube, 3D graphite), the two-dimensional (2D) single atomic carbon sheet of graphene has emerged as an attractive candidate for energy applications due to its unique structure and properties. Like other materials, however, a graphene-based material that possesses desirable bulk properties rarely features the surface characteristics required for certain specific applications. Therefore, surface functionalization is essential, and researchers have devised various covalent and noncovalent chemistries for making graphene materials with the bulk and surface properties needed for efficient energy conversion and storage. In this Account, I summarize some of our new ideas and strategies for the controlled functionalization of graphene for the development of efficient energy conversion and storage devices, such as solar cells, fuel cells, supercapacitors, and batteries. The dangling bonds at the edge of graphene can be used for the covalent attachment of various chemical moieties while the graphene basal plane can be modified via either covalent or noncovalent functionalization. The asymmetric functionalization of the two opposite surfaces of individual graphene sheets with different moieties can lead to the self-assembly of graphene sheets into hierarchically structured materials. Judicious

  1. Rare-earth magnet applications in energy conversion

    International Nuclear Information System (INIS)

    Tripathi, K.C.

    1998-01-01

    In recent years there has been considerable progress in the field of development and variety of new applications of rare-earth and rare-earth transition metal magnets. High energy content Nd-Fe-B magnet system which competes with superconducting magnets is very promising for the use in energy conversion machines, levitation systems, magnetic resonance investigation and other magnetic applications. Energy conversion machines such as motors and generators are of interest in this context. Motor converts electrical energy into mechanical energy using permanent magnets and ferromagnetic materials as its components. Electric generator converts mechanical energy into electricity using permanent magnets and ferromagnetic material. In both cases symmetry and symmetry breaking play an important role. Symmetry exists above curie temperature, as temperature is lowered symmetry is broken due to spontaneous magnetisation. Author and coworkers developed some new and highest efficiency, permanent magnet based, electronically controlled, dynamically synchronised pulsed dc linear and rotational motors which are briefly described here. Based on such experience and considering field interactions inside material under dynamical conditions and special geometrical situations, order-disorder processes, symmetry breaking and energy transfer on the basis of manifold aspects as a cooperative many body interaction, thermal fluctuations, zero-point energy, dissipation of energy, entropy exchange are discussed in context of conversion of environmental heat into electricity as suggested by Tripathi earlier. (orig.)

  2. Angular distribution of fragments from neutron-induced fission of {sup 238}U in the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Magnus

    2004-06-01

    Areas ranging from nuclear structure models to accelerator-driven systems benefit from improved neutron-induced fission data in the intermediate energy region. In this Master's degree thesis, the fragment angular distribution from fission of {sup 238}U, induced by 21-MeV neutrons, has been analysed from an experiment performed with the Medley/DIFFICILE setup at the The Svedberg Laboratory in Uppsala. The data have been corrected for low energy neutrons in the beam. The results agree with other experiments, as well as with model calculations. The data should be a starting point for further analysis with a goal to deduce the fission cross-section of {sup 238}U.

  3. A review of electrohydrodynamic casting energy conversion polymer composites

    Directory of Open Access Journals (Sweden)

    Yong X. Gan

    2018-03-01

    Full Text Available This paper provides a brief review on manufacturing polymer composite materials through the nontraditional electrohydrodynamic (EHD casting approach. First, the EHD technology will be introduced. Then, typical functional polymer composite materials including thermoelectric and photoelectric energy conversion polymers and their composites will be presented. Specifically, how to make composite materials containing functional nanoparticles will be discussed. Converting polymeric fibers into partially carbonized fiber composites will also be shown. The latest research results of polymeric composite materials with energy conversion and sensing functions will be given.

  4. Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion.

    Science.gov (United States)

    Wang, Changlong; Astruc, Didier

    2014-01-01

    This review provides the basic concepts, an overall survey and the state-of-the art of plasmon-based nanogold photocatalysis using visible light including fundamental understanding and major applications to organic reactions and clean energy-conversion systems. First, the basic concepts of localized surface plasmon resonance (LSPR) are recalled, then the major preparation methods of AuNP-based plasmonic photocatalysts are reviewed. The major part of the review is dedicated to the latest progress in the application of nanogold plasmonic photocatalysis to organic transformations and energy conversions, and the proposed mechanisms are discussed. In conclusion, new challenges and perspectives are proposed and analyzed.

  5. Energy harvesting solar, wind, and ocean energy conversion systems

    CERN Document Server

    Khaligh, Alireza

    2009-01-01

    Also called energy scavenging, energy harvesting captures, stores, and uses ""clean"" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, ""green"" resources and converting them into electrical energy.Recognizing t

  6. Direct energy conversion system for D(3)-He fusion

    Science.gov (United States)

    Tomita, Y.; Shu, L. Y.; Momota, H.

    1993-11-01

    A novel and highly efficient direct energy conversion system is proposed for utilizing D(3)-He fueled fusion. In order to convert kinetic energy of ions, we applied a pair of direct energy conversion systems each of which has a cusp-type DEC and a traveling wave DEC (TWDEC). In a cusp-type DEC, electrons are separated from the escaping ions at the first line-cusp and the energy of thermal ion components is converted at the second cusp DEC. The fusion protons go through the cusp-type DEC and arrive at the TWDEC, which principle is similar to 'LINAC'. The energy of fusion protons is recovered to electricity with an efficiency of more than 70%. These DEC's bring about the high efficient fusion plant.

  7. Efficient electrochemical CO2 conversion powered by renewable energy.

    Science.gov (United States)

    Kauffman, Douglas R; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R; Zeng, Chenjie; Jin, Rongchao

    2015-07-22

    The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8-1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10(6) molCO2 molcatalyst(-1) during a multiday (36 h total hours) CO2 electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10(6) and 4 × 10(6) molCO2 molcatalyst(-1) were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient

  8. Energy Storage System with Voltage Equalization Strategy for Wind Energy Conversion

    Directory of Open Access Journals (Sweden)

    Cheng-Tao Tsai

    2012-07-01

    Full Text Available In this paper, an energy storage system with voltage equalization strategy for wind energy conversion is presented. The proposed energy storage system provides a voltage equalization strategy for series-connected lead-acid batteries to increase their total storage capacity and lifecycle. In order to draw the maximum power from the wind energy, a perturbation-and-observation method and digital signal processor (DSP are incorporated to implement maximum power point tracking (MPPT algorithm and power regulating scheme. In the proposed energy storage system, all power switches have zero-voltage-switching (ZVS feature at turn-on transition. Therefore, the conversion efficiency can be increased. Finally, a prototype energy storage system for wind energy conversion is built and implemented. Experimental results have verified the performance and feasibility of the proposed energy storage system for wind energy conversion.

  9. Energy conversion processes for the use of geothermal heat

    Energy Technology Data Exchange (ETDEWEB)

    Minder, R. [Minder Energy Consulting, Oberlunkhofen (Switzerland); Koedel, J.; Schaedle, K.-H.; Ramsel, K. [Gruneko AG, Basel (Switzerland); Girardin, L.; Marechal, F. [Swiss Federal Institute of Technology (EPFL), Laboratory for industrial energy systems (LENI), Lausanne (Switzerland)

    2007-03-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made on energy conversion processes that can be used when geothermal heat is to be used. The study deals with both theoretical and practical aspects of the conversion of geothermal heat to electricity. The report is divided into several parts and covers general study, practical experience, planning and operation of geothermal power plants as well as methodology for the optimal integration of energy conversion systems in geothermal power plants. In the first part, the specific properties and characteristics of geothermal resources are discussed. Also, a general survey of conversion processes is presented with special emphasis on thermo-electric conversion. The second part deals with practical aspects related to planning, construction and operation of geothermal power plant. Technical basics, such as relevant site-specific conditions, drilling techniques, thermal water or brine quality and materials requirements. Further, planning procedures are discussed. Also, operation and maintenance aspects are examined and some basic information on costs is presented. The third part of the report presents the methodology and results for the optimal valorisation of the thermodynamic potential of deep geothermal systems.

  10. Fragment Anisotropy of Complete Fusion-Fission at Subbarrier Energies for the 11B+238U and 12C+237Np Reactions

    Science.gov (United States)

    Zhang, Huanqiao; Liu, Zuhua; Xu, Jincheng; Qian, Xing; Chen, Shaolin; Lu, Lixing

    1992-06-01

    Fission fragment angular distributions have been measured for the reactions 11B+238U, 12C+237Np at near- and sub-barrier energies, and 16O+238U at 90 MeV. The complete fusion-fission and transfer-fission were separated as components in the whole energy region in this experiment. The influence of prescission neutron emission on fragment anisotropies has been considered. This effect leads to increase of the anisotropies when compared with the results obtained under the assumption of first chance fission. However, the anomalous anisotropies still persist.

  11. Investigation of the prompt neutron emission mechanism in low energy fission of 235,233U(nth, f) and 252Cf(sf)

    Science.gov (United States)

    Vorobyev, A. S.; Shcherbakov, O. A.; Gagarski, A. M.; Val'Ski, G. V.; Petrov, G. A.

    2010-10-01

    A series of experiments has been performed to measure prompt neutron angular and energy distributions from thermal neutron-induced fission of 235,233U in correlation with the fission fragments. These distributions have been analyzed with the assumption of neutron isotropic emission from accelerated fission fragments. The performed analysis demonstrates that all obtained results can be described within 5% accuracy using this assumption. This discrepancy is approximately constant and doesn't depend on fragment mass and the total kinetic energy (TKE). Some minor peculiarities of angular distribution may be interpreted as a result of anisotropy of the fission neutron angular distribution in the fragment center-of-mass system.

  12. The NASA program in Space Energy Conversion Research and Technology

    Science.gov (United States)

    Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.

    1982-01-01

    The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.

  13. Energy conversion via ferroic materials: Materials, mechanisms, and applications

    Science.gov (United States)

    Chin, Huai-An

    Energy conversion is a process converting one form of energy into another. Significant research effort has been dedicated to energy conversion mechanisms for portable energy conversion. Specifically, mechanisms based on ferroic materials have been widely explored for this goal. Ferroic materials include ferromagnetic, ferroelectric and ferroelastic materials. This thesis is focused on two ferroic materials: ferromagnetic TbxDy1-xFe2 (x ˜ 0.3, Terfenol-D), and ferroelectric barium strontium titanate (BST) including its paraelectric phase, for their energy conversion mechanisms. We grew and characterized these materials, followed by device fabrication to study potential energy conversion mechanisms in resulting devices. With Terfenol-D, we demonstrated a wireless energy-conversion process via the Villari effect, i.e. magnetic flux change induced by mechanical input. A new technique of transfer-printing a Terfenol-D film onto a flexible substrate was developed to study this mechanism. The transferred Terfenol-D showed a high saturation magnetization (˜ 1.3 T) and flexibility (strain ˜ 1.9 %). Subsequently, the Villari effect was successfully utilized to convert mechanical energy, from a mechanical source and a simulated biomechanical source, into electricity. For next projects, another ferroic material, a high-permittivity (dielectric constant ˜ 200) BST was sputtered on Pt/SiO2/Si or stainless steels to form a metal-insulator(BST)-metal heterostructure. The BST was found to be paraelectric when grown upon Pt/SiO2/Si, whereas it was ferroelectric when grown on the stainless steel. Two different mechanisms were therefore studied on these two modifications. In the paraelectric BST we found a new thermal-electric response via a flexoelectricity-mediated mechanism, which was enabled by a large strain gradient (> 104/m) produced by lattice mismatch. With the enhanced flexoelectricity from the large strain gradient, electrical output was generated under thermal cycling

  14. Energy Conversion Loops for Flux-Switching PM Machine Analysis

    Directory of Open Access Journals (Sweden)

    E. Ilhan

    2012-10-01

    Full Text Available Induction and synchronous machines have traditionally been the first choice of automotive manufacturers for electric/hybrid vehicles. However, these conventional machines are not able anymore to meet the increasing demands for a higher energy density due to space limitation in cars. Flux-switching PM (FSPM machines with their high energy density are very suitable to answer this demand. In this paper, the energy conversion loop technique is implemented on FSPM for the first time. The energy conversion technique is a powerful tool for the visualization of machine characteristics, both linear and nonlinear. Further, the technique provides insight into the torque production mechanism. A stepwise explanation is given on how to create these loops for FSPM along with the machine operation.

  15. Exploring driving forces and liquid properties for electrokinetic energy conversion

    NARCIS (Netherlands)

    Nguyen, Trieu

    2015-01-01

    This thesis presents an effort to understand electrokinetic energy conversion systems which are based on motion of ionic charges in micro- and nano-confinements. In particular, both experimentally and theoretically the utilization of different kind of liquids was investigated to convert mechanical

  16. Proceedings of the 25th Intersociety Energy Conversion Engineering Conference

    International Nuclear Information System (INIS)

    Nelson, P.A.; Schertz, W.W.; Till, R.H.

    1990-01-01

    This book contains papers presented at a conference on energy conversion engineering. Topics covered include: USAF space power requirements, modelling of the dynamics of a low speed gas-liquid heat engine, and comparative assessment of single-axis force generation mechanisms for superconducting suspensions

  17. Gate controlled high efficiency ballistic energy conversion system

    NARCIS (Netherlands)

    Xie, Yanbo; Bos, Diederik; de Boer, Hans L.; van den Berg, Albert; Eijkel, Jan C.T.; Zengerle, R.

    2013-01-01

    Last year we demonstrated the microjet ballistic energy conversion system[1]. Here we show that the efficiency of such a system can be further improved by gate control. With gate control the electrical current generation is enhanced a hundred times with respect to the current generated from the zeta

  18. Solar Program Assessment: Environmental Factors - Ocean Thermal Energy Conversion.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This report presents the environmental problems which may arise with the further development of Ocean Thermal Energy Conversion, one of the eight Federally-funded solar technologies. To provide a background for this environmental analysis, the history and basic concepts of the technology are reviewed, as are its economic and resource requirements.…

  19. Proceedings of the 27th intersociety energy conversion engineering conference

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This book contains the proceedings of the 27th Intersociety Energy Conversion Engineering Conference. Topics included: Stirling Cycle Analysis; Stirling Cycle Models; Stirling Refrigerators/Heat Pumps and Cryocoolers; Domestic Policy; Efficiency/Conservation; Stirling Solar Terrestrial; Stirling Component Technology; Environmental Impacts; Renewable Resource Systems; Stirling Power Generation; Stirling Heat Transport System Technology; and Stirling Cycle Loss Understanding

  20. Anisotropy in angular distributions of 238U fission fragments by photons, produced in high energy electron interaction with Si monocrystal

    International Nuclear Information System (INIS)

    Kasilov, V.I.; Lapin, N.N.

    1981-01-01

    An enhancement is detected under the angle of 90 deg in the fission fragment yield from 238 U nuclei produced by photons emitted by high-energy electrons passing through a silicon monocrystal. The results enable one to select the most optimal conditions to obtain maximal yields of nuclear particles [ru

  1. PHOTOINDUCED PROCESSES IN SUPRAMOLECULAR SYSTRMS FOR SOLAR ENERGY CONVERSION

    OpenAIRE

    Orlandi, Michele

    2010-01-01

    Artificial photosynthesis, defined as the conversion of solar energy into fuels, could provide a solution to the problem of the intermittent avalaibility of sunlight, one of the key issues to overcome in order to implement widespread use of solar energy. Among the possible applications of artificial photosynthesis, particularly interesting are photochemical water splitting, since it represents a possible way to solar hydrogen generation, and the photocatalytic reduction of CO2 ...

  2. Investigation of the prompt neutron emission mechanism in low energy fission of 235,233U(nth, f) and 252Cf(sf)

    OpenAIRE

    Val’ski G.V.; Gagarski A.M.; Shcherbakov O.A.; Vorobyev A.S.; Petrov G.A.

    2010-01-01

    A series of experiments has been performed to measure prompt neutron angular and energy distributions from thermal neutron-induced fission of 235,233U in correlation with the fission fragments. These distributions have been analyzed with the assumption of neutron isotropic emission from accelerated fission fragments. The performed analysis demonstrates that all obtained results can be described within 5% accuracy using this assumption. This discrepancy is approximately constant and doesn’t de...

  3. Prompt muon-induced fission: A probe for nuclear friction in large-amplitude collective motion

    International Nuclear Information System (INIS)

    Oberacker, V.E.; Umar, A.S.; Wells, J.C.; Strayer, M.R.; Maruhn, J.A.; Reinhard, P.G.

    1998-01-01

    Excited muonic atoms in the actinide region may induce prompt fission by inverse internal conversion, i.e. the excitation energy of the muonic atom is transferred to the nucleus. The authors solve the time dependent Dirac equation for the muonic spinor wave function in the Coulomb field of the fissioning nucleus on a 3-dimensional lattice and demonstrate that the muon attachment probability to the light fission fragment is a measure of the nuclear energy dissipation between the outer fission barrier and the scission point

  4. Multiplicity and energy of neutrons from {sup 233}U(n{sub th},f) fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Katsuhisa; Kimura, Itsuro; Nakagome, Yoshihiro [Kyoto Univ. (Japan)

    1998-03-01

    The correlation between fission fragments and prompt neutrons from the reaction {sup 233}U(n{sub th},f) was measured with improved accuracy. The results determined the neutron multiplicity and emission energy as a function of fragment mass and total kinetic energy. The average energy as a function of fragment mass followed a nearly symmetric distribution centered about the equal mass-split and formed a remarkable contrast with the saw-tooth distribution of the average neutron multiplicity. The neutron multiplicity from the specified fragment decreases linearly with total kinetic energy, and the slope of multiplicity with kinetic energy had the minimum value at about 130 u. The level density parameter versus mass determined from the neutron data showed a saw-tooth structure with the pronounced minimum at about 128 and generally followed the formula by Gilbert and Cameron, suggesting that the neutron emission process was very much affected by the shell-effect of the fission fragment. (author)

  5. Nano Sensing and Energy Conversion Using Surface Plasmon Resonance (SPR

    Directory of Open Access Journals (Sweden)

    Iltai (Isaac Kim

    2015-07-01

    Full Text Available Nanophotonic technique has been attracting much attention in applications of nano-bio-chemical sensing and energy conversion of solar energy harvesting and enhanced energy transfer. One approach for nano-bio-chemical sensing is surface plasmon resonance (SPR imaging, which can detect the material properties, such as density, ion concentration, temperature, and effective refractive index in high sensitivity, label-free, and real-time under ambient conditions. Recent study shows that SPR can successfully detect the concentration variation of nanofluids during evaporation-induced self-assembly process. Spoof surface plasmon resonance based on multilayer metallo-dielectric hyperbolic metamaterials demonstrate SPR dispersion control, which can be combined with SPR imaging, to characterize high refractive index materials because of its exotic optical properties. Furthermore, nano-biophotonics could enable innovative energy conversion such as the increase of absorption and emission efficiency and the perfect absorption. Localized SPR using metal nanoparticles show highly enhanced absorption in solar energy harvesting. Three-dimensional hyperbolic metamaterial cavity nanostructure shows enhanced spontaneous emission. Recently ultrathin film perfect absorber is demonstrated with the film thickness is as low as ~1/50th of the operating wavelength using epsilon-near-zero (ENZ phenomena at the wavelength close to SPR. It is expected to provide a breakthrough in sensing and energy conversion applications using the exotic optical properties based on the nanophotonic technique.

  6. Review of direct energy conversion for fusion reactors

    International Nuclear Information System (INIS)

    Barr, W.L.; Moir, R.W.

    1976-01-01

    The direct conversion to electrical energy of the energy carried by the leakage plasma from a fusion reactor and by the ions that are not converted to neutrals in a neutral-beam injector is discussed. The conversion process is electrostatic deceleration and direct particle collection as distinct from plasma expansion against a time-varying magnetic field or conversion in an EXB duct (both MHD). Relatively simple 1-stage plasma direct converters are discussed which can have efficiencies of about 50 percent. More complex and costly (measured in $/kW) 2-, 3-, 4-, and 22-stage concepts have been tested at efficiencies approaching 90 percent. Beam direct converters have been tested at 15 keV and 2 kW of power at 70 +- 2 percent efficiency, and a test of a 120-keV, 1-MW version is being prepared. Designs for a 120-keV, 4-MW unit are presented. The beam direct converter, besides saving on power supplies and on beam dumps, should raise the efficiency of creating a neutral beam from 40 percent without direct conversion to 70 percent with direct conversion for a 120-keV deuterium beam. The technological limits determining power handling and lifetime such as space-charge effects, heat removal, electrode material, sputtering, blistering, voltage holding, and insulation design, are discussed. The application of plasma direct converters to toroidal plasma confinement concepts is also discussed

  7. Fission-fragment total kinetic energy and mass yields for neutron-induced fission of 235U and 238U with En =200 keV - 30 MeV

    Science.gov (United States)

    Duke, D. L.; Tovesson, F.; Brys, T.; Geppert-Kleinrath, V.; Hambsch, F.-J.; Laptev, A.; Meharchand, R.; Manning, B.; Mayorov, D.; Meierbachtol, K.; Mosby, S.; Perdue, B.; Richman, D.; Shields, D.; Vidali, M.

    2017-09-01

    The average Total Kinetic Energy (TKE) release and fission-fragment yields in neutron-induced fission of 235U and 238U was measured using a Frisch-gridded ionization chamber. These observables are important nuclear data quantites that are relevant to applications and for informing the next generation of fission models. The measurements were performed a the Los Alamos Neutron Science Center and cover En = 200 keV - 30 MeV. The double-energy (2E) method was used to determine the fission-fragment yields and two methods of correcting for prompt-neutron emission were explored. The results of this study are correlated mass and TKE data.

  8. Fission-fragment total kinetic energy and mass yields for neutron-induced fission of 235U and 238U with En =200 keV – 30 MeV

    Directory of Open Access Journals (Sweden)

    Duke D.L.

    2017-01-01

    Full Text Available The average Total Kinetic Energy (TKE release and fission-fragment yields in neutron-induced fission of 235U and 238U was measured using a Frisch-gridded ionization chamber. These observables are important nuclear data quantites that are relevant to applications and for informing the next generation of fission models. The measurements were performed a the Los Alamos Neutron Science Center and cover En = 200 keV – 30 MeV. The double-energy (2E method was used to determine the fission-fragment yields and two methods of correcting for prompt-neutron emission were explored. The results of this study are correlated mass and TKE data.

  9. Effect of the energy spectrum and angular momentum of pre-scission neutrons on the prediction of fission fragment angular anisotropy by the models

    Science.gov (United States)

    Soheyli, Saeed; Khanlari, Marzieh Varasteh

    2016-04-01

    Effects of the various neutron emission energy spectra, as well as the influence of the angular momentum of pre-scission neutrons on theoretical predictions of fission fragment angular anisotropies for several heavy-ion induced fission systems are considered. Although theoretical calculations of angular anisotropy are very sensitive to neutron emission correction, the effects of the different values of kinetic energy of emitted neutrons derived from the various neutron emission energy spectra before reaching to the saddle point on the prediction of fission fragment angular distribution by the model are not significant and can be neglected, since these effects on angular anisotropies of fission fragments for a wide range of fissility parameters and excitation energies of compound nuclei are not more than 10%. Furthermore, the theoretical prediction of fission fragment angular anisotropy is not sensitive to the angular momentum of emitted neutrons.

  10. Switching-mode Audio Power Amplifiers with Direct Energy Conversion

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    has been replaced with a high frequency AC link. When compared to the conventional Class D amplifiers with a separate DC power supply, the proposed single conversion stage amplifier provides simple and compact solution with better efficiency and higher level of integration, leading to reduced......This paper presents a new class of switching-mode audio power amplifiers, which are capable of direct energy conversion from the AC mains to the audio output. They represent an ultimate integration of a switching-mode power supply and a Class D audio power amplifier, where the intermediate DC bus...

  11. SPS energy conversion and power management workshop. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    In 1977 a four year study, the concept Development and Evaluation Program, was initiated by the US Department of Energy and the National Aeronautics and Space Administration. As part of this program, a series of peer reviews were carried out within the technical community to allow available information on SPS to be sifted, examined and, if need be, challenged. The SPS Energy Conversion and Power Management Workshop, held in Huntsville, Alabama, February 5 to 7, 1980, was one of these reviews. The results of studies in this particular field were presented to an audience of carefully selected scientists and engineers. This first report summarizes the results of that peer review. It is not intended to be an exhaustive treatment of the subject. Rather, it is designed to look at the SPS energy conversion and power management options in breadth, not depth, to try to foresee any troublesome and/or potentially unresolvable problems and to identify the most promising areas for future research and development. Topics include photovoltaic conversion, solar thermal conversion, and electric power distribution processing and power management. (WHK)

  12. Graphene Paper Based Nanomaterials for Electrochemical Sensing and Energy Conversion

    DEFF Research Database (Denmark)

    Zhang, Minwei

    Graphene has emerged as a highly interesting material since it was experimentally isolated for the first timein 2004. This single-atom-thick nanosheet consisting of carbon atoms arrayed in a honeycomb pattern,displays outstanding physicochemical properties, including as an excellent conductor...... of heat and electricity,large specific surface area, and high mechanical strength. Therefore, graphene based materials are expected to have great potential for use in the fields of sensors, catalysis, and as electrode materials for energy storage and conversion. In order to link practical applications...... and energy technologies. This PhD project is devoted to the synthesis, characterization and applications of graphene paper based nanomaterials for electrochemical sensors and energy conversion. The thesis is divided into three parts with 8 chapters in total. In Chapter 1, we provide an overview...

  13. ND:GLASS LASER DESIGN FOR LASER ICF FISSION ENERGY (LIFE)

    Energy Technology Data Exchange (ETDEWEB)

    Caird, J A; Agrawal, V; Bayramian, A; Beach, R; Britten, J; Chen, D; Cross, R; Ebbers, C; Erlandson, A; Feit, M; Freitas, B; Ghosh, C; Haefner, C; Homoelle, D; Ladran, T; Latkowski, J; Molander, W; Murray, J; Rubenchik, S; Schaffers, K; Siders, C W; Stappaerts, E; Sutton, S; Telford, S; Trenholme, J; Barty, C J

    2008-10-28

    We have developed preliminary conceptual laser system designs for the Laser ICF (Inertial Confinement Fusion) Fission Energy (LIFE) application. Our approach leverages experience in high-energy Nd:glass laser technology developed for the National Ignition Facility (NIF), along with high-energy-class diode-pumped solid-state laser (HEC-DPSSL) technology developed for the DOE's High Average Power Laser (HAPL) Program and embodied in LLNL's Mercury laser system. We present laser system designs suitable for both indirect-drive, hot spot ignition and indirect-drive, fast ignition targets. Main amplifiers for both systems use laser-diode-pumped Nd:glass slabs oriented at Brewster's angle, as in NIF, but the slabs are much thinner to allow for cooling by high-velocity helium gas as in the Mercury laser system. We also describe a plan to mass-produce pump-diode lasers to bring diode costs down to the order of $0.01 per Watt of peak output power, as needed to make the LIFE application economically attractive.

  14. Influence of the incident particle energy on the fission product mass distribution

    International Nuclear Information System (INIS)

    Gomes, I. C.

    1998-01-01

    For 238 U targets and the five elements considered here, the best yields of neutron-rich isotopes are obtained from neutrons in the 2-20 MeV range. High energy beams of neutrons, protons, and deuterons have comparable integral yields per element to neutrons below 20 MeV, but the distributions are peaked at lower neutron numbers. This is presumably due to a higher neutron multiplicity in the pre-equilibrium stage and/or the compound nucleus/fission stage. For 235 U targets there are high yields predicted especially for thermal neutrons, and also for the fast neutron spectrum. For the high energy neutrons, protons, and deuterons 235 U has no advantage over 238 U. A detailed comparison of the relative advantages of 235 U and 238 U for radioactive beam applications is beyond the scope of this study and will be addressed in the future. The present work is the first step of a more detailed analysis of various possible one- and two-step target geometry calculated with the LAHET code system. It is intended to serve as a guide in choosing geometry and beams for future studies. It is desirable to extend this study to higher beam energies, e.g. 200 to 1000 MeV, but at this time there is very little data against which to benchmark the analysis. Additional data would also permit comparisons of isotope yields beyond the tails of the distributions presented here, to even more neutron rich isotopes

  15. Some Sustainability Aspects of Energy Conversion in Urban Electric Trains

    Directory of Open Access Journals (Sweden)

    Doru A. Nicola

    2010-05-01

    Full Text Available The paper illustrates some aspects of energy conversion processes during underground electric train operation. Energy conversion processes are explained using exergy, in order to support transport system sustainability. Loss of exergy reflects a loss of potential of energy to do work. Following the notion that life in Nature demonstrates sustainable energy conversion, we approach the sustainability of urban transportation systems according to the model of an ecosystem. The presentation steps based on an industrial ecosystem metabolism include describing the urban electric railway system as an industrial ecosystem with its limits and components, defining system operation regimes, and assessing the equilibrium points of the system for two reference frames. For an electric train, exergy losses can be related to the energy flows during dynamic processes, and exergy conversion in these processes provides a meaningful measure of the industrial (i.e., transportation ecosystem efficiency. As a validation of the theoretical results, a case study is analyzed for three underground urban electric train types REU-U, REU-M, REU-G operating in the Bucharest Underground Railway System (METROREX. The main experimental results are presented and processed, and relevant diagrams are constructed. It is determined that there is great potential for improving the performance of rail systems and increasing their sustainability. For instance, power converters and efficient anti-skid systems can ensure optimum traction and minimum electricity use, and the recovered energy in electric braking can be used by other underground trains, increasing exergy efficiency, although caution must be exercised when doing so to avoid reducing the efficiency of the overall system.

  16. Neutron-induced fission cross sections of 233U and 243Am in the energy range 0.5 Mev En 20 MeV @ n_TOF

    CERN Document Server

    Belloni, F; Milazzo, P M; Calviani, M; Colonna, N; Mastinu, P; Abbondanno, U; Aerts, G; Álvarez, H; Álvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Assimakopoulos, P; Audouin, L; Badurek, G; Baumann, P; Becvár, F; Berthoumieux, E; Calviño, F; Cano-Ott, D; Capote, R; Carrapiço, C; Cennini, P; Chepel, V; Chiaveri, E; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillmann, I; Domingo-Pardo, C; Dridi, W; Duran, I; Eleftheriadis, C; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Fujii, K; Furman, W; Goncalves, I; González-Romero, E; Gramegna, F; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Igashira, M; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Kerveno, M; Koehler, P; Kossionides, E; Krticka, M; Lampoudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martínez, T; Massimi, C; Mengoni, A; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Praena, J; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Santos, C; Sarchiapone, L; Savvidis, I; Stephan, C; Tagliente, G; Tain, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vazl, P; Ventura, A; Villamarin, D; Vincente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wiescher, M; Wisshak, K

    2011-01-01

    Neutron-induced fission cross-sections of actinides have been recently measured at the neutron time of flight facility n_TOF at CERN in the frame of a research project involving isotopes relevant for nuclear astrophysics and nuclear technologies. Fission fragments are detected by a gas counter with good discrimination between nuclear fission products and background events. Neutron-induced fission cross-sections of 233U and 243Am were determined relative to 235U. The present paper reports the results obtained at neutron energies between 0.5 and 20 MeV.

  17. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 1: Solar energy

    Science.gov (United States)

    Williams, J. R.

    1974-01-01

    The utilization of solar energy to meet the energy needs of the U.S. is discussed. Topics discussed include: availability of solar energy, solar energy collectors, heating for houses and buildings, solar water heater, electric power generation, and ocean thermal power.

  18. On the Energy Conversion Efficiency of Piezoelectric Vibration Energy Harvesting Devices

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Eun [Catholic University of Daegu, Kyungsan (Korea, Republic of)

    2015-05-15

    To properly design and assess a piezoelectric vibration energy harvester, it is necessary to consider the application of an efficiency measure of energy conversion. The energy conversion efficiency is defined in this work as the ratio of the electrical output power to the mechanical input power for a piezoelectric vibration energy harvester with an impedance-matched load resistor. While previous research works employed the electrical output power for approximate impedance-matched load resistance, this work derives an efficiency measure considering optimally matched resistance. The modified efficiency measure is validated by comparing it with finite element analysis results for piezoelectric vibration energy harvesters with three different values of the electro-mechanical coupling coefficient. New findings on the characteristics of energy conversion and conversion efficiency are also provided for the two different impedance matching methods.

  19. Bismuth-fission detectors for high energy nucleons: I. Registration characteristics

    Czech Academy of Sciences Publication Activity Database

    Zhou, D.; Cavaioli, M.; Jain, R. K.; Spurný, František; Teodori, R.; Tommasino, L.

    1999-01-01

    Roč. 31, - (1999), s. 455-458 ISSN 1350-4487 R&D Projects: GA AV ČR IAA3048606 Keywords : Spark counter * Fission cross section * Fission fragments Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.572, year: 1999

  20. High-energy Neutron-induced Fission Cross Sections of Natural Lead and Bismuth-209

    CERN Document Server

    Tarrio, D; Carrapico, C; Eleftheriadis, C; Leeb, H; Calvino, F; Herrera-Martinez, A; Savvidis, I; Vlachoudis, V; Haas, B; Koehler, P; Vannini, G; Oshima, M; Le Naour, C; Gramegna, F; Wiescher, M; Pigni, M T; Audouin, L; Mengoni, A; Quesada, J; Becvar, F; Plag, R; Cennini, P; Mosconi, M; Rauscher, T; Couture, A; Capote, R; Sarchiapone, L; Vlastou, R; Domingo-Pardo, C; Dillmann, I; Pavlopoulos, P; Karamanis, D; Krticka, M; Jericha, E; Ferrari, A; Martinez, T; Trubert, D; Oberhummer, H; Karadimos, D; Plompen, A; Isaev, S; Terlizzi, R; Cortes, G; Cox, J; Cano-Ott, D; Pretel, C; Colonna, N; Berthoumieux, E; Vaz, P; Heil, M; Lopes, I; Lampoudis, C; Walter, S; Calviani, M; Gonzalez-Romero, E; Embid-Segura, M; Stephan, C; Igashira, M; Papachristodoulou, C; Aerts, G; Tavora, L; Berthier, B; Rudolf, G; Andrzejewski, J; Villamarin, D; Ferreira-Marques, R; Tain, J L; O'Brien, S; Reifarth, R; Kadi, Y; Neves, F; Poch, A; Kerveno, M; Rubbia, C; Lazano, M; Dahlfors, M; Wisshak, K; Salgado, J; Dridi, W; Ventura, A; Andriamonje, S; Assimakopoulos, P; Santos, C; Voss, F; Ferrant, L; Patronis, N; Chiaveri, E; Guerrero, C; Perrot, L; Vicente, M C; Lindote, A; Praena, J; Baumann, P; Kappeler, F; Rullhusen, P; Furman, W; David, S; Marrone, S; Tassan-Got, L; Gunsig, F; Alvarez-Velarde, F; Massimi, C; Mastinu, P; Pancin, J; Papadopoulos, C; Tagliente, G; Haight, R; Chepel, V; Kossionides, E; Badurek, G; Marganiec, J; Lukic, S; Pavlik, A; Goncalves, I; Duran, I; Alvarez, H; Abbondanno, U; Fujii, K; Milazzo, P M; Moreau, C

    2011-01-01

    The CERN Neutron Time-Of-Flight (n\\_TOF) facility is well suited to measure small neutron-induced fission cross sections, as those of subactinides. The cross section ratios of (nat)Pb and (209)Bi relative to (235)U and (238)U were measured using PPAC detectors. The fragment coincidence method allows to unambiguously identify the fission events. The present experiment provides the first results for neutron-induced fission up to 1 GeV for (nat)Pb and (209)Bi. A good agreement with previous experimental data below 200 MeV is shown. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross section is close to 1 GeV.

  1. The Energy Conversion Analysis of HTR Gas Turbine System

    International Nuclear Information System (INIS)

    Utaja

    2000-01-01

    The energy conversion analysis of HTR gas turbine system by hand calculation is tedious work and need much time. This difficulty comes from the repeated thermodynamic process calculation, both on compression or expansion of the cycle. To make the analysis faster and wider variable analyzed, HTR-1 programme is used. In this paper, the energy conversion analysis of HTR gas turbine system by HTR-1 will be described. The result is displayed as efficiency curve and block diagram with the input and output temperature of the component. This HTR-1 programme is developed by Basic language programming and be compiled by Visual Basic 5.0 . By this HTR-1 programme, the efficiency, specific power and effective compression of the amount of gas can be recognized fast. For example, for CO 2 gas between 40 o C and 700 o C, the compression on maximum efficiency is 4.6 and the energy specific is 18.9 kcal/kg, while the temperature changing on input and output of the component can be traced on monitor. This process take less than one second, while the manual calculation take more than one hour. It can be concluded, that the energy conversion analysis of the HTR gas turbine system by HTR-1 can be done faster and more variable analyzed. (author)

  2. Adaptability of solar energy conversion systems on ships

    Science.gov (United States)

    Visa, I.; Cotorcea, A.; Neagoe, M.; Moldovan, M.

    2016-08-01

    International trade of goods largely uses maritime/transoceanic ships driven by engines using fossil fuels. This two centuries tradition is technologically mature but significantly adds to the CO2 emissions; therefore, recent trends focus on on-board implementation of systems converting the solar energy into power (photovoltaic systems) or heat (solar-thermal systems). These systems are carbon-emissions free but are still under research and plenty of effort is devoted to fast reach maturity and feasibility. Unlike the systems implemented in a specific continental location, the design of solar energy conversion systems installed on shipboard has to face the problem generated by the system base motion along with the ship travelling on routes at different latitudes: the navigation direction and sense and roll-pitch combined motion with reduced amplitude, but with relatively high frequency. These raise highly interesting challenges in the design and development of mechanical systems that support the maximal output in terms of electricity or heat. The paper addresses the modelling of the relative position of a solar energy conversion surface installed on a ship according to the current position of the sun; the model is based on the navigation trajectory/route, ship motion generated by waves and the relative sun-earth motion. The model describes the incidence angle of the sunray on the conversion surface through five characteristic angles: three used to define the ship orientation and two for the solar angles; based on, their influence on the efficiency in solar energy collection is analyzed by numerical simulations and appropriate recommendations are formulated for increasing the solar energy conversion systems adaptability on ships.

  3. NEUTRON CROSS SECTION EVALUATIONS OF FISSION PRODUCTS BELOW THE FAST ENERGY REGION

    Energy Technology Data Exchange (ETDEWEB)

    OH,S.Y.; CHANG,J.; MUGHABGHAB,S.

    2000-05-11

    Neutron cross section evaluations of the fission-product isotopes, {sup 95}Mo, {sup 99}Tc, {sup 101}Ru, {sup 103}Rh, {sup 105}Pd, {sup 109}Ag, {sup 131}Xe, {sup 133}Cs, {sup 141}Pr, {sup 141}Nd, {sup 147}Sm, {sup 149}Sm, {sup 150}Sm, {sup 151}Sm, {sup 152}Sm, {sup 153}Eu, {sup 155}Gd, and {sup 157}Gd were carried out below the fast neutron energy region within the framework of the BNL-KAERI international collaboration. In the thermal energy region, the energy dependence of the various cross-sections was calculated by applying the multi-level Breit-Wigner formalism. In particular, the strong energy dependence of the coherent scattering lengths of {sup 155}Gd and {sup 157}Gd were determined and were compared with recent calculations of Lynn and Seeger. In the resonance region, the recommended resonance parameters, reported in the BNL compilation, were updated by considering resonance parameter information published in the literature since 1981. The s-wave and, if available, p-wave reduced neutron widths were analyzed in terms of the Porter-Thomas distribution to determine the average level spacings and the neutron strength functions. Average radiative widths were also calculated from measured values of resolved energy resonances. The average resonance parameters determined in this study were compared with those in the BNL and other compilations, as well as the ENDF/B-VI, JEF-2.2, and JENDL-3.2 data libraries. The unresolved capture cross sections of these isotopes, computed with the determined average resonance parameters, were compared with measurements, as well as the ENDF/B-VI evaluations. To achieve agreement with the measurements, in a few cases minor adjustments in the average resonance parameters were made. Because of astrophysical interest, the Maxwellian capture cross sections of these nuclides at a neutron temperature of 30 keV were computed and were compared with other compilations and evaluations.

  4. Evaluations of Energy Spectra of Neutrons Emitted Promptly in Neutron-induced Fission of 235U and 239Pu

    Science.gov (United States)

    Neudecker, D.; Talou, P.; Kawano, T.; Kahler, A. C.; White, M. C.; Taddeucci, T. N.; Haight, R. C.; Kiedrowski, B.; O'Donnell, J. M.; Gomez, J. A.; Kelly, K. J.; Devlin, M.; Rising, M. E.

    2018-02-01

    The energy spectra of neutrons emitted promptly in the neutron-induced fission reactions of 235U and 239Pu were re-evaluated for ENDF/B-VIII.0. These evaluations are based on a careful modeling of all relevant physics processes, an extensive analysis of experimental data and a detailed quantification of pertinent uncertainties. Energy spectra of neutrons emitted in up to fourth chance fission are considered and both compound and pre-equilibrium processes are included. Also, important nuclear model parameters, such as the average total kinetic energy of the fission fragments and the multiple chance fission probabilities, and their uncertainties are estimated based on experimental knowledge, model information and evaluated data. In addition to experimental information already available for ENDF/B-VII.1, these new evaluations make use of recently published experimental data either of high precision or spanning a broad incident energy range, information on legacy measurements explaining discrepancies and recently measured data of the average total kinetic energy as a function of incident neutron energy. The resulting evaluated data and covariances agree well with the experimental database used for the evaluation. However, the evaluated spectra are softer than the 235U and 239Pu ENDF/B-VII.1, JENDL-4.0 and JEFF-3.2 evaluations for incident neutron energies Einc ≤ 1.5 MeV and Einc ≤ 5 MeV, respectively. For Einc > 5 MeV, the evaluated spectra show structures due to the improved modeling which are not present in ENDF/B-VII.1 and JEFF-3.2 but can be observed in JENDL-4.0 evaluations. Part of these new evaluations were adopted for ENDF/B-VIII.0, while the ENDF/B-VII.1 239Pu PFNS was retained for Einc ≤ 5 MeV awaiting more conclusive experimental evidence.

  5. Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume III. Wind conversion systems with energy storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The variability of energy output inherent in wind energy conversion systems (WECS) has led to the investigation of energy storage as a means of managing the available energy when immediate, direct use is not possible or desirable. This portion of the General Electric study was directed at an evaluation of those energy storage technologies deemed best suited for use in conjunction with a wind energy conversion system in utility, residential and intermediate applications. Break-even cost goals are developed for several storage technologies in each application. These break-even costs are then compared with cost projections presented in Volume I of this report to show technologies and time frames of potential economic viability. The report summarizes the investigations performed and presents the results, conclusions and recommendations pertaining to use of energy storage with wind energy conversion systems.

  6. Quantum dot nanoscale heterostructures for solar energy conversion.

    Science.gov (United States)

    Selinsky, Rachel S; Ding, Qi; Faber, Matthew S; Wright, John C; Jin, Song

    2013-04-07

    Quantum dot nanoscale semiconductor heterostructures (QDHs) are a class of materials potentially useful for integration into solar energy conversion devices. However, realizing the potential of these heterostructured systems requires the ability to identify and synthesize heterostructures with suitably designed materials, controlled size and morphology of each component, and structural control over their shared interface. In this review, we will present the case for the utility and advantages of chemically synthesized QDHs for solar energy conversion, beginning with an overview of various methods of heterostructured material synthesis and a survey of heretofore reported materials systems. The fundamental charge transfer properties of the resulting materials combinations and their basic design principles will be outlined. Finally, we will discuss representative solar photovoltaic and photoelectrochemical devices employing QDHs (including quantum dot sensitized solar cells, or QDSSCs) and examine how QDH synthesis and design impacts their performance.

  7. Covalent Organic Framework Electrocatalysts for Clean Energy Conversion.

    Science.gov (United States)

    Lin, Chun-Yu; Zhang, Detao; Zhao, Zhenghang; Xia, Zhenhai

    2018-02-01

    Covalent organic frameworks (COFs) are promising for catalysis, sensing, gas storage, adsorption, optoelectricity, etc. owning to the unprecedented combination of large surface area, high crystallinity, tunable pore size, and unique molecular architecture. Although COFs are in their initial research stage, progress has been made in the design and synthesis of COF-based electrocatalysis for the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, and CO 2 reduction in energy conversion and fuel generation. Design principles are also established for some of the COF materials toward rational design and rapid screening of the best electrocatalysts for a specific application. Herein, the recent advances in the design and synthesis of COF-based catalysts for clean energy conversion and storage are presented. Future research directions and perspectives are also being discussed for the development of efficient COF-based electrocatalysts. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The total flow concept for geothermal energy conversion

    Science.gov (United States)

    Austin, A. L.

    1974-01-01

    A geothermal development project has been initiated at the Lawrence Livermore Laboratory (LLL) to emphasize development of methods for recovery and conversion of the energy in geothermal deposits of hot brines. Temperatures of these waters vary from 150 C to more than 300 C with dissolved solids content ranging from less than 0.1% to over 25% by weight. Of particular interest are the deposits of high-temperature/high-salinity brines, as well as less saline brines, known to occur in the Salton Trough of California. Development of this resource will depend on resolution of the technical problems of brine handling, scale and precipitation control, and corrosion/erosion resistant systems for efficient conversion of thermal to electrical energy. Research experience to date has shown these problems to be severe. Hence, the LLL program emphasizes development of an entirely different approach called the Total Flow concept.

  9. Spectral light management for solar energy conversion systems

    Science.gov (United States)

    Stanley, Cameron; Mojiri, Ahmad; Rosengarten, Gary

    2016-06-01

    Due to the inherent broadband nature of the solar radiation, combined with the narrow spectral sensitivity range of direct solar to electricity devices, there is a massive opportunity to manipulate the solar spectrum to increase the functionality and efficiency of solar energy conversion devices. Spectral splitting or manipulation facilitates the efficient combination of both high-temperature solar thermal systems, which can absorb over the entire solar spectrum to create heat, and photovoltaic cells, which only convert a range of wavelengths to electricity. It has only recently been possible, with the development of nanofabrication techniques, to integrate micro- and nano-photonic structures as spectrum splitters/manipulators into solar energy conversion devices. In this paper, we summarize the recent developments in beam splitting techniques, and highlight some relevant applications including combined PV-thermal collectors and efficient algae production, and suggest paths for future development in this field.

  10. Spectral light management for solar energy conversion systems

    Directory of Open Access Journals (Sweden)

    Stanley Cameron

    2016-06-01

    Full Text Available Due to the inherent broadband nature of the solar radiation, combined with the narrow spectral sensitivity range of direct solar to electricity devices, there is a massive opportunity to manipulate the solar spectrum to increase the functionality and efficiency of solar energy conversion devices. Spectral splitting or manipulation facilitates the efficient combination of both high-temperature solar thermal systems, which can absorb over the entire solar spectrum to create heat, and photovoltaic cells, which only convert a range of wavelengths to electricity. It has only recently been possible, with the development of nanofabrication techniques, to integrate micro- and nano-photonic structures as spectrum splitters/manipulators into solar energy conversion devices. In this paper, we summarize the recent developments in beam splitting techniques, and highlight some relevant applications including combined PV-thermal collectors and efficient algae production, and suggest paths for future development in this field.

  11. Ocean Thermal Energy Conversion (OTEC) program. FY 1977 program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    An overview is given of the ongoing research, development, and demonstration efforts. Each of the DOE's Ocean Thermal Energy Conversion projects funded during fiscal year 1977 (October 1, 1976 through September 30, 1977) is described and each project's status as of December 31, 1977 is reflected. These projects are grouped as follows: program support, definition planning, engineering development, engineering test and evaluation, and advanced research and technology. (MHR)

  12. Energy conversion in space. Particular application of gas cycles

    International Nuclear Information System (INIS)

    Tilliette, Z.P.

    1986-12-01

    Energy conversion for future space power facilities are highly temperature dependent for heat rejection that can be effected only by radiative transfer. The Brayton cycle is one of the solutions. It has been developed in the USA for nearly 20 years. In France it is now studied for preliminary studies based on nuclear heat source systems. It is briefly presented, some characteristics are given. Present studies of the American space power facility give a concrete example of application [fr

  13. Conversion of concentrated solar thermal energy into chemical energy.

    Science.gov (United States)

    Tamaura, Yutaka

    2012-01-01

    When a concentrated solar beam is irradiated to the ceramics such as Ni-ferrite, the high-energy flux in the range of 1500-2500 kW/m(2) is absorbed by an excess Frenkel defect formation. This non-equilibrium state defect is generated not by heating at a low heating-rate (30 K/min), but by irradiating high flux energy of concentrated solar beam rapidly at a high heating rate (200 K/min). The defect can be spontaneously converted to chemical energy of a cation-excess spinel structure (reduced-oxide form) at the temperature around 1773 K. Thus, the O(2) releasing reaction (α-O(2) releasing reaction) proceeds in two-steps; (1) high flux energy of concentrated solar beam absorption by formation of the non-equilibrium Frenkel defect and (2) the O(2) gas formation from the O(2-) in the Frenkel defect even in air atmosphere. The 2nd step proceeds without the solar radiation. We may say that the 1st step is light reaction, and 2nd step, dark reaction, just like in photosynthesis process.

  14. Characteristic of oil palm residue for energy conversion system

    International Nuclear Information System (INIS)

    Muharnif; Zainal, Z.A.

    2006-01-01

    Malaysia is the major producer of palm oil in the world. It produces 8.5 tones per year (8.5 x 10 6 ty -1 ) of palm oil from 38.6 x 10 6 ty - 1 of fresh fruit bunches. Palm oil production generates large amounts of process residue such as fiber (5.4 x 10 6 ty - 1 ), shell (2.3 x 10 6 ty - 1 ), and empty fruit bunches (8.8 x 10 6 ty - 1 ). A large fraction of the fiber and much of the shell are used as fuel to generate process steam and electricity. The appropriate energy conversion system depends on the characteristic of the oil palm residue. In this paper, a description of characteristic of the oil palm residue is presented. The types of the energy conversion system presented are stoker type combustor and gasified. The paper focuses on the pulverized biomass material and the use of fluidized bed gasified. In the fluidized bed gasified, the palm shell and fiber has to be pulverized before feeding into gasified. For downdraft gasified and furnace, the palm shell and fiber can be used directly into the reactor for energy conversion. The heating value, burning characteristic, ash and moisture content of the oil palm residue are other parameters of the study

  15. Metal oxide-carbon composites for energy conversion and storage

    Science.gov (United States)

    Perera, Sanjaya Dulip

    The exponential growth of the population and the associated energy demand requires the development of new materials for sustainable energy conversion and storage. Expanding the use of renewable energy sources to generate electricity is still not sufficient enough to fulfill the current energy demand. Electricity generation by wind and solar is the most promising alternative energy resources for coal and oil. The first part of the dissertation addresses an alternative method for preparing TiO2 nanotube based photoanodes for DSSCs. This would involve smaller diameter TiO2 nanotubes (˜10 nm), instead of nanoparticles or electrochemically grown larger nanotubes. Moreover, TiO2 nanotube-graphene based photocatalysts were developed to treat model pollutants. In the second part of this dissertation, the development of electrical energy storage systems, which provide high storage capacity and power output using low cost materials are discussed. Among different types of energy storage systems, batteries are the most convenient method to store electrical energy. However, the low power performance of batteries limits the application in different types of electrical energy storage. The development of electrical energy storage systems, which provide high storage capacity and power output using low cost materials are discussed.

  16. Longitudinal density modulation and energy conversion in intense beams

    International Nuclear Information System (INIS)

    Harris, J. R.; Neumann, J. G.; Tian, K.; O'Shea, P. G.

    2007-01-01

    Density modulation of charged particle beams may occur as a consequence of deliberate action, or may occur inadvertently because of imperfections in the particle source or acceleration method. In the case of intense beams, where space charge and external focusing govern the beam dynamics, density modulation may, under some circumstances, be converted to velocity modulation, with a corresponding conversion of potential energy to kinetic energy. Whether this will occur depends on the properties of the beam and the initial modulation. This paper describes the evolution of discrete and continuous density modulations on intense beams and discusses three recent experiments related to the dynamics of density-modulated electron beams

  17. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 4: Energy from fossil fuels

    Science.gov (United States)

    Williams, J. R.

    1974-01-01

    The conversion of fossil-fired power plants now burning oil or gas to burn coal is discussed along with the relaxation of air quality standards and the development of coal gasification processes to insure a continued supply of gas from coal. The location of oil fields, refining areas, natural gas fields, and pipelines in the U.S. is shown. The technologies of modern fossil-fired boilers and gas turbines are defined along with the new technologies of fluid-bed boilers and MHD generators.

  18. Detecting special nuclear materials in containers using high-energy gamma rays emitted by fission products

    Science.gov (United States)

    Norman, Eric B.; Prussin, Stanley G.

    2007-10-02

    A method and a system for detecting the presence of special nuclear materials in a container. The system and its method include irradiating the container with an energetic beam, so as to induce a fission in the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  19. Designing Energy Conversion Systems for the Next Decade

    Directory of Open Access Journals (Sweden)

    Slobodan N. Vukosavić

    2012-12-01

    Full Text Available Sustainable growth in energy consumption requires transition to clean and green energy sources and energy systems. Environment friendly and renewable energy systems deal with electrical energy and rely on efficient electrical power converters. High power electronics is the key technology to deal with the next generation of electrical energy systems. The door to future breakthroughs in high power electronics is opened by major improvement in semiconductor power devices and their packaging technologies. New materials allow for much higher junction temperatures and higher operating voltages. Most importantly, advanced power semiconductor devices and novel converter topology open the possibility to increase the energy efficiency of power conversion and reduce the amount of heat. Although the waste heat created by high power converters can be put to use by adding on to heating systems, this option is not always available and the conversion losses are mostly wasted. At the same time, wasted heat is a form of pollution that threatens the environment. Another task for high power converters is efficient harvesting of renewable energy sources, such as the wind energy and the sun. Intermittent in nature, they pose a difficult task to power converter topology and controls. Eventually, high power converters are entering power distribution and transmission networks. With their quick reaction, with fast communication between the grid nodes and with advanced controllability of high power converters, a number of innovations can be introduced, facilitating the power system control and allowing for optimizations and loss reduction. Coined smart grid, this solution comprises two key elements, and these are intelligent controls and large static power converters. At virtually no cost, smart grids allow for a better utilization of available resources and it enlarges the stable operating range of the transmission systems. Therefore, it is of interest to review the

  20. Fission energy program of the U.S. Department of Energy

    International Nuclear Information System (INIS)

    1978-06-01

    The document describes programs managed by the Program Director for Nuclear Energy, Department of Energy, and under the cognizance of the Committee on Science and Technology, United States House of Representatives. The major portion of the document is concerned with civilian nuclear power development, the policy for which has been established by the National Energy Plan of April 1977, but it also includes descriptions of the space applications and naval reactor programs

  1. Solar energy conversion by photocatalytic overall water splitting

    KAUST Repository

    Takanabe, Kazuhiro

    2015-07-04

    Summary: Solar energy is abundant and renewable energy: however, extensive conversion of the solar energy can only be achieved by large-scale collection of solar flux. The technology that satisfies this requirement must be as simple as possible to reduce capital cost. Overall water splitting (OWS) by powder-form photocatalysts directly produces H2 as a chemical energy in a single reactor, which does not require any complicated parabolic mirrors and electronic devices. Because of its simplicity and low capital cost, it has tremendous potential to become the major technology of solar energy conversion. To achieve the OWS efficiently, the development of efficient photocatalysts is mandatory. The OWS hotocatalysis involves the electrocatalys is for both water reduction and oxidation on the surafce of photocatalysts, which is driven by particular semiconductors that absorb photons to generate excited carriers. Such photocatalysts must be designed to maximize the charge separation efficiency at the catalyst-semiconductor and semiconductor-electrolyte interface. In addition the low-overpotential electrocatalyts towards water redox reactions should be insensitive to the back-reaction of the produced H2 and O2 that produces H2O. In this presentation, some recent progress on the topic of the OWS in our group will be discussed.

  2. Energy Conversion: A Comparison of Fix- and Self-Referenced Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Wanan Sheng

    2016-12-01

    Full Text Available The paper presents an investigation of fix-referenced and self-referenced wave energy converters and a comparison of their corresponding wave energy conversion capacities from real seas. For conducting the comparisons, two popular wave energy converters, point absorber and oscillating water column, and their power conversion capacities in the fixed-referenced and self-referenced forms have been numerically studied and compared. In the numerical models, the device’s power extractions from seas are maximized using the correspondingly optimized power take-offs in different sea states, thus their power conversion capacities can be calculated and compared. From the comparisons and analyses, it is shown that the energy conversion capacities of the self-referenced devices can be significantly increased if the motions of the device itself can be utilized for wave energy conversion; and the self-referenced devices can be possibly designed to be compliant in long waves, which could be a very beneficial factor for device survivability in the extreme wave conditions (normally long waves. In this regards, the self-referenced WECs (wave energy converters may be better options in terms of wave energy conversion from the targeted waves in seas (frequently the most occurred, and in terms of the device survivability, especially in the extreme waves when compared to the fix-referenced counterparts.

  3. Measurement of Fragment Mass Distributions in Neutron-induced Fission of 238U and 232Th at Intermediate Energies

    International Nuclear Information System (INIS)

    Simutkin, V.D.

    2008-01-01

    Conceptual analysis of accelerator-driven systems assumes extensive use of nuclear data on neutron-induced reactions at intermediate energies. In particular, information about the fission fragment yields from the 238 U(n,f) and 232 Th(n,f) reactions is of particular interest at neutron energies from 10 to 200 MeV. However, there is a lack of such data for both 238 U and 232 Th. Up to now, the intermediate energy measurements have been performed for 238 U only, and there are no data for the 232 Th(n,f) reaction. The aim of the work is to provide such data. Fission fragment mass distributions for the 232 Th(n,f) and 238 U(n,f) reactions have been measured for the incident neutron energies 32.8 MeV, 45.3 MeV and 59.9 MeV. The experiments have been performed at the neutron beam facility of the Universite Catholique de Louvain, Belgium. A multi-section Frisch-gridded ionization chamber has been used as a fission fragment detector. The data obtained have been interpreted in terms of the multimodal random neck-rupture model (MMRNRM). (authors)

  4. Modeling power electronics and interfacing energy conversion systems

    CERN Document Server

    Simões, Marcelo Godoy

    2017-01-01

    Discusses the application of mathematical and engineering tools for modeling, simulation and control oriented for energy systems, power electronics and renewable energy. This book builds on the background knowledge of electrical circuits, control of dc/dc converters and inverters, energy conversion and power electronics. The book shows readers how to apply computational methods for multi-domain simulation of energy systems and power electronics engineering problems. Each chapter has a brief introduction on the theoretical background, a description of the problems to be solved, and objectives to be achieved. Block diagrams, electrical circuits, mathematical analysis or computer code are covered. Each chapter concludes with discussions on what should be learned, suggestions for further studies and even some experimental work.

  5. Electroelastodynamics of flexoelectric energy conversion and harvesting in elastic dielectrics

    Science.gov (United States)

    Moura, Adriane G.; Erturk, Alper

    2017-02-01

    Flexoelectricity is the generation of electric polarization by the application of a non-uniform mechanical strain field, i.e., a strain gradient. This phenomenon is exhibited by all elastic dielectrics, but is expected to be significant only at very small scales. Energy harvesting is a potential future application area of flexoelectricity to enable next-generation ultra-low-power MEMS/NEMS devices by converting ambient vibrations into electricity. In this paper, an electroelastodynamic framework is presented and analyzed for flexoelectric energy harvesting from strain gradient fluctuations in centrosymmetric dielectrics, by accounting for the presence of a finite electrical load across the surface electrodes as well as two-way electromechanical coupling, and capturing the size effect. The flexoelectric energy harvester model is based on the Euler-Bernoulli beam theory and it assumes the main source of polarization to be static bulk flexoelectricity. Following recent efforts on the converse flexoelectric effect in finite samples, the proposed model properly accounts for thermodynamically consistent, symmetric direct and converse coupling terms. The transverse mode flexoelectric coupling coefficient (k) is obtained analytically as a direct measure of energy conversion; its dependence on the cantilever thickness and a material Figure of Merit (FoM) is shown. Size effects are further demonstrated by simulations of the electromechanical frequency response for a Strontium Titanate (STO) energy harvester at different geometric scales. It is obtained that the flexoelectric coupling coefficient of an STO cantilever for the fundamental bending mode increases from k ≈3.5 ×10-7 to k ≈0.33 as the thickness is reduced from mm- to nm-level. A critique of the experimentally identified large flexoelectric coefficient for Barium Strontium Titanate (BST) from the literature is also given with a coupling coefficient perspective.

  6. Energy Conversion Loop: A Testbed for Nuclear Hybrid Energy Systems Use in Biomass Pyrolysis

    Science.gov (United States)

    Verner, Kelley M.

    Nuclear hybrid energy systems are a possible solution for contemporary energy challenges. Nuclear energy produces electricity without greenhouse gas emissions. However, nuclear power production is not as flexible as electrical grids demand and renewables create highly variable electricity. Nuclear hybrid energy systems are able to address both of these problems. Wasted heat can be used in processes such as desalination, hydrogen production, or biofuel production. This research explores the possible uses of nuclear process heat in bio-oil production via biomass pyrolysis. The energy conversion loop is a testbed designed and built to mimic the heat from a nuclear reactor. Small scale biomass pyrolysis experiments were performed and compared to results from the energy conversion loop tests to determine future pyrolysis experimentation with the energy conversion loop. Further improvements must be made to the energy conversion loop before more complex experiments may be performed. The current conditions produced by the energy conversion loop are not conducive for current biomass pyrolysis experimentation.tion.

  7. Combustion and direct energy conversion inside a micro-combustor

    International Nuclear Information System (INIS)

    Lei, Yafeng; Chen, Wei; Lei, Jiang

    2016-01-01

    Highlights: • The flammability range of micro-combustor was broadened with heat recirculation. • The quenching diameter decreased with heat recirculation compared to without recirculation. • The surface areas to volume ratio was the most important parameter affecting the energy conversion efficiency. • The maximum conversion efficiency (3.15%) was achieved with 1 mm inner diameter. - Abstract: Electrical energy can be generated by employing a micro-thermophotovoltaic (TPV) cell which absorbs thermal radiation from combustion taking place in a micro-combustor. The stability of combustion in a micro-combustor is essential for operating a micro-power system using hydrogen and hydrocarbon fuels as energy source. To understand the mechanism of sustaining combustion within the quenching distance of fuel, this study proposed an annular micro combustion tube with recirculation of exhaust heat. To explore the feasibility of combustion in the micro annular tube, the parameters influencing the combustion namely, quenching diameter, and flammability were studied through numerical simulation. The results indicated that combustion could be realized in micro- combustor using heat recirculation. Following results were obtained from simulation. The quenching diameter reduced from 1.3 mm to 0.9 mm for heat recirculation at equivalence ratio of 1; the lean flammability was 2.5%–5% lower than that of without heat recirculation for quenching diameters between 2 mm and 5 mm. The overall energy conversion efficiency varied at different inner diameters. A maximum efficiency of 3.15% was achieved at an inner diameter of 1 mm. The studies indicated that heat recirculation is an effective strategy to maintain combustion and to improve combustion limits in micro-scale system.

  8. Renewable energy from corn residues by thermochemical conversion

    Science.gov (United States)

    Yu, Fei

    Declining fossil oil reserve, skyrocket price, unsecured supplies, and environment pollution are among the many energy problems we are facing today. It is our conviction that renewable energy is a solution to these problems. The long term goal of the proposed research is to develop commercially practical technologies to produce energy from renewable resources. The overall objective of my research is to study and develop thermochemical processes for converting bulky and low-energy-density biomass materials into bio-fuels and value-added bio-products. The rationale for the proposed research is that, once such processes are developed, processing facility can be set up on or near biomass product sites, reducing the costs associated with transport of bulky biomass which is a key technical barrier to biomass conversion. In my preliminary research, several conversion technologies including atmospheric pressure liquefaction, high pressure liquefaction, and microwave pyrolysis have been evaluated. Our data indicated that microwave pyrolysis had the potential to become a simple and economically viable biomass conversion technology. Microwave pyrolysis is an innovative process that provides efficient and uniform heating, and are robust to type, size and uniformity of feedstock and therefore suitable for almost any waste materials without needing to reduce the particle size. The proposed thesis focused on in-depth investigations of microwave pyrolysis of corn residues. My first specific aim was to examine the effects of processing parameters on product yields. The second specific research aim was to characterize the products (gases, bio-oils, and solid residues), which was critical to process optimization and product developments. Other research tasks included conducting kinetic modeling and preliminary mass and energy balance. This study demonstrated that microwave pyrolysis could be optimized to produce high value syngas, liquid fuels and pyrolytic carbons, and had a great

  9. Monte Carlo simulation for fragment mass and kinetic energy distributions from the neutron-induced fission of {sup 235}U

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, M.; Rojas, J. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, Lima 41 (Peru); Saettone, E. [Facultad de Ciencias, Universidad Nacional de lngenieria, Av. Tupac Amaru 210, Apartado 31-139, Lima (Peru)

    2007-07-01

    The mass and kinetic energy distribution of nuclear fragments from the thermal neutron-induced fission of {sup 235}U have been studied using a Monte Carlo simulation. Besides reproducing the pronounced broadening on the standard deviation of the final fragment kinetic energy distribution ({sigma}{sub e}(m)) around the mass number m = 109, our simulation also produces a second broadening around m = 125 that is in agreement with the experimental data obtained by Belhafaf et al. These results are a consequence of the characteristics of the neutron emission, the variation in the primary fragment mean kinetic energy, and the yield as a function of the mass. (Author)

  10. 1: the atom. 2: radioactivity. 3: man and radiations. 4: the energy. 5: nuclear energy: fusion and fission. 6: the operation of a nuclear reactor. 7: the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2002-01-01

    This series of 7 digest booklets present the bases of the nuclear physics and of the nuclear energy: 1 - the atom (structure of matter, chemical elements and isotopes, the four fundamental interactions, nuclear physics); 2 - radioactivity (definition, origins of radioelements, applications of radioactivity); 3 - man and radiations (radiations diversity, biological effects, radioprotection, examples of radiation applications); 4 - energy (energy states, different forms of energy, characteristics); 5 - nuclear energy: fusion and fission (nuclear energy release, thermonuclear fusion, nuclear fission and chain reaction); 6 - operation of a nuclear reactor (nuclear fission, reactor components, reactor types); 7 - nuclear fuel cycle (nuclear fuel preparation, fuel consumption, reprocessing, wastes management). (J.S.)

  11. Nanostructured Solar Irradiation Control Materials for Solar Energy Conversion

    Science.gov (United States)

    Kang, Jinho; Marshall, I. A.; Torrico, M. N.; Taylor, C. R.; Ely, Jeffry; Henderson, Angel Z.; Kim, J.-W.; Sauti, G.; Gibbons, L. J.; Park, C.; hide

    2012-01-01

    Tailoring the solar absorptivity (alpha(sub s)) and thermal emissivity (epsilon(sub T)) of materials constitutes an innovative approach to solar energy control and energy conversion. Numerous ceramic and metallic materials are currently available for solar absorbance/thermal emittance control. However, conventional metal oxides and dielectric/metal/dielectric multi-coatings have limited utility due to residual shear stresses resulting from the different coefficient of thermal expansion of the layered materials. This research presents an alternate approach based on nanoparticle-filled polymers to afford mechanically durable solar-absorptive and thermally-emissive polymer nanocomposites. The alpha(sub s) and epsilon(sub T) were measured with various nano inclusions, such as carbon nanophase particles (CNPs), at different concentrations. Research has shown that adding only 5 wt% CNPs increased the alpha(sub s) and epsilon(sub T) by a factor of about 47 and 2, respectively, compared to the pristine polymer. The effect of solar irradiation control of the nanocomposite on solar energy conversion was studied. The solar irradiation control coatings increased the power generation of solar thermoelectric cells by more than 380% compared to that of a control power cell without solar irradiation control coatings.

  12. Influence of multichance fission on fragment angular anisotropy in the 232Th( n,f) and 238U( n,f) reactions at intermediate energies

    Science.gov (United States)

    Ryzhov, I. V.; Onegin, M. S.; Tutin, G. A.; Blomgren, J.; Olsson, N.; Prokofiev, A. V.; Renberg, P.-U.

    2005-10-01

    Fission fragment angular distributions have been measured for the 232Th( n,f) and 238U( n,f) reactions in the neutron energy range 20-100 MeV. The fragment angular anisotropy for 232Th was found to be systematically larger than that for 238U. The obtained results have been analyzed in the framework of the statistical saddle-point model combined with pre-equilibrium and Hauser-Feshbach calculations of partial fission cross sections. The calculations have revealed that fission following multiple neutron emission takes place in both reactions, resulting in a considerable contribution of high chances to the total fission fragment angular anisotropy. This gives grounds to expect that the observed difference is mainly due to nuclei fissioning at the end of the neutron evaporation chain.

  13. Energy conversion of source separated packaging; Energiutvinning ur kaellsorterade foerpackningsfraktioner

    Energy Technology Data Exchange (ETDEWEB)

    Blidholm, O.; Wiklund, S.E. [AaF-Energikonsult (Sweden); Bauer, A.C. [Energikonsult A. Bauer (Sweden)

    1997-02-01

    The basic idea of this project is to study the possibilities to use source separated combustible material for energy conversion in conventional solid fuel boilers (i.e. not municipal waste incineration plants). The project has been carried out in three phases. During phase 1 and 2 a number of fuel analyses of different fractions were carried out. During phase 3 two combustion tests were carried out; (1) a boiler with grate equipped with cyclone, electrostatic precipitator and flue gas condenser, and (2) a bubbling fluidized bed boiler with electrostatic precipitator and flue gas condenser. During the tests source separated paper and plastic packagings were co-fired with biomass fuels. The mixing rate of packagings was approximately 15%. This study reports the results of phase 3 and the conclusions of the whole project. The technical terms of using packaging as fuel are good. The technique is available for shredding both paper and plastic packaging. The material can be co-fired with biomass. The economical terms of using source separated packaging for energy conversion can be very advantageous, but can also form obstacles. The result is to a high degree guided by such facts as how the fuel is collected, transported, reduced in size and handled at the combustion plant. The results of the combustion tests show that the environmental terms of using source separated packaging for energy conversion are good. The emissions of heavy metals into the atmosphere are very low. The emissions are well below the emission standards for waste incineration plants. 35 figs, 13 tabs, 8 appendices

  14. Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Varo, Pilar [Departamento de Electrónica y Tecnología de Computadores, CITIC-UGR, Universidad de Granada, 18071 Granada (Spain); Bertoluzzi, Luca [Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló (Spain); Bisquert, Juan, E-mail: bisquert@uji.es [Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló (Spain); Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Alexe, Marin [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Coll, Mariona [Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Catalonia (Spain); Huang, Jinsong [Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588-0656 (United States); Jimenez-Tejada, Juan Antonio [Departamento de Electrónica y Tecnología de Computadores, CITIC-UGR, Universidad de Granada, 18071 Granada (Spain); Kirchartz, Thomas [IEK5-Photovoltaik, Forschungszentrum Jülich, 52425 Jülich (Germany); Faculty of Engineering and CENIDE, University of Duisburg–Essen, Carl-Benz-Str. 199, 47057 Duisburg (Germany); Nechache, Riad; Rosei, Federico [INRS—Center Énergie, Matériaux et Télécommunications, Boulevard Lionel-Boulet, Varennes, Québec, J3X 1S2 (Canada); Yuan, Yongbo [Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588-0656 (United States)

    2016-10-07

    Solar energy conversion using semiconductors to fabricate photovoltaic devices relies on efficient light absorption, charge separation of electron–hole pair carriers or excitons, and fast transport and charge extraction to counter recombination processes. Ferroelectric materials are able to host a permanent electrical polarization which provides control over electrical field distribution in bulk and interfacial regions. In this review, we provide a critical overview of the physical principles and mechanisms of solar energy conversion using ferroelectric semiconductors and contact layers, as well as the main achievements reported so far. In a ferroelectric semiconductor film with ideal contacts, the polarization charge would be totally screened by the metal layers and no charge collection field would exist. However, real materials show a depolarization field, smooth termination of polarization, and interfacial energy barriers that do provide the control of interface and bulk electric field by switchable spontaneous polarization. We explore different phenomena as the polarization-modulated Schottky-like barriers at metal/ferroelectric interfaces, depolarization fields, vacancy migration, and the switchable rectifying behavior of ferroelectric thin films. Using a basic physical model of a solar cell, our analysis provides a general picture of the influence of ferroelectric effects on the actual power conversion efficiency of the solar cell device, and we are able to assess whether these effects or their combinations are beneficial or counterproductive. We describe in detail the bulk photovoltaic effect and the contact layers that modify the built-in field and the charge injection and separation in bulk heterojunction organic cells as well as in photocatalytic and water splitting devices. We also review the dominant families of ferroelectric materials that have been most extensively investigated and have provided the best photovoltaic performance.

  15. Quantitative analysis of a wind energy conversion model

    International Nuclear Information System (INIS)

    Zucker, Florian; Gräbner, Anna; Strunz, Andreas; Meyn, Jan-Peter

    2015-01-01

    A rotor of 12 cm diameter is attached to a precision electric motor, used as a generator, to make a model wind turbine. Output power of the generator is measured in a wind tunnel with up to 15 m s −1 air velocity. The maximum power is 3.4 W, the power conversion factor from kinetic to electric energy is c p = 0.15. The v 3 power law is confirmed. The model illustrates several technically important features of industrial wind turbines quantitatively. (paper)

  16. Method and apparatus for testing electrochemical energy conversion devices

    Science.gov (United States)

    Cisar, Alan J. (Inventor); Murphy, Oliver J. (Inventor)

    1996-01-01

    A system for testing electrochemical energy conversion and storage devices includes means for sensing the current from the storage device and varying the load across the storage device in response to the current sensed. The system is equally adaptable to batteries and fuel cells. Means is also provided to sense system parameters from a plurality of locations within the system. Certain parameters are then stored in digital form for archive purposes and certain other parameters are used to develop control signals in a host processor.

  17. Photovoltaic and thermal energy conversion for solar powered satellites

    Science.gov (United States)

    Von Tiesenhausen, G. F.

    1976-01-01

    A summary is provided concerning the most important aspects of present investigations related to a use of solar power satellites (SPS) as a future source of terrestrial energy. General SPS characteristics are briefly considered, early work is reviewed, and a description of current investigations is presented. System options presently under study include a photovoltaic array, a thermionic system, and a closed Brayton cycle. Attention is given to system reference options, basic building blocks, questions of system analysis and engineering, photovoltaic conversion, and the utility interface. It is concluded that an SPS may be cost effective compared to terrestrial systems by 1995.

  18. Quantitative analysis of a wind energy conversion model

    Science.gov (United States)

    Zucker, Florian; Gräbner, Anna; Strunz, Andreas; Meyn, Jan-Peter

    2015-03-01

    A rotor of 12 cm diameter is attached to a precision electric motor, used as a generator, to make a model wind turbine. Output power of the generator is measured in a wind tunnel with up to 15 m s-1 air velocity. The maximum power is 3.4 W, the power conversion factor from kinetic to electric energy is cp = 0.15. The v3 power law is confirmed. The model illustrates several technically important features of industrial wind turbines quantitatively.

  19. Analysis of dynamic effects in solar thermal energy conversion systems

    Science.gov (United States)

    Hamilton, C. L.

    1978-01-01

    The paper examines a study the purpose of which is to assess the performance of solar thermal power systems insofar as it depends on the dynamic character of system components and the solar radiation which drives them. Using a dynamic model, the daily operation of two conceptual solar conversion systems was simulated under varying operating strategies and several different time-dependent radiation intensity functions. These curves ranged from smoothly varying input of several magnitudes to input of constant total energy whose intensity oscillated with periods from 1/4 hour to 6 hours.

  20. Energy Storage System with Voltage Equalization Strategy for Wind Energy Conversion

    OpenAIRE

    Tsai, Cheng-Tao

    2012-01-01

    In this paper, an energy storage system with voltage equalization strategy for wind energy conversion is presented. The proposed energy storage system provides a voltage equalization strategy for series-connected lead-acid batteries to increase their total storage capacity and lifecycle. In order to draw the maximum power from the wind energy, a perturbation-and-observation method and digital signal processor (DSP) are incorporated to implement maximum power point tracking (MPPT) algorithm an...

  1. Advanced nanostructured materials for energy storage and conversion

    Science.gov (United States)

    Hutchings, Gregory S.

    Due to a global effort to reduce greenhouse gas emissions and to utilize renewable sources of energy, much effort has been directed towards creating new alternatives to fossil fuels. Identifying novel materials for energy storage and conversion can enable radical changes to the current fuel production infrastructure and energy utilization. The use of engineered nanostructured materials in these systems unlocks unique catalytic activity in practical configurations. In this work, research efforts have been focused on the development of nanostructured materials to address the need for both better energy conversion and storage, with applications toward Li-O2 battery electrocatalysts, electrocatalytic generation of H2, conversion of furfural to useful chemicals and fuels, and Li battery anode materials. Highly-active alpha-MnO2 materials were synthesized for use as bifunctional oxygen reduction (ORR) and evolution (OER) catalysts in Li-O2 batteries, and were evaluated under operating conditions with a novel in situ X-ray absorption spectroscopy configuration. Through detailed analysis of local coordination and oxidation states of Mn atoms at key points in the electrochemical cycle, a self-switching behavior affecting the bifunctional activity was identified and found to be critical. In an additional study of materials for lithium batteries, nanostructured TiO2 anode materials doped with first-row transition metals were synthesized and evaluated for improving battery discharge capacity and rate performance, with Ni and Co doping at low levels found to cause the greatest enhancement. In addition to battery technology research, I have also sought to find inexpensive and earth-abundant electrocatalysts to replace state-of-the-art Pt/C in the hydrogen evolution reaction (HER), a systematic computational study of Cu-based bimetallic electrocatalysts was performed. During the screening of dilute surface alloys of Cu mixed with other first-row transition metals, materials with

  2. Direct energy conversion for IEC fusion for space applications

    International Nuclear Information System (INIS)

    Momota, Hiromu; Nadler, Jon; Miley, George H.

    2000-08-01

    The paper describes a concept of extracting fusion power from D- 3 He fueled IEC (Inertia Electrostatic Configuration) devices. The fusion system consists of a series of fusion modules and direct energy converters at an end or at both ends. This system of multiple units is linear and is connected by a magnetic field. A pair of coils anti-parallel to the magnetic field yields a field-null domain at the center of each unit as required for IEC operation. A stabilizing coil installed between the coil pairs eliminates the strong attractive force between the anti-parallel coils. Accessible regions for charged particle trajectories are essentially isolated from the coil structure. Thus, charged particles are directed along magnetic field lines to the direct energy converter without appreciable losses. A direct energy converter unit designed to be compatible to this unique system is also described. It basically consists of a separator and a traveling wave converter. A separator separates low energy ions and electron from the 14.7 MeV fusion protons and then converts their energy into electricity. In the traveling wave direct energy converter, fusion protons are modulated to form bunches. It couples with a transmission line to couple AC power out. The overall conversion efficiency of this system, combined with E- 3 He IEC cores, is estimated as high as 60%. (author)

  3. Mechanically stable ternary heterogeneous electrodes for energy storage and conversion.

    Science.gov (United States)

    Gao, Libo; Zhang, Hongti; Surjadi, James Utama; Li, Peifeng; Han, Ying; Sun, Dong; Lu, Yang

    2018-02-01

    Recently, solid asymmetric supercapacitor (ASC) has been deemed as an emerging portable power storage or backup device for harvesting natural resources. Here we rationally engineered a hierarchical, mechanically stable heterostructured FeCo@NiCo layered double hydroxide (LDH) with superior capacitive performance by a simple two-step electrodeposition route for energy storage and conversion. In situ scanning electron microscope (SEM) nanoindentation and electrochemical tests demonstrated the mechanical robustness and good conductivity of FeCo-LDH. This serves as a reliable backbone for supporting the NiCo-LDH nanosheets. When employed as the positive electrode in the solid ASC, the assembly presents high energy density of 36.6 W h kg -1 at a corresponding power density of 783 W kg -1 and durable cycling stability (87.3% after 5000 cycles) as well as robust mechanical stability without obvious capacitance fading when subjected to bending deformation. To demonstrate its promising capability for practical energy storage applications, the ASC has been employed as a portable energy source to power a commercially available digital watch, mini motor car, or household lamp bulb as well as an energy storage reservoir, coupled with a wind energy harvester to power patterned light-emitting diodes (LEDs).

  4. Direct energy conversion for IEC fusion for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Momota, Hiromu; Nadler, Jon [National Inst. for Fusion Science, Toki, Gifu (Japan); Miley, George H. [Fusion Studies Laboratory, Urbana, IL (United States)

    2000-08-01

    The paper describes a concept of extracting fusion power from D-{sup 3}He fueled IEC (Inertia Electrostatic Configuration) devices. The fusion system consists of a series of fusion modules and direct energy converters at an end or at both ends. This system of multiple units is linear and is connected by a magnetic field. A pair of coils anti-parallel to the magnetic field yields a field-null domain at the center of each unit as required for IEC operation. A stabilizing coil installed between the coil pairs eliminates the strong attractive force between the anti-parallel coils. Accessible regions for charged particle trajectories are essentially isolated from the coil structure. Thus, charged particles are directed along magnetic field lines to the direct energy converter without appreciable losses. A direct energy converter unit designed to be compatible to this unique system is also described. It basically consists of a separator and a traveling wave converter. A separator separates low energy ions and electron from the 14.7 MeV fusion protons and then converts their energy into electricity. In the traveling wave direct energy converter, fusion protons are modulated to form bunches. It couples with a transmission line to couple AC power out. The overall conversion efficiency of this system, combined with E-{sup 3}He IEC cores, is estimated as high as 60%. (author)

  5. Fission Surface Power Technology Development Update

    Science.gov (United States)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2011-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and places beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited or environmental conditions are challenging (e.g., extreme cold, dust storms). NASA and the Department of Energy are maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for a fission surface power system. The Fission Surface Power Systems project has focused on subscale component and subsystem demonstrations to address the feasibility of a low-risk, low-cost approach to space nuclear power for surface missions. Laboratory demonstrations of the liquid metal pump, reactor control drum drive, power conversion, heat rejection, and power management and distribution technologies have validated that the fundamental characteristics and performance of these components and subsystems are consistent with a Fission Surface Power preliminary reference concept. In addition, subscale versions of a non-nuclear reactor simulator, using electric resistance heating in place of the reactor fuel, have been built and operated with liquid metal sodium-potassium and helium/xenon gas heat transfer loops, demonstrating the viability of establishing system-level performance and characteristics of fission surface power technologies without requiring a nuclear reactor. While some component and subsystem testing will continue through 2011 and beyond, the results to date provide sufficient confidence to proceed with system level technology readiness demonstration. To demonstrate the system level readiness of fission surface power in an operationally relevant environment (the primary goal of the Fission Surface Power Systems project), a full scale, 1/4 power Technology Demonstration Unit (TDU) is under development. The TDU will consist of a non-nuclear reactor simulator, a sodium-potassium heat transfer loop, a power

  6. 1: the atom. 2: radioactivity. 3: man and radiations. 4: the energy. 5: nuclear energy: fusion and fission. 6: the operation of a nuclear reactor. 7: the nuclear fuel cycle; 1: l'atome. 2: la radioactivite. 3: l'homme et les rayonnements. 4: l'energie. 5: l'energie nucleaire: fusion et fission. 6: le fonctionnement d'un reacteur nucleaire. 7: le cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This series of 7 digest booklets present the bases of the nuclear physics and of the nuclear energy: 1 - the atom (structure of matter, chemical elements and isotopes, the four fundamental interactions, nuclear physics); 2 - radioactivity (definition, origins of radioelements, applications of radioactivity); 3 - man and radiations (radiations diversity, biological effects, radioprotection, examples of radiation applications); 4 - energy (energy states, different forms of energy, characteristics); 5 - nuclear energy: fusion and fission (nuclear energy release, thermonuclear fusion, nuclear fission and chain reaction); 6 - operation of a nuclear reactor (nuclear fission, reactor components, reactor types); 7 - nuclear fuel cycle (nuclear fuel preparation, fuel consumption, reprocessing, wastes management). (J.S.)

  7. Neutron emission effects on final fragments mass and kinetic energy distribution from low energy fission of {sup 234}U

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, M.; Rojas, J. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, Lima 41 (Peru); Lobato, I. [Facultad de Ciencias, Universidad Nacional de Ingenieria, Av. Tupac Amaru 210, Apartado Postal 31-139, Lima (Peru)]. e-mail: mmontoya@ipen.gob.pe

    2008-07-01

    The standard deviation of the final kinetic energy distribution ({sigma}{sub e}) as a function of mass of final fragments (m) from low energy fission of {sup 234}U, measured with the Lohengrin spectrometer by Belhafaf et al., presents a peak around m = 109 and another around m = 122. The authors attribute the first peak to the evaporation of a large number of neutrons around the corresponding mass number, i.e. there is no peak on the standard deviation of the primary kinetic energy distribution ({sigma}{sub E}) as a function of primary fragment mass (A). The second peak is attributed to a real peak on {sigma}{sub E}(A). However, theoretical calculations related to primary distributions made by H.R. Faust and Z. Bao do not suggest any peak on {sigma}{sub E}(A). In order to clarify this apparent controversy, we have made a numerical experiment in which the masses and the kinetic energy of final fragments are calculated, assuming an initial distribution of the kinetic energy without structures on the standard deviation as function of fragment mass. As a result we obtain a pronounced peak on {sigma}{sub e} (m) curve around m = 109, a depletion from m = 121 to m = 129, and an small peak around m = 122, which is not as great as that measured by Belhafaf et al. Our simulation also reproduces the experimental results on the yield of the final mass Y(m), the average number of emitted neutrons as a function of the provisional mass (calculated from the values of the final kinetic energy of the complementary fragments) and the average value of fragment kinetic energy as a function of the final mass. From our results we conclude that there are no peaks on the {sigma}{sub E} (A) curve, and the observed peaks on {sigma}{sub e} (m) are due to the emitted neutron multiplicity and the variation of the average fragment kinetic energy as a function of primary fragment mass. (Author)

  8. Energy-based modelling and control of wind energy conversion system with DFIG

    Science.gov (United States)

    Song, H. H.; Qu, Y. B.

    2011-02-01

    Focusing on wind energy conversion system (WECS) at the doubly-fed induction generator (DFIG) control level, a novel control approach was proposed to optimise wind energy capture from consideration of physical nature and energy relationship. According to energy flowing, the WECS was divided into several multi-ports energy conversion subsystems, and the structure matrices of the subsystems were elaborately designed. Based on this, port-controlled Hamiltonian models of the subsystems were obtained, and energy-based control using the models was provided to realise the machine side and the grid side control objectives of the WECS. The approach was applied on a 2 MW WECS, and compared with classical proportional-integral (PI) controller using MATLAB/Simulink. The results show that the energy-based control not only fully satisfies both side control requirements, but also has more robust control performances for a turbulent wind than the PI control.

  9. Precision measurements of high-energy conversion electron lines and determination of neutron binding energies

    International Nuclear Information System (INIS)

    Braumandl, F.

    1979-01-01

    The paper first discusses the energy accuracy of the BILL conversion electron spectrometer at the Grenoble high flux reactor. With an improved temperature stabilisation of the magnets, an energy accuracy of ΔE/E -5 can be reached. After this, highly exact measurements of high-energy conversion electron lines of the 200 Hg, 114 Cd, 165 Dy, 168 Er, 239 U nuclei and the 13 C, 28 Al 3 H and 92 Zr photoelectron lines were carried out. Energy calibration of the spectrometer was carried out in the 1.5 MeV to 6.5 MeV range with intensive high-energy transitions of the 200 Hg nucleus. Systematic calibration errors could be investigated by means of combinations between the calibration lines. A calibration for absolute energies was obtained by comparing low-energy gamma transitions of 200 Hg with the 411.8 keV gold standard. (orig.) [de

  10. Efficiency of a gyroscopic device for conversion of mechanical wave energy to electrical energy

    DEFF Research Database (Denmark)

    Carlsen, Martin; Darula, Radoslav; Gravesen, Jens

    2011-01-01

    We consider a recently proposed gyroscopic device for conversion of mechanical ocean wave energy to electrical energy. Two models of the device derived from standard engineering mechanics from the literature are analysed, and a model is derived from analytical mechanics considerations. From...

  11. Model predictive control of wind energy conversion systems

    CERN Document Server

    Yaramasu, Venkata Narasimha R

    2017-01-01

    The authors provide a comprehensive analysis on the model predictive control of power converters employed in a wide variety of variable-speed wind energy conversion systems (WECS). The contents of this book includes an overview of wind energy system configurations, power converters for variable-speed WECS, digital control techniques, MPC, modeling of power converters and wind generators for MPC design. Other topics include the mapping of continuous-time models to discrete-time models by various exact, approximate, and quasi-exact discretization methods, modeling and control of wind turbine grid-side two-level and multilevel voltage source converters. The authors also focus on the MPC of several power converter configurations for full variable-speed permanent magnet synchronous generator based WECS, squirrel-cage induction generator based WECS, and semi-variable-speed doubly fed induction generator based WECS.

  12. Solid State Energy Conversion Alliance 2nd Annual Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2001-03-30

    The National Energy Technology Laboratory (NETL) and the Pacific Northwest National Laboratory (PNNL) are pleased to provide the proceedings of the second annual Solid State Energy Conversion Alliance (SECA) Workshop held on March 29-30, 2001 in Arlington. The package includes the presentations made during the workshop, a list of participants, and the results of the breakout sessions. Those sessions covered stack materials and processes, power electronics, balance of plant and thermal integration, fuel processing technologies, and stack and system performance modeling. The breakout sessions have been reported as accurately as possible; however, due to the recording and transcription process errors may have occurred. If you note any significant omissions or wish to provide additional information, we welcome your comments and hope that all stakeholder groups will use the enclosed information in their planning endeavors.

  13. Selective blacks for enhanced photothermal solar energy conversion

    Science.gov (United States)

    Agarwal, R. C.; Pillai, P. K. C.

    The optical and physical requirements of selective surfaces for maximum absorption of solar thermal energy are reviewed, along with processes to fabricate the selective coatings. Noting that the solar energy which reaches the ground is usually in wavelengths of 0.3-2 microns, the desired qualities of coatings are listed as stability of performance, good adherence to the substructure, ease of application, low emissivity above two microns, and economical fabrication. Selective surfaces comprise absorber-reflector tandems, which allow or reflect IR passage, multilayer interference stacks, which involve successive deposition of metallic coatings, and controlled surface morphology, which entails either geometric irregularities, Mie scattering films, corrugated surfaces, or wire mesh surfaces. Preparation can be by electrodeposition, chemical conversion, spray pyrolysis, paint coatings, vacuum deposition, and chemical vapor deposition (CVD), which is stressed as offering the most attractive option for economical large scale coating of solar selective surfaces.

  14. Improvements in the electromechanical conversion of energy using shock waves

    International Nuclear Information System (INIS)

    Landure, Yves

    1971-01-01

    This report concerns the electrical mechanical conversion. In this study it was obtained by the depolarization of a ferroelectric ceramic. We are particularly interested by the high electrical horse-power. Shock wave which produces depolarization is created by a gun powder. The speed of the projectile is measured and the pressures generated in the ceramic is determined graphically. The energy freed is released on a linear resistive load. We were able to prove by different parameters how to obtain the maximum electrical energy. On a resistive load of 26 ohms, it was freed 0,91 J/cm 3 in less than 0,5 μs corresponding to an electrical horse-power superior to 2 MW/cm 3 . (author) [fr

  15. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion System

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W

    2007-12-15

    This report contains the description of the S-CO{sub 2} Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For system development, a computer code was developed to calculate heat balance of 100% power operation condition. Based on the computer code, the S-CO{sub 2} Brayton cycle energy conversion system was constructed for the KALIMER-600. Using the developed turbomachinery models, the off-design characteristics and the sensitivities of the S-CO{sub 2} turbomachinery were investigated. For the development of PCHE models, a one-dimensional analysis computer code was developed to evaluate the performance of the PCHE. Possible control schemes for power control in the KALIMER-600 S-CO{sub 2} Brayton cycle were investigated by using the MARS code. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na/CO{sub 2} boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO{sub 2} gas. The long term behavior of a Na/CO{sub 2} boundary failure event and its consequences which lead to a system pressure transient were evaluated.

  16. Proceedings of the Chornobyl phytoremediation and biomass energy conversion workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, J. [Pacific Northwest National Lab., Richland, WA (United States); Tokarevsky, V. [State Co. for Treatment and Disposal of Mixed Hazardous Waste (Ukraine)

    1998-06-01

    Many concepts, systems, technical approaches, technologies, ideas, agreements, and disagreements were vigorously discussed during the course of the 2-day workshop. The workshop was successful in generating intensive discussions on the merits of the proposed concept that includes removal of radionuclides by plants and trees (phytoremediation) to clean up soil in the Chornobyl Exclusion Zone (CEZ), use of the resultant biomass (plants and trees) to generate electrical power, and incorporation of ash in concrete casks to be used as storage containers in a licensed repository for low-level waste. Twelve years after the Chornobyl Nuclear Power Plant (ChNPP) Unit 4 accident, which occurred on April 26, 1986, the primary 4radioactive contamination of concern is from radioactive cesium ({sup 137}Cs) and strontium ({sup 90}Sr). The {sup 137}Cs and {sup 90}Sr were widely distributed throughout the CEZ. The attendees from Ukraine, Russia, Belarus, Denmark and the US provided information, discussed and debated the following issues considerably: distribution and characteristics of radionuclides in CEZ; efficacy of using trees and plants to extract radioactive cesium (Cs) and strontium (Sr) from contaminated soil; selection of energy conversion systems and technologies; necessary infrastructure for biomass harvesting, handling, transportation, and energy conversion; radioactive ash and emission management; occupational health and safety concerns for the personnel involved in this work; and economics. The attendees concluded that the overall concept has technical and possibly economic merits. However, many issues (technical, economic, risk) remain to be resolved before a viable commercial-scale implementation could take place.

  17. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion System

    International Nuclear Information System (INIS)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W.

    2007-12-01

    This report contains the description of the S-CO 2 Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For system development, a computer code was developed to calculate heat balance of 100% power operation condition. Based on the computer code, the S-CO 2 Brayton cycle energy conversion system was constructed for the KALIMER-600. Using the developed turbomachinery models, the off-design characteristics and the sensitivities of the S-CO 2 turbomachinery were investigated. For the development of PCHE models, a one-dimensional analysis computer code was developed to evaluate the performance of the PCHE. Possible control schemes for power control in the KALIMER-600 S-CO 2 Brayton cycle were investigated by using the MARS code. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na/CO 2 boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO 2 gas. The long term behavior of a Na/CO 2 boundary failure event and its consequences which lead to a system pressure transient were evaluated

  18. Proceedings of the Chernobyl phytoremediation and biomass energy conversion workshop

    International Nuclear Information System (INIS)

    Hartley, J.; Tokarevsky, V.

    1998-06-01

    Many concepts, systems, technical approaches, technologies, ideas, agreements, and disagreements were vigorously discussed during the course of the 2-day workshop. The workshop was successful in generating intensive discussions on the merits of the proposed concept that includes removal of radionuclides by plants and trees (phytoremediation) to clean up soil in the Chernobyl Exclusion Zone (CEZ), use of the resultant biomass (plants and trees) to generate electrical power, and incorporation of ash in concrete casks to be used as storage containers in a licensed repository for low-level waste. Twelve years after the Chernobyl Nuclear Power Plant (ChNPP) Unit 4 accident, which occurred on April 26, 1986, the primary 4radioactive contamination of concern is from radioactive cesium ( 137 Cs) and strontium ( 90 Sr). The 137 Cs and 90 Sr were widely distributed throughout the CEZ. The attendees from Ukraine, Russia, Belarus, Denmark and the US provided information, discussed and debated the following issues considerably: distribution and characteristics of radionuclides in CEZ; efficacy of using trees and plants to extract radioactive cesium (Cs) and strontium (Sr) from contaminated soil; selection of energy conversion systems and technologies; necessary infrastructure for biomass harvesting, handling, transportation, and energy conversion; radioactive ash and emission management; occupational health and safety concerns for the personnel involved in this work; and economics. The attendees concluded that the overall concept has technical and possibly economic merits. However, many issues (technical, economic, risk) remain to be resolved before a viable commercial-scale implementation could take place

  19. Plasmadynamics and ionization kinetics of thermionic energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Lawless, J.L. Jr.; Lam, S.H.

    1982-02-01

    To reduce the plasma arc-drop, thermionic energy conversion is studied with both analytical and numerical tools. Simplifications are made in both the plasmadynamic and ionization-recombination theories. These are applied to a scheme proposed presently using laser irradiation to enhance the ionization kinetics of the thermionic plasma and thereby reduce the arc-drop. It is also predicted that it is possible to generate the required laser light from a thermionic-type cesium plasma. The analysis takes advantage of theoretical simplifications derived for the ionization-recombination kinetics. It is shown that large laser ionization enhancements can occur and that collisional cesium recombination lasing is expected. To complement the kinetic theory, a numerical method is developed to solve the thermionic plasma dynamics. To combine the analysis of ionization-recombination kinetics with the plasma dynamics of thermionic conversion, a finite difference computer program is constructed. It is capable of solving for both unsteady and steady thermionic converter behavior including possible laser ionization enhancement or atomic recombination lasing. A proposal to improve thermionic converter performance using laser radiation is considered. In this proposed scheme, laser radiation impinging on a thermionic plasma enhances the ionization process thereby raising the plasma density and reducing the plasma arc-drop. A source for such radiation may possibly be a cesium recombination laser operating in a different thermionic converter. The possibility of this being an energy efficient process is discussed. (WHK)

  20. Hybrid acoustic energy harvesting using combined electromagnetic and piezoelectric conversion

    Science.gov (United States)

    Khan, Farid Ullah; Izhar

    2016-02-01

    This paper reports a novel hybrid acoustic energy harvester. The harvester utilizes both the electromagnetic and piezoelectric conversion mechanisms simultaneously to convert the ambient acoustical noise into electrical power for self-powered wireless sensor nodes. The proposed harvester is comprised of a Helmholtz resonator, two magnets mounted on a piezoelectric plate, and a wound coil located under the magnets. The harvester is characterized both under harmonic and real random acoustical excitations. In-lab, under harmonic acoustical excitation at a sound pressure level of 130 dB and frequency of 2.1 kHz, an optimum power of 2.86 μW (at 114 Ω optimum load) is obtained from electromagnetic conversion and 50 μW (at 1000 Ω optimum load) is generated by the piezoelectric harvester's part. Moreover, in real acoustical environment of a domestic electric generator the peak voltages of 40 and 123 mV are produced by the electromagnetic and piezoelectric portions of the acoustic energy harvester.

  1. Energy conversion approaches and materials for high-efficiency photovoltaics.

    Science.gov (United States)

    Green, Martin A; Bremner, Stephen P

    2016-12-20

    The past five years have seen significant cost reductions in photovoltaics and a correspondingly strong increase in uptake, with photovoltaics now positioned to provide one of the lowest-cost options for future electricity generation. What is becoming clear as the industry develops is that area-related costs, such as costs of encapsulation and field-installation, are increasingly important components of the total costs of photovoltaic electricity generation, with this trend expected to continue. Improved energy-conversion efficiency directly reduces such costs, with increased manufacturing volume likely to drive down the additional costs associated with implementing higher efficiencies. This suggests the industry will evolve beyond the standard single-junction solar cells that currently dominate commercial production, where energy-conversion efficiencies are fundamentally constrained by Shockley-Queisser limits to practical values below 30%. This Review assesses the overall prospects for a range of approaches that can potentially exceed these limits, based on ultimate efficiency prospects, material requirements and developmental outlook.

  2. Assessing the role of the (n, γ f) process in the low-energy fission of actinides

    Science.gov (United States)

    Talou, Patrick; Lynn, J. E.; Kawano, T.; Mosby, S.; Couture, A.; Bouland, O.

    2016-06-01

    We review the role of the (n, γ f) process in the low-energy neutron-induced fission reaction of 239Pu. Recent measurements of the average total γ-ray energy released in this reaction were performed with the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos. Significant fluctuations of this quantity in the resonance region below 100 eV can be interpreted by invoking the presence of the indirect (n, γ f) process. Modern calculations of the probability for such an event to occur are presented.

  3. Assessing the role of the (n, γ f process in the low-energy fission of actinides

    Directory of Open Access Journals (Sweden)

    Talou Patrick

    2016-01-01

    Full Text Available We review the role of the (n, γ f process in the low-energy neutron-induced fission reaction of 239Pu. Recent measurements of the average total γ-ray energy released in this reaction were performed with the Detector for Advanced Neutron Capture Experiments (DANCE at Los Alamos. Significant fluctuations of this quantity in the resonance region below 100 eV can be interpreted by invoking the presence of the indirect (n, γ f process. Modern calculations of the probability for such an event to occur are presented.

  4. Efficient energy conversion in the pulp and paper industry

    Energy Technology Data Exchange (ETDEWEB)

    Marechal, F.; Perin-Levasseur, Z.

    2005-07-01

    This yearly report for the Swiss Federal Office of Energy (SFOE) takes a look at the work done in 2005 and the work planned for 2006 within the framework of the Efficient Energy Conversion in the Pulp and Paper Industry project. The results of investigations made at a large pulp and paper facility in Switzerland are presented and analysed. Data models of the steam and condensate networks and of the processes involved are examined. An additional model of the sulphur loop has been also elaborated. From this analysis, a list of required measurements has been developed. Several performance indicators have also been calculated: A systematic analysis method developed to identify sections where condensate could be recovered is discussed. A systematic definition of the hot and cold streams in the process is being developed in order to compute the minimum energy requirements of the process. Evaluating this minimum energy requirement from the data available is to be used to prepare definitions of the energy savings possible.

  5. Experimental model of a wind energy conversion system

    Science.gov (United States)

    Vasar, C.; Rat, C. L.; Prostean, O.

    2018-01-01

    The renewable energy domain represents an important issue for the sustainable development of the mankind in the actual context of increasing demand for energy along with the increasing pollution that affect the environment. A significant quota of the clean energy is represented by the wind energy. As a consequence, the developing of wind energy conversion systems (WECS) in order to achieve high energetic performances (efficiency, stability, availability, competitive cost etc) represents a topic of permanent actuality. Testing and developing of an optimized control strategy for a WECS direct implemented on a real energetic site is quite difficult and not cost efficient. Thus a more convenient solution consists in a flexible laboratory setup which requires an experimental model of a WECS. Such approach would allow the simulation of various real conditions very similar with existing energetic sites. This paper presents a grid-connected wind turbine emulator. The wind turbine is implemented through a real-time Hardware-in-the-Loop (HIL) emulator, which will be analyzed extensively in the paper. The HIL system uses software implemented in the LabVIEW programming environment to control an ABB ACS800 electric drive. ACS800 has the task of driving an induction machine coupled to a permanent magnet synchronous generator. The power obtained from the synchronous generator is rectified, filtered and sent to the main grid through a controlled inverter. The control strategy is implemented on a NI CompactRIO (cRIO) platform.

  6. Wind Energy Conversion by Plant-Inspired Designs.

    Science.gov (United States)

    McCloskey, Michael A; Mosher, Curtis L; Henderson, Eric R

    2017-01-01

    In 2008 the U.S. Department of Energy set a target of 20% wind energy by 2030. To date, induction-based turbines form the mainstay of this effort, but turbines are noisy, perceived as unattractive, a potential hazard to bats and birds, and their height hampers deployment in residential settings. Several groups have proposed that artificial plants containing piezoelectric elements may harvest wind energy sufficient to contribute to a carbon-neutral energy economy. Here we measured energy conversion by cottonwood-inspired piezoelectric leaves, and by a "vertical flapping stalk"-the most efficient piezo-leaf previously reported. We emulated cottonwood for its unusually ordered, periodic flutter, properties conducive to piezo excitation. Integrated over 0°-90° (azimuthal) of incident airflow, cottonwood mimics outperformed the vertical flapping stalk, but they produced < daW per conceptualized tree. In contrast, a modest-sized cottonwood tree may dissipate ~ 80 W via leaf motion alone. A major limitation of piezo-transduction is charge generation, which scales with capacitance (area). We thus tested a rudimentary, cattail-inspired leaf with stacked elements wired in parallel. Power increased systematically with capacitance as expected, but extrapolation to acre-sized assemblages predicts < daW. Although our results suggest that present piezoelectric materials will not harvest mid-range power from botanic mimics of convenient size, recent developments in electrostriction and triboelectric systems may offer more fertile ground to further explore this concept.

  7. Excitation energy dependence of fragment-mass distributions from fission of 180,190Hg formed in fusion reactions of 36Ar + 144,154Sm

    Directory of Open Access Journals (Sweden)

    K. Nishio

    2015-09-01

    Full Text Available Mass distributions of fission fragments from the compound nuclei 180Hg and 190Hg formed in fusion reactions 36Ar + 144Sm and 36Ar + 154Sm, respectively, were measured at initial excitation energies of E⁎(Hg180=33–66 MeV and E⁎(Hg190=48–71 MeV. In the fission of 180Hg, the mass spectra were well reproduced by assuming only an asymmetric-mass division, with most probable light and heavy fragment masses A¯L/A¯H=79/101. The mass asymmetry for 180Hg agrees well with that obtained in the low-energy β+/EC-delayed fission of 180Tl, from our earlier ISOLDE(CERN experiment. Fission of 190Hg is found to proceed in a similar way, delivering the mass asymmetry of A¯L/A¯H=83/107, throughout the measured excitation energy range. The persistence as a function of excitation energy of the mass-asymmetric fission for both proton-rich Hg isotopes gives strong evidence for the survival of microscopic effects up to effective excitation energies of compound nuclei as high as 40 MeV. This behavior is different from fission of actinide nuclei and heavier mercury isotope 198Hg.

  8. Measurement of high-energy prompt gamma-rays from neutron induced fission of U-235

    Directory of Open Access Journals (Sweden)

    Makii Hiroyuki

    2017-01-01

    Full Text Available We have developed a new setup to measure prompt γ-rays from the 235U(nth,f reaction. The setup consists of two multi-wire proportional counters (MWPCs to detect the fission fragments, two LaBr3(Ce scintillators to measure the γ-rays. The highly efficient setup was installed at the PF1B beam line of the Institut Laue Langevin (ILL. We have successfully measured the γ-ray spectrum up to about 20 MeV for the fist time in neutron-induced fission.

  9. Energy dependence of fission product yields from 235U, 238U, and 239Pu with monoenergetic neutrons between thermal and 14.8 MeV

    Science.gov (United States)

    Gooden, Matthew; Arnold, Charles; Bhike, Megha; Bredeweg, Todd; Fowler, Malcolm; Krishichayan; Tonchev, Anton; Tornow, Werner; Stoyer, Mark; Vieira, David; Wilhelmy, Jerry

    2017-09-01

    Under a joint collaboration between TUNL-LANL-LLNL, a set of absolute fission product yield measurements has been performed. The energy dependence of a number of cumulative fission product yields (FPY) have been measured using quasi-monoenergetic neutron beams for three actinide targets, 235U, 238U and 239Pu, between 0.5 and 14.8 MeV. The FPYs were measured by a combination of fission counting using specially designed dual-fission chambers and γ-ray counting. Each dual-fission chamber is a back-to-back ionization chamber encasing an activation target in the center with thin deposits of the same target isotope in each chamber. This method allows for the direct measurement of the total number of fissions in the activation target with no reference to the fission cross-section, thus reducing uncertainties. γ-ray counting of the activation target was performed on well-shielded HPGe detectors over a period of two months post irradiation to properly identify fission products. Reported are absolute cumulative fission product yields for incident neutron energies of 0.5, 1.37, 2.4, 3.6, 4.6, 5.5, 7.5, 8.9 and 14.8 MeV. Preliminary results from thermal irradiations at the MIT research reactor will also be presented and compared to present data and evaluations. This work was performed under the auspices of the U.S. Department of Energy by Los Alamos National Security, LLC under contract DE-AC52-06NA25396, Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 and by Duke University and Triangle Universities Nuclear Laboratory through NNSA Stewardship Science Academic Alliance grant No. DE-FG52-09NA29465, DE-FG52-09NA29448 and Office of Nuclear Physics Grant No. DE-FG02-97ER41033.

  10. Analytical investigation of low temperature lift energy conversion systems with renewable energy source

    International Nuclear Information System (INIS)

    Lee, Hoseong; Hwang, Yunho; Radermacher, Reinhard

    2014-01-01

    The efficiency of the renewable energy powered energy conversion system is typically low due to its moderate heat source temperature. Therefore, improving its energy efficiency is essential. In this study, the performance of the energy conversion system with renewable energy source was theoretically investigated in order to explore its design aspect. For this purpose, a computer model of n-stage low temperature lift energy conversion (LTLEC) system was developed. The results showed that under given operating conditions such as temperatures and mass flow rates of heat source and heat sink fluids the unit power generation of the system increased with the number of stage, and it became saturated when the number of staging reached four. Investigation of several possible working fluids for the optimum stage LTLEC system revealed that ethanol could be an alternative to ammonia. The heat exchanger effectiveness is a critical factor on the system performance. The power generation was increased by 7.83% for the evaporator and 9.94% for the condenser with 10% increase of heat exchanger effectiveness. When these low temperature source fluids are applied to the LTLEC system, the heat exchanger performance would be very critical and it has to be designed accordingly. - Highlights: •Energy conversion system with renewable energy is analytically investigated. •A model of multi-stage low temperature lift energy conversion systems was developed. •The system performance increases as the stage number is increased. •The unit power generation is increased with increase of HX effectiveness. •Ethanol is found to be a good alternative to ammonia

  11. Using Delft3D to Simulate Current Energy Conversion

    Science.gov (United States)

    James, S. C.; Chartrand, C.; Roberts, J.

    2015-12-01

    As public concern with renewable energy increases, current energy conversion (CEC) technology is being developed to optimize energy output and minimize environmental impact. CEC turbines generate energy from tidal and current systems and create wakes that interact with turbines located downstream of a device. The placement of devices can greatly influence power generation and structural reliability. CECs can also alter the ecosystem process surrounding the turbines, such as flow regimes, sediment dynamics, and water quality. Software is needed to investigate specific CEC sites to simulate power generation and hydrodynamic responses of a flow through a CEC turbine array. This work validates Delft3D against several flume experiments by simulating the power generation and hydrodynamic response of flow through a turbine or actuator disc(s). Model parameters are then calibrated against these data sets to reproduce momentum removal and wake recovery data with 3-D flow simulations. Simulated wake profiles and turbulence intensities compare favorably to the experimental data and demonstrate the utility and accuracy of a fast-running tool for future siting and analysis of CEC arrays in complex domains.

  12. ECUT (Energy Conversion and Utilization Technologies Program). Biocatalysis Project

    Science.gov (United States)

    1986-01-01

    Presented are the FY 1985 accomplishments, activities, and planned research efforts of the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Program. The Project's technical activities were organized as follows: In the Molecular Modeling and Applied Genetics work element, research focused on (1) modeling and simulation studies to establish the physiological basis of high temperature tolerance in a selected enzyme and the catalytic mechanisms of three species of another enzyme, and (2) determining the degree of plasmid amplification and stability of several DNA bacterial strains. In the Bioprocess Engineering work element, research focused on (1) studies of plasmid propagation and the generation of models, (2) developing methods for preparing immobilized biocatalyst beads, and (3) developing an enzyme encapsulation method. In the Process Design and Analysis work element, research focused on (1) further refinement of a test case simulation of the economics and energy efficiency of alternative biocatalyzed production processes, (2) developing a candidate bioprocess to determine the potential for reduced energy consumption and facility/operating costs, and (3) a techno-economic assessment of potential advancements in microbial ammonia production.

  13. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from a LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs, 90 Sr, 129 I, 99 Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R = 1.0 to 3.0) requirements. These studies also indicate that masses on the order of 1.0 g at densities of rho greater than or equal to 500.0 g/cm 3 are required for a practical fusion-based fission product transmutation system

  14. World Energy Data System (WENDS). Volume XI. Nuclear fission program summaries

    International Nuclear Information System (INIS)

    1979-06-01

    Brief management and technical summaries of nuclear fission power programs are presented for nineteen countries. The programs include the following: fuel supply, resource recovery, enrichment, fuel fabrication, light water reactors, heavy water reactors, gas cooled reactors, breeder reactors, research and test reactors, spent fuel processing, waste management, and safety and environment

  15. World Energy Data System (WENDS). Volume XI. Nuclear fission program summaries

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    Brief management and technical summaries of nuclear fission power programs are presented for nineteen countries. The programs include the following: fuel supply, resource recovery, enrichment, fuel fabrication, light water reactors, heavy water reactors, gas cooled reactors, breeder reactors, research and test reactors, spent fuel processing, waste management, and safety and environment. (JWR)

  16. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission

  17. Investigation of the prompt neutron emission mechanism in low energy fission of 235,233U(nth, f and 252Cf(sf

    Directory of Open Access Journals (Sweden)

    Val’ski G.V.

    2010-10-01

    Full Text Available A series of experiments has been performed to measure prompt neutron angular and energy distributions from thermal neutron-induced fission of 235,233U in correlation with the fission fragments. These distributions have been analyzed with the assumption of neutron isotropic emission from accelerated fission fragments. The performed analysis demonstrates that all obtained results can be described within 5% accuracy using this assumption. This discrepancy is approximately constant and doesn’t depend on fragment mass and the total kinetic energy (TKE. Some minor peculiarities of angular distribution may be interpreted as a result of anisotropy of the fission neutron angular distribution in the fragment center-of-mass system.

  18. Investigation of fusion l distributions at near and sub-barrier energies through fission fragment {gamma} ray multiplicity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, D.V.; Choudhury, R.K.; Nayak, B.K.; Nadkarni, D.M.; Kapoor, S.S. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    1997-08-01

    Measurements of fission fragment gamma ray multiplicity distributions were carried out at near and sub-barrier energies in {sup 12}C, {sup 16}O + {sup 232}Th reactions. The results were analyzed to determine the average values of the total fragment spin, which were used to deduce the average spin of the compound nucleus {l_angle}l{r_angle}{sub CN}. It is observed that {l_angle}l{r_angle}{sub CN} decreases smoothly with decreasing bombarding energy and saturates as the energy falls through the barrier, thereby resembling features analogous to those predicted by various fusion models. The present results do not indicate any anomalous feature in the {l_angle}l{r_angle}{sub CN} at the sub-barrier energies, which imply that the recently observed anomalous fragment anisotropies in these systems are not due to anomalous broadening of fusion l distributions but may result from the narrowing of K distribution in the fission process. {copyright} {ital 1997} {ital The American Physical Society}

  19. Wave loadings acting on Overtopping Breakwater for Energy Conversion

    DEFF Research Database (Denmark)

    Vicinanza, Diego; Nørgaard, Jørgen Harck; Contestabile, Pasquale

    2013-01-01

    devices. This paper presents results on wave loading acting on an hybrid WEC named Overtopping BReakwater for Energy Conversion (OBREC). The new design is based on the concept of an integration between a traditional rubble mound breakwater and a front reservoir designed to store the wave overtopping from...... the incoming wave to produce electricity. 2D hydraulic model tests were carried out at the Department of Civil Engineering, Aalborg University (Denmark). The analyses of hydraulic model tests have identified the main shapes assumed by wave surfaces at the breakwater and respective spatial and temporal pressure...... distributions. Load measurements were compared with the most used prediction method for traditional breakwaters, available in the Coastal Engineering Manual (U.S. Army Corps of Engineers, 2002). These results suggest to use the experimental data as design loadings since the design criteria for the innovative...

  20. Siting handbook for small wind energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Wegley, H.L.; Ramsdell, J.V.; Orgill, M.M.; Drake, R.L.

    1980-03-01

    This handbook was written to serve as a siting guide for individuals wishing to install small wind energy conversion systems (WECS); that is, machines having a rated capacity of less than 100 kilowatts. It incorporates half a century of siting experience gained by WECS owners and manufacturers, as well as recently developed siting techniques. The user needs no technical background in meteorology or engineering to understand and apply the siting principles discussed; he needs only a knowledge of basic arithmetic and the ability to understand simple graphs and tables. By properly using the siting techniques, an owner can select a site that will yield the most power at the least installation cost, the least maintenance cost, and the least risk of damage or accidental injury.

  1. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    Science.gov (United States)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  2. Efficiency of a Directly Driven Generator for Hydrokinetic Energy Conversion

    Directory of Open Access Journals (Sweden)

    Mårten Grabbe

    2013-01-01

    Full Text Available An experimental setup for hydrokinetic energy conversion comprising a vertical axis turbine, a directly driven permanent magnet generator, and a control system has been designed and constructed for deployment in the river Dalälven in Sweden. This paper is devoted to discussing the mechanical and electrical design of the generator used in the experimental setup. The generator housing is designed to be water tight, and it also acts as a support structure for the turbine shaft. The generator efficiency has been measured in the range of 5–16.7 rpm, showing that operation in the low velocity range up to 1.5 m/s is possible with a directly driven generator.

  3. Design of Novel Metal Nanostructures for Broadband Solar Energy Conversion

    Directory of Open Access Journals (Sweden)

    Kristine A. Zhang

    2015-01-01

    Full Text Available Solar power holds great potential as an alternative energy source, but current photovoltaic cells have much room for improvement in cost and efficiency. Our objective was to develop metal nanostructures whose surface plasmon resonance (SPR spectra closely match the solar spectrum to enhance light absorption and scattering. We employed the finite-difference time-domain simulation method to evaluate the effect of varying key parameters. A novel nanostructure with SPR absorption matching a region of the solar spectrum (300 to 1500 nm that contains 90% of solar energy was successfully designed. This structure consists of a large gold-silica core-shell structure with smaller gold nanoparticles and nanorods on its surface. Such complex nanostructures are promising for broad and tunable absorption spectra. In addition, we investigated the SPR of silver nanoparticle arrays, which can achieve scattering close to the solar spectrum. We demonstrated an improvement in efficiency of over 30% with optimal nanoparticle radius and periods of 75 nm and 325 nm, respectively. In combination, our studies enable high-efficiency, tunable, and cost-effective enhancement of both light absorption and scattering, which has potential applications in solar energy conversion as well as biomedical imaging.

  4. Biological conversion of hydrogen to electricity for energy storage

    International Nuclear Information System (INIS)

    Karamanev, Dimitre; Pupkevich, Victor; Penev, Kalin; Glibin, Vassili; Gohil, Jay; Vajihinejad, Vahid

    2017-01-01

    Energy storage is currently one of the most significant problems associated with mass-scale usage of renewable (i.e. wind and solar) power sources. The use of hydrogen as an energy storage medium is very promising, but is hampered by the lack of commercially available hydrogen-to-electricity (H2e) converters. Here we are presenting the first commercially viable, biologically based technology for H2e conversion named the BioGenerator. It is a microbial fuel cell based on electron consumption resulting from the respiration of chemolithoautotrophic microorganisms. The results obtained during the scale-up study of the BioGenerator showed a maximum specific current of 1.35 A/cm 2 , maximum power density of 1800 W/m 2 and stable electricity generation over a period spanning longer than four years. The largest unit studied so far has a volume of 600 L and a power output of 0.3 kW. - Highlights: • A commercially viable biological convertor of H 2 to electricity (BioGenerator) is proposed. • It has a short-term commercial potential and its economic analysis is quite promising. • The BioGenerator is the first commercially viable bio-technology for energy storage. • It is a power generation technology of which has a negative CO 2 emission.

  5. Thermal power plant efficiency enhancement with Ocean Thermal Energy Conversion

    International Nuclear Information System (INIS)

    Soto, Rodrigo; Vergara, Julio

    2014-01-01

    In addition to greenhouse gas emissions, coastal thermal power plants would gain further opposition due to their heat rejection distressing the local ecosystem. Therefore, these plants need to enhance their thermal efficiency while reducing their environmental offense. In this study, a hybrid plant based on the principle of Ocean Thermal Energy Conversion was coupled to a 740 MW coal-fired power plant project located at latitude 28°S where the surface to deepwater temperature difference would not suffice for regular OTEC plants. This paper presents the thermodynamical model to assess the overall efficiency gained by adopting an ammonia Rankine cycle plus a desalinating unit, heated by the power plant condenser discharge and refrigerated by cold deep seawater. The simulation allowed us to optimize a system that would finally enhance the plant power output by 25–37 MW, depending on the season, without added emissions while reducing dramatically the water temperature at discharge and also desalinating up to 5.8 million tons per year. The supplemental equipment was sized and the specific emissions reduction was estimated. We believe that this approach would improve the acceptability of thermal and nuclear power plant projects regardless of the plant location. -- Highlights: • An Ocean Thermal Energy Conversion hybrid plant was designed. • The waste heat of a power plant was delivered as an OTEC heat source. • The effect of size and operating conditions on plant efficiency were studied. • The OTEC implementation in a Chilean thermal power plant was evaluated. • The net efficiency of the thermal power plant was increased by 1.3%

  6. Supporting Current Energy Conversion Projects through Numerical Modeling

    Science.gov (United States)

    James, S. C.; Roberts, J.

    2016-02-01

    The primary goals of current energy conversion (CEC) technology being developed today are to optimize energy output and minimize environmental impact. CEC turbines generate energy from tidal and current systems and create wakes that interact with turbines located downstream of a device. The placement of devices can greatly influence power generation and structural reliability. CECs can also alter the environment surrounding the turbines, such as flow regimes, sediment dynamics, and water quality. These alterations pose potential stressors to numerous environmental receptors. Software is needed to investigate specific CEC sites to simulate power generation and hydrodynamic responses of a flow through a CEC turbine array so that these potential impacts can be evaluated. Moreover, this software can be used to optimize array layouts that yield the least changes to the environmental (i.e., hydrodynamics, sediment dynamics, and water quality). Through model calibration exercises, simulated wake profiles and turbulence intensities compare favorably to the experimental data and demonstrate the utility and accuracy of a fast-running tool for future siting and analysis of CEC arrays in complex domains. The Delft3D modeling tool facilitates siting of CEC projects through optimization of array layouts and evaluation of potential environmental effect all while provide a common "language" for academics, industry, and regulators to be able to discuss the implications of marine renewable energy projects. Given the enormity of any full-scale marine renewable energy project, it necessarily falls to modeling to evaluate how array operations must be addressed in an environmental impact statement in a way that engenders confidence in the assessment of the CEC array to minimize environmental effects.

  7. Power conversion and control methods for renewable energy sources

    Science.gov (United States)

    Yu, Dachuan

    2005-07-01

    In recent years, there has been an increase in the use of renewable energy due to the growing concern over the pollution caused by fossil-fuel-based energy. Renewable energy sources, such as photovoltaic (PV) and fuel cell, can be used to enhance the safety, reliability, sustainability, and transmission efficiency of a power system. This dissertation focuses on the power conversion and control for two major renewable-energy sources: PV and fuel cell. Firstly, a current-based, maximum power-point tracking (MPPT) algorithm is proposed for PV energy. An economical converter system using the above scheme for converting the output from PV panels into 60 Hz AC voltage is developed and built. Secondly, a novel circuit model for the Proton Exchange Membrane (PEM) fuel-cell stack that is useful in the design and analysis of fuel-cell-based power systems is proposed. This Pspice-based model uses elements available in the Pspice library with some modifications to represent both the static and dynamic responses of a PEM fuel-cell module. The accuracy of the model is verified by comparing the simulation and experimental results. Thirdly, a DSP-controlled three-phase induction-motor drive using constant voltage over frequency is built and can be used in a fuel-cell automobile. A hydrogen sensor is used in the drive to both sound an alarm and shut down the inverter trigger pulses through the DSP. Finally, a hybrid power system consisting of PV panels and fuel cell is proposed and built. In the proposed system, PV panels can supply most of the power when the sunlight is available, and the excess power required by the load is supplied by a fuel cell. Load sharing between a fuel cell (FC) and the PV panel is investigated by both simulation and experiments.

  8. The direct conversion of solar energy to electricity

    International Nuclear Information System (INIS)

    1992-01-01

    Half the world's population lives without access to electricity in the rural areas and villages of developing countries. In 1987, world population reached 5 billion and, according to World Bank projections, will increase to over 6 billion in the year 2000 and to over 8 billion in 2025. Such population growth is not uniformly distributed: developed countries have small or negative growth and account for a declining proportion of the world's population. Inasmuch as 95 per cent of the extra inhabitants added each year are in developing countries, rapid population growth in those countries raises serious questions about energy availability for basic human needs and, of course, more broadly about the environment's capacity to support that growth. The present report makes reference to one of the most comprehensively documented conservative scenarios for world energy demand in the year 2020, namely, Energy for a Sustainable World, which assumed that long-term world sustainability must entail constraints on (a) use of natural resources and (b) combustion of fossil fuels resulting in the greenhouse effect. Solar energy is abundant and could become a major source of electricity. Photovoltaics has three particular advantages. It accomplishes sunlight-to-electricity conversion entirely with solid-state electronic components, and with no moving parts required, thereby promising high equipment availability and very low operating and maintenance costs. PV also appears to have very limited environmental impact, with no emissions of the gaseous pollutants associated with fossil-fuel burning and few of the possible local problems associated with some other renewable energy technologies. Finally, the products of photovoltaic technology are modular in construction and can be built up on site in a flexible way, thus minimizing front-end financial risk and investment costs. Figs and tabs

  9. Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

    Science.gov (United States)

    Skeist, S. Merrill; Baker, Richard H.

    2006-01-10

    An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.

  10. Energy conversion options for ARIES-III - A conceptual D-3He tokamak reactor

    International Nuclear Information System (INIS)

    Santarius, J.F.; Blanchard, J.P.; Emmert, G.A.; Sviatoslavsky, I.N.; Wittenberg, L.J.; Ghoneim, N.M.; Hasan, M.Z.; Mau, T.K.; Greenspan, E.; Herring, J.S.; Kernbichler, W.; Klein, A.C.; Miley, G.H.; Miller, R.L.; Peng, Y.K.M.

    1989-01-01

    The potential for highly efficient conversion of fusion power to electricity provides one motivation for investigating D- 3 He fusion reactors. This stems from: (1) the large fraction of D- 3 He power produced in the forms of charged particles and synchrotron radiation which are amenable to direct conversion, and (2) the low neutron fluence and lack of tritium breeding constraints, which increase design flexibility. The design team for a conceptual D- 3 He tokamak reactor, ARIES-III, has investigated numerous energy conversion options at a scoping level in attempting to realize high efficiency. The energy conversion systems have been studied in the context of their use on one or more of three versions of a D- 3 He tokamak: a first stability regime device, a second stability regime device, and a spherical torus. The set of energy conversion options investigated includes bootstrap current conversion, compression-expansion cycles, direct electrodynamic conversion, electrostatic direct conversion, internal electric generator, liquid metal heat engine blanket, liquid metal MHD, plasma MHD, radiation boiler, scrape-off layer thermoelectric, synchrotron radiation conversion by rectennas, synchrotron radiation conversion by thermal cycles, thermionic/AMTEC/thermal systems, and traveling wave conversion. The original set of options is briefly discussed, and those selected for further study are described in more detail. The four selected are liquid metal MHD, plasma MHD, rectenna conversion, and direct electrodynamic conversion. Thermionic energy conversion is being considered, and some options may require a thermal cycle in parallel or series. 17 refs., 3 figs., 1 tab

  11. Near-field enhanced thermionic energy conversion for renewable energy recycling

    Science.gov (United States)

    Ghashami, Mohammad; Cho, Sung Kwon; Park, Keunhan

    2017-09-01

    This article proposes a new energy harvesting concept that greatly enhances thermionic power generation with high efficiency by exploiting the near-field enhancement of thermal radiation. The proposed near-field enhanced thermionic energy conversion (NETEC) system is uniquely configured with a low-bandgap semiconductor cathode separated from a thermal emitter with a subwavelength gap distance, such that a significant amount of electrons can be photoexcited by near-field thermal radiation to contribute to the enhancement of thermionic current density. We theoretically demonstrate that the NETEC system can generate electric power at a significantly lower temperature than the standard thermionic generator, and the energy conversion efficiency can exceed 40%. The obtained results reveal that near-field photoexcitation can enhance the thermionic power output by more than 10 times, making this hybrid system attractive for renewable energy recycling.

  12. A theoretical analysis of price elasticity of energy demand in multistage energy conversion systems

    International Nuclear Information System (INIS)

    Lowe, R.

    2003-01-01

    The objective of this paper is an analytical exploration of the problem of price elasticity of energy demand in multi-stage energy conversion systems. The paper describes in some detail an analytical model of energy demand in such systems. Under a clearly stated set of assumptions, the model makes it possible to explore both the impacts of the number of sub-systems, and of varying sub-system elasticities on overall system elasticity. The analysis suggests that overall price elasticity of energy demand for such systems will tend asymptotically to unity as the number of sub-systems increases. (author)

  13. A theoretical analysis of price elasticity of energy demand in multi-stage energy conversion systems

    International Nuclear Information System (INIS)

    Lowe, Robert

    2003-01-01

    The objective of this paper is an analytical exploration of the problem of price elasticity of energy demand in multi-stage energy conversion systems. The paper describes in some detail an analytical model of energy demand in such systems. Under a clearly stated set of assumptions, the model makes it possible to explore both the impacts of the number of sub-systems, and of varying sub-system elasticities on overall system elasticity. The analysis suggests that overall price elasticity of energy demand for such systems will tend asymptotically to unity as the number of sub-systems increases

  14. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs, 90 Sr, 129 I, 99 Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R=1.0 to 3.0) requirements

  15. Advanced Energy Conversion Technologies and Architectures for Earth and Beyond

    Science.gov (United States)

    Howell, Joe T.; Fikes, John C.; Phillips, Dane J.; Laycock, Rustin L.; ONeill, Mark; Henley, Mark W.; Fork, Richard L.

    2006-01-01

    Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. There is a need to produce "proof-ofconcept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space surface sites. Space surface receiving sites of particular interest include the areas of permanent shadow near the moon s North and South poles, where WPT technologies could enable access to ice and other useful resources for human exploration. This paper discusses work addressing a promising approach to solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) applied to both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components (only the photovoltaic cells need to be different), economies of manufacturing and scale may be realized by using SLA on both ends of the laser power beaming

  16. Intelligent control with implementation on the wind energy conversion system

    International Nuclear Information System (INIS)

    Basma, Mohamad Khalil

    1997-05-01

    In this thesis our main job is to compare intelligent control and conventional control algorithms, by applying each scheme to the same control problem. Based on simulation, we analyze and compare the results of applying fuzzy logic and neural networks controllers on a popular control problem: variable speed wind energy conversion system. The reason behind our choice is the challenging nature of the problem where the plant should be controlled to maximize the power generated, while respecting its hardware constraints under varying operating conditions and disturbances. We have shown the effectiveness of fuzzy logic exciter controller for the adopted wind energy generator when compared to a conventional PI exciter. It showed better performance in the whole operating range. However, in the high wind speeds region, both controllers were unable to deliver the rpm requirements. We proposed the use of neural network intelligent techniques to supply us the optimal pitch. Our aim was to develop a simple and reliable controller that can deliver this optimal output, while remaining adaptive to system uncertainties and disturbances. The proposed fuzzy controller with a neural pitch controller showed best dynamic and robust performance as compared to the adaptive pitch controller together with the PI exciter. This study has shown that artificial neural networks and fuzzy logic control algorithms can be implemented for real time control implementations. the neuro-fuzzy control approach is robust and its performance is superior to that of traditional control methods. (author)

  17. The Cellulose Nanofibers for Optoelectronic Conversion and Energy Storage

    Directory of Open Access Journals (Sweden)

    Yongfeng Luo

    2014-01-01

    Full Text Available Cellulose widely exists in plant tissues. Due to the large pores between the cellulose units, the regular paper is nontransparent that cannot be used in the optoelectronic devices. But some chemical and physical methods such as 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO oxidation can be used to improve the pores scale between the cellulose units to reach nanometer level. The cellulose nanofibers (CNFs have good mechanical strength, flexibility, thermostability, and low thermal expansion. The paper made of these nanofibers represent a kind of novel nanostructured material with ultrahigh transparency, ultrahigh haze, conductivity, biodegradable, reproducible, low pollution, environment friendly and so on. These advantages make the novel nanostructured paper apply in the optoelectronic device possible, such as electronics energy storage devices. This kind of paper is considered most likely to replace traditional materials like plastics and glass, which is attracting widespread attention, and the related research has also been reported. The purpose of this paper is to review CNFs which are applied in optoelectronic conversion and energy storage.

  18. Diurnal Solar Energy Conversion and Photoprotection in Rice Canopies.

    Science.gov (United States)

    Meacham, Katherine; Sirault, Xavier; Quick, W Paul; von Caemmerer, Susanne; Furbank, Robert

    2017-01-01

    Genetic improvement of photosynthetic performance of cereal crops and increasing the efficiency with which solar radiation is converted into biomass has recently become a major focus for crop physiologists and breeders. The pulse amplitude modulated chlorophyll fluorescence technique (PAM) allows quantitative leaf level monitoring of the utilization of energy for photochemical light conversion and photoprotection in natural environments, potentially over the entire crop lifecycle. Here, the diurnal relationship between electron transport rate (ETR) and irradiance was measured in five cultivars of rice (Oryza sativa) in canopy conditions with PAM fluorescence under natural solar radiation. This relationship differed substantially from that observed for conventional short term light response curves measured under controlled actinic light with the same leaves. This difference was characterized by a reduced curvature factor when curve fitting was used to model this diurnal response. The engagement of photoprotective processes in chloroplast electron transport in leaves under canopy solar radiation was shown to be a major contributor to this difference. Genotypic variation in the irradiance at which energy flux into photoprotective dissipation became greater than ETR was observed. Cultivars capable of higher ETR at midrange light intensities were shown to produce greater leaf area over time, estimated by noninvasive imaging. © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. High-Resolution Measurements of Low-Energy Conversion Electrons

    CERN Multimedia

    Gizon, A; Putaux, J

    2002-01-01

    Measurements of low-energy internal conversion electrons have been performed with high energy resolution in some N = 105 odd and odd-odd nuclei using a semi-circular spectrograph associated to a specific tape transport system. These experiments aimed to answer the following questions~: \\begin{itemize} \\item Do M3 isomeric transitions exist in $^{183}$Pt and $^{181}$Os, isotones of $^{184}$Au~? \\item Are the neutron configurations proposed to describe the isomeric and ground states of $^{184}$Au right or wrong~? \\item Does it exist an isomeric state in $^{182}$Ir, isotone of $^{181}$Os, $^{183}$Pt and $^{184}$Au~? \\item What are the spin and parity values of the excited states of $^{182}$Ir~? \\end{itemize} In $^{183}$Pt, the 35.0 keV M3 isomeric transition has been clearly observed and the reduced transition probability has been determined. The deduced hindrance factor is close to that observed in the neighbouring odd-odd $^{184}$Au nucleus. This confirms the neutron configurations previously proposed for the ...

  20. Effects of Neutron Emission on Fragment Mass and Kinetic Energy Distribution from Thermal Neutron-Induced Fission of 235U

    International Nuclear Information System (INIS)

    Montoya, M.; Rojas, J.; Saetone, E.

    2007-01-01

    The mass and kinetic energy distribution of nuclear fragments from thermal neutron-induced fission of 235 U(n th ,f) have been studied using a Monte-Carlo simulation. Besides reproducing the pronounced broadening in the standard deviation of the kinetic energy at the final fragment mass number around m = 109, our simulation also produces a second broadening around m = 125. These results are in good agreement with the experimental data obtained by Belhafaf et al. and other results on yield of mass. We conclude that the obtained results are a consequence of the characteristics of the neutron emission, the sharp variation in the primary fragment kinetic energy and mass yield curves. We show that because neutron emission is hazardous to make any conclusion on primary quantities distribution of fragments from experimental results on final quantities distributions

  1. The nuclear fission process

    International Nuclear Information System (INIS)

    Wagemans, C.

    1991-01-01

    Fifty years after its discovery, the nuclear fission phenomenon is of recurring interest. When its fundamental physics aspects are considered, fission is viewed in a very positive way, which is reflected in the great interest generated by the meetings and large conferences organized for the 50th anniversary of its discovery. From a purely scientific and practical point of view, a new book devoted to the (low energy) nuclear fission phenomenon was highly desirable considering the tremendous amount of new results obtained since the publication of the book Nuclear Fission by Vandenbosch and Huizenga in 1973 (Academic Press). These new results could be obtained thanks to the growth of technology, which enabled the construction of powerful new neutron sources, particle and heavy ion accelerators, and very performant data-acquisition and computer systems. The re-invention of the ionization chamber, the development of large fission fragment spectrometers and sophisticated multiparameter devices, and the production of exotic isotopes also contributed significantly to an improved understanding of nuclear fission. This book is written at a level to introduce graduate students to the exciting subject of nuclear fission. The very complete list of references following each chapter also makes the book very useful for scientists, especially nuclear physicists. The book has 12 chapters covering the fission barrier and the various processes leading to fission as well as the characteristics of the various fission reaction products. In order to guarantee adequate treatment of the very specialized research fields covered, several distinguished scientists actively involved in some of these fields were invited to contribute their expertise as authors or co-authors of the different chapters

  2. Methods for locating ground faults and insulation degradation condition in energy conversion systems

    Science.gov (United States)

    Agamy, Mohamed; Elasser, Ahmed; Galbraith, Anthony William; Harfman Todorovic, Maja

    2015-08-11

    Methods for determining a ground fault or insulation degradation condition within energy conversion systems are described. A method for determining a ground fault within an energy conversion system may include, in part, a comparison of baseline waveform of differential current to a waveform of differential current during operation for a plurality of DC current carrying conductors in an energy conversion system. A method for determining insulation degradation within an energy conversion system may include, in part, a comparison of baseline frequency spectra of differential current to a frequency spectra of differential current transient at start-up for a plurality of DC current carrying conductors in an energy conversion system. In one embodiment, the energy conversion system may be a photovoltaic system.

  3. ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis project

    Science.gov (United States)

    Baresi, Larry

    1989-01-01

    The Annual Report presents the fiscal year (FY) 1988 research activities and accomplishments, for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division. The ECUT Biocatalysis Project is managed by the Jet Propulsion Laboratory, California Institute of Technology. The Biocatalysis Project is a mission-oriented, applied research and exploratory development activity directed toward resolution of the major generic technical barriers that impede the development of biologically catalyzed commercial chemical production. The approach toward achieving project objectives involves an integrated participation of universities, industrial companies and government research laboratories. The Project's technical activities were organized into three work elements: (1) The Molecular Modeling and Applied Genetics work element includes research on modeling of biological systems, developing rigorous methods for the prediction of three-dimensional (tertiary) protein structure from the amino acid sequence (primary structure) for designing new biocatalysis, defining kinetic models of biocatalyst reactivity, and developing genetically engineered solutions to the generic technical barriers that preclude widespread application of biocatalysis. (2) The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields and lower separation energetics. Results of work within this work element will be used to establish the technical feasibility of critical bioprocess monitoring and control subsystems. (3) The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the energy-economics of biocatalyzed chemical production processes, and initiation of technology transfer for advanced bioprocesses.

  4. Direct Energy Conversion for Nuclear Propulsion at Low Specific Mass

    Science.gov (United States)

    Scott, John H.

    2014-01-01

    The project will continue the FY13 JSC IR&D (October-2012 to September-2013) effort in Travelling Wave Direct Energy Conversion (TWDEC) in order to demonstrate its potential as the core of a high potential, game-changing, in-space propulsion technology. The TWDEC concept converts particle beam energy into radio frequency (RF) alternating current electrical power, such as can be used to heat the propellant in a plasma thruster. In a more advanced concept (explored in the Phase 1 NIAC project), the TWDEC could also be utilized to condition the particle beam such that it may transfer directed kinetic energy to a target propellant plasma for the purpose of increasing thrust and optimizing the specific impulse. The overall scope of the FY13 first-year effort was to build on both the 2012 Phase 1 NIAC research and the analysis and test results produced by Japanese researchers over the past twenty years to assess the potential for spacecraft propulsion applications. The primary objective of the FY13 effort was to create particle-in-cell computer simulations of a TWDEC. Other objectives included construction of a breadboard TWDEC test article, preliminary test calibration of the simulations, and construction of first order power system models to feed into mission architecture analyses with COPERNICUS tools. Due to funding cuts resulting from the FY13 sequestration, only the computer simulations and assembly of the breadboard test article were completed. The simulations, however, are of unprecedented flexibility and precision and were presented at the 2013 AIAA Joint Propulsion Conference. Also, the assembled test article will provide an ion current density two orders of magnitude above that available in previous Japanese experiments, thus enabling the first direct measurements of power generation from a TWDEC for FY14. The proposed FY14 effort will use the test article for experimental validation of the computer simulations and thus complete to a greater fidelity the

  5. Energy Conversion Advanced Heat Transport Loop and Power Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Oh, C. H.

    2006-08-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various

  6. Validation of the fission yield and decay data libraries with the 10 s-delayed 235 U fission γ-ray energy spectrum

    Science.gov (United States)

    Mendoza, E.; Álvarez-Velarde, F.; Bécares, V.; Cano-Ott, D.; González-Romero, E.; Martínez, T.; Villamarín, D.

    2017-10-01

    We have measured with a LaCl3 detector the γ-ray spectrum emitted by a 235 U enriched UO2 fuel rod 10 s after being irradiated with thermal neutrons. The experimental results are compared with simulations performed with the fission product yield and radioactive decay data libraries present in the most recent releases of ENDF/B, JEFF and JENDL.

  7. Angular distributions and anisotropy of the fragments from neutron-induced fission of 233U and 209Bi in the intermediate energy range of 1-200 MeV

    Science.gov (United States)

    Vorobyev, A. S.; Gagarski, A. M.; Shcherbakov, O. A.; Vaishnene, L. A.; Barabanov, A. L.

    2016-09-01

    New results of the neutron-induced fission experiments carried out at the neutron time-of-flight spectrometer GNEIS of the PNPI are given. Angular distributions of fission fragments from the neutron-induced fission of 233U and 209Bi nuclei have been measured in the energy range 1-200 MeV using position sensitive multiwire proportional counters as fission fragment detector. The recent improvements of the measurement and data processing procedures are described. The data on anisotropy of fission fragments deduced from the measured angular distributions are presented in comparison with the experimental data of other authors.

  8. Analysis of dependence of fission cross section and angular anisotropy of the 235U fission fragment escape induced by neutrons of intermediate energies (epsilon < or approximately200 keV) on target nucleus orientation

    International Nuclear Information System (INIS)

    Barabanov, A.L.

    1985-01-01

    Experimental data on dependence of fission cross section Σsub(f) (epsilon) and angular anisotropy W(epsilon, 0 deg)/W(epsilon, 90 deg) of sup(235)U fission fragment escape by neutrons with energy epsilon=100 and 200 keV on orientation of target nuclei are analyzed. 235 U (Isup(πsub(0))=7/2sup(-)) nuclei were orientated at the expense of interaction of quadrupole nucleus momenta with nonuniform electric field of uranyl-rubidium nitrate crystal at crystal cooling to T=0.2 K. The analysis was carried out with three different sets of permeability factors T(epsilon). Results of the analysis weakly depend on T(epsilon) choice. It is shown that a large number of adjusting parameters (six fissionabilities γsup(f)(Jsup(π), epsilon) and six momenta sub(Jsup(π))) permit to described experimental data on Σsub(f)(epsilon) and W(epsilon, 0 deg)/W(epsilon, 90 deg), obtained at epsilon=200 keV by introducing essential dependence of γsup(f)(Jsup(π), epsilon) and sub(Jsup(π)) on Jsup(π). Estimations of fission cross sections Σsub(f)(epsilon) and angular distribution W(epsilon, n vector) up to T approximately equal to 0.01 K in two geometries of the experiment: the orientation axis is parallel and perpendicular to momentum direction p vector of incident neutrons, are conducted

  9. Symposium on the Physical Chemistry of Solar Energy Conversion, Indianapolis American Chemical Society Meetings, Fall 2013

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Tianquan [PI, Emory Univ.

    2013-09-20

    The Symposium on the Physical Chemistry of Solar Energy Conversion at the Fall ACS Meeting in Indianapolis, IN (Sept. 8-12) featured the following sessions (approx. 6 speakers per session): (1) Quantum Dots and Nanorods for Solar Energy Conversion (2 half-day sessions); (2) Artificial Photosynthesis: Water Oxidation; (3) Artificial Photosynthesis: Solar Fuels (2 half-day sessions); (4) Organic Solar Cells; (5) Novel Concepts for Solar Energy Conversion (2 half-day sessions); (6) Emerging Techniques for Solar Energy Conversion; (7) Interfacial Electron Transfer

  10. What can one learn about lithium breakup from the fission reaction of {sup 232}Th({sup 6}Li, f) at energies around the Coulomb barrier?

    Energy Technology Data Exchange (ETDEWEB)

    Itkis, I.M. [Flerov Laboratory of Nuclear Reaction, Joint Institute for Nuclear Research, 141980 Dubna, Moscow region (Russian Federation)]. E-mail: juliami@mail.ru; Bogachev, A.A. [Flerov Laboratory of Nuclear Reaction, Joint Institute for Nuclear Research, 141980 Dubna, Moscow region (Russian Federation); Chizhov, A.Yu. [Flerov Laboratory of Nuclear Reaction, Joint Institute for Nuclear Research, 141980 Dubna, Moscow region (Russian Federation); Gorodisskiy, D.M. [Institute of Nuclear Physics, National Nuclear Center, 480082 Almaty (Kazakhstan); Itkis, M.G. [Flerov Laboratory of Nuclear Reaction, Joint Institute for Nuclear Research, 141980 Dubna, Moscow region (Russian Federation); Knyazheva, G.N. [Flerov Laboratory of Nuclear Reaction, Joint Institute for Nuclear Research, 141980 Dubna, Moscow region (Russian Federation); Kondratiev, N.A. [Flerov Laboratory of Nuclear Reaction, Joint Institute for Nuclear Research, 141980 Dubna, Moscow region (Russian Federation); Kozulin, E.M. [Flerov Laboratory of Nuclear Reaction, Joint Institute for Nuclear Research, 141980 Dubna, Moscow region (Russian Federation); Krupa, L. [Flerov Laboratory of Nuclear Reaction, Joint Institute for Nuclear Research, 141980 Dubna, Moscow region (Russian Federation); Mulgin, S.I. [Institute of Nuclear Physics, National Nuclear Center, 480082 Almaty (Kazakhstan); Pokrovsky, I.V.; Prokhorova, E.V. [Flerov Laboratory of Nuclear Reaction, Joint Institute for Nuclear Research, 141980 Dubna, Moscow region (Russian Federation); Rusanov, A.Ya. [Institute of Nuclear Physics, National Nuclear Center, 480082 Almaty (Kazakhstan); Voskressenski, V.M. [Flerov Laboratory of Nuclear Reaction, Joint Institute for Nuclear Research, 141980 Dubna, Moscow region (Russian Federation); Zhdanov, S.V. [Institute of Nuclear Physics, National Nuclear Center, 480082 Almaty (Kazakhstan)

    2006-08-31

    Fission fragment mass and energy distributions (MED) and fission fragment folding angle distributions (FFFAD) have been measured in the reaction {sup 6}Li+{sup 232}Th within the lithium projectile energy range E{sub lab}=28.5-62.5 MeV. The values of the ratio between the complete and incomplete fusion cross-sections have been obtained from a combined analysis of MED and FFFAD. The incomplete fusion originates from transfer reactions and/or from the {sup 6}Li breakup mainly into {alpha} and d clusters. It has been found that the contribution of complete fusion into the total fusion-fission cross-section is only {approx}27% at the lithium projectile energy E{sub lab}=28.5 MeV ({approx}2 MeV below the Coulomb barrier)

  11. Ocean Thermal Energy Conversion Using Double-Stage Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Yasuyuki Ikegami

    2018-03-01

    Full Text Available Ocean Thermal Energy Conversion (OTEC using non-azeotropic mixtures such as ammonia/water as working fluid and the multistage cycle has been investigated in order to improve the thermal efficiency of the cycle because of small ocean temperature differences. The performance and effectiveness of the multistage cycle are barely understood. In addition, previous evaluation methods of heat exchange process cannot clearly indicate the influence of the thermophysical characteristics of the working fluid on the power output. Consequently, this study investigated the influence of reduction of the irreversible losses in the heat exchange process on the system performance in double-stage Rankine cycle using pure working fluid. Single Rankine, double-stage Rankine and Kalina cycles were analyzed to ascertain the system characteristics. The simple evaluation method of the temperature difference between the working fluid and the seawater is applied to this analysis. From the results of the parametric performance analysis it can be considered that double-stage Rankine cycle using pure working fluid can reduce the irreversible losses in the heat exchange process as with the Kalina cycle using an ammonia/water mixture. Considering the maximum power efficiency obtained in the study, double-stage Rankine and Kalina cycles can improve the power output by reducing the irreversible losses in the cycle.

  12. Challenges of Iran's energy conversion agreements in future competitive market

    International Nuclear Information System (INIS)

    Sobhiyah, M.H.; Kashtiban, Y.Kh.

    2008-01-01

    Extensive need for electricity and lack of enough governmental resources for the development of related infrastructures forced the Iranian Government to invite private investors and to sign Energy Conversion Agreement (ECA) in the form of build-operate-transfer (BOT) and build-operate-own (BOO) contracts with them. Accordingly, electricity purchase would be based on a guaranteed price. Changes in some laws in 2007 caused the management of the ECAs and electricity purchase based on guaranteed price to face challenges. Shortening the commercial operation period of the earlier ECAs and signing some new short-term ECAs were the steps taken by the authorities to resolve the problems. By shortening the ECAs' commercial operation period, it is likely to cause serious problems concerning the payments of the project companies, because of shortages in the government's financial resources. The findings of the present viewpoint suggest signing of new long-term contracts (20 years long) in the form of a combinational agreement for buying the produced electricity with a guaranteed price (in the first 5 years) and supplying it in the competitive power market (for the following years) would be a better way to reduce the problems. (author)

  13. Estimation of wind characteristics at potential wind energy conversion sites

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    A practical method has been developed and applied to the problem of determining wind characteristics at candidate wind energy conversion sites where there are no available historical data. The method uses a mass consistent wind flow model (called COMPLEX) to interpolate between stations where wind data are available. The COMPLEX model incorporates the effects of terrain features and airflow. The key to the practical application of COMPLEX to the derivation of wind statistics is the model's linearity. This allows the input data sets to be resolved into orthogonal components along the set of eigenvectors of the covariance matrix. The solution for each eigenvector is determined with COMPLEX; the hourly interpolated winds are then formed from linear combinations of these solutions. The procedure requires: acquisition and merger of wind data from three to five stations, application of COMPLEX to each of the seven to 11 (depending on the number of stations for which wind data are available) eigenvectors, reconstruction of the hourly interpolated winds at the site from the eigenvector solutions, and finally, estimating the wind characteristics from the simulated hourly values. The report describes the methodology and the underlying theory. Possible improvements to the procedure are also discussed.

  14. Energy Conversion by Molecular Motors Coupled to Nucleotide Hydrolysis

    Science.gov (United States)

    Lipowsky, Reinhard; Liepelt, Steffen; Valleriani, Angelo

    2009-06-01

    Recent theoretical work on the energy conversion by molecular motors coupled to nucleotide hydrolysis is reviewed. The most abundant nucleotide is provided by adenosine triphosphate (ATP) which is cleaved into adenosine diphosphate (ADP) and inorganic phosphate. The motors have several catalytic domains (or active sites), each of which can be empty or occupied by ATP or ADP. The chemical composition of all catalytic domains defines distinct nucleotide states of the motor which form a discrete state space. Each of these motor states is connected to several other states via chemical transitions. For stepping motors such as kinesin, which walk along cytoskeletal filaments, some motor states are also connected by mechanical transitions, during which the motor is displaced along the filament and able to perform mechanical work. The different motor states together with the possible chemical and mechanical transitions provide a network representation for the chemomechanical coupling of the motor molecule. The stochastic motor dynamics on these networks exhibits several distinct motor cycles, which represent the dominant pathways for different regimes of nucleotide concentrations and load force. For the kinesin motor, the competition of two such cycles determines the stall force, at which the motor velocity vanishes and the motor reverses its direction of motion. In general, kinesin is found to be governed by the competition of three distinct chemomechanical cycles. The corresponding network representation provides a unified description for all motor properties that have been determined by single molecule experiments.

  15. Photovoltaic solar energy conversion in the '80s

    Science.gov (United States)

    Chevalier, I.

    1981-04-01

    The potential for photovoltaic solar energy conversion in the generation of electricity to meet the needs of industrial and developing nations in the 1980s is discussed. The current technology of photovoltaic cells and modules, which are for the most part based on single crystal silicon and can deliver peak powers of 2 to 40 W at 6 to 12 V, is reviewed and prospects for cost reduction in the short- and medium-term by the development of new materials and production methods and increased cell efficiency and in the long term by the development of thin film cells, alternative compounds and mass production are indicated. Possible applications of photovoltaic-derived electricity are pointed out, including educational television receivers, rural telephones, refrigerators, water pumping and hospitals in developing nations and telecommunications, cathodic protection, signaling, telemetry and low-power pumping applications in industrial nations. Predictions of a photovoltaic peak Watt installed costing less than 10 francs by 1990 and a market above 100 MW in 1985 are pointed out.

  16. Amphoteric oxide semiconductors for energy conversion devices: a tutorial review.

    Science.gov (United States)

    Singh, Kalpana; Nowotny, Janusz; Thangadurai, Venkataraman

    2013-03-07

    In this tutorial review, we discuss the defect chemistry of selected amphoteric oxide semiconductors in conjunction with their significant impact on the development of renewable and sustainable solid state energy conversion devices. The effect of electronic defect disorders in semiconductors appears to control the overall performance of several solid-state ionic devices that include oxide ion conducting solid oxide fuel cells (O-SOFCs), proton conducting solid oxide fuel cells (H-SOFCs), batteries, solar cells, and chemical (gas) sensors. Thus, the present study aims to assess the advances made in typical n- and p-type metal oxide semiconductors with respect to their use in ionic devices. The present paper briefly outlines the key challenges in the development of n- and p-type materials for various applications and also tries to present the state-of-the-art of defect disorders in technologically related semiconductors such as TiO(2), and perovskite-like and fluorite-type structure metal oxides.

  17. Thermionic Energy Conversion Based on Graphene van der Waals Heterostructures

    Science.gov (United States)

    Liang, Shi-Jun; Liu, Bo; Hu, Wei; Zhou, Kun; Ang, L. K.

    2017-04-01

    Seeking for thermoelectric (TE) materials with high figure of merit (or ZT), which can directly converts low-grade wasted heat (400 to 500 K) into electricity, has been a big challenge. Inspired by the concept of multilayer thermionic devices, we propose and design a solid-state thermionic devices (as a power generator or a refrigerator) in using van der Waals (vdW) heterostructure sandwiched between two graphene electrodes, to achieve high energy conversion efficiency in the temperature range of 400 to 500 K. The vdW heterostructure is composed of suitable multiple layers of transition metal dichalcogenides (TMDs), such as MoS2, MoSe2, WS2 and WSe2. From our calculations, WSe2 and MoSe2 are identified as two ideal TMDs (using the reported experimental material’s properties), which can harvest waste heat at 400 K with efficiencies about 7% to 8%. To our best knowledge, this design is the first in combining the advantages of graphene electrodes and TMDs to function as a thermionic-based device.

  18. Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1980-01-01

    The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.

  19. Overall energy conversion efficiency of a photosynthetic vesicle

    Energy Technology Data Exchange (ETDEWEB)

    Sener, Melih [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States; Strumpfer, Johan [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States; Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States; Singharoy, Abhishek [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States; Hunter, C. Neil [Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom; Schulten, Klaus [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States; Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States

    2016-08-26

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytbc1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%–5% of full sunlight is calculated to be 0.12-0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination.

  20. Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

    1981-02-01

    This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

  1. Radiochemistry and the Study of Fission

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-14

    These are slides from a lecture given at UC Berkeley. Radiochemistry has been used to study fission since its discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution. The following topics are covered: In the beginning: the discovery of fission; forensics using fission products: what can be learned from fission products, definitions of R-values and Q-values, fission bases, K-factors and fission chambers, limitations; the neutron energy dependence of the mass yield distribution (the two mode fission hypothesis); the influence of nuclear structure on the mass yield distribution. In summary: Radiochemistry has been used to study fission since its discovery. Radiochemical measurement of fission product yields have provided the highest precision data for developing fission models and for nuclear forensics. The two-mode fission hypothesis provides a description of the neutron energy dependence of the mass yield curve. However, data is still rather sparse and more work is needed near second and third chance fission. Radiochemical measurements have provided evidence for the importance of nuclear states in the compound nucleus in predicting the mass yield curve in the resonance region.

  2. Radiochemistry and the Study of Fission

    International Nuclear Information System (INIS)

    Rundberg, Robert S.

    2016-01-01

    These are slides from a lecture given at UC Berkeley. Radiochemistry has been used to study fission since its discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution. The following topics are covered: In the beginning: the discovery of fission; forensics using fission products: what can be learned from fission products, definitions of R-values and Q-values, fission bases, K-factors and fission chambers, limitations; the neutron energy dependence of the mass yield distribution (the two mode fission hypothesis); the influence of nuclear structure on the mass yield distribution. In summary: Radiochemistry has been used to study fission since its discovery. Radiochemical measurement of fission product yields have provided the highest precision data for developing fission models and for nuclear forensics. The two-mode fission hypothesis provides a description of the neutron energy dependence of the mass yield curve. However, data is still rather sparse and more work is needed near second and third chance fission. Radiochemical measurements have provided evidence for the importance of nuclear states in the compound nucleus in predicting the mass yield curve in the resonance region.

  3. Neutron Transport and Nuclear Burnup Analysis for the Laser Inertial Confinement Fusion-Fission Energy (LIFE) Engine

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, K J; Latkowski, J F; Abbott, R P; Boyd, J K; Powers, J J; Seifried, J E

    2008-10-24

    Lawrence Livermore National Laboratory is currently developing a hybrid fusion-fission nuclear energy system, called LIFE, to generate power and burn nuclear waste. We utilize inertial confinement fusion to drive a subcritical fission blanket surrounding the fusion chamber. It is composed of TRISO-based fuel cooled by the molten salt flibe. Low-yield (37.5 MJ) targets and a repetition rate of 13.3 Hz produce a 500 MW fusion source that is coupled to the subcritical blanket, which provides an additional gain of 4-8, depending on the fuel. In the present work, we describe the neutron transport and nuclear burnup analysis. We utilize standard analysis tools including, the Monte Carlo N-Particle (MCNP) transport code, ORIGEN2 and Monteburns to perform the nuclear design. These analyses focus primarily on a fuel composed of depleted uranium not requiring chemical reprocessing or enrichment. However, other fuels such as weapons grade plutonium and highly-enriched uranium are also under consideration. In addition, we have developed a methodology using {sup 6}Li as a burnable poison to replace the tritium burned in the fusion targets and to maintain constant power over the lifetime of the engine. The results from depleted uranium analyses suggest up to 99% burnup of actinides is attainable while maintaining full power at 2GW for more than five decades.

  4. Proceedings of the 30. intersociety energy conversion engineering conference. Volume 3

    International Nuclear Information System (INIS)

    Goswami, D.Y.; Kannberg, L.D.; Somasundaram, S.

    1995-01-01

    This conference provides a forum to present and discuss the engineering aspects of energy conversion, advanced and unconventional energy systems and devices, energy conversion and utilization, environmental issues and policy implications on research, development, and implementation of technologies. The solution for a sustainable future will lie in a mix of all of the available energy resources (renewable and non-renewable) and diverse energy conversion technologies that will maintain quality of life in a sustainable manner. The 78 papers in this volume are divided into the following topical sections: (1) Conversion technologies--Heat pumps; Advanced cycles; Thermoelectrics; Thermionics; and AMTEC; (2) Electrochemical conversion--Fuel cells and Batteries for terrestrial applications; (3) New technologies for energy utilization (including Superconductivity); and (4) Stirling cycles and machines--Stirling engine development; Stirling component analysis/testing; Stirling machine simulation and optimization; and Stirling machine analysis. All papers have been processed separately for inclusion on the data base

  5. IECEC '87; Proceedings of the Twenty-second Intersociety Energy Conversion Engineering Conference, Philadelphia, PA, Aug. 10-14, 1987. Volumes 1, 2, 3, and 4

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Papers are presented on space power requirements and issues, space photovoltaic systems, space solar dynamic systems, space thermal systems, manned and unmanned space power systems, thermionics, and thermoelectrics. Also considered are high power devices for space power systems, high power conversion for space power systems, 1-10 kWe nuclear space power sources, 100-kW class nuclear power concepts, space reactor safety, and multimegawatt space nuclear power systems. Other topics include space power systems automation, space kilovolt technology, space power electronics, space lithium and nickel-cadmium batteries, lithium sodium storage, and space fuel cells. Papers are also presented on space nickel hydrogen batteries, alternative energy concepts and fuels, fuel cell technology, flow batteries, high-temperature batteries, energy conservation, battery energy storage, thermal energy storage, heat engines, MHD power systems, nuclear fission, and the Stirling cycle

  6. A perspective on direct conversion

    International Nuclear Information System (INIS)

    Lewis, W.B.

    1963-10-01

    As flowing energy, electricity is sought for its versatility. Its generation from some other flow or release of energy without mechanical power, or even sometimes heat, as intermediary is called direct conversion. The objective is high electrical output for minimum total cost and not always high conversion efficiency. The wide range of techniques embracing cryogenics and hot plasma derives from the special requirements of source, environment and application. Sources include solar and other radiation, nuclear fission and fusion, chemical energy and heat. Environments and applications range from space vehicles to submarines and from giant power networks to isolated buoys and pocket devices. (author)

  7. Shredded Waste Downdraft Gasifier for Overseas Contingency Operations Waste-to-Energy Conversion

    Science.gov (United States)

    2015-06-01

    gasification and pyrolysis -based WEC systems are currently under evaluation by the DOD, no system has been demonstrated to meet PM Force Sustainment...either a spark ignition or diesel cycle generator set. Waste-to-energy, gasification, thermal conversion, reactor design, plant design, distributed...thermal conversion, reactor design, plant design, distributed energy, waste management Final Report viii June 2015 ACKNOWLEDGEMENTS This

  8. Discovering Inexpensive, Effective Catalysts for Solar Energy Conversion: An Authentic Research Laboratory Experience

    Science.gov (United States)

    Shaner, Sarah E.; Hooker, Paul D.; Nickel, Anne-Marie; Leichtfuss, Amanda R.; Adams, Carissa S.; de la Cerda, Dionisia; She, Yuqi; Gerken, James B.; Pokhrel, Ravi; Ambrose, Nicholas J.; Khaliqi, David; Stahl, Shannon S.; Schuttlefield Christus, Jennifer D.

    2016-01-01

    Electrochemical water oxidation is a major focus of solar energy conversion efforts. A new laboratory experiment has been developed that utilizes real-time, hands-on research to discover catalysts for solar energy conversion. The HARPOON, or Heterogeneous Anodes Rapidly Perused for Oxygen Overpotential Neutralization, experiment allows an array of…

  9. Contribution to the study of nuclear fission

    International Nuclear Information System (INIS)

    Serot, O.

    2009-09-01

    The author proposes an overview of his research activity during the past fifteen years and more particularly that dealing with nuclear fission. The first part reports works on nucleus physics at the scission via the investigation of ternary fission (experimental procedure, influence of fission modes, influence of resonance spin, influence of excitation energy of the fissioning nucleus, emission probabilities, energy spectra of ternary alphas and tritons, emission mechanism). The second part reports measurements and assessments of neutron-induced fission cross sections. The third part reports the investigation of some properties of fission products (efficiencies, branching ratios of the main delayed neutron precursors)

  10. Records for conversion of laser energy to nuclear energy in exploding nanostructures

    Science.gov (United States)

    Jortner, Joshua; Last, Isidore

    2017-09-01

    Table-top nuclear fusion reactions in the chemical physics laboratory can be driven by high-energy dynamics of Coulomb exploding, multicharged, deuterium containing nanostructures generated by ultraintense, femtosecond, near-infrared laser pulses. Theoretical-computational studies of table-top laser-driven nuclear fusion of high-energy (up to 15 MeV) deuterons with 7Li, 6Li and D nuclei demonstrate the attainment of high fusion yields within a source-target reaction design, which constitutes the highest table-top fusion efficiencies obtained up to date. The conversion efficiency of laser energy to nuclear energy (0.1-1.0%) for table-top fusion is comparable to that for DT fusion currently accomplished for 'big science' inertial fusion setups.

  11. 242Pu neutron-induced fission cross-section measurement from 1 to 2 MeV neutron energy

    Science.gov (United States)

    Marini, P.; Mathieu, L.; Aïche, M.; Belier, G.; Czajkowski, S.; Ducasse, Q.; Jurado, B.; Kessedjian, G.; Matarranz, J.; Plompen, A.; Salvador-Castiñeira, P.; Taieb, J.; Tsekhanovich, I.

    2017-11-01

    Relative values of the neutron-induced fission cross section σ (n ,f ) of 242Pu have been measured with respect to the standard 1H(n ,p ) elastic scattering cross section, at average energies of 1.0, 1.4, and 1.9 MeV . The measurements are part of an international effort to reduce uncertainties and provide independent nuclear data relevant for fast-spectrum reactors. The shape of the measured cross section is in good agreement with data from Tovesson et al. [Phys. Rev. C 79, 014613 (2009), 10.1103/PhysRevC.79.014613] and with the most recent data from Matei et al. [Phys. Rev. C 95, 024606 (2017), 10.1103/PhysRevC.95.024606], but disagrees with the shapes of ENDF/B-VII.1 and JEFF3.2 evaluations. Absolute values of σ (n ,f ) , obtained under some assumptions, indicate an overestimation of σ (n ,f ) in the evaluated libraries at 1.0 and 1.4 MeV , while a good agreement is found with ENDF/B-VII.1 at 1.9 MeV . A careful analysis of the impact of scattered neutrons and anisotropy of the fission fragment angular distribution has been performed. The measurement of the neutron flux by means of a proton-recoil detector is discussed. A comprehensive study of corrections applied to the data, of associated uncertainties, and of correlations between the measurements at the different energies is presented.

  12. GGA+U study of uranium mononitride: A comparison of the U-ramping and occupation matrix schemes and incorporation energies of fission products

    Energy Technology Data Exchange (ETDEWEB)

    Claisse, Antoine, E-mail: claisse@kth.se [KTH Royal Institute of Technology, Reactor Physics, AlbaNova University Centre, 106 91 Stockholm (Sweden); Klipfel, Marco [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe (Germany); Lindbom, Niclas [KTH Royal Institute of Technology, Reactor Physics, AlbaNova University Centre, 106 91 Stockholm (Sweden); Freyss, Michel [CEA, DEN, DEC, Centre de Cadarache, 13108 Saint-Paul-lez-Durance (France); Olsson, Pär [KTH Royal Institute of Technology, Reactor Physics, AlbaNova University Centre, 106 91 Stockholm (Sweden)

    2016-09-15

    Uranium mononitride is studied in the DFT + U framework. Its ground state is investigated and a study of the incorporation of diverse fission products in the crystal is conducted. The U-ramping and occupation matrix control (OMC) schemes are used to eliminate metastable states. Beyond a certain amount of introduced correlation, the OMC scheme starts to find a lower total energy. The OMC scheme is chosen for the second part of this study. Furthermore, the influence of the magnetic ordering is studied using the U-ramping method, showing that antiferromagnetic order is the most stable one when the U parameter is larger than 1.75 eV. The effect on the density of states is investigated and elastic constants are provided for comparison with other methods and experiments. The incorporation energies of fission products in different defect configurations are calculated and these energies are corrected to take into account the limited size of the supercell. - Highlights: • We studied bulk uranium nitride with means of DFT+U with the U-ramping scheme and the OMC scheme. • We produces a density of states plot and calculated the elastic constants of UN. • We calculated the incorporation energy of many fission products in UN, and corrected them to take into account the elastic interactions. • The OMC scheme should be used over the U-ramping scheme. • Fission products go to larger crystal sites.

  13. Neutron emission effects on fragment mass and kinetic energy distribution from fission of 239Pu induced by thermal neutrons

    International Nuclear Information System (INIS)

    Montoya, M.; Rojas, J.; Lobato, I.

    2010-01-01

    The average of fragment kinetic energy (E-bar sign*) and the multiplicity of prompt neutrons (ν(bar sign)) as a function of fragment mass (m*), as well as the fragment mass yield (Y(m*)) from thermal neutron-induced fission of 239 Pu have been measured by Tsuchiya et al.. In that work the mass and kinetic energy are calculated from the measured kinetic energy of one fragment and the difference of time of flight of the two complementary fragments. However they do not present their results about the standard deviation σ E *(m*). In this work we have made a numerical simulation of that experiment which reproduces its results, assuming an initial distribution of the primary fragment kinetic energy (E(A)) with a constant value of the standard deviation as function of fragment mass (σ E (A)). As a result of the simulation we obtain the dependence σ E *(m*) which presents an enhancement between m* = 92 and m* = 110, and a peak at m* = 121.

  14. Summary of State-of-the-Art Power Conversion Systems for Energy Storage Applications

    Energy Technology Data Exchange (ETDEWEB)

    Atcitty, S.; Gray-Fenner, A.; Ranade, S.

    1998-09-01

    The power conversion system (PCS) is a vital part of many energy storage systems. It serves as the interface between the storage device, an energy source, and an AC load. This report summarizes the results of an extensive study of state-of-the-art power conversion systems used for energy storage applications. The purpose of the study was to investigate the potential for cost reduction and performance improvement in these power conversion systems and to provide recommendations for fiture research and development. This report provides an overview of PCS technology, a description of several state-of-the-art power conversion systems and how they are used in specific applications, a summary of four basic configurations for l:he power conversion systems used in energy storage applications, a discussion of PCS costs and potential cost reductions, a summary of the stancku-ds and codes relevant to the technology, and recommendations for future research and development.

  15. Tip model of cold fission

    International Nuclear Information System (INIS)

    Goennenwein, F.; Boersig, B.

    1991-01-01

    Cold fission is defined to be the limiting case of nuclear fission where virtually all of the available energy is converted into the total kinetic energy of the fragments. The fragments have, therefore, to be born in or at least close to their respective ground states. Starting from the viewpoint that cold fission corresponds to most compact scission configurations, energy constraints have been exploited to calculate minimum tip distances between the two nascent fragments in binary fission. Crucial input parameters to this tip model of cold fission are the ground-state deformations of fragment nuclei. It is shown that the minimum tip distances being compatible with energy conservation vary strongly with both the mass and charge fragmentation of the fission prone nucleus. The tip distances refer to nuclei with equivalent sharp surfaces. In keeping with the size of the surface width of leptodermous nuclei, only configurations where the tip distances are smaller than a few fm may be considered as valid scission configurations. From a comparison with experimental data on cold fission this critical tip distance appears to be 3.0 fm for the model parameters chosen. Whenever the model calculation yields tip distances being smaller than the critical value, a necessary condition for attaining cold fission is considered to be fulfilled. It is shown that this criterion allows to understand in fair agreement with experiment which mass fragmentations are susceptible to lead to cold fission and which fragment-charge divisions are the most favored in each isobaric mass chain. Being based merely on energy arguments, the model cannot aim at predicting fragment yields in cold fission. However, the tip model proposed appears well suited to delineate the phase space where cold fission phenomena may come into sight. (orig.)

  16. Photon energy conversion by near-zero permittivity nonlinear materials

    Energy Technology Data Exchange (ETDEWEB)

    Luk, Ting S.; Sinclair, Michael B.; Campione, Salvatore

    2017-12-19

    Efficient harmonic light generation can be achieved with ultrathin films by coupling an incident pump wave to an epsilon-near-zero (ENZ) mode of the thin film. As an example, efficient third harmonic generation from an indium tin oxide nanofilm (.lamda./42 thick) on a glass substrate for a pump wavelength of 1.4 .mu.m was demonstrated. A conversion efficiency of 3.3.times.10.sup.-6 was achieved by exploiting the field enhancement properties of the ENZ mode with an enhancement factor of 200. This nanoscale frequency conversion method is applicable to other plasmonic materials and reststrahlen materials in proximity of the longitudinal optical phonon frequencies.

  17. Thermal to Electric Energy Conversion for Cyclic Heat Loads

    Science.gov (United States)

    Whitehead, Benjamin E.

    Today, we find cyclic heat loads almost everywhere. When we drive our cars, the engines heat up while we are driving and cool while parked. Processors heat while the computer is in use at the office and cool when idle at night. The sun heats the earth during the day and the earth radiates that heat into space at night. With modern technology, we have access to a number of methods to take that heat and convert it into electricity, but, before selecting one, we need to identify the parameters that inform decision making. The majority of the parameters for most systems include duty cycle, total cost, weight, size, thermal efficiency, and electrical efficiency. However, the importance of each of these will depend on the application. Size and weight take priority in a handheld device, while efficiency dominates in a power plant, and duty cycle is likely to dominate in highly demanding heat pump applications. Over the past decade, developments in semiconductor technology has led to the creation of the thermoelectric generator. With no moving parts and a nearly endlessly scalable nature, these generators present interesting opportunities for taking advantage of any source of waste heat. However, these generators are typically only capable of 5-8% efficiency from conversion of thermal to electric energy. [1]. Similarly, advancements in photovoltaic cells has led to the development of thermophotovoltaics. By heating an emitter to a temperature so it radiates light, a thermophotovoltaic cell then converts that light into electricity. By selecting materials that emit light in the optimal ranges of the appropriate photovoltaic cells, thermophotovoltaic systems can potentially exceed the current maximum of 10% efficiency. [2]. By pressurizing certain metal powders with hydrogen, hydrogen can be bound to the metal, creating a metal hydride, from which hydrogen can be later re-extracted under the correct pressure and temperature conditions. Since this hydriding reaction is

  18. Nuclear Forensics and Radiochemistry: Fission

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-07

    Radiochemistry has been used to study fission since it’ discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution.

  19. Biological Ion Transporters as Gating Devices for Chemomechanical and Chemoelectrical Energy Conversion

    OpenAIRE

    Sundaresan, Vishnu Baba

    2007-01-01

    This dissertation presents a new class of engineered devices, fabricated from synthetic materials and protein transporters extracted from cell membranes of plants, that use chemomechanical and chemoelectrical energy conversion processes to perform mechanical and electrical work. The chemomechanical energy conversion concept is implemented in a protein based actuator. The chemical energy is applied as an electrochemical gradient of protons across a membrane assembly formed from phospholip...

  20. Fission fragment angular momentum

    International Nuclear Information System (INIS)

    Frenne, D. De

    1991-01-01

    Most of the energy released in fission is converted into translational kinetic energy of the fragments. The remaining excitation energy will be distributed among neutrons and gammas. An important parameter characterizing the scission configuration is the primary angular momentum of the nascent fragments. Neutron emission is not expected to decrease the spin of the fragments by more than one unit of angular momentum and is as such of less importance in the determination of the initial fragment spins. Gamma emission is a suitable tool in studying initial fragment spins because the emission time, number, energy, and multipolarity of the gammas strongly depend on the value of the primary angular momentum. The main conclusions of experiments on gamma emission were that the initial angular momentum of the fragments is large compared to the ground state spin and oriented perpendicular to the fission axis. Most of the recent information concerning initial fragment spin distributions comes from the measurement of isomeric ratios for isomeric pairs produced in fission. Although in nearly every mass chain isomers are known, only a small number are suitable for initial fission fragment spin studies. Yield and half-life considerations strongly limit the number of candidates. This has the advantage that the behavior of a specific isomeric pair can be investigated for a number of fissioning systems at different excitation energies of the fragments and fissioning nuclei. Because most of the recent information on primary angular momenta comes from measurements of isomeric ratios, the global deexcitation process of the fragments and the calculation of the initial fragment spin distribution from measured isomeric ratios are discussed here. The most important results on primary angular momentum determinations are reviewed and some theoretical approaches are given. 45 refs., 7 figs., 2 tabs

  1. EnerGis: A geographical information based system for the evaluation of integrated energy conversion systems in urban areas

    International Nuclear Information System (INIS)

    Girardin, Luc; Marechal, Francois; Dubuis, Matthias; Calame-Darbellay, Nicole; Favrat, Daniel

    2010-01-01

    A geographical information system has been developed to model the energy requirements of an urban area. The purpose of the platform is to model with sufficient detail the energy services requirements of a given geographical area in order to allow the evaluation of the integration of advanced integrated energy conversion systems. This tool is used to study the emergence of more efficient cities that realize energy efficiency measures, integrate energy efficient conversion technologies and promote the use of endogenous renewable energy. The model is illustrated with case studies for the energetic planning of the Geneva district (Switzerland).

  2. Research on Efficiency of a Wave Energy Conversion System

    Science.gov (United States)

    Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Chen, Gewei

    2018-02-01

    The oceans are rich in wave energy that is green energy, and the wave energy are now being used to generate electricity on a massive scale. It can also be used as a single generator for beacon, buoy or underwater vehicle. Micro small wave energy power generation device is a kind of wave energy power generation devices, main characteristic is mobility is good, and can be directly assembled on various kinds of equipment for the power supply, with good prospects for development. The research object of the paper is a new adaptive reversing wave energy generating device belongs to micro-sized wave energy generating device. Using the upper and lower absorber blade groups, the low speed and large torque wave energy can be converted into electric energy which can be used for load and lithium battery charging.

  3. Post-scission fission theory: Neutron emission in fission

    International Nuclear Information System (INIS)

    Madland, D.G.

    1997-01-01

    A survey of theoretical representations of two of the observables in neutron emission in fission is given, namely, the prompt fission neutron spectrum N (E) and the average prompt neutron multiplicity bar ν p . Early representations of the two observables are presented and their deficiencies are discussed. This is followed by summaries and examples of recent theoretical models for the calculation of these quantities. Emphasis is placed upon the predictability and accuracy of the recent models. In particular, the dependencies of N (E) and bar ν p upon the fissioning nucleus and its excitation energy are treated. Recent work in the calculation of the prompt fission neutron spectrum matrix N (E, E n ), where E n is the energy of the neutron inducing fission, is then discussed. Concluding remarks address the current status of our ability to calculate these observables with confidence, the direction of future theoretical efforts, and limitations to current (and future) approaches

  4. Kilopower: Small and Affordable Fission Power Systems for Space

    Science.gov (United States)

    Mason, Lee; Palac, Don; Gibson, Marc

    2017-01-01

    The Nuclear Systems Kilopower Project was initiated by NASA's Space Technology Mission Directorate Game Changing Development Program in fiscal year 2015 to demonstrate subsystem-level technology readiness of small space fission power in a relevant environment (Technology Readiness Level 5) for space science and human exploration power needs. The Nuclear Systems Kilopower Project centerpiece is the Kilopower Reactor Using Stirling Technology (KRUSTY) test, which consists of the development and testing of a fission ground technology demonstrator of a 1 kWe-class fission power system. The technologies to be developed and validated by KRUSTY are extensible to space fission power systems from 1 to 10 kWe, which can enable higher power future potential deep space science missions, as well as modular surface fission power systems for exploration. The Kilopower Project is cofounded by NASA and the Department of Energy National Nuclear Security Administration (NNSA).KRUSTY include the reactor core, heat pipes to transfer the heat from the core to the power conversion system, and the power conversion system. Los Alamos National Laboratory leads the design of the reactor, and the Y-12 National Security Complex is fabricating it. NASA Glenn Research Center (GRC) has designed, built, and demonstrated the balance of plant heat transfer and power conversion portions of the KRUSTY experiment. NASA MSFC developed an electrical reactor simulator for non-nuclear testing, and the design of the reflector and shielding for nuclear testing. In 2016, an electrically heated non-fissionable Depleted Uranium (DU) core was tested at GRC in a configuration identical to the planned nuclear test. Once the reactor core has been fabricated and shipped to the Device Assembly Facility at the NNSAs Nevada National Security Site, the KRUSTY nuclear experiment will be assembled and tested. Completion of the KRUSTY experiment will validate the readiness of 1 to 10 kWe space fission technology for NASAs

  5. Energy-based coordinated control of wind energy conversion system with DFIG

    Science.gov (United States)

    Qu, Y. B.; Song, H. H.

    2011-12-01

    This article presents an energy-based coordinated control of machine- and grid-side converters in a wind energy conversion system (WECS) with a doubly-fed induction generator (DFIG) based on the theory of port-controlled Hamiltonian (PCH) system. Taking into account energy transmission in the dual PWM converter rather than treating rectification and inversion as separate parts, an integrated PCH model for the whole WECS was established from physical meanings. And depending on the new model, an energy-based coordinated control approach was proposed to meet the control requirements of the WECS with an additional objective which was to limit the DC-link voltage fluctuation. The approach was applied on a 2MW WECS, and compared with the energy-based respective control strategy using MATLAB/Simulink. The results show that the proposed control approach provides faster dynamic performance since the two converters operate with the knowledge of each other's operating status, and thus is able to smooth the power flow in the DC-link more effectively.

  6. Theoretical Comparison of the Energy Conversion Efficiencies of Electrostatic Energy Harvesters

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Kyu [Korea Polytechnic University, Siheung (Korea, Republic of)

    2017-02-15

    The characteristics of a new type of electrostatic energy harvesting device, called an out-of plane overlap harvester, are analyzed for the first time. This device utilizes a movable part that vibrates up and down on the surface of a wafer and a changing overlapping area between the vertical comb fingers. This operational principle enables the minimum capacitance to be close to 0 and significantly increases the energy conversion efficiency per unit volume. The characteristics of the out-of-plane overlap harvester, an in-plane gap-closing harvester, and an in-plane overlap harvester are compared in terms of the length, height, and width of the comb finger and the parasitic capacitance. The efficiency is improved as the length or the height increases and as the width or the parasitic capacitance decreases. In every case, the out-of-plane overlap harvester is able to create more energy and is, thus, preferable over other designs. It is also free from collisions between two electrodes caused by random vibration amplitudes and creates more energy from off axis perturbations. This device, given its small feature size, is expected to provide more energy to various types of wireless electronics devices and to offer high compatibility with other integrated circuits and ease of embedment.

  7. Measurement of fission anisotropy for Ta

    Indian Academy of Sciences (India)

    F on many actinide targets with large deformations exhibit dramatic increase with decreasing energy [5]. In order to understand the data, an admixture of non compound reaction processes, like the fast fission, the quasifission with orientation dependence and the preequilibrium fission, is introduced as a source of fission like ...

  8. The state of the art of wind energy conversion systems and technologies: A review

    International Nuclear Information System (INIS)

    Cheng, Ming; Zhu, Ying

    2014-01-01

    Highlights: • This paper reviews the state of the art of wind energy conversion systems. • Different types of common wind energy conversion systems are classified and compared. • The four most popular MPPT control methods are reviewed and compared. • The latest development of wind energy conversion technologies is introduced. • Future trends of the wind energy conversion technologies are discussed. - Abstract: This paper gives a comprehensive review of the state of the art of wind energy conversion systems (WECS) and technologies, with an emphasis on wind power generator and control. First, different types of common WECSs are classified according to their features and drive train types. The WECSs are compared on the basis of the volume, weight, cost, efficiency, system reliability and fault ride through capability. The maximum power point tracking (MPPT) control, which aims to make the generator speed meet an optimum value to ensure the maximum energy yield, plays a key role in the variable speed WECSs. A comprehensive review and comparison of the four most popular MPPT control methods are carried out and improvements for each method are presented. Furthermore, the latest development of wind energy conversion technologies is introduced, such as the brushless doubly fed induction generator (BDFIG), the stator permanent magnet synchronous generators, the magnetic-geared generators, dual power flow WECS with the electrical variable transmission (EVT) machine, and direct grid-connected WECS. Finally, the future trends of the technologies are discussed

  9. Ternary fission and cluster radioactivities

    CERN Document Server

    Poenaru, D N; Greiner, W; Gherghescu, R A; Hamilton, J H; Ramayya, A V

    2002-01-01

    Ternary fission yield for different kinds of light particle accompanied fission processes is compared to the Q-values for the corresponding cold phenomena, showing a striking correlation. The experimental evidence for the existence of a quasimolecular state in sup 1 sup 0 Be accompanied fission of sup 2 sup 5 sup 2 Cf may be explained using a three-center phenomenological model which generates a third minimum in the deformation energy at a separation distance very close to the touching point. This model is a natural extension of the unified approach to three groups of binary decay modes (cold fission, cluster radioactivities and alpha decay), illustrated by sup 2 sup 3 sup 4 U decay modes, and the alpha valley on the potential energy surfaces of sup 1 sup 0 sup 6 Te. New measurements of cluster decay modes, confirming earlier predictions within analytical superasymmetric fission model, are included in a comprehensive half-life systematics. (authors)

  10. Topological energy conversion through the bulk or the boundary of driven systems

    Science.gov (United States)

    Peng, Yang; Refael, Gil

    2018-04-01

    Combining physical and synthetic dimensions allows a controllable realization and manipulation of high-dimensional topological states. In our work, we introduce two quasiperiodically driven one-dimensional systems which enable tunable topological energy conversion between different driving sources. Using three drives, we realize a four-dimensional quantum Hall state which allows energy conversion between two of the drives within the bulk of the one-dimensional system. With only two drives, we achieve energy conversion between the two at the edge of the chain. Both effects are a manifestation of the effective axion electrodynamics in a three-dimensional time-reversal-invariant topological insulator. Furthermore, we explore the effects of disorder and commensurability of the driving frequencies, and show the phenomena are robust. We propose two experimental platforms, based on semiconductor heterostructures and ultracold atoms in optical lattices, in order to observe the topological energy conversion.

  11. Using Carbon-Based Nanomaterials and Microscale Geometry for Enhanced Thermionic Energy Conversion in Space Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — The hypothesis of this research is that using carbon-based nanomaterials (CBN) electrodes in a microscale thermionic energy conversion (TEC) device operated at...

  12. Pristine Metal-Organic Frameworks and their Composites for Energy Storage and Conversion.

    Science.gov (United States)

    Liang, Zibin; Qu, Chong; Guo, Wenhan; Zou, Ruqiang; Xu, Qiang

    2017-11-22

    Metal-organic frameworks (MOFs), a new class of crystalline porous organic-inorganic hybrid materials, have recently attracted increasing interest in the field of energy storage and conversion. Herein, recent progress of MOFs and MOF composites for energy storage and conversion applications, including photochemical and electrochemical fuel production (hydrogen production and CO 2 reduction), water oxidation, supercapacitors, and Li-based batteries (Li-ion, Li-S, and Li-O 2 batteries), is summarized. Typical development strategies (e.g., incorporation of active components, design of smart morphologies, and judicious selection of organic linkers and metal nodes) of MOFs and MOF composites for particular energy storage and conversion applications are highlighted. A broad overview of recent progress is provided, which will hopefully promote the future development of MOFs and MOF composites for advanced energy storage and conversion applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. EXAMINING A SERIES RESONANT INVERTER CIRCUIT TO USE IN THE PHOTOVOLTAIC ENERGY CONVERSION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Engin ÇETİN

    2004-03-01

    Full Text Available As we know, solar energy is the energy source which is environment friendly, renewable, and can be found easily. Particularly, in the recent years, interest on producing electrical energy by alternative energy sources increased because of the fact that underground sources are not enough to produce energy in the future and also these sources cause enviromental pollution. The solar energy is one of the most popular one among the alternative energy sources. Photovoltaic systems produce the electrical energy from the sunlight. In this study, a series resonant inverter circuit which is used in the photovoltaic energy conversion systems has been examined.Effects of the series resonant inverter circuit on the photovoltaic energy conversion system have been investigated and examined

  14. Nuclear science and technology branch report 1978- power and energy program

    International Nuclear Information System (INIS)

    1978-12-01

    Research being conducted includes: collection and analysis of data and information on energy resources, studies on the performance and safety of fission reactions, fusion research and alternative energy conversion systems

  15. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 2: Advanced energy conversion systems. Part 1: Open-cycle gas turbines

    Science.gov (United States)

    Brown, D. H.; Corman, J. C.

    1976-01-01

    Ten energy conversion systems are defined and analyzed in terms of efficiency. These include: open-cycle gas turbine recuperative; open-cycle gas turbine; closed-cycle gas turbine; supercritical CO2 cycle; advanced steam cycle; liquid metal topping cycle; open-cycle MHD; closed-cycle inert gas MHD; closed-cycle liquid metal MHD; and fuel cells. Results are presented.

  16. DOE-EFRC Center on Nanostructuring for Efficient Energy Conversion (CNEEC)

    Energy Technology Data Exchange (ETDEWEB)

    Prinz, Friedrich B. [Stanford Univ., CA (United States). Mechanical Engineering. Materials Science and Engineering; Bent, Stacey F. [Stanford Univ., CA (United States). Chemical Engineering

    2015-10-22

    CNEEC’s mission has been to understand how nanostructuring of materials can enhance efficiency for solar energy conversion to produce hydrogen fuel and to solve fundamental cross-cutting problems. The overarching hypothesis underlying CNEEC research was that controlling, synthesizing and modifying materials at the nanometer scale increases the efficiency of energy conversion and storage devices and systems. In this pursuit, we emphasized the development of functional nanostructures that are based primarily on earth abundant and inexpensive materials.

  17. Quantitative feasibility study of magnetocaloric energy conversion utilizing industrial waste heat

    International Nuclear Information System (INIS)

    Vuarnoz, D.; Kitanovski, A.; Gonin, C.; Borgeaud, Y.; Delessert, M.; Meinen, M.; Egolf, P.W.

    2012-01-01

    Highlights: ► We model magnetic energy conversion machine for the use of industrial waste heat. ► Efficiencies and masses of the system are evaluated by a numerical model. ► Excellent potential of profitability is expected with large low-exergy heat sources. -- Abstract: The main objective of this theoretical study was to investigate under which conditions a magnetic energy conversion device (MECD) – utilizing industrial waste heat – is economically feasible. Furthermore, it was evaluated if magnetic energy conversion (MCE) has the potential of being a serious concurrent to already existing conventional energy conversion technologies. Up-today the availability of magnetocaloric materials with a high Curie temperature and a high magnetocaloric effect is rather limited. Therefore, this study was mainly focused on applications with heat sources of low to medium temperature levels. Magnetic energy conversion machines, containing permanent magnets, are numerically investigated for operation conditions with different temperature levels, defined by industrial waste heat sources and environmental heat sinks, different magnetic field intensities and different frequencies of operation (number of thermodynamic cycles per unit of time). Theoretical modeling and numerical simulations were performed in order to determine thermodynamic efficiencies and the exergy efficiencies as function of different operation conditions. From extracted data of our numerical results, approximate values of the total mass and total volume of magnetic energy conversion machines could be determined. These important results are presented dependent on the produced electric power. An economic feasibility study supplements the scientific study. It shows an excellent potential of profitability for certain machines. The most important result of this article is that the magnetic energy conversion technology can be economically and technically competitive to or even beat conventional energy

  18. The discovery of fission

    International Nuclear Information System (INIS)

    McKay, H.A.C.

    1978-01-01

    In this article by the retired head of the Separation Processes Group of the Chemistry Division, Atomic Energy Research Establishment, Harwell, U.K., the author recalls what he terms 'an exciting drama, the unravelling of the nature of the atomic nucleus' in the years before the Second World War, including the discovery of fission. 12 references. (author)

  19. The modal structure of fragment mass and energy yields from the 10.3-30.0 MeV proton induced fission of {sup 232}Th and {sup 235}U

    Energy Technology Data Exchange (ETDEWEB)

    Mulgin, S.I. [Institute of Nuclear Physics, National Nuclear Center, 050032 Almaty (Kazakhstan); Zhdanov, S.V. [Institute of Nuclear Physics, National Nuclear Center, 050032 Almaty (Kazakhstan)], E-mail: zhdanov@inp.kz; Kondratiev, N.A. [Flerov' s Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, 141980 Dubna, Moscow region (Russian Federation); Kovalchuk, K.V.; Rusanov, A.Ya. [Institute of Nuclear Physics, National Nuclear Center, 050032 Almaty (Kazakhstan)

    2009-06-01

    Mass and energy distributions of fragments from fission of target nuclei {sup 232}Th and {sup 235}U induced by the 10.3-30.0 MeV protons have been measured with surface-barrier silicon detectors. A new method for decomposition of experimental distributions into fragment mass and energy yields of four independent fission modes has been proposed. Main characteristics of fission modes such as distinct mode mass yields, mean masses and kinetic energies as well as variances in fragment masses and energies have been studied in relation with energy of protons. Revealed regularities in these quantities for given energy range of incident protons support the assumption that the modes S1 and S2 are initially formed in a unified asymmetric fission valley.

  20. Efficient conversion of solar energy to biomass and electricity.

    Science.gov (United States)

    Parlevliet, David; Moheimani, Navid Reza

    2014-01-01

    The Earth receives around 1000 W.m(-2) of power from the Sun and only a fraction of this light energy is able to be converted to biomass (chemical energy) via the process of photosynthesis. Out of all photosynthetic organisms, microalgae, due to their fast growth rates and their ability to grow on non-arable land using saline water, have been identified as potential source of raw material for chemical energy production. Electrical energy can also be produced from this same solar resource via the use of photovoltaic modules. In this work we propose a novel method of combining both of these energy production processes to make full utilisation of the solar spectrum and increase the productivity of light-limited microalgae systems. These two methods of energy production would appear to compete for use of the same energy resource (sunlight) to produce either chemical or electrical energy. However, some groups of microalgae (i.e. Chlorophyta) only require the blue and red portions of the spectrum whereas photovoltaic devices can absorb strongly over the full range of visible light. This suggests that a combination of the two energy production systems would allow for a full utilization of the solar spectrum allowing both the production of chemical and electrical energy from the one facility making efficient use of available land and solar energy. In this work we propose to introduce a filter above the algae culture to modify the spectrum of light received by the algae and redirect parts of the spectrum to generate electricity. The electrical energy generated by this approach can then be directed to running ancillary systems or producing extra illumination for the growth of microalgae. We have modelled an approach whereby the productivity of light-limited microalgae systems can be improved by at least 4% through using an LED array to increase the total amount of illumination on the microalgae culture.