Nuclear fission and neutron-induced fission cross-sections
James, G.D.; Lynn, J.E.; Michaudon, A.; Rowlands, J.; de Saussure, G.
1981-01-01
A general presentation of current knowledge of the fission process is given with emphasis on the low energy fission of actinide nuclei and neutron induced fission. The need for and the required accuracy of fission cross section data in nuclear energy programs are discussed. A summary is given of the steps involved in fission cross section measurement and the range of available techniques. Methods of fission detection are described with emphasis on energy dependent changed and detector efficiency. Examples of cross section measurements are given and data reduction is discussed. The calculation of fission cross sections is discussed and relevant nuclear theory including the formation and decay of compound nuclei and energy level density is introduced. A description of a practical computation of fission cross sections is given.
Neutron-induced fission cross sections
Weigmann, H.
1991-01-01
In the history of fission research, neutron-induced fission has always played the most important role. The practical importance of neutron-induced fission rests upon the fact that additional neutrons are produced in the fission process, and thus a chain reaction becomes possible. The practical applications of neutron-induced fission will not be discussed in this chapter, but only the physical properties of one of its characteristics, namely (n,f) cross sections. The most important early summaries on the subject are the monograph edited by Michaudon which also deals with the practical applications, the earlier review article on fission by Michaudon, and the review by Bjornholm and Lynn, in which neutron-induced fission receives major attention. This chapter will attempt to go an intermediate way between the very detailed theoretical treatment in the latter review and the cited monograph which emphasizes the applied aspects and the techniques of fission cross-section measurements. The more recent investigations in the field will be included. Section II will survey the properties of cross sections for neutron-induced fission and also address some special aspects of the experimental methods applied in their measurement. Section Ill will deal with the formal theory of neutron-induced nuclear reactions for the resolved resonance region and the region of statistical nuclear reactions. In Section IV, the fission width, or fission transmission coefficient, will be discussed in detail. Section V will deal with the broader structures due to incompletely damped vibrational resonances, and in particular will address the special case of thorium and neighboring isotopes. Finally, Section VI will briefly discuss parity violation effects in neutron-induced fission. 74 refs., 14 figs., 3 tabs
Measurements of Fission Cross Sections of Actinides
Wiescher, M; Cox, J; Dahlfors, M
2002-01-01
A measurement of the neutron induced fission cross sections of $^{237}$Np, $^{241},{243}$Am and of $^{245}$Cm is proposed for the n_TOF neutron beam. Two sets of fission detectors will be used: one based on PPAC counters and another based on a fast ionization chamber (FIC). A total of 5x10$^{18}$ protons are requested for the entire fission measurement campaign.
Fission cross section measurements at intermediate energies
Laptev, Alexander
2005-01-01
The activity in intermediate energy particle induced fission cross-section measurements of Pu, U isotopes, minor actinides and sub-actinides in PNPI of Russia is reviewed. The neutron-induced fission cross-section measurements are under way in the wide energy range of incident neutrons from 0.5 MeV to 200 MeV at the GNEIS facility. In number of experiments at the GNEIS facility, the neutron-induced fission cross sections were obtained for many nuclei. In another group of experiments the proton-induced fission cross-section have been measured for proton energies ranging from 200 to 1000 MeV at 100 MeV intervals using the proton beam of PNPI synchrocyclotron. (author)
Interference analysis of fission cross section
Toshkov, S.A.; Yaneva, N.B.
1976-01-01
The formula for the reaction cross-section based on the R-matrix formalism considering the interference between the two neighbouring resonances, referred to the same value of total momentum was used for the analysis of the cross-section of resonance neutron induced fission of 230Pu. The experimental resolution and thermal motion of the target nuclei were accounted for numerical integration
Modelisation of the fission cross section
Morariu, Claudia
2013-03-01
The neutron cross sections of four nuclear systems (n+ 235 U, n+ 233 U, n+ 241 Am and n+ 237 Np) are studied in the present document. The target nuclei of the first case, like 235 U and 239 Pu, have a large fission cross section after the absorption of thermal neutrons. These nuclei are called 'fissile' nuclei. The other type of nuclei, like 237 Np and 241 Am, fission mostly with fast neutrons, which exceed the fission threshold energy. These types of nuclei are called 'fertile'. The compound nuclei of the fertile nuclei have a binding energy higher than the fission barrier, while for the fissile nuclei the binding energy is lower than the fission barrier. In this work, the neutron induced cross sections for both types of nuclei are evaluated in the fast energy range. The total, reaction and shape-elastic cross sections are calculated by the coupled channel method of the optical model code ECIS, while the compound nucleus mechanism are treated by the statistical models implemented in the codes STATIS, GNASH and TALYS. The STATIS code includes a refined model of the fission process. Results from the theoretical calculations are compared with data retrieved from the experimental data base EXFOR. (author) [fr
Fission cross section measurements for minor actinides
Fursov, B. [IPPE, Obninsk (Russian Federation)
1997-03-01
The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)
Fission fragment angular distributions and fission cross section validation
Leong, Lou Sai
2013-01-01
The present knowledge of angular distributions of neutron-induced fission is limited to a maximal energy of 15 MeV, with large discrepancies around 14 MeV. Only 238 U and 232 Th have been investigated up to 100 MeV in a single experiment. The n-TOF Collaboration performed the fission cross section measurement of several actinides ( 232 Th, 235 U, 238 U, 234 U, 237 Np) at the n-TOF facility using an experimental set-up made of Parallel Plate Avalanche Counters (PPAC), extending the energy domain of the incident neutron above hundreds of MeV. The method based on the detection of the 2 fragments in coincidence allowed to clearly disentangle the fission reactions among other types of reactions occurring in the spallation domain. I will show the methods we used to reconstruct the full angular resolution by the tracking of fission fragments. Below 10 MeV our results are consistent with existing data. For example in the case of 232 Th, below 10 MeV the results show clearly the variation occurring at the first (1 MeV) and second (7 MeV) chance fission, corresponding to transition states of given J and K (total spin and its projection on the fission axis), and a much more accurate energy dependence at the 3. chance threshold (14 MeV) has been obtained. In the spallation domain, above 30 MeV we confirm the high anisotropy revealed in 232 Th by the single existing data set. I'll discuss the implications of this finding, related to the low anisotropy exhibited in proton-induced fission. I also explore the critical experiments which is valuable checks of nuclear data. The 237 Np neutron-induced fission cross section has recently been measured in a large energy range (from eV to GeV) at the n-TOF facility at CERN. When compared to previous measurements, the n-TOF fission cross section appears to be higher by 5-7 % beyond the fission threshold. To check the relevance of n-TOF data, we simulate a criticality experiment performed at Los Alamos with a 6 kg sphere of 237 Np. This
Nuclear fission and neutron-induced fission cross-sections
James, G D; Michaudon, A; Michaudon, A; Cierjacks, S W; Chrien, R E
2013-01-01
Nuclear Fission and Neutron-Induced Fission Cross-Sections is the first volume in a series on Neutron Physics and Nuclear Data in Science and Technology. This volume serves the purpose of providing a thorough description of the many facets of neutron physics in different fields of nuclear applications. This book also attempts to bridge the communication gap between experts involved in the experimental and theoretical studies of nuclear properties and those involved in the technological applications of nuclear data. This publication will be invaluable to those interested in studying nuclear fis
Measurements of fission cross-sections. Chapter 4
James, G.D.
1981-01-01
The steps involved in the measurement of fission cross sections are summarized and the range of techniques available are considered. Methods of fission detection are described with particular emphasis on the neutron energy dependent properties of the fission process and the details of fragment energy loss which can lead to energy-dependent changes in detector efficiency. Selected examples of fission cross-section measurements are presented and methods of data reduction, storage, analysis and evaluation, are examined. Finally requested accuracies for fission cross section data are compared to estimated available accuracies. (U.K.)
Fission cross sections in the intermediate energy region
Lisowski, P.W.; Gavron, A.; Parker, W.E.; Ullmann, J.L.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.
1991-01-01
Until recently there has been very little cross section data for neutron-induced fission in the intermediate energy region, primarily because no suitable neutron source has existed. At Los Alamos, the WNR target-4 facility provides a high-intensity source of neutrons nearly ideal for fission measurements extending from a fraction of a MeV to several hundred MeV. This paper summarizes the status of fission cross section data in the intermediate energy range (En > 30 MeV) and presents our fission cross section data for 235 U and 238 U compared to intranuclear cascade and statistical model predictions
Fission cross sections in the intermediate energy region
Lisowski, P.W.; Gavron, A.; Parker, W.E.; Ullmann, J.L.; Balestrini, S.J. (Los Alamos National Lab., NM (USA)); Carlson, A.D.; Wasson, O.A. (National Inst. of Standards and Technology, Gaithersburg, MD (USA)); Hill, N.W. (Oak Ridge National Lab., TN (USA))
1991-01-01
Until recently there has been very little cross section data for neutron-induced fission in the intermediate energy region, primarily because no suitable neutron source has existed. At Los Alamos, the WNR target-4 facility provides a high-intensity source of neutrons nearly ideal for fission measurements extending from a fraction of a MeV to several hundred MeV. This paper summarizes the status of fission cross section data in the intermediate energy range (En > 30 MeV) and presents our fission cross section data for {sup 235}U and {sup 238}U compared to intranuclear cascade and statistical model predictions.
238U subthreshold neutron induced fission cross section
Difilippo, F.C.; Perez, R.B.; De Saussure, G.; Olsen, D.K.; Ingle, R.W.
1976-01-01
High resolution measurements of the 238 U neutron induced fission cross section are reported for neutron energies between 600 eV and 2 MeV. The average subthreshold fission cross section between 10 and 100 keV was found to be 44 +- 6 μb
Actinide neutron-induced fission cross section measurements at LANSCE
Tovesson, Fredrik K [Los Alamos National Laboratory; Laptev, Alexander B [Los Alamos National Laboratory; Hill, Tony S [INL
2010-01-01
Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications in a wide energy range from sub-thermal energies up to 200 MeV. A parallel-plate ionization chamber are used to measure fission cross sections ratios relative to the {sup 235}U standard while incident neutron energies are determined using the time-of-flight method. Recent measurements include the {sup 233,238}U, {sup 239-242}Pu and {sup 243}Am neutron-induced fission cross sections. Obtained data are presented in comparison with ex isting evaluations and previous data.
Systematics of fission cross sections at the intermediate energy region
Fukahori, Tokio; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1997-03-01
The systematics was obtained with fitting experimental data for proton induced fission cross sections of Ag, {sup 181}Ta, {sup 197}Au, {sup 206,207,208}Pb, {sup 209}Bi, {sup 232}Th, {sup 233,235,238}U, {sup 237}Np and {sup 239}Pu above 20 MeV. The low energy cross section of actinoid nuclei is omitted from systematics study, since the cross section has a complicated shape and strongly depends on characteristic of nucleus. The fission cross sections calculated by the systematics are in good agreement with experimental data. (author)
Fission cross section measurements of actinides at LANSCE
Tovesson, Fredrik [Los Alamos National Laboratory; Laptev, Alexander B [Los Alamos National Laboratory; Hill, Tony S [INL
2010-01-01
Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications. By combining measurement at two LANSCE facilities, Lujan Center and the Weapons Neutron Research center (WNR), differential cross sections can be measured from sub-thermal energies up to 200 MeV. Incident neutron energies are determined using the time-of-flight method, and parallel-plate ionization chambers are used to measure fission cross sections relative to the {sup 235}U standard. Recent measurements include the {sup 233,238}U, {sup 239,242}Pu and {sup 243}Am neutron-induced fission cross sections. In this paper preliminary results for cross section data of {sup 243}Am and {sup 233}U will be presented.
Measurement of MA fission cross sections at YAYOI
Ohkawachi, Yasushi; Ohki, Shigeo; Wakabayashi, Toshio [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center
1998-03-01
Fission cross section ratios of minor actinide nuclides (Am-241, Am-243) relative to U-235 in the fast neutron energy region have been measured using a back-to-back (BTB) fission chamber at YAYOI fast neutron source reactor. A small BTB fission chamber was developed to measure the fission cross section ratios in the center of the core at YAYOI reactor. Dependence of the fission cross section ratios on neutron spectra was investigated by changing the position of the detector in the reactor core. The measurement results were compared with the fission cross sections in the JENDL-3.2, ENDF/B-VI and JEF-2.2 libraries. It was found that calculated values of Am-241 using the JENDL-3.2, ENDF/B-VI and JEF-2.2 data are lower by about 15% than the measured value in the center of the core (the neutron average energy is 1.44E+6(eV)). And, good agreement can be seen the measured value and calculated value of Am-243 using the JENDL-3.2 data in the center of the core (the neutron average energy is 1.44E+6)(eV), but calculated values of Am-243 using the ENDF/B-VI and JEF-2.2 data are lower by 11% and 13% than the measured value. (author)
Fission cross-section normalization problems
Wagemans, C.; Ghent Rijksuniversiteit; Deruytter, A.J.
1983-01-01
The present measurements yield σsub(f)-data in the neutron energy from 20 MeV to 30 keV directly normalized in the thermal region. In the keV-region these data are consistent with the absolute σsub(f)-measurements of Szabo and Marquette. For the secondary normalization integral I 2 values have been obtained in agreement with those of Gwin et al. and Czirr et al. which were also directly normalized in the thermal region. For the I 1 integral, however, puzzling low values have been obtained. This was also the case for σsub(f)-bar in neutron energy intervals containing strong resonances. Three additional measurements are planned to further investigate these observations: (i) maintaining the actual approx.2π-geometry but using a 10 B-foil for the neutron flux detection (ii) using a low detection geometry with a 10 B- as well as a 6 Li-flux monitor. Only after these measurements definite conclusions on the I 1 and I 2 integrals can be formulated and final σsub(f)-bar-values can be released. The present study also gives some evidence for a correlation between the integral I 2 and the neutron flux monitor used. The influence of a normalization via I 1 or I 2 on the final cross-section has been shown. The magnitude of possible normalization errors is illustrated. Finally, since 235 U is expected to be an ''easy'' nucleus (low α-activity high σsub(f)-values), there are some indications that the important discrepancies still present in 235 U(n,f) cross-section measurements might partially be due to errors in the neutron flux determination
Tables of RCN-2 fission-product cross section evaluation
Gruppelaar, H.
1979-05-01
This report (continuation of ECN-13 and ECN-33) describes the third part of the RCN-2 evaluation of neutron cross sections for fission product nuclides in KEDAK format. It contains evaluated data for nine nuclides, i.e. 142 Nd, 143 Nd, 144 Nd, 145 Nd, 146 Nd, 147 Nd, 148 Nd, 150 Nd and 147 Pm. Most emphasis has been given to the evaluation of the radiative capture cross section, in order to provide a data base for adjustment calculations using results of integral measurements. Short evaluation reports are given for this cross section. The evaluated capture cross sections are compared with recent experimental differential and integral data. Graphs are given of the capture cross sections at neutron energies above 1 keV, in which also adjusted point cross sections, based upon integral STEK and CFRMF data have been plotted. Moreover, the results are compared with those of the well-known ENDF/B-IV evaluation for fission product nucleides. Finally, evaluation summaries are given, which include tables of other important neutron cross sections, such as the total, elastic scattering and inelastic scattering cross sections
Comparison of fission and capture cross sections of minor actinides
Nakagawa, Tsuneo; Iwamoto, Osamu
2003-01-01
The fission and capture cross sections of minor actinides given in JENDL-3.3 are compared with other evaluated data and experimental data. The comparison was made for 32 nuclides of Th-227, 228, 229, 230, 233, 234, Pa-231, 232, 233, U-232, 234, 236, 237, Np-236, 237, 238, Pu-236, 237, 238, 242, 244, Am-241, 242, 242m, 243, Cm-242, 243, 244, 245, 246, 247 and 248. Given in the present report are figures of these cross sections and tables of cross sections at 0.0253 eV and resonance integrals. (author)
ENDF/B-5 fission product cross section evaluations
Schenter, R.E.; England, T.R.
1979-12-01
Cross section evaluations were made for the 196 fission product nuclides on the ENDF/B-5 data files. Most of the evaluations involve updating the capture cross sections of the important absorbers for fast and thermal reactor systems. This included updating thermal values, resonance integrals, resonance parameter sets, and fast capture cross sections. For the fast capture results generalized least-squares calculations were made with the computer code FERRET. Input for these cross section adjustments included nuclear models calculations and both integral and differential experimental data results. The differential cross sections and their uncertainties were obtained from the CSIRS library. Integral measurement results came from CFRMF and STEK Assemblies 500, 1000, 2000, 3000, 4000. Comparisons of these evaluations with recent capture measurements are shown. 15 figures, 10 tables
What can be learnt from the channel analysis of the 232Th neutron fission cross section
Abou Yehia, H.; Jary, J.; Trochon, J.; Boldeman, J.W.; Musgrove, A.R. de L.
1979-10-01
Channel analyses of the neutron fission cross section of 232 Th have been made in two laboratories. The calculated fission cross sections and fission fragment anisotropies are compared with the experimental data. Despite some differences in the methods used, the conclusions on the physical aspects of the fission process are very similar
Evaluation of fission product neutron cross sections for JENDL
1984-01-01
The recent activities on the evaluation of fission product (FP) neutron cross sections for JENDL (Japanese Evaluated Nuclear Data Library) are presented briefly. The integral test of JENDL-1 FP cross section file was performed using the CFRMF sample activation data and the STEK sample reactivity data, and the ratio of experiment to calculation was nearly constant for all the samples in the STEK measurement. Therefore, a tentative analysis was performed by applying the correction to the calculated scattering reactivity component. Better agreement with the experiment was obtained after applying this correction in most cases. The evaluation work on the JENDL-2 FP neutron cross sections is now in progress. The improvement of the data evaluation is presented in an itemized form. The JENDL-2 FP file will contain the evaluated data for 100 nuclides from Kr to Tb. The improvement and the future scope of the integral test for JENDL-2 FP data are summarized. (Asami, T.)
Fission-neutron displacement cross sections in metals
Takamura, Saburo; Aruga, Takeo; Nakata, Kiyotomo
1985-01-01
The sensitivity damage rates for 22 metals were measured after fission-spectrum neutron irradiation at low temperature and the experimental damage rates were compared with the theoretical calculation. The relation between the theoretical displacement cross section and the atomic weight of metals can be written by two curves; one is for fcc and hcp metals, and another is for bcc metals. On the other hand, the experimental displacement cross section versus atomic weight is shown approximately by a curve for both fcc and bcc metals, and the cross section for hcp metals deviates from the curve. The defect production efficiency is 0.3-0.4 for fcc metals and 0.6-0.8 for bcc metals. (orig.)
Fission cross-section calculations and the multi-modal fission model
Hambsch, F.J.
2004-01-01
New, self consistent, neutron-induced reaction cross section calculations for 235,238 U, 237 Np have been performed. The statistical model code STATIS was improved to take into account the multimodality of the fission process. The three most dominant fission modes, the two asymmetric standards I (S1) and standard II (S2) modes and the symmetric superlong (SL) mode have been taken into account. De-convoluted fission cross sections for those modes for 235,238 U(n,f) and 237 Np(n,f) based on experimental branching ratios, were calculated for the first time up to the second chance fission threshold. For 235 U(n,f), the calculations being made up to 28 MeV incident neutron energy, higher fission chances have been considered. This implied the need for additional calculations for the neighbouring isotopes. As a side product also mass yield distributions could be calculated at energies hitherto not accessible by experiment. Experimental validation of the predictions is being envisaged
Above-threshold structure in {sup 244}Cm neutron-induced fission cross section
Maslov, V.M. [Radiation Physics and Chemistry Problems Inst., Minsk-Sosny (Belarus)
1997-03-01
The quasi-resonance structure appearing above the fission threshold in neutron-induced fission cross section of {sup 244}Cm(n,f) is interpreted. It is shown to be due to excitation of few-quasiparticle states in fissioning {sup 245}Cm and residual {sup 244}Cm nuclides. The estimate of quasiparticle excitation thresholds in fissioning nuclide {sup 245}Cm is consistent with pairing gap and fission barrier parameters. (author)
Curves and tables of neutron cross sections of fission product nuclei in JENDL-3
Nakagawa, Tsuneo [ed.
1992-06-15
Neutron cross sections of 172 nuclei in the fission product region stored in JENDL-3 are shown in graphs and tables. The evaluation work of these nuclei was made by the Fission Product Nuclear Data Working Group of the Japanese Nuclear Data Committee, in the neutron energy region from 10{sup {minus}5} eV to 20 MeV. Almost of the cross section data reproduced in graphs in this report. The cross section averaged over 38 energy intervals are listed in a table. Shown in order tables are thermal cross sections, resonance integrals, Maxwellian neutron flux average cross sections, fission spectrum average cross sections, 14-MeV cross sections, one group average cross sections in neutron flux of typical types of fission reactors and average cross sections in the 30-keV Maxwellian spectrum.
Curves and tables of neutron cross sections of fission product nuclei in JENDL-3
Nakagawa, Tsuneo
1992-06-01
Neutron cross sections of 172 nuclei in the fission product region stored in JENDL-3 are shown in graphs and tables. The evaluation work of these nuclei was made by the Fission Product Nuclear Data Working Group of the Japanese Nuclear Data Committee, in the neutron energy region from 10 -5 eV to 20 MeV. Almost all the cross section data are reproduced in graphs in this report. The cross section averaged over 38 energy intervals are listed in a table. Shown in other tables are thermal cross sections, resonance integrals, Maxwellian neutron flux average cross sections, fission spectrum average cross sections, 14-MeV cross sections, one group average cross sections in neutron flux of typical types of fission reactors and average cross sections in the 30-keV Maxwellian spectrum. (author)
Evaluation of Cross-Section Sensitivities in Computing Burnup Credit Fission Product Concentrations
Gauld, I.C.
2005-01-01
U.S. Nuclear Regulatory Commission Interim Staff Guidance 8 (ISG-8) for burnup credit covers actinides only, a position based primarily on the lack of definitive critical experiments and adequate radiochemical assay data that can be used to quantify the uncertainty associated with fission product credit. The accuracy of fission product neutron cross sections is paramount to the accuracy of criticality analyses that credit fission products in two respects: (1) the microscopic cross sections determine the reactivity worth of the fission products in spent fuel and (2) the cross sections determine the reaction rates during irradiation and thus influence the accuracy of predicted final concentrations of the fission products in the spent fuel. This report evaluates and quantifies the importance of the fission product cross sections in predicting concentrations of fission products proposed for use in burnup credit. The study includes an assessment of the major fission products in burnup credit and their production precursors. Finally, the cross-section importances, or sensitivities, are combined with the importance of each major fission product to the system eigenvalue (k eff ) to determine the net importance of cross sections to k eff . The importances established the following fission products, listed in descending order of priority, that are most likely to benefit burnup credit when their cross-section uncertainties are reduced: 151 Sm, 103 Rh, 155 Eu, 150 Sm, 152 Sm, 153 Eu, 154 Eu, and 143 Nd
Billaud, P; Clair, C; Gaudin, M; Genin, R; Joly, R; Leroy, J L; Michaudon, A; Ouvry, J; Signarbieux, C; Vendryes, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1958-07-01
a) Measurements of neutron induced fission cross-sections in the low energy region. The variation of the fission cross sections of several fissile isotopes has been measured and analysed, for neutron energies below 0,025 eV. The monochromator was a crystal spectrometer used in conjunction with a mechanical velocity selector removing higher order Bragg reflections. The fissile material was laid down on the plates of a fission chamber by painting technic. An ionization chamber, having its plates coated with thin {sup 10}B layers, was used as the neutron flux monitor. b) Measurement of the fission cross section of {sup 235}U. We intend to measure the variation of the neutron induced fission cross section of {sup 235}U over the neutron energy range from 1 keV by the time of flight method. The neutron source is the uranium target of a pulsed 28 MeV electron linear accelerator. The detector is a large fission chamber, with parallel plates, containing about 10 g of {sup 235}U (20 deposits of 25 cm diameter). The relative fission data were corrected for the neutron spectrum measured with a set of BF{sub 3} proportional counters. c) Mean number {nu} of neutrons emitted in neutron induced fission. We measured the value of {nu} for several fissile isotopes in the case of fission induced by 14 MeV neutrons. The 14 MeV neutrons were produced by D (t, n) {alpha} reaction by means of a 300 kV Cockcroft Walton generator. (author)Fren. [French] a) Mesures de sectionficaces de fission a basse energie. Nous avons mesure et analyse la variation de la section efficace de fission de divers isotopes fissiles pour des neutrons d'energie inferieure a 0,025 eV. Le monochromateur est constitue par un spectrometre a cristal auquel est associe un selecteur mecanique destine a eliminer les diffractions de Bragg d'ordre superieur au premier. Le materiau fissile est contenu dans une chambre a fission sous forme de depots realises par peinture; une chambre d'ionisation a depots minces de B{sub 10
Preparation of multigroup lumped fission product cross-sections from ENDF/B-VI for FBRs
Devan, K.; Gopalakrishnan, V.; Mohanakrishnan, P.; Sridharan, M.S.
1997-01-01
Multigroup pseudo fission product cross-sections were computed from the American evaluated nuclear data library ENDF/B-VI, corresponding to various burnups of the proposed 500 MWe prototype fast breeder reactor (PFBR), in India. The data were derived from the cross-sections of 111 selected fission products that account for almost complete capture of fission products in an FBR. The dependence of burnup on the pseudo fission product cross-sections, and comparison with other data sets, viz. JNDC, ENDF/B-IV and ABBN, are discussed. (author)
Cross sections of the lumped fission products for the AMZ library
Ono, S.; Corcueca, R.P.; Nascimento, J.A.
1985-01-01
The preparation of the lumped fission product cross section for the AMZ library is described. For this purpose 100 nuclides were selected. The cross sections for each nuclide were generated by the NJOY code with evaluated nuclear data from ENDF/B-V, complemented with ENDF/B-IV data. A comparison is performed between the data obtained and the lumped fission product cross section of JFS-II [pt
Fukahori, Tokio; Iwamoto, Osamu; Chiba, Satoshi
2003-01-01
For an accelerator-driven nuclear waste transmutation system, it is very important to estimate sub-criticality of core system for feasibility and design study of the system. The fission cross section in the intermediate energy range has an important role. A program FISCAL has been developed to calculate neutron-, proton- and photon-induced fission cross sections in the energy region from several tens of MeV to 3 GeV. FISCAL adopts the systematics considering experimental data for Ag- 243 Am. It is found that unified description of neutron-, proton- and photon-induced fission cross sections is available. (author)
MCNP6 Fission Cross Section Calculations at Intermediate and High Energies
Mashnik, Stepan G.; Sierk, Arnold J.; Prael, Richard E.
2013-01-01
MCNP6 has been Validated and Verified (V&V) against intermediate- and high-energy fission cross-section experimental data. An error in the calculation of fission cross sections of 181Ta and a few nearby target nuclei by the CEM03.03 event generator in MCNP6 and a "bug: in the calculation of fission cross sections with the GENXS option of MCNP6 while using the LAQGSM03.03 event generator were detected during our V&V work. After fixing both problems, we find that MCNP6 using CEM03.03 and LAQGSM...
Measurements of fission cross-sections and of neutron production rates
Billaud, P.; Clair, C.; Gaudin, M.; Genin, R.; Joly, R.; Leroy, J.L.; Michaudon, A.; Ouvry, J.; Signarbieux, C.; Vendryes, G.
1958-01-01
a) Measurements of neutron induced fission cross-sections in the low energy region. The variation of the fission cross sections of several fissile isotopes has been measured and analysed, for neutron energies below 0,025 eV. The monochromator was a crystal spectrometer used in conjunction with a mechanical velocity selector removing higher order Bragg reflections. The fissile material was laid down on the plates of a fission chamber by painting technic. An ionization chamber, having its plates coated with thin 10 B layers, was used as the neutron flux monitor. b) Measurement of the fission cross section of 235 U. We intend to measure the variation of the neutron induced fission cross section of 235 U over the neutron energy range from 1 keV by the time of flight method. The neutron source is the uranium target of a pulsed 28 MeV electron linear accelerator. The detector is a large fission chamber, with parallel plates, containing about 10 g of 235 U (20 deposits of 25 cm diameter). The relative fission data were corrected for the neutron spectrum measured with a set of BF 3 proportional counters. c) Mean number ν of neutrons emitted in neutron induced fission. We measured the value of ν for several fissile isotopes in the case of fission induced by 14 MeV neutrons. The 14 MeV neutrons were produced by D (t, n) α reaction by means of a 300 kV Cockcroft Walton generator. (author) [fr
High-energy Neutron-induced Fission Cross Sections of Natural Lead and Bismuth-209
Tarrio, D; Carrapico, C; Eleftheriadis, C; Leeb, H; Calvino, F; Herrera-Martinez, A; Savvidis, I; Vlachoudis, V; Haas, B; Koehler, P; Vannini, G; Oshima, M; Le Naour, C; Gramegna, F; Wiescher, M; Pigni, M T; Audouin, L; Mengoni, A; Quesada, J; Becvar, F; Plag, R; Cennini, P; Mosconi, M; Rauscher, T; Couture, A; Capote, R; Sarchiapone, L; Vlastou, R; Domingo-Pardo, C; Dillmann, I; Pavlopoulos, P; Karamanis, D; Krticka, M; Jericha, E; Ferrari, A; Martinez, T; Trubert, D; Oberhummer, H; Karadimos, D; Plompen, A; Isaev, S; Terlizzi, R; Cortes, G; Cox, J; Cano-Ott, D; Pretel, C; Colonna, N; Berthoumieux, E; Vaz, P; Heil, M; Lopes, I; Lampoudis, C; Walter, S; Calviani, M; Gonzalez-Romero, E; Embid-Segura, M; Stephan, C; Igashira, M; Papachristodoulou, C; Aerts, G; Tavora, L; Berthier, B; Rudolf, G; Andrzejewski, J; Villamarin, D; Ferreira-Marques, R; Tain, J L; O'Brien, S; Reifarth, R; Kadi, Y; Neves, F; Poch, A; Kerveno, M; Rubbia, C; Lazano, M; Dahlfors, M; Wisshak, K; Salgado, J; Dridi, W; Ventura, A; Andriamonje, S; Assimakopoulos, P; Santos, C; Voss, F; Ferrant, L; Patronis, N; Chiaveri, E; Guerrero, C; Perrot, L; Vicente, M C; Lindote, A; Praena, J; Baumann, P; Kappeler, F; Rullhusen, P; Furman, W; David, S; Marrone, S; Tassan-Got, L; Gunsig, F; Alvarez-Velarde, F; Massimi, C; Mastinu, P; Pancin, J; Papadopoulos, C; Tagliente, G; Haight, R; Chepel, V; Kossionides, E; Badurek, G; Marganiec, J; Lukic, S; Pavlik, A; Goncalves, I; Duran, I; Alvarez, H; Abbondanno, U; Fujii, K; Milazzo, P M; Moreau, C
2011-01-01
The CERN Neutron Time-Of-Flight (n\\_TOF) facility is well suited to measure small neutron-induced fission cross sections, as those of subactinides. The cross section ratios of (nat)Pb and (209)Bi relative to (235)U and (238)U were measured using PPAC detectors. The fragment coincidence method allows to unambiguously identify the fission events. The present experiment provides the first results for neutron-induced fission up to 1 GeV for (nat)Pb and (209)Bi. A good agreement with previous experimental data below 200 MeV is shown. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross section is close to 1 GeV.
The impact of intermediate structure on the average fission cross sections
Bouland, O.; Lynn, J.E.; Talou, P.
2014-01-01
This paper discusses two common approximations used to calculate average fission cross sections over the compound energy range: the disregard of the W II factor and the Porter-Thomas hypothesis made on the double barrier fission width distribution. By reference to a Monte Carlo-type calculation of formal R-matrix fission widths, this work estimates an overall error ranging from 12% to 20% on the fission cross section in the case of the 239 Pu fissile isotope in the energy domain from 1 to 100 keV with very significant impact on the competing capture cross section. This work is part of a recent and very comprehensive formal R-matrix study over the Pu isotope series and is able to give some hints for significant accuracy improvements in the treatment of the fission channel. (authors)
Wagner, M.; Vonach, H.
1990-01-01
These proceedings of a specialists' meeting on neutron activation cross sections for fission and fusion energy applications are divided into 4 sessions bearing on: - data needs: 4 conferences - experimental work: 11 conferences - theoretical work: 4 conferences - evaluation work: 5 conferences
Prediction of fission mass-yield distributions based on cross section calculations
Hambsch, F.-J.; G.Vladuca; Tudora, Anabella; Oberstedt, S.; Ruskov, I.
2005-01-01
For the first time, fission mass-yield distributions have been predicted based on an extended statistical model for fission cross section calculations. In this model, the concept of the multi-modality of the fission process has been incorporated. The three most dominant fission modes, the two asymmetric standard I (S1) and standard II (S2) modes and the symmetric superlong (SL) mode are taken into account. De-convoluted fission cross sections for S1, S2 and SL modes for 235,238 U(n, f) and 237 Np(n, f), based on experimental branching ratios, were calculated for the first time in the incident neutron energy range from 0.01 to 5.5 MeV providing good agreement with the experimental fission cross section data. The branching ratios obtained from the modal fission cross section calculations have been used to deduce the corresponding fission yield distributions, including mean values also for incident neutron energies hitherto not accessible to experiment
Measuring Cross-Section and Estimating Uncertainties with the fissionTPC
Bowden, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Manning, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sangiorgio, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Seilhan, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-01-30
The purpose of this document is to outline the prescription for measuring fission cross-sections with the NIFFTE fissionTPC and estimating the associated uncertainties. As such it will serve as a work planning guide for NIFFTE collaboration members and facilitate clear communication of the procedures used to the broader community.
Bacak M.
2017-01-01
Full Text Available 233U plays the essential role of fissile nucleus in the Th-U fuel cycle. A particularity of 233U is its small neutron capture cross-section which is about one order of magnitude lower than the fission cross-section on average. Therefore, the accuracy in the measurement of the 233U capture cross-section essentially relies on efficient capture-fission discrimination thus a combined setup of fission and γ-detectors is needed. At CERN n_TOF the Total Absorption Calorimeter (TAC coupled with compact fission detectors is used. Previously used MicroMegas (MGAS detectors showed significant γ-background issues above 100 eV coming from the copper mesh. A new measurement campaign of the 233U capture cross-section and alpha ratio is planned at the CERN n_TOF facility. For this measurement, a novel cylindrical multi ionization cell chamber was developed in order to provide a compact solution for 14 active targets read out by 8 anodes. Due to the high specific activity of 233U fast timing properties are required and achieved with the use of customized electronics and the very fast ionizing gas CF4 together with a high electric field strength. This paper describes the new fission chamber and the results of the first tests with neutrons at GELINA proving that it is suitable for the 233U measurement.
Determination of extra-push energies for fusion from differential fission cross-section measurements
Ramamurthy, V.S.; Kapoor, S.S.
1993-01-01
Apparent discrepancies between values of extra-push energies for fusion of two heavy nuclei derived through measurements of fusion evaporation residue cross sections and of differential fission cross sections have been reported by Keller et al. We show here that with the inclusion of the recently proposed preequilibrium fission decay channel in the analysis, there is no inconsistency between the two sets of data in terms of the deduced extra-push energies
Status update on the NIFFTE high precision fission cross section measurement program
Laptev, Alexander B.; Tovesson, Fredrik; Burgett, Eric; Greife, Uwe; Grimes, Steven; Heffner, Michael D.; Hertel, Nolan E.; Hill, Tony; Isenhower, Donald; Klay, Jennifer L.; Kornilov, Nickolay; Kudo, Ryuho; Loveland, Walter; Massey, Thomas; McGrath, Chris; Pickle, Nathan; Qu, Hai; Sharma, Sarvagya; Snyder, Lucas; Thornton, Tyler; Towell, Rusty S.; Watson, Shon
2010-01-01
The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) program has been underway for nearly two years. The program's mission is to measure fission cross sections of the primary fissionable and fissile materials ( 235 U, 239 Pu, 238 U) as well as the minor actinides across energies from approximately 50 keV up to 20 MeV with an absolute uncertainty of less than one percent while investigating energy ranges from below an eV to 600 MeV. This basic nuclear physics data is being reinvestigated to support the next generation power plants and a fast burner reactor program. Uncertainties in the fast, resolved and unresolved resonance regions in plutonium and other transuranics are extremely large, dominating safety margins in the next generation nuclear power plants and power plants of today. This basic nuclear data can be used to support all aspects of the nuciear renaissance. The measurement campaign is utilizing a Time Projection Chamber or TPC as the tool to measure these cross sections to these unprecedented levels. Unlike traditional fission cross section measurements using time-of-flight and a multiple fission foil configurations in which fission cross sections in relation to that of 235 U are performed, the TPC project uses time-of-flight and hydrogen as the benchmark cross section. Using the switch to hydrogen, a simple, smooth cross section that can be used which removes the uncertainties associated with the resolved and unresolved resonances in 235 U.
Measurement of the neutron-induced fission cross-section of 240,242Pu
Salvador-Castineira, P.; Hambsch, F.J.; Brys, T.; Oberstedt, S.; Vidali, M.; Pretel, C.
2014-01-01
Fast spectrum neutron-induced fission cross-section data for transuranic isotopes are in high demand in the nuclear data community. In particular, highly accurate data are needed for the new Generation-IV nuclear applications. The aim is to obtain precise neutron-induced fission cross-sections for 240 Pu and 242 Pu. In this context accurate data on spontaneous fission half-lives have also been measured. To minimise the total uncertainty on the fission cross-sections the detector efficiency has been studied in detail. Both isotopes have been measured using a twin Frisch-grid ionisation chamber (TFGIC) due to its superiority compared to other detector systems in view of radiation hardness, 2 x 2π solid angle coverage and very good energy resolution. (authors)
Measurement of fast neutron induced fission cross section of minor-actinide
Hirakawa, Naohiro
2000-06-01
In fuel cycles with recycled actinide, core characteristics are largely influenced by minor actinide (MA: Np, Am, Cm). Accurate nuclear data of MA such as fission cross section are required to estimate the effect of MA with high accuracy. In this study, fast neutron induced fission cross section of MA is measured using Dynamitron accelerator in Tohoku University. The followings were performed in this fiscal year; (1) Research of nuclear data of MA, (2) Sample preparation and sample mass assay, (3) Investigation of neutron sources with the energy of several 10 keV, (4) Preliminary measurement of fission cross section using Dynamitron accelerator. As the result, four 237 Np samples were prepared and the sample mass were measured using alpha-spectrometry with the accuracy of 1.2%. Then, it was confirmed that a neutron source via 7 Li(p,n) 7 Be reaction using a Li-thick target is suitable for measuring fission cross section of MA in the energy region of several 10 keV. Furthermore, it was verified by the preliminary measurement that the measurement of fission cross section of MA is available using a fission chamber and electronics developed in this study. (author)
Measurement of fast neutron induced fission cross section of minor-actinide
Hirakawa, Naohiro
1997-03-01
In fuel cycles with recycled actinide, core characteristics are largely influenced by minor actinide (MA: Np, Am, Cm). Accurate nuclear data of MA such as fission cross section are required to estimate the effect of MA with high accuracy. In this study, fast neutron induced fission cross section of MA is measured using Dynamitron Accelerator in Tohoku University. The experimental method and the samples, which were developed or introduced during the last year, were improved in this fiscal year: (1) Development of a sealed fission chamber, (2) Intensification of Li neutron target, (3) Improvement of time-resolution of Time-of-Flight (TOF) electronic circuit, (4) Introduction of Np237 samples with large sample mass and (5) Introduction of a U235 sample with high purity. Using these improved tools and samples, the fission cross section ratio of Np237 relative to U235 was measured between 5 to 100 keV, and the fission cross section of Np237 was deduced. On the other hand, samples of Am241 and Am243 were obtained from Japan Atomic Energy Research Institute (JAERI) after investigating fission cross section of two americium isotopes (Am241 and Am 243) which are important for core physics calculation of fast reactors. (author)
Measurement of the 235U/238U fission cross section ratio in the 235U fission neutron spectrum
Azimi-Garakani, D.; Bagheri-Darbandi, M.
1983-06-01
Fission cross section ratio of 235 U to 238 U has been measured in the fast neutron field generated by the 235 U fission plate installed on the thermal column of the Tehran Research Reactor (TRR) with a Makrofol solid state nuclear track detector. The experiments were carried out with a set of total six enriched 235 U and depleted 238 U deposits with different masses and Makrofol films of 0.025mm and 0.060mm thicknesses. The chemically etched tracks were counted by an optical microscope. No significant differences were observed with the thin and the thick films. The results showed that the average fission cross section ratio is 3.83+-0.25. (author)
Using a Time Projection Chamber to Measure High Precision Neutron-Induced Fission Cross Sections
Manning, Brett [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-08-06
2014 LANSCE run cycle data will provide a preliminary ^{239}Pu(n,f) cross section and will quantify uncertainties: PID and Target/beam non-uniformities. Continued running during the 2015 LANSCE run cycle: Thin targets to see both fission fragments and ^{239}Pu(n,f) cross section and fully quantified uncertainties
Preparation of lumped fission product (FP) cross sections for a multigroup library
Ono, S.; Corcuera, R.P.
1984-01-01
A method for the calculation of lumped Fission Product (FP) cross sections has been developed. The group constants fo each nuclide are generated by NJOY code, based on ENDF/B-V data. In this first version, cross section of 28 nuclides are lumped for typical characteristics of Binary Breeder Reactor (BBR). One energy group calculations are made for a 1000 MWe fast reactor to verify the influence of burnup, number of FP and fuel composition on the lumped fission product cross sections. (Author) [pt
Status of recent fast capture cross section evaluations for important fission product nuclides
Gruppelaar, H.
1982-01-01
A comparison is made between recent evaluations of fission-product cross sections as given in the CNEN/CEA, ENDF/B-IV, ENDF/V-V, JENDL-1, RCN-2 and RCN-3 data libraries. The intercomparison is restricted to 24 important fission products in a fast power reactor. The evaluation methods used to obtain the various data files are reviewed and possible shortcomings are indicated. A survey is given of the experimental data based used in the various evaluations. Some graphs are included showing the new ENDF/B-V and RCN-3 fastcapture cross-section evaluations. Further intercomparisons are made by means of multi-group and one-group cross sections. It is shown that lumped fission-product cross sections calculated from the most recent versions of the data files are in quite good agreement with each other. This review concludes with a discussion on observed discrepancies and requests for new measurements. 78 references
Measurement of reaction cross sections of fission products induced by DT neutrons
Nakano, Daisuke; Murata, Isao; Takahashi, Akito [Osaka Univ., Suita (Japan)
1998-03-01
With the view of future application of fusion reactor to incineration of fission products, we have measured the {sup 129}I(n,2n){sup 128}I reaction cross section by DT neutrons with the activation method. The measured cross section was compared with the evaluated nuclear data of JENDL-3.2. From the result, it was confirmed that the evaluation overestimated the cross section by about 20-40%. (author)
Kaplan Abdullah
2015-01-01
Full Text Available Implementation of projects of new generation nuclear power plants requires the solving of material science and technological issues in developing of reactor materials. Melts of heavy metals (Pb, Bi and Pb-Bi due to their nuclear and thermophysical properties, are the candidate coolants for fast reactors and accelerator-driven systems (ADS. In this study, α, γ, p, n and 3He induced fission cross section calculations for 209Bi target nucleus at high-energy regions for (α,f, (γ,f, (p,f, (n,f and (3He,f reactions have been investigated using different fission reaction models. Mamdouh Table, Sierk, Rotating Liquid Drop and Fission Path models of theoretical fission barriers of TALYS 1.6 code have been used for the fission cross section calculations. The calculated results have been compared with the experimental data taken from the EXFOR database. TALYS 1.6 Sierk model calculations exhibit generally good agreement with the experimental measurements for all reactions used in this study.
Barabanov, A.L.; Grechukhin, D.P.
1985-01-01
General analysis is conducted, and formulae for fission cross section and angular distribution of fission fragments of oriented nuclei by fast neutrons are presented. Geometrical coefficients making up the formulae permitting to carry out calculations for target nuclei with spins I=3/2, 5/2, 7/2 at interaction energies epsilon < or approximately 1 MeV are tabulated. Results of demonstrative calculation of fission fragment angular distribution of oriented sup(235)U nuclei by 0.1 <= epsilon <= 1.0 MeV neutrons reveal that angular distribution weakly depends on the set of permeability factors of neutron waves applied in the calculations
Capote Noy, Roberto; Simakov, Stanislav; Goriely, Stephane; Hilaire, Stephane; Iwamoto, Osamu; Kawano, Toshihiko; Koning, Arjan
2014-12-01
A Consultants’ Meeting on “Recommended Input Parameters for Fission Cross-Section Calculations” was held at IAEA Headquarters, Vienna, Austria to define the scope, deliverables and appropriate work programme of a possible Coordinated Research Project (CRP) on the subject. Presentations are available online at https://www-nds.iaea.org/indexmeeting-crp/CM-RIPL-fission/. A new CRP was endorsed to recommend a comprehensive set of fission input parameters needed for the modelling of fission cross sections. Special attention will be given to the modelling of photon and nucleon induced reactions on actinides with emphasis on incident energies below 30 MeV. The goals and detailed deliverables of the planned CRP were proposed. A Hauser-Feshbach code intercomparison was recommended. (author)
Proton-induced fission cross sections on "2"0"8Pb at high kinetic energies
Rodriguez-Sanchez, J.L.; Benlliure, J.; Paradela, C.; Ayyad, Y.; Alvarez-Pol, H.; Cortina-Gil, D.; Pietras, B.; Ramos, D.; Vargas, J.; Taieb, J.; Chatillon, A.; Belier, G.; Boutoux, G.; Gorbinet, T.; Laurent, B.; Martin, J.F.; Pellereau, E.; Casarejos, E.; Rodriguez-Tajes, C.
2014-01-01
Total fission cross sections of "2"0"8Pb induced by protons have been determined at 370 A, 500 A, and 650 A MeV. The experiment was performed at GSI Darmstadt where the combined use of the inverse kinematics technique with an efficient detection setup allowed us to determine these cross sections with an uncertainty below 6%. This result was achieved by an accurate beam selection and registration of both fission fragments in coincidence which were also clearly distinguished from other reaction channels. These data solve existing discrepancies between previous measurements, providing new values for the Prokofiev systematics. The data also allow us to investigate the fission process at high excitation energies and small deformations. In particular, some fundamental questions about fission dynamics have been addressed, which are related to dissipative and transient time effects. (authors)
Evidence of pair correlations in actinide neutron-induced fission cross sections
Maslov, V.M.
2000-01-01
It is shown that irregularities in fission cross sections in MeV incident neutron energy region could be attributed to the interplay of few-quasiparticle excitations in the level density of the fissioning and residual nuclei. It is suggested the intrinsic quasiparticle state density modelling approach both at stable and saddle-point deformations. The experimental manifestation of few-quasiparticle irregularities in the level density depends on the fission barrier structure and internal excitation energy at the saddle point, corresponding to the higher barrier hump. The explicit evidence is observed in case of fissile and non-fissile target nuclides [ru
Meadows, J W
1983-10-01
Earlier results from the measurements, at this Laboratory, of the fission cross sections of /sup 230/Th, /sup 232/Th, /sup 233/U, /sup 234/U, /sup 236/U, /sup 238/U, /sup 237/Np, /sup 239/Pu, /sup 240/Pu, and /sup 242/Pu relative to /sup 235/U are reviewed with revisions to include changes in data processing procedures, alpha half lives and thermal fission cross sections. Some new data have also been included. The current experimental methods and procedures and the sample assay methods are described in detail and the sources of error are presented in a systematic manner. 38 references.
Fission cross section measurements at the LLL 100-MeV linac
Browne, J.C.
1975-01-01
The fission cross section for 235 U was measured from thermal energy to 20 MeV in several steps. First, the cross section was measured from 8 MeV to 20 MeV relative to the n,p scattering cross section and then from thermal to one MeV relative to 6 Li(n,α). In addition, a measurement of the ratio of the fission cross sections of 235 U and 238 U relative to 235 U has been completed in the range 1 keV to 30 MeV for 233 U and 100 keV to 30 MeV for 238 U. Statistical uncertainties are less than 4 percent. (U.S.)
Determination of minor actinides fission cross sections by means of transfer reactions
Jurado, B.; Aiche, M.; Barreau, G.; Boyer, S.; Czajkowski, S.; Dassie, D.; Grosjean, C.; Guiral, A.; Haas, B.; Osmanov, B.; Petit, M. [CENBG - UMR 5795 CNRS/IN2P3-Univ. Bordeaux 1- Le Haut Vigneau, 33175 Gradignan (France); Berthoumieux, E.; Gunsing, F.; Perrot, L.; Theisen, Ch. [CEN Saclay, DSM/DAPNIA/SPhN, 91191 Gif-sur-Yvette cedex (France); Bauge, E. [CEA, SPhN, BP12 91680 Bruyeres-le-Chatel (France); Michel-Sendis, F. [IPN, 15 rue G. Clemenceau, 91406 Orsay cedex (France); Billebaud, A. [LPSC, 53 Avenue des Martyrs, 38026 Grenoble cedex (France); Wilson, J. N. [IPN, 15 rue G. Clemenceau, 91406 Orsay cedex (France); LPSC, 53 Avenue des Martyrs, 38026 Grenoble cedex (France); Ahmad, I.; Greene, J.P.; Janssens, R. V. F. [ANL, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)
2005-07-01
We present an original method that allows to determine neutron-induced cross sections of very short-lived minor actinides. This indirect method, based on the use of transfer reactions, has already been applied with success for the determination of the neutron-induced fission and capture cross section of {sup 233}Pa, a key nucleus in the {sup 232}Th - {sup 233}U fuel cycle. A recent experiment using this technique has been performed to determine the neutron-induced fission cross sections of {sup 242,243,244}Cm and {sup 241}Am which are present in the nuclear waste of the current U-Pu fuel cycle. These cross sections are highly relevant for the design of reactors capable to incinerate minor actinides. The first results will be illustrated. (authors)
Evaluations of fission product capture cross sections for ENDF/B-V
Schenter, R.E.; Johnson, D.L.; Mann, F.M.; Schmittroth, F.
1979-01-01
Capture cross section evaluations were made for the 36 most important fission product absorbers in a fast reactor system. These evaluations were obtained by use of a generalized least-squares approach with calculations being performed with the computer code FERRET. These results will provide the major revisions to the ENDF/B-IV Fission Product Cross Section File which will be released as part of ENDF/B-V. Input for the cross section adjustment calculations included both integral and differential experimental data results. The differential cross sections and their uncertainties were obtained from the CSIRS library. Integral measurement results came from CFRMF and STEK Assemblies 500, 1000, 2000, 3000, and 4000. Comparisons of these evaluations with recent capture measurements are presented. 14 figures
The evaluated neutron cross sections and resonance integrals of fission products with Z = 57-62
Fedorova, A.F.; Pisanko, Zh.I.; Novoselov, G.M.
1976-01-01
Neutron cross sections at a neutron velocity of V=2200 m/s, and resonance integrals for fission products with Z=57-71 are estimated. In obtaining the recommended values the results of the neutron cross sections and resonance integrals for elements used as references were normalized in accordance with the latest adjusted values. In the course of estimation, preference was given to the more accurate methods for obtaining the measured values and to the more recent investigations
Thermal-neutron fission cross section of 26. 1-min /sup 235/U/sup m/
Talbert W.L. Jr.; Starner, J.W.; Estep, R.J.; Balestrini, S.J.; Attrep M. Jr.; Efurd, D.W.; Roensch, F.R.
1987-11-01
The thermal-neutron fission cross section of /sup 235/U/sup m/ has been measured relative to the ground-state cross section. A rapid radiochemical separation procedure was developed to provide sizeable (10/sup 10/ to 10/sup 11/ atom) samples that were reasonably free of the parent /sup 239/Pu. From a series of eight measurements, the value of 1.42 +- 0.04 was obtained for the ratio sigma/sub m//sigma/sub g/.
Fission cross section of 235U from 1 to 6 MeV
Barton, D.M.; Diven, B.C.; Hansen, G.E.; Jarvis, G.A.; Koontz, P.G.; Smith, R.K.
1976-01-01
The ratio of the neutron-induced fission cross section of 235 U to the neutron-proton scattering cross section was measured in the neutron energy region from 1 to 6 MeV. The neutron source was the T(p,n) reaction produced by a pulsed Van de Graaff proton beam on a thin tritium gas target. The use of monoenergetic neutrons allowed time-of-flight methods to be used to study carefully backgrounds and source characteristics
The evaluated neutron cross sections and resonance integrals of fission products with Z=63-71
Fedorova, A.F.; Pisanko, Zh.I.; Novoselov, G.M.
1976-01-01
Neutron cross sections at a neutron velocity of V=2200 m/s, and the resonance integrals for fission products with Z=63-71 are estimated. In obtaining the recommended values the results were normalized of the neutron cross sections and resonance integrals for elements used as references in accordance with the latest adjusted values. In the course of estimation, preference was given to the more accurate measuring methods and the more recent investigations. Scientific publications up to 1975 have been used
Kotov, Alexander; Chtchetkovski, Alexander; Fedorov, Oleg; Gavrikov, Yuri; Chestnov, Yuri; Poliakov, Vladimir; Vaishnene, Larissa; Vovchenko, Vil; Fukahori, Tokio
2003-01-01
The purpose of this work is experimental studies of the energy dependence of the fission cross sections of heavy nuclei, nat Pb, 209 Bi, 232 Th, 233 U, 235 U, 238 U, 237 Np and 239 Pu, by protons at the energies from 200 to 1000 MeV. At present experiment the method based on use of the gas parallel plate avalanche counters (PPACs) for registration of complementary fission fragments in coincidence and the telescope of scintillation counters for direct counting of the incident protons on the target has been used. First preliminary results of the energy dependences of proton induced fission cross sections for nat Pb, 209 Bi, 235 U and 238 U are reported. (author)
Abramo; vich, S.N.; Andreev, M.F.; Bol`shakov, Y.M. [Institute of Experimental Physics, Arzamas (Russian Federation)] [and others
1995-10-01
Measurements have been carried out of {sup 238}Np fission cross-section by thermal neutrons. The isotope {sup 238}Np was built up through the reaction {sup 238}U(p,n) on an electrostatic accelerator. Extraction and cleaning of the sample were done by ion-exchange chromatography. Fast neutrons were generated on the electrostatic accelerator through the reaction {sup 9}Be(d,n); a polyethylene block was used to slow down neutrons. Registration of fission fragments was performed with dielectric track detectors. Suggesting that the behavior of {sup 238}Np and {sup 238}U. Westscott`s factors are indentical the fission cross-section of {sup 238}Np was obtained: {sigma}{sub fo}=2110 {plus_minus} 75 barn.
14.2 MeV neutron induced U-235 fission cross section measurement
Li Jingwen; Shen Guanren; Ye Zongyuan; Li Anli; Zhou Shuhua; Sun Zhongfan; Wu Jingxia; Huang Tanzi
1986-01-01
The cross section of U-235 fission induced by 14.2 MeV neutrons was measured by the time correlated associated particle method. The result obtained is (2.078+-0.040) barn. Comparison with other author's is also given. (author)
Simultaneous analysis of fission and capture cross section with Adler-Adler resonance formula
Cao Hengdao; Qiu Guochun
1989-01-01
The method of simultaneous analysis of fission and capture cross section for fissile nuclide with Adler-Adler resonance formula and the corresponding computer code are presented. A simple and convenient method to correct parameters μ, γ simultaneously is given in order to acquire optimized parameters. The results are satisfactory
Comparison of {sup 235}U fission cross sections in JENDL-3.3 and ENDF/B-VI
Kawano, Toshihiko [Kyushu Univ., Fukuoka (Japan); Carlson, Allan D. [National Institute of Standards and Technology (United States); Matsunobu, Hiroyuki [Data Engineering, Inc., Fujisawa, Kanagawa (Japan); Nakagawa, Tsuneo; Shibata, Keiichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Talou, Patrick; Young, Philip G.; Chadwick, Mark B. [Los Alamos National Laboratory, Los Alamos, NM (United States)
2002-01-01
Comparisons of evaluated fission cross sections for {sup 235}U in JENDL-3.3 and ENDF/B-VI are carried out. The comparisons are made for both the differential and integral data. The fission cross sections as well as the fission ratios are compared with the experimental data in detail. Spectrum averaged cross sections are calculated and compared with the measurements. The employed spectra are the {sup 235}U prompt fission neutron spectrum, the {sup 252}Cf spontaneous fission neutron spectrum, and the neutron spectrum produced by a {sup 9}Be(d, xn) reaction. For {sup 235}U prompt fission neutron spectrum, the ENDF/B-VI evaluation reproduces experimental averaged cross sections. For {sup 252}Cf and {sup 9}Be(d, xn) neutron spectra, the JENDL-3.3 evaluation gives better results than ENDF/B-VI. (author)
Comparison of 235U fission cross sections in JENDL-3.3 and ENDF/B-VI
Kawano, Toshihiko; Carlson, Allan D.; Matsunobu, Hiroyuki; Nakagawa, Tsuneo; Shibata, Keiichi
2002-01-01
Comparisons of evaluated fission cross sections for 235 U in JENDL-3.3 and ENDF/B-VI are carried out. The comparisons are made for both the differential and integral data. The fission cross sections as well as the fission ratios are compared with the experimental data in detail. Spectrum averaged cross sections are calculated and compared with the measurements. The employed spectra are the 235 U prompt fission neutron spectrum, the 252 Cf spontaneous fission neutron spectrum, and the neutron spectrum produced by a 9 Be(d, xn) reaction. For 235 U prompt fission neutron spectrum, the ENDF/B-VI evaluation reproduces experimental averaged cross sections. For 252 Cf and 9 Be(d, xn) neutron spectra, the JENDL-3.3 evaluation gives better results than ENDF/B-VI. (author)
Alekseev, A.A.; Bergman, A.A.; Berlev, A.I.; Koptelov, E.A.; Egorov, A.S.; Samylin, B.F.; Trufanov, A.M.; Fursov, B.I.; Shorin, V.S.
2012-01-01
The neutron induced fission cross sections of Am and Cm isotopes were measured relative to 239 Pu in the neutron energy range from 1 eV to 20 keV at the INR RAS lead slowing down spectrometer LSDS-100. The fission resonance integrals were also estimated using the measured cross section data. The results have been compared with the available experimental and evaluated data. This analysis has shown the present status of the measured fission cross sections and the necessity to revise the evaluated cross sections libraries for the minor actinides. (author)
Kobayashi, Katsuhei; Kobayashi, Tooru
1992-01-01
The 235 U fission spectrum-averaged cross sections for 13 threshold reactions were measured with the fission plate (27 cm in diameter and 1.1 cm thick) at the heavy water thermal neutron facility of the Kyoto University Reactor. The Monte Carlo code MCNP was applied to check the deviation from the 235 U fission neutron spectrum due to the room-scattered neutrons, and it was found that the resultant spectrum was close to that of 235 U fission neutrons. Supplementally, the relations to derive the absorbed dose rates with the fission plate were also given using the calculated neutron spectra and the neutron Kerma factors. Finally, the present values of the fission spectrum-averaged cross sections were employed to adjust the 235 U fission neutron spectrum with the NEUPAC code. The adjusted spectrum showed a good agreement with the Watt-type fission neutron spectrum. (author)
Fission neutron spectrum averaged cross sections for threshold reactions on arsenic
Dorval, E.L.; Arribere, M.A.; Kestelman, A.J.; Comision Nacional de Energia Atomica, Cuyo Nacional Univ., Bariloche; Ribeiro Guevara, S.; Cohen, I.M.; Ohaco, R.A.; Segovia, M.S.; Yunes, A.N.; Arrondo, M.; Comision Nacional de Energia Atomica, Buenos Aires
2006-01-01
We have measured the cross sections, averaged over a 235 U fission neutron spectrum, for the two high threshold reactions: 75 As(n,p) 75 mGe and 75 As(n,2n) 74 As. The measured averaged cross sections are 0.292±0.022 mb, referred to the 3.95±0.20 mb standard for the 27 Al(n,p) 27 Mg averaged cross section, and 0.371±0.032 mb referred to the 111±3 mb standard for the 58 Ni(n,p) 58m+g Co averaged cross section, respectively. The measured averaged cross sections were also evaluated semi-empirically by numerically integrating experimental differential cross section data extracted for both reactions from the current literature. The calculations were performed for four different representations of the thermal-neutron-induced 235 U fission neutron spectrum. The calculated cross sections, though depending on analytical representation of the flux, agree with the measured values within the estimated uncertainties. (author)
Determination of the neutron-induced fission cross section of 242Pu
Koegler, Toni Joerg
2016-01-01
Neutron induced fission cross sections of actinides like the Pu-isotopes are of relevance for the development of nuclear transmutation technologies. For 242 Pu, current uncertainties are of around 21%. Sensitivity studies show that the total uncertainty has to be reduced to below 5% to allow for reliable neutron physics simulations. This challenging task was performed at the neutron time-of-flight facility of the new German National Center for High Power Radiation Sources at HZDR, Dresden. Within the TRAKULA project, thin, large and homogeneous deposits of 235 U and 242 Pu have been produced successfully. Using two consecutively placed fission chambers allowed the determination of the neutron induced fission cross section of 242 Pu relative to 235 U. The areal density of the Plutonium targets was calculated using the measured spontaneous fission rate. Experimental results of the fast neutron induced fission of 242 Pu acquired at nELBE will be presented and compared to recent experiments and evaluated data. Corrections addressing the neutron scattering are discussed by using results of different neutron transport simulations (Geant 4, MCNP 6 and FLUKA).
Kim, Jong Woon; Lee, Youngouk; Kim, Jae Cheon
2014-01-01
We present the details of the TPC simulation with Geant4 and show the results. TPC can provide more information than a fission chamber in that it is possible to distinguish different particle types. Simulations are conducted for uranium and plutonium targets with 20MeV neutrons. The simulation results are compared with the reference and show reasonable results. This is the first phase of study for realizing a TPC in the NFS at RAON, and we have more work to do, such as applying an electric field, signal processing in the simulation, and manufacturing of a TPC. The standard in fission cross section measurement is a fission chamber. It is basically just two parallel plates separated by a few centimeters of gas. A power supply connected to the plates sets up a moderate electric field. The target is deposited onto one of the plates. When fission occurs, the fragments ionize the gas, and the electric field causes the produced electrons to drift to the opposite plate, which records the total energy deposited in the chamber. A Time Projection Chamber (TPC) is a gas ionization detector similar to a fission chamber. However, it can measure the charged particle trajectories in the active volume in three dimensions by adding several readouts on the pad plane (fission chamber has only one readout one a pad plane). The specific ionization for each particle track enables the TPC to distinguish different particle types. A TPC will be used for fission cross section measurements in the Neutron Science Facility (NSF) at RAON. As a preliminary study, we present details of TPC simulation with Geant4 and discuss the results
Neutron-induced fission cross sections of uraniums up to 40 MeV
Maslov, V.M. [Radiation Physics and Chemistry Problems Inst., Minsk-Sosny (Belarus); Hasegawa, A.
1998-11-01
Statistical theory of nuclear reactions, well-proved below 20 MeV, is applied for {sup 235}U and {sup 238}U fission data analysis up to {approx}40 MeV. It is shown that measured data could be reproduced. Chance structure of measured fission cross section is provided, it`s validity is supported by description of data for competing (n,xn)-reactions. Role of fissility of target nucleus is addressed. It seems that gap in incident neutron energy interval of 20 MeV - 50 MeV, below which evaluation approaches are well-developed, and above which simplified statistical approaches are valid, could be covered. (author)
Measurements of neutron-induced fission cross sections of Pb and Bi at intermediate energies
Ryzhov, Igor; Tutin, Gennady; Eismont, Vilen; Mitryukhin, Andrey; Oplavin, Valery; Soloviev, Sergey; Conde, Henri; Olsson, Nils; Renberg, Per-Ulf
2002-01-01
Neutron-induced fission cross sections of nat Pb and 209 Bi have been measured relative to the 238 U(n.f) cross section at energies 96 MeV for lead and 133 MeV for bismuth. The measurements were performed at the quasi-mono-energetic neutron beam facility of The Svedberg Laboratory in Uppsala using Frisch-gridded ionization chamber. The results obtained are compared with other experimental data. The present state of the Bi standard recommended by IAEA is discussed. (author)
Evaluation of fission spectra and cross sections by zero-leakage core experiments
Iijima, T.; Mukaiyama, T.
1979-01-01
A series of unit k-infinity core experiments were performed in FCA of JAERI to obtain the information on the equivalence of 239 Pu to 235 U in fast reactors, and to examine the inelastic slowing down cross section of 238 U. Three assemblies were built. Each assembly consists of a test zone (about 44l) of nearly unit k-infinity, a 20% enriched uranium driver and a natural uranium blanket. Assembly IV-1 (first built in 1969 and rebuilt in 1972) is an all uranium system, and Assemblies IV-1-P, IV-1-P' have a plutonium/natural uranium test zone. Three assemblies are nearly the same from the view-point of the slowing down cross section in the main energy region of the neutron spectrum, since 238 U occupies the most part of the composition. The main difference between Assembly IV-1 and the latter two is the difference in the fissile material. Fission rate ratios and k-infinity values were measured to obtain knowledge of the fission spectra and cross sections important for the criticality. In order to evaluate the inelastic slowing down cross section of 238 U, neutron spectra were measured with various methods. The analysis was done with four cross section sets. The agreement of k-infinity values between the experiment and the calculation is unsatisfactory, especially for Pu/NU systems
Tamagno, Pierre
2015-01-01
The work presented here aims to improve models used in the fission cross section evaluation. The results give insights for a significant breakthrough in this field and yielded large extensions of the evaluation code CONRAD. Partial cross sections are inherently strongly correlated together as of the competition of the related reactions must yield the total cross section. Therefore improving fission cross section benefits to all partial cross sections. A sound framework for the simulation of competitive reactions had to be settled in order to further investigate on the fission reaction; this was implemented using the TALYS reference code as guideline. After ensuring consistency and consistency of the framework, focus was made on fission. Perspective resulting from the use of macroscopic-microscopic models such as the FRDM and FRLDM were analyzed; these models have been implemented and validated on experimental data and benchmarks. To comply with evaluation requirements in terms of computation time, several specific numerical methods have been used and parts of the program were written to run on GPU. These macroscopic-microscopic models yield potential energy surfaces that can be used to extract a one-dimensional fission barrier. This latter can then be used to obtained fission transmission coefficients that can be used in a Hauser-Feshbach model. This method has been finally tested for the calculation of the average fission cross section for 239 Pu(n,f). (author) [fr
Study of fission cross sections induced by nucleons and pions using the cascade-exciton model CEM95
Yasin, Z.; Shahzad, M. I.
2007-01-01
Nucleon and pion-induced fission cross sections at intermediate and at higher energies are important in current nuclear applications, such as accelerator driven-systems (ADS), in medicine, for effects on electronics etc. In the present work, microscopic fission cross sections induced by nucleons and pions are calculated using the cascade-exciton model code CEM95 for different projectile-target combinations; at various energies and the computed cross sections are compared with the experimental data found in literature. A new approach is used to compute the fission cross sections in which a change of the ratio of the level density parameter in fission to neutron emission channels was taken into account with the change in the incident energy of the projectile. We are unable to describe well the fission cross sections without using this new approach. Proton induced fission cross sections are calculated for targets 1 97Au, 2 08Pb, 2 09Bi, 2 38U and 2 39Pu in the energy range from 20 MeV to 2000 MeV. Neutron induced fission cross sections are computed for 2 38U and 2 39Pu in the energy range from 20 MeV to 200 MeV. Negative pion induced cross sections for fission are calculated for targets 1 97Au and 2 08Pb from 50 MeV to 2500 MeV energy range. The calculated cross sections are essential to build a data library file for accelerator driven systems just like was built for conventional nuclear reactors. The computed values exhibited reasonable agreement with the experimental values found in the literature across a wide range of beam energies
Stewart, L.
1979-03-01
In response to an action by the Standards Subcommittee of the Cross Section Evaluation Working Group, a workshop was convened to determine the status of available information on prompt fission neutron spectra. The experimental data were reviewed and theoretical models were developed. The current ENDF/B fission neutron spectra files were summarized. Further work is currently under way, especially to provide a better theoretical tool to represent energy-dependent fission spectra. 5 references
Total and fission cross-sections of 239Pu - statistical study of resonance parameters
Derrien, H.; Blons, J.; Eggermann, C.; Michaudon, A.; Paya, D.; Ribon, P.
1967-01-01
The authors measured the total and fission cross-sections of 239 Pu with the linear accelerator at Saclay as a pulsed source of neutrons. The total cross-section was measured in the range from 4 to 700 eV and the best resolution used was 1.5 ns/m; the fission cross-section was measured between 4 eV and 6 keV, the best resolution having been 6 ns/m. The transmission measurements on five samples were made at the temperature of liquid nitrogen, and comparisons made with supplementary experiments at ambient temperature made it possible to determine the Doppler broadening factor (Δ = η√E). The resonances were identified from 4 to 500 eV in the total cross-section; the average level spacing was of the order of 2.4 eV. It would appear that, in this energy range, nearly all the levels were identified. The resonance parameters were determined by analysis of shape in conjunction with a least-squares programme on an IBM-7094 computer. The existence of a large number of broad resonances corresponding to very large fission widths has been shown to exist. Statistical study of the fission widths actually shows the existence of two families of resonances, one corresponding to a mean Γ f of the order of 45 meV and the other to a mean Γ/f of about 750 meV. The authors were therefore able to postulate a classification of resonances in terms of two spin states, the level population ratio in each family being: (2J 1 +1)/(2J 2 +1) = 1/3; J 1 = 0 corresponds to the broad resonances and J 2 = 1 to the narrow ones. The partial widths for radiative capture fluctuate slightly around a mean value of 40 meV. By using a multilevel programme, the authors were able to investigate the extent to which the existence of large fission widths might give rise to fictitious resonances (quasi-resonances) and perturbations and also to make a statistical study of the resonance parameters. (author) [fr
Actinide Capture and Fission Cross Section Measurements Within the Mini-Inca Project
Letourneau, A.
2006-01-01
Full text of publication follows: The Mini-INCA project is devoted to precise description of the transmutation chain of Actinides within high thermal neutron fluxes. It uses the High Flux Reactor of ILL (Laue Langevin Institute) as an intense thermal neutron source to measure capture and fission cross sections. Two irradiation channels are dedicated for those measurements offering a diversity of fluxes ranging from pure thermal neutrons to 15% epithermal neutrons with intensities as high as 1*10 15 n/cm 2 /s. Standard nuclear techniques for measurements, such as α and γ-spectroscopy of irradiated samples, have been extended in order to stand all constraints due to the irradiation in high fluxes. In particular new types of fission micro-chambers have been developed to follow online the evolution of one actinide and to measure its fission cross section in reference to 235 U(n,F) standard reaction. This type of neutron detector will be used within the MEGAPIE target to on-line characterise the neutron flux and to study the potentiality of such target in terms of incineration. (author)
Measurement of fission cross-section of actinides at n_TOF for advanced nuclear reactors
Calviani, Marco; Montagnoli, G; Mastinu, P
2009-01-01
The subject of this thesis is the determination of high accuracy neutron-induced fission cross-sections of various isotopes - all of which radioactive - of interest for emerging nuclear technologies. The measurements had been performed at the CERN neutron time-of-flight facility n TOF. In particular, in this work, fission cross-sections on 233U, the main fissile isotope of the Th/U fuel cycle, and on the minor actinides 241Am, 243Am and 245Cm have been analyzed. Data on these isotopes are requested for the feasibility study of innovative nuclear systems (ADS and Generation IV reactors) currently being considered for energy production and radioactive waste transmutation. The measurements have been performed with a high performance Fast Ionization Chamber (FIC), in conjunction with an innovative data acquisition system based on Flash-ADCs. The first step in the analysis has been the reconstruction of the digitized signals, in order to extract the information required for the discrimination between fission fragm...
Fission barrier theory and its application to the calculation of actinide neutron cross-sections
Lynn, J.E.
1980-01-01
The lectures discuss the possibilities and realisations of applying nuclear fission theory to the calculation of unknown nuclear data required for applications, principally in the nuclear power field. A brief description of the fundamentals of fission theory, the nature of the potential energy surface in the deformation plane, and of the inertial tensor, is given, and the accuracy of the theoretical calculations is discussed. It is concluded that it is impracticable to obtain required quantities such as neutron cross-sections from such fundamental calculations at present. On the other hand the fundamental theory reveals a wealth of phenomenological aspects of the fission process which can be incorporated into nuclear reaction theory. It is then shown how reaction theory thus extended to take correct account of the structured (''double-humped'') fission barrier can be used to parametrise the barrier by analysis of experimental data, and subsequently to calculate new data. Descriptions of computer programmes and illustrations of the application of the methods to actual physical examples are included in this account. (author)
Measurement of fission cross section with pure Am-243 sample using lead slowing-down spectrometer
Kobayashi, Katsuhei; Yamamoto, Shuji; Kai, T.; Fujita, Yoshiaki; Yamamoto, Hideki; Kimura, Itsuro [Kyoto Univ. (Japan); Shinohara, Nobuo
1997-03-01
By making use of back-to-back type double fission chambers and a lead slowing-down spectrometer coupled to an electron linear accelerator, the fission cross section for the {sup 243}Am(n,f) reaction has been measured relative to that for the {sup 235}U(n,f) reaction in the energy range from 0.1 eV to 10 keV. The measured result was compared with the evaluated nuclear data appeared in ENDF/B-VI and JENDL-3.2, whose evaluated data were broadened by the energy resolution function of the spectrometer. General agreement was seen between the evaluated data and the measurement except that the ENDF/B-VI data were lower in the range from 15 to 60 eV and that the JENDL-3.2 data seemed to be lower above 100 eV. (author)
Fission cross section measurement of Am-242m using lead slowing-down spectrometer
Kai, Tetsuya; Kobayashi, Katsuhei; Yamamoto, Shuji; Fujita, Yoshiaki [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Kimura, Itsuro; Ohkawachi, Yasushi; Wakabayashi, Toshio
1998-03-01
By making use of double fission chamber and lead slowing-down spectrometer coupled to an electron linear accelerator, fission cross section for the {sup 242m}Am(n,f) reaction has been measured relative to that for the {sup 235}U(n,f) reaction in the energy range from 0.1 eV to 10 keV. The measured result was compared with the evaluated nuclear data appeared in ENDF/B-VI and JENDL-3.2, of which evaluated data were broadened by the energy resolution function of the spectrometer. Although the JENDL-3.2 data seem to be a little smaller than the present measurement, good agreement can be seen in the general shape and the absolute values. The ENDF/B-VI data are larger more than 50 % than the present values above 3 eV. (author)
Determination of the fast-neutron-induced fission cross-section of 242Pu at nELBE
Kögler, Toni; Beyer, Roland; Junghans, Arnd R.; Schwengner, Ronald; Wagner, Andreas
2018-03-01
The fast-neutron-induced fission cross section of 242Pu was determined in the energy range of 0.5 MeV to 10MeV at the neutron time-of-flight facility nELBE. Using a parallel-plate fission ionization chamber this quantity was measured relative to 235U(n,f). The number of target nuclei was thereby calculated by means of measuring the spontaneous fission rate of 242Pu. An MCNP 6 neutron transport simulation was used to correct the relative cross section for neutron scattering. The determined results are in good agreement with current experimental and evaluated data sets.
Determination of the fast-neutron-induced fission cross-section of 242Pu at nELBE
Kögler Toni
2018-01-01
Full Text Available The fast-neutron-induced fission cross section of 242Pu was determined in the energy range of 0.5 MeV to 10MeV at the neutron time-of-flight facility nELBE. Using a parallel-plate fission ionization chamber this quantity was measured relative to 235U(n,f. The number of target nuclei was thereby calculated by means of measuring the spontaneous fission rate of 242Pu. An MCNP 6 neutron transport simulation was used to correct the relative cross section for neutron scattering. The determined results are in good agreement with current experimental and evaluated data sets.
Isotopic production cross sections of fission residues in 197Au-on-proton collisions at 800 A MeV
Benlliure, J.; Armbruster, P.; Bernas, M.
2000-02-01
Interactions of 197 Au projectiles at 800 A MeV with protons leading to fission are investigated. We measured the production cross sections and velocities of all fission residues which are fully identified in atomic and mass number by using the in-flight separator FRS at GSI. The new data are compared with partial measurements of the characteristics of fission in similar reactions. Both the production cross sections and the recoil energies are relevant for a better understanding of spallation reactions. (orig.)
Measurements of integral cross sections in the californium-252 fission neutron spectrum
Alberts, W.G.; Guenther, E.; Matzke, M.; Rassl, G.
1977-01-01
In a low-scattering arrangement cross sections averaged over the californium-252 spontaneous fission neutron spectrum were measured. The reactions 27 Al(n,α) 46 Ti, 47 Ti, 48 Ti(n,p), 54 Fe, 56 Fe(n,p), 58 Ni(n,p), 64 Zn(n,p), 115 In(n,n') were studied in order to obtain a consistent set of threshold detectors used in fast neutron flux density measurements. Overall uncertainties between 2 and 2.5% could be achieved; corrections due to neutron scattering in source and samples are discussed
Fusion-fission probabilities, cross sections, and structure notes of superheavy nuclei
Kowal, Michał; Cap, Tomasz; Jachimowicz, Piotr; Skalski, Janusz; Siwek-Wilczyńska, Krystyna; Wilczyński, Janusz
2016-01-01
Fusion – fission probabilities in the synthesis of heaviest elements are discussed in the context of the latest experimental reports. Cross sections for superheavy nuclei are evaluated using the “Fusion by Diffusion” (FBD) model. Predictive power of this approach is shown for experimentally known Lv and Og isotopes and predictions given for Z = 119, 120. Ground state and saddle point properties as masses, shell corrections, pairing energies, and deformations necessary for cross-section estimations are calculated systematically within the multidimensional microscopic-macroscopic method based on the deformed Woods-Saxon single-particle potential. In the frame of the FBD approach predictions for production of elements heavier than Z = 118 are not too optimistic. For this reason, and because of high instability of superheavy nuclei, we comment on some structure effects, connected with the K-isomerism phenomenon which could lead to a significant increase in the stability of these systems.
Measurement of the fission cross-section ratio for 237Np/235U around 14 MeV neutron energies
Desdin, L.; Szegedy, S.; Csikai, J.
1989-01-01
Fission cross-section ratio was determined for 237 Np/ 235 U around 14 MeV neutron energies with a back-to-back ionization chamber. Neutrons were produced by a 180 KV accelerator using T(d,n) 4 He reaction. No significant energy dependence was found in the cross section ratio
Progress report on the 14-MeV fission cross section measurements
1979-01-01
The development of a recoil proton monitor was completed. It will be used to measure the neutron flux in the 14-MeV fisson cross section measurements. Extensive calculations of the efficiency of this monitor were made and compared with the calculations of other authors. It is clear that a major source of uncertainty in the efficiency is the lack of precise knowledge of the angular distribution of the n-p elastic scattering cross section. This leads to a change in efficiency of 3% depending on the form of the angular distribution that is used. A 4πβ-γ coincidence system was assembled to investigate the K-correction in determining the absolute activity of foil sources. Iron foils will be used as secondary flux standards in comparing the 14-MeV neutron flux with the fluxes in other laboratories, so this is an important correction to measure. The target and target holders that will be used in the 14-MeV measurements were designed and constructed. Preparations were completed to measure the angular distribution of the fission fragments produced in neutron-induced fission at 14 MeV. 2 figures
Measurement of the uranium-235 fission cross section over the neutron energy range 1 to 6 MeV
Barton, D.M.; Diven, B.C.; Hansen, G.E.; Jarvis, G.A.; Koontz, P.G.; Smith, R.K.
1976-01-01
The ratio of the fission cross section of 235 U to the scattering cross section of 1 H was measured in the 1- to 6-MeV range using monoenergetic neutrons from a pulsed 3 H(p,n) 3 He source. In this measurement, solid-state detectors determined fission fragment and recoil proton emissions from back-to-back U(99.7%) and polyethylene disks. Timing permitted discrimination against room-scattered neutron backgrounds. Absolute values for 235 U(n,f) are obtained using the Hopkins-Breit evaluation of the hydrogen-scattering cross section
Assessment of Fission Product Cross-Section Data for Burnup Credit Applications
Leal, Luiz C; Derrien, Herve; Dunn, Michael E; Mueller, Don
2007-01-01
Past efforts by the Department of Energy (DOE), the Electric Power Research Institute (EPRI), the Nuclear Regulatory Commission (NRC), and others have provided sufficient technical information to enable the NRC to issue regulatory guidance for implementation of pressurized-water reactor (PWR) burnup credit; however, consideration of only the reactivity change due to the major actinides is recommended in the guidance. Moreover, DOE, NRC, and EPRI have noted the need for additional scientific and technical data to justify expanding PWR burnup credit to include fission product (FP) nuclides and enable burnup credit implementation for boiling-water reactor (BWR) spent nuclear fuel (SNF). The criticality safety assessment needed for burnup credit applications will utilize computational analyses of packages containing SNF with FP nuclides. Over the years, significant efforts have been devoted to the nuclear data evaluation of major isotopes pertinent to reactor applications (i.e., uranium, plutonium, etc.); however, efforts to evaluate FP cross-section data in the resonance region have been less thorough relative to actinide data. In particular, resonance region cross-section measurements with corresponding R-matrix resonance analyses have not been performed for FP nuclides. Therefore, the objective of this work is to assess the status and performance of existing FP cross-section and cross-section uncertainty data in the resonance region for use in burnup credit analyses. Recommendations for new cross-section measurements and/or evaluations are made based on the data assessment. The assessment focuses on seven primary FP isotopes (103Rh, 133Cs, 143Nd, 149Sm, 151Sm, 152Sm, and 155Gd) that impact reactivity analyses of transportation packages and two FP isotopes (153Eu and 155Eu) that impact prediction of 155Gd concentrations. Much of the assessment work was completed in 2005, and the assessment focused on the latest FP cross-section evaluations available in the
Schriewer, J.; Hehn, G.; Mattes, M.; Pfister, G.; Keinert, J.
1978-01-01
Calculations were made for different benchmark experiments in order to test the coupled multigroup neutron and gamma library EURLIB-3 with 100 neutron groups and 20 gamma groups. In cooperation with EURATOM, Ispra, we produced this shielding library recently from ENDF/B-IV data for application in fission and fusion technology. Integral checks were performed for natural lithium, carbon, oxygen, and iron. Since iron is the most important structural material in nuclear technology, we started with calculations of iron benchmark experiments. Most of them are integral experiments of INR, Karlsruhe, but comparisons were also done with benchmark experiments from USA and Japan. For the experiments with fission sources we got satisfying results. All details of the resonances cannot be checked with flux measurements and multigroup cross sections used. But some averaged resonance behaviour of the measured and calculated fluxes can be compared and checked within the error limits given. We get greater differences in the calculations of benchmark experiments with 14 MeV neutron sources. For iron the group cross sections of EURLIB-3 produce an underestimation of the neutron flux in a broad energy region below the source energy. The conclusion is that the energy degradation by inelastic scattering is too strong. For fusion application the anisotropy of the inelastic scatter process must be taken into account, which isn't done by the processing codes at present. If this effect isn't enough, additional corrections have to be applied to the inelastic cross sections of iron in ENDF/B-IV. (author)
Evaluation of the 235U fission cross-section from 100 eV to 20 MeV
Bhat, M.R.
1976-01-01
The evaluation of the 235 U fission cross section from 100 eV to 20 MeV for ENDF/B-V is described. The evaluated average cross sections from 100 eV to 200 keV are given, and it is proposed to include structure in the cross section in this energy region. Above 200 keV, the cross section is given as a smooth curve, and is recommended as a standard. Preliminary error estimates in the cross section are also given
Perkasa, Y. S.; Waris, A.; Kurniadi, R.; Su'ud, Z.
2014-01-01
Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS have been conducted. In this work, fission cross section resulted from MCNP6 prediction will be compared with result from TALYS calculation. MCNP6 with its event generator CEM03.03 and LAQGSM03.03 have been validated and verified for several intermediate and heavy nuclides fission reaction data and also has a good agreement with experimental data for fission reaction that induced by photons, pions, and nucleons at energy from several ten of MeV to about 1 TeV. The calculation that induced within TALYS will be focused mainly to several hundred MeV for actinide and sub-actinide nuclides and will be compared with MCNP6 code and several experimental data from other evaluator
Neutron cross sections of 28 fission product nuclides adopted in JENDL-1
Kikuchi, Yasuyuki; Nakagawa, Tsuneo; Igarasi, Sin-iti; Matsunobu, Hiroyuki; Kawai, Masayoshi; Iijima, Shungo.
1981-02-01
This is the final report concerning the evaluated neutron cross sections of 28 fission product nuclides adopted in the first version of Japanese Evaluated Nuclear Data Library (JENDL-1). These 28 nuclides were selected as being most important for fast reactor calculations, and are 90 Sr, 93 Zr, 95 Mo, 97 Mo, 99 Tc, 101 Ru, 102 Ru, 103 Rh, 104 Ru, 105 Pd, 106 Ru, 107 Pd, 109 Ag, 129 I, 131 Xe, 133 Cs, 135 Cs, 137 Cs, 143 Nd, 144 Ce, 144 Nd, 145 Nd, 147 Pm, 147 Sm, 149 Sm, 151 Sm, 153 Eu and 155 Eu. The status of the experimental data was reviewed over the whole energy range. The present evaluation was performed on the basis of the measured data with the aid of theoretical calculations. The optical and statical models were used for evaluation of the smooth cross sections. An improved method was developed in treating the multilevel Breit-Wigner formula for the resonance region. Various physical parameters and the level schemes, adopted in the present work are discussed by comparing with those used in the other evaluations such as ENDF/B-IV, CEA, CNEN-2 and RCN-2. Furthermore, the evaluation method and results are described in detail for each nuclide. The evaluated total, capture and inelastic scattering cross sections are compared with the other evaluated data and some recent measured data. Some problems of the present work are pointed out and ways of their improvement are suggested. (author)
We propose to measure the neutron-induced capture cross section of the fissile isotope $^{235}$U using a fission tagging set-up. This new set-up has been tested successfully in 2010 and combines the n_TOF 4${\\pi}$ Total Absorption Calorimeter (TAC) with MicroMegas (MGAS) fission detectors. It has been proven that such a combination of detectors allows distinguishing with very good reliability the electromagnetic cascades from the capture reactions from dominant ${\\gamma}$-ray background coming from the fission reactions. The accurate discrimination of the fission background is the main challenge in the neutron capture cross section measurements of fissile isotopes. The main results from the measurement will be the associated capture cross section and ${\\alpha}$ ratio in the resolved (0.3-2250 eV) and unresolved (2.25-30 keV) resonance regions. According to the international benchmarks and as it is mentioned in the NEA High Priority Request List (HPRL), the 235U(n,${\\gamma}$) cross section is of utmost impo...
Mancusi, D; Charity, R J; Cugnon, J
2013-01-01
The de-excitation of compound nuclei has been successfully described for several decades by means of statistical models. However, accurate predictions require some fine-tuning of the model parameters. This task can be simplified by studying several entrance channels, which populate different regions of the parameter space of the compound nucleus. Fusion reactions play an important role in this strategy because they minimise the uncertainty on the entrance channel by fixing mass, charge and excitation energy of the compound nucleus. If incomplete fusion is negligible, the only uncertainty on the compound nucleus comes from the spin distribution. However, some de-excitation channels, such as fission, are quite sensitive to spin. Other entrance channels can then be used to discriminate between equivalent parameter sets. The focus of this work is on fission and intermediate-mass-fragment emission cross sections of compound nuclei with 70 70 ≲ A ≲ 240. 240. The statistical de-excitation model is GEMINI++. The choice of the observables is natural in the framework of GEMINI++, which describes fragment emission using a fissionlike formalism. Equivalent parameter sets for fusion reactions can be resolved using the spallation entrance channel. This promising strategy can lead to the identification of a minimal set of physical ingredients necessary for a unified quantitative description of nuclear de-excitation.
Ganesan, S.
1978-01-01
A set of energy dependent fission widths of 1 + spin state corresponding to the recommended fission cross sections of Sowerby et al is evaluated by adjustment in the energy region 600 ev to 25 Kev. Corresponding to these mean fission widths of 1 + spin state, the intermediate resonance parameters based on Weigmann's formulation of Struitinsky's double humped fission barrier model are then obtained. Pseudorandom resonances are generated with and without the intermediate structure in the mean fission but leading to the same value of infinite dilution fission cross section. The effect of the intermediate structure on the self shielding factors was then investigated. (author)
NEUTRON CROSS SECTION EVALUATIONS OF FISSION PRODUCTS BELOW THE FAST ENERGY REGION
OH, S.Y.; CHANG, J.; MUGHABGHAB, S.
2000-01-01
Neutron cross section evaluations of the fission-product isotopes, 95 Mo, 99 Tc, 101 Ru, 103 Rh, 105 Pd, 109 Ag, 131 Xe, 133 Cs, 141 Pr, 141 Nd, 147 Sm, 149 Sm, 150 Sm, 151 Sm, 152 Sm, 153 Eu, 155 Gd, and 157 Gd were carried out below the fast neutron energy region within the framework of the BNL-KAERI international collaboration. In the thermal energy region, the energy dependence of the various cross-sections was calculated by applying the multi-level Breit-Wigner formalism. In particular, the strong energy dependence of the coherent scattering lengths of 155 Gd and 157 Gd were determined and were compared with recent calculations of Lynn and Seeger. In the resonance region, the recommended resonance parameters, reported in the BNL compilation, were updated by considering resonance parameter information published in the literature since 1981. The s-wave and, if available, p-wave reduced neutron widths were analyzed in terms of the Porter-Thomas distribution to determine the average level spacings and the neutron strength functions. Average radiative widths were also calculated from measured values of resolved energy resonances. The average resonance parameters determined in this study were compared with those in the BNL and other compilations, as well as the ENDF/B-VI, JEF-2.2, and JENDL-3.2 data libraries. The unresolved capture cross sections of these isotopes, computed with the determined average resonance parameters, were compared with measurements, as well as the ENDF/B-VI evaluations. To achieve agreement with the measurements, in a few cases minor adjustments in the average resonance parameters were made. Because of astrophysical interest, the Maxwellian capture cross sections of these nuclides at a neutron temperature of 30 keV were computed and were compared with other compilations and evaluations
NEUTRON CROSS SECTION EVALUATIONS OF FISSION PRODUCTS BELOW THE FAST ENERGY REGION
OH,S.Y.; CHANG,J.; MUGHABGHAB,S.
2000-05-11
Neutron cross section evaluations of the fission-product isotopes, {sup 95}Mo, {sup 99}Tc, {sup 101}Ru, {sup 103}Rh, {sup 105}Pd, {sup 109}Ag, {sup 131}Xe, {sup 133}Cs, {sup 141}Pr, {sup 141}Nd, {sup 147}Sm, {sup 149}Sm, {sup 150}Sm, {sup 151}Sm, {sup 152}Sm, {sup 153}Eu, {sup 155}Gd, and {sup 157}Gd were carried out below the fast neutron energy region within the framework of the BNL-KAERI international collaboration. In the thermal energy region, the energy dependence of the various cross-sections was calculated by applying the multi-level Breit-Wigner formalism. In particular, the strong energy dependence of the coherent scattering lengths of {sup 155}Gd and {sup 157}Gd were determined and were compared with recent calculations of Lynn and Seeger. In the resonance region, the recommended resonance parameters, reported in the BNL compilation, were updated by considering resonance parameter information published in the literature since 1981. The s-wave and, if available, p-wave reduced neutron widths were analyzed in terms of the Porter-Thomas distribution to determine the average level spacings and the neutron strength functions. Average radiative widths were also calculated from measured values of resolved energy resonances. The average resonance parameters determined in this study were compared with those in the BNL and other compilations, as well as the ENDF/B-VI, JEF-2.2, and JENDL-3.2 data libraries. The unresolved capture cross sections of these isotopes, computed with the determined average resonance parameters, were compared with measurements, as well as the ENDF/B-VI evaluations. To achieve agreement with the measurements, in a few cases minor adjustments in the average resonance parameters were made. Because of astrophysical interest, the Maxwellian capture cross sections of these nuclides at a neutron temperature of 30 keV were computed and were compared with other compilations and evaluations.
Ku, L.P.; Price, W.G. Jr.
1977-08-01
The neutronic calculation for the Livermore mirror fusion/fission hybrid reactor blanket was performed using the PPPL cross section library. Significant differences were found in the tritium breeding and plutonium production in comparison to the results of the LLL calculation. The cross section sensitivity study for tritium breeding indicates that the response is sensitive to the cross section of 238 U in the neighborhood of 14 MeV and 1 MeV. The response is also sensitive to the cross sections of iron in the vicinity of 14 MeV near the first wall. Neutron transport in the resonance region is not important in this reactor model
Review of ENDF/B-VI Fission-Product Cross Section
Wright, R.Q.
1999-01-01
the uncertainty in calculated results and provide a better interpretation of criticality safety margins. Thus, the thrust of the Nuclear Data Task is to obtain high-resolution data in the intermediate energy region and provide fits to the data that utilize the modern RM formalism and covariance information for subsequent use in criticality predictability applications. As a subtask of the Nuclear Data Task, this review of the fission-product cross sections has several objectives. The first objective is a general data status review at various levels for the some 200 fission products. The second objective is a more detailed investigation of the top 20 fission products with regard to thermal- and intermediate-energy capture and scatter cross sections. The third objective is to demonstrate the revision of ENDF/B evaluations utilizing new data and evaluation techniques for 13 fission products. The fourth objective is to make recommendations for improvements, both specific and general in nature.
Average cross section measurements in U-235 fission neutron spectrum for some threshold reactions
Maidana, N.L.
1993-01-01
The average cross section in the 235 U fission spectrum has been measured by the activation technique, for the following thresholds reactions: 115 In(n,n') 115m In, 232 Th(n,f) P.F., 46 , 47 , 48 Ti(n,p) 46,47 , 48 Sc, 55 Mn(n,2 n) 54 Mn, 51 V(n,α) 48 Sc, 90 Zr(n,2 n) 89 Zr, 93 Nb(n,2 n) 92m Nb, 58 Ni(n,2 n) 57 Ni, 24 Mg(n,p) 24 Na, 56 Fe(n,p) 56 Mn, 59 Co(n,α) 56 Mn and 63 Cu(n,α) 60 Co. The activation foils were irradiated close (∼ 4 mm) to the core of the IEA-R1 research reactor in the IPEN-CNEN/SP. The reactor was operated at 2 MW yielding a fast neutron flux around 5 x 10 12 n.cm -2 . s -1 . The neutron flux density was monitored by activation reactions with well known averaged cross sections and with effective thresholds above 1 MeV. The foil activities were measured in a calibrated HPGe spectrometer. The neutron spectrum has been calculated using the SAIPS unfolding system applied to the activation data. A detailed error analysis was performed using the covariance matrix methodology. The results were compared with those from other authors. (author)
Hirose, K., E-mail: hirose.kentaro@jaea.go.jp [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Nishio, K.; Makii, H.; Nishinaka, I.; Ota, S. [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Nagayama, T. [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Graduate School of Science and Engineering, Ibaraki University, Mito 310-0056 (Japan); Tamura, N. [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Goto, S. [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Andreyev, A.N. [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Vermeulen, M.J. [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Gillespie, S.; Barton, C. [Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Kimura, A.; Harada, H. [Nuclear Science and Engineering Center, JAEA, Tokai, Ibaraki 319-1195 (Japan); Meigo, S. [J-PARC Center, JAEA, Tokai, Ibaraki 319-1195 (Japan); Chiba, S. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Ohtsuki, T. [Research Reactor Institute, Kyoto University, Kumatori-cho S' ennangun,Osaka 590-0494 (Japan)
2017-06-01
Fission and capture reactions were simultaneously measured in the neutron-induced reactions of {sup 241}Am at the spallation neutron facility of the Japan Proton Accelerator Research Complex (J-PARC). Data for the neutron energy range of E{sub n}=0.1–20 eV were taken with the TOF method. The fission events were observed by detecting prompt neutrons accompanied by fission using liquid organic scintillators. The capture reaction was measured by detecting γ rays emitted in the deexcitation of the compound nuclei using the same detectors, where the prompt fission neutrons and capture γ rays were separated by a pulse shape analysis. The cross sections were obtained by normalizing the relative yields at the first resonance to evaluations or other experimental data. The ratio of the fission to capture cross sections at each resonance is compared with those from an evaluated nuclear data library and other experimental data. Some differences were found between the present values and the library/literature values at several resonances.
Thermal-neutron fission cross section of 26.1-min /sup 235/U/sup m/
Talbert, W.L. Jr.; Starner, J.W.; Estep, R.J.; Balestrini, S.J.; Attrep, M. Jr.; Efurd, D.W.; Roensch, F.R.
1987-01-01
The thermal-neutron fission cross section of /sup 235/U/sup m/ has been measured relative to the ground-state cross section. A rapid radiochemical separation procedure was developed to provide sizeable (10/sup 10/ to 10/sup 11/ atom) samples that were reasonably free of the parent /sup 239/Pu. From a series of eight measurements, the value of 1.42 +- 0.04 was obtained for the ratio σ/sub m//σ/sub g/
Fernandez-Dominguez, B.
2003-03-01
The aim of this work is the study of the fission fragments produced in the spallation reaction 208 Pb + p at 500 AMeV. The fission fragments from Z=23 up to Z=59 have been detected and identified by using the inverse kinematics technique with the high-resolution spectrometer FRS. The production cross sections and the recoil velocities of 430 nuclei have been measured. The measured data have been compared with previous data. The isotopic distributions show a high precision. However, the absolute value of the fission cross section is higher than expected. From the experimental data the characteristics of the average fissioning system have been reconstructed (Z fis , A fis , E* fis ). In addition, the number of post-fission neutrons emitted from the fission fragments, v post , has been determined by using a new method. The experimental data have been compared to the two-steps models describing the spallation reaction. The impact of the model parameters on the observables has been analysed and the reasons Leading to the observed differences between the codes are also presented. This analyse shows a good agreement with the INCL4+ABLA code. (author)
Fission cross-section measurements on 233U and minor actinides at the CERN n-TOF facility
Calviani, M.; Cennini, P.; Chiaveri, E.; Dahlfors, M.; Ferrari, A.; Herrera-Martinez, A.; Kadi, Y.; Sarchiapone, L.; Vlachoudis, V.; Colonna, N.; Terlizzi, R.; Abbondanno, U.; Marrone, S.; Belloni, F.; Fujii, K.; Moreau, C.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.; Gunsing, F.; Pancin, J.; Perrot, L.; Plukis, A.; Alvarez, H.; Duran, I.; Paradela, C.; Alvarez-Velarde, F.; Cano-Ott, D.; Embid-Sesura, M.; Gonzalez-Romero, E.; Guerrero, C.; Martinez, T.; Vincente, M. C.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; David, S.; Ferrant, L.; Stephan, C.; Tassan-Got, L.; Badurek, G.; Jericha, E.; Leeb, H.; Oberhummer, H.; Pigni, M. T.; Baumann, P.; Kerveno, M.; Lukic, S.; Rudolf, G.; Becvar, F.; Calvino, F.; Capote, R.; Carrapico, C.; Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.; Cortes, G.; Poch, A.; Pretel, C.; Couture, A.; Cox, J.; O'Brien, S.; Wiescher, M.; Dillmann, I.; Heil, M.; Kaeppeler, F.; Mosconi, M.; Plag, R.; Walter, S.; Wisshak, K.; Domingo-Pardo, C.; Eleftheriadis, C.; Furman, W.; Goverdovski, A.; Gramegna, F.; Mastinu, P.; Praena, J.; Haas, B.; Haight, R.; Igashira, M.; Karadimos, D.; Karamanis, D.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krticka, M.; Lampoudis, C.; Lozano, M.; Marganiec, J.; Massimi, C.; Mengoni, A.; Milazzo, P. M.; Papachristodoulou, C.; Papadopoulos, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Plompen, A.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rullhusen, P.; Salgado, J.; Santos, C.; Savvidis, I.; Tagliente, G.; Tain, J. L.; Tavora, L.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vlastou, R.; Voss, F.
2010-01-01
Neutron-induced fission cross-sections of minor actinides have been measured at the white neutron source n-TOF at CERN, Geneva. The studied isotopes include 233 U, interesting for Th/U based nuclear fuel cycles, 241, 243 Am and 245 Cm, relevant for transmutation and waste reduction studies in new generation fast reactors (Gen-IV) or Accelerator Driven Systems. The measurements take advantage of the unique features of the n-TOF facility, namely the wide energy range, the high instantaneous neutron flux and the low background. Results for the involved isotopes are reported from ∼30 meV to around 1 MeV neutron energy. The measurements have been performed with a dedicated Fission Ionization Chamber (FIC), relative to the standard cross-section of the 235 U fission reaction, measured simultaneously with the same detector. Results are here reported. (authors)
Measurement of fast neutron induced fission cross sections of 232Th, 238U, 237Np and 243Am
Kanda, Kazutaka; Sato, Osamu; Yoshida, Kazuo; Imaruoka, Hiromitsu; Terayama, Hiromichi; Yoshida, Masashi; Hirakawa, Naohiro
1984-01-01
Neutron induced fission cross sections of 232 Th, 238 U, 237 Np and 243 Am relative to 235 U were measured in the energy range from 1.5 to 6.6 MeV. The present results are compared with experimental results of others and evaluated data in JENDL-2 and ENDF/B-IV. (author)
Upper Limits of the Fission Cross-Sections of Lead and Bismuth for Li-D Neutrons
Broda, E.
1945-07-01
This report was written by E. Broda and P.K. Wright at the Cavendish Laboratory (Cambridge) in April 1945 and is about the upper limits of the fission cross sections of lead and bismuth for Li-D neutrons. This report includes the experiment description and the discussion of the results. (nowak)
Perez, R.B.; Difilippo, F.C.; Saussure, G. de; Ingle, R.W.
1978-01-01
A measurement of the 238 U fission cross section between 5 eV and 3.5 MeV was performed. Included is the identification of 85 resonances or clusters of resonances below 200 keV. Also the fission widths for the 27 resolved class I levels were computed from their fission areas, and a neutron width of 0.005 MeV was estimated for the quasi-class II level in the 721 eV fission cluster. The fission level spacing and cross sections are discussed. 9 references
Behrens, J.W.
1977-01-01
Recent studies have shown straightforward systematic behavior as a function of constant proton and neutron number for neutron-induced fission cross sections of the actinide elements in the incident-neutron energy range 3 to 5 MeV. In this report, the second in a series, fission cross-section values are studied over the MeV incident-neutron energy range, and at 0.0253 eV. Fission-barrier heights and neutron-binding energies are correlated by constant proton and neutron number; however, these systematic behaviors alone do not explain the trends observed in the fission cross-section values
Diakaki M.
2016-01-01
Full Text Available The 238U fission cross section is an international standard beyond 2 MeV where the fission plateau starts. However, due to its importance in fission reactors, this cross-section should be very accurately known also in the threshold region below 2 MeV. The 238U fission cross section has been measured relative to the 235U fission cross section at CERN – n_TOF with different detection systems. These datasets have been collected and suitably combined to increase the counting statistics in the threshold region from about 300 keV up to 3 MeV. The results are compared with other experimental data, evaluated libraries, and the IAEA standards.
Palmiotti, G.
2011-01-01
The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 418 nuclides; (2) Covariance uncertainty data for 185 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He, Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions at higher energies for isotopes of F, Cl, K, Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides 235,238U and 239Pu at this point, except for delayed neutron data, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es, Fm, and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on 239Pu; and (9) A new Decay Data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide
Measurements of the neutron-induced fission cross sections of 240Pu and 242Pu relative to 235U
Behrens, J.W.; Browne, J.C.; Carlson, G.W.
1976-01-01
A continuation is given of the fission-cross-section ratio measurements in progress at the Lawrence Livermore Laboratory. Preliminary results are provided for the 240 Pu/ 235 U and 242 Pu/ 235 U ratios from 0.02 to 30 MeV and 0.1 to 30 MeV, respectively. Using the threshold-cross-section method, the ratios were normalized to the values 1.368 +- 0.030 and 1.116 +- 0.025, respectively, from 1.75 to 4.00 MeV
Lopez Jimenez, M.J. [CEA/DIF/DPTA/Service de Physique Nucleaire, B.P. 12, F-91680 Bruyeres-le-Chatel (France); Morillon, B. [CEA/DIF/DPTA/Service de Physique Nucleaire, B.P. 12, F-91680 Bruyeres-le-Chatel (France); Romain, P. [CEA/DIF/DPTA/Service de Physique Nucleaire, B.P. 12, F-91680 Bruyeres-le-Chatel (France)]. E-mail: pascal.romain@cea.fr
2005-01-15
A new neutron-induced cross-section evaluation of {sup 238}U from 1 keV up to 200 MeV has been performed using only nuclear reactions models. A new fission penetrability model taking into account a triple humped barrier has been developed. A clear improvement has been observed for K-effective validation tests (up to 30 MeV) with this new evaluation. This improvement is mainly due to a better treatment of the inelastic exit channel.
Fission cross section of 245Cm from 10-3 eV to 104 eV
White, R.M.; Browne, J.C.; Howe, R.E.; Landrum, J.H.; Becker, J.A.
1979-01-01
The neutron-induced fission cross section of 245 Cm measured from .001 eV to 10 keV using the LLL 100-MeV Linac. The resonance data are analyzed with a multilevel-multichannel R-matrix code. The statistical distribution of R-matrix parameters extracted from the analysis are investigated and comparisons are made with previous work. 4 reference
Neutron induced fission cross sections for 232Th, 235,238U, 237Np, and 239Pu
Lisowski, P.W.; Ullmann, J.L.; Balestrini, S.J.; Hill, N.W.; Carlson, A.D.; Wasson, O.A.
1989-01-01
Neutron-induced fission cross section ratios for samples of 232 Th, 235,238 U, 237 Np and 239 Pu have been measured from 1 to 400 MeV. The fission reaction rate was determined for all samples simultaneously using a fast parallel plate ionization chamber at a 20-m flight path. A well characterized annular proton recoil telescope was used to measure the neutron fluence from 3 to 30 MeV. Those data provided the shape of the 235 U(n,f) cross section relative to the hydrogen scattering cross section. That shape was then normalized to the very accurately known value for 235 U(n,f) at 14.178 MeV. From 30 to 400 MeV cross section values were determined using the neutron fluence measured with a plastic scintillator. Cross section values of 232 Th, 235,238 U, 237 Np and 239 Pu were computed from the ratio data using the authors' values for 235 U(n,f). In addition to providing new results at high neutron energies, these data highlight several areas of deficiency in the evaluated nuclear data files and provide new information for the 235 U(n,f) standard
Neutron capture and fission cross section of Americium-243 in the energy range from 5 to 250 keV
Wisshak, K.; Kaeppeler, F.
1983-04-01
The neutron capture and subthreshold fission cross section of 243 Am was measured in the energy range from 5 to 250 keV using 197 Au and 235 U as the respective standards. Neutrons were produced via the 7 Li(p,n) and the T(p,n) reaction with the Karlsruhe 3-MV pulsed Van de Graaff accelerator. Capture events were detected by two MoxonRae detectors with graphite and bismuthgraphite converters, respectively. Fission events were registered by a NE-213 liquid scintillator with pulse-shape discriminator equipment. Flight paths as short as 50-70 mm were used to obtain optimum signal-to-background ratio. After correction for the different efficiency of the individual converter materials the capture cross section could be determined with a total uncertainty of 3-6%. The respective values for the fission cross section are 8-12%. The results are compared to predictions of recent evaluations, which in some cases are severely discrepant. (orig.)
Kawano, Toshihiko [Kyushu Univ., Fukuoka (Japan); Matsunobu, Hiroyuki [Data Engineering, Inc. (Japan); Murata, Toru [AITEL Corporation, Tokyo (JP)] [and others
2000-02-01
A simultaneous evaluation code SOK (Simultaneous evaluation on KALMAN) has been developed, which is a least-squares fitting program to absolute and relative measurements. The SOK code was employed to evaluate the fission cross sections of {sup 233}U, {sup 235}U, {sup 238}U, {sup 239}Pu, {sup 240}Pu, and {sup 241}Pu for the evaluated nuclear data library JENDL-3.3. Procedures of the simultaneous evaluation and the experimental database of the fission cross sections are described. The fission cross sections obtained were compared with evaluated values given in JENDL-3.2 and ENDF/B-VI. (author)
Evaluation of fission cross sections and covariances for 233U, 235U, 238U, 239Pu, 240Pu, and 241Pu
Kawano, Toshihiko; Matsunobu, Hiroyuki; Murata, Toru
2000-02-01
A simultaneous evaluation code SOK (Simultaneous evaluation on KALMAN) has been developed, which is a least-squares fitting program to absolute and relative measurements. The SOK code was employed to evaluate the fission cross sections of 233 U, 235 U, 238 U, 239 Pu, 240 Pu, and 241 Pu for the evaluated nuclear data library JENDL-3.3. Procedures of the simultaneous evaluation and the experimental database of the fission cross sections are described. The fission cross sections obtained were compared with evaluated values given in JENDL-3.2 and ENDF/B-VI. (author)
Difilippo, F.C.; Perez, R.B.; de Saussure, G.; Olsen, D.K.; Ingle, R.W.
1977-01-01
The neutron-induced 238 U subthreshold fission cross section has been measured in the neutron energy range between 0.6 and 100 keV. A total of 28 fission clusters were identified. The well-known clusters at 721 and 1210 eV appeared resolved into their Class I components. Average 238 U subthreshold fission cross sections were determined and compared with available results in the literature. The measurement is interpreted in terms of fission doorway (Class II levels) arising from the assumption of the existence of a double-humped fission barrier for the ( 238 U + n) compound nucleus at large deformations. On the basis of this model, several fission barrier parameters were determined
238U neutron-induced fission cross section for incident neutron energies between 5 eV and 3.5 MeV
Difilippo, F.C.; Perez, R.B.; de Saussure, G.; Olsen, D.K.; Ingle, R.W.
1979-01-01
A measurement of the 238 U neutron-induced fission cross section was performed at the ORELA Linac facility in the neutron energy range between 5 eV and 3.5 MeV. The favorable signal-to-background ratio and high resolution of this experiment resulted in the identificaion of 85 subthreshold fission resonances or clusters of resonances in the neutron energy region between 5 eV and 200 keV. The fission data below 100 keV are characteristic of a weak coupling situation between Class I and Class II levels. The structure of the fission levels at the 720 eV and 1210 eV fission clusters is discussed. There is an apparent enhancement of the fission cross section at the opening of the 2 + neutron inelastic channel in 238 U at 45 keV. An enhancement of the subthreshold fission cross section between 100 keV and 200 keV is tentatively interpreted in terms of the presence of a Class II, partially damped vibrational level. There is a marked structure in the fission cross section above 200 keV up to and including the plateau between 2 and 3.5 MeV. 11 figures and 6 tables
Measurement of the fission cross-section of $^{240}$Pu and $^{242}$Pu at CERN's n_TOF Facility
Pavlik, A F; Gonzalez romero, E M
The n_TOF Collaboration proposes to continue the fission program, already started in 2002-2004, taking advantage of the newly constructed Work Sector Type A, with the measurement of the two isotopes : $^{240}$ Pu and $^{242}$ Pu. They are both of major importance for reactor physics applications and are included in the Nuclear Energy Agency (NEA) High Priority List [1], in the NEA WPEC Subgroup 26 Report on the accuracy of nuclear data for advanced reactor designe [2] and in the EU 6$^{th}$ Framework Programme IP-EUROTRANS/NUDATRA reports [3]. Based on those requests, the measurement of the fission cross-section of the two Pu isotopes is one of the objectives of the project ANDES of the FP7 EURATOM program [4].
Bringer, O.; Chabod, S.; Dupont, E.; Letourneau, A.; Panebianco, S.; Veyssiere, Ch. [CEA Saclay, Dept. d' Astrophysique de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, 91- Gif sur Yvette (France); Oriol, L. [CEA Cadarache, Dept. d' Etudes des Reacteurs, 13 - Saint Paul lez Durance (France); Chartier, F. [CEA Saclay, Dept. de Physico-Chimie, 91 - Gif sur Yvette (France); Mutti, P. [Institut Laue Langevin, 38 - Grenoble, (France); AlMahamid, I. [Wadsworth Center, New York State Dept. of Health, Albany, NY (United States)
2008-07-01
In the framework of nuclear waste transmutation studies, the Mini-INCA project has been initiated at Cea/DSM to determine optimal conditions for transmutation and incineration of Minor Actinides in high intensity neutron fluxes in the thermal region. Our experimental tool is based on alpha- and gamma-spectroscopy of irradiated samples and microscopic fission-chambers. It can provide both microscopic information on nuclear reactions (total and partial cross sections for neutron capture and/or fission reactions) and macroscopic information on transmutation and incineration potentials. The {sup 232}Th, {sup 237}Np, {sup 241}Am, and {sup 244}Cm transmutation chains have been explored in details, showing some discrepancies in comparison with evaluated data libraries but in overall good agreement with recent experimental data. (authors)
Bringer, O.; Chabod, S.; Dupont, E.; Letourneau, A.; Panebianco, S.; Veyssiere, Ch.; Oriol, L.; Chartier, F.; Mutti, P.; AlMahamid, I.
2008-01-01
In the framework of nuclear waste transmutation studies, the Mini-INCA project has been initiated at Cea/DSM to determine optimal conditions for transmutation and incineration of Minor Actinides in high intensity neutron fluxes in the thermal region. Our experimental tool is based on alpha- and gamma-spectroscopy of irradiated samples and microscopic fission-chambers. It can provide both microscopic information on nuclear reactions (total and partial cross sections for neutron capture and/or fission reactions) and macroscopic information on transmutation and incineration potentials. The 232 Th, 237 Np, 241 Am, and 244 Cm transmutation chains have been explored in details, showing some discrepancies in comparison with evaluated data libraries but in overall good agreement with recent experimental data. (authors)
Tretiakoff, O.; Vidal, R.; Carre, J.C.; Robin, M.
1964-01-01
The authors describe the technique used to measure the effective absorption and neutron-yield cross-sections of a fissionable sample. These two values are determined by analysing the signals due to the variation in reactivity (over-all signal) and the local perturbation in the flux (local signal) produced by the oscillating sample. These signals are standardized by means of a set of samples containing quantities of fissionable material ( 235 U) and an absorber, boron, which are well known. The measurements are made for different neutron spectra characterized by lattice parameters which constitute the central zone within which the sample moves. This technique is used to study the effective cross-sections of uranium-plutonium alloys for different heavy-water and graphite lattices in the MINERVE and MARIUS critical assemblies. The same experiments are carried out on fuel samples of different irradiations in order to determine the evolution of effective cross-sections as a function of the spectrum and the irradiations. (authors) [fr
Chadwick, M.B.; Herman, M.; Author(s): Chadwick,M.B.; Herman,M.; Oblozinsky,P.; Dunn,M.E.; Danon,Y.; Kahler,A.C.; Smith,D.L.; Pritychenko,B.; Arbanas,G.; Arcilla,R.; Brewer,R.; Brown,D.A.; Capote,R.; Carlson,A.D.; Cho,Y.S.; Derrien,H.; Guber,K.; Hale,G.M.; Hoblit,S.; Holloway,S.: Johnson,T.D.; Kawano,T.; Kiedrowski,B.C.; Kim,H.; Kunieda,S.; Larson,N.M.; Leal,L.; Lestone,J.P.; Little,R.C.; McCutchan,E.A.; MacFarlane,R.E.; MacInnes,M.; Mattoon,C.M.; McKnight,R.D.; Mughabghab,S.F.; Nobre,G.P.A.; Palmiotti,G.; Palumbo,A.; Pigni,M.T.; Pronyaev,V.G.; Sayer,R.O.; Sonzogni,A.A.; Summers,N.C.; Talou,P.; Thompson,I.J.; Trkov,A.; Vogt,R.L.; van der Marck,S.C.; Wallner,A.; White,M.C.; Wiarda,D.; Young,P.G.
2011-12-01
The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 423 nuclides; (2) Covariance uncertainty data for 190 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He, Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions for isotopes of Cl, K, Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides {sup 235,238}U and {sup 239}Pu at this point, except for delayed neutron data and covariances, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es, Fm, and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on {sup 239}Pu; and (9) A new decay data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0
Chadwick, M. B. [Los Alamos National Laboratory (LANL); Herman, Micheal W [Brookhaven National Laboratory (BNL); Oblozinsky, Pavel [Brookhaven National Laboratory (BNL); Dunn, Michael E [ORNL; Danon, Y. [Rensselaer Polytechnic Institute (RPI); Kahler, A. [Los Alamos National Laboratory (LANL); Smith, Donald L. [Argonne National Laboratory (ANL); Pritychenko, B [Brookhaven National Laboratory (BNL); Arbanas, Goran [ORNL; Arcilla, r [Brookhaven National Laboratory (BNL); Brewer, R [Los Alamos National Laboratory (LANL); Brown, D A [Brookhaven National Laboratory (BNL); Capote, R. [International Atomic Energy Agency (IAEA); Carlson, A. D. [National Institute of Standards and Technology (NIST); Cho, Y S [Korea Atomic Energy Research Institute; Derrien, Herve [ORNL; Guber, Klaus H [ORNL; Hale, G. M. [Los Alamos National Laboratory (LANL); Hoblit, S [Brookhaven National Laboratory (BNL); Holloway, Shannon T. [Los Alamos National Laboratory (LANL); Johnson, T D [Brookhaven National Laboratory (BNL); Kawano, T. [Los Alamos National Laboratory (LANL); Kiedrowski, B C [Los Alamos National Laboratory (LANL); Kim, H [Korea Atomic Energy Research Institute; Kunieda, S [Los Alamos National Laboratory (LANL); Larson, Nancy M [ORNL; Leal, Luiz C [ORNL; Lestone, J P [Los Alamos National Laboratory (LANL); Little, R C [Los Alamos National Laboratory (LANL); Mccutchan, E A [Brookhaven National Laboratory (BNL); Macfarlane, R E [Los Alamos National Laboratory (LANL); MacInnes, M [Los Alamos National Laboratory (LANL); Matton, C M [Lawrence Livermore National Laboratory (LLNL); Mcknight, R D [Argonne National Laboratory (ANL); Mughabghab, S F [Brookhaven National Laboratory (BNL); Nobre, G P [Brookhaven National Laboratory (BNL); Palmiotti, G [Idaho National Laboratory (INL); Palumbo, A [Brookhaven National Laboratory (BNL); Pigni, Marco T [ORNL; Pronyaev, V. G. [Institute of Physics and Power Engineering (IPPE), Obninsk, Russia; Sayer, Royce O [ORNL; Sonzogni, A A [Brookhaven National Laboratory (BNL); Summers, N C [Lawrence Livermore National Laboratory (LLNL); Talou, P [Los Alamos National Laboratory (LANL); Thompson, I J [Lawrence Livermore National Laboratory (LLNL); Trkov, A. [Jozef Stefan Institute, Slovenia; Vogt, R L [Lawrence Livermore National Laboratory (LLNL); Van der Marck, S S [Nucl Res & Consultancy Grp, Petten, Netherlands; Wallner, A [University of Vienna, Austria; White, M C [Los Alamos National Laboratory (LANL); Wiarda, Dorothea [ORNL; Young, P C [Los Alamos National Laboratory (LANL)
2011-01-01
The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 423 nuclides; (2) Covariance uncertainty data for 190 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He; Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions for isotopes of Cl; K; Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides (235,238)U and (239)Pu at this point, except for delayed neutron data and covariances, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es; Fm; and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on (239)Pu; and (9) A new decay data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide
Aydin, A.; Yalim, H.A.; Tel, E.; Sarer, B.; Unal, R.; Sarpuen, I.H.; Kaplan, A.; Dag, M.
2009-01-01
This study aims to show the dependence on the choice of the ratio of the level density parameters a f and a n corresponding to the saddle point of fission and equilibrium deformation of nucleus, respectively, of the proton induced fission cross sections of some subactinide targets. The method was employed using different level density parameter ratios for each fission cross section calculation in ALICE/ASH computer code. The ALICE/ASH code calculations were compared both with the available experimental data and with the Prokofiev systematics data. It is found that the fission cross sections dependent heavily on the choice of level density parameter ratio in the fission and neutron emission channels, a f /a n , for some subactinide nuclei. To get a good description of the measured fission cross sections for subactinide nuclei, we used a ratio of the level density parameters in the fission and neutron emission channels, a f /a n , depending both on the target-nucleus and on the energy of the projectile, in agreement with results published in literature.
Asres, Yihunie Hibstie; Mathuthu, Manny; Birhane, Marelgn Derso
2018-04-22
This study provides current evidence about cross-section production processes in the theoretical and experimental results of neutron induced reaction of uranium isotope on projectile energy range of 1-100 MeV in order to improve the reliability of nuclear stimulation. In such fission reactions of 235 U within nuclear reactors, much amount of energy would be released as a product that able to satisfy the needs of energy to the world wide without polluting processes as compared to other sources. The main objective of this work is to transform a related knowledge in the neutron-induced fission reactions on 235 U through describing, analyzing and interpreting the theoretical results of the cross sections obtained from computer code COMPLET by comparing with the experimental data obtained from EXFOR. The cross section value of 235 U(n,2n) 234 U, 235 U(n,3n) 233 U, 235 U(n,γ) 236 U, 235 U(n,f) are obtained using computer code COMPLET and the corresponding experimental values were browsed by EXFOR, IAEA. The theoretical results are compared with the experimental data taken from EXFOR Data Bank. Computer code COMPLET has been used for the analysis with the same set of input parameters and the graphs were plotted by the help of spreadsheet & Origin-8 software. The quantification of uncertainties stemming from both experimental data and computer code calculation plays a significant role in the final evaluated results. The calculated results for total cross sections were compared with the experimental data taken from EXFOR in the literature, and good agreement was found between the experimental and theoretical data. This comparison of the calculated data was analyzed and interpreted with tabulation and graphical descriptions, and the results were briefly discussed within the text of this research work. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Behrens, J.W.; Magana, J.W.; Browne, J.C.
1977-01-01
The 237 Np/ 235 U fission cross section ratio has been measured from 0.02 to 30 MeV. Using the threshold method, a value of 1.294 +- 0.019 is obtained for the average cross section ratio in the interval from 1.75 to 4.00 MeV
Study of U235 neutron fission spectrum by the knowledge of cross sections average over that spectrum
Suarez, P.M.
1997-01-01
A literature search of cross sections averaged over the fission neutron spectrum confirms inconsistencies between calculated and experimental values for high threshold reactions. Since, in this case, calculated averaged cross sections are systematically lower than measured values, it is concluded that the representations used to carry out these calculations underestimate the number of neutrons in the high energy region of the spectrum. A careful measurement of the averaged cross section for the 45 Sc(n,2n) 44g Sc and 45 Sc(n,2n) 44m Sc high threshold reactions had been performed in the RA-6 Neutron Activation Analysis Laboratory after carefully checking that the neutron flux at the core position where the samples were being irradiated was indeed an undisturbed fission spectrum. The experimental values are greater than those calculated with either, Watt type representations or the one based on the Madland and Nix model for the prompt fission spectrum. In many areas of nuclear engineering, like validation of nuclear data, reactor calculations, applied nuclear physics, shielding design, etc., it is of great practical importance to have a representation for the neutron flux that can be expressed in a closed analytical form and that agrees with experimental results, specially for the most widely fissile nuclide, 235 U. The results of the calculations mentioned above lead us to propose an analytical form for the 235 U fission neutron spectrum that better agrees with experimental results in the whole energy spectrum. We propose two different forms; both are a modification of the Watt-type form that has been adopted within the ENDF/B-V files. One of the new analytical representations is defined in two regions: below 9.5 MeV it is exactly the same formula as that used within the ENDF/B-V files, above this energy the parameters of this formula are changed. The other proposed analytical representation is expressed by a single formula in the whole energy range. These two new
Fission cross sections of {sup 235,238}U and {sup 209}Bi at incident proton energies above 70 MeV
Obukhov, A I; Rimskij-Korsakov, A A; Eismont, V P [V.G. Khlopin Radium Inst., St. Petersburg (Russian Federation)
1997-06-01
The proton fission cross-section data of {sup 235,238}U and Bi were measured in the V.G. Khlopin Radium Institute over a wide proton energy range. The experimental and calculated data were also compared with experimental neutron values. The proton cross-section of {sup 235,238}U increased up to 60-70 MeV and then decreased. The bismuth proton fission cross-section increased in line with the rise in proton energy up to 1 GeV. (author). 21 refs, 6 figs.
Behzens, T.W.; Ables, E.; Browne, T.C.
1982-01-01
The authors have measured the fission cross-section ratio 232 Th: 235 U as a function of neutron energy from 0.7 to 30 MeV using ionization fission chambers, the threshold cross-section method, and the time-of-flight technique at the Lawrence Livermore National Laboratory 100-MeV electron linear accelerator. The measured cross-section ratio, averaged over the neutron energy interval from 1.75 to 4.00 MeV, was 0.1086 + 0.0024
Reaction and fission cross-sections of 750AMeV 238U ions on Pb, Cu and AI-targets
Hesse, M.; Aumann, T.; Czajkowski, S.; Dessagne, P.; Hanelt, E.; Kozhuharov, C.; Miehe, C.; Pfuetzner, M.; Roehl, C.; Schwab, W.; Stephan, C.; Tassan-Got, L.
1995-09-01
Charge-loss and fission cross-sections of 238 U at 750 A.MeV were measured on Al, Cu and Pb targets. The charge-loss rate was obtained by the attenuation method. Fission was selected by detecting the pair of highly ionizing fragments. Since the neutron-loss cross sections were measured in a parallel experiment for the same projectiles, all cross sections contributing to 238 U collisions on nuclei are available now as function of the target mass number and can be compared with current models. (orig.)
Fission cross section ratios for sup 233,234,236 U relative to sup 235 U from 0. 5 to 400 MeV
Lisowski, P.W.; Gavron, A.; Parker, W.E.; Balestrini, S.J. (Los Alamos National Lab., NM (USA)); Carlson, A.D.; Wasson, O.A. (National Inst. of Standards and Technology, Gaithersburg, MD (USA)); Hill, N.W. (Oak Ridge National Lab., TN (USA))
1991-01-01
Neutron-induced fission cross section ratios from 0.5 to 400 MeV for samples of {sup 233, 234, 236}U relative to {sup 235}U have been measured at the WNR neutron Source at Los Alamos. The fission reaction rate was determined using a fast parallel plate ionization chamber at a 20-m flight path. Cross sections over most the energy range were also extracted using the neutron fluence determined with three different proton telescope arrangements. Those data provided the shape of the {sup 235}U(n,f) cross section relative to the hydrogen scattering cross section. That shape was then normalized to the very accurately known value for {sup 235}U(n,f) at 14.1 MeV to allow us to obtain cross section section values from the ratio data and our values for {sup 235}U(n,f). 6 refs., 1 fig.
Fission cross section ratios for 233,234,236U relative to 235U from 0.5 to 400 MeV
Lisowski, P.W.; Gavron, A.; Parker, W.E.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.
1991-01-01
Neutron-induced fission cross section ratios from 0.5 to 400 MeV for samples of 233, 234, 236 U relative to 235 U have been measured at the WNR neutron Source at Los Alamos. The fission reaction rate was determined using a fast parallel plate ionization chamber at a 20-m flight path. Cross sections over most the energy range were also extracted using the neutron fluence determined with three different proton telescope arrangements. Those data provided the shape of the 235 U(n,f) cross section relative to the hydrogen scattering cross section. That shape was then normalized to the very accurately known value for 235 U(n,f) at 14.1 MeV to allow us to obtain cross section section values from the ratio data and our values for 235 U(n,f). 6 refs., 1 fig
Setup for fission and evaporation cross-section measurements in reactions induced by secondary beams
Hassan, A.A.; Luk'yanov, S.M.; Kalpakchieva, R.; Skobelev, N.K.; Penionzhkevich, Yu.Eh.; Dlouhy, Z.; Radnev, S.; Poroshin, N.V.
2002-01-01
A setup for studying reactions induced by secondary radioactive beams has been constructed. It allows simultaneous measurement of α-particle and fission fragment energy spectra. By measuring the α-particles, identification of evaporation residues is achieved. A set of three targets can be used so as to ensure sufficient statistics. Two silicon detectors, located at 90 degrees to the secondary beam direction, face each target, thus covering 30% of the solid angle. This experimental setup is to be used to obtain excitation functions of fusion-fission reactions and of reactions leading to evaporation residue production
Fission cross section ratios for 233,234,236U relative to 235U from 0.5 to 400 MeV
Lisowski, P.W.; Gavron, A.; Parker, W.E.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.
1992-01-01
Neutron-induced fission cross section ratios from 0.5 to 400 MeV for samples of 233,234,236 U relative to 235 U have been measured at the WNR neutron Source at Los Alamos. The fission reaction rate was determined using a fast parallel plate ionization chamber at a 20-m flight path. Cross sections over most of the energy range were also extracted using the neutron fluence determined with three different proton telescope arrangements. Those data provided the shape of the 235 U(n, f) cross section relative to the hydrogen scattering cross section. That shape was then normalized to the very accurately known value for 235 U(n, f) at 14.1 MeV which will allow us to obtain cross section values from the ratio data and our values for 235 U(n, f). (orig.)
Meadows, J.W.
1978-12-01
Measurement of the ratio of the fission cross sections of /sup 239/Pu and /sup 242/Pu to that of /sup 235/U is reported. The sources of neutrons were the /sup 7/Li(p,n)/sup 7/Be and D(d,n)/sup 3/He reactions. The ratio of the masses of the samples was determined by low geometry alpha counting and from relative thermal fission rates. The results are compared with other measurements. 19 references.
Fission Cross-section Measurements of (233)U, (245)Cm and (241,243)Am at CERN n_TOF Facility
Calviani, M; Andriamonje, S; Chiaveri, E; Vlachoudis, V; Colonna, N; Meaze, M H; Marrone, S; Tagliente, G; Terlizzi, R; Belloni, F; Abbondanno, U; Fujii, K; Milazzo, P M; Moreau, C; Aerts, G; Berthoumieux, E; Dridi, W; Gunsing, F; Pancin, J; Perrot, L; Plukis, A; Alvarez, H; Duran, I; Paradela, C; Alvarez-Velarde, F; Cano-Ott, D; Gonzalez-Romero, E; Guerrero, C; Martinez, T; Villamarin, D; Vicente, M C; Andrzejewski, J; Marganiec, J; Assimakopoulos, P; Karadimos, D; Karamanis, D; Papachristodoulou, C; Patronis, N; Audouin, L; David, S; Ferrant, L; Isaev, S; Stephan, C; Tassan-Got, L; Badurek, G; Jericha, E; Leeb, H; Oberhummer, H; Pigni, M T; Baumann, P; Kerveno, M; Lukic, S; Rudolf, G; Becvar, F; Krticka, M; Calvino, F; Capote, R; Carrillo De Albornoz, A; Marques, L; Salgado, J; Tavora, L; Vaz, P; Cennini, P; Dahlfors, M; Ferrari, A; Gramegna, F; Herrera-Martinez, A; Kadi, Y; Mastinu, P; Praena, J; Sarchiapone, L; Wendler, H; Chepel, V; Ferreira-Marques, R; Goncalves, I; Lindote, A; Lopes, I; Neves, F; Cortes, G; Poch, A; Pretel, C; Couture, A; Cox, J; O'brien, S; Wiescher, M; Dillman, I; Heil, M; Kappeler, F; Mosconi, M; Plag, R; Voss, F; Walter, S; Wisshak, K; Dolfini, R; Rubbia, C; Domingo-Pardo, C; Tain, J L; Eleftheriadis, C; Savvidis, I; Frais-Koelbl, H; Griesmayer, E; Furman, W; Konovalov, V; Goverdovski, A; Ketlerov, V; Haas, B; Haight, R; Reifarth, R; Igashira, M; Koehler, P; Kossionides, E; Lampoudis, C; Lozano, M; Quesada, J; Massimi, C; Vannini, G; Mengoni, A; Oshima, M; Papadopoulos, C; Vlastou, R; Pavlik, A; Pavlopoulos, P; Plompen, A; Rullhusen, P; Rauscher, T; Rosetti, M; Ventura, A
2011-01-01
Neutron-induced fission cross-sections of minor actinides have been measured using the n_TOF white neutron source at CERN, Geneva, as part of a large experimental program aiming at collecting new data relevant for nuclear astrophysics and for the design of advanced reactor systems. The measurements at n_TOF take advantage of the innovative features of the n_TOF facility, namely the wide energy range, high instantaneous neutron flux and good energy resolution. Final results on the fission cross-section of 233U, 245Cm and 243Am from thermal to 20 MeV are here reported, together with preliminary results for 241Am. The measurement have been performed with a dedicated Fast Ionization Chamber (FIC), a fission fragment detector with a very high efficiency, relative to the very well known cross-section of 235U, measured simultaneously with the same detector.
Measurements of Fission Cross Sections for the Isotopes relevant to the Thorium Fuel Cycle
2002-01-01
The present concern about a sustainable energy supply is characterised by a considerable uncertainty: the green house effect and foreseeable limits in fossil fuel resources on the one hand, the concern about the environmental impact of nuclear fission energy and the long term fusion research on the other hand, have led to the consideration of a variety of advanced strategies for the nuclear fuel cycle and related nuclear energy systems. The present research directories concern such strategies as the extension of the life span of presently operating reactors, the increase of the fuel burn-up, the plutonium recycling, and in particular the incineration of actinides and long-Lived fission products, the accelerator driven systems (ADS), like the "Energy Amplifier" (EA) concept of C. Rubbia, and the possible use of the Thorium fuel cycle. The detailed feasibility study and safety assessment of these strategies requires the accurate knowledge of neutron nuclear reaction data. Both, higher fuel burn-up and especiall...
Fast-neutron capture cross sections for the most important fission-product nuclei
Gruppelaar, H.
1982-01-01
The main activity of the fission-product (FP) Working Group was the discussion of the current status of neutron capture knowledge of the most important FP nuclides, including the formulation of recommendations toward improved understanding. The results of the discussion are summarized. General conclusions and recommendations are given. The status of integral data is summarized by R. Anderl; and nuclear models and calculations are reviewed by D. Gardner and G. Reffo
Neutron capture cross-section of fission products in the European activation file EAF-3
Kopecky, J.; Delfini, M.G.; Kamp, H.A.J. van der; Gruppelaar, H.; Nierop, D.
1992-05-01
This paper contains a description of the work performed to extend and revise the neutron capture data in the European Activation File (EAF-3) with emphasis on nuclides in the fission-product mass range. The starter was the EAF-1 data file from 1989. The present version, EAF/NG-3, contains (n,γ) excitation functions for all nuclides (729 targets) with half-lives exceeding 1/2 day in the mass range from H-1 to Cm-248. The data file is equipped with a preliminary uncertainty file, that will be improved in the near future. (author). 19 refs.; 5 figs.; 3 tabs
Fraysse, G; Prosdocimi, A; Netter, F; Samour, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1965-07-01
Improved techniques of fast detection have been applied for determining the fission cross-sections of {sup 235}U and {sup 239}Pu with reference to the absorption cross-section of Boron. Monochromatic neutron beams of 0.0322 eV, 0.0626 eV and 0.275 eV have been employed. Use has been made of a Xe-filled gaseous scintillator and of a low-geometry solid state ion chamber. Both measured alpha and fission rates. The results at the reference energy of 0.0253 eV are: ({sigma}{sub F}){sub 0} {sup 235}U = 588 {+-} 10 barns ({sigma}{sub F}){sub 0} {sup 239}Pu = 738 {+-} 7 barns. (authors) [French] Des techniques avancees de comptage rapide ont ete mise en oeuvre pour determiner la section efficace de fission de {sup 235}U et de {sup 239}Pu par rapport a celle d'absorption du bore. Des faisceaux de neutrons monochromatiques de 0,0322 eV, 0,0626 eV et 0,275 eV ont ete employes. Les detecteurs utilises sont un scintillateur gazeux rempli de xenon et une chambre d'ionisation a etat solide a basse geometrie. Les deux ont mesure les taux des desintegrations alpha et des fissions. Les resultats a l'energie de reference de 0,0253 eV sont: ({sigma}{sub F}){sub 0} {sup 235}U = 588 {+-} 10 barns ({sigma}{sub F}){sub 0} {sup 239}Pu = 738 {+-} 7 barns. (auteurs)
Average cross-sections for /n, p/ reactions on calcium in a fission-type reactor spectrum
Bruggeman, A.; Maenhaut, W.; Hoste, J.
1974-01-01
The average cross-section in a fission-type reactor spectrum sigmasub(F) was experimentally determined for the reactions 42 Ca/n,p/ 42 K, 43 Ca/n,p/ 43 K and 44 Ca/n,p/ 44 K. Calcium carbonate samples and fast neutron flux monitors were irradiated with and without cadmium shielding in the Thetis reactor (Institute for Nuclear Sciences, Rijksuniversiteit Gent). The potassium activities induced in the calcium carbonate samples were separated and purified by tetraphenylborate precipitation, after which they were measured with a Ge/Li/-detector of calibrated detection efficiency. On the basis of sigmasub(F)=0.64 mb for the reaction 27 Al/n,α/ 24 Na, the average cross-sections were as follows: 42 Ca/n,p/ 42 K: 2.82+-0.07 mb; 43 Ca/n,p/ 43 K: 1.89+-0.05 mb; 44 Ca/n,p/ 44 K: 0.065+-0.003 mb. (T.G.)
Neutron induced fission cross section ratios for 232Th, 235,238U, 237Np and 239Pu from 1 to 400 MeV
Lisowski, P.W.; Ullmann, J.L.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.
1988-01-01
Time-of-flight measurements of neutron induced fission cross section ratios for 232 Th, 235,238 U, 237 Np, and 239 Pu, were performed using the WNR high intensity spallation neutron source located at Los Alamos National Laboratory. A multiple-plate gas ionization chamber located at a 20-m flight path was used to simultaneously measure the fission rate for all samples over the energy range from 1 to 400 MeV. Because the measurements were made with nearly identical neutron fluxes, we were able to cancel many systematic uncertainties present in previous measurements. This allows us to resolve discrepancies among different data sets. In addition, these are the first neutron-induced fission cross section values for most of the nuclei at energies above 30 MeV. (author)
Lisowski, P.W.; Ullmann, J.L.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.
1988-01-01
Time-of-flight measurements of neutron induced fission cross section ratios for 232 Th, /sup 235,238/U, 237 Np, and 239 Pu, were performed using the WNR high intensity spallation neutron source located at Los Alamos National Laboratory. A multiple-plate gas ionization chamber located at a 20-m flight path was used to simultaneously measure the fission rate for all samples over the energy range from 1 to 400 MeV. Because the measurements were made with nearly identical neutron fluxes, we were able to cancel many systematic uncertainties present in previous measurements. This allows us to resolve discrepancies among different data sets. In addition, these are the first neutron-induced fission cross section values for most of the nuclei at energies above 30 MeV. 8 refs., 3 figs
Wang Dahai.
1990-10-01
The main objectives of this IAEA Co-ordinated Research Programme are to improve the data on 14 MeV neutron-induced double-differential neutron emission cross sections for materials needed for fission and fusion reactor technology. This report summarizes the conclusions and recommendations which were agreed by all participants during the Second Research Co-ordination Meeting
[Absolute fission cross sections in the 14 MeV energy region]. Progress report, July 1982-June 1983
1983-01-01
Progress is reported on the following studies: thermal neutron absorption cross section of sulfur and the 252 Cf nu bar dilemma, the sigma (H)/sigma (Mn) cross section ratio, the sigma (H)/sigma (B) cross section ratio, 14 MeV neutron cross section measurements, beryllium-based pulsed neutron detector, and testing charged particle transport and Monte Carlo codes
Wang He
2017-01-01
Full Text Available Spallation reactions for the long-lived fission products 137Cs, 90Sr and 107Pd have been studied for the purpose of nuclear waste transmutation. The cross sections on the proton- and deuteron-induced spallation were obtained in inverse kinematics at the RIKEN Radioactive Isotope Beam Factory. Both the target and energy dependences of cross sections have been investigated systematically. and the cross-section differences between the proton and deuteron are found to be larger for lighter fragments. The experimental data are compared with the SPACS semi-empirical parameterization and the PHITS calculations including both the intra-nuclear cascade and evaporation processes.
Fort, E.; Salvatores, M.; Derrien, H.; Lagrange, Ch.; Kawai, M.; Nakajima, J.; Takano, H.; Weston, L.W.; Young, P.G.; Wagemans, C.
1994-01-01
A Working Party on International Evaluation Co-operation was established under the sponsorship of the OECD/NEA Nuclear Science Committee (NSC) to promote the exchange of information on nuclear data evaluations, validation, and related topics. Its aim is also to provide a framework for co-operative activities between members of the major nuclear data evaluation projects. This includes the possible exchange of scientists in order to encourage co-operation. Requirements for experimental data resulting from this activity are compiled. The Working Party determines common criteria for evaluated nuclear data files with a view to assessing and improving the quality and completeness of evaluated data. The Parties to the project are: ENDF (United States), JEFF/EFF (NEA Data Bank Member countries), and JENDL (Japan). Co-operation with evaluation projects of non-OECD countries are organised through the Nuclear Data Section of the International Atomic Energy Agency (IAEA). The following report was issued by a Subgroup investigating the fission cross-section of Plutonium-239 in the energy range 1 to 100 keV. This cross section is of particular importance for fast reactor applications, such as k eff , sodium void reactivity coefficient and control rod worth. An analysis of recent experimental data by L. Weston et al. give significantly lower cross-section values that the simultaneous evaluation performed by W. Poenitz for the ENDF/B-VI library. The objective of the subgroup was to resolve this discrepancy. One experimental program and one evaluation one have been agreed upon: The experimental program which essentially aims at normalisation checking has been performed in Geel and Oak Ridge. It supports an upward re-normalisation by ∼3.1%. The evaluation program has not been completed and even, as a consequence of the experimental results, loses a part of its justification. But some acquired results are important and can be used for future 239 Pu evaluations. The JEFF-2
Kotov, A.A.; Gavrikov, Yu.A.; Vaishnene, L.A.; Vovchenko, V.G.; Poliakov, V.V.; Fedorov, O.Ya.; Chestnov, Yu.A.; Shchetkovskiy, A.I [Petersburg Nuclear Physics Institute, Gatchina, Leningrad district, Orlova roscha 1, 188300 (Russian Federation); Fukahori, T. [Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki 319-1195 (Japan)
2005-07-01
The results of the total fission cross sections measurements for {sup nat}Pb, {sup 209}Bi, {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu nuclei at the energy proton range 200-1000 MeV are presented. Experiments were carried out at 1 GeV synchrocyclotron of Petersburg Nuclear Physics Institute (Gatchina). The measurement method is based on the registration in coincidence of both complementary fission fragments by two gas parallel plate avalanche counters, located at a short distance and opposite sides of investigated target. The insensitivity of parallel plate avalanche counters to neutron and light charged particles allowed us to place the counters together with target immediately in the proton beam providing a large solid angle acceptance for fission fragment registration and reliable identification of fission events. The proton flux on the target to be studied was determined by direct counting of protons by scintillation telescope. The measured energy dependence of the total fission cross sections is presented. Obtained results are compared with other experimental data as well as with calculation in the frame of the cascade evaporation model. (authors)
Koegler, Toni Joerg
2016-04-26
Neutron induced fission cross sections of actinides like the Pu-isotopes are of relevance for the development of nuclear transmutation technologies. For {sup 242}Pu, current uncertainties are of around 21%. Sensitivity studies show that the total uncertainty has to be reduced to below 5% to allow for reliable neutron physics simulations. This challenging task was performed at the neutron time-of-flight facility of the new German National Center for High Power Radiation Sources at HZDR, Dresden. Within the TRAKULA project, thin, large and homogeneous deposits of {sup 235}U and {sup 242}Pu have been produced successfully. Using two consecutively placed fission chambers allowed the determination of the neutron induced fission cross section of {sup 242}Pu relative to {sup 235}U. The areal density of the Plutonium targets was calculated using the measured spontaneous fission rate. Experimental results of the fast neutron induced fission of {sup 242}Pu acquired at nELBE will be presented and compared to recent experiments and evaluated data. Corrections addressing the neutron scattering are discussed by using results of different neutron transport simulations (Geant 4, MCNP 6 and FLUKA).
Gruppelaar, H.; Kloosterman, J.L.; Pijlgroms, B.J.; Rimpault, G.; Smith, P.; Ignatyuk, A.; Koshcheev, V.; Nikolaev, M.; Thsiboulia, A.; Kawai, M.; Nakagawa, T.; Watanabe, T.; Zukeran, A.; Nakajima, Y.; Matsunobu, H.
1998-08-01
Within the framework of the SWG17 benchmark organized by a Working Party of the Nuclear Science Committee of the Nuclear Energy Agency (NEA), a comparison of lumped or pseudo fission product cross sections for fast reactors has been made. Four institutions participated with data libraries based on the JEF2.2, EAF-4.2, BROND-2, FONDL-2.1, ADL-3 and JENDL-3.2 evaluated nuclear data files. Several parameters have been compared with each other: the one-group cross sections and reactivity worths of the lumped nuclide for several partial absorption and scattering cross sections, and the one-group cross sections of the individual fission products. Also graphs of the multi-group cross sections of the lumped nuclide have been compared, as well as graphs of capture cross sections for 27 nuclides. From two contributions based on JEF2.2, it can be concluded that the data processing influences the capture cross section by about 1% and the inelastic scattering cross section by 2%. The differences between the lumped cross sections of the different data libraries are surprisingly small: maximum 6% for capture and 9% for the inelastic scattering. Similar results are obtained for the reactivity effects. Since the reactivity worth of the lumped nuclide is dominated by the capture reaction, the maximum spread in the total reactivity worth is still only 5.3%. There is a systematic difference between total, elastic and capture cross sections of JENDL-3.2 and JEF2.2 of the same order of magnitude. Possible reasons for this discrepancy have been indicated. The one-group capture and inelastic scattering cross sections of most of the important individual fission products differ by less than 10% (root mean square values). Larger differences are observed for unstable nuclides where there is a lack of experimental data. For the (n,2n) group cross sections, which are rather sensitive to the weighting spectrum in the fast energy range, these differences are several tens of percents. The final
Santos, A. dos.
1990-01-01
The new methodology developed in this work has the following purposes: a) to implement a burnup capability into the HAMMER-TECHNION/9/computer code by using the CINDER-2/10/computer code to perform the transmutation analysis for the actinides and fission products; b) to implement a reduced version of the CINDER-2 fission product chain structure to treat explicity nearly 99% of all original CINDER-2 fission product absorption in a typical PWR unit cell; c) to treat the effect of the fission product neutron absorption in an unit cell in a multigroup basis; d) to develop a tentative validation procedure for the ENOF/C-V stable and long-lived fission product nuclear data based on the available experimental data/11-14/. The analysis will be performed by using the reduce chain in the coupled system CINDER-2 to generate the time dependent effective four group cross sections for actinides and fission products and CINDER-2 to perform the complete transmutation analysis with its built-in chain structure. (author)
Wang, H., E-mail: wanghe@ribf.riken.jp [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Otsu, H.; Sakurai, H.; Ahn, D.S. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aikawa, M. [Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Doornenbal, P.; Fukuda, N.; Isobe, T. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kawakami, S. [Department of Applied Physics, University of Miyazaki, Miyazaki 889-2192 (Japan); Koyama, S. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Kubo, T.; Kubono, S.; Lorusso, G. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Maeda, Y. [Department of Applied Physics, University of Miyazaki, Miyazaki 889-2192 (Japan); Makinaga, A. [Graduate School of Medicine, Hokkaido University, North-14, West-5, Kita-ku, Sapporo 060-8648 (Japan); Momiyama, S. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Nakano, K. [Department of Advanced Energy Engineering Science, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Niikura, M. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Shiga, Y. [Department of Physics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501 (Japan); RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Söderström, P.-A. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); and others
2016-03-10
We have studied spallation reactions for the fission products {sup 137}Cs and {sup 90}Sr for the purpose of nuclear waste transmutation. The spallation cross sections on the proton and deuteron were obtained in inverse kinematics for the first time using secondary beams of {sup 137}Cs and {sup 90}Sr at 185 MeV/nucleon at the RIKEN Radioactive Isotope Beam Factory. The target dependence has been investigated systematically, and the cross-section differences between the proton and deuteron are found to be larger for lighter spallation products. The experimental data are compared with the PHITS calculation, which includes cascade and evaporation processes. Our results suggest that both proton- and deuteron-induced spallation reactions are promising mechanisms for the transmutation of radioactive fission products.
Meadows, J.W.
1987-03-01
The error information from the recent measurements of the fission cross section ratios of nine isotopes, /sup 230/Th, /sup 232/Th, /sup 233/U, /sup 234/U, /sup 236/U, /sup 238/U, /sup 237/Np, /sup 239/Pu, and /sup 242/Pu, relative to /sup 235/U at 14.74 MeV neutron energy was used to calculate their correlations. The remaining 36 non-trivial and non-reciprocal cross section ratios and their errors were determined and compared to evaluated (ENDF/B-V) values. There are serious differences but it was concluded that the reduction of three of the evaluated cross sections would remove most of them. The cross sections to be reduced are /sup 230/Th - 13%, /sup 237/Np - 9.6% and /sup 239/Pu - 7.6%. 5 refs., 6 tabs.
Arribere, M.A.; Kestelman, A.J.; Korochinsky, S.; Blostein, J.J.
2003-01-01
For three high threshold reactions, we have measured the cross sections averaged over a 235 U fission neutron spectrum. The measured reactions, and corresponding averaged cross sections found, are: 127 I(n,2n) 126 I, (1.36±0.12) mb; 90 Zr(n,2n) 89m Zr, (13.86±0.83) μb; and 58 Ni(n,d+np+pn) 57 Co, (274±15) μb; all referred to the well known standard of (111±3) mb for the 58 Ni(n,p) 58m+g Co averaged cross section. The measured cross sections are of interest in nuclear engineering for the characterization of the fast neutron component in the energy distribution of reactor neutrons. (author)
Meadows, J.W.
1987-03-01
The error information from the recent measurements of the fission cross section ratios of nine isotopes, 230 Th, 232 Th, 233 U, 234 U, 236 U, 238 U, 237 Np, 239 Pu, and 242 Pu, relative to 235 U at 14.74 MeV neutron energy was used to calculate their correlations. The remaining 36 non-trivial and non-reciprocal cross section ratios and their errors were determined and compared to evaluated (ENDF/B-V) values. There are serious differences but it was concluded that the reduction of three of the evaluated cross sections would remove most of them. The cross sections to be reduced are 230 Th - 13%, 237 Np - 9.6% and 239 Pu - 7.6%. 5 refs., 6 tabs
Smith, D.L.
1976-12-01
Some remarks are submitted concerning the measurement of differential cross sections for threshold reactions which are used in fast-neutron dosimetry for fission reactors. The objective is to familiarize the reader with some of the problems associated with these measurements and, in the process, to explain why the existence of large discrepancies in the data sets for many of these reactions is not surprising. Limits to the accuracy which can be expected for these cross sections in the near future--using current technology and available resources--are examined in a general way and recommendations for improving the accuracy of the differential data base for dosimetry reactions are presented
Pereira, J; Wlazlo, W; Benlliure, J; Casarejos, E; Armbruster, P; Bernas, M; Enqvist, T; Legrain, R; Leray, S; Rejmund, F; Mustapha, B; Schmidt, K.-H; Stéphan, C; Taïeb, J; Tassan-Got, L; Volant, C; Boudard, A; Czajkowski, S; 10.1103/PhysRevC.75.014602
2007-01-01
Fission fragments of 1A GeV 238U nuclei interacting with a deuterium target have been investigatedwith the Fragment Separator (FRS) at GSI (Darmstadt) by measuring their isotopicproduction cross-sections and recoil velocities. The results, along with those obtained recently forspallation-evaporation fragments, provide a comprehensive analysis of the spallation nuclear productionsin the reaction 238U(1A GeV)+d. Details about experiment performance, data reductionand results will be presented.
Barabanov, A.L.
1985-01-01
Experimental data on dependence of fission cross section Σsub(f) (epsilon) and angular anisotropy W(epsilon, 0 deg)/W(epsilon, 90 deg) of sup(235)U fission fragment escape by neutrons with energy epsilon=100 and 200 keV on orientation of target nuclei are analyzed. 235 U (Isup(πsub(0))=7/2sup(-)) nuclei were orientated at the expense of interaction of quadrupole nucleus momenta with nonuniform electric field of uranyl-rubidium nitrate crystal at crystal cooling to T=0.2 K. The analysis was carried out with three different sets of permeability factors T(epsilon). Results of the analysis weakly depend on T(epsilon) choice. It is shown that a large number of adjusting parameters (six fissionabilities γsup(f)(Jsup(π), epsilon) and six momenta sub(Jsup(π))) permit to described experimental data on Σsub(f)(epsilon) and W(epsilon, 0 deg)/W(epsilon, 90 deg), obtained at epsilon=200 keV by introducing essential dependence of γsup(f)(Jsup(π), epsilon) and sub(Jsup(π)) on Jsup(π). Estimations of fission cross sections Σsub(f)(epsilon) and angular distribution W(epsilon, n vector) up to T approximately equal to 0.01 K in two geometries of the experiment: the orientation axis is parallel and perpendicular to momentum direction p vector of incident neutrons, are conducted
Furutaka, Kazuyoshi; Nakamura, Shoji; Harada, Hideo
2004-03-01
Neutron capture cross sections of long-lived fission products (LLFP) are important quantities as fundamental data for the study of nuclear transmutation of radioactive wastes. Previously obtained thermal-neutron capture gamma-ray data were analyzed to deduce the partial neutron-capture cross sections of LLFPs including 99 Tc, 93 Zr, and 107 Pd for thermal neutrons. By comparing the decay gamma-ray data and prompt gamma-ray data for 99 Tc, the relation between the neutron-capture cross section deduced by the two different methods was studied. For the isotopes 93 Zr and 107 Pd, thermal neutron-capture gamma-ray production cross sections were deduced for the first time. The level schemes of 99 Tc, 93 Zr, and 107 Pd have also been constructed form the analyzed data and compared with previously reported levels. This work has been done under the cooperative program 'Neutron Capture Cross Sections of Long-Lived Fission products (LLFPs)' by Japan Nuclear Cycle Development Institute (JNC) and Oak Ridge National Laboratory (ORNL). (author)
Lisowski, P.W.; Ullmann, J.L.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.
1988-01-01
Neutron-induced fission cross section ratios for samples of /sup 232/Th, /sup 235,238/U, /sup 237/Np and /sup 239/Pu have been measured from 1 to 400 MeV. The fission reaction rate was determined for all samples simultaneously using a fast parallel plate ionization chamber at a 20-m flight path. A well characterized annular proton recoil telescope was used to measure the neutron fluence up to 30 MeV. These data provided the shape of the /sup 235/U(n,f) cross section relative to the hydrogen scattering cross section. That shape was then normalized to the very accurately known values were determined using the neutron fluence measured with a second proton recoil telescope. Cross section values for /sup 232/Th, /sup 238/U, /sup 237/Np, and /sup 239/Pu were computed from the ratio data using our values for /sup 235/U(n,f). In addition to providing new results at high neutron energies, these data resolve long standing discrepancies among different data sets. 1 ref., 1 fig.
Szteinsznaider, D.; Naggiar, V.; Netter, F.
1955-01-01
This measurements have been done while taking the value of the fission cross-sections of 238 U as reference. The neutrons are produced by the reaction 7 Li(p,n) in the Van de Graaff generator of Saclay. The explored domain spreads from some tenths to 2000 keV. We find: for 239 Pu: σ f = 2,04 ± 0,12 barns, cross-section constant between 150 and 2000 keV, for 235 U: σ f = 1,15 ± 0,15 barns, cross-section constant between 700 and 1000 keV, for 233 U: σ f = 1,92 ± 0,25 barns, for neutrons of 850 keV. (authors) [fr
Ferrant, L.
2005-09-01
In the frame of innovating energy source system studies, thorium fuel cycle reactors are considered. Neutron induced fission cross section on such cycle involved actinides play a role in scenario studies. To feed them, data bases are built with experimental results and nuclear models. For some nuclei, they are not complete or in disagreement. In order to complete these data bases, we have built an original set up, consisting in an alternation of PPACs (Parallel Plate Avalanche Chamber) and ultra - thin targets, which we installed on n-TOF facility. We describe detectors, set up, and the particular care brought to target making and characterization. Fission products in coincidence are detected with precise time measurement and localization with delay line read out method. We contributed, within the n-TOF collaboration, to the CERN brand new intense spallation neutron source characterization, based on time of flight measurement, and we describe its characteristics and performances. We were able to measure such actinide fission cross sections as 232 Th, 234 U, 233 U, 237 Np, 209 Bi, and nat Pb relative to 235 U et 238 U standards, using an innovative acquisition system. We took advantage of the lame accessible energy field, from 0.7 eV to 1 GeV, combined with the excellent energy resolution in this field. Data treatment and analysis advancement are described to enlighten performance and limits of the obtained results. (author)
New calculation for the neutron-induced fission cross section of 233Pa between 1.0 and 3.0 MeV
Mesa, J.; Deppman, A.; Likhachev, V.P.; Arruda-Neto, J.D.T.; Manso, M.V.; Garcia, C.E.; Rodriguez, O.; Guzman, F.; Garcia, F.
2003-01-01
The 233 Pa(n,f) cross section, a key ingredient for fast reactors and accelerators driven systems, was measured recently with relatively good accuracy [F. Tovesson et al., Phys. Rev. Lett. 88, 062502 (2002)]. The results are at strong variance with accepted evaluations and an existing indirect experiment. This circumstance led us to perform a quite detailed and complete evaluation of the 233 Pa(n,f) cross section between 1.0 and 3.0 MeV, where use of our newly developed routines for the parametrization of the nuclear surface and the calculation of deformation parameters and level densities (including low-energy discrete levels) were made. The results show good quantitative and excellent qualitative agreement with the experimental direct data obtained by Tovesson et al. [F. Tovesson et al., Phys. Rev. Lett. 88, 062502 (2002)]. Additionally, our methodology opens new possibilities for the analysis of subthreshold fission and above threshold second-chance fission for both 233 Pa and its decay product 233 U, as well as other strategically important fissionable nuclides
Carlson, A.D.
1984-01-01
The accuracy of neutron cross-section measurement is limited by the uncertainty in the standard cross-section and the errors associated with using it. Any improvement in the standard immediately improves all cross-section measurements which have been made relative to that standard. Light element, capture and fission standards are discussed. (U.K.)
Velasquez, Carlos E.; Fernandes, Lorena C.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear
2017-11-01
One of the mains topics about nuclear reactors is the microscopic cross section for incident neutrons. Therefore, in this work, it is evaluated the microscopic and macroscopic cross section for a nuclide and a material. One of the nuclides microscopic cross-section studied is the {sup 56}Fe which is the highest compound from the material macroscopic cross section studied SS316. On the other hand, it was studied the microscopic cross section of the {sup 242}Pu which is one of the nuclides that composes the nuclear fuel. The nuclear fuel chosen is a spent fuel reprocessed by UREX+ technique and spiked with thorium with 20% of fissile material. Therefore it was studied the macroscopic cross section from this nuclear fuel. Both of them were compared by using three different ways to reprocess the nuclides, one for LWR, another for ADS and the last one for Fusion reactors. The library used was JEFF-3.2 recommend for the reactors studied. The comparison was made at 1200 K for the nuclear fuel and 700K for the SS316.The results present differences due to the energy discretization, the number of groups chosen for each reactor and some nuclear reactions taken into consideration according to the neutron spectrum for each reactor. The nuclides were processed by NJOY99.364 and plotted with MCNP-Vised. (author)
Velasquez, Carlos E.; Fernandes, Lorena C.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L.
2017-01-01
One of the mains topics about nuclear reactors is the microscopic cross section for incident neutrons. Therefore, in this work, it is evaluated the microscopic and macroscopic cross section for a nuclide and a material. One of the nuclides microscopic cross-section studied is the 56 Fe which is the highest compound from the material macroscopic cross section studied SS316. On the other hand, it was studied the microscopic cross section of the 242 Pu which is one of the nuclides that composes the nuclear fuel. The nuclear fuel chosen is a spent fuel reprocessed by UREX+ technique and spiked with thorium with 20% of fissile material. Therefore it was studied the macroscopic cross section from this nuclear fuel. Both of them were compared by using three different ways to reprocess the nuclides, one for LWR, another for ADS and the last one for Fusion reactors. The library used was JEFF-3.2 recommend for the reactors studied. The comparison was made at 1200 K for the nuclear fuel and 700K for the SS316.The results present differences due to the energy discretization, the number of groups chosen for each reactor and some nuclear reactions taken into consideration according to the neutron spectrum for each reactor. The nuclides were processed by NJOY99.364 and plotted with MCNP-Vised. (author)
Terranova, M.L.; Tavares, O.A.P.
1996-07-01
Tagged photons produced by the ROKK-2 facility have been used to measure the photofission cross section of 209 Bi in the energy range 60-270 MeV. Photofission events were detected by using a nuclear fragment detector designed for fission experiments, based on multiwire spark counters. Fissility values have been deduced and compared with available data obtained in other laboratories by using monochromatic photons. These data, together with early measurements obtained near photofission threshold, have been analysed in the framework of a two-step model which considers the primary photo interaction occurring via the quasi-deuteron and/or photo mesonic processes, followed by a mechanism of evaporation-fission competition for the excited residual nucleus. The model was found to reproduce the main experimental features of 209 Bi photo fissility up to 300 MeV. (author). 52 refs., 7 figs., 2 tabs
Zeng Qin; Zou Jun; Xu Dezhen; Jiang Jieqiong; Wang Minghuang; Wu Yican; Qiu Yuefeng; Chen Zhong; Chen Yan
2011-01-01
To improve the accuracy of the neutron analyses for subcritical systems with thermal fission blanket, a coupled neutron and photon (315 n + 42γ) fine-group cross section library HENDL3.0/FG based on ENDF/B-Ⅶ. 0 has been produced by FDS team. In order to test the availability and reliability of the HENDL3.0/FG data library, shielding and critical safety benchmarks were performed with VisualBUS code. The testing results indicated that the discrepancy between calculation and experimental values of nuclear parameters fell in a reasonable range. (authors)
The evaluation of the 237Np fission cross section in the 20 KeV - 20 MeV energy range
Dushin, V.N.; Kalinin, V.A.; Shpakov, V.I.
1997-01-01
The results of the development of nuclear data evaluation based on the generalized least squares method is presented. The method to interpolate experimental data measured at arbitrary energy points, and their transfer to a fixed energy grid is described. The results of the 237 Np fission cross section measurements performed until 1988 were critically analyzed. A 781 x 781 covariant matrix was derived from the correlation analysis of the experimental results. The results of the evaluation, and the associated correlation matrix was obtained using the generalized least square method. (author). 34 refs, 4 figs, 2 tabs
Baba, Mamoru; Itoh, Nobuo; Maeda, Kazuto; Hirakawa, Naohiro; Wakabayashi, Hidetaka.
1989-10-01
This report presents the summary of experimental studies of prompt fission neutron spectra and double-differential neutron inelastic-scattering cross sections of 238 U and 232 Th. The experiments were performed at Tohoku University Fast Neutron Laboratory employing a time-of-flight technique and Dynamitron accelerator as the pulsed neutron generator. From the experiments, we obtained the following data for both nuclei; 1. prompt fission neutron spectrum for 2 MeV neutrons, 2. double-differential neutron inelastic-scattering cross sections for 1.2, 2.0, 4.2, 6.1 and 14.1 MeV incident neutrons. Both in experiments and data processing, cares were taken to obtain reliable data by avoiding systematic uncertainty. The experimental data were compared with those by other experiments, evaluations and model calculations. Through the data comparison, some fundamental problems were found in the experiments by previous authors and the evaluations. The present data will provide useful data base for refinement of the evaluated data and theoretical models. (author)
Pescarini, M.; Orsi, R.; Sinitsa, V.
2008-01-01
The ENEA-Bologna Nuclear Data Group produced the JEFF-3.1 VITJEFF31.BOLIB and MATJEFF31. BOLIB fine-group coupled neutron and photon (199 n + 42 γ) cross section libraries for nuclear fission applications, respectively in AMPX and MATXS format, with the same specifications and energy group structure of the Endf/B-VI-3 VITAMIN-B6 American library. Each library, containing 181 nuclide cross section files, was generated from the same set of cross section data files in GENDF format, obtained through the Bondarenko (f-factor) method, with an ENEA-Bologna revised version of the GROUPR module of the NJOY-99.160 system. Collapsed working libraries of self-shielded cross sections in FIDO-ANISN format, used by the deterministic transport codes of the DANTSYS and DOORS systems, can be generated from VITJEFF31.BOLIB and MATJEFF31.BOLIB through, respectively, further data processing with an ENEA-Bologna revised version of the SCAMPI system and with the TRANSX code. This paper describes the methodology and specifications of the data processing performed and presents some results of the VITJEFF31.BOLIB validation. (authors)
Lan, Chang-Lin; Fang, Kai-Hong [Lanzhou University, School of Nuclear Science and Technology, Lanzhou, Gansu Province (China); Lanzhou University, Engineering Research Center for Neutron Application, Ministry of Education, Lanzhou, Gansu Province (China); Liu, Shuang-Tong; Lv, Tao; Wang, Qiang; Zhang, Zheng-Wei [Lanzhou University, School of Nuclear Science and Technology, Lanzhou, Gansu Province (China); Lai, Cai-Feng [Chinese Academy of Engineering Physics, Institute of Nuclear Physics and Chemistry, Mianyang, Sichuan Province (China)
2016-11-15
The fission cross-section of the {sup 232}Th(n,f){sup 141}Ba reaction induced by neutrons around 14 MeV was measured precisely with the neutron activation and off-line gamma-ray spectrometric technique. Neutron fluence was monitored on-line using the accompanying α-particles from the {sup 3}H({sup 2}H,n){sup 4}He reaction, whereas the neutron energies were measured by the method of cross-section ratios of {sup 90}Zr(n,2n){sup 89}Zr to {sup 93}Nb(n,2n){sup 92m}Nb reactions. The experimentally determined {sup 232}Th(n,f){sup 141}Ba reaction cross-sections were 12.2 ± 0.4 mb at E{sub n} = 14.1 ± 0.3 MeV, 13.0 ± 0.5 mb at E{sub n} = 14.5 ± 0.3 MeV and 13.3 ± 0.5 mb at E{sub n} = 14.7 ± 0.3 MeV, respectively. (orig.)
Meadows, J.W.
1986-12-01
The measurement of the fission cross section ratios of nine isotopes relative to 235 U at an average neutron energy of 14.74 MeV is described with particular attention to the determination of corrections and to sources of error. The results are compared to ENDF/B-V and to other measurements of the past decade. The ratio of the neutron induced fission cross section for these isotopes to the fission cross section for 235 U are: 230 Th - 0.290 +- 1.9%; 232 Th - 0.191 +- 1.9%; 233 U - 1.132 +- 0.7%; 234 U - 0.998 +- 1.0%; 236 U - 0.791 +- 1.1%; 238 U - 0.587 +- 1.1%; 237 Np - 1.060 +- 1.4%; 239 Pu - 1.152 +- 1.1%; 242 Pu - 0.967 +- 1.0%. 40 refs., 11 tabs., 9 figs
Frosio, Thomas; Bonaccorsi, Thomas; Blaise, Patrick
2016-01-01
Highlights: • Nuclear data uncertainty propagation for neutronic quantities in coupled problems. • Uncertainties are detailed for local isotopic concentrations and local power maps. • Correlations are built between space areas of the core and for different burnups. - Abstract: In a previous paper, a method was investigated to calculate sensitivity coefficients in coupled Boltzmann/Bateman problem for nuclear data (ND) uncertainties propagation on the reactivity. Different methodologies were discussed and applied on an actual example of multigroup cross section uncertainty problem for a 2D Material Testing Reactor (MTR) benchmark. It was shown that differences between methods arose from correlations between input parameters, as far as the method enables to take them into account. Those methods, unlike Monte Carlo (MC) sampling for uncertainty propagation and quantification (UQ), allow obtaining sensitivity coefficients, as well as correlations values between nuclear data, during the depletion calculation for the parameters of interest. This work is here extended to local parameters such as power factors and isotopic concentrations. It also includes fission yield (FY) uncertainty propagation, on both reactivity and power factors. Furthermore, it introduces a new methodology enabling to decorrelate direct and transmutation terms for local quantities: a Monte-Carlo method using built samples from a multidimensional Gaussian law is used to extend the previous studies, and propagate fission yield uncertainties from the CEA’s COMAC covariance file. It is shown that, for power factors, the most impacting ND are the scattering reactions, principally coming from 27 Al and (bounded hydrogen in) H 2 O. The overall effect is a reduction of the propagated uncertainties throughout the cycle thanks to negatively correlated terms. For fission yield (FY), the results show that neither reactivity nor local power factors are strongly affected by uncertainties. However, they
Alekseev, A.A.; Bergman, A.A.; Berlev, A.I.; Koptelov, E.A.; Samylin, B.F.; Trufanov, A.M.; Fursov, B.I.; Shorin, V.S.
2009-12-01
This report contains brief description of the Lead Slowing Down Spectrometer and results of measurements of neutron-induced fission cross sections for 236 U, 242m Am, 243 Cm, 244 Cm, 245 Cm and 246 Cm done at this spectrometer. The work was partially supported through the IAEA research contract RC-14485-RD in the framework of the IAEA Coordinated Research Project 'Minor Actinide Neutron Reaction Data (MANREAD)'. The detailed description of the experimental set up, measurements procedure and data treatment can be found in the JIA-1182 (2007) and JIA-1212 (2009) reports from the Institute of Nuclear Research of the Russian Academy of Science published in Russian. Part 1 contains the first year report of the research contract and part 2 the second year report. (author)
Abbasi, I.A.; Subhani, M.S.; Zaidi, J.H.; Arif, M.
2006-01-01
Systematic studies on fission neutron spectrum averaged cross sections of some threshold reactions like (n, p) and (n, α) on cadmium were carried out using the activation technique in combination with radiochemical separations and high-resolution γ-ray spectroscopy. Special attention was paid to the formation of 103 Pd via the 106 Cd(n,a α) 103 Pd reaction since it is an important therapeutic radionuclide. At a fast flux neutron density of 7.5 x 10 13 cm 2 s -1 and an irradiation time of 120 h, using 100% enriched 106 Cd target 340 MBq of no-carrier-added 103 Pd per batch could be produced. The method is thus suitable for medium-scale production of this radionuclide. (orig.)
Sublet, J.C.
2009-01-01
Much progress has been made in nuclear medicine that involves the use of radionuclides for both diagnosis and therapy. Because of this qualitative and quantitative growth, the adoption of a set of established radionuclides for various applications, the methods of nuclide production need to be addressed and consideration given to other, emerging radionuclides that are judged to be developing in importance. The methods involved are characterized by the transmutation of isotopes by neutron-induced reactions and decays. Therefore, newly evaluated cross sections, fission yields and decay characteristics of relevance to the reactor production of those therapeutic radionuclides have been reviewed. Considerations of the decay schemes of all the nuclides involved are also included. (author)
Youinou, Gilles Jean-Michel [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-10-01
Neutron cross-sections characterize the way neutrons interact with matter. They are essential to most nuclear engineering projects and, even though theoretical progress has been made as far as the predictability of neutron cross-section models, measurements are still indispensable to meet tight design requirements for reduced uncertainties. Within the field of fission reactor technology, one can identify the following specializations that rely on the availability of accurate neutron cross-sections: (1) fission reactor design, (2) nuclear fuel cycles, (3) nuclear safety, (4) nuclear safeguards, (5) reactor monitoring and neutron fluence determination and (6) waste disposal and transmutation. In particular, the assessment of advanced fuel cycles requires an extensive knowledge of transuranics cross sections. Plutonium isotopes, but also americium, curium and up to californium isotope data are required with a small uncertainty in order to optimize significant features of the fuel cycle that have an impact on feasibility studies (e.g. neutron doses at fuel fabrication, decay heat in a repository, etc.). Different techniques are available to determine neutron cross sections experimentally, with the common denominator that a source of neutrons is necessary. It can either come from an accelerator that produces neutrons as a result of interactions between charged particles and a target, or it can come from a nuclear reactor. When the measurements are performed with an accelerator, they are referred to as differential since the analysis of the data provides the cross-sections for different discrete energies, i.e. σ(E_{i}), and for the diffusion cross sections for different discrete angles. Another approach is to irradiate a very pure sample in a test reactor such as the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after
Pescarini, M.; Orsi, R.; Martinelli, T.; Sinitsa, V.; Blokhin, A.I.
2005-01-01
The ENEA-Bologna Nuclear Data Group produced the VITJEF22.BOLIB (NEA-1699/01 ZZ VITJEF22.BOLIB) and MATJEF22.BOLIB (NEA-1740/01 ZZ MATJEF22.BOLIB) fine-group coupled neutron and photon (199 n + 42 γ) cross section libraries for nuclear fission applications, respectively in AMPX and MATXS format and based on the JEF-2.2 European nuclear data file. Both the libraries were produced from the same set of cross section files in GENDF format, generated with the NJOY-94.66 nuclear data processing system. The present libraries can be considered as European counterparts of the VITAMIN-B6 (DLC-0184 ZZ VITAMIN-B6) American library in AMPX format, based on the ENDF/B-VI Release 3 American nuclear data file. In fact they have the same general features and the same neutron and photon energy group structures as VITAMIN-B6. In particular, all these libraries are pseudo-problem-independent and based on the Bondarenko (f-factor) method for the treatment of neutron resonance self-shielding and temperature effects. Each ENEA-Bologna library contains a set of 133 nuclide cross section files processed at 4 temperatures (300 K, 600 K, 1000 K and 2100 K) and obtained for the most part with 6 to 8 values of the background cross section σ 0 . Thermal scattering cross sections were processed at all the temperatures available in the JEF-2.2 thermal scattering law data file for 5 additional bound nuclides: H-1 in light water, H-1 in polyethylene, H-2 in heavy water, C in graphite and Be in beryllium metal. Collapsed working libraries of self-shielded cross sections in the formats used by the deterministic transport codes of the DANTSYS and DOORS systems can be generated from VITJEF22.BOLIB and MATJEF22.BOLIB through, respectively, further problem-dependent data processing with the AMPX or SCAMPI nuclear data processing systems and with the TRANSX code. (authors)
Lisowski, P.W.; Ullmann, J.L.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.
1988-01-01
Time-of-flight measurements of neutron induced fission cross section ratios for /sup 232/Th, /sup 235,238/U, /sup 237/Np, and /sup 239/Pu, were performed using the WNR high intensity spallation neutron source located at Los Alamos National Laboratory. A multiple-plate gas ionization chamber located at a 20-m flight path was used to simultaneously measure the fission rate for all samples over the energy range from 1 to 400 MeV. Because the measurements were made with nearly identical neutron fluxes, we were able to cancel many systematic uncertainties present in previous measurements. This allows us to resolve discrepancies among different data sets. In addition, these are the first neutron-induced fission cross section values for most of the nuclei at energies above 30 MeV. 8 refs., 3 figs.
Lamaze, G.P.; Schima, F.J.; Eisenhauer, C.M.; Spiegel, V.
1988-01-01
Because of the similarity in energy dependence of the /sup 103/Rh(n,n') differential cross section to the kerma muscle response function for neutrons, rhodium may be useful as a neutron kerma monitor. In support of its use as a neutron monitor, the spectrum-averaged cross section σ-bar has been measured for a /sup 252/Cf fission neutron spectrum. Pairs of thin rhodium samples were irradiated on opposite sides of a thinly encapsulated /sup 252/Cf neutron source. The neutron emission rate of the /sup 252/Cf source was determined by the manganous sulfate (MnSO/sub 4/) bath technique. In this method, the californium source emission rate is determined by comparison to the known emission rate of NBS-I, a standard radium-beryllium neutron source. The neutron fluence incident on the rhodium samples is determined from the californium source strength, average sample-to-source distance, and the duration of the irradiation. Corrections are made for neutron scattering saturation of activity, and attenuation of the X rays by the sample during counting. The X rays were detected with an intrinsic germanium detector designed specifically for low-energy X-ray detection. The activity was not determined by absolute counting so that the final results depend on the value of P/sub Κx/, to total Κ X-ray emission probability. The results of five separate irradiations yield a value of σ-bar . P/sub Κx/ = 62.3 +- 1.9 mb. Using the most recently published value of P/sub Κx/ gives a value of σ-bar = 739 +- 22 mb. A discussion of systematic uncertainties is given
Fernandez-Dominguez, B
2003-03-01
The aim of this work is the study of the fission fragments produced in the spallation reaction {sup 208}Pb + p at 500 AMeV. The fission fragments from Z=23 up to Z=59 have been detected and identified by using the inverse kinematics technique with the high-resolution spectrometer FRS. The production cross sections and the recoil velocities of 430 nuclei have been measured. The measured data have been compared with previous data. The isotopic distributions show a high precision. However, the absolute value of the fission cross section is higher than expected. From the experimental data the characteristics of the average fissioning system have been reconstructed (Z{sub fis}, A{sub fis}, E*{sub fis}). In addition, the number of post-fission neutrons emitted from the fission fragments, v{sub post}, has been determined by using a new method. The experimental data have been compared to the two-steps models describing the spallation reaction. The impact of the model parameters on the observables has been analysed and the reasons Leading to the observed differences between the codes are also presented. This analyse shows a good agreement with the INCL4+ABLA code. (author)
Ferrant, L
2005-09-01
In the frame of innovating energy source system studies, thorium fuel cycle reactors are considered. Neutron induced fission cross section on such cycle involved actinides play a role in scenario studies. To feed them, data bases are built with experimental results and nuclear models. For some nuclei, they are not complete or in disagreement. In order to complete these data bases, we have built an original set up, consisting in an alternation of PPACs (Parallel Plate Avalanche Chamber) and ultra - thin targets, which we installed on n-TOF facility. We describe detectors, set up, and the particular care brought to target making and characterization. Fission products in coincidence are detected with precise time measurement and localization with delay line read out method. We contributed, within the n-TOF collaboration, to the CERN brand new intense spallation neutron source characterization, based on time of flight measurement, and we describe its characteristics and performances. We were able to measure such actinide fission cross sections as {sup 232}Th, {sup 234}U, {sup 233}U, {sup 237}Np, {sup 209}Bi, and {sup nat}Pb relative to {sup 235}U et {sup 238}U standards, using an innovative acquisition system. We took advantage of the lame accessible energy field, from 0.7 eV to 1 GeV, combined with the excellent energy resolution in this field. Data treatment and analysis advancement are described to enlighten performance and limits of the obtained results. (author)
Ricketts, J. W.; Karlstrom, K. E.; Kelley, S. A.; Priewisch, A.; Crossey, L. J.; Asmerom, Y.; Polyak, V.; Selmi, M.
2011-12-01
The Rio Grande rift provides an excellent laboratory for understanding styles and processes of extensional tectonics, and their driving forces. We apply apatite fission track (AFT) thermochronology, geochronology, fracture analysis, and cross-section restoration to decipher past and present tectonics of the Rio Grande rift. AFT data has been compiled from rift flank uplifts along the Rio Grande rift in an attempt to recognize long wavelength spatial and temporal patterns. AFT ages record time of cooling of rocks below ~110°C and, when cooling is due to exhumation, age elevation traverses can record upward advection of rocks through paleo 110°C isotherms. The relatively passive sides of half-grabens (e.g. Manzanos and Santa Fe Range) preserve Laramide AFT ages ranging from 45-70 Ma, indicating they were cooled during the Laramide Orogeny and have remained cooler than 110°C since then. Rift flanks on the tectonically active sides of half-grabens, (e.g. Sierra Ladrones, Sandias, Taos Range, and Sierra Blanca) have AFT ages that range from 35 Ma to history and its mechanisms. AFT data at Ladron Peak, an active rift flank along the western margin of the Rio Grande rift in central New Mexico, indicates that it was rapidly unroofed between 20-10 Ma. Preliminary apatite helium data gives a similar age vs. elevation trend, but apatites have highly radiogenically damaged lattices and hence have corrected closure temperatures tens of degrees higher than AFT ages. The style of faulting at Ladron Peak is unusual because it is bounded by the anomalously low-angle (~15°) Jeter fault. In order to understand the evolution of faulting in this region, a balanced cross-section was constructed and restored to its pre-rift geometry. Our working hypothesis is that the low angle of the Jeter fault is most adequately explained by a rolling hinge model, where isostatic uplift causes progressive rotation of an initially steep (~60°) normal fault to shallower dips. Thirty km north of
Tretiakoff, O; Vidal, R; Carre, J C; Robin, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1964-07-01
The authors describe the technique used to measure the effective absorption and neutron-yield cross-sections of a fissionable sample. These two values are determined by analysing the signals due to the variation in reactivity (over-all signal) and the local perturbation in the flux (local signal) produced by the oscillating sample. These signals are standardized by means of a set of samples containing quantities of fissionable material ({sup 235}U) and an absorber, boron, which are well known. The measurements are made for different neutron spectra characterized by lattice parameters which constitute the central zone within which the sample moves. This technique is used to study the effective cross-sections of uranium-plutonium alloys for different heavy-water and graphite lattices in the MINERVE and MARIUS critical assemblies. The same experiments are carried out on fuel samples of different irradiations in order to determine the evolution of effective cross-sections as a function of the spectrum and the irradiations. (authors) [French] On decrit la methode utilisee pour mesurer les sections efficaces effectives d'absorption et de production de neutrons d'un echantillon fissile. Ces deux grandeurs sont determinees en analysant les signaux dus a la variation de reactivite (signal global) et a la perturbation locale de flux (signal local) produits par l'echantillon oscillant. Ces signaux sont etalonnes a l'aide d'un jeu d'echantillons dont les teneurs en materiau fissile ({sup 235}U) et en absorbeur (bore) sont bien connues. Les mesures sont realisees pour differents spectres de neutrons caracterises par les parametres du reseau constituant la zone centrale a l'interieur de laquelle se deplace l'echantillon. A l'aide de cette methode on etudie les sections efficaces effectives d'alliage uranium-plutonium pour differents reseaux a eau lourde et a graphite dans les assemblages crtiques MINERVE et MARIUS. Les memes experiences sont effectuees sur des echantillons de
Ribeiro Guevara, S.; Arribere, M.; Kestelman, A.J.
2002-01-01
The reaction cross sections averaged over a 235 U fission neutron spectrum have been measured for the 54 Fe(n, 2n) 53g Fe and 54 Fe(n, 2n) 53m Fe threshold reactions. The values found are, respectively: (1.14 ± 0.13) μb, and (0.52 ± 0.16) μb. The measured cross sections are referred to the (111± 3) mb standard cross section of the 58 Ni(n, p) 58m+g Co reaction. The (81.7 ± 2.2) mb standard cross section value for the 54 Fe(n, p) 54 Mn reaction, was also used as a monitor to check the results obtained with the Ni standard, leading to an excellent agreement. (author)
Curves and tables of neutron cross sections
Nakagawa, Tsuneo; Asami, Tetsuo; Yoshida, Tadashi
1990-07-01
Neutron cross-section curves from the Japanese Evaluated Nuclear Data Library version 3, JENDL-3, are presented in both graphical and tabular form for users in a wide range of application areas in the nuclear energy field. The contents cover cross sections for all the main reactions induced by neutrons with an energy below 20 MeV including; total, elastic scattering, capture, and fission, (n,n'), (n,2n), (n,3n), (n,α), (n,p) reactions. The 2200 m/s cross-section values, resonance integrals, and Maxwellian- and fission-spectrum averaged cross sections are also tabulated. (author)
Neutron cross sections: Book of curves
McLane, V.; Dunford, C.L.; Rose, P.F.
1988-01-01
Neuton Cross Sections: Book of Curves represents the fourth edition of what was previously known as BNL-325, Neutron Cross Sections, Volume 2, CURVES. Data is presented only for (i.e., intergrated) reaction cross sections (and related fission parameters) as a function of incident-neutron energy for the energy range 0.01 eV to 200 MeV. For the first time, isometric state production cross sections have been included. 11 refs., 4 figs
Szteinsznaider, D; Naggiar, V; Netter, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1955-07-01
This measurements have been done while taking the value of the fission cross-sections of {sup 238}U as reference. The neutrons are produced by the reaction {sup 7}Li(p,n) in the Van de Graaff generator of Saclay. The explored domain spreads from some tenths to 2000 keV. We find: for {sup 239}Pu: {sigma}{sub f} = 2,04 {+-} 0,12 barns, cross-section constant between 150 and 2000 keV, for {sup 235}U: {sigma}{sub f} = 1,15 {+-} 0,15 barns, cross-section constant between 700 and 1000 keV, for {sup 233}U: {sigma}{sub f} = 1,92 {+-} 0,25 barns, for neutrons of 850 keV. (authors) [French] Ces mesures ont ete effectuees en prenant la valeur de la section efficace de fission de {sup 238}U comme reference. Les neutrons sont produits par la reaction {sup 7}Li(p,n) au generateur Van de Graaff de Saclay. Le domaine explore s'etend de quelques dizaines de kev a 2000 kev. Nous trouvons: pour {sup 239}Pu: {sigma}{sub f} = 2,04 {+-} 0,12 barns, section efficace constante entre 150 et 2000 kev. pour {sup 235}U: {sigma}{sub f} = 1,15 {+-} 0,15 barns, section efficace constante entre 700 et 1000 kev. pour {sup 233}U: {sigma}{sub f} = 1,92 {+-} 0,25 barns, pour des neutrons de 850 kev. (auteurs)
Michaudon, A; Genin, R; Joly, R; Vendryes, G
1959-01-01
The neutron fission cross section of uranium-235 has been measured between 4 ev and 20 kev by the time of flight method with the Saclay electron linear accelerator as a pulsed neutron source. After a brief description of the experimental apparatus and the conditions of work during the experiment, the curve {sigma}{sub F} {radical}E in the energy range studied is shown. This curve is then analyzed by the ''area'' method and a set of {sigma}{sub 0} {gamma}{sub F} values is obtained. With {sigma}{sub 0} {gamma} values measured in other laboratories, it is possible to compute fission widths for several resonances and to study their distribution. This distribution is then compared to Porter-Thomas distributions with different values of the number of exit channels. (authors) [French] La section efficace de fission de l'uranium--235 a ete mesuree entre 4 eV et 20 KeV par la methode du temps de vol en utilisant l'accelerateur lineaire a electrons de Saclay comme source pulses de neutrons. Apres une rapide description de l'appareillage experimental et des conditions de fonctionnement au cours de l'experience, on presente la courbe {sigma}{sub F} {radical}E obtenue dans la game d'energie etudiee. Cette courbe est ensuite analysee par la methode de surface des resonances et un lot de valeurs de {sigma}{sub 0} {gamma}{sub F} est obtenue. Conjuguee avec les valeurs de {sigma}{sub 0} {gamma} obtenues dans d'autres laboratoires, cette analyse permet de calculer les largeurs de fission pour plusieurs resonances et d'etudier leur distribution. Cette distribution est ensuite comparee aux distributions de Porter et Thomas correspondant a differentes valeurs du nombre de voies de sortie. (auteurs)
Grosjean, C
2005-03-15
The thorium-U{sup 233} fuel cycle might provided safer and cleaner nuclear energy than the present Uranium/Pu fuelled reactors. Over the last 10 years, a vast campaign of measurements has been initiated to bring the precision of neutron data for the key nuclei (Th{sup 232}, Pa{sup 233} and U{sup 233}) at the level of those for the U-Pu cycle. This is the framework of these measurements, the energy dependent neutron induced fission cross section of Th{sup 232} and U{sup 233} has been measured from 1 to 7 MeV with a target accuracy lesser than 5 per cent. These measurements imply the accurate determination of the fission rate, the number of the target nuclei as well as the incident neutron flux impinging on the target, the latter has been obtained using the elastic scattering (n,p). The cross section of which is very well known in a large neutron energy domain ({approx} 0,5 % from 1 eV to 50 MeV) compared to the U{sup 235}(n,f) reaction. This technique has been applied for the first time to the Th{sup 232}(n,f) and U{sup 233}(n,f) cases. A Hauser-Feshbach statistical model has been developed. It consists of describing the different decay channels of the compound nucleus U{sup 234} from 0,01 to 10 MeV neutron energy. The parameters of this model were adjusted in order to reproduce the measured fission cross section of U{sup 233}. From these parameters, the cross sections from the following reactions could be extracted: inelastic scattering U{sup 233}(n,n'), radiative capture U{sup 233}(n,{gamma}) and U{sup 233}(n,2n). These cross sections are still difficult to measure by direct neutron reactions. The calculated values have allowed us to fill the lack of experimental data for the major fissile nucleus of the thorium cycle. (author)
Tsinganis, A.; Kokkoris, M.; Vlastou, R.; Kalamara, A.; Stamatopoulos, A.; Kanellakopoulos, A.; Lagoyannis, A.; Axiotis, M.
2017-09-01
Accurate data on neutron-induced fission cross-sections of actinides are essential for the design of advanced nuclear reactors based either on fast neutron spectra or alternative fuel cycles, as well as for the reduction of safety margins of existing and future conventional facilities. The fission cross-section of 234U was measured at incident neutron energies of 560 and 660 keV and 7.5 MeV with a setup based on `microbulk' Micromegas detectors and the same samples previously used for the measurement performed at the CERN n_TOF facility (Karadimos et al., 2014). The 235U fission cross-section was used as reference. The (quasi-)monoenergetic neutron beams were produced via the 7Li(p,n) and the 2H(d,n) reactions at the neutron beam facility of the Institute of Nuclear and Particle Physics at the `Demokritos' National Centre for Scientific Research. A detailed study of the neutron spectra produced in the targets and intercepted by the samples was performed coupling the NeuSDesc and MCNPX codes, taking into account the energy spread, energy loss and angular straggling of the beam ions in the target assemblies, as well as contributions from competing reactions and neutron scattering in the experimental setup. Auxiliary Monte-Carlo simulations were performed with the FLUKA code to study the behaviour of the detectors, focusing particularly on the reproduction of the pulse height spectra of α-particles and fission fragments (using distributions produced with the GEF code) for the evaluation of the detector efficiency. An overview of the developed methodology and preliminary results are presented.
Model cross section calculations using LAHET
Prael, R.E.
1992-01-01
The current status of LAHET is discussed. The effect of a multistage preequilibrium exciton model following the INC is examined for neutron emission benchmark calculations, as is the use of a Fermi breakup model for light nuclei rather than an evaporation model. Comparisons are made also for recent fission cross section experiments, and a discussion of helium production cross sections is presented
Odano, Naoteru; Miura, Toshimasa; Yamaji, Akio.
1996-01-01
To validate the dosimetry cross sections in fast neutron energy range, activation reaction rates were measured for 5 types of dosimetry cross sections which have sensitivity in the energy rage above 10 MeV utilizing JRR-4 reactor of JAERI. The measured reaction rates were compared with the calculations reaction rates by a continuous energy monte carlo code MVP. The calculated reaction rates were based on two dosimetry files, JENDL Dosimetry File and IRDF-90.2. (author)
Single-level resonance parameters fit nuclear cross-sections
Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.
1970-01-01
Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.
Cross section of ternary fission of Al, Ti, Co and Zr nuclei induced by 0,8 - 1,8 Gev photons
Lima, D.A. de; Sousa, E.V. de; Milomen, W.C.C.; Tavares, O.A.P.
1988-01-01
A research on ternary fission of Al, Ti, Co, and Zr nuclei induced by bremsstrahlung photons of 0,8, 1,0, 1,4, and 1,8 Gev end-point energies has been carried out using makrofol polycarbonate and CR-39 polymer as fission-track detectors. Results are discussed and compared with other ternary fission data. (M.W.O.) [pt
Minnesota Department of Natural Resources — FEMA Cross Sections are required for any Digital Flood Insurance Rate Map database where cross sections are shown on the Flood Insurance Rate Map (FIRM). Normally...
Pescarini, Massimo; Orsi, Roberto; Frisoni, Manuela
2017-09-01
The ENEA-Bologna Nuclear Data Group produced the VITJEFF32.BOLIB multi-group coupled neutron/photon (199 n + 42 γ) cross section library in AMPX format, based on the OECD-NEA Data Bank JEFF-3.2 evaluated nuclear data library. VITJEFF32.BOLIB was conceived for nuclear fission applications as European counterpart of the ORNL VITAMIN-B7 similar library (ENDF/B-VII.0 data). VITJEFF32.BOLIB has the same neutron and photon energy group structure as the former ORNL VITAMIN-B6 reference library (ENDF/B-VI.3 data) and was produced using similar data processing methodologies, based on the LANL NJOY-2012.53 nuclear data processing system for the generation of the nuclide cross section data files in GENDF format. Then the ENEA-Bologna 2007 Revision of the ORNL SCAMPI nuclear data processing system was used for the conversion into the AMPX format. VITJEFF32.BOLIB contains processed cross section data files for 190 nuclides, obtained through the Bondarenko (f-factor) method for the treatment of neutron resonance self-shielding and temperature effects. Collapsed working libraries of self-shielded cross sections in FIDO-ANISN format, used by the deterministic transport codes of the ORNL DOORS system, can be generated from VITJEFF32.BOLIB through the cited SCAMPI version. This paper describes the methodology and specifications of the data processing performed and presents some results of the VITJEFF32.BOLIB validation.
Pescarini Massimo
2017-01-01
Full Text Available The ENEA-Bologna Nuclear Data Group produced the VITJEFF32.BOLIB multi-group coupled neutron/photon (199 n + 42 γ cross section library in AMPX format, based on the OECD-NEA Data Bank JEFF-3.2 evaluated nuclear data library. VITJEFF32.BOLIB was conceived for nuclear fission applications as European counterpart of the ORNL VITAMIN-B7 similar library (ENDF/B-VII.0 data. VITJEFF32.BOLIB has the same neutron and photon energy group structure as the former ORNL VITAMIN-B6 reference library (ENDF/B-VI.3 data and was produced using similar data processing methodologies, based on the LANL NJOY-2012.53 nuclear data processing system for the generation of the nuclide cross section data files in GENDF format. Then the ENEA-Bologna 2007 Revision of the ORNL SCAMPI nuclear data processing system was used for the conversion into the AMPX format. VITJEFF32.BOLIB contains processed cross section data files for 190 nuclides, obtained through the Bondarenko (f-factor method for the treatment of neutron resonance self-shielding and temperature effects. Collapsed working libraries of self-shielded cross sections in FIDO-ANISN format, used by the deterministic transport codes of the ORNL DOORS system, can be generated from VITJEFF32.BOLIB through the cited SCAMPI version. This paper describes the methodology and specifications of the data processing performed and presents some results of the VITJEFF32.BOLIB validation.
Lan, Chang-lin; Qiu, Yi-jia; Wang, Qiang; Zhang, Zheng-wei; Zhang, Qian; Tan, Jun-cai; Fang, Kai-hong [Lanzhou University, School of Nuclear Science and Technology, Lanzhou (China); Lai, Cai-feng [China Academy of Engineering Physics, Institute of Nuclear Physics and Chemistry, Mianyang (China)
2017-06-15
The fission cross sections of {sup 232}Th(n,f){sup 131m,g}Sn, {sup 232}Th(n,f){sup 131}Sb, {sup 232}Th(n,f){sup 131m,g}Te, {sup 232}Th(n,f){sup 131}I fission reactions induced by 14 MeV neutrons were measured precisely with the neutron activation technique. The neutron flux was monitored by accompanying α particle in the irradiation and the neutron energies were determined by the cross section ratio of {sup 90}Zr(n,2n){sup 89}Zr to {sup 93}Nb(n,2n){sup 92m}Nb reaction. The values of the cross sections of {sup 232}Th(n,f){sup 131m,g}Sn were analyzed, and the cross sections of {sup 232}Th(n,f){sup 131}Sb were deduced to be 6.5±0.7, 6.3±0.6, 6.1±0.6 mb at 14.1±0.3, 14.5±0.3 and 14.8±0.3 MeV, respectively. The values of the cross sections of {sup 232}Th(n,f){sup 131g}Te were deduced to be 1.8 ± 0.1, 1.5 ± 0.1 and 1.4±0.1 mb at 14.1±0.3, 14.5±0.3 and 14.8±0.3 MeV, respectively. The values of the cross sections of {sup 232}Th(n,f){sup 131}I were given as 1.8±0.2, 1.6±0.2, 1.5±0.1 mb at 14.1±0.3, 14.5±0.3 and 14.8±0.3 MeV, respectively. (orig.)
Neutron cross sections for fusion
Haight, R.C.
1979-10-01
First generation fusion reactors will most likely be based on the 3 H(d,n) 4 He reaction, which produces 14-MeV neutrons. In these reactors, both the number of neutrons and the average neutron energy will be significantly higher than for fission reactors of the same power. Accurate neutron cross section data are therefore of great importance. They are needed in present conceptual designs to calculate neutron transport, energy deposition, nuclear transmutation including tritium breeding and activation, and radiation damage. They are also needed for the interpretation of radiation damage experiments, some of which use neutrons up to 40 MeV. In addition, certain diagnostic measurements of plasma experiments require nuclear cross sections. The quality of currently available data for these applications will be reviewed and current experimental programs will be outlined. The utility of nuclear models to provide these data also will be discussed. 65 references
Wang Dahai; Mehta, M.K.
1988-07-01
The main objectives of this IAEA Co-ordinated Research Programme are to improve the current status of data for 14 MeV neutron-induced double-differential neutron emission cross sections for V, Cr, Fe, Nb, Ta and 238 U. The principal objectives of this first meeting were to report on the status of participants' work, to exchange experience in experimental work and to establish the future work. Considering the unsatisfactory status of the data for 6 Li, 7 Li, 9 Be, Mo, W and Bi and their importance in fusion reactor technology participants agreed to include these isotopes in the programme
Evaluated cross section libraries
Maqurno, B.A.
1976-01-01
The dosimetry tape (ENDF/B-IV tape 412) was issued in a general CSEWG distribution, August 1974. The pointwise cross section data file was tested with specified reference spectra. A group averaged cross section data file (620 groups based on tape 412) was tested with the above spectra and the results are presented in this report
Del Duca, V.
1992-11-01
Minijet production in jet inclusive cross sections at hadron colliders, with large rapidity intervals between the tagged jets, is evaluated by using the BFKL pomeron. We describe the jet inclusive cross section for an arbitrary number of tagged jets, and show that it behaves like a system of coupled pomerons
Belloni, F.; Milazzo, P.M.; Calviani, M.
2011-01-01
Neutron-induced fission cross-sections of 233 U, 241 Am and 243 Am relative to 235 U have been measured in a wide energy range at the neutron time of flight facility n-TOF in Geneva to address the present discrepancies in evaluated and experimental databases for reactions and isotopes relevant for transmutation and new generation fast reactors. A dedicated fast ionization chamber was used. Each isotope was mounted in a different cell of the modular detector. The measurements took advantage of the characteristics of the n-TOF installation. Its intrinsically low background, coupled to its high instantaneous neutron flux, results in high accuracy data. Its wide energy neutron spectrum helps to reduce systematic uncertainties due to energy-domain matching problems while the 185 m flight path and a 6 ns pulse width assure an excellent energy resolution. This paper presents results obtained between 500 keV and 20 MeV neutron energy. (authors)
Floodplain Cross Section Lines
Department of Homeland Security — This table is required for any Digital Flood Insurance Rate Map database where cross sections are shown on the Flood Insurance Rate Map (FIRM). Normally any FIRM...
Multitrajectory eikonal cross sections
Turner, R.E.
1983-01-01
With the use of reference and distorted transition operators, a time-correlation-function representation of the inelastic differential cross section has recently been used to obtain distorted eikonal cross sections. These cross sections involve straight-line and reference classical translational trajectories that are unaffected by any internal-state changes which have occurred during the collision. This distorted eikonal theory is now extended to include effects of internal-state changes on the translational motion. In particular, a different classical trajectory is associated with each pair of internal states. Expressions for these inelastic cross sections are obtained in terms of time-ordered cosine and sine memory functions using the Zwanzig-Feshbach projection-operator method. Explicit formulas are obtained in the time-disordered perturbation approximation
Soran, P.D.; Seamon, R.E.
1980-05-01
Graphs of all neutron cross sections and photon production cross sections on the Recommended Monte Carlo Cross Section (RMCCS) library have been plotted along with local neutron heating numbers. Values for anti ν, the average number of neutrons per fission, are also given
Seamon, R.E.; Soran, P.D.
1980-06-01
Graphs of all neutron cross sections and photon production cross sections on the Alternate Monte Carlo Cross Section (AMCCS) library have been plotted along with local neutron heating numbers. The values of ν-bar, the average number of neutrons per fission, are also plotted for appropriate isotopes
Cognet, M.A.
2007-12-01
Producing nuclear energy in order to reduce anthropic CO 2 emission and to meet high energy demand, implies three conditions to the nuclear plants of the IV. generation: safety improvements, radioactive waste minimization, and fuel breeding for a sustainable use of the resources. The Thorium fuel cycle used in Molten Salt Reactors seems promising. Many numerical studies based on probabilistic codes are carried out in order to analyse the behaviour of such reactors. Nevertheless, one of the most important parameters is badly known: the alpha ratio of 233 U, ratio of the neutron capture cross section to fission one for 233 U. This key-parameter is necessary to calculate the breeding ratio and thus, the deployment capacities of those reactors. This Ph-D thesis was intended to prepare a precise measurement of the alpha ratio of 233 U between 1 eV and 10 keV. Preliminary measurements have been performed on the experimental platform PEREN. This experimental environment is composed of a lead slowing-down time spectrometer associated with an intense pulsed neutron generator. Capture and fission rates are measured thanks to eight scintillators with their photomultipliers, surrounding a fission chamber. A software analysis sets the coincidence rate between the scintillators. In order to understand perfectly the experimental setup, preliminary tests using a 235 U fission chamber have been done. This experiment resulted in a very low signal to background ratio (1 %). The background coming from the scintillators themselves seriously handicapped the measurement. Another series of experiment has been done with scintillators 5 times thinner. Nevertheless, the signal to background ratio should still be increased to measure the capture of 235 U. To make sure that the experimental setup has totally been understood, we made many comparisons between experimental results and simulations. Two simulation codes were mainly used: MCNP and GEANT4. We paid special attention to quantify the
Average cross sections for the 252Cf neutron spectrum
Dezso, Z.; Csikai, J.
1977-01-01
A number of average cross sections have been measured for 252 Cf neutrons in (n, γ), (n,p), (n,2n), (n,α) reactions by the activation method and for fission by fission chamber. Cross sections have been determined for 19 elements and 45 reactions. The (n,γ) cross section values lie in the interval from 0.3 to 200 mb. The data as a function of target neutron number increases up to about N=60 with minimum near to dosed shells. The values lie between 0.3 mb and 113 mb. These cross sections decrease significantly with increasing the threshold energy. The values are below 20 mb. The data do not exceed 10 mb. Average (n,p) cross sections as a function of the threshold energy and average fission cross sections as a function of Zsup(4/3)/A are shown. The results obtained are summarized in tables
Activation cross section data file, (1)
Yamamuro, Nobuhiro; Iijima, Shungo.
1989-09-01
To evaluate the radioisotope productions due to the neutron irradiation in fission of fusion reactors, the data for the activation cross sections ought to be provided. It is planning to file more than 2000 activation cross sections at final. In the current year, the neutron cross sections for 14 elements from Ni to W have been calculated and evaluated in the energy range 10 -5 to 20 MeV. The calculations with a simplified-input nuclear cross section calculation system SINCROS were described, and another method of evaluation which is consistent with the JENDL-3 were also mentioned. The results of cross section calculation are in good agreement with experimental data and they were stored in the file 8, 9 and 10 of ENDF/B format. (author)
Ros, Paul; Leconte, Pierre; Blaise, Patrick; Naymeh, Laurent
2017-09-01
The current knowledge of nuclear data in the fast neutron energy range is not as good as in the thermal range, resulting in larger propagated uncertainties in integral quantities such as critical masses or reactivity effects. This situation makes it difficult to get the full benefit from recent advances in modeling and simulation. Zero power facilities such as the French ZPR MINERVE have already demonstrated that they can contribute to significantly reduce those uncertainties thanks to dedicated experiments. Historically, MINERVE has been mainly dedicated to thermal spectrum studies. However, experiments involving fast-thermal coupled cores were also performed in MINERVE as part of the ERMINE program, in order to improve nuclear data in fast spectra for the two French SFRs: PHENIX and SUPERPHENIX. Some of those experiments have been recently revisited. In particular, a full characterization of ZONA-1 and ZONA-3, two different cores loaded in the ERMINE V campaign, has been done, with much attention paid to possible sources of errors. It includes detailed geometric descriptions, energy profiles of the direct and adjoint fluxes and spectral indices obtained thanks to Monte Carlo calculations and compared to a reference fast core configuration. Sample oscillation experiments of separated fission products such as 103Rh or 99Tc, which were part of the ERMINE V program, have been simulated using recently-developed options in the TRIPOLI-4 code and compared to the experimental values. The present paper describes the corresponding results. The findings motivate in-depth studies for designing optimized coupled-core conditions in ZEPHYR, a new ZPR which will replace MINERVE and will provide integral data to meet the needs of Gen-III and Gen-IV reactors.
Comparison of integral cross section values of several cross section libraries in the SAND-II format
Zijp, W.L.; Nolthenius, H.J.
1978-01-01
A comparison of some integral cross section values for several cross section libraries in the SAND-II format is presented. The integral cross section values are calculated with aid of the spectrum functions for a Watt fission spectrum, a 1/E spectrum and a Maxwellian spectrum. The libraries which are considered here are CCC-112B, ENDF/B-IV, DETAN74, LAPENAS and CESNEF. These 5 cross section libraries used have all the SAND-II format. (author)
Knott, Gene; Tuley, Michael
2004-01-01
This is the second edition of the first and foremost book on this subject for self-study, training, and course work. Radar cross section (RCS) is a comparison of two radar signal strengths. One is the strength of the radar beam sweeping over a target, the other is the strength of the reflected echo sensed by the receiver. This book shows how the RCS ?gauge? can be predicted for theoretical objects and how it can be measured for real targets. Predicting RCS is not easy, even for simple objects like spheres or cylinders, but this book explains the two ?exact? forms of theory so well that even a
Precise measurements of neutron capture cross sections for FP
Nakamura, Shoji; Harada, Hideo; Katoh, Toshio
2000-01-01
The thermal neutron capture cross sections (σ 0 ) and the resonance integrals (I 0 ) of some fission products (FP), such as 137 Cs, 90 Sr, 99 Tc, 129 I and 135 Cs, were measured by the activation and γ-ray spectroscopic methods. Moreover, the cross section measurements were done for other FP elements, such as 127 I, 133 Cs and 134 Cs. This paper provides the summary of the FP cross section measurements, which have been performed by authors. (author)
Comparison of integral cross section values of several cross section libraries in the SAND-II format
Zijp, W.L.; Nolthenius, H.J.
1976-09-01
A comparison of some integral cross-section values for several cross-section libraries in the SAND-II format is presented. The integral cross-section values are calculated with the aid of the spectrum functions for a Watt fission spectrum, a 1/E spectrum and a Maxwellian spectrum. The libraries which are considered here are CCC-112B, ENDF/B-IV, DETAN74, LAPENAS and CESNEF. These 5 cross-section libraries used have all the SAND-II format. Discrepancies between cross-sections in the different libraries are indicated but not discussed
Meadows, J.W.
1986-12-01
The measurement of the fission cross section ratios of nine isotopes relative to /sup 235/U at an average neutron energy of 14.74 MeV is described with particular attention to the determination of corrections and to sources of error. The results are compared to ENDF/B-V and to other measurements of the past decade. The ratio of the neutron induced fission cross section for these isotopes to the fission cross section for /sup 235/U are: /sup 230/Th - 0.290 +- 1.9%; /sup 232/Th - 0.191 +- 1.9%; /sup 233/U - 1.132 +- 0.7%; /sup 234/U - 0.998 +- 1.0%; /sup 236/U - 0.791 +- 1.1%; /sup 238/U - 0.587 +- 1.1%; /sup 237/Np - 1.060 +- 1.4%; /sup 239/Pu - 1.152 +- 1.1%; /sup 242/Pu - 0.967 +- 1.0%. 40 refs., 11 tabs., 9 figs.
Cognet, M A
2007-12-15
Producing nuclear energy in order to reduce anthropic CO{sub 2} emission and to meet high energy demand, implies three conditions to the nuclear plants of the IV. generation: safety improvements, radioactive waste minimization, and fuel breeding for a sustainable use of the resources. The Thorium fuel cycle used in Molten Salt Reactors seems promising. Many numerical studies based on probabilistic codes are carried out in order to analyse the behaviour of such reactors. Nevertheless, one of the most important parameters is badly known: the alpha ratio of {sup 233}U, ratio of the neutron capture cross section to fission one for {sup 233}U. This key-parameter is necessary to calculate the breeding ratio and thus, the deployment capacities of those reactors. This Ph-D thesis was intended to prepare a precise measurement of the alpha ratio of {sup 233}U between 1 eV and 10 keV. Preliminary measurements have been performed on the experimental platform PEREN. This experimental environment is composed of a lead slowing-down time spectrometer associated with an intense pulsed neutron generator. Capture and fission rates are measured thanks to eight scintillators with their photomultipliers, surrounding a fission chamber. A software analysis sets the coincidence rate between the scintillators. In order to understand perfectly the experimental setup, preliminary tests using a {sup 235}U fission chamber have been done. This experiment resulted in a very low signal to background ratio (1 %). The background coming from the scintillators themselves seriously handicapped the measurement. Another series of experiment has been done with scintillators 5 times thinner. Nevertheless, the signal to background ratio should still be increased to measure the capture of {sup 235}U. To make sure that the experimental setup has totally been understood, we made many comparisons between experimental results and simulations. Two simulation codes were mainly used: MCNP and GEANT4. We paid
Cognet, M.A
2007-12-15
Producing nuclear energy in order to reduce anthropic CO{sub 2} emission and to meet high energy demand, implies three conditions to the nuclear plants of the IV. generation: safety improvements, radioactive waste minimization, and fuel breeding for a sustainable use of the resources. The Thorium fuel cycle used in Molten Salt Reactors seems promising. Many numerical studies based on probabilistic codes are carried out in order to analyse the behaviour of such reactors. Nevertheless, one of the most important parameters is badly known: the alpha ratio of {sup 233}U, ratio of the neutron capture cross section to fission one for {sup 233}U. This key-parameter is necessary to calculate the breeding ratio and thus, the deployment capacities of those reactors. This Ph-D thesis was intended to prepare a precise measurement of the alpha ratio of {sup 233}U between 1 eV and 10 keV. Preliminary measurements have been performed on the experimental platform PEREN. This experimental environment is composed of a lead slowing-down time spectrometer associated with an intense pulsed neutron generator. Capture and fission rates are measured thanks to eight scintillators with their photomultipliers, surrounding a fission chamber. A software analysis sets the coincidence rate between the scintillators. In order to understand perfectly the experimental setup, preliminary tests using a {sup 235}U fission chamber have been done. This experiment resulted in a very low signal to background ratio (1 %). The background coming from the scintillators themselves seriously handicapped the measurement. Another series of experiment has been done with scintillators 5 times thinner. Nevertheless, the signal to background ratio should still be increased to measure the capture of {sup 235}U. To make sure that the experimental setup has totally been understood, we made many comparisons between experimental results and simulations. Two simulation codes were mainly used: MCNP and GEANT4. We paid
Intermediate structure studies of 234U cross sections
James, G.D.; Schindler, R.H.
1976-01-01
Neutron induced fission and total cross sections of 234 U have been measured over the neutron energy range from a few eV to several MeV. Neutron and fission widths for 118 cross section resonances below 1500 eV have been determined and give a class I level spacing of 10.64 + -0.46 eV and a neutron strength function of (0.857 +- 0.108)x10 -4 . These fine structure resonances comprise a narrow intermediate structure resonance in the sub-threshold fission cross section of 234 U. Parameters for the Lorentzian energy dependence of the mean fission width are deduced on the assumption that, relative to this mean, the observed fission widths have a Porter-Thomas distribution. Two large fission widths measured for resonances at 1092.5 eV and 1134 eV may indicate the presence of a second narrow intermediate structure resonance at about this energy. The class II level spacing derived from the observation of 7 resonances below 13 keV is 2.1 +-0.3 keV. Pronounced breaks in the fission cross section at 310 keV, 550 keV and 720 keV are assumed to be due to β-vibrational levels in the second minimum of the Strutinsky potential. Fluctuations due to the presence of class II resonances are strongly evident for each of these vibrational levels. It is shown that the fluctuations near 310 keV are consistent with parameters deduced from the low energy data and this enables parameters for the double humped fission barrier potential to be obtained
Evaluation of Cm-247 neutron cross sections in the resonance region
Martinelli, T.; Menapace, E.; Motta, M.; Vaccari, M.
1980-01-01
The neutron cross sections of Cm-247 are evaluated in the resonance (resolved and unresolved) region up to 10 keV. Average resonance parameters (i.e. spacing D, fission and radiative widths, neutron strength functions) are determined for unresolved region calculations. Moreover for a better comparison with the experimental data, fission cross section is calculated up to 10 MeV. In addition, the average number of neutrons emitted per fission as a function of energy is estimated
Cross sections for atmospheric corrections
Meyer, J.P.; Casse, M.; Westergaard, N.
1975-01-01
A set of cross sections for spallation of relativistic nuclei is proposed based on (i) the best available proton cross sections, (ii) an extrapolation to heavier nuclei of the dependence on the number of nucleons lost of the 'target factor' observed for C 12 and O 16 by Lindstrom et al. (1975), in analogy with Rudstam's formalism, and (iii) on a normalization of all cross sections to the total cross sections for production of fragments with Asub(f) >= 6. The obtained cross sections for peripheral interactions are not inconsistent with simple geometrical considerations. (orig.) [de
Neutron capture cross section of $^{93}$Zr
We propose to measure the neutron capture cross section of the radioactive isotope $^{93}$Zr. This project aims at the substantial improvement of existing results for applications in nuclear astrophysics and emerging nuclear technologies. In particular, the superior quality of the data that can be obtained at n_TOF will allow on one side a better characterization of s-process nucleosynthesis and on the other side a more accurate material balance in systems for transmutation of nuclear waste, given that this radioactive isotope is widely present in fission products.
Neutron cross section measurements for the Fast Breeder Program
Block, R.C.
1979-06-01
This research was concerned with the measurement of neutron cross sections of importance to the Fast Breeder Reactor. The capture and total cross sections of fission products ( 101 102 104 Ru, 143 145 Nd, 149 Sm, 95 97 Mo, Cs, Pr, Pd, 107 Pd, 99 Tc) and tag gases (Kr, 78 80 Kr) were measured up to 100 keV. Filtered neutron beams were used to measure the capture cross section of 238 U (with an Fe filter) and the total cross section of Na (with a Na filter). A radioactive neutron capture detector was developed. A list of publications is included
Elliptical cross section fuel rod study II
Taboada, H.; Marajofsky, A.
1996-01-01
In this paper it is continued the behavior analysis and comparison between cylindrical fuel rods of circular and elliptical cross sections. Taking into account the accepted models in the literature, the fission gas swelling and release were studied. An analytical comparison between both kinds of rod reveals a sensible gas release reduction in the elliptical case, a 50% swelling reduction due to intragranular bubble coalescence mechanism and an important swelling increase due to migration bubble mechanism. From the safety operation point of view, for the same linear power, an elliptical cross section rod is favored by lower central temperatures, lower gas release rates, greater gas store in ceramic matrix and lower stored energy rates. (author). 6 refs., 8 figs., 1 tab
A Pebble Bed Reactor cross section methodology
Hudson, Nathanael H.; Ougouag, Abderrafi M.; Rahnema, Farzad; Gougar, Hans
2009-01-01
A method is presented for the evaluation of microscopic cross sections for the Pebble Bed Reactor (PBR) neutron diffusion computational models during convergence to an equilibrium (asymptotic) fuel cycle. This method considers the isotopics within a core spectral zone and the leakages from such a zone as they arise during reactor operation. The randomness of the spatial distribution of fuel grains within the fuel pebbles and that of the fuel and moderator pebbles within the core, the double heterogeneity of the fuel, and the indeterminate burnup of the spectral zones all pose a unique challenge for the computation of the local microscopic cross sections. As prior knowledge of the equilibrium composition and leakage is not available, it is necessary to repeatedly re-compute the group constants with updated zone information. A method is presented to account for local spectral zone composition and leakage effects without resorting to frequent spectrum code calls. Fine group data are pre-computed for a range of isotopic states. Microscopic cross sections and zone nuclide number densities are used to construct fine group macroscopic cross sections, which, together with fission spectra, flux modulation factors, and zone buckling, are used in the solution of the slowing down balance to generate a new or updated spectrum. The microscopic cross-sections are then re-collapsed with the new spectrum for the local spectral zone. This technique is named the Spectral History Correction (SHC) method. It is found that this method accurately recalculates local broad group microscopic cross sections. Significant improvement in the core eigenvalue, flux, and power peaking factor is observed when the local cross sections are corrected for the effects of the spectral zone composition and leakage in two-dimensional PBR test problems.
2009-01-01
This conference is dedicated to the last achievements in experimental and theoretical aspects of the nuclear fission process. The topics include: mass, charge and energy distribution, dynamical aspect of the fission process, nuclear data evaluation, quasi-fission and fission lifetime in super heavy elements, fission fragment spectroscopy, cross-section and fission barrier, and neutron and gamma emission. This document gathers the program of the conference and the slides of the presentations
NDS multigroup cross section libraries
DayDay, N.
1981-12-01
A summary description and documentation of the multigroup cross section libraries which exist at the IAEA Nuclear Data Section are given in this report. The libraries listed are available either on tape or in printed form. (author)
Validation of evaluated neutron standard cross sections
Badikov, S.; Golashvili, T.
2008-01-01
Some steps of the validation and verification of the new version of the evaluated neutron standard cross sections were carried out. In particular: -) the evaluated covariance data was checked for physical consistency, -) energy-dependent evaluated cross-sections were tested in most important neutron benchmark field - 252 Cf spontaneous fission neutron field, -) a procedure of folding differential standard neutron data in group representation for preparation of specialized libraries of the neutron standards was verified. The results of the validation and verification of the neutron standards can be summarized as follows: a) the covariance data of the evaluated neutron standards is physically consistent since all the covariance matrices of the evaluated cross sections are positive definite, b) the 252 Cf spectrum averaged standard cross-sections are in agreement with the evaluated integral data (except for 197 Au(n,γ) reaction), c) a procedure of folding differential standard neutron data in group representation was tested, as a result a specialized library of neutron standards in the ABBN 28-group structure was prepared for use in reactor applications. (authors)
Evaluation of the (n,xn) and (n,xnf) cross sections for heavy nuclei with the statistical model
Jary, J.
1975-01-01
A method was presented to calculate the (n,xn) and (n,xnf) cross sections for the heavy nuclei having mass numbers of 232 1) without fission, according to the law of conventional statistical models, in the (n,xn) process. Fission can also compete with the emission of neutrons and γ-ray for the nuclei and the excitation energy considered. The fission cross sections of 235 U and 238 U recently evaluated by Sowerby and the fission cross section of 236 U have been used to determine the other parameters needed in the calculation. The fission widths of 239 U and 238 U have been obtained by fitting the first-chance and second-chance fission plateaus of the 238 U cross section. For the fission width of 238 U, good agreement was observed between the authors' results and Landrum and others' experimental data. (Iwase, T.)
XCOM: Photon Cross Sections Database
SRD 8 XCOM: Photon Cross Sections Database (Web, free access) A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z <= 100) at energies from 1 keV to 100 GeV.
Doppler broadening of cross sections
Buckler, P.A.C.; Pull, I.C.
1962-12-01
Expressions for temperature dependent cross-sections in terms of resonance parameters are obtained, involving generalisations of the conventional Doppler functions, ψ and φ. Descriptions of Fortran sub-routines, which calculate broadened cross-sections in accordance with the derived formulae, are included. (author)
Polynomial parameterized representation of macroscopic cross section for PWR reactor
Fiel, Joao Claudio B.
2015-01-01
The purpose of this work is to describe, by means of Tchebychev polynomial, a parameterized representation of the homogenized macroscopic cross section for PWR fuel element as a function of soluble boron concentration, moderator temperature, fuel temperature, moderator density and 235 U 92 enrichment. Analyzed cross sections are: fission, scattering, total, transport, absorption and capture. This parameterization enables a quick and easy determination of the problem-dependent cross-sections to be used in few groups calculations. The methodology presented here will enable to provide cross-sections values to perform PWR core calculations without the need to generate them based on computer code calculations using standard steps. The results obtained by parameterized cross-sections functions, when compared with the cross-section generated by SCALE code calculations, or when compared with K inf , generated by MCNPX code calculations, show a difference of less than 0.7 percent. (author)
R-matrix analysis of the /sup 239/Pu neutron cross sections
Saussure, G. de; Perez, R.B.; Macklin, R.L.
1986-03-01
/sup 239/Pu neutron cross-section data in the resolved resonance region were analyzed with the R-Matrix Bayesian Program SAMMY. Below 30 eV the cross sections computed with the multilevel parameters are consistent with recent fission and transmission measurements as well as with older capture and alpha measurements. Above 30 eV no suitable transmission data were available and only fission cross-section measurements were analyzed. However, since the analysis conserves the complete covariance matrix, the analysis can be updated by the Bayes method as transmission measurements become available. To date, the analysis of the fission measurements has been completed up to 300 eV.
Status of measured neutron cross sections of transactinium isotopes in the fast region
Igarasi, S.
1976-01-01
This paper reviews present status of measured neutron cross sections of transactinium isotopes from a viewpoint of requested data in application field of the nuclear data. The measured cross sections from 1 keV to 15 MeV are examined. Comparison between different data sets is mainly performed on the fission cross sections
Norbury, John W.
1992-01-01
Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.
High resolution measurement of the 237Np(n,f) cross section from 100keV to 2MeV
Plattard, S.; Pranal, Y.; Blons, J.
1975-01-01
237 Np fission is one of the reactions utilized in the threshold detector method of neutron spectrometry for the determination of fast neutron spectra in nuclear reactors. Therefore, an accurate knowledge of the energy-dependent fission cross section is essential for a precise generation of the spectral indices of this method. A high resolution measurement of the fission cross section is presented [fr
Kestelman, A.J.; Ribeiro Guevara, S.; Arribere, M.A.; Cohen, I.M.
2007-01-01
Making use of the method developed in our laboratory for the simultaneous determination of cross sections leading to both the ground and metastable states, we have measured the 68 Zn(n,p) 68g Cu and 68 Zn(n,p) 68m Cu reactions, using Zn enriched to 99.4% in its isotope 68 Zn. The measured cross sections are (15.04±0.35) and (3.69±0.30) μb for the ground and metastable state, respectively. However, a direct determination of the cross section leading to the metastable state gives a value of (4.75±0.38) μb. A possible reason for this discrepancy-which is outside experimental uncertainties-is that some tabulated values used in our calculations for the decay parameters of 68g Cu and 68m Cu, have either larger than quoted, or unknown systematic, uncertainties
Kestelman, A.J. [Laboratorio de Analisis por Activacion Neutronica, Centro Atomico Bariloche e Instituto Balseiro, Comision Nacional de Energia Atomica y Universidad Nacional de Cuyo, 8400 Bariloche (Argentina)]. E-mail: kestelma@cab.cnea.gov.ar; Ribeiro Guevara, S. [Laboratorio de Analisis por Activacion Neutronica, Centro Atomico Bariloche e Instituto Balseiro, Comision Nacional de Energia Atomica y Universidad Nacional de Cuyo, 8400 Bariloche (Argentina); Arribere, M.A. [Laboratorio de Analisis por Activacion Neutronica, Centro Atomico Bariloche e Instituto Balseiro, Comision Nacional de Energia Atomica y Universidad Nacional de Cuyo, 8400 Bariloche (Argentina); Cohen, I.M. [Universidad Tecnologica Nacional, Facultad Regional Buenos Aires, Medrano 951 (C1179AAQ) Buenos Aires (Argentina)
2007-07-15
Making use of the method developed in our laboratory for the simultaneous determination of cross sections leading to both the ground and metastable states, we have measured the {sup 68}Zn(n,p){sup 68g}Cu and {sup 68}Zn(n,p){sup 68m}Cu reactions, using Zn enriched to 99.4% in its isotope {sup 68}Zn. The measured cross sections are (15.04{+-}0.35) and (3.69{+-}0.30) {mu}b for the ground and metastable state, respectively. However, a direct determination of the cross section leading to the metastable state gives a value of (4.75{+-}0.38) {mu}b. A possible reason for this discrepancy-which is outside experimental uncertainties-is that some tabulated values used in our calculations for the decay parameters of {sup 68g}Cu and {sup 68m}Cu, have either larger than quoted, or unknown systematic, uncertainties.
Photon-splitting cross sections
Johannessen, A.M.; Mork, K.J.; Overbo, I.
1980-01-01
The differential cross section for photon splitting (scattering of one photon into two photons) in a Coulomb field, obtained earlier by Shima, has been integrated numerically to yield various differential cross sections. Energy spectra differential with respect to the energy of one of the outgoing photons are presented for several values of the primary photon energy. Selected examples of recoil momentum distributions and some interesting doubly or multiply differential cross sections are also given. Values for the total cross section are obtained essentially for all energies. The screening effect caused by atomic electrons is also taken into account, and is found to be important for high energies, as in e + e - pair production. Comparisons with various approximate results obtained by previous authors mostly show fair agreement. We also discuss the possibilities for experimental detection and find the most promising candidate to be a measurement of both photons, and their energies, at a moderately high energy
Neutron Cross Sections for Aluminium
Forsberg, Leif
1963-08-15
Total, elastic, inelastic, (n, 2n), (n, {alpha}), (n, p), and (n, {gamma}) cross sections for aluminium have been compiled from thermal to 100 MeV based upon literature search and theoretical interpolations and estimates. Differential elastic cross sections in the centre of mass system are represented by the Legendre coefficients. This method was chosen in order to obtain the best description of the energy dependence of the anisotropy.
Accurate Cross Sections for Microanalysis
Rez, Peter
2002-01-01
To calculate the intensity of x-ray emission in electron beam microanalysis requires a knowledge of the energy distribution of the electrons in the solid, the energy variation of the ionization cross section of the relevant subshell, the fraction of ionizations events producing x rays of interest and the absorption coefficient of the x rays on the path to the detector. The theoretical predictions and experimental data available for ionization cross sections are limited mainly to K shells of a...
Calculation of the Reaction Cross Section for Several Actinides
Hambsch, Franz-Josef; Oberstedt, Stephan; Vladuca, Gheorghita; Tudora, Anabella; Filipescu, Dan
2005-01-01
New, self-consistent, neutron-induced reaction cross-section calculations for 235,238U, 237Np, and 231,232,233Pa have been performed. The statistical model code STATIS was extended to take into account the multi-modality of the fission process. The three most dominant fission modes, the two asymmetric standard I (S1) and standard II (S2) modes, and the symmetric superlong (SL) mode have been taken into account. De-convoluted fission cross sections for these modes in 235,238U(n,f) and 237Np(n,f) based on experimental branching ratios, were calculated for the first time up to the second chance fission threshold. For 235U(n,f) and 233Pa(n,f), the calculations being made up to 50 MeV and 20 MeV incident neutron energy, respectively, higher fission chances have been considered. This implied the need for additional calculations for the neighbouring isotopes.As a side product also mass yield distributions could be calculated at energies hitherto not accessible by experiment. Experimental validation of the predictions is being envisaged
Fission theory and actinide fission data
Michaudon, A.
1975-06-01
The understanding of the fission process has made great progress recently, as a result of the calculation of fission barriers, using the Strutinsky prescription. Double-humped shapes were obtained for nuclei in the actinide region. Such shapes could explain, in a coherent manner, many different phenomena: fission isomers, structure in near-threshold fission cross sections, intermediate structure in subthreshold fission cross sections and anisotropy in the emission of the fission fragments. A brief review of fission barrier calculations and relevant experimental data is presented. Calculations of fission cross sections, using double-humped barrier shapes and fission channel properties, as obtained from the data discussed previously, are given for some U and Pu isotopes. The fission channel theory of A. Bohr has greatly influenced the study of low-energy fission. However, recent investigation of the yields of prompt neutrons and γ rays emitted in the resonances of {sup 235}U and {sup 239}Pu, together with the spin determination for many resonances of these two nuclei cannot be explained purely in terms of the Bohr theory. Variation in the prompt neutron and γ-ray yields from resonance to resonance does not seem to be due to such fission channels, as was thought previously, but to the effect of the (n,γf) reaction. The number of prompt fission neutrons and the kinetic energy of the fission fragments are affected by the energy balance and damping or viscosity effects in the last stage of the fission process, from saddle point to scission. These effects are discussed for some nuclei, especially for {sup 240}Pu.
Low Energy Neutrino Cross Sections
Zeller, G.P.
2004-01-01
Present atmospheric and accelerator based neutrino oscillation experiments operate at low neutrino energies (Ev ∼ 1 GeV) to access the relevant regions of oscillation parameter space. As such, they require precise knowledge of the cross sections for neutrino-nucleon interactions in the sub-to-few GeV range. At these energies, neutrinos predominantly interact via quasi-elastic (QE) or single pion production processes, which historically have not been as well studied as the deep inelastic scattering reactions that dominate at higher energies.Data on low energy neutrino cross sections come mainly from bubble chamber, spark chamber, and emulsion experiments that collected their data decades ago. Despite relatively poor statistics and large neutrino flux uncertainties, these measurements provide an important and necessary constraint on Monte Carlo models in present use. The following sections discuss the current status of QE, resonant single pion, coherent pion, and single kaon production cross section measurements at low energy
Suarez, P M [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche
1998-12-31
A literature search of cross sections averaged over the fission neutron spectrum confirms inconsistencies between calculated and experimental values for high threshold reactions. Since, in this case, calculated averaged cross sections are systematically lower than measured values, it is concluded that the representations used to carry out these calculations underestimate the number of neutrons in the high energy region of the spectrum. A careful measurement of the averaged cross section for the {sup 45}Sc(n,2n) {sup 44g}Sc and {sup 45}Sc(n,2n) {sup 44m}Sc high threshold reactions had been performed in the RA-6 Neutron Activation Analysis Laboratory after carefully checking that the neutron flux at the core position where the samples were being irradiated was indeed an undisturbed fission spectrum. The experimental values are greater than those calculated with either, Watt type representations or the one based on the Madland and Nix model for the prompt fission spectrum. In many areas of nuclear engineering, like validation of nuclear data, reactor calculations, applied nuclear physics, shielding design, etc., it is of great practical importance to have a representation for the neutron flux that can be expressed in a closed analytical form and that agrees with experimental results, specially for the most widely fissile nuclide, {sup 235}U. The results of the calculations mentioned above lead us to propose an analytical form for the {sup 235}U fission neutron spectrum that better agrees with experimental results in the whole energy spectrum. We propose two different forms; both are a modification of the Watt-type form that has been adopted within the ENDF/B-V files. One of the new analytical representations is defined in two regions: below 9.5 MeV it is exactly the same formula as that used within the ENDF/B-V files, above this energy the parameters of this formula are changed. The other proposed analytical representation is expressed by a single formula in the whole
Least squares analysis of fission neutron standard fields
Griffin, P.J.; Williams, J.G.
1997-01-01
A least squares analysis of fission neutron standard fields has been performed using the latest dosimetry cross sections. Discrepant nuclear data are identified and adjusted spectra for 252 Cf spontaneous fission and 235 U thermal fission fields are presented
Capture cross sections for very heavy systems
Rowley, N.; Grar, N.; Ntshangase, S.S.
2006-01-01
In intermediate-mass systems, collective excitations of the target and projectile can greatly enhance the sub-barrier capture cross section σ cap by giving rise to a distribution of Coulomb barriers. For such systems, capture essentially leads directly to fusion (formation of a compound nucleus (CN)), which then decays through the emission of light particles (neutrons, protons, and alpha particles). Thus the evaporation-residue (ER) cross section is essentially equal to σ cap . For heavier systems the experimental situation is significantly more complicated due to the presence of quasifission (QF) (rapid separation into two fragments before the CN is formed) and by fusion-fission (FF) of the CN itself. Thus three cross sections need to be measured in order to evaluate σ cap . Although the ER essentially recoil along the beam direction. QF and FF fragments are scattered to all angles and require the measurement of angular distribution in order to obtain the excitation function and barrier distribution for capture. Two other approaches to this problem exist. If QF is not important, one can still measure just the ER cross section and try to reconstruct the corresponding σ cap through use of an evaporation-model code that takes account of the FF degree of freedom. Some earlier results on σ cap obtained in this way will be re-analyzed with detail coupled-channels calculations, and the extra-push phenomenon discussed. One may also try to obtain σ cap by exploiting unitarity, that is, by measuring instead the flux of particles corresponding to quasielastic (QE) scattering from the Coulomb barrier. Some new QE results obtained for the 86 Kr + 208 Pb system at iThemba LABS in South Africa will be presented [ru
Measurements of Neutron Induced Cross Sections at the Oak Ridge Electron Linear Accelerator
Guber, K.H.; Harvey, J.A.; Hill, N.W.; Koehler, P.E.; Leal, L.C.; Sayer, R.O.; Spencer, R.R.
1999-01-01
We have used the Oak Ridge Electron Linear Accelerator (ORELA) to measure neutron total and the fission cross sections of 233 U in the energy range from 0.36 eV to 700 keV. We report average fission and total cross sections. Also, we measured the neutron total cross sections of 27 Al and Natural chlorine as well as the capture cross section of Al over an energy range from 100 eV up to about 400 keV
Measurements of neutron cross sections of radioactive waste nuclides
Katoh, Toshio [Gifu College of Medical Technology, Seki, Gifu (Japan); Harada, Hideo; Nakamura, Shoji; Tanase, Masakazu; Hatsukawa, Yuichi
1998-01-01
Accurate nuclear reaction cross sections of radioactive fission products and transuranic elements are required for research on nuclear transmutation methods in nuclear waste management. Important fission products in the nuclear waste management are {sup 137}Cs, {sup 135}Cs, {sup 90}Sr, {sup 99}Tc and {sup 129}I because of their large fission yields and long half-lives. The present authors have measured the neutron capture cross sections and resonance integrals of {sup 137}Cs, {sup 90}Sr and {sup 99}Tc. The purpose of this study is to measure the neutron capture cross sections and resonance integrals of nuclides, {sup 129}I and {sup 135}Cs accurately. Preliminary experiments were performed by using Rikkyo University Reactor and JRR-3 reactor at Japan Atomic Energy Research Institute (JAERI). Then, it was decided to measure the cross section and resonance integral of {sup 135}Cs by using the JRR-3 Reactor because this measurement required a high flux reactor. On the other hand, those of {sup 129}I were measured at the Rikkyo Reactor because the product nuclides, {sup 130}I and {sup 130m}I, have short half-lives and this reactor is suitable for the study of short lived nuclide. In this report, the measurements of the cross section and resonance integral of {sup 135}Cs are described. To obtain reliable values of the cross section and resonance integral of {sup 135}Cs(n, {gamma}){sup 136}Cs reaction, a quadrupole mass spectrometer was used for the mass analysis of nuclide in the sample. A progress report on the cross section of {sup 134}Cs, a neighbour of {sup 135}Cs, is included in this report. A report on {sup 129}I will be presented in the Report on the Joint-Use of Rikkyo University Reactor. (author)
Consistent evaluation of neutron cross sections for the 242-244Cm isotopes
Ignatyuk, A.V.; Maslov, V.M.
1989-01-01
The knowledge of neutron cross-sections for Curium isotopes is necessary for solving the problems of the external fuel cycle. Experimental information on the cross-sections is very meager and does not satisfy requirements and existing evaluations in different libraries differ substantially for fission and (n,2n) reaction cross-sections. This situation requires a critical review of the entire set of evaluations of the neutron cross-sections for Curium. 17 refs, 3 figs
Fission rate distribution at the 84-pin radial section of a SVEA-96 Optima2 BWR assembly
Perret, Gregory; Murphy, Michael F.; Jatuff, Fabian [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Chawla, Rakesh [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)
2008-07-01
Westinghouse boiling water reactor SVEA-96 Optima2 assemblies were studied during the LWRPROTEUS program at the PROTEUS facility in the Paul Scherrer Institute. Measured radial fission rate distributions at the 84-pin elevation are compared with MCNPX predictions using both ENDF/B-VI (Release 2) and JEFF-3.1 data libraries. Predicted fission rates agree within +-4.5% using both libraries. Fission rates were over-predicted in UO{sub 2} pins close to the missing 1/3 pins and under-predicted in UO{sub 2} pins close to the missing 2/3 pins. Recurrent under-estimations were observed in the UO{sub 2}-Gd{sub 2}O{sub 3} pins, for both libraries, which might be explained by over-estimated thermal cross-sections of {sup 157}Gd, as suggested in a recent work of G. Leinweber et al. (2006). (authors)
Terahertz radar cross section measurements
Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd
2010-01-01
We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar...
Barashenkov, V.S.
1990-01-01
The tables of inelastic and total cross sections of π ± mesons interactions with nuclei 4 He- 238 U are presented. The tables are obtained by theoretical analysis of known experimental data for energies higher some tens of MeV. 1 ref.; 1 tab
Progress in fission product nuclear data
Lammer, M.
1984-09-01
This is the tenth issue of a report series on Fission Product Data, which informs us about all the activities in this field, which are planned, ongoing, or have recently been completed. The types of activities included are measurements, compilations and evaluations of: fission product yields (neutron induced and spontaneous fission), neutron reaction cross sections of fission products, data related to the radioactive decay of fission products, delayed neutron data of fission products, lumped fission product data (decay heat, absorption, etc.). There is also a section with recent references relative to fission product nuclear data
Neutron cross sections for uranium-235 (ENDF/B-IV Release 3)
Lubitz, C.R.
1996-09-01
The resonance parameters in ENDF6 (Release 2) U235 were adjusted to make the average capture and fission cross sections below 900 eV agree with selected differential capture and fission measurements. The measurements chosen were the higher of the credible capture measurements and the lower of the fission results, yielding a higher epithermal alpha. In addition, the 2200 m/s cross sections were adjusted to obtain agreement with the integral value of K1. As a result, criticality calculations for thermal benchmarks, and agreement with a variety of integral parameters, are improved
Neutron total cross section measurements on 249Cf
Carlton, R.F.; Harvey, J.A.; Hill, N.W.; Pandey, M.S.; Benjamin, R.W.
1979-01-01
Neutron total cross section measurements were performed on a sample of 249 Cf (5.65 mg total weight) with the ORELA as a source of pulsed neutrons. The sample, the inverse thickness of which was 1542 barns/atom, consisted of 85.3% 249 Cf and 14.4% 249 Bk, and was cooled to liquid nitrogen temperature. Analyses were also made of data from a thin sample (l/n = 17430) of 65% 249 Cf in the region of the large fission resonance at 0.7 eV. Fifty-five resonances in 249 Cf were observed and analyzed over the energy range 0.1 eV to 90 eV by use of an R-matrix multilevel formalism. The resonance parameters obtained were used to determine the level spacing and the s-wave neutron and fission strength functions. Thermal total cross section measurements were also performed. 5 figures, 3 tables
Shcherbakov, O.A.; Laptev, A.B.; Petrov, G.A. [Petersburg Nuclear Physics Inst., Gatchina, Leningrad district (Russian Federation); Fomichev, A.V.; Donets, A.Y.; Osetrov, O.I.
1998-11-01
The measurements of neutron-induced cross-section ratios for Th232, U238, U233 and Np237 relative to U235 have been carried out in the energy range from 1 MeV up to 200 MeV using the neutron time-of-flight spectrometer GNEIS based on 1 GeV proton synchrocyclotron. Below 20 MeV, the results of present measurements are roughly in agreement with evaluated data though there are some discrepances to be resolved. (author)
Rae, E. R. [Atomic Energy Research Establishment, Harwell, Didcot, Berks. (United Kingdom)
1965-07-15
The cross-sections of the heavy nuclei for neutron-induced fission are of fundamental importance to the technology of nuclear energy production. The manner in which these cross-sections vary with the neutron energy and with the mass and charge of the target nuclei also provides much information on the structure of heavy nuclei. In the case of a thermally fissile target nucleus, as the neutron energy is increased from thermal the cross-section first exhibits an inverse velocity dependence, followed by a region in which sharp resonance peaks appear, and finally a continuum region where the cross-section exhibits relatively smooth steps and breaks. All these phenomena can be explained in principle, but certain features of the data have proved very difficult to explain quantitatively. Recent cross-section measurements, stimulated by the needs of reactor technology, have concentrated on improving the energy resolution and accuracy of the data on fuel materials, and this has led to a more detailed study of the resonance region, which is of considerable interest for reactor Doppler effect calculations. More accurate measurements at rather higher energies have established the existence of appreciable fission cross-sections below the so-called fission threshold in certain cases. Careful measurements of this nature have in turn stimulated interest in the interpretation of the cross-sections in terms of nuclear models on a firm quantitative basis. This paper outlines the main features of neutron-induced-fission cross-sections and their interpretation. Some emphasis is placed on recent improvements in the quality of the measurements and in attempts at quantitative interpretation of certain aspects of the data. (author) [French] Les sections efficaces de fission des noyaux lourds ont une importance essentielle pour la technologie de la production d'energie d'origine nucleaire. La maniere dont ces sections efficaces varient Selon l'energie des neutrons et Selon la masse et la
Hauser*5, a computer code to calculate nuclear cross sections
Mann, F.M.
1979-07-01
HAUSER*5 is a computer code that uses the statistical (Hauser-Feshbach) model, the pre-equilibrium model, and a statistical model of direct reactions to predict nuclear cross sections. The code is unrestricted as to particle type, includes fission and capture, makes width-fluctuation corrections, and performs three-body calculations - all in minimum computer time. Transmission coefficients can be generated internally or supplied externally. This report describes equations used, necessary input, and resulting output. 2 figures, 4 tables
Negative ion detachment cross sections
Champion, R.L.; Doverspike, L.D.
1992-10-01
The authors have measured absolute cross sections for electron detachment and charge exchange for collision of O and S with atomic hydrogen, have investigated the sputtering and photodesorption of negative ions from gas covered surfaces, and have begun an investigation of photon-induced field emission of electrons from exotic structures. Brief descriptions of these activities as well as future plans for these projects are given below
Uranium, thorium and bismuth photofission cross sections at high energies
Tavares, O.A.P.
1973-01-01
The U 238 , Th 232 and Bi 209 photofission using nuclear emulsion technique for fission fragments detection is presented. The photofission cross sections were measured using Bremsstrahlung photon which were produced irradiating thin tungsten radiators with electrons accelerated at the energy range from 1,0 to 5,5 GeV in the ''Deutsches Elektronen Synchrotron'' (Hamburg), and aluminium radiator with electrons accelarated at 16,0 GeV in Stanford Linear Accelerator Center. A special revelation technique for nuclear emulsion pellicles loaded with uranium and thorium, allowed the discrimination between alpha particles tracks and fission fragments tracks. The results show a decrease in the cross sections, which is in good agreement, within experimental errors, with the conclusions of other authors. The estimations from the two-step mechanism for high energy nuclear reactions (intranuclear cascade followed by fission-evaporation competition) show that, the primary interaction according to the photomesonic model and the quasi-deuteron photon interaction are sufficient to explain the general behavior exhibited by photofission cross sections for investigated nuclei. The calculations show a resonant structure around 300 MeV, with a width at half maximum of 200 MeV, and another not so pronounced, near to 700 MeV. (Author) [pt
Microscopic cross sections: An utopia?
Hilaire, S. [CEA Bruyeres-le-Chatel, DIF 91 (France); Koning, A.J. [Nuclear Research and Consultancy Group, PO Box 25, 1755 ZG Petten (Netherlands); Goriely, S. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, Campus de la Plaine, CP 226, 1050 Brussels (Belgium)
2010-07-01
The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)
Microscopic cross sections: An utopia?
Hilaire, S.; Koning, A.J.; Goriely, S.
2010-01-01
The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations.While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)
Fission in Empire-II version 2.19 beta1, Lodi
Sin, M.
2003-01-01
This is a description of the fission model implemented presently in EMPIRE-II. This package offers two ways to calculate the fission probability selected by parameters in the optional input. Fission barriers, fission transmission coefficients, fission cross sections and fission files are calculated
Belozerov, A V; Chepigin, V I; Drobina, T P; Gorshkov, V A; Kabachenko, A P; Malyshev, O N; Merkin, I M; Oganessian, Yu T; Popeko, A G; Sagaidak, R N; Svirikhin, A I; Yeremin, A V; Berek, G; Brida, I; Sáro, S
2003-01-01
Heavy-ion fusion reactions sup 4 sup 8 Ca+ sup 2 sup 0 sup 4 Pb and sup 4 sup 4 Ca+ sup 2 sup 0 sup 8 Pb leading to the same compound nucleus sup 2 sup 5 sup 2 No sup * were run in attempts to produce new neutron-deficient spontaneous-fission isotopes of sup 2 sup 4 sup 9 sup , sup 2 sup 5 sup 0 No using the electrostatic separator VASSILISSA. Production cross-sections for the spontaneous-fission activities with the half-lives 5.6 and 54 mu s observed in these reactions are compared with the measured ones for the well-known isotopes of sup 2 sup 5 sup 1 sup - sup 2 sup 5 sup 5 No formed in the heavy-ion fusion reactions sup 4 sup 8 Ca+ sup 2 sup 0 sup 6 Pb and sup 4 sup 8 Ca+ sup 2 sup 0 sup 8 Pb. The obtained excitation functions for the reaction products formed after the evaporation of 1-4 neutrons from the corresponding compound No nuclei have been compared with similar data obtained earlier and results of statistical model calculations. (orig.)
Wind Turbine Radar Cross Section
David Jenn
2012-01-01
Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.
Parameterized representation of macroscopic cross section for PWR reactor
Fiel, João Cláudio Batista; Carvalho da Silva, Fernando; Senra Martinez, Aquilino; Leal, Luiz C.
2015-01-01
Highlights: • This work describes a parameterized representation of the homogenized macroscopic cross section for PWR reactor. • Parameterization enables a quick determination of problem-dependent cross-sections to be used in few group calculations. • This work allows generating group cross-section data to perform PWR core calculations without computer code calculations. - Abstract: The purpose of this work is to describe, by means of Chebyshev polynomials, a parameterized representation of the homogenized macroscopic cross section for PWR fuel element as a function of soluble boron concentration, moderator temperature, fuel temperature, moderator density and 235 92 U enrichment. The cross-section data analyzed are fission, scattering, total, transport, absorption and capture. The parameterization enables a quick and easy determination of problem-dependent cross-sections to be used in few group calculations. The methodology presented in this paper will allow generation of group cross-section data from stored polynomials to perform PWR core calculations without the need to generate them based on computer code calculations using standard steps. The results obtained by the proposed methodology when compared with results from the SCALE code calculations show very good agreement
Cullen, D.E.
1978-01-01
Bonderenko self-shielded cross sections and multiband parameters from the Lawrence Livermore Laboratory Evaluated-Nuclear-Data Library (ENDL) as of July 4, 1978 are presented. These data include total, elastic, capture, and fission cross sections in the TART 175 group structure. Multiband parameters are listed. Bonderenko self-shielded cross section and the multiband parameters are presented on microfiche
Optical and statistical model calculation of the americium 242m capture cross section
Tellier, Henry.
1981-04-01
The capture cross sections of Am 242m can be deduced from resonances analysis at low energy and computed with theoretical models at high energy. In this work, a coherent set of cross sections which reproduced the experimental values of the fission cross sections is computed. These calculations were performed for an energy of the incoming neutron between 1 keV and 1 MeV
INTER, ENDF/B Thermal Cross-Sections, Resonance Integrals, G-Factors Calculation
Dunford, Charles L.
2007-01-01
1 - Description of program or function: INTER calculates thermal cross sections, g-factors, resonance integrals, fission spectrum averaged cross sections and 14.0 MeV (or other energy) cross sections for major reactions in an ENDF-6 or ENDF-5 format data file. Version 7.01 (Jan 2005): set success flag after return from beginning. 2 - Method of solution: INTER performs integrations by using the trapezoidal rule
[Fast neutron cross section measurements]: Progress report
1988-01-01
As projected in our previous proposal, the past year on the cross section project at the University of Michigan has been one primarily of construction and assembly of our 14 MeV pulsed Neutron Facility. All the components of the system have now been either purchased or fabricated in our shop facilities and have been assembled in their final configuration. We are now in the process of testing the rf components that have been designed to deliver voltage to both the pulser and buncher stages. We expect that the system will be operational by the end of the current contract year. We have also accomplished the design and construction of several other major pieces of equipment that are needed to begin fast neutron time-of-flight measurements. These include the primary proton recoil detector, and a californium fission chamber needed in the efficiency calibration of the primary detector. We have also added considerable concrete shielding designed to lower the neutron background in the experimental area. 10 figs., 5 tabs
Neutron cross section measurements at ORELA
Dabbs, J.W.T.
1979-01-01
ORELA (Oak Ridge Electron Linear Accelerator) has been for the last decade the most powerful and useful pulsed neutron time-of-flight facility in the world, particularly in the broad midrange of neutron energies (10 eV to 1 MeV). This position will be enhanced with the addition of a pulse narrowing prebuncher, recently installed and now under test. Neutron capture, fission, scattering, and total cross sections are measured by members of the Physics and Engineering Physics Divisions of ORNL, and by numerous guests and visitors. Several fundamental and applied measurements are described, with some emphasis on instrumentation used. The facility comprises the accelerator and its target(s), 10 evacuated neutron flight paths having 18 measurement stations at flight path distances 8.9 to 200 meters, and a complex 4-computer data acquisition system capable of handling some 17,000 32-bit events/s from a total of 12 data input ports. The system provides a total of 2.08 x 10 6 words of data storage on 3 fast disk units. In addition, a dedicated PDP-10 timesharing system with a 250-megabyte disk system and 4 PDP-15 graphic display satellites permits on-site data reduction and analysis. More than 10 man-years of application software development supports the system, which is used directly by individual experiments. 12 figures, 1 table
[Fast neutron cross section measurements
1991-01-01
In the 14 MeV Neutron Laboratory, we have continued the development of a facility that is now the only one of its kind in operation in the United States. We have refined the klystron bunching system described in last year's report to the point that 1.2 nanosecond pulses have been directly measured. We have tested the pulse shape discrimination capability of our primary NE 213 neutron detector. We have converted the RF sweeper section of the beamline to a frequency of 1 MHz to replace the function of the high voltage pulser described in last year's report which proved to be difficult to maintain and unreliable in its operation. We have also overcome several other significant experimental difficulties, including a major problem with a vacuum leak in the main accelerator column. We have completed additional testing to prove the remainder of the generation and measurement systems, but overcoming some of these experimental difficulties has delayed the start of actual data taking. We are now in a position to begin our first series of ring geometry elastic scattering measurements, and these will be underway before the end of the current contract year. As part of our longer term planning, we are continuing the conceptual analysis of several schemes to improve the intensity of our current pulsed beam. These include the provision of a duoplasmatron ion source and/or the provision of preacceleration bunching. Additional details are given later in this report. A series of measurements were carried out at the Tandem Dynamatron Facility involving the irradiation of a series of yttrium foils and the determination of activation cross sections using absolute counting techniques. The experimental work has been completed, and final analysis of the cross section data will be completed within several months
Maslov, V.M.
1998-01-01
Fission level densities (or fissioning nucleus level densities at fission saddle deformations) are required for statistical model calculations of actinide fission cross sections. Back-shifted Fermi-Gas Model, Constant Temperature Model and Generalized Superfluid Model (GSM) are widely used for the description of level densities at stable deformations. These models provide approximately identical level density description at excitations close to the neutron binding energy. It is at low excitation energies that they are discrepant, while this energy region is crucial for fission cross section calculations. A drawback of back-shifted Fermi gas model and traditional constant temperature model approaches is that it is difficult to include in a consistent way pair correlations, collective effects and shell effects. Pair, shell and collective properties of nucleus do not reduce just to the renormalization of level density parameter a, but influence the energy dependence of level densities. These effects turn out to be important because they seem to depend upon deformation of either equilibrium or saddle-point. These effects are easily introduced within GSM approach. Fission barriers are another key ingredients involved in the fission cross section calculations. Fission level density and barrier parameters are strongly interdependent. This is the reason for including fission barrier parameters along with the fission level densities in the Starter File. The recommended file is maslov.dat - fission barrier parameters. Recent version of actinide fission barrier data obtained in Obninsk (obninsk.dat) should only be considered as a guide for selection of initial parameters. These data are included in the Starter File, together with the fission barrier parameters recommended by CNDC (beijing.dat), for completeness. (author)
K+ nucleus total cross sections
Sawafta, R.
1990-01-01
The scattering of K + mesons from nuclei has attracted considerable interest in the last few years. The K + holds a very special position as the weakest of all strongly interaction probes. The average cross section is not larger than about 10 mb at lab momenta below 800 MeV/c, corresponding to a mean free path in the nucleus larger than 5 fm. Thus the K + is capable of probing the entire volume of the nucleus. Single scattering of the K + with a nucleon in the nucleus dominates the nuclear scattering, and only small and calculable higher order corrections are needed. The nucleon is a dynamical entity and its internal structure can, in principle, be altered by its surrounding nuclear environment. This work reports an experiment in which the K + is used to compare the nucleon in the nucleus with a free nucleon
Terahertz radar cross section measurements.
Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd
2010-12-06
We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar on full-size objects. The measurements are performed in a terahertz time-domain system with freely propagating terahertz pulses generated by tilted pulse front excitation of lithium niobate crystals and measured with sub-picosecond time resolution. The application of a time domain system provides ranging information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm.
Theory of nuclear fission: a review
Mosel, U.
1976-01-01
General properties of nuclear fission are reviewed and related to our present knowledge of fission theory. For this purpose the basic reasons for the shape of the fission barriers are discussed and their consequences compared with experimental results on barrier shapes and structures. Special emphasis is put on the asymmetry of the fission barriers and mass-distributions and its relation to the shells of the nascent fragment shells. Finally the problem of calculating fission cross sections is discussed
Mass dependence of positive pion-induced fission
Khan, H.A.; Khan, N.A.; Peterson, R.J.
1991-01-01
Fission cross sections for a range of targets have been measured by solid-state track detectors following 80 and 100 MeV π + bombardment. Fission probabilities have been inferred by comparison to computed reaction cross sections. Fission probabilities for heavy targets agree with those for other probes of comparable energy and with statistical calculations. Probabilities for lighter targets are much above those previously observed or computed. Ternary fission cross sections and multiplicities of light fragments have also been determined
Nuclear Forensics and Radiochemistry: Cross Sections
Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-11-08
The neutron activation of components in a nuclear device can provide useful signatures of weapon design or sophistication. This lecture will cover some of the basics of neutron reaction cross sections. Nuclear reactor cross sections will also be presented to illustrate the complexity of convolving neutron energy spectra with nuclear excitation functions to calculate useful effective reactor cross sections. Deficiencies in the nuclear database will be discussed along with tools available at Los Alamos to provide new neutron cross section data.
JENDL gas-production cross section file
Nakagawa, Tsuneo; Narita, Tsutomu
1992-05-01
The JENDL gas-production cross section file was compiled by taking cross-section data from JENDL-3 and by using the ENDF-5 format. The data were given to 23 nuclei or elements in light nuclei and structural materials. Graphs of the cross sections and brief description on their evaluation methods are given in this report. (author)
Integral nucleus-nucleus cross sections
Barashenkov, V.S.; Kumawat, H.
2003-01-01
Expressions approximating the experimental integral cross sections for elastic and inelastic interactions of light and heavy nuclei at the energies up to several GeV/nucleon are presented. The calculated cross sections are inside the corridor of experimental errors or very close to it. Described in detail FORTRAN code and a numerical example of the cross section approximation are also presented
Reconstruction of point cross-section from ENDF data file for Monte Carlo applications
Kumawat, H.; Saxena, A.; Carminati, F.; )
2016-12-01
Monte Carlo neutron transport codes are one of the best tools to simulate complex systems like fission and fusion reactors, Accelerator Driven Sub-critical systems, radio-activity management of spent fuel and waste, optimization and characterization of neutron detectors, optimization of Boron Neutron Capture Therapy, imaging etc. The neutron cross-section and secondary particle emission properties are the main input parameters of such codes. The fission, capture and elastic scattering cross-sections have complex resonating structures. Evaluated Nuclear Data File (ENDF) contains these cross-sections and secondary parameters. We report the development of reconstruction procedure to generate point cross-sections and probabilities from ENDF data file. The cross-sections are compared with the values obtained from PREPRO and in some cases NJOY codes. The results are in good agreement. (author)
A study of the differential cross section in subbarrier photofission of 238U
Lindgren, L.J.; Sandell, A.
1977-03-01
A measurement of the angular distribution and yield of fission fragments from photofission of 238 U has been performed between 5.2 MeV and 6.4 MeV. As γ-source the bremsstrahlung from a microtron has been used. For the detection of the fission fragments solid state track detectors were used. The yield data were evaluated to approximate cross sections. The data were analyzed within the framework of the double hump barrier model. (Auth.)
(237)Np(n,f) Cross Section: New Data and Present Status
Paradela, C; Carrapico, C; Eleftheriadis, C; Leeb, H; Calvino, F; Herrera-Martinez, A; Savvidis, I; Vlachoudis, V; Haas, B; Vannini, G; Le Naour, C; Gramegna, F; Wiescher, M; Pigni, M T; Audouin, L; Mengoni, A; Quesada, J; Becvar, F; Plag, R; Cennini, P; Mosconi, M; Duran, I; Rauscher, T; Couture, A; Capote, R; Sarchiapone, L; Vlastou, R; Domingo-Pardo, C; Dillmann, I; Pavlopoulos, P; Karamanis, D; Krticka, M; Jericha, E; Ferrari, A; Martinez, T; Trubert, D; Oberhummer, H; Karadimos, D; Plompen, A; Isaev, S; Terlizzi, R; Kaeppeler, F; Cortes, G; Cox, J; Voss, F; Pretel, C; Colonna, N; Berthoumieux, E; Vaz, P; Heil, M; Lopes, I; Lampoudis, C; Walter, S; Calviani, M; Gonzalez-Romero, E; Embid-Segura, M; Stephan, C; Igashira, M; Papachristodoulou, C; Aerts, G; Tavora, L; Berthier, B; Rudolf, G; Andrzejewski, J; Villamarin, D; Ferreira-Marques, R; Tain, J L; O'Brien, S; Gunsing, F; Reifarth, R; Perrot, L; Lindote, A; Neves, F; Poch, A; Kerveno, M; Rubbia, C; Koehler, P; Dahlfors, M; Wisshak, K; Salgado, J; Dridi, W; Ventura, A; Andriamonje, S; Assimakopoulos, P; Santos, C; Ferrant, L; Lozano, M; Patronis, N; Chiaveri, E; Guerrero, C; Kadi, Y; Vicente, M C; Praena, J; Baumann, P; Oshima, M; Rullhusen, P; Furman, W; David, S; Marrone, S; Tassan-Got, L; Cano-Ott, D; Pavlix, A; Alvarez-Velarde, F; Massimi, C; Mastinu, P; Pancin, J; Papadopoulos, C; Tagliente, G; Haight, R; Chepel, V; Kossionides, E; Badurek, G; Marganiec, J; Lukic, S; Tarrio, D; Alvarez, H
2011-01-01
In this document, we present the final result obtained at the n_TOF experiment; for the neutron-induced fission cross section of the (237)Np, from the fission threshold up to 1 GeV. The method applied to get tins result is briefly discussed. n_TOF data are compared to the last experimental measurements using other TOF facilities or the surrogate method, reported experiments performed with monoenergetic sources and the FISCAL systematic, including a discussion about the existing discrepancies.
Average cross sections calculated in various neutron fields
Shibata, Keiichi
2002-01-01
Average cross sections have been calculated for the reactions contained in the dosimetry files, JENDL/D-99, IRDF-90V2, and RRDF-98 in order to select the best data for the new library IRDF-2002. The neutron spectra used in the calculations are as follows: 1) 252 Cf spontaneous fission spectrum (NBS evaluation), 2) 235 U thermal fission spectrum (NBS evaluation), 3) Intermediate-energy Standard Neutron Field (ISNF), 4) Coupled Fast Reactivity Measurement Facility (CFRMF), 5) Coupled thermal/fast uranium and boron carbide spherical assembly (ΣΣ), 6) Fast neutron source reactor (YAYOI), 7) Experimental fast reactor (JOYO), 8) Japan Material Testing Reactor (JMTR), 9) d-Li neutron spectrum with a 2-MeV deuteron beam. The items 3)-7) represent fast neutron spectra, while JMTR is a light water reactor. The Q-value for the d-Li reaction mentioned above is 15.02 MeV. Therefore, neutrons with energies up to 17 MeV can be produced in the d-Li reaction. The calculated average cross sections were compared with the measurements. Figures 1-9 show the ratios of the calculations to the experimental data which are given. It is found from these figures that the 58 Fe(n, γ) cross section in JENDL/D-99 reproduces the measurements in the thermal and fast reactor spectra better than that in IRDF-90V2. (author)
[Fast neutron cross section measurements
Knoll, G.F.
1992-01-01
From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are ''clean'' and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its ''data production'' phase
Relativistic photon-Maxwellian electron cross sections
Wienke, B.R.; Lathrop, B.L.; Devaney, J.J.
1986-01-01
Temperature corrected cross sections, complementing the Klein-Nishina set, are developed for astrophysical, plasma, and transport applications. The set is obtained from a nonlinear least squares fit to the exact photon-Maxwellian electron cross sections, using the static formula as the asymptotic basis. Two parameters are sufficient (two decimal places) to fit the exact cross sections over a range of 0-100 keV in electron temperature, and 0-1 MeV in incident photon energy. The fit is made to the total cross sections, yet the parameters predict both total and differential scattering cross sections well. Corresponding differential energy cross sections are less accurate. An extended fit to (just) the total cross sections, over the temperature and energy range 0-5 MeV, is also described. (author)
Actinide cross section data and inertial confinement fusion for long term waste disposal
Meldner, H.
1979-01-01
Actinide cross section data at thermonuclear neutron energies are needed for the calculation of ICF pellet center burnup of fission reactor waste, viz. 14 MeV neutron fission of the very long-lived actinides that pose storage problems. A major advantage of pellet center burnup is safety: only milligrams of highly toxic and active material need to be present in the fusion chamber, whereas blanket burnup requires the continued presence of tons of actinides in a small volume. The actinide data tables required for Monte Carlo calculations of the burnup of 241 Am and 243 Am are discussed in connection with typical burnup reactor fusion and fission spectra. 2 figures
Review of the microscopic cross sections for the americium isotopes in the resolved resonance region
Browne, J.C.
1978-01-01
The differential cross section measurements for 241 Am, /sup 242m/Am and 243 Am are reviewed in the energy range from 0.5 eV to 10 keV. Parameters extracted from resonance analysis, such as the neutron strength function, the average level spacing, the average capture and fission widths, are compared for the various measurements. The average capture and fission cross sections from 100 eV to 10 keV are directly compared. The status of the data set is discussed with suggestions for further measurements. 24 references
Effective cross sections of U-235 and Au in a TRIGA-type reactor core
Harasawa, S.; Auu, G.A.
1992-01-01
The dependence of effective cross sections of gold and uranium for neutron spectrum in Rikkyo University Reactor (TRIGA Mark- II, RUR) fuel cell was studied using computer calculations. The dependence of thermal neutron spectrum with temperature was also investigated. The effective cross section of gold in water of the fuel cell at 32degC was 90.3 barn and the fission cross section of U-235, 483 barn. These two values are similar to the cross sections for neutron energy of 0.034 eV. (author)
Validation of Cross Sections with Criticality Experiment and Reaction Rates: the Neptunium Case
Leong, L S; Audouin, L; Berthier, B; Le Naour, C; Stéphan, C; Paradela, C; Tarrío, D; Duran, I
2014-01-01
The Np-237 neutron-induced fission cross section has been recently measured in a large energy range (from eV to GeV) at the n\\_TOF facility at CERN. When compared to previous measurements the n\\_TOF fission cross section appears to be higher by 5-7\\% beyond the fission threshold. To check the relevance of the n\\_TOF data, we considered a criticality experiment performed at Los Alamos with a 6 kg sphere of Np-237, surrounded by uranium highly enriched in U-235 so as to approach criticality with fast neutrons. The multiplication factor k(eff) of the calculation is in better agreement with the experiment when we replace the ENDF/B-VII. 0 evaluation of the Np-237 fission cross section by the n\\_TOF data. We also explored the hypothesis of deficiencies of the inelastic cross section in U-235 which has been invoked by some authors to explain the deviation of 750 pcm. The large modification needed to reduce the deviation seems to be incompatible with existing inelastic cross section measurements. Also we show that t...
Background-cross-section-dependent subgroup parameters
Yamamoto, Toshihisa
2003-01-01
A new set of subgroup parameters was derived that can reproduce the self-shielded cross section against a wide range of background cross sections. The subgroup parameters are expressed with a rational equation which numerator and denominator are expressed as the expansion series of background cross section, so that the background cross section dependence is exactly taken into account in the parameters. The advantage of the new subgroup parameters is that they can reproduce the self-shielded effect not only by group basis but also by subgroup basis. Then an adaptive method is also proposed which uses fitting procedure to evaluate the background-cross-section-dependence of the parameters. One of the simple fitting formula was able to reproduce the self-shielded subgroup cross section by less than 1% error from the precise evaluation. (author)
Scattering cross section for various potential systems
Myagmarjav Odsuren
2017-08-01
Full Text Available We discuss the problems of scattering in this framework, and show that the applied method is very useful in the investigation of the effect of the resonance in the observed scattering cross sections. In this study, not only the scattering cross sections but also the decomposition of the scattering cross sections was computed for the α–α system. To obtain the decomposition of scattering cross sections into resonance and residual continuum terms, the complex scaled orthogonality condition model and the extended completeness relation are used. Applying the present method to the α–α and α–n systems, we obtained good reproduction of the observed phase shifts and cross sections. The decomposition into resonance and continuum terms makes clear that resonance contributions are dominant but continuum terms and their interference are not negligible. To understand the behavior of observed phase shifts and the shape of the cross sections, both resonance and continuum terms are calculated.
Scattering cross section for various potential systems
Odsuren, Myagmarjav; Khuukhenkhuu, Gonchigdorj; Davaa, Suren [Nuclear Research Center, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar (Mongolia); Kato, Kiyoshi [Nuclear Reaction Data Centre, Faculty of Science, Hokkaido University, Sapporo (Japan)
2017-08-15
We discuss the problems of scattering in this framework, and show that the applied method is very useful in the investigation of the effect of the resonance in the observed scattering cross sections. In this study, not only the scattering cross sections but also the decomposition of the scattering cross sections was computed for the α–α system. To obtain the decomposition of scattering cross sections into resonance and residual continuum terms, the complex scaled orthogonality condition model and the extended completeness relation are used. Applying the present method to the α–α and α–n systems, we obtained good reproduction of the observed phase shifts and cross sections. The decomposition into resonance and continuum terms makes clear that resonance contributions are dominant but continuum terms and their interference are not negligible. To understand the behavior of observed phase shifts and the shape of the cross sections, both resonance and continuum terms are calculated.
Cross-section methodology in SIMMER
Soran, P.D.
1975-11-01
The cross-section methodology incorporated in the SIMMER code is described. Data base for all cross sections is the ENDF/B system with various progressing computer codes to group collapse and modify the group constants which are used in SIMMER. Either infinitely dilute cross sections or the Bondarenko formalism can be used in SIMMER. Presently only a microscopic treatment is considered, but preliminary macroscopic algorithms have been investigated
Cross-section methodology in SIMMER
Soran, P.D.
1976-05-01
The cross-section methodology incorporated in the SIMMER code is described. Data base for all cross sections is the ENDF/B system with various progressing computer codes to group collapse and modify the group constants which are used in SIMMER. Either infinitely dilute cross sections or the Bondarenko formalism can be used in SIMMER. Presently only a microscopic treatment is considered, but preliminary macroscopic algorithms have been investigated
High ET jet cross sections at CDF
Flaugher, B.
1996-08-01
The inclusive jet cross section for p anti p collisions at √s = 1.8 TeV as measured by the CDF collaboration will be presented. Preliminary CDF measurements of the Σ E T cross section at √s = 1.8 TeV and the central inclusive jet cross section at √s = 0.630 TeV will also be shown
Measurements of neutron capture cross sections
Nakajima, Yutaka
1984-01-01
A review of measurement techniques for the neutron capture cross sections is presented. Sell transmission method, activation method, and prompt gamma-ray detection method are described using examples of capture cross section measurements. The capture cross section of 238 U measured by three different prompt gamma-ray detection methods (large liquid scintillator, Moxon-Rae detector, and pulse height weighting method) are compared and their discrepancies are resolved. A method how to derive the covariance is described. (author)
Recommended activation detector cross sections (RNDL-82)
Bondars, Kh.Ya.; Lapenas, A.A.
1984-01-01
The results of the comparison between measured and calculated average cross sections in 5 benchmark experiments are presented. Calculations have been based on the data from 10 libraries of evaluated cross sections. The recommended library (RNDL-82) of the activation detector cross sections has been created on the basis of the comparison. RNDL-82, including 26 reactions, and the basic characteristics of the detectors are presented. (author)
A theoretical framework is described, allowing to determine the fission barrier height using the observed cross sections of fission induced by the (d,p)-transfer with accuracy, which is not achievable in another type of low-energy fission of neutron-deficient nuclei, the $\\beta$-delayed fission. The primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission of...
Total neutron cross section of lead
Kanda, K.; Aizawa, O.
1976-01-01
The total thermal-neutron cross section of natural lead under various physical conditions was measured by the transmission method. It became clear that the total cross section at room temperature previously reported is lower than the present data. The total cross section at 400, 500, and 600 0 C, above the melting point of lead, 327 0 C, was also measured, and the changes in the cross section as a function of temperature were examined, especially near and below the melting point. The data obtained for the randomly oriented polycrystalline state at room temperature were in reasonable agreement with the theoretical values calculated by the THRUSH and UNCLE-TOM codes
Electron collision cross sections of mercury
Suzuki, Susumu; Kuzuma, Kiyotaka; Itoh, Haruo
2006-01-01
In this paper, we propose a new collision cross section set for mercury which revises the original set summarized by Hayashi in 1989. Hanne reported three excitation collision cross sections (6 3 P 0 , 6 3 P 1 , 6 3 P 2 ) determined from an electron beam experiment in 1988. As a matter for regret, no attentive consideration was given to combining these three excitation cross sections with the cross section set of Hayashi. Therefore we propose a new set where these three excitation cross sections are included. In this study, other two excitation cross sections (6 1 P 1 , 6 3 D 3 ) except for the three excitation collision cross sections (6 3 P 0 , 6 3 P 1 , 6 3 P 2 ) are taken from the original set of Hayashi. The momentum transfer cross section and the ionization collision cross section are also taken from Hayashi. A Monte Carlo Simulation (MCS) technique is applied for evaluating our new cross section set. The present results of the electron drift velocity and the ionization coefficient are compared to experimental values. Agreement is secured in relation to the electron drift velocity for 1.5 Td 2 ) is the reduced electric field, E (V/cm) is the electric field, N (1/cm 3 ) is the number density of mercury atoms at 0degC, 1 Torr, E/N is also equal to 2.828 x 10 -17 E/p 0 from the relation of the ideal gas equation, p 0 (Torr) is gas pressure at 0degC, 1 Torr=1.33322 x 10 -2 N/cm -2 and 10 -17 V/cm 2 is called 1 Td. Thus it is ensured that our new cross section set is reasonable enough to be used up to 100 eV when considering with the electron drift velocity and the ionization coefficient. (author)
Analysis of the 239Pu neutron cross sections from 300 to 2000 eV
Derrien, H.; de Saussure, G.
1990-01-01
A recent high-resolution measurement of the neutron fission cross section of 239 Pu has allowed the extension from 1 to 2 keV of a previously reported resonance analysis of the neutron cross sections, and an improvement of the previous analysis in the range 0.3 to 1 keV. This report analyzes this region. 8 refs., 1 fig., 2 tabs
Evaluated (n,p) cross sections of 46Ti, 47Ti and 48Ti
Philis, C.; Bersillon, O.; Smith, D.; Smith, A.
1977-01-01
Microscopic evaluated neutron cross sections for the reactions 46 Ti(n;p) 46 Sc, 47 Ti(n;p) 47 Sc and 48 Ti(n;p) 48 Sc are obtained from threshold (or zero energy) to 20 MeV. The results are presented in graphical and numerical (ENDF format) form. The microscopic evaluated cross sections are compared with measured fission-spectrum-averaged values
Pronyaev, V.; Carlson, A.D.; Capote Noy, R.; Wallner, A.
2011-03-01
The meeting participants have considered the progress in the measurement and evaluation of neutron cross sections and spectra which can be used as standard or reference data. This includes extension of the 197 Au(n,γ) standard to the energy range below 200 keV, 235 U(n th ,f) prompt fission neutron spectrum and neutron induced gamma-production cross sections. The work on this data development project for next two years has been agreed. (author)
Larsen, R P; Dudey, N D; Crouthamel, C E; Tevebaugh, A D; Levenson, M; Vogel, R C
1972-09-01
Research and development efforts of the burnup, cross sections and dosimetry programs in the Chemical Engineering Division of Argonne National Laboratory are reported for the period January to June 1972. Work is reported in the following areas: (1) development of an X-ray spectrometric method for the determination of the rare-earth fission products and application of this method to the determinations of burnup in nuclear fuels; (2) determination of fast ·fission yields of bum up monitors and other fission products; (3) a search for a spon~aneously fissioning isomer of {sup 241}Pu; (4) measurements of the tritium and alpha particle yields in fast-neutron fission of {sup 235}U and {sup 239}Pu; (5) evaluations of available data on the differential cross sections for the {sup 56}Fe(n,p){sup 56}Mn and {sup 32}S(n,p){sup 32}P reactions; and (6) measurements of both fission rates by solid-state track recorders and reaction rates by foil activation, in the Coupled Fast Reactivity Measurement Facility.
First measurement of the Rayleigh cross section
Naus, H.; Ubachs, W.
2000-01-01
Rayleigh cross section for N2, Ar and SF6 was performed using the technique of cavity ring-down spectroscopy (CRDS). The experiment was based on the assumption that scattering cross section is equal to the extinction in the absence of absorption. The theory explains the molecular origin of
Total cross section of highly excited strings
Lizzi, F.; Senda, I.
1990-01-01
The unpolarized total cross section for the joining of two highly excited strings is calculated. The calculation is performed by taking the average overall states in the given excitation levels of the initial strings. We find that the total cross section grows with the energy and momentum of the initial states. (author). 8 refs, 1 fig
Compilation of cross-sections. Pt. 1
Flaminio, V.; Moorhead, W.G.; Morrison, D.R.O.; Rivoire, N.
1983-01-01
A compilation of integral cross-sections for hadronic reactions is presented. This is an updated version of CERN/HERA 79-1, 79-2, 79-3. It contains all data published up to the beginning of 1982, but some more recent data have also been included. Plots of the cross-sections versus incident laboratory momentum are also given. (orig.)
Total cross section results for deuterium electrodisintegration
Skopik, D.M.; Murphy, J.J. II; Shin, Y.M.
1976-01-01
Theoretical total cross sections for deuterium electrodisintegration are presented as a function of incident electron energy. The cross section has been calculated using virtual photon theory with Partovi's photodisintegration calculation for E/subx/ > 10 MeV and effective range theory for E/subx/ 2 H(e, n) reaction in Tokamak reactors
Vibrational enhancement of total breakup cross sections
Haftel, M.I.; Lim, T.K.
1984-01-01
This paper considers the role of multi-two-body bound states, namely vibrational excitations, on total three-body breakup cross-sections. Total cross-sections are usually easy to measure, and they play a fundamental role in chemical kinetics. (orig.)
Compilation of cross-sections. Pt. 4
Alekhin, S.I.; Ezhela, V.V.; Lugovsky, S.B.; Tolstenkov, A.N.; Yushchenko, O.P.; Baldini, A.; Cobal, M.; Flaminio, V.; Capiluppi, P.; Giacomelli, G.; Mandrioli, G.; Rossi, A.M.; Serra, P.; Moorhead, W.G.; Morrison, D.R.O.; Rivoire, N.
1987-01-01
This is the fourth volume in our series of data compilations on integrated cross-sections for weak, electromagnetic, and strong interaction processes. This volume covers data on reactions induced by photons, neutrinos, hyperons, and K L 0 . It contains all data published up to June 1986. Plots of the cross-sections versus incident laboratory momentum are also given. (orig.)
Belanova, T.S.
1994-12-01
Data on the thermal neutron fission and capture cross-sections as well as their corresponding resonance integrals are reviewed and analysed. The data are classified according to the form of neutron spectra under investigation. The weighted mean values of the cross-sections and resonance integrals for every type of neutron spectra were adopted as evaluated data. (author). 87 refs, 2 tabs
Recommended evaluation procedure for photonuclear cross section
Lee, Young-Ouk; Chang, Jonghwa; Fukahori, Tokio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1998-03-01
In order to generate photonuclear cross section library for the necessary applications, data evaluation is combined with theoretical evaluation, since photonuclear cross sections measured cannot provide all necessary data. This report recommends a procedure consisting of four steps: (1) analysis of experimental data, (2) data evaluation, (3) theoretical evaluation and, if necessary, (4) modification of results. In the stage of analysis, data obtained by different measurements are reprocessed through the analysis of their discrepancies to a representative data set. In the data evaluation, photonuclear absorption cross sections are evaluated via giant dipole resonance and quasi-deutron mechanism. With photoabsorption cross sections from the data evaluation, theoretical evaluation is applied to determine various decay channel cross sections and emission spectra using equilibrium and preequilibrium mechanism. After this, the calculated results are compared with measured data, and in some cases the results are modified to better describe measurements. (author)
Comparative analysis among several cross section sets
Caldeira, A.D.
1983-01-01
Critical parameters were calculated using the one dimensional multigroup transport theory for several cross section sets. Calculations have been performed for water mixtures of uranium metal, plutonium metal and uranium-thorium oxide, and for metallics systems, to determine the critical dimensions of geometries (sphere and cylinder). For this aim, the following cross section sets were employed: 1) multigroup cross section sets obtained from the GAMTEC-II code; 2) the HANSEN-ROACH cross section sets; 3) cross section sets from the ENDF/B-IV, processed by the NJOY code. Finally, we have also calculated the corresponding critical radius using the one dimensional multigroup transport DTF-IV code. The numerical results agree within a few percent with the critical values obtained in the literature (where the greatest discrepancy occured in the critical dimensions of water mixtures calculated with the values generated by the NJOY code), a very good results in comparison with similar works. (Author) [pt
Cross-sectional anatomy for computed tomography
Farkas, M.L.
1988-01-01
This self-study guide recognizes that evaluation and interpretation of CT-images demands a firm understanding of both cross-sectional anatomy and the principles of computed tomography. The objectives of this book are: to discuss the basic principles of CT, to stress the importance of cross-sectional anatomy to CT through study of selected cardinal transverse sections of head, neck, and trunk, to explain orientation and interpretation of CT-images with the aid of corresponding cross-sectional preparations
Is the quasielastic pion cross section really bigger than the pion-nucleus reaction cross section
Silbar, R.R.
1979-01-01
It is shown that soft pion charge exchanges may increase the inclusive (π + ,π 0 ') cross section, relative to the total quasielastic (π + ,π + ') cross section, by as much as a factor of two. 4 references
R-matrix analyses of the 235U and 239Pu neutron cross sections
Derrien, H.; de Saussure, G.; Larson, N.M.; Leal, L.C.; Perez, R.B.
1988-01-01
The resonance parameter analysis code SAMMY was used to perform consistent resonance analyses of several 235 U and 239 Pu fission and capture cross section and transmission measurements up to 110 eV for 235 U and up to 1 keV for 239 Pu. The method of analysis, the measurement selection and the results are briefly outlined in this paper
Evaluation of neutron cross-sections for 242Cm to obtain a complete file
Bakhanovich, L.A.; Klepetskij, A.B.; Maslov, V.M.; Porodzinskij, Yu.V.; Sukhovitskij, E.Sh.
1994-01-01
Experimental fission, capture, inelastic scattering, (n2n), (n3n) and other cross-sections are scarce or unavailable. As a consequence, theoretical models and parameters systematics have been used extensively in the calculation of these data. Data obtained in this work are compared with previous evaluations. Severe discrepancies were found. (author). 10 refs, 2 figs, 2 tabs
Investigation on macroscopic cross section model for BWR pin-by-pin core analysis - 118
Fujita, T.; Tada, K.; Yamamoto, A.; Yamane, Y.; Kosaka, S.; Hirano, G.
2010-01-01
A cross section model used in the pin-by-pin core analysis for BWR is investigated. In the pin-by-pin core calculation method, pin-cell averaged cross sections are calculated for many combinations of state and history variables that have influences on the cross section and are tabulated prior to the core calculations. Variation of a cross section in a core simulator is classified into two different types, i.e., the instantaneous effect and the history effect. The instantaneous effect is incorporated by the variation of cross section which is caused by the instantaneous change of state variables. For this effect, the exposure, the void fraction, the fuel temperature, the moderator temperature and the control rod are used as indexes. The history effect is the cumulative effect of state variables. We treat this effect with a unified approach using the spectral history. To confirm accuracy of the cross section model, the pin-by-pin fission rate distribution and the k-infinity of fuel assembly which are obtained with the tabulated and the reference cross sections are compared. For the instantaneous effect, the present cross section model well reproduces the reference results for all off-nominal conditions. For the history effect, however, considerable differences both on the pin-by-pin fission rate distribution and the k-infinity are observed at high exposure points. (authors)
Contribution to the study of nuclear fission
Serot, O.
2009-09-01
The author proposes an overview of his research activity during the past fifteen years and more particularly that dealing with nuclear fission. The first part reports works on nucleus physics at the scission via the investigation of ternary fission (experimental procedure, influence of fission modes, influence of resonance spin, influence of excitation energy of the fissioning nucleus, emission probabilities, energy spectra of ternary alphas and tritons, emission mechanism). The second part reports measurements and assessments of neutron-induced fission cross sections. The third part reports the investigation of some properties of fission products (efficiencies, branching ratios of the main delayed neutron precursors)
Partial cross sections near the higher resonances
Falk-Vairant, P.; Valladas, G.
1961-07-01
As a continuation of the report given at the 10. Rochester Conference, recent measurements of charge-exchange cross section and π 0 production in π - -p interactions are presented here. Section 1 gives a summary of the known results for the elastic, inelastic, and charge-exchange cross sections. Section 2 presents the behavior of the cross sections in the T=1/2 state, in order to discuss the resonances at 600 and 890 MeV. Section 3 discusses the charge-exchange scattering and the interference term between the T=1/2 and T=3/2 states. Section 4 presents some comments on inelastic processes. This report is reprinted from 'Reviews of Modern Physics', Vol. 33, No. 3, 362-367, July, 1961
Neutron displacement damage cross sections for SiC
Huang Hanchen; Ghoniem, N.
1993-01-01
Calculations of neutron displacement damage cross sections for SiC are presented. We use Biersack and Haggmark's empirical formula in constructing the electronic stopping power, which combines Lindhard's model at low PKA energies and Bethe-Bloch's model at high PKA energies. The electronic stopping power for polyatomic materials is computed on the basis of Bragg's Additivity Rule. A continuous form of the inverse power law potential is used for nuclear scattering. Coupled integro-differential equations for the number of displaced atoms j, caused by PKA i, are then derived. The procedure outlined above gives partial displacement cross sections, displacement cross sections for each specie of the lattice, and for each PKA type. The corresponding damage rates for several fusion and fission neutron spectra are calculated. The stoichiometry of the irradiated material is investigated by finding the ratio of displacements among various atomic species. The role of each specie in displacing atoms is also investigated by calculating the fraction of displacements caused by each PKA type. The study shows that neutron displacement damage rates of SiC in typical magnetic fusion reactor first walls will be ∝10-15 dpa MW -1 m 2 ; in typical lead-protected inertial confinement fusion reactor first walls they will be ∝15-20 dpa MW -1 m 2 . For fission spectra, we find that the neutron displacement damage rate of SiC is ∝74 dpa per 10 27 n/m 2 in FFTF, ∝39 dpa per 10 27 n/m 2 in HFIR, and 25 dpa per 10 27 n/m 2 in NRU. Approximately 80% of displacement atoms are shown to be of the carbon-type. (orig.)
Electron-impact cross sections of Ne
Tsurubuchi, S.; Arakawa, K.; Kinokuni, S.; Motohashi, K.
2000-01-01
Electron-impact absolute emission cross sections were measured for the 3p→3s transitions of Ne. Excitation functions of the 3s→2p first resonance lines were measured in the energy range from the threshold to 1000 eV by a polarization-free optical method and relative cross sections were normalized to the absolute values, (41.0±5.4)x10 -19 cm 2 for the 73.6 nm line and (7.1±1.0)x10 -19 cm 2 for the 74.4 nm line, which were determined at 500 eV. The integrated level-excitation cross sections of Suzuki et al for the 1s 2 and 1s 4 levels were combined with the corresponding 3p→3s cascade cross sections obtained in this paper to give absolute emission cross sections for the resonance lines. The level-excitation cross sections of the 1s 2 and 1s 4 states in Paschen notation were determined from the threshold to 1000 eV by subtracting 3p→3s cascade cross sections from the corresponding 3s→2p emission cross sections of the resonance lines. A large cascade contribution is found in the emission cross section of the resonance lines. It is 28.5% for the 73.6 nm line and 49.6% for the 74.4 nm line at 40 eV, and 17.0 and 61.8%, respectively, at 300 eV. (author)
NNLO jet cross sections by subtraction
Somogyi, G.; Bolzoni, P.; Trocsanyi, Z.
2010-06-01
We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of an earlier NNLO subtraction scheme over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state. (orig.)
Differential Top Cross-section Measurements
Fenton, Michael James; The ATLAS collaboration
2017-01-01
The top quark is the heaviest known fundamental particle. The measurement of the differential top-quark pair production cross-section provides a stringent test of advanced perturbative QCD calculations. The ATLAS collaboration has performed detailed measurements of those differential cross sections at a centre-of-mass energy of 13 TeV. This talk focuses on differential cross-section measurements in the lepton+jets final state, including using boosted top quarks to probe our understanding of top quark production in the TeV regime.
Hardon cross sections at ultra high energies
Yodh, G.B.
1987-01-01
A review of results on total hadronic cross sections at ultra high energies obtained from a study of longitudinal development of cosmic ray air showers is given. The experimental observations show that proton-air inelastic cross section increases from 275 mb to over 500 mb as the collision energy in the center of mass increases from 20 GeV to 20 TeV. The proton-air inelastic cross section, obtained from cosmic ray data at √s = 30 TeV, is compared with calculations using various different models for the energy variation of the parameters of the elementary proton-proton interaction. Three conclusions are derived
NNLO jet cross sections by subtraction
Somogyi, G.; Bolzoni, P. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Trocsanyi, Z. [CERN, Geneva (Switzerland)
2010-06-15
We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of an earlier NNLO subtraction scheme over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state. (orig.)
NNLO jet cross sections by subtraction
Somogyi, Gabor; Trocsanyi, Zoltan
2010-01-01
We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of the NNLO subtraction scheme of [1-4], over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state.
Intermediate energy nuclear fission
Hylten, G.
1982-01-01
Nuclear fission has been investigated with the double-kinetic-energy method using silicon surface barrier detectors. Fragment energy correlation measurements have been made for U, Th and Bi with bremsstrahlung of 600 MeV maximum energy. Distributions of kinetic energy as a function of fragment mass are presented. The results are compared with earlier photofission data and in the case of bismuth, with calculations based on the liquid drop model. The binary fission process in U, Yb, Tb, Ce, La, Sb, Ag and Y induced by 600 MeV protons has been investigated yielding fission cross sections, fragment kinetic energies, angular correlations and mass distributions. Fission-spallation competition calculations are used to deduce values of macroscopic fission barrier heights and nuclear level density parameter values at deformations corresponding to the saddle point shapes. We find macroscopic fission barriers lower than those predicted by macroscopic theories. No indication is found of the Businaro Gallone limit expected to occur somewhere in the mass range A = 100 to A = 140. For Ce and La asymmetric mass distributions similar to those in the actinide region are found. A method is described for the analysis of angular correlations between complementary fission products. The description is mainly concerned with fission induced by medium-energy protons but is applicable also to other projectiles and energies. It is shown that the momentum and excitation energy distributions of cascade residuals leading to fission can be extracted. (Author)
Status of (n,2n) cross section measurements at Bruyeres-le-Chatel
Frehaut, J.; Bertin, A.; Bois, R.; Jary, J.
1980-05-01
Cross sections for the (n,2n) reactions have been measured between threshold and 15 MeV for about 50 elements and separated isotopes using the large gadolinium-loaded liquid scintillator method and the 7 MV tandem Van de Graaff accelerator as a pulsed neutron source. The (n,2n) cross sections have been normalized to the fission cross section of 238 U; they are obtained with a relative accuracy of 4% to 10%. The systematic trends of the data obtained on series of separated isotopes are discussed, and some comparaisons with statistical model calculations are presented
Remarks on the comparison of cross section libraries for neutron metrology
Zijp, W.L.; Nolthenius, H.J.; Appelman, K.H.
1977-01-01
Cross section libraries in a 620 group structure were available from different origin: CCC-112B, DETAN-74 and ENDF/B-IV. For a few well known neutron spectra (CFRMF spectrum, ΣΣ spectrum, fission neutron spectrum, HFR neutron spectrum) a comparison was made of the available experimental reaction rates in foil detectors and the reaction rates as calculated with the different cross section libraries. This investigation is dealing with the consistency of cross section data within a library, and the consistency of activity data in actual reaction rate determinations. Some preliminary conclusions are given
Recent progress in fast neutron activation cross section data
Michaelis, W.
A brief review is given of some significant investigations performed during the past few years in the area of fast neutron activation cross sections that may be relevant for the use of nuclear techniques in the exploration of mineral resources, in process and quality control in industry as well as for general analytical purposes. Differential capture cross sections are considered for the natural elements or isotopes of Fe, Cu, Se, Y, Nb, Cd, In, Gd, W, Os and Au. Some of the data are compared with statistical model calculations. Experimental and evaluated average cross sections for capture and threshold reactions in the spontaneous fission neutron field of 252 Cf are reviewed taking into account the elements or isotopes of Mg, Al, Si, S, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Sr, Zr, Nb, Cd, In, Ba, Ta and Au. A summary of recent studies of differential cross sections for threshold reactions comprises data on Al, Si, S, Ti, Fe, Co, Ni, Cu, Zn, Zr, Nb, Ta, W and Au. Besides experimental investigations, evaluations and theoretical model calculations are considered. Cross sections at 14 MeV and in the region around this energy are reviewed for Na, Mg, Al, Cl, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, Sr, Zr, Nb, In, Er, Yb, Ta, W, Os, Ir, Au and Pb. Particular emphasis is laid on (n,p), (n,2n) and (n,α) reactions. (n,n') reactions are allowed for if the half-life of the metastable state excited permits elemental analyses by common experimental techniques. (orig.)
Calculation of the resonance cross section functions
Slipicevic, K.F.
1967-11-01
This paper includes the procedure for calculating the Doppler broadened line shape functions ψ and χ which are needed for calculation of resonance cross section functions. The obtained values are given in tables
Measurement of multinucleon transfer cross-sections
Keywords. Ni(C, ), Fe(C, ), =C, C, B, B, Be, Be, Be, Be, Li, Li; = 60 MeV; measured reaction cross-section; elastic scattering angular distribution; deduced transfer probabilities and enhancement factors.
Capture cross sections on unstable nuclei
Tonchev, A. P.; Escher, J. E.; Scielzo, N.; Bedrossian, P.; Ilieva, R. S.; Humby, P.; Cooper, N.; Goddard, P. M.; Werner, V.; Tornow, W.; Rusev, G.; Kelley, J. H.; Pietralla, N.; Scheck, M.; Savran, D.; Löher, B.; Yates, S. W.; Crider, B. P.; Peters, E. E.; Tsoneva, N.; Goriely, S.
2017-09-01
Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.
Calculation of the resonance cross section functions
Slipicevic, K F [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)
1967-11-15
This paper includes the procedure for calculating the Doppler broadened line shape functions {psi} and {chi} which are needed for calculation of resonance cross section functions. The obtained values are given in tables.
Pion-nucleus cross sections approximation
Barashenkov, V.S.; Polanski, A.; Sosnin, A.N.
1990-01-01
Analytical approximation of pion-nucleus elastic and inelastic interaction cross-section is suggested, with could be applied in the energy range exceeding several dozens of MeV for nuclei heavier than beryllium. 3 refs.; 4 tabs
Status of neutron dosimetry cross sections
Griffin, P.J.; Kelly, J.G.
1992-01-01
Several new cross section libraries, such as ENDF/B-VI(release 2), IRDF-90,JEF-2.2, and JENDL-3 Dosimetry, have recently been made available to the dosimetry community. the Sandia National Laboratories (SNL) Radiation Metrology Laboratory (RML) has worked with these libraries since pre-release versions were available. this paper summarizes the results of the intercomparison and testing of dosimetry cross sections. As a result of this analysis, a compendium of the best dosimetry cross sections was assembled from the available libraries for use within the SNL RML. this library, referred to as the SNLRML Library, contains 66 general dosimetry sensors and 3 special dosimeters unique to the RML sensor inventory. The SNLRML cross sections have been put into a format compatible with commonly used spectrum determination codes
Tachyonic ionization cross sections of hydrogenic systems
Tomaschitz, Roman [Department of Physics, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima 739-8526 (Japan)
2005-03-11
Transition rates for induced and spontaneous tachyon radiation in hydrogenic systems as well as the transversal and longitudinal ionization cross sections are derived. We investigate the interaction of the superluminal radiation field with matter in atomic bound-bound and bound-free transitions. Estimates are given for Ly-{alpha} transitions effected by superluminal quanta in hydrogen-like ions. The tachyonic photoelectric effect is scrutinized, in the Born approximation and at the ionization threshold. The angular maxima occur at different scattering angles in the transversal and longitudinal cross sections, which can be used to sift out longitudinal tachyonic quanta in a photon flux. We calculate the tachyonic ionization and recombination cross sections for Rydberg states and study their asymptotic scaling with respect to the principal quantum number. At the ionization threshold of highly excited states of order n {approx} 10{sup 4}, the longitudinal cross section starts to compete with photoionization, in recombination even at lower levels.
a cross-sectional analytic study 2014
Assessment of HIV/AIDS comprehensive correct knowledge among Sudanese university: a cross-sectional analytic study 2014. ... There are limited studies on this topic in Sudan. In this study we investigated the Comprehensive correct ...
Capture cross sections on unstable nuclei
Tonchev A.P.
2017-01-01
Full Text Available Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.
Methods for calculating anisotropic transfer cross sections
Cai, Shaohui; Zhang, Yixin.
1985-01-01
The Legendre moments of the group transfer cross section, which are widely used in the numerical solution of the transport calculation can be efficiently and accurately constructed from low-order (K = 1--2) successive partial range moments. This is convenient for the generation of group constants. In addition, a technique to obtain group-angle correlation transfer cross section without Legendre expansion is presented. (author)
Heisenberg rise of total cross sections
Ezhela, V.V.; Yushchenko, O.P.
1988-01-01
It is shown that on the basis of the original idea of Heisenberg on the quasiclassical picture of extended particle interactions one can construct a satisfactory description of the total cross sections, elastic cross sections, elastic diffractive slopes and mean charged multiplicities in the cm energy range from 5 to 900 GeV, and produce reasonable extrapolations up to several tens of TeV. 14 refs.; 7 figs.; 2 tabs
Evaluation methods for neutron cross section standards
Bhat, M.R.
1980-01-01
Methods used to evaluate the neutron cross section standards are reviewed and their relative merits, assessed. These include phase-shift analysis, R-matrix fit, and a number of other methods by Poenitz, Bhat, Kon'shin and the Bayesian or generalized least-squares procedures. The problems involved in adopting these methods for future cross section standards evaluations are considered, and the prospects for their use, discussed. 115 references, 5 figures, 3 tables
Surrogate measurement of the 238Pu(n,f) cross section
Ressler, J. J.; Burke, J. T.; Escher, J. E.; Bernstein, L. A.; Bleuel, D. L.; Casperson, R. J.; Gostic, J.; Henderson, R.; Scielzo, N. D.; Thompson, I. J.; Wiedeking, M.; Angell, C. T.; Goldblum, B. L.; Munson, J.; Basunia, M. S.; Phair, L. W.; Beausang, C. W.; Hughes, R. O.; Hatarik, R.; Ross, T. J.
2011-01-01
The neutron-induced fission cross section of 238 Pu was determined using the surrogate ratio method. The (n,f) cross section over an equivalent neutron energy range 5-20 MeV was deduced from inelastic α-induced fission reactions on 239 Pu, with 235 U(α,α ' f) and 236 U(α,α ' f) used as references. These reference reactions reflect 234 U(n,f) and 235 U(n,f) yields, respectively. The deduced 238 Pu(n,f) cross section agrees well with standard data libraries up to ∼10 MeV, although larger values are seen at higher energies. The difference at higher energies is less than 20%.
Measured and evaluated neutron cross sections of elemental bismuth
Smith, A.; Guenther, P.; Smith, D.; Whalen, J.; Howerton, R.
1980-04-01
Neutron total cross sections of elemental bismuth are measured with broad resolution from 1.2 to 4.5 MeV to accuracies of approx. = 1%. Neutron-differential-elastic-scattering cross sections of bismuth are measured from 1.5 to 4.0 MeV at incident neutron energy intervals of approx.< 0.2 MeV over the scattered-neutron angular range approx. = 20 to 160 deg. Differential neutron cross sections for the excitation of observed states in bismuth at 895 +- 12, 1606 +- 14, 2590 +- 15, 2762 +- 29, 3022 +- 21, and 3144 +- 15 keV are determined at incident neutron energies up to 4.0 MeV. An optical-statistical model is deduced from the measured values. This model, the present experimental results, and information available elsewhere in the literature are used to construct a comprehensive evaluated nuclear data file for elemental bismuth in the ENDF format. The evaluated file is particularly suited to the neutronic needs of the fusion-fission hybrid designer. 87 references, 10 figures, 6 tables
(n,α reactions cross section research at IPPE
Giorginis G.
2012-02-01
Full Text Available An experimental set-up based on an ionization chamber with a Frisch grid and wave form digitizer was used for (n,α cross section measurements. Use of digital signal processing allowed us to select a gaseous cell inside the sensitive area of the ionization chamber and determine the target atoms in it with high accuracy. This kind of approach provided us with a powerful method to suppress background arising from the detector structure and parasitic reactions on the working gas components. This method is especially interesting to study neutron reactions with elements for which solid target preparation is difficult (noble gases for example. In the present experiments we used a set of working gases which contained admixtures of nitrogen, oxygen, neon, argon and boron. Fission of 238U was used as neutron flux monitor. The cross section of the (n,α reaction for 16O, 14N, 20Ne, 36Ar, 40Ar and the yield ratio α0/α1 of 10B(n,α0 to 10B(n,α1 reactions was measured for neutron energies between 1.5 and 7 MeV. Additionally a measurement of the 50Cr(n,α cross section using a solid chromium target is also reported.
Measurement of the U-234(n,f) cross section with PPAC detectors at the nTOF facility
Dobarro, C.P.
2005-06-01
The aim of this work was twofold: to measure the 234 U neutron-induced fission cross section in an extended energy range with an unprecedented resolution, and, in the process, to validate the experimental method we used at the new n-TOF-CERN facility. The experiment was designed in order to take advantage of the unique characteristics of the n-TOF facility: the long flight path offers a high energy resolution and the high-intensity, instantaneous neutron flux greatly reduces the background from the sample activities, making it possible to measure highly radioactive samples. The fission detection setup is based on an innovative technique that benefits from the use of very thin targets and detectors. Up to nine targets of high purity fission samples are sandwiched by Parallel Plate Avalanche Counters (PPAC). When a fission event happens, the two complementary fission fragments are detected by the PPACs adjacent to the fissioning target in a narrow time coincidence. Because several targets are simultaneously placed in-beam, relative measurements with respect to reference nuclei can be obtained. In this work, an original data-reduction method has been developed to deal with the particular characteristics of both the n-TOF data acquisition system, which is based on very accurate Flash-ADC digitizers, and the fission detection setup. The data reduction includes the coincidence windows and the signal amplitude requirements that we obtained from preliminary data analysis. The applied coincidence method is very powerful for dealing with the background rejection such as contamination by α activity, which is quite high for 234 U, and the signals produced by highly energetic reactions in the detectors. The data-reduction method also implements the fission event reconstruction using the position information obtained from the stripped cathodes and the delay line readout, which makes it possible to determine the fission fragment angular distributions, and the time-of-flight to
Belo, Thiago F.; Fiel, Joao Claudio B.
2015-01-01
Nuclear reactor core analysis involves neutronic modeling and the calculations require problem dependent nuclear data generated with few neutron energy groups, as for instance the neutron cross sections. The methods used to obtain these problem-dependent cross sections, in the reactor calculations, generally uses nuclear computer codes that require a large processing time and computational memory, making the process computationally very expensive. Presently, analysis of the macroscopic cross section, as a function of nuclear parameters, has shown a very distinct behavior that cannot be represented by simply using linear interpolation. Indeed, a polynomial representation is more adequate for the data parameterization. To provide the cross sections of rapidly and without the dependence of complex systems calculations, this work developed a set of parameterized cross sections, based on the Tchebychev polynomials, by fitting the cross sections as a function of nuclear parameters, which include fuel temperature, moderator temperature and density, soluble boron concentration, uranium enrichment, and the burn-up. In this study is evaluated the problem-dependent about fission, scattering, total, nu-fission, capture, transport and absorption cross sections for a typical PWR fuel element reactor, considering burn-up cycle. The analysis was carried out with the SCALE 6.1 code package. The results of comparison with direct calculations with the SCALE code system and also the test using project parameters, such as the temperature coefficient of reactivity and fast fission factor, show excellent agreements. The differences between the cross-section parameterization methodology and the direct calculations based on the SCALE code system are less than 0.03 percent. (author)
Belo, Thiago F.; Fiel, Joao Claudio B., E-mail: thiagofbelo@hotmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil)
2015-07-01
Nuclear reactor core analysis involves neutronic modeling and the calculations require problem dependent nuclear data generated with few neutron energy groups, as for instance the neutron cross sections. The methods used to obtain these problem-dependent cross sections, in the reactor calculations, generally uses nuclear computer codes that require a large processing time and computational memory, making the process computationally very expensive. Presently, analysis of the macroscopic cross section, as a function of nuclear parameters, has shown a very distinct behavior that cannot be represented by simply using linear interpolation. Indeed, a polynomial representation is more adequate for the data parameterization. To provide the cross sections of rapidly and without the dependence of complex systems calculations, this work developed a set of parameterized cross sections, based on the Tchebychev polynomials, by fitting the cross sections as a function of nuclear parameters, which include fuel temperature, moderator temperature and density, soluble boron concentration, uranium enrichment, and the burn-up. In this study is evaluated the problem-dependent about fission, scattering, total, nu-fission, capture, transport and absorption cross sections for a typical PWR fuel element reactor, considering burn-up cycle. The analysis was carried out with the SCALE 6.1 code package. The results of comparison with direct calculations with the SCALE code system and also the test using project parameters, such as the temperature coefficient of reactivity and fast fission factor, show excellent agreements. The differences between the cross-section parameterization methodology and the direct calculations based on the SCALE code system are less than 0.03 percent. (author)
Calculation of 235U(n,n') cross sections for ENDF/B-VI
Young, P.G.; Arthur, E.D.
1988-01-01
Cross sections for neutron-induced reactions on 235 U between 0.01 and 20 MeV have been calculated in a preliminary analysis for the ENDF/B-VI evaluation with particular emphasis on neutron inelastic scattering. A deformed optical model potential that fits total, elastic, inelastic, and low-energy average resonance data is used to calculate direct (n,n') cross sections and transmission coefficients for a Hauser-Feshbach statistical theory analysis using a multiple fission barrier representation. Direct cross sections for higher-lying vibrational states are provided from DWBA calculations, normalized using B(E/ital l/) values determined from (d,d') and Coulomb excitation data. Initial fission barrier parameters and transition state density enhancements appropriate to the compound systems involved were obtained from previous analyses, especially fits to charged-particle fission probability data. Further modifications to fit 235 U(n,f) data were small, and the final fission parameters are generally consistent with published values. The results from this preliminary analysis are compared with the ENDF/B-V evaluation as well as with experimental data. 26 refs., 5 figs., 3 tabs
The fast fission effect in a cylindrical fuel element
Carlvik, I; Pershagen, B
1959-06-15
A new formula for the fast fission factor is derived, which takes proper account to fast capture. The fission neutron spectrum is divided into two groups with constant fission cross section in one group and zero fission cross section in the other. The average total, elastic, inelastic and capture cross sections in the two groups are calculated. Different assumptions regarding anisotropic and inelastic scattering are investigated. The effects of backscattering from the moderator and fast fission in neighbouring fuel elements are pointed out. Formulas for the fast fission ratio and for the fast conversion ratio are derived. The calculated fast fission ratios are compared with experimental values. Curves are given for the fast fission factor in uranium metal and uranium oxide.
Neutron-induced capture cross sections via the surrogate reaction method
Boutoux, G.; Jurado, B.; Aiche, M.; Barreau, G.; Capellan, N.; Companis, I.; Czajkowski, S.; Dassie, D.; Haas, B.; Mathieu, L.; Meot, V.; Bail, A.; Bauge, E.; Daugas, J. M.; Faul, T.; Gaudefroy, L.; Morel, P.; Pillet, N.; Roig, O.; Romain, P.; Taieb, J.; Theroine, C.; Burke, J.T.; Companis, I.; Derkx, X.; Gunsing, F.; Matea, I.; Tassan-Got, L.; Porquet, M.G.; Serot, O.
2011-01-01
The surrogate reaction method is an indirect way of determining cross sections for nuclear reactions that proceed through a compound nucleus. This technique enables neutron-induced cross sections to be extracted for nuclear reactions on short-lived unstable nuclei that otherwise can not be measured. This technique has been successfully applied to determine the neutron-induced fission cross sections of several short-lived nuclei. In this work, we investigate whether this powerful technique can also be used to determine of neutron-induced capture cross sections. For this purpose we use the surrogate reaction 174 Yb( 3 He, pγ) 176 Lu to infer the well known 175 Lu(n, γ) cross section and compare the results with the directly measured neutron-induced data. This surrogate experiment has been performed in March 2010. The experimental technique used and the first preliminary results will be presented. (authors)
Konshin, V.A.
1981-01-01
Neutron cross section calculational methods for actinides in the unresolved resonance energy range (1-150 kev) are discussed, with a special emphasis on calculation of width fluctuation factors for the generalized distribution, as well as for a sub-threshold fission. It is shown that the energy dependence of sub(J), the (n,n') -process competition and the structure in neutron cross section has to be taken into account in the energy range considered. Analysis of different approaches in the statistical theory for heavy nuclei neutron cross-section calculation is given, and it is shown to be important to allow for the (n,γf)-reaction in neutron cross section calculations for fissile nuclei. The use of the non-spherical potential, the Lorentzian spectral factor and the Fermi-gas model involving the collective modes enables to obtain the self-consistent data for all neutron cross sections, including σnγ. (author)
Top quark production cross-section measurements
Chen, Ye; The ATLAS collaboration
2017-01-01
Measurements of the inclusive and differential cross-sections for top-quark pair and single top production cross sections in proton-proton collisions with the ATLAS detector at the Large Hadron Collider are presented at center-of-mass energies of 8 TeV and 13 TeV. The inclusive measurements reach high precision and are compared to the best available theoretical calculations. These measurements, including results using boosted tops, probe our understanding of top-pair production in the TeV regime. The results are compared to Monte Carlo generators implementing LO and NLO matrix elements matched with parton showers and NLO QCD calculations. For the t-channel single top measurement, the single top-quark and anti-top-quark total production cross-sections, their ratio, as well as differential cross sections are also presented. A measurement of the production cross-section of a single top quark in association with a W boson, the second largest single-top production mode, is also presented. Finally, measurements of ...
Contribution to uncertainties evaluation for fast reactors neutronic cross sections
Privas, Edwin
2015-01-01
The thesis has been motivated by a wish to increase the uncertainty knowledge on nuclear data, for safety criteria. It aims the cross sections required by core calculation for sodium fast reactors (SFR), and new tools to evaluate its.The main objective of this work is to provide new tools in order to create coherent evaluated files, with reliable and mastered uncertainties. To answer those problematic, several methods have been implemented within the CONRAD code, which is developed at CEA of Cadarache. After a summary of all the elements required to understand the evaluation world, stochastic methods are presented in order to solve the Bayesian inference. They give the evaluator more information about probability density and they also can be used as validation tools. The algorithms have been successfully tested, despite long calculation time. Then, microscopic constraints have been implemented in CONRAD. They are defined as new information that should be taken into account during the evaluation process. An algorithm has been developed in order to solve, for example, continuity issues between two energy domains, with the Lagrange multiplier formalism. Another method is given by using a marginalization procedure, in order to either complete an existing evaluation with new covariance or add systematic uncertainty on an experiment described by two theories. The algorithms are well performed along examples, such the 238 U total cross section. The last parts focus on the integral data feedback, using methods of integral data assimilation to reduce the uncertainties on cross sections. This work ends with uncertainty reduction on key nuclear reactions, such the capture and fission cross sections of 238 U and 239 Pu, thanks to PROFIL and PROFIL-2 experiments in Phenix and the Jezebel benchmark. (author) [fr
FIZCON, ENDF/B Cross-Sections Redundancy Check
Dunford, Charles L.
2007-01-01
1 - Description of program or function: FIZCON is a program for checking that an evaluated data file has valid data and conforms to recommended procedures. Version 7.01 (April 2005): set success flag after return from beginning; fixed valid level check for an isomer; fixed subsection energy range test in ckf9; changed lower limit on potential scattering test; fixed error in j-value test when l=0 and i=0; added one more significant figure to union grid check and sum up output messages; partial fission cross sections mt=19,20,21 and 38 did not require secondary energy distributions in file 5; corrected product test for elastic scattering; moved potential scattering test to psyche. Version 7.02 (May 2005): Fixed resonance parameter sum test. 2 - Method of solution: FIZCON can recognise the difference between ENDF-6 and ENDF-5 formats and performs its tests accordingly. Some of the tests performed include: data arrays are in increasing energy order; resonance parameter widths add up to the total; Q-values are reasonable and consistent; no required sections are missing and all cover the proper energy range; secondary distributions are normalized to 1.0; energy conservation in decay spectra. Optional tests can be performed to check the redundant cross sections, and algorithms can be used to check for possible incorrect entry of data values (Deviant Point test)
Homogenized group cross sections by Monte Carlo
Van Der Marck, S. C.; Kuijper, J. C.; Oppe, J.
2006-01-01
Homogenized group cross sections play a large role in making reactor calculations efficient. Because of this significance, many codes exist that can calculate these cross sections based on certain assumptions. However, the application to the High Flux Reactor (HFR) in Petten, the Netherlands, the limitations of such codes imply that the core calculations would become less accurate when using homogenized group cross sections (HGCS). Therefore we developed a method to calculate HGCS based on a Monte Carlo program, for which we chose MCNP. The implementation involves an addition to MCNP, and a set of small executables to perform suitable averaging after the MCNP run(s) have completed. Here we briefly describe the details of the method, and we report on two tests we performed to show the accuracy of the method and its implementation. By now, this method is routinely used in preparation of the cycle to cycle core calculations for HFR. (authors)
Photoproton cross section for /sup 19/F
Tsubota, H [Tohoku Univ., Sendai (Japan). Coll. of General Education; Kawamura, N; Oikawa, S; Uegaki, J I
1975-02-01
Proton energy spectra have been measured at 90/sup 0/ for the /sup 19/F(e,e'p)/sup 18/O reaction in the giant resonance region. The (..gamma..,p/sub 0/) and (..gamma..,p/sub 1/) differential cross sections are extracted from the proton energy spectra by using virtual-photon spectra. The integrated differential cross section of the (..gamma..,p/sub 0/) and (..gamma..,p/sub 1/) reactions are 1.80+-0.27 and 0.50+-0.45 MeV-mb/sr, respectively. The results are discussed with the shell model theory by comparing with the (..gamma..,p/sub 0/) cross section of the neighboring 4n-nucleus /sup 20/Ne. A significant increase of the proton yield leaving the non-ground states is found at 25 MeV of the incident electron energy. This is discussed in terms of the core excitation effect.
Prospects for Precision Neutrino Cross Section Measurements
Harris, Deborah A. [Fermilab
2016-01-28
The need for precision cross section measurements is more urgent now than ever before, given the central role neutrino oscillation measurements play in the field of particle physics. The definition of precision is something worth considering, however. In order to build the best model for an oscillation experiment, cross section measurements should span a broad range of energies, neutrino interaction channels, and target nuclei. Precision might better be defined not in the final uncertainty associated with any one measurement but rather with the breadth of measurements that are available to constrain models. Current experience shows that models are better constrained by 10 measurements across different processes and energies with 10% uncertainties than by one measurement of one process on one nucleus with a 1% uncertainty. This article describes the current status of and future prospects for the field of precision cross section measurements considering the metric of how many processes, energies, and nuclei have been studied.
NNLO jet cross sections by subtraction
Somogyi, G.; Bolzoni, P. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Trocsanyi, Z. [CERN PH-TH, on leave from University of Debrecen and Institute of Nuclear Research of HAS, H-4001 P.O.Box 51 (Hungary)
2010-08-15
We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of the NNLO subtraction scheme of Refs. [G. Somogyi, Z. Trocsanyi, and V. Del Duca, JHEP 06, 024 (2005), (arXiv:hep-ph/0502226); G. Somogyi and Z. Trocsanyi, (2006), (arXiv:hep-ph/0609041); G. Somogyi, Z. Trocsanyi, and V. Del Duca, JHEP 01, 070 (2007), (arXiv:hep-ph/0609042); G. Somogyi and Z. Trocsanyi, JHEP 01, 052 (2007), (arXiv:hep-ph/0609043)] over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state.
NNLO jet cross sections by subtraction
Somogyi, G.; Bolzoni, P.; Trocsanyi, Z.
2010-01-01
We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of the NNLO subtraction scheme of Refs. [G. Somogyi, Z. Trocsanyi, and V. Del Duca, JHEP 06, 024 (2005), (arXiv:hep-ph/0502226); G. Somogyi and Z. Trocsanyi, (2006), (arXiv:hep-ph/0609041); G. Somogyi, Z. Trocsanyi, and V. Del Duca, JHEP 01, 070 (2007), (arXiv:hep-ph/0609042); G. Somogyi and Z. Trocsanyi, JHEP 01, 052 (2007), (arXiv:hep-ph/0609043)] over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state.
Optical Model and Cross Section Uncertainties
Herman,M.W.; Pigni, M.T.; Dietrich, F.S.; Oblozinsky, P.
2009-10-05
Distinct minima and maxima in the neutron total cross section uncertainties were observed in model calculations using spherical optical potential. We found this oscillating structure to be a general feature of quantum mechanical wave scattering. Specifically, we analyzed neutron interaction with 56Fe from 1 keV up to 65 MeV, and investigated physical origin of the minima.We discuss their potential importance for practical applications as well as the implications for the uncertainties in total and absorption cross sections.
Cross sections for charm production by neutrinos
Ushida, N [Aichi Univ. of Education, Kariya (Japan). Dept. of Physics; Kondo, T [Fermi National Accelerator Lab., Batavia, IL (USA); Fujioka, G; Fukushima, J; Takahashi, Y; Tatsumi, S; Yokoyama, C [Kobe Univ. (Japan). Dept. of Physics; Homma, Y; Tsuzuki, Y [Kobe Univ. (Japan). Coll. of Liberal Arts; Bahk, S
1983-02-03
The production of charmed particles has been measured using a hybrid emulsion spectrometer in the Fermilab wide-band neutrino beam. The relative cross section for charged current charmed particle production is sigma(v -> ..mu../sup -/c)/sigma(v -> ..mu../sup -/) = 6.5 +- 1.9/1.8%, and the energy dependence of the cross section is presented. One event with charm pair production was observed. A limit of sigma(v -> ..mu..canti c)/sigma(v -> ..mu..c) < 6% (90% CL) is found for the ratio of charged current pair and single charm production.
Covariance Evaluation Methodology for Neutron Cross Sections
Herman,M.; Arcilla, R.; Mattoon, C.M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.; Pritychenko, b.; Songzoni, A.A.
2008-09-01
We present the NNDC-BNL methodology for estimating neutron cross section covariances in thermal, resolved resonance, unresolved resonance and fast neutron regions. The three key elements of the methodology are Atlas of Neutron Resonances, nuclear reaction code EMPIRE, and the Bayesian code implementing Kalman filter concept. The covariance data processing, visualization and distribution capabilities are integral components of the NNDC methodology. We illustrate its application on examples including relatively detailed evaluation of covariances for two individual nuclei and massive production of simple covariance estimates for 307 materials. Certain peculiarities regarding evaluation of covariances for resolved resonances and the consistency between resonance parameter uncertainties and thermal cross section uncertainties are also discussed.
Impact of New Gadolinium Cross Sections on Reaction Rate Distributions in 10 * 10 BWR Assemblies
Perret, G.; Murphy, M.F.; Jatuff, F.; Chawla, R. [Paul Scherrer Inst, CH-5232 Villigen, (Switzerland); Sublet, J.Ch.; Bouland, O. [DEN, Commissariat Energie Atom, F-13108 St Paul Les Durance, (France); Chawla, R. [Ecole Polytech Fed Lausanne, CH-1015 Lausanne, (Switzerland)
2009-07-01
Radial distributions of the total fission rate and the {sup 238}U-capture-to-total-fission (C{sub 8}/F{sub tot}) ratio were measured in SVEA-96+ and SVEA-96 Optima2 assemblies during the LWR-PROTEUS program. Fission rates predicted using MCNPX with JEFF-3.1 cross sections underestimated the measured values in the gadolinium-poisoned pins of the SVEA-96 Optima2 assembly; similarly, C{sub 8}/F{sub tot} ratios were overestimated in some gadolinium-poisoned pins of the SVEA-96+ assembly. A considerable effort was invested at the Paul Scherrer Institut to explain the discrepancies in gadolinium pins, without success. Recently, gadolinium cross sections were measured at the Rensselaer Polytechnic Institute by Leinweber et al. and differed significantly from current library values. ENDF/B-VII.0 gadolinium cross sections have currently been modified to include the new measurements, and these data have been processed with NJOY to yield files usable by MCNPX. Fission rates in the gadolinium-poisoned fuel pins of the SVEA-96 Optima2 pins were increased by 1.4 to 2.0% using the newly produced cross sections, yielding to a better agreement with the experimental values. Predicted C{sub 8}/F{sub tot} ratios were decreased on average by 1.7% in both clustered and un-clustered groups of gadolinium-poisoned fuel pins of the SVEA-96+ assembly correcting the over predictions previously reported in the clustered gadolinium pins. Earlier reported discrepancies observed in PROTEUS integral experiments, between measured and calculated reaction rates in the gadolinium-poisoned pins, might thus be due to inaccurate gadolinium cross sections. The PROTEUS results support the new thermal and epithermal gadolinium data measured by Leinweber et al. (authors)
Microscopic description of production cross sections including deexcitation effects
Sekizawa, Kazuyuki
2017-07-01
Background: At the forefront of the nuclear science, production of new neutron-rich isotopes is continuously pursued at accelerator laboratories all over the world. To explore the currently unknown territories in the nuclear chart far away from the stability, reliable theoretical predictions are inevitable. Purpose: To provide a reliable prediction of production cross sections taking into account secondary deexcitation processes, both particle evaporation and fission, a new method called TDHF+GEMINI is proposed, which combines the microscopic time-dependent Hartree-Fock (TDHF) theory with a sophisticated statistical compound-nucleus deexcitation model, GEMINI++. Methods: Low-energy heavy ion reactions are described based on three-dimensional Skyrme-TDHF calculations. Using the particle-number projection method, production probabilities, total angular momenta, and excitation energies of primary reaction products are extracted from the TDHF wave function after collision. Production cross sections for secondary reaction products are evaluated employing GEMINI++. Results are compared with available experimental data and widely used grazing calculations. Results: The method is applied to describe cross sections for multinucleon transfer processes in 40Ca+124Sn (Ec .m .≃128.54 MeV ), 48Ca+124Sn (Ec .m .≃125.44 MeV ), 40Ca+208Pb (Ec .m .≃208.84 MeV ), 58Ni+208Pb (Ec .m .≃256.79 MeV ), 64Ni+238U (Ec .m .≃307.35 MeV ), and 136Xe+198Pt (Ec .m .≃644.98 MeV ) reactions at energies close to the Coulomb barrier. It is shown that the inclusion of secondary deexcitation processes, which are dominated by neutron evaporation in the present systems, substantially improves agreement with the experimental data. The magnitude of the evaporation effects is very similar to the one observed in grazing calculations. TDHF+GEMINI provides better description of the absolute value of the cross sections for channels involving transfer of more than one proton, compared to the grazing
Auclair, J M; Hubert, P; Joly, R; Vendryes, G; Jacrot, B; Netter, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Galula, M [Centre National de la Recherche Scientifique (CNRS), 91 - Gif-sur-Yvette (France)
1955-07-01
It presents the experimental measurements of cross section of fissile nuclei for slow neutrons to improve the understanding of some heavy nuclei of great importance in the study of nuclear reactors. The different experiments are divided in three categories. In the first part, it studied the variation with energy of the cross sections of natural uranium, {sup 233}U, {sup 235}U and {sup 239}Pu. Two measurement techniques are used: the time-of-flight spectrometer and the crystal spectrometer. In a second part, the fission cross sections of {sup 233}U and {sup 239}Pu for thermal neutrons are compared using a neutron flux from EL-2 going through a double fission chamber. The matter quantity contained in each source is measured by counting the {alpha} activity with a solid angle counter. Finally, the average cross section of {sup 236}U for a spectra of neutrons from the reactor is measured by studying the {beta} activity of {sup 237}U formed by the reaction {sup 236}U (n, {gamma}) {sup 237}U in a sample of {sup 236}U irradiated in the Saclay reactor (EL-2). (M.P.)
Ecological Panel Inference from Repeated Cross Sections
Pelzer, Ben; Eisinga, Rob; Franses, Philip Hans
2004-01-01
This chapter presents a Markov chain model for the estimation of individual-level binary transitions from a time series of independent repeated cross-sectional (RCS) samples. Although RCS samples lack direct information on individual turnover, it is demonstrated here that it is possible with these
Stability of tokamaks with elongated cross section
An, C.H.; Bateman, G.
1978-08-01
Fixed boundary n = 1 MHD instabilities are studied computationally as a function of diamagnetism (β/sub pol/) and current profile in elongated toroidal equilibria (1 2) or a diamagnetic plasma (β/sub pol/ > 1) with only a mildly elongated cross section
Photoelectric absorption cross sections with variable abundances
Balucinska-Church, Monika; Mccammon, Dan
1992-01-01
Polynomial fit coefficients have been obtained for the energy dependences of the photoelectric absorption cross sections of 17 astrophysically important elements. These results allow the calculation of X-ray absorption in the energy range 0.03-10 keV in material with noncosmic abundances.
(, 3) Differential cross section of He
The angular distribution of the ﬁve-fold differential cross section for the electron impact double ionization of He (21 ) and He (23 ) has been studied. The kinematical conditions for maxima/minima in the angular distribution for the two cases have been compared. The two-step process for the double ionization is found to ...
Precise relative cross sections for np scattering
Goetz, J.; Brogli-Gysin, C.; Hammans, M.; Haffter, P.; Henneck, R.; Jourdan, J.; Masson, G.; Qin, L.M.; Robinson, S.; Sick, I.; Tuccillo, M.
1994-01-01
We present data on the differential cross section for neutron-proton scattering for an incident neutron energy of 67 MeV. These data allow a precise determination of the 1 P 1 phase which, in phase-shift analyses, is strongly correlated with the S-D amplitude which we are measuring via different observables. ((orig.))
Symmetric charge transfer cross section of uranium
Shibata, Takemasa; Ogura, Koichi
1995-03-01
Symmetric charge transfer cross section of uranium was calculated under consideration of reaction paths. In the charge transfer reaction a d 3/2 electron in the U atom transfers into the d-electron site of U + ( 4 I 9/2 ) ion. The J value of the U atom produced after the reaction is 6, 5, 4 or 3, at impact energy below several tens eV, only resonant charge transfer in which the product atom is ground state (J=6) takes place. Therefore, the cross section is very small (4-5 x 10 -15 cm 2 ) compared with that considered so far. In the energy range of 100-1000eV the cross section increases with the impact energy because near resonant charge transfer in which an s-electron in the U atom transfers into the d-electron site of U + ion. Charge transfer cross section between U + in the first excited state (289 cm -1 ) and U in the ground state was also obtained. (author)
LAMBDA p total cross-section measurement
CERN PhotoLab
1970-01-01
A view of the apparatus used for the LAMBDA p total cross-section measurement at the time of its installation. The hyperons decaying into a proton and a pion in the conical tank in front were detected in the magnet spectrometer in the upper half of the picture. A novel detection technique using exclusively multiwire proportional chambers was employed.
Neutron cross section standards and instrumentation. Annual report
Wasson, O.A.
1993-07-01
The objective of this interagency program is to provide accurate neutron interaction measurements for the US Department of Energy nuclear programs which include waste disposal, fusion, safeguards, defense, fission, and personnel protection. These measurements are also useful to other energy programs which indirectly use the unique properties of the neutron for diagnostic and analytical purposes. The work includes the measurement of reference cross sections and related neutron data employing unique facilities and capabilities at NIST and other laboratories as required; leadership and participation in international intercomparisons and collaborations; the preservation of standard reference deposits and the development of improved neutron detectors and measurement methods. A related and essential element of the program is critical evaluation of neutron interaction data including international coordinations. Data testing of critical data for important applications is included. The program is jointly supported by the Department of Energy and the National Institute of Standards and Technology. This report from the National Institute of Standards and Technology contains a summary of the accomplishments of the Neutron Cross Section Standards and Instrumentation Project during the third year of this three-year interagency agreement. The proposed program and required budget for the following three years are also presented. The program continues the shifts in priority instituted in order to broaden the program base.
Neutron cross section standards and instrumentation. Annual report
Wasson, O.A.
1993-01-01
The objective of this interagency program is to provide accurate neutron interaction measurements for the US Department of Energy nuclear programs which include waste disposal, fusion, safeguards, defense, fission, and personnel protection. These measurements are also useful to other energy programs which indirectly use the unique properties of the neutron for diagnostic and analytical purposes. The work includes the measurement of reference cross sections and related neutron data employing unique facilities and capabilities at NIST and other laboratories as required; leadership and participation in international intercomparisons and collaborations; the preservation of standard reference deposits and the development of improved neutron detectors and measurement methods. A related and essential element of the program is critical evaluation of neutron interaction data including international coordinations. Data testing of critical data for important applications is included. The program is jointly supported by the Department of Energy and the National Institute of Standards and Technology. This report from the National Institute of Standards and Technology contains a summary of the accomplishments of the Neutron Cross Section Standards and Instrumentation Project during the third year of this three-year interagency agreement. The proposed program and required budget for the following three years are also presented. The program continues the shifts in priority instituted in order to broaden the program base
Progress in fission product nuclear data
Lammer, G.
1976-05-01
The purpose of this series is to inform scientists working on Fission Product Nuclear Data, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. This report consists of reproductions of essentially unaltered original contributions which the authors have sent to IAEA/NDS. The types of activities being included in this report are measurements, compilations and evaluations of: fission product yields; neutron cross-section data of fission products; data related to β-, γ-decay of fission products; delayed neutron data; and fission product decay-heat
Measurement cross sections for radioisotopes production
Garrido, E.
2011-01-01
New radioactive isotopes for nuclear medicine can be produced using particle accelerators. This is one goal of Arronax, a high energy - 70 MeV - high intensity - 2*350 μA - cyclotron set up in Nantes. A priority list was established containing β - - 47 Sc, 67 Cu - β + - 44 Sc, 64 Cu, 82 Sr/ 82 Rb, 68 Ge/ 68 Ga - and α emitters - 211 At. Among these radioisotopes, the Scandium 47 and the Copper 67 have a strong interest in targeted therapy. The optimization of their productions required a good knowledge of their cross-sections but also of all the contaminants created during irradiation. We launched on Arronax a program to measure these production cross-sections using the Stacked-Foils' technique. It consists in irradiating several groups of foils - target, monitor and degrader foils - and in measuring the produced isotopes by γ-spectrometry. The monitor - nat Cu or nat Ni - is used to correct beam loss whereas degrader foils are used to lower beam energy. We chose to study the nat Ti(p,X) 47 Sc and 68 Zn(p,2p) 67 Cu reactions. Targets are respectively natural Titanium foil - bought from Goodfellow - and enriched Zinc 68 deposited on Silver. In the latter case, Zn targets were prepared in-house - electroplating of 68 Zn - and a chemical separation between Copper and Gallium isotopes has to be made before γ counting. Cross-section values for more than 40 different reactions cross-sections have been obtained from 18 MeV to 68 MeV. A comparison with the Talys code is systematically done. Several parameters of theoretical models have been studied and we found that is not possible to reproduce faithfully all the cross-sections with a given set of parameters. (author)
Neutron-induced cross-sections via the surrogate method
Boutoux, G.
2011-11-01
The surrogate reaction method is an indirect way of determining neutron-induced cross sections through transfer or inelastic scattering reactions. This method presents the advantage that in some cases the target material is stable or less radioactive than the material required for a neutron-induced measurement. The method is based on the hypothesis that the excited nucleus is a compound nucleus whose decay depends essentially on its excitation energy and on the spin and parity state of the populated compound state. Nevertheless, the spin and parity population differences between the compound-nuclei produced in the neutron and transfer-induced reactions may be different. This work reviews the surrogate method and its validity. Neutron-induced fission cross sections obtained with the surrogate method are in general good agreement. However, it is not yet clear to what extent the surrogate method can be applied to infer radiative capture cross sections. We performed an experiment to determine the gamma decay probabilities for 176 Lu and 173 Yb by using the surrogate reactions 174 Yb( 3 He,pγ) 176 Lu * and 174 Yb( 3 He,αγ) 173 Yb * , respectively, and compare them with the well-known corresponding probabilities obtained in the 175 Lu(n,γ) and 172 Yb(n,γ) reactions. This experiment provides answers to understand why, in the case of gamma-decay, the surrogate method gives significant deviations compared to the corresponding neutron-induced reaction. In this work, we have also assessed whether the surrogate method can be applied to extract capture probabilities in the actinide region. Previous experiments on fission have also been reinterpreted. Thus, this work provides new insights into the surrogate method. This work is organised in the following way: in chapter 1, the theoretical aspects related to the surrogate method will be introduced. The validity of the surrogate method will be investigated by means of statistical model calculations. In chapter 2, a review on
AFCI-2.0 Neutron Cross Section Covariance Library
Herman, M.; Herman, M; Oblozinsky, P.; Mattoon, C.M.; Pigni, M.; Hoblit, S.; Mughabghab, S.F.; Sonzogni, A.; Talou, P.; Chadwick, M.B.; Hale, G.M.; Kahler, A.C.; Kawano, T.; Little, R.C.; Yount, P.G.
2011-03-01
The cross section covariance library has been under development by BNL-LANL collaborative effort over the last three years. The project builds on two covariance libraries developed earlier, with considerable input from BNL and LANL. In 2006, international effort under WPEC Subgroup 26 produced BOLNA covariance library by putting together data, often preliminary, from various sources for most important materials for nuclear reactor technology. This was followed in 2007 by collaborative effort of four US national laboratories to produce covariances, often of modest quality - hence the name low-fidelity, for virtually complete set of materials included in ENDF/B-VII.0. The present project is focusing on covariances of 4-5 major reaction channels for 110 materials of importance for power reactors. The work started under Global Nuclear Energy Partnership (GNEP) in 2008, which changed to Advanced Fuel Cycle Initiative (AFCI) in 2009. With the 2011 release the name has changed to the Covariance Multigroup Matrix for Advanced Reactor Applications (COMMARA) version 2.0. The primary purpose of the library is to provide covariances for AFCI data adjustment project, which is focusing on the needs of fast advanced burner reactors. Responsibility of BNL was defined as developing covariances for structural materials and fission products, management of the library and coordination of the work; LANL responsibility was defined as covariances for light nuclei and actinides. The COMMARA-2.0 covariance library has been developed by BNL-LANL collaboration for Advanced Fuel Cycle Initiative applications over the period of three years, 2008-2010. It contains covariances for 110 materials relevant to fast reactor R&D. The library is to be used together with the ENDF/B-VII.0 central values of the latest official release of US files of evaluated neutron cross sections. COMMARA-2.0 library contains neutron cross section covariances for 12 light nuclei (coolants and moderators), 78 structural
AFCI-2.0 Neutron Cross Section Covariance Library
Herman, M.; Oblozinsky, P.; Mattoon, C.M.; Pigni, M.; Hoblit, S.; Mughabghab, S.F.; Sonzogni, A.; Talou, P.; Chadwick, M.B.; Hale, G.M.; Kahler, A.C.; Kawano, T.; Little, R.C.; Yount, P.G.
2011-01-01
The cross section covariance library has been under development by BNL-LANL collaborative effort over the last three years. The project builds on two covariance libraries developed earlier, with considerable input from BNL and LANL. In 2006, international effort under WPEC Subgroup 26 produced BOLNA covariance library by putting together data, often preliminary, from various sources for most important materials for nuclear reactor technology. This was followed in 2007 by collaborative effort of four US national laboratories to produce covariances, often of modest quality - hence the name low-fidelity, for virtually complete set of materials included in ENDF/B-VII.0. The present project is focusing on covariances of 4-5 major reaction channels for 110 materials of importance for power reactors. The work started under Global Nuclear Energy Partnership (GNEP) in 2008, which changed to Advanced Fuel Cycle Initiative (AFCI) in 2009. With the 2011 release the name has changed to the Covariance Multigroup Matrix for Advanced Reactor Applications (COMMARA) version 2.0. The primary purpose of the library is to provide covariances for AFCI data adjustment project, which is focusing on the needs of fast advanced burner reactors. Responsibility of BNL was defined as developing covariances for structural materials and fission products, management of the library and coordination of the work; LANL responsibility was defined as covariances for light nuclei and actinides. The COMMARA-2.0 covariance library has been developed by BNL-LANL collaboration for Advanced Fuel Cycle Initiative applications over the period of three years, 2008-2010. It contains covariances for 110 materials relevant to fast reactor R and D. The library is to be used together with the ENDF/B-VII.0 central values of the latest official release of US files of evaluated neutron cross sections. COMMARA-2.0 library contains neutron cross section covariances for 12 light nuclei (coolants and moderators), 78
Improvements on burnup chain model and group cross section library in the SRAC system
Akie, Hiroshi; Okumura, Keisuke; Takano, Hideki; Ishiguro, Yukio; Kaneko, Kunio.
1992-01-01
Data and functions of the cell burnup calculation of the SRAC system were revised to improve mainly the accuracy of the burnup calculation of high conversion light water reactors (HCLWRs). New burnup chain models were developed in order to treat fission products (FPs) and actinide nuclides in detail. Group cross section library, SRACLIB-JENDL2, was generated based on JENDL-2 nuclear data file. In generating this library, emphasis was placed on FPs and actinides. Also revised were the data such as the average energy release per fission for various actinides. These improved data were verified by performing the burnup analysis of PWR spent fuels. Some new functions were added to the SRAC system for the convenience to yield macroscopic cross sections used in the core burnup process. (author)
(d,p)-transfer induced fission of heavy radioactive beams
Veselsky, Martin
2012-01-01
(d,p)-transfer induced fission is proposed as a tool to study low energy fission of exotic heavy nuclei. Primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission offers a possibility for systematic study the low energy fission of heavy exotic nuclei at the ISOLDE.
Neutron-induced cross sections of short-lived nuclei via the surrogate reaction method
Morel P.
2011-10-01
Full Text Available The measurement of neutron-induced cross sections of short-lived nuclei is extremely difficult due to the radioactivity of the samples. The surrogate reaction method is an indirect way of determining cross sections for nuclear reactions that proceed through a compound nucleus. This method presents the advantage that the target material can be stable or less radioactive than the material required for a neutron-induced measurement. We have successfully used the surrogate reaction method to extract neutron-induced fission cross sections of various short-lived actinides. In this work, we investigate whether this technique can be used to determine neutron-induced capture cross sections in the rare-earth region.
Neutron-induced cross sections of short-lived nuclei via the surrogate reaction method
Tassan-Got L.
2012-02-01
Full Text Available The measurement of neutron-induced cross sections of short-lived nuclei is extremely difficult due to the radioactivity of the samples. The surrogate reaction method is an indirect way of determining cross sections for nuclear reactions that proceed through a compound nucleus. This method presents the advantage that the target material can be stable or less radioactive than the material required for a neutron-induced measurement. We have successfully used the surrogate reaction method to extract neutron-induced fission cross sections of various short-lived actinides. In this work, we investigate whether this technique can be used to determine neutron-induced capture cross sections in the rare-earth region.
Measurements of integral cross section ratios in two dosimetry benchmark neutron fields
Fabry, A.; Czock, K.H.
1974-12-01
In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the 103 Rh(n,n') 103m Rh and 58 Ni(n,p) 58 Co integral cross sections have been accurately measured relatively to the 115 In(n,n') 115m In cross section in the 235 U thermal fission neutron spectrum and in the MOL-ΣΣ intermediate-energy standard neutron field. In this last neutron field, the data are related also to the 235 U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific 103 Rh(n,n') 103m Rh differential-energy cross section among the existing, conflicting data. (author)
Impact of newly-measured gadolinium cross sections on BWR fuel rod reaction rate distributions
Jatuff, F.; Perret, G.; Murphy, M.; Grimm, P.; Seiler, R. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Chawla, R. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Ecole Polytechnique Federal de Lausanne, CH-1015 Lausanne (Switzerland)
2008-07-01
Recent measurements of capture and total cross sections performed at the Rensselaer Polytechnic Institute in the USA confirmed many of the gadolinium thermal and resonant neutron cross section parameters within uncertainties, but they also showed up important discrepancies well out of uncertainties, such as an approx11% overestimation of the {sup 157}Gd thermal capture cross section in ENDF/B-VI and -VII with respect to the newly measured data. In this work, the impact of the newly measured gadolinium cross sections on BWR reactor physics parameters has been preliminarily evaluated. The comparisons of rod-by-rod fission rate and modified conversion ratio predictions with selected cold critical experiments at the PROTEUS reactor in Switzerland show the potential to resolve long-term unexplained discrepancies. (authors)
Measurements of integral cross section ratios in two dosimetry benchmark neutron fields
Fabry, A [CEN-SCK, Mol (Belgium); Czock, K H [International Atomic Energy Agency, Laboratory Seibersdorf, Vienna (Austria)
1974-12-01
In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the {sup 103}Rh(n,n'){sup 103m}Rh and {sup 58}Ni(n,p){sup 58}Co integral cross sections have been accurately measured relatively to the {sup 115}In(n,n'){sup 115m} In cross section in the {sup 235}U thermal fission neutron spectrum and in the MOL-{sigma}{sigma} intermediate-energy standard neutron field. In this last neutron field, the data are related also to the {sup 235}U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific {sup 103}Rh(n,n'){sup 103m}Rh differential-energy cross section among the existing, conflicting data. (author)
Analysis of the 235U neutron cross sections in the resolved resonance range
Leal, L.C.; de Saussure, G.; Perez, R.B.
1989-01-01
Using recent high-resolution measurements of the neutron transmission of 235 U and the spin-separated fission cross-section data of Moore et al., a multilevel analysis of the 235 U neutron cross sections was performed up to 300 eV. The Dyson Metha Δ 3 statistics were used to help locate small levels above 100 eV where resonances are not clearly resolved even in the best resolution measurements available. The statistical properties of the resonance parameters are discussed
Analysis of the 235U neutron cross sections in the resolved resonance range
Leal, L.C.; de Saussure, G.; Perez, R.B.
1989-01-01
Using recent high-resolution measurements of the neutron transmission of 235 U and the spin-separated fission cross-section data of Moore et al., a multilevel analysis of the 235 U neutron cross sections was performed up to 300 eV. The Dyson Metha Δ 3 statistics were used to help locate small levels above 100 eV where resonances are not clearly resolved even in the best resolution measurements available. The statistical properties of the resonance parameters are discussed. 13 refs., 8 figs., 1 tab
Anaf, J.; Chalhoub, E.S.
1989-01-01
A program (RESQ) based on quadratures that evaluates, from ENDF/B data, the resolved resonance contribution in group-averaged cross sections (capture, fission and scattering) was developed. Single and Multilevel Breit-Wigner parameters are accepted. Constant weighting function and zero Kelvin were considered. To assure convergence, different quadrature orders may be analysed. Results are compared with other codes' reconstruction and integration methods. (author) [pt
Sanami, Toshiya; Baba, Mamoru; Saito, Keiichiro; Ibara, Yasutaka; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering
1997-03-01
We are developing a method of (n,{alpha}) cross section measurement using gaseous samples in a gridded ionization chamber (GIC). This method enables cross section measurements in large solid angle without the distortion by the energy loss in a sample, but requires a method to estimate the detection efficiency. We solve this problem by using GIC signals and a tight neutron collimation. The validity of this method was confirmed through the {sup 12}C(n,{alpha}{sub 0}){sup 9}Be measurement. We applied this method to the {sup 16}O(n,{alpha}){sup 13}C cross section around 14.1 MeV. (author)
Spectral history correction of microscopic cross sections for the PBR using the slowing down balance
Hudson, N.; Rahnema, F.; Ougouag, A. M.; Gougar, H. D.
2006-01-01
A method has been formulated to account for depletion effects on microscopic cross sections within a Pebble Bed Reactor (PBR) spectral zone without resorting to calls to the spectrum (cross section generation) code or relying upon table interpolation between data at different values of burnup. In this method, infinite medium microscopic cross sections, fine group fission spectra, and modulation factors are pre-computed at selected isotopic states. This fine group information is used with the local spectral zone nuclide densities to generate new cross sections for each spectral zone. The local spectrum used to generate these microscopic cross sections is estimated through the solution to the cell-homogenized, infinite medium slowing down balance equation during the flux calculation. This technique is known as Spectral History Correction (SHC), and it is formulated to specifically account for burnup within a spectral zone. It was found that the SHC technique accurately calculates local broad group microscopic cross sections with local burnup information. Good agreement is obtained with cross sections generated directly by the cross section generator. Encouraging results include improvement in the converged fuel cycle eigenvalue, the power peaking factor, and the flux. It was also found that the method compared favorably to the benchmark problem in terms of the computational speed. (authors)
Rotational averaging of multiphoton absorption cross sections
Friese, Daniel H., E-mail: daniel.h.friese@uit.no; Beerepoot, Maarten T. P.; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, University of Tromsø — The Arctic University of Norway, N-9037 Tromsø (Norway)
2014-11-28
Rotational averaging of tensors is a crucial step in the calculation of molecular properties in isotropic media. We present a scheme for the rotational averaging of multiphoton absorption cross sections. We extend existing literature on rotational averaging to even-rank tensors of arbitrary order and derive equations that require only the number of photons as input. In particular, we derive the first explicit expressions for the rotational average of five-, six-, and seven-photon absorption cross sections. This work is one of the required steps in making the calculation of these higher-order absorption properties possible. The results can be applied to any even-rank tensor provided linearly polarized light is used.
Measurements of neutron spallation cross section. 2
Kim, E.; Nakamura, T. [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Imamura, M.; Nakao, N.; Shibata, S.; Uwamino, Y.; Nakanishi, N.; Tanaka, Su.
1997-03-01
Neutron spallation cross section of {sup 59}Co(n,xn){sup 60-x}Co, {sup nat}Cu(n,sp){sup 56}Mn, {sup nat}Cu(n,sp){sup 58}Co, {sup nat}Cu(n,xn){sup 60}Cu, {sup nat}Cu(n,xn){sup 61}Cu and {sup nat}Cu(n,sp){sup 65}Ni was measured in the quasi-monoenergetic p-Li neutron fields in the energy range above 40 MeV which have been established at three AVF cyclotron facilities of (1) INS of Univ. of Tokyo, (2) TIARA of JAERI and (3) RIKEN. Our experimental data were compared with the ENDF/B-VI high energy file data by Fukahori and the calculated cross section data by Odano. (author)
Structured ion impact: Doubly differential cross sections
DuBois, R.D.
1987-01-01
The electron emission in coincidence with a projectile that has been ionized has been measured, thus making it possible to separate and identify electrons resulting from these various mechanisms. In 1985, coincidence doubly differential cross sections were measured for 400 to 750 keV/atomic mass unit (amu) He + impact on He, Ne, Ar, Kr, and H 2 O. Cross sections were measured for selected angles and for electron energies ranging from 10 to 1000 eV. Because of the coincidence mode of measurement, the total electron emission was subdivided into its target emission and its projectile emission components. The most interesting findings were that target ionization does not account for the electron emission spectrum at lower electron energies. A sizable percentage of these low-energy electrons were shown to originate as a result of simultaneous projectile/target ionizations. Similar features were observed for all targets and impact energies that were studied
Electron-collision cross sections for iodine
Zatsarinny, O.; Bartschat, K.; Garcia, G.; Blanco, F.; Hargreaves, L.R.; Jones, D.B.; Murrie, R.; Brunton, J.R.; Brunger, M.J.; Hoshino, M.; Buckman, S.J.
2011-01-01
We present results from a joint experimental and theoretical study of elastic electron scattering from atomic iodine. The experimental results were obtained by subtracting known cross sections from the measured data obtained with a pyrolyzed mixed beam containing a variety of atomic and molecular species. The calculations were performed using both a fully relativistic Dirac B-spline R-matrix (close-coupling) method and an optical model potential approach. Given the difficulty of the problem, the agreement between the two sets of theoretical predictions and the experimental data for the angle-differential and the angle-integrated elastic cross sections at 40 eV and 50 eV is satisfactory.
Absolute partial photoionization cross sections of ethylene
Grimm, F. A.; Whitley, T. A.; Keller, P. R.; Taylor, J. W.
1991-07-01
Absolute partial photoionization cross sections for ionization out of the first four valence orbitals to the X 2B 3u, A 2B 3g, B 2A g and C 2B 2u states of the C 2H 4+ ion are presented as a function of photon energy over the energy range from 12 to 26 eV. The experimental results have been compared to previously published relative partial cross sections for the first two bands at 18, 21 and 24 eV. Comparison of the experimental data with continuum multiple scattering Xα calculations provides evidence for extensive autoionization to the X 2B 3u state and confirms the predicted shape resonances in ionization to the A 2B 3g and B 2A g states. Identification of possible transitions for the autoionizing resonances have been made using multiple scattering transition state calculations on Rydberg excited states.
Radar cross section measurements using terahertz waves
Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd
2010-01-01
Radar cross sections at terahertz frequencies are measured on scale models of aircrafts. A time domain broadband THz system generates freely propagating THz pulses measured with sub-picosecond time resolution. The THz radiation is generated using fs laser pulses by optical rectification...... in order to measure realistic radar cross sections. RCS polar and azimuthal angle plots of F-16 and F-35 are presented....... in a lithium niobate crystal with application of the tilted wave front method, resulting in high electric field THz pulses with a broad band spectrum from 100 GHz up to 4 THz. The corresponding wave lengths are two orders of magnitude smaller than normal radars and we therefore use scale models of size 5-10 cm...
Electron Capture Cross Sections for Stellar Nucleosynthesis
P. G. Giannaka
2015-01-01
Full Text Available In the first stage of this work, we perform detailed calculations for the cross sections of the electron capture on nuclei under laboratory conditions. Towards this aim we exploit the advantages of a refined version of the proton-neutron quasiparticle random-phase approximation (pn-QRPA and carry out state-by-state evaluations of the rates of exclusive processes that lead to any of the accessible transitions within the chosen model space. In the second stage of our present study, we translate the abovementioned e--capture cross sections to the stellar environment ones by inserting the temperature dependence through a Maxwell-Boltzmann distribution describing the stellar electron gas. As a concrete nuclear target we use the 66Zn isotope, which belongs to the iron group nuclei and plays prominent role in stellar nucleosynthesis at core collapse supernovae environment.
Test of RIPL-2 cross section calculations
Herman, M.
2002-01-01
The new levels and optical segments and microscopic HF-BCS level densities (part of the density segment) were tested in practical calculations of cross sections for neutron induced reactions on 22 targets (40-Ca, 47-Ti, 52-Cr, 55-Mn, 58-Ni, 63-Cu, 71-Ga, 80-Se, 92-Mo, 93-Nb, 100-Mo, 109-Ag, 114-Cd, 124-Sn, 127-I, 133-Cs, 140-Ce, 153-Eu, 169-Tm, 186-W, 197-Au, 208-Pb). For each target all reactions involving up to 3 neutron, 1 proton and 1 α-particle emissions (subject to actual reaction thresholds) were considered in the incident energy range from 1 keV up to 20 MeV (in some cases up to 27 MeV). In addition, total, elastic, and neutron capture cross sections were calculated
Double differential cross sections of ethane molecule
Kumar, Rajeev
2018-05-01
Partial and total double differential cross sections corresponding to various cations C2H6+, C2H4+, C2H5+, C2H3+, C2H2+, CH3+, H+, CH2+, C2H+, H2+, CH+, H3+, C2+ and C+ produced during the direct and dissociative electron ionization of Ethane (C2H6) molecule have been calculated at fixed impinging electron energies 200 and 500eV by using modified Jain-Khare semi empirical approach. The calculation for double differential cross sections is made as a function of energy loss suffered by primary electron and angle of incident. To the best of my knowledge no other data is available for the comparison.
Cross sections required for FMIT dosimetry
Gold, R.; McElroy, W.N.; Lippincott, E.P.; Mann, F.M.; Oberg, D.L.; Roberts, J.H.; Ruddy, F.H.
1980-01-01
The Fusion Materials Irradiation Test (FMIT) facility, currently under construction, is designed to produce a high flux of high energy neutrons for irradiation effects experiments on fusion reactor materials. Characterization of the flux-fluence-spectrum in this rapidly varying neutron field requires adaptation and extension of currently available dosimetry techniques. This characterization will be carried out by a combination of active, passive, and calculational dosimetry. The goal is to provide the experimenter with accurate neutron flux-fluence-spectra at all positions in the test cell. Plans have been completed for a number of experimental dosimetry stations and provision for these facilities has been incorporated into the FMIT design. Overall needs of the FMIT irradiation damage program delineate goal accuracies for dosimetry that, in turn, create new requirements for high energy neutron cross section data. Recommendations based on these needs have been derived for required cross section data and accuracies
Actinide neutron-induced fission up to 20 MeV
Maslov, V.M.
2001-01-01
Fission and total level densities modelling along with double-humped fission barrier parameters allow to describe available actinide neutron-induced fission cross section data in the incident neutron energy range of ∼ 10 keV - 20 MeV. Saddle asymmetries relevant to shell correction model calculations influence fission barriers, extracted by cross section data analysis. The inner barrier was assumed axially symmetric in case of U, Np and Pu neutron-deficient nuclei. It is shown that observed irregularities in neutron-induced fission cross section data in the energy range of 0.5-3 MeV could be attributed to the interplay of few-quasiparticle excitations in the level density of fissioning and residual nuclei. Estimates of first-chance fission cross section and secondary neutron spectrum model were validated by 238 U fission, (n,2n) and (n,3n) data description up to 20 MeV. (author)
Actinide neutron-induced fission up to 20 MeV
Maslov, V M [Radiation Physics and Chemistry Problems Institute, Minsk-Sosny (Belarus)
2001-12-15
Fission and total level densities modelling along with double-humped fission barrier parameters allow to describe available actinide neutron-induced fission cross section data in the incident neutron energy range of {approx} 10 keV - 20 MeV. Saddle asymmetries relevant to shell correction model calculations influence fission barriers, extracted by cross section data analysis. The inner barrier was assumed axially symmetric in case of U, Np and Pu neutron-deficient nuclei. It is shown that observed irregularities in neutron-induced fission cross section data in the energy range of 0.5-3 MeV could be attributed to the interplay of few-quasiparticle excitations in the level density of fissioning and residual nuclei. Estimates of first-chance fission cross section and secondary neutron spectrum model were validated by {sup 238}U fission, (n,2n) and (n,3n) data description up to 20 MeV. (author)
Electron collision cross sections and radiation chemistry
Hatano, Y.
1983-01-01
A survey is given of the cross section data needs in radiation chemistry, and of the recent progress in electron impact studies on dissociative excitation of molecules. In the former some of the important target species, processes, and collision energies are presented, while in the latter it is demonstrated that radiation chemistry is a source of new ideas and information in atomic collision research. 37 references, 4 figures
Absolute photoionization cross sections of atomic oxygen
Samson, J. A. R.; Pareek, P. N.
1985-01-01
The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.
Total dissociation cross section of halo nuclei
Formanek, J. [Karlova Univ., Prague (Czech Republic). Fakulta Matematicko-Fyzikalni; Lombard, R.J. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire
1996-10-01
Calculations of the total dissociation cross section is performed in the impact parameter representation. The case of {sup 11}Be and {sup 11}Li loosing one and two neutron(s), respectively, by collision on a {sup 12}C target, which remains in its ground state are discussed. The results are found to depend essentially on the rms radius of the halo wave function. (author). 12 refs.
Cross section of the CMS solenoid
Tejinder S. Virdee, CERN
2005-01-01
The pictures show a cross section of the CMS solenoid. One can see four layers of the superconducting coil, each of which contains the superconductor (central part, copper coloured - niobium-titanium strands in a copper coating, made into a "Rutherford cable"), surrounded by an ultra-pure aluminium as a magnetic stabilizer, then an aluminium alloy as a mechanical stabilizer. Besides the four layers there is an aluminium mechanical piece that includes pipes that transport the liquid helium.
Cross sections for multistep direct reactions
Demetriou, Paraskevi; Marcinkowski, Andrzej; Marianski, Bohdan
2002-01-01
Inelastic scattering and charge-exchange reactions have been analysed at energies ranging from 14 to 27 MeV using the modified multistep direct reaction theory (MSD) of Feshbach, Kerman and Koonin. The modified theory considers the non-DWBA matrix elements in the MSD cross section formulae and includes both incoherent particle-hole excitations and coherent collective excitations in the continuum, according to the prescriptions. The results show important contributions from multistep processes at all energies considered. (author)
Inclusive jet cross section at D0
Bhattacharjee, M.
1996-09-01
Preliminary measurement of the central (|η| ≤ 0.5) inclusive jet cross sections for jet cone sizes of 1.0, 0.7, and 0.5 at D null based on the 1992-1993 (13.7 pb -1 ) and 1994-1995 (90 pb -1 ) data samples are presented. Comparisons to Next-to-Leading Order (NLO) Quantum Chromodynamics (QCD) calculations are made
Fully double-logarithm-resummed cross sections
Albino, S.; Bolzoni, P.; Kniehl, B.A.; Kotikov, A.
2011-01-01
We calculate the complete double logarithmic contribution to cross sections for semi-inclusive hadron production in the modified minimal-subtraction (MS-bar) scheme by applying dimensional regularization to the double logarithm approximation. The full double logarithmic contribution to the coefficient functions for inclusive hadron production in e + e - annihilation is obtained in this scheme for the first time. Our result agrees with all fixed order results in the literature, which extend to next-to-next-to-leading order.
Atomic-process cross section data, 1
1974-12-01
Compiled by the Data Study Group, the data are intended for fusion plasma physics research. Cross sections of the latest experimental and theoretic studies cover the processes involving H,D,T as principal plasma materials as well as photons and electrons: emission and absorption of electromagnetic wave, electron collision, ion collision, recombination, neutral atom mutual collision, etc. Edition is so made to enable the future renewal by users. (J.P.N.)
Neutron capture cross section of ^243Am
Jandel, M.
2009-10-01
The Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL) was used for neutron capture cross section measurement on ^243Am. The high granularity of DANCE (160 BaF2 detectors in a 4π geometry) enables the efficient detection of prompt gamma-rays following neutron capture. DANCE is located on the 20.26 m neutron flight path 14 (FP14) at the Manuel Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE). The methods and techniques established in [1] were used for the determination of the ^243Am neutron capture cross section. The cross sections were obtained in the range of neutron energies from 0.02 eV to 400 keV. The resonance region was analyzed using SAMMY7 and resonance parameters were extracted. The results will be compared to existing evaluations and calculations. Work was performed under the auspices of the U.S. Department of Energy at Los Alamos National Laboratory by the Los Alamos National Security, LLC under Contract No. DE-AC52-06NA25396 and at Lawrence Livermore National Laboratory by the Lawrence Livermore National Security, LLC under Contract No. DE-AC52-07NA27344. [4pt] [1] M. Jandel et al., Phys. Rev. C78, 034609 (2008)
MXS cross-section preprocessor user's manual
Parker, F.; Ishikawa, M.; Luck, L.
1987-03-01
The MXS preprocessor has been designed to reduce the execution time of programs using isotopic cross-section data and to both reduce the execution time and improve the accuracy of shielding-factor interpolation in the SIMMER-II accident analysis program. MXS is a dual-purpose preprocessing code to: (1) mix isotopes into materials and (2) fit analytic functions to the shelf-shielding data. The program uses the isotope microscopic neutron cross-section data from the CCCC standard interface file ISOTXS and the isotope Bondarenko self-shielding data from the CCCC standard interface file BRKOXS to generate cross-section and self-shielding data for materials. The materials may be a mixture of several isotopes. The self-shielding data for the materials may be the actual shielding factors or a set of coefficients for functions representing the background dependence of the shielding factors. A set of additional data is given to describe the functions necessary to interpolate the shielding factors over temperature
Neutron capture cross sections of Kr
Fiebiger Stefan
2017-01-01
Full Text Available Neutron capture and β− -decay are competing branches of the s-process nucleosynthesis path at 85Kr [1], which makes it an important branching point. The knowledge of its neutron capture cross section is therefore essential to constrain stellar models of nucleosynthesis. Despite its importance for different fields, no direct measurement of the cross section of 85Kr in the keV-regime has been performed. The currently reported uncertainties are still in the order of 50% [2, 3]. Neutron capture cross section measurements on a 4% enriched 85Kr gas enclosed in a stainless steel cylinder were performed at Los Alamos National Laboratory (LANL using the Detector for Advanced Neutron Capture Experiments (DANCE. 85Kr is radioactive isotope with a half life of 10.8 years. As this was a low-enrichment sample, the main contaminants, the stable krypton isotopes 83Kr and 86Kr, were also investigated. The material was highly enriched and contained in pressurized stainless steel spheres.
Measurement of actinide neutron cross sections
Firestone, Richard B.; Nitsche, Heino; Leung, Ka-Ngo; Perry, DaleL.; English, Gerald
2003-01-01
The maintenance of strong scientific expertise is critical to the U.S. nuclear attribution community. It is particularly important to train students in actinide chemistry and physics. Neutron cross-section data are vital components to strategies for detecting explosives and fissile materials, and these measurements require expertise in chemical separations, actinide target preparation, nuclear spectroscopy, and analytical chemistry. At the University of California, Berkeley and the Lawrence Berkeley National Laboratory we have trained students in actinide chemistry for many years. LBNL is a leader in nuclear data and has published the Table of Isotopes for over 60 years. Recently, LBNL led an international collaboration to measure thermal neutron capture radiative cross sections and prepared the Evaluated Gamma-ray Activation File (EGAF) in collaboration with the IAEA. This file of 35, 000 prompt and delayed gamma ray cross-sections for all elements from Z=1-92 is essential for the neutron interrogation of nuclear materials. LBNL has also developed new, high flux neutron generators and recently opened a 1010 n/s D+D neutron generator experimental facility
Quality Quantification of Evaluated Cross Section Covariances
Varet, S.; Dossantos-Uzarralde, P.; Vayatis, N.
2015-01-01
Presently, several methods are used to estimate the covariance matrix of evaluated nuclear cross sections. Because the resulting covariance matrices can be different according to the method used and according to the assumptions of the method, we propose a general and objective approach to quantify the quality of the covariance estimation for evaluated cross sections. The first step consists in defining an objective criterion. The second step is computation of the criterion. In this paper the Kullback-Leibler distance is proposed for the quality quantification of a covariance matrix estimation and its inverse. It is based on the distance to the true covariance matrix. A method based on the bootstrap is presented for the estimation of this criterion, which can be applied with most methods for covariance matrix estimation and without the knowledge of the true covariance matrix. The full approach is illustrated on the 85 Rb nucleus evaluations and the results are then used for a discussion on scoring and Monte Carlo approaches for covariance matrix estimation of the cross section evaluations
Total neutron cross section for 181Ta
Schilling K.-D.
2010-10-01
Full Text Available The neutron time of flight facility nELBE, produces fast neutrons in the energy range from 0.1 MeV to 10 MeV by impinging a pulsed relativistic electron beam on a liquid lead circuit [1]. The short beam pulses (∼10 ps and a small radiator volume give an energy resolution better than 1% at 1 MeV using a short flight path of about 6 m, for neutron TOF measurements. The present neutron source provides 2 ⋅ 104 n/cm2s at the target position using an electron charge of 77 pC and 100 kHz pulse repetition rate. This neutron intensity enables to measure neutron total cross section with a 2%–5% statistical uncertainty within a few days. In February 2008, neutron radiator, plastic detector [2] and data acquisition system were tested by measurements of the neutron total cross section for 181Ta and 27Al. Measurement of 181Ta was chosen because lack of high quality data in an anergy region below 700 keV. The total neutron cross – section for 27Al was measured as a control target, since there exists data for 27Al with high resolution and low statistical error [3].
NNLO jet cross sections by subtraction
Somogyi, G.; Bolzoni, P.; Trócsányi, Z.
2010-08-01
We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of the NNLO subtraction scheme of Refs. [G. Somogyi, Z. Trócsányi, and V. Del Duca, JHEP 06, 024 (2005), arXiv:hep-ph/0502226; G. Somogyi and Z. Trócsányi, (2006), arXiv:hep-ph/0609041; G. Somogyi, Z. Trócsányi, and V. Del Duca, JHEP 01, 070 (2007), arXiv:hep-ph/0609042; G. Somogyi and Z. Trócsányi, JHEP 01, 052 (2007), arXiv:hep-ph/0609043] over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state.
Basic physics of the fission process. Chapter 2
Michaudon, A.
1981-01-01
A general description of the fission process is given with special emphasis on those aspects which are necessary for the understanding of the measurements and calculations of neutron-induced fission cross-sections. Having considered the various phases of the process, some typical properties of the low-energy fission of actinide nuclei are presented and the more specific features of neutron induced fission are examined. (U.K.)
Mechanized evaluation of neutron cross-sections
Horsley, A.; Parker, J.B.
1967-01-01
The evaluation work to provide accurate and consistent neutron cross-section data for multigroup neutronics calculations is not fully exploiting the available theoretical and experimental results; this has been so particularly since the introduction of on-line data handling techniques enabled experimenters to turn out vast quantities of numbers. This situation can be radically improved only by mechanizing the evaluation processes. Systems such as the SC1SRS tape will not only largely overcome the task of collecting data but will provide speedy access to it; by using computers and graph-plotting machines to tabulate and display this data, the labour of evaluation can be very greatly reduced. With some types of cross-section there is hope that by using modern curve-fitting techniques the actual evaluation and statistical accounting of the data can be performed automatically. Some areas where automatic evaluation would seem likely to succeed are specified and a discussion of the mathematical difficulties incurred, such as the elimination of anomalous data, is given. Particularly promising is the use of splines in the mechanized evaluation of data. Splines are the mathematical analogues of the draughtsman's spline used in drawing smooth curves. Their principal properties are the excellent approximations they give to the derivatives of a function; in contrast to conventional polynomial fitting, this feature ensures good interpolation and, when required, stable extrapolation. Various methods of using splines in data graduation and the problem of marrying these methods to standard statistical procedures are examined. The results of work done at AWRE with cubic splines on the mechanized evaluation of neutron scattering total cross-section and angular distribution data are presented. (author)
LEP vacuum chamber, cross-section
CERN PhotoLab
1983-01-01
Cross-section of the final prototype for the LEP vacuum chamber. The elliptic main-opening is for the beam. The small channel to the left is for the cooling water, to carry away the heat deposited by the synchrotron radiation. The square channel to the right houses the Non-Evaporable Getter (NEG) pump. The chamber is made from extruded aluminium. Its outside is clad with lead, to stop the synchrotron radiation emitted by the beam. For good adherence between Pb and Al, the Al chamber was coated with a thin layer of Ni. Ni being slightly magnetic, some resulting problems had to be overcome. See also 8301153.
How to extract cross sections from TDHF
Le Tourneux, Jean
1979-01-01
In spite of all the recent progress in solving numerically TDHF (Time Dependent Hartree-Fock) equations for heavy-ion collisions, this method is still far from lending itself readily to the computation of cross sections, except in the case of fusion. The theory presented here is purely formal so far and would lead to fairly heavy calculations in practice. It solves the problem of channel identification in the outgoing asymptotic region of TDHF solutions. It throws a bridge between TDHF and more traditional theories of nuclear reactions, which are time-independent
Hyperon magnetic moments and total cross sections
Lipkin, H.J.
1982-06-01
The new data on both total cross sections and magnetic moments are simply described by beginning with the additive quark model in an SU(3) limit where all quarks behave like strange quarks and breaking both additivity and SU(3) simultaneously with an additional non-additive mechanism which affects only nonstrange quark contributions. The suggestion that strange quarks behave more simply than nonstrange may provide clues to underlying structure or dynamics. Small discrepancies in the moments are analyzed and shown to provide serious difficulties for most models if they are statistically significant. (author)
Charge changing cross sections of relativistic uranium
Gould, H.; Greiner, D.; Lindstrom, P.; Symons, T.J.M.; Crawford, H.; Thieberger, P.; Wegner, H.
1984-11-01
We report equilibrium charge state distributions of uranium at energies of 962 MeV/nucleon, 437 MeV/nucleon and 200 MeV/nucleon in low Z and high Z targets and the cross sections for U 92+ reversible U 91+ and U 91+ reversible U 90+ at 962 MeV/nucleon and 437 MeV/nucleon. Equilibrium thickness Cu targets produce approx. = 5% bare U 92+ at 200 MeV/nucleon and 85% U 92+ at 962 MeV/nucleon. 7 references, 5 figures
Charge changing cross sections of relativistic uranium
Gould, H; Greiner, D; Lindstrom, P; Symons, T J.M.; Crawford, H; Thieberger, P; Wegner, H
1985-05-15
We report equilibrium charge state distributions of uranium at energies of 962 MeV/nucleon, 437 MeV/nucleon and 200 MeV/nucleon in low Z and high Z targets and the cross sections for U/sup 92 +/reversibleU/sup 91 +/ and U/sup 91 +/reversibleU/sup 90 +/ at 962 MeV/nucleon and 437 MeV/nucleon. Equilibrium thickness Cu targets produce approx.=5% bare U/sup 92 +/ at 200 MeV/nucleon and 85% U/sup 92 +/ at 962 MeV/nucleon.
Measurement of thermal neutron capture cross section
Huang Xiaolong; Han Xiaogang; Yu Weixiang; Lu Hanlin; Zhao Wenrong
2001-01-01
The thermal neutron capture cross sections of 71 Ga(n, γ) 72 Ga, 94 Zr(n, γ) 95 Zr and 191 Ir(n, γ) 192 Ir m1+g,m2 reactions were measured by using activation method and compared with other measured data. Meanwhile the half-life of 72 Ga was also measured. The samples were irradiated with the neutron in the thermal column of heavy water reactor of China Institute of Atomic Energy. The activities of the reaction products were measured by well-calibrated Ge(Li) detector
Empirical continuation of the differential cross section
Borbely, I.
1978-12-01
The theoretical basis as well as the practical methods of empirical continuation of the differential cross section into the nonphysical region of the cos theta variable are discussed. The equivalence of the different methods is proved. A physical applicability condition is given and the published applications are reviewed. In many cases the correctly applied procedure turns out to provide nonsignificant or even incorrect structure information which points to the necessity for careful and statistically complete analysis of the experimental data with a physical understanding of the analysed process. (author)
L-shell photoelectric cross section measurements
Arora, S K; Allawadhi, K L; Sood, B S [Punjabi Univ., Patiala (India). Nuclear Science Labs.
1981-05-14
L-shell photoelectric cross sections in Ta, W, Au, Pb, Th and U at 59.5 keV have been determined using three different versions of Sood's method of measuring the absolute yield of fluorescent x-rays when a target is irradiated with a known flux of photons. The results obtained by all the methods agree with one another showing that no hidden systematic errors are involved in the measurements. The present results are found to compare well with the theoretical calculations of Scofield (Lawrence Livermore Laboratory Report No 51326).
Resonance analysis and evaluation of the 235U neutron induced cross sections
Leal, L.C.
1990-06-01
Neutron cross sections of fissile nuclei are of considerable interest for the understanding of parameters such as resonance absorption, resonance escape probability, resonance self-shielding,and the dependence of the reactivity on temperature. In the present study, new techniques for the evaluation of the 235 U neutron cross sections are described. The Reich-Moore formalism of the Bayesian computer code SAMMY was used to perform consistent R-matrix multilevel analyses of the selected neutron cross-section data. The Δ 3 -statistics of Dyson and Mehta, along with high-resolution data and the spin-separated fission cross-section data, have provided the possibility of developing a new methodology for the analysis and evaluation of neutron-nucleus cross sections. The results of the analysis consists of a set of resonance parameters which describe the 235 U neutron cross sections up to 500 eV. The set of resonance parameters obtained through a R-matrix analysis are expected to satisfy statistical properties which lead to information on the nuclear structure. The resonance parameters were tested and showed good agreement with the theory. It is expected that the parametrization of the 235 U neutron cross sections obtained in this dissertation represents the current state of art in data as well as in theory and, therefore, can be of direct use in reactor calculations. 44 refs., 21 figs., 8 tabs
Estimation of (n,f) Cross-Sections by Measuring Reaction Probability Ratios
Plettner, C; Ai, H; Beausang, C W; Bernstein, L A; Ahle, L; Amro, H; Babilon, M; Burke, J T; Caggiano, J A; Casten, R F; Church, J A; Cooper, J R; Crider, B; Gurdal, G; Heinz, A; McCutchan, E A; Moody, K; Punyon, J A; Qian, J; Ressler, J J; Schiller, A; Williams, E; Younes, W
2005-04-21
Neutron-induced reaction cross-sections on unstable nuclei are inherently difficult to measure due to target activity and the low intensity of neutron beams. In an alternative approach, named the 'surrogate' technique, one measures the decay probability of the same compound nucleus produced using a stable beam on a stable target to estimate the neutron-induced reaction cross-section. As an extension of the surrogate method, in this paper they introduce a new technique of measuring the fission probabilities of two different compound nuclei as a ratio, which has the advantage of removing most of the systematic uncertainties. This method was benchmarked in this report by measuring the probability of deuteron-induced fission events in coincidence with protons, and forming the ratio P({sup 236}U(d,pf))/P({sup 238}U(d,pf)), which serves as a surrogate for the known cross-section ratio of {sup 236}U(n,f)/{sup 238}U(n,f). IN addition, the P({sup 238}U(d,d{prime}f))/P({sup 236}U(d,d{prime}f)) ratio as a surrogate for the {sup 237}U(n,f)/{sup 235}U(n,f) cross-section ratio was measured for the first time in an unprecedented range of excitation energies.
Testing of ENDF/B cross section data in the Californium-252 neutron benchmark field
Mannhart, W.
1979-01-01
The fission neutron field of 252 Cf presently represents one of the most well-known neutron benchmark fields. For 13 neutron reactions which are of importance in reactor metrology, measurements of spectrum-averaged cross sections, [sigma], performed in this neutron field were compared with calculated average cross sections. This comparison allows one to draw conclusions as to the quality of different sigma(E) data taken from ENDF/B-IV, from ENDF/B-V, and from recent experiments and used in the calculation of average cross sections. The comparison includes an uncertainty analysis regarding the different uncertainty contributions of [sigma], of sigma(E), and of the spectral distribution of 252 Cf fission neutrons. Additionally, in a few examples, sensitivity studies were carried out. The sensitivity of the spectrum-averaged cross sections to individual characteristics of the sigma(E) data, such as normalization factors or shifts in the energy scale, was investigated. Similarly, the sensitivity of [sigma] to the spectral distribution of 252 Cf was determined. 4 figures, 2 tables
Atlas of photoneutron cross sections obtained with monoenergetic photons
Dietrich, S.S.; Berman, B.L.
1988-01-01
Photoneutron cross-section and integrated cross-section data obtained with monoenergetic photons are presented in a uniform format. All of the measured partial photoneutron cross sections, the total photoneutron cross section, and the photoneutron yield cross section are plotted as functions of the incident photon energy, as are the integrated photoneutron cross sections and their first and second moments. The values of the integrated cross sections and the moments of the integrated total cross section up to the highest photon energy for which they were measured are tabulated, as are the parameters of Lorentz curves fitted to the total photoneutron cross-section data for medium and heavy nuclei (A>50). This compilation is current as of June 1987. copyright 1988 Academic Press, Inc
ZZ SNLRML, Dosimetry Cross-Section Recommendations
1996-01-01
Description of program or function: Format: SAND-II; Number of groups: 640 group SAND-II group structure. Nuclides: Cd, B, Au, S, Ni, Li, F, Na, Mg, Al, Si, P, Sc, Ti, Mn, Fe, Co, Cu, Zn, Zr, Nb, Mo, Rh, Ag, In, I, Th, U, Np, Pu, Am. Origin: ENDF/B-VI, ENDF/B-V, IRDF-90, JENDL-3, JEF 2.2 and GLUCS data with special modifications from private communications. Weighting spectrum: flat. SNLRML is a reactor dosimetry library that draws upon all available evaluated cross section libraries and selects the best evaluation for application to research reactor spectrum determinations. Many of the components of the SNLRML come from the ENDF/B-VI and IRDF-90 (DLC-0161) libraries. The library format was selected for easy interface with spectrum determination codes such as SAND-II (CCC-0112 and LSL-M2 (PSR-233) and the new PSR-0345/SNL/SAND-II has been enhanced to interface with SNLRML. The data is recommended for spectrum determination applications and for the prediction of neutron activation of typical radiation sensor materials. The library has been tested for consistency of the cross section in wide variety of neutron environments. The results and cautions from this testing have been documented. The data has been interfaced with radiation transport codes, such as TWODANT-SYS (CCC-0547) and MCNP (CCC-0200), in order to compare calculated and measured activities for benchmark reactor experiments
Pion production cross sections and associated parameters
Bradbury, J.N.
1985-01-01
Negative pions have been used for radiotherapy at the meson factories LAMPF (USA), SIN (Switzerland), and TRIUMF (Canada) and have been planned for use at new meson facilities under construction (USSR) and at proposed dedicated medical facilities. Providing therapeutically useful dose rates of pions requires a knowledge of the pion production cross sections as a function of primary proton energy (500 to 1000 MeV), pion energy (less than or equal to100 MeV), production angle, and target material. The current status of the data base in this area is presented including theoretical guidelines for extrapolation purposes. The target material and geometry, as well as the proton and pion beam parameters, will affect the electron (and muon) contamination in the beam which may have an important effect on both the LET characteristics of the dose and the dose distribution. In addition to cross-section data, channel characteristics such as length of pion trajectory, solid-angle acceptance, and momentum analysis will affect dose rate, distribution, and quality. Such considerations are briefly addressed in terms of existing facilities and proposed systems. 16 refs., 6 figs
Nifenecker, H.
1993-01-01
The results on delayed and prompt fission of heavy hypernuclei obtained by the LEAR PS177 collaboration are recalled and discussed. It is shown that the hypernuclei life-times can be explained in term of a weak strangeness violating lambda-nucleon interaction with a cross section close to 6.0 10 -15 barns. The lambda attachment function is shown to be sensitive to the scission configuration, just before fission, and to the neck dynamics. This function provides a new way to study the nuclear scission process. (author)
A macroscopic cross-section model for BWR pin-by-pin core analysis
Fujita, Tatsuya; Endo, Tomohiro; Yamamoto, Akio
2014-01-01
A macroscopic cross-section model used in boiling water reactor (BWR) pin-by-pin core analysis is studied. In the pin-by-pin core calculation method, pin-cell averaged cross sections are calculated for many combinations of core state and depletion history variables and are tabulated prior to core calculations. Variations of cross sections in a core simulator are caused by two different phenomena (i.e. instantaneous and history effects). We treat them through the core state variables and the exposure-averaged core state variables, respectively. Furthermore, the cross-term effect among the core state and the depletion history variables is considered. In order to confirm the calculation accuracy and discuss the treatment of the cross-term effect, the k-infinity and the pin-by-pin fission rate distributions in a single fuel assembly geometry are compared. Some cross-term effects could be negligible since the impacts of them are sufficiently small. However, the cross-term effects among the control rod history (or the void history) and other variables have large impacts; thus, the consideration of them is crucial. The present macroscopic cross-section model, which considers such dominant cross-term effects, well reproduces the reference results and can be a candidate in practical applications for BWR pin-by-pin core analysis on the normal operations. (author)
de Saussure, G.; Leal, L.C.; Perez, R.B.
1990-01-01
In the first part of this paper, a reevaluation of the low-energy neutron cross sections of 235 U is described. This reevaluation was motivated by the discrepancy between the measured and computed temperature coefficients of reactivity and is based on recent measurements of the fission cross section and of η in the thermal and subthermal neutron energy regions. In the second part of the paper, we discuss the conversion of the Reich-Moore resonance parameters, describing the neutron cross sections of 235 U in the resolved resonance region, into equivalent Adler-Adler resonance parameters and into equivalent momentum space multipole resonance parameters. 25 refs., 4 figs., 5 tabs
Saussure, G. de; Leal, L.C.; Perez, R.B.
1990-01-01
In the first part of this paper, a reevaluation of the low-energy neutron cross sections of 235 U is described. This reevaluation was motivated by the discrepancy between the measured and computed temperature coefficients of reactivity and is based on recent measurements of the fission cross section and of η in the thermal and subthermal neutron energy regions. In the second part of the paper, we discuss the conversion of the Reich-Moore resonance parameters, describing the neutron cross sections of 235 U in the resolved resonance region, into equivalent Adler-Adler resonance parameters and into equivalent momentum space multipole resonance parameters
Differences between LASL- and ANL-processed cross sections
Kidman, R.B.; MacFarlane, R.E.; Becker, M.
1978-03-01
As part of the Los Alamos Scientific Laboratory (LASL) cross-section processing development, LASL cross sections and results from MINX/1DX system are compared to the Argonne National Laboratory cross sections and results from the ETOE-2/MC 2 -2 system for a simple reactor problem. Exact perturbation theory is used to establish the eigenvalue effect of every isotope group cross-section difference. Cross sections, cross-section differences, and their eigenvalue effects are clearly and conveniently displayed and compared on a group-by-group basis
Cross section homogenization analysis for a simplified Candu reactor
Pounders, Justin; Rahnema, Farzad; Mosher, Scott; Serghiuta, Dumitru; Turinsky, Paul; Sarsour, Hisham
2008-01-01
The effect of using zero current (infinite medium) boundary conditions to generate bundle homogenized cross sections for a stylized half-core Candu reactor problem is examined. Homogenized cross section from infinite medium lattice calculations are compared with cross sections homogenized using the exact flux from the reference core environment. The impact of these cross section differences is quantified by generating nodal diffusion theory solutions with both sets of cross sections. It is shown that the infinite medium spatial approximation is not negligible, and that ignoring the impact of the heterogeneous core environment on cross section homogenization leads to increased errors, particularly near control elements and the core periphery. (authors)
Effect of γ-ray emission on transuranium element production cross sections in heavy ion reactions
Il'inov, A.S.; Oganesyan, Yu.Ts.; Cherepanov, E.A.
1980-01-01
The effect of competition of the γ ray emission with neutron evaporation and of compound nuclei fission induced by heavy ion reactions on the production cross sections for transuranium elements is considered. It is shown that taking account of γ ray emission leads to the broadening of the excitation functions of the (HI, xny) reactions such as 18 O+ 238 U, 40 Ar+ 206 Pb, 40 Ar+ 207 Pb and 40 Ar+ 208 Pb reactions and to the displacement of their maximum toward the higher energies as well as to an increase of the absolute cross sections which is especially strong close to the fusion barrier. Cross sections for the radiative capture of heavy ions by a heavy target nucleus in 40 Ar+ 206 Pb, 40 Ar+ 208 Pb, 48 Ca+ 204 Pb and 48 Ca+ 208 Pb reactions are estimated
Neutron-induced cross sections of actinides via the surrogate-reaction method
Tveten G. M.
2013-03-01
Full Text Available The surrogate-reaction method is an indirect way of determining cross sections for reactions that proceed through a compound nucleus. This technique may enable neutron-induced cross sections to be extracted for short-lived nuclei that otherwise cannot be measured. However, the validity of the surrogate method for extracting capture cross sections has to be investigated. In this work we study the reactions 238U(d,p239U, 238U(3He,t238Np, 238U(3He,4He237U as surrogates for neutroninduced reactions on 238U, 237Np and 236U, respectively, for which good quality data exist. The experimental set-up enabled the measurement of fission and gamma-decay probabilities. First results are presented and discussed.
Measurement of the $^{242}$Pu(n,f) reaction cross-section at the CERN n_TOF facility
AUTHOR|(CDS)2080481; Kokkoris, Michael; Vlachoudis, Vasilis
The accurate knowledge of relevant nuclear data, such as the neutron-induced fission cross sections of various plutonium isotopes and other minor actinides, is crucial for the design of advanced nuclear systems as well as the development of comprehensive theoretical models of the fission process. The $^{242}$Pu(n,f) cross section was measured at the CERN n_TOF facility taking advantage of the wide energy range and the high instantaneous flux of the neutron beam. In this work, results for the $^{242}$Pu(n,f) measurement are presented along with a detailed description of the experimental setup, Monte-Carlo simulations and the analysis procedure, and a theoretical cross section calculation performed with the EMPIRE code.
Peelle, R.W.; de Sassure, G.
1977-01-01
Refined knowledge of the thermal neutron cross sections of the fissile nuclides and of the (n,α) reaction standards, together with the reasonably well known energy dependence of the latter, have permitted resonance-region and low-keV fissile nuclide cross sections to be based on these standards together with count-rate ratios observed as a function of energy using a pulsed ''white'' source. As one evaluates cross sections for energies above 20 keV, optimum results require combination of cross section shape measurements with all available absolute measurements. The assumptions of the ''thermal normalization method'' are reviewed, and an opinion is given of the status of some of the standards required for its use. The complications which may limit the accuracy of results using the method are listed and examples are given. For the 235 U(n,f) cross section, the option is discussed of defining resonance-region fission integrals as standards. The area of the approximately 9 eV resonances in this nuclide may be known to one percent accuracy, but at present the fission integral from 0.1 to 1.0 keV is known to no better than about two percent. This uncertainty is based on the scatter among independent results, and has not been reduced by the most recent measurements. This uncertainty now limits the accuracy attainable for the 235 U(n,f) cross section below about 50 keV. Suggestions are given to indicate how future detailed work might overcome past sources of error
Optimization of multi-group cross sections for fast reactor analysis
Chin, M. R.; Manalo, K. L.; Edgar, C. A.; Paul, J. N.; Molinar, M. P.; Redd, E. M.; Yi, C.; Sjoden, G. E.
2013-01-01
The selection of the number of broad energy groups, collapsed broad energy group boundaries, and their associated evaluation into collapsed macroscopic cross sections from a general 238-group ENDF/B-VII library dramatically impacted the k eigenvalue for fast reactor analysis. An analysis was undertaken to assess the minimum number of energy groups that would preserve problem physics; this involved studies using the 3D deterministic transport parallel code PENTRAN, the 2D deterministic transport code SCALE6.1, the Monte Carlo based MCNP5 code, and the YGROUP cross section collapsing tool on a spatially discretized MOX fuel pin comprised of 21% PUO 2 -UO 2 with sodium coolant. The various cases resulted in a few hundred pcm difference between cross section libraries that included the 238 multi-group reference, and cross sections rendered using various reaction and adjoint weighted cross sections rendered by the YGROUP tool, and a reference continuous energy MCNP case. Particular emphasis was placed on the higher energies characteristic of fission neutrons in a fast spectrum; adjoint computations were performed to determine the average per-group adjoint fission importance for the MOX fuel pin. This study concluded that at least 10 energy groups for neutron transport calculations are required to accurately predict the eigenvalue for a fast reactor system to within 250 pcm of the 238 group case. In addition, the cross section collapsing/weighting schemes within YGROUP that provided a collapsed library rendering eigenvalues closest to the reference were the contribution collapsed, reaction rate weighted scheme. A brief analysis on homogenization of the MOX fuel pin is also provided, although more work is in progress in this area. (authors)
K sup + nucleus total cross sections
Sawafta, R.
1990-01-01
The scattering of K{sup +} mesons from nuclei has attracted considerable interest in the last few years. The K{sup +} holds a very special position as the weakest of all strongly interaction probes. The average cross section is not larger than about 10 mb at lab momenta below 800 MeV/c, corresponding to a mean free path in the nucleus larger than 5 fm. Thus the K{sup +} is capable of probing the entire volume of the nucleus. Single scattering of the K{sup +} with a nucleon in the nucleus dominates the nuclear scattering, and only small and calculable higher order corrections are needed. The nucleon is a dynamical entity and its internal structure can, in principle, be altered by its surrounding nuclear environment. This work reports an experiment in which the K{sup +} is used to compare the nucleon in the nucleus with a free nucleon.
Differential cross section of atomic hydrogen photoionization
Kondratovich, V.D.; Ostrovskij, V.N.
1986-01-01
Differential cross-section of atomic hydrogen photoeffect in external electric field was investigated in semiclassical approximation. Interference was described. It occurred due to the fact that infinite number of photoelectron trajectories leads to any point of classically accessible motion region. Interference picture can reach macroscopic sizes. The picture is determined by location of function nodes, describing finite electron motion along one of parabolic coordinates. The squares of external picture rings are determined only by electric field intensity in the general case at rather high energies. Quantum expression for photocurrent density was obtained using Green function in superposition of Coulomb and uniform field as well as semiclassical approximation. Possible applications of macroscopic interference picture to specification of atom ionization potentials, selective detection of atoms or particular molecules, as well as weak magnetic field and observation of Aaronov-Bom effect are discussed
Angle-averaged Compton cross sections
Nickel, G.H.
1983-01-01
The scattering of a photon by an individual free electron is characterized by six quantities: α = initial photon energy in units of m 0 c 2 ; α/sub s/ = scattered photon energy in units of m 0 c 2 ; β = initial electron velocity in units of c; phi = angle between photon direction and electron direction in the laboratory frame (LF); theta = polar angle change due to Compton scattering, measured in the electron rest frame (ERF); and tau = azimuthal angle change in the ERF. We present an analytic expression for the average of the Compton cross section over phi, theta, and tau. The lowest order approximation to this equation is reasonably accurate for photons and electrons with energies of many keV
Plasma-based radar cross section reduction
Singh, Hema; Jha, Rakesh Mohan
2016-01-01
This book presents a comprehensive review of plasma-based stealth, covering the basics, methods, parametric analysis, and challenges towards the realization of the idea. The concealment of aircraft from radar sources, or stealth, is achieved through shaping, radar absorbing coatings, engineered materials, or plasma, etc. Plasma-based stealth is a radar cross section (RCS) reduction technique associated with the reflection and absorption of incident electromagnetic (EM) waves by the plasma layer surrounding the structure. A plasma cloud covering the aircraft may give rise to other signatures such as thermal, acoustic, infrared, or visual. Thus it is a matter of concern that the RCS reduction by plasma enhances its detectability due to other signatures. This needs a careful approach towards the plasma generation and its EM wave interaction. The book starts with the basics of EM wave interactions with plasma, briefly discuss the methods used to analyze the propagation characteristics of plasma, and its generatio...
ISSUES IN NEUTRON CROSS SECTION COVARIANCES
Mattoon, C.M.; Oblozinsky,P.
2010-04-30
We review neutron cross section covariances in both the resonance and fast neutron regions with the goal to identify existing issues in evaluation methods and their impact on covariances. We also outline ideas for suitable covariance quality assurance procedures.We show that the topic of covariance data remains controversial, the evaluation methodologies are not fully established and covariances produced by different approaches have unacceptable spread. The main controversy is in very low uncertainties generated by rigorous evaluation methods and much larger uncertainties based on simple estimates from experimental data. Since the evaluators tend to trust the former, while the users tend to trust the latter, this controversy has considerable practical implications. Dedicated effort is needed to arrive at covariance evaluation methods that would resolve this issue and produce results accepted internationally both by evaluators and users.
Partial cross sections in H- photodetachment
Halka, M.
1993-04-01
This dissertation reports experimental measurements of partial decay cross sections in the H - photodetachment spectrum. Observed decays of the 1 P 0 H -** (n) doubly-excitedresonances to the H(N=2) continuum are reported for n=2,3, and 4 from 1990 runs in which the author participated. A recent analysis of 1989 data revealing effects of static electric fields on the partial decay spectrum above 13.5 eV is also presented. The experiments were performed at the High Resolution Atomic Beam Facility. the Los Alamos Meson Physics Facility, with a relativistic H - beam (β=0.842)intersecting a ND:YAG laser. Variation of the intersection angle amounts to Doppler-shifting the photon energy, allowing continuous tuning of the laser energy as viewed from the moving ions' frame
Angle-averaged Compton cross sections
Nickel, G.H.
1983-01-01
The scattering of a photon by an individual free electron is characterized by six quantities: ..cap alpha.. = initial photon energy in units of m/sub 0/c/sup 2/; ..cap alpha../sub s/ = scattered photon energy in units of m/sub 0/c/sup 2/; ..beta.. = initial electron velocity in units of c; phi = angle between photon direction and electron direction in the laboratory frame (LF); theta = polar angle change due to Compton scattering, measured in the electron rest frame (ERF); and tau = azimuthal angle change in the ERF. We present an analytic expression for the average of the Compton cross section over phi, theta, and tau. The lowest order approximation to this equation is reasonably accurate for photons and electrons with energies of many keV.
Sudakov resummation of multiparton QCD cross sections
Bonciani, R; Mangano, Michelangelo L; Nason, P
2003-01-01
We present the general expressions for the resummation, up to next-to-leading logarithmic accuracy, of Sudakov-type logarithms in processes with an arbirtrary number of hard-scattering partons. These results document the formulae used by the authors in several previous phenomenological studies. The resummation formulae presented here, which are valid for phase-space factorizable observables, determine the resummation correction in a process-independent fashion. All process dependence is encoded in the colour and flavour structure of the leading order and virtual one-loop amplitudes, and in Sudakov weights associated to the cross section kinematics. We explicitly illustrate the application to the case of Drell--Yan and prompt-photon production.
Sudakov resummation of multiparton QCD cross sections
Bonciani, Roberto; Catani, Stefano; Mangano, Michelangelo L.; Nason, Paolo
2003-01-01
We present the general expressions for the resummation, up to next-to-leading logarithmic accuracy, of Sudakov-type logarithms in processes with an arbitrary number of hard-scattering partons. These results document the formulae used by the authors in several previous phenomenological studies. The resummation formulae presented here, which are valid for phase-space factorizable observables, determine the resummation correction in a process-independent fashion. All process dependence is encoded in the colour and flavour structure of the leading order and virtual one-loop amplitudes, and in Sudakov weights associated to the cross section kinematics. We explicitly illustrate the application to the case of Drell-Yan and prompt-photon production
Electroweak Boson Cross-Section Measurements
The ATLAS collaboration
2009-01-01
This report summarises the ATLAS prospects for the measurement of W and Z pro- duction cross-section at the LHC. The electron and muon decay channels are considered. Focusing on the early data taking phase, strategies are presented that allow a fast and robust extraction of the signals. An overall uncertainty of about 5% can be achieved with 50 pb−1 in the W channels, where the background uncertainty dominates (the luminosity measurement uncertainty is not discussed here). In the Z channels, the expected preci- sion is 3%, the main contribution coming from the lepton selection efﬁciency uncertainty. Extrapolating to 1 fb−1 , the uncertainties shrink to incompressible values of 1-2%, de- pending on the ﬁnal state. This irreducible uncertainty is essentially driven by strong interaction effects, notably parton distribution uncertainties and non-perturbative effects, affecting the W and Z rapidity and transverse momentum distributions. These effects can be constrained by measuring these distributions. Al...
Reaction cross section for Ne isotopes
Panda, R.N.; Sahu, B.K.; Patra, S.K.
2012-01-01
In the present contribution, first the bulk properties are calculated, such as binding energy (BE), root mean square charge radius r ch , matter radius r m and quadrupole deformation parameter β 2 for 18-32 Ne isotopes in the Relativistic mean field (RMF) and effective field theory motivated RMF (E-RMF) formalisms . Then the total nuclear reaction cross section σR is analyzes for the scattering of 20 Ne and 28-32 Ne from a 12 C target at 240 MeV/nucleon by using the RMF model. Thus the objective of the present study is to calculate the bulk properties as well as a systematic analysis of σR over a range of neutron rich nuclei in the frame work of Glauber model
Topological supersymmetric structure of hadron cross sections
Gauron, P.; Nicolescu, B.; Ouvry, S.
1980-12-01
Recently a way of fully implementing unitarity in the framework of a Dual Topological Unitarization theory, including not only mesons but also baryons, was found. This theory consists in the topological description of hadron interactions involving confined quarks in terms of two 2-dimensional surfaces (a closed 'quantum' surface and a bounded 'classical' surface). We show that this description directly leads, at the zeroth order of the topological expansion, to certain relations between hadron cross-sections, in nice agreement with experimental data. A new topological suppression mechanism is shown to play an important dynamical role. We also point out a new topological supersymmetry property, which leads to realistic experimental consequences. A possible topological origin of the rho and ω universality relations emerges as a by-product of our study
Neutron scattering cross sections of uranium-238
Beghian, L.E.; Kegel, G.H.R.; Marcella, T.V.; Barnes, B.K.; Couchell, G.P.; Egan, J.J.; Mittler, A.; Pullen, D.J.; Schier, W.A.
1979-01-01
The University of Lowell high-resolution time-of-flight spectrometer was used to measure angular distributions and 90-deg excitation functions for neutrons scattered from 238 U in the energy range from 0.9 to 3.1 MeV. This study was limited to the elastic and the first two inelastic groups, corresponding to states of 238 U at 45 keV (2 + ) and 148 keV (4 + ). Angular distributions were measured at primary neutron energies of 1.1, 1.9, 2.5, and 3.1 MeV for the same three neutron groups. Whereas the elastic data are in fair agreement with the evaluation in the ENDF/B-IV file, there is substantial disagreement between the inelastic measurements and the evaluated cross sections. 12 figures
Electron capture cross sections by O+ from atomic He
Joseph, Dwayne C; Saha, Bidhan C
2009-01-01
The adiabatic representation is used in both the quantal and semi classical molecular orbital close coupling methods (MOCC) to evaluate charge exchange cross sections. Our results show good agreement with experimental cross sections
Electron capture cross sections by O+ from atomic He
Joseph, Dwayne C.; Saha, Bidhan C.
2009-11-01
The adiabatic representation is used in both the quantal and semi classical molecular orbital close coupling methods (MOCC) to evaluate charge exchange cross sections. Our results show good agreement with experimental cross sections
Total and ionization cross sections of electron scattering by fluorocarbons
Antony, B K; Joshipura, K N; Mason, N J
2005-01-01
Electron impact total cross sections (50-2000 eV) and total ionization cross sections (threshold to 2000 eV) are calculated for typical plasma etching molecules CF 4 , C 2 F 4 , C 2 F 6 , C 3 F 8 and CF 3 I and the CF x (x 1-3) radicals. The total elastic and inelastic cross sections are determined in the spherical complex potential formalism. The sum of the two gives the total cross section and the total inelastic cross section is used to calculate the total ionization cross sections. The present total and ionization cross sections are found to be consistent with other theories and experimental measurements, where they exist. Our total cross section results for CF x (x = 1-3) radicals presented here are first estimates on these species
Mid-IR Absorption Cross-Section Measurements of Hydrocarbons
Alrefae, Majed Abdullah
2013-01-01
-known at combustion-relevant conditions. Absorption cross-section is an important spectroscopic quantity and has direct relation to the species concentration. In this work, the absorption cross-sections of basic hydrocarbons are measured using Fourier Transform
XNWLUP, Graphical user interface to plot WIMS-D library multigroup cross sections
Ganesan, S.; Jagannathan, V.; Thiyagarajan, T.K.
2005-01-01
1 - Description of program or function: XnWlup is a computer program with user-friendly graphical interface to help the users of WIMS-D library to enable quick visualisation of the plots of the energy dependence of the multigroup cross sections of any nuclide of interest. This software enables the user to generate and view the histogram of 69 multi-group cross sections as a function of neutron energy under Microsoft Windows environment. This software is designed using Microsoft Visual C++ and Microsoft Foundation Classes Library. IAEA1395/05: New features of version 3.0: - Plotting absorption and fission cross sections of resonant nuclide after applying the self-shielding cross section. - Plotting the data of Resonant Integral table, as a function of dilution cross section for a selected temperature and for a given energy group. - Plotting the data of Resonant Integral table, as a function of temperature for a selected background dilution cross section and for a given energy group. - Clearing all the graphs except one graph from the display screen is easily done by using a tool bar button. - Displaying the coordinate of the cursor point with appropriate units. 2 - Methods: XnWlup helps to obtain histogram plots of the values of cross section data of an element/isotope available as 69-group WIMS-D library as a function of energy bins. The software XnWlup is developed with this graphical user interface in order to help those users who frequently refer to the WIMS-D library cross section data of neutron-nuclear reactions. The software also helps to produce handbook of WIMS-D cross sections
Photoionization cross section of atomic and molecular oxygen
Pareek, P.N.
1983-01-01
Photoionization cross sections of atomic oxygen and dissociative photoionization cross sections of molecular oxygen were measured from their respective thresholds to 120 angstrom by use of a photoionization mass spectrometer in conjunction with a spark light source. The photoionization cross sections O 2 + parent ion and O + fragment ion from neutral O 2 were obtained by a technique that eliminated the serious problem of identifying the true abundances of O + ions. These ions are generally formed with considerable kinetic energy and, because most mass spectrometers discriminate against energetic ions, true O + abundances are difficult to obtain. In the present work the relative cross sections for producing O + ions are obtained and normalized against the total cross sections in a spectral region where dissociative ionization is not possible. The fragmentation cross sections for O + were then obtained by subtraction of O 2 + cross sections from the known total photoionization cross sections. The results are compared with the previously published measurements. The absolute photoionization cross section of atomic oxygen sigma 8 /sub +/ was measured at 304 A. The actual number density of oxygen atoms within the ionization region was obtained by measuring the fraction of 0 2 molecules dissociated. This sigma/sub +/ at 304 angstrom was used to convert the relative photoinization cross sections, measured as a function of wavelength using a calibrated photodiode, to absolute cross sections. The results are compared with previous measurements and calculated cross sections. angstrom Rydberg series converging to the OII 4 P state was observed
Multilevel parametrization of fissile nuclei resonance cross sections
Lukyanov, A.A.; Kolesov, V.V.; Janeva, N.
1987-01-01
Because the resonance interference has an important influence on the resonance structure of neutron cross sections energy dependence at lowest energies, multilevel scheme of the cross section parametrization which take into account the resonance interference is used for the description with the same provisions in the regions of the interferential maximum and minimum of the resonance cross sections of the fissile nuclei
Fabry, A.; McElroy, W.N.; Kellogg, L.S.; Lippincott, E.P.; Grundl, J.A.; Gilliam, D.M.; Hansen, G.E.
1976-01-01
This paper is intended to review and critically discuss microscopic integral cross section measurement and calculation data for fundamental reactor dosimetry benchmark neutron fields. Specifically the review covers the following fundamental benchmarks: the spontaneous californium-252 fission neutron spectrum standard field; the thermal-neutron induced uranium-235 fission neutron spectrum standard field; the (secondary) intermediate-energy standard neutron field at the center of the Mol-ΣΣ, NISUS, and ITN-ΣΣ facilities; the reference neutron field at the center of the Coupled Fast Reactor Measurement Facility; the reference neutron field at the center of the 10% enriched uranium metal, cylindrical, fast critical; the (primary) Intermediate-Energy Standard Neutron Field
Fabry, A.; McElroy, W.N.; Kellogg, L.S.; Lippincott, E.P.; Grundl, J.A.; Gilliam, D.M.; Hansen, G.E.
1976-10-01
The paper is intended to review and critically discuss microscopic integral cross section measurement and calculation data for fundamental reactor dosimetry benchmark neutron fields. Specifically the review covers the following fundamental benchmarks: (1) the spontaneous californium-252 fission neutron spectrum standard field; (2) the thermal-neutron induced uranium-235 fission neutron spectrum standard field; (3) the (secondary) intermediate-energy standard neutron field at the center of the Mol-ΣΣ, NISUS, and ITN--ΣΣ facilities; (4) the reference neutron field at the center of the Coupled Fast Reactor Measurement Facility (CFRMF); (5) the reference neutron field at the center of the 10 percent enriched uranium metal, cylindrical, fast critical; and (6) the (primary) Intermediate-Energy Standard Neutron Field
Evaluation for ENDF/B-IV of the neutron cross sections for 235U from 82 eV to 25 keV
Peelle, R.W.
1976-05-01
Capture and fission cross sections for 235 U in the ''unresolved resonance'' energy region were evaluated to permit determination of local-average resonance parameters for the ENDF/B-IV cross section file. Microscopic data were examined for infinitely dilute average fission and capture cross sections and also for intermediate structure unlikely to be reproduced by statistical fluctuations of resonance widths and spacings within known laws. Evaluated cross sections, averaged over lethargy intervals greater than 0.1, were obtained as an average over selected data sets after appropriate renormalization. Estimated uncertainties are given for these evaluated average cross sections. The ''intermediate'' structure fluctuations common to a few independent data sets were approximated by straight lines joining successive cross sections at 120 selected energy points; the cross sections at the vertices were adjusted to reproduce the evaluated average cross sections over the broad energy regions. Data sources and methods are reviewed, output values are tabulated, and some modified procedures are suggested for future evaluations. Evaluated fission and capture integrals for the resolved resonance region are also tabulated. These are not in agreement with integrals based on the resonance parameters of ENDF/B versions III and IV. 8 tables, 5 figures
Some remarks on the neutron elastic- and enelastic-scattering cross sections of palladium
Chiba, S.; Guenther, P.T.; Smith, A.B.
1989-05-01
The cross sections for the elastic-scattering of 5.9, 7.1 and 8.0 MeV neutrons from elemental palladium were measured at forty scattering angles distributed between ∼15/degree/ and 160/degree/. The inelastic-scattering cross sections for the excitation of palladium levels at energies of 260 keV to 560 keV were measured with high resolution at the same energies, and at a scattering angle of 80/degree/. The experimental results were combined with lower-energy values previously obtained by this group to provide a comprehensive data base extending from near the inelastic-scattering threshold to 8 MeV. That data base was interpreted in terms of a coupled-channel model, including the inelastic excitation of one- and two-phonon vibrational levels of the even isotopes of palladium. It was concluded that the palladium inelastic-scattering cross section, at the low energies of interest in assessment of fast-fission-reactor performance, are large (∼50% greater than given in widely used evaluated fission-product data files). They primarily involve compound-nucleus processes, with only a small direct-reaction component attributable to the excitation of the one-phonon, 2 + , vibrational levels of the even isotopes of palladium. 24 refs., 6 figs
Accurate measurements of neutron activation cross sections
Semkova, V.
1999-01-01
The applications of some recent achievements of neutron activation method on high intensity neutron sources are considered from the view point of associated errors of cross sections data for neutron induced reaction. The important corrections in -y-spectrometry insuring precise determination of the induced radioactivity, methods for accurate determination of the energy and flux density of neutrons, produced by different sources, and investigations of deuterium beam composition are considered as factors determining the precision of the experimental data. The influence of the ion beam composition on the mean energy of neutrons has been investigated by measurement of the energy of neutrons induced by different magnetically analysed deuterium ion groups. Zr/Nb method for experimental determination of the neutron energy in the 13-15 MeV energy range allows to measure energy of neutrons from D-T reaction with uncertainty of 50 keV. Flux density spectra from D(d,n) E d = 9.53 MeV and Be(d,n) E d = 9.72 MeV are measured by PHRS and foil activation method. Future applications of the activation method on NG-12 are discussed. (author)
Resonance capture cross section of 207Pb
Domingo-Pardo, C.; Aerts, G.; Alvarez-Pol, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Bisterzo, S.; Calvino, F.; Cano-Ott, D.; Capote, R.; Carrapico, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillman, I.; Dolfini, R.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fujii, K.; Furman, W.; Gallino, R.; Goncalves, I.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, S.; Jericha, E.; Kadi, Y.; Kappeler, F.; Karamanis, D.; Karadimos, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krticka, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; Oshima, M.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescher, M.; Wisshak, K.
2006-01-01
The radiative neutron capture cross section of 207Pb has been measured at the CERN neutron time of flight installation n_TOF using the pulse height weighting technique in the resolved energy region. The measurement has been performed with an optimized setup of two C6D6 scintillation detectors, which allowed us to reduce scattered neutron backgrounds down to a negligible level. Resonance parameters and radiative kernels have been determined for 16 resonances by means of an R-matrix analysis in the neutron energy range from 3 keV to 320 keV. Good agreement with previous measurements was found at low neutron energies, whereas substantial discrepancies appear beyond 45 keV. With the present results, we obtain an s-process contribution of 77(8)% to the solar abundance of 207Pb. This corresponds to an r-process component of 23(8)%, which is important for deriving the U/Th ages of metal poor halo stars.
Josephson cross-sectional model experiment
Ketchen, M.B.; Herrell, D.J.; Anderson, C.J.
1985-01-01
This paper describes the electrical design and evaluation of the Josephson cross-sectional model (CSM) experiment. The experiment served as a test vehicle to verify the operation at liquid-helium temperatures of Josephson circuits integrated in a package environment suitable for high-performance digital applications. The CSM consisted of four circuit chips assembled on two cards in a three-dimensional card-on-board package. The chips (package) were fabricated in a 2.5-μm (5-μm) minimum linewidth Pb-alloy technology. A hierarchy of solder and pluggable connectors was used to attach the parts together and to provide electrical interconnections between parts. A data path which simulated a jump control sequence and a cache access in each machine cycle was successfully operated with cycle times down to 3.7 ns. The CSM incorporated the key components of the logic, power, and package of a prototype Josephson signal processor and demonstrated the feasibility of making such a processor with a sub-4-ns cycle time
Female medical leadership: cross sectional study.
Kvaerner, K J; Aasland, O G; Botten, G S
1999-01-09
To assess the relation between male and female medical leadership. Cross sectional study on predictive factors for female medical leadership with data on sex, age, specialty, and occupational status of Norwegian physicians. Oslo, Norway. 13 844 non-retired Norwegian physicians. Medical leaders, defined as physicians holding a leading position in hospital medicine, public health, academic medicine, or private health care. 14.6% (95% confidence interval 14.0% to 15.4%) of the men were leaders compared with 5.1% (4.4% to 5.9%) of the women. Adjusted for age men had a higher estimated probability of leadership in all categories of age and job, the highest being in academic medicine with 0.57 (0.42 to 0.72) for men aged over 54 years compared with 0.39 (0.21 to 0.63) for women in the same category. Among female hospital physicians there was a positive relation between the proportion of women in their specialty and the probability of leadership. Women do not reach senior positions as easily as men. Medical specialties with high proportions of women have more female leaders.
New resonance cross section calculational algorithms
Mathews, D.R.
1978-01-01
Improved resonance cross section calculational algorithms were developed and tested for inclusion in a fast reactor version of the MICROX code. The resonance energy portion of the MICROX code solves the neutron slowing-down equations for a two-region lattice cell on a very detailed energy grid (about 14,500 energies). In the MICROX algorithms, the exact P 0 elastic scattering kernels are replaced by synthetic (approximate) elastic scattering kernels which permit the use of an efficient and numerically stable recursion relation solution of the slowing-down equation. In the work described here, the MICROX algorithms were modified as follows: an additional delta function term was included in the P 0 synthetic scattering kernel. The additional delta function term allows one more moments of the exact elastic scattering kernel to be preserved without much extra computational effort. With the improved synthetic scattering kernel, the flux returns more closely to the exact flux below a resonance than with the original MICROX kernel. The slowing-down calculation was extended to a true B 1 hyperfine energy grid calculatn in each region by using P 1 synthetic scattering kernels and tranport-corrected P 0 collision probabilities to couple the two regions. 1 figure, 6 tables
Energy-differential cross section measurement for the 51V(n,α)48Sc reaction
Kanno, I.; Meadows, J.W.; Smith, D.L.
1984-07-01
The activation method was used to measure cross sections for the 51 V(n,α) 48 Sc reaction in the threshold region, from 5.515 MeV up to 9.567 MeV. Twenty approximately-monoenergetic cross section values were obtained in this experiment. These data points span the energy region at roughly equal intervals. The experimental resolutions were in the range 0.153 to 0.233 MeV (FWHM). The present differential data cover approx. 50% of the total integral response of this reaction for the standard 235 U thermal-neutron-induced-fission neutron spectrum, and approx. 44% of the corresponding response for the standard 252 Cf spontaneous-fission neutron spectrum. Over the range 7.6 to 9.5 MeV the present experimental cross sections are noticeably larger (e.g., by approx. 50% at approx. 8.6 MeV) than the corresponding values from the ENDF/B-V evaluation. From approx. 6.7 to 7.5 MeV, the present values are somewhat below those of ENDF/B-V. At still lower energies the agreement is reasonably good considering the uncertainties introduced by energy scale definition very near the effective threshold where the cross section varies rapidly with neutron energy. Calculated integral cross sections based in part on the present work agree reasonably well within errors with reported integral results, provided that the reported data are renormalized to conform with recently-accepted values for appropriate standard reactions. 70 references
R-matrix analysis of 235U neutron transmission and cross sections in the energy range 0 to 2.25 keV
Leal, L.C.; Derrien, H.; Larson, N.M.; Wright, R.Q.
1997-11-01
This document describes a new R-matrix analysis of 235 U cross section data in the energy range from 0 to 2,250 eV. The analysis was performed with the computer code SAMMY, that has recently been updated to permit, for the first time, inclusion of both differential and integral data within the analysis process. Fourteen differential data sets and six integral quantities were used in this evaluation: two measurements of fission plus capture, one of fission plus absorption, six of fission alone, two of transmission, and one of eta, plus standard values of thermal cross sections for fission, capture, and scattering, and of K1 and the Westcott g-factors for both fission and absorption. An excellent representation was obtained for the high-resolution transmission, fission, and capture cross-section data as well as for the integral quantities. The result is a single set of resonance parameters spanning the entire range up to 2,250 eV, a decided improvement over the present ENDF/VI evaluation, in which eleven discrete resonance parameter sets are required to cover that same energy range. This new evaluation is expected to greatly improve predictability of the criticality safety margins for nuclear systems in which 235 U is present
Neutron cross section libraries for analysis of fusion neutronics experiments
Kosako, Kazuaki; Oyama, Yukio; Maekawa, Hiroshi; Nakamura, Tomoo
1988-03-01
We have prepared two computer code systems producing neutron cross section libraries to analyse fusion neutronics experiments. First system produces the neutron cross section library in ANISN format, i.e., the multi-group constants in group independent format. This library can be obtained by using the multi-group constant processing code system MACS-N and the ANISN format cross section compiling code CROKAS. Second system is for the continuous energy cross section library for the MCNP code. This library can be obtained by the nuclear data processing system NJOY which generates pointwise energy cross sections and the cross section compiling code MACROS for the MCNP library. In this report, we describe the production procedures for both types of the cross section libraries, and show six libraries with different conditions in ANISN format and a library for the MCNP code. (author)
Determination of reaction cross sections with the aid of α decay in the 12C, 14C + 209Bl reactions
Hick, H.
1980-01-01
For the reactions 14 C + 209 Bi and 12 C + 209 Bi excitation functions at energies in the range between 57 MeV and 76 MeV are measured. Radiative capture and particle evaporation cross sections were determined by means of α-spectroscopy, and fission cross sections were determined by the measurement of the γ-radiation after the β-decay of the fission products. For the radiative capture for the reaction 14 C + 209 Bi upper limits for the cross section from 21 nbarn to 178 nbarn in the energy interval 61-74 MeV were determined. The fission cross sections were 80 +- 30 mbarn at 490 +- 200 mbarn at 76 MeV. For the reaction 12 C + 209 Bi three new α-lines were found. They were due to the slope at their excitation functions assigned to the decay of isomeric states of following nuclei: 219 Ac Esub(α) = 9419 +- 4 keV Tsub(1/2) = 830 +- 100/μsec, 218 Ac Esub(α) = 9271 +- 4 keV Tsub(1/2) = 810 +- 70/μsec, 217 Ac Eα = 9730 +- 5 keV Tsub(1/2) = 970 +- 190/μsec. For the reactions respectively 12 C + 209 Bi calculations using the statistical model code Grogi of J. Gilat are performed. The calculated branchings of the evaporation channels were compared with the experiment. (orig./HSI) [de
CFRMF spectrum update and application to dosimeter cross-section data testing
Anderl, R.A.; Harker, Y.D.; Millsap, D.A.; Rogers, J.W.; Ryskamp, J.M.
1982-01-01
The Coupled Fast Reactivity Measurements Facility (CFRMF) at the Idaho National Engineering Laboratory (INEL) is a Cross Section Evaluation Working Group (CSEWG) benchmark for data testing of dosimetry, fission-product and actinide cross sections important to fast-reactor technology. In this paper we present the results of our work in updating the CFRMF spectrum characterization and in applying CFRMF integral data to testing ENDF/B-V dosimeter cross sections. Updated characterization of the central neutron spectrum includes the results of neutronics calculations with ENDF/B-V nuclear data, the generation of a fine-group spectrum representation for integral data-testing applications, and a sensitivity and uncertainty analysis which provides a flux-spectrum covariance matrix related to uncertainties and correlations in the nuclear data used in a neutronics calculation. Our application of CFRMF integral data to cross section testing has included both conventional integral testing analyses and least-squares-adjustment analyses with the FERRET code. The conventional integral data-testing analysis, based on C/E ratios, indicates discrepancies outside the estimated integral test uncertainty for the 6 Li(n,He), 10 B(n,He), 47 Ti(n,p), 58 Fe(n,γ), 197 Au(n,γ) and 232 Th(n,γ) cross sections. The integral test uncertainty included contributions from the measured integral data and from the spectrum and cross sections used to obtain the calculated integral data. Within the uncertainty and correlation specifications for the input spectrum and dosimeter cross sections, the least-squares-adjustment analysis indicated a high degree of consistency between the measured integral data and the ENDF/B-V dosimeter cross sections for all reactions except 10 B
The resonance neutron fission on heavy nuclei
Kopach, Yu.N.; Popov, A.B.; Furman, V.I.; Alfimenkov, V.P.; Lason', L.; Pikel'ner, L.B.; ); Gonin, N.N.; Kozlovskij, L.K.; Tambovtsev, D.I.; Gagarskij, A.M.; Petrov, G.A.; Sokolov, V.E.
2001-01-01
A new approach to the description of the fission, similar to the well-known reaction theory and based on the helicity representation for the exit fission channels, is briefly summarized. This approach allows one to connect the multimodal fission representation with A. Bohr's concept of the fission transition states and to obtain formulae for the partial and differential fission cross sections. The formulae are used for analysis of the angular anisotropy of fragments in the neutron resonance induced fission of aligned 235 U nuclei and of the P-even angular forward-backward and right-left correlations of fragments oe the P-odd correlations caused by the interference of s- and p-wave neutron resonances [ru
Preparation of next generation set of group cross sections. 3
Kaneko, Kunio
2002-03-01
This fiscal year, based on the examination result about the evaluation energy range of heavy element unresolved resonance cross sections, the upper energy limit of the energy range, where ultra-fine group cross sections are produced, was raised to 50 keV, and an improvement of the group cross section processing system was promoted. At the same time, reflecting the result of studies carried out till now, a function producing delayed neutron data was added to the general-purpose group cross section processing system , thus the preparation of general purpose group cross section processing system has been completed. On the other hand, the energy structure, data constitution and data contents of next generation group cross section set were determined, and the specification of a 151 groups next generation group cross section set was defined. Based on the above specification, a concrete library format of the next generation cross section set has been determined. After having carried out the above-described work, using the general-purpose group cross section processing system , which was complete in this study, with use of the JENDL-3. 2 evaluated nuclear data, the 151 groups next generation group cross section of 92 nuclides and the ultra fine group resonance cross section library for 29 nuclides have been prepared. Utilizing the 151 groups next generation group cross section set and the ultra-fine group resonance cross-section library, a bench mark test calculation of fast reactors has been performed by using an advanced lattice calculation code. It was confirmed, by comparing the calculation result with a calculation result of continuous energy Monte Carlo code, that the 151 groups next generation cross section set has sufficient accuracy. (author)
Limit power of nuclear fuel cells with biconcave cross sections
Alves, Thiago Antonini; Pelegrini, Marcelo Ferreira; Woiski, Emanuel Rocha; Maia, Cassio Roberto Macedo
2004-01-01
Diffusive media with distributed sources, such as the case of nuclear fuel cells, represent a major role in engineering. Due to the nuclear fission of the chemical element, fuel cells are capable of releasing an enormous amount of thermal energy in spite of their reduced dimensions, in such a way that the maximum power of the reactor is closely related to the fusion temperature of the fuel, and consequently to the maximum temperature in the cell. The cell maximum temperature is, therefore, a chief parameter in nuclear reactor design. Limiting power, of course, depends not only of the fuel thermo physical properties, but also of the cell shape and dimensions. The present work purports the study of the effects of some parameters of cell geometry on the limiting power, especially for cell with biconcave cross sections. Given the large temperature gradients in the cell, the thermal conductivity must be assumed as a generic function of temperature. Therefore, the problem has been modeled as a nonlinear 2 D Poisson-like PDE, with a nontrivial geometry of the boundary. For the analytical solution, Kirchhoff transform has been employed to turn the equation into a linear Poisson equation, a conformal transform brought it to a rectangular domain and Generalized Integral Transform method applied in order to solve the resulting equation. For the numerical solution of the linearized equation, a program has been developed in Python, reusing classes of Ellipt2d, an open-source elliptic solver. The domain has been divided into linear triangular finite elements, and the system of equations resulting of Galerkin method application has been solved, for each parameter set. The trend in critical power has been discussed, as well as the numerical results compared to the analytical solutions and to the literature. (author)
On unambiguous parametrization of neutron cross-sections in the low-energy region
Novoselov, G.M.; Kolomiets, V.M.
1982-08-01
One of the most important aims of analysis in the resonance region is the evaluation of neutron resonance parameters on the basis of a given formalism of the theory of nuclear reactions. However, the task of finding resonance parameters from experimental data on the energy dependence of cross-sections is subject to a number of difficulties. These difficulties are not only of a theoretical character associated with the selection of one version or another of the theory taking into account the effects necessary (interference between resonances, Doppler effect etc.), but also involve problems of principle. Whether the set of parameters found is the only possible one within the context of a single formalism used remains open. The specific features of processing the experimental data are such that even with good resolution a number of overlapping resonances (occurring as a result of the fluctuation in inter-level distances or the Doppler effect) may be classified as an isolated resonance. Moreover, even given a very weak inter-level interference and Doppler effect, unambiguous parametrization of the cross-sections is not always possible. In the present paper these questions (the choice of the approximation needed for describing experimentally observed cross-sections, allowance for inter-level interference and the Doppler effect and the possibility of ambiguous reproduction of the resonance structure of cross-sections) are examined with reference to the parametrization of the total cross-sections for non-fissionable nuclei in the low-neutron-energy region
Methods and procedures for evaluation of neutron-induced activation cross sections
Gardner, M.A.
1981-09-01
One cannot expect measurements alone to supply all of the neutron-induced activation cross-section data required by the fission reactor, fusion reactor, and nuclear weapons development communities, given the wide ranges of incident neutron energies, the great variety of possible reaction types leading to activation, and targets both stable and unstable. Therefore, the evaluator must look to nuclear model calculations and systematics to aid in fulfilling these cross-section data needs. This review presents some of the recent developments and improvements in the prediction of neutron activation cross sections, with specific emphasis on the use of empirical and semiempirical methods. Since such systematics require much less nuclear informaion as input and much less computational time than do the multistep Hauser-Feshbach codes, they can often provide certain cross-section data at a sufficient level of accuracy within a minimum amount of time. The cross-section information that these systematics can and cannot provide and those cases in which they can be used most reliably are discussed