WorldWideScience

Sample records for fisheries research laboratory

  1. Summary sensory workshop Uganda, 21 - 25 November 2005, Uganda Fisheries Laboratory in Entebbe

    NARCIS (Netherlands)

    Schelvis-Smit, A.A.M.

    2005-01-01

    The Icelandic International Development Agency (ICEIDA) has requested The Netherlands Institute of Fisheries Research (RIVO) to organize a sensory workshop in Uganda. ICEIDA is establishing a fisheries laboratory in Uganda in cooperation with the Ugandan government. One of the tasks within this

  2. Kennisbasis WOT Fisheries 2012 - Maintaining Excellence and Innovation in Fisheries Research

    NARCIS (Netherlands)

    Dickey-Collas, M.; Beek, van F.A.

    2011-01-01

    The KBWOT Fisheries programme is fundamental to the maintenance and development of the expertise that underpins the statutory obligations of fisheries monitoring and advice for the Netherlands. The structure of the KBWOT Fisheries programme for 2012 reflects the recent discussions on the research

  3. KB WOT Fisheries 2015 - Maintaining Excellence and Innovation in Fisheries Research

    NARCIS (Netherlands)

    Damme, van C.J.G.; Verver, S.W.

    2015-01-01

    The KB WOT Fisheries programme is essential to the maintenance and development of the expertise which are needed for the Dutch statutory obligations in fisheries monitoring and advice. The contents of the KB WOT Fisheries programme for 2015 reflects the needs of the research developments the WOT

  4. KB WOT Fisheries 2014 - Maintaining Excellence and Innovation in Fisheries Research

    NARCIS (Netherlands)

    Damme, van C.J.G.; Verver, S.W.

    2013-01-01

    The KB WOT Fisheries programme is fundamental to the maintenance and development of expertise needed to carry out the statutory obligations of the Dutch WOT Fisheries monitoring and advice. The structure of the KB WOT Fisheries programme 2014 is a result of discussions on the research direction and

  5. Fisheries Research. Report of the Director of Fisheries Research 1981-82

    International Nuclear Information System (INIS)

    1984-01-01

    The Fisheries Research Laboratory, Lowestoft report on extensive programme of environmental monitoring in the region of major liquid radioactive waste discharges at Sellafield, Cardiff, Hartlepool and Heysham. Exposure pathways are identified and a possible increase in radiation exposure from mollusc consumption near Sellafield investigated. The AEP group advise BNFL and the CEGB on the discharge of wastes into the sea and possible effects on the aquatic environment. The distribution in the sea of cesium 137, strontium 90, plutonium 239/240 from Sellafield discharges is investigated. Detailed studies of the oxidation states of the transuranium elements in seawater at different depths have been initiated and compared with oxidation states at the time of discharge. Seabed cores have been analysed to investigate the incorporation of americium and plutonium and their adsorption onto deep sea sediments. The accumulation of radionuclides in algae and lobsters is studied and the effects of different doses arising from radionuclides on the growth of fish populations were investigated. Cytological studies of fish gonads and testes revealed chromosomal aberrations. (U.K.)

  6. Fisheries Research. Report of the Director of Fisheries Research 1981-82

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    The Fisheries Research Laboratory, Lowestoft report on extensive programme of environmental monitoring in the region of major liquid radioactive waste discharges at Sellafield, Cardiff, Hartlepool and Heysham. Exposure pathways are identified and a possible increase in radiation exposure from mollusc consumption near Sellafield investigated. The AEP group advise BNFL and the CEGB on the discharge of wastes into the sea and possible effects on the aquatic environment. The distribution in the sea of cesium 137, strontium 90, plutonium 239/240 from Sellafield discharges is investigated. Detailed studies of the oxidation states of the transuranium elements in seawater at different depths have been initiated and compared with oxidation states at the time of discharge. Seabed cores have been analysed to investigate the incorporation of americium and plutonium and their adsorption onto deep sea sediments. The accumulation of radionuclides in algae and lobsters is studied and the effects of different doses arising from radionuclides on the growth of fish populations were investigated. Cytological studies of fish gonads and testes revealed chromosomal aberrations.

  7. Artisanal Fisheries Research: A Need for Globalization?

    Science.gov (United States)

    Oliveira Júnior, José Gilmar C; Silva, Luana P S; Malhado, Ana C M; Batista, Vandick S; Fabré, Nidia N; Ladle, Richard J

    2016-01-01

    Given limited funds for research and widespread degradation of ecosystems, environmental scientists should geographically target their studies where they will be most effective. However, in academic areas such as conservation and natural resource management there is often a mismatch between the geographic foci of research effort/funding and research needs. The former frequently being focused in the developed world while the latter is greater in the biodiverse countries of the Global South. Here, we adopt a bibliometric approach to test this hypothesis using research on artisanal fisheries. Such fisheries occur throughout the world, but are especially prominent in developing countries where they are important for supporting local livelihoods, food security and poverty alleviation. Moreover, most artisanal fisheries in the Global South are unregulated and unmonitored and are in urgent need of science-based management to ensure future sustainability. Our results indicate that, as predicted, global research networks and centres of knowledge production are predominantly located in developed countries, indicating a global mismatch between research needs and capacity.

  8. Artisanal Fisheries Research: A Need for Globalization?

    Science.gov (United States)

    Batista, Vandick S.; Fabré, Nidia N.

    2016-01-01

    Given limited funds for research and widespread degradation of ecosystems, environmental scientists should geographically target their studies where they will be most effective. However, in academic areas such as conservation and natural resource management there is often a mismatch between the geographic foci of research effort/funding and research needs. The former frequently being focused in the developed world while the latter is greater in the biodiverse countries of the Global South. Here, we adopt a bibliometric approach to test this hypothesis using research on artisanal fisheries. Such fisheries occur throughout the world, but are especially prominent in developing countries where they are important for supporting local livelihoods, food security and poverty alleviation. Moreover, most artisanal fisheries in the Global South are unregulated and unmonitored and are in urgent need of science-based management to ensure future sustainability. Our results indicate that, as predicted, global research networks and centres of knowledge production are predominantly located in developed countries, indicating a global mismatch between research needs and capacity. PMID:26942936

  9. Artisanal Fisheries Research: A Need for Globalization?

    Directory of Open Access Journals (Sweden)

    José Gilmar C Oliveira Júnior

    Full Text Available Given limited funds for research and widespread degradation of ecosystems, environmental scientists should geographically target their studies where they will be most effective. However, in academic areas such as conservation and natural resource management there is often a mismatch between the geographic foci of research effort/funding and research needs. The former frequently being focused in the developed world while the latter is greater in the biodiverse countries of the Global South. Here, we adopt a bibliometric approach to test this hypothesis using research on artisanal fisheries. Such fisheries occur throughout the world, but are especially prominent in developing countries where they are important for supporting local livelihoods, food security and poverty alleviation. Moreover, most artisanal fisheries in the Global South are unregulated and unmonitored and are in urgent need of science-based management to ensure future sustainability. Our results indicate that, as predicted, global research networks and centres of knowledge production are predominantly located in developed countries, indicating a global mismatch between research needs and capacity.

  10. Coastal fisheries research: State of knowledge and needs for Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Parulekar, A.H.

    The status of coastal fisheries for the state of Goa (India) is discussed. The research and development capabilities of various institutions; capture fisheries; culture fisheries; and coastal aquaculture in Goa is discussed. It has been found...

  11. Ecosystem approach to inland fisheries: research needs and implementation strategies

    Science.gov (United States)

    Beard, T. Douglas; Arlinghaus, Robert; Cooke, Steven J.; McIntyre, Peter B.; De Silva, Sena; Bartley, Devin M.; Cowx, Ian G.

    2011-01-01

    Inland fisheries are a vital component in the livelihoods and food security of people throughout the world, as well as contributing huge recreational and economic benefits. These valuable assets are jeopardized by lack of research-based understanding of the impacts of fisheries on inland ecosystems, and similarly the impact of human activities associated with inland waters on fisheries and aquatic biodiversity. To explore this topic, an international workshop was organized in order to examine strategies to incorporate fisheries into ecosystem approaches for management of inland waters. To achieve this goal, a new research agenda is needed that focuses on: quantifying the ecosystem services provided by fresh waters; quantifying the economic, social and nutritional benefits of inland fisheries; improving assessments designed to evaluate fisheries exploitation potential; and examining feedbacks between fisheries, ecosystem productivity and aquatic biodiversity. Accomplishing these objectives will require merging natural and social science approaches to address coupled social–ecological system dynamics.

  12. KB WOT Fisheries 2018: maintaining excellence and innovation in fisheries research

    NARCIS (Netherlands)

    Damme, van C.J.G.; Verver, S.W.

    2017-01-01

    The KB WOT Fisheries programme is developed to maintain and develop expertise needed to carry out the Dutch statutory obligations in fisheries monitoring and advice. The KB WOT Fisheries programme developed for 2018 reflects the scientific and management needs of the WOT fisheries programme. The

  13. Montlake Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The NWFSC conducts critical fisheries science research at its headquarters in Seattle, WA and at five research stations throughout Washington and Oregon. The unique...

  14. Research and Development Strategy for Fishery Technology Innovation for Sustainable Fishery Resource Management in North-East Asia

    Directory of Open Access Journals (Sweden)

    Hidemichi Fujii

    2017-12-01

    Full Text Available The development of fishery technologies supports food sustainability to achieve a steady supply of fish and fishery products. However, the priorities for research and development (R&D in fishery technologies vary by region due to differences in fish resource availability, environmental concerns, and consumer preferences for fishery products. This study examines trends in fishery technology innovations using data on patents granted as an indicator of changing R&D priorities. To clarify changes in R&D priorities, we apply a decomposition analysis framework that classifies fishery technologies into three types: harvesting, aquaculture, and new products. This study mainly focuses on China, Japan, and Korea as the major fishing countries in the north-east Asia region. The results show that the number of fishery technology patents granted increased between 1993 and 2015; in particular, the number of aquaculture patents granted has grown rapidly since 2012. However, the trend in Japan was the opposite, as the apparent priority given to aquaculture technology innovation decreased between 1993 and 2015. The trends and priority changes for fishery technology inventions vary by country and technology group. This implies that an international policy framework for fishery technology development should recognize that R&D priorities need to reflect diverse characteristics across countries and the technologies employed.

  15. Marine Fisheries History: The 50th Anniversay Issue of the Marine Fisheries Review

    OpenAIRE

    Hobart, Willis L.

    1988-01-01

    The 1980's seems to have been the decade for conservation anniversaries. Celebrating centennials have been the U.S. Fishery Bulletin (1981), NMFS Woods Hole Laboratory (1985), Journal of the Marine Biological Association (1987) and the Association itself (1984), Pacific halibut fishery (1988), Marine Biological Laboratory at Woods Hole, Mass. (1988), and England's Ministry of Agriculture, Fisheries, and Food (1989). While the U. S. Department of Commerce turned 75 (1988), 50th anniversa...

  16. Openness to the unexpected: Our Pathways to Careers in a Federal Research Laboratory.

    Science.gov (United States)

    Newman, Kurt R.; Bunnell, David B.; Hondorp, Darryl W.; Taylor, William W.; Lynch, Abigail J.; Léonard, Nancy J.

    2014-01-01

    Many fisheries professionals may not be in the job they originally envisioned for themselves when they began their undergraduate studies. Rather, their current positions could be the result of unexpected, opportunistic, or perhaps even “lucky” open doors that led them down an unexpected path. In many cases, a mentor helped facilitate the unforeseen trajectory. We offer three unique stories about joining a federal fisheries research laboratory, from the perspective of a scientist, a joint manager-scientist, and a manager. We also use our various experiences to form recommendations that should help the next generation of fisheries professionals succeed in any stop along their journey, including being open to opportunities, setting high expectations, and finding a strong and supportive team environment to work in.

  17. Radiation analysis in the major areas of marine fisheries research

    International Nuclear Information System (INIS)

    Murty, A.V.S.

    1975-01-01

    Radiation analysis has been a proven technique to solve, relatively easily and quickly, some of the pressing problems in marine fisheries to the utmost satisfaction. Major areas of marine fisheries research - namely, the determination of sea water characteristics, the productivity studies, the pollution effects, the population dynamics and the preservation of sea foods - wherein the radiation treatment is fully helpful are discussed in detail. The problems encountered in the marine fisheries in India in this context are also outlined. (author)

  18. Science review of the Beaufort Institute of Oceanography, the Halifax Fisheries Research Laboratory, and the St. Andrews Biological Station, 1990-91. Revue des sciences de l'Institut oceanographique de Bedford, du Laboratoire de recherche halieutique de Halifax, et de la Station biologique de St. Andrews, 1990-91

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T E; Cook, J [eds.

    1992-01-01

    A review is presented of the research and survey programs being undertaken in 1990-91 at the Bedford Institute of Oceanography, the Halifax Fisheries Research Laboratory, and the St. Andrews Biological Station (all in Nova Scotia). The broad objectives of these programs are to perform applied research leading to the provision of advice on the management of marine and freshwater environments, including fisheries and offshore hydrocarbon resources; to perform targeted basic research in accordance with the mandates of Canada's Department of Fisheries and Oceans, Environment Canada, and Energy, Mines and Resources; to perform surveys and cartographic work; and to respond to major marine environmental emergencies. The research and survey work encompasses the fields of marine geology and geophysics, physical oceanography, marine chemistry, biological oceanography, fisheries research, seabird research, and navigational surveys and cartography. Topics of specific projects reviewed include marine pollution detection, phytoplankton profiling, seal populations, ocean mapping, geographic information systems, fish and invertebrate nutrition, shellfish culture, lobster habitat ecology, physics and biology of the Georges Bank frontal system, water-level instrumentation, data acquisition techniques, sea ice monitoring, salmon management, nearshore sedimentary processes, and oil/gas distribution in offshore basins. Separate abstracts have been prepared for three project reports from this review.

  19. Benefits and organization of cooperative research for fisheries management

    NARCIS (Netherlands)

    Johnson, T.R.; Densen, van W.L.T.

    2007-01-01

    Drawing on research in the northeastern USA and northwestern Europe, a description is given of how cooperative research is organized and a statement made of how involving fishers in research can contribute to better fisheries management. The focus is on improving stock assessments through the

  20. Research into fisheries and the marine environment 1989-90

    International Nuclear Information System (INIS)

    1992-01-01

    This biannual report includes notes on the work of the Aquatic Environment Protection Division of the Directorate of Fisheries Research, Lowestoft in relation to assessment and monitoring of radioactive waste disposal and research into the environmental behaviour of radionuclides. (UK)

  1. Seventy-five years of science—The U.S. Geological Survey’s Western Fisheries Research Center

    Science.gov (United States)

    Wedemeyer, Gary A.

    2013-01-01

    As of January 2010, 75 years have elapsed since Dr. Frederic Fish initiated the pioneering research program that would evolve into today’s Western Fisheries Research Center (WFRC). Fish began his research working alone in the basement of the recently opened Fisheries Biological Laboratory on Lake Union in Seattle, Washington. WFRC’s research began under the aegis of the U.S. Fish and Wildlife Service and ends its first 75 years as part of the U.S. Geological Survey with a staff of more than 150 biologists and support personnel and a heritage of fundamental research that has made important contributions to our understanding of the biology and ecology of the economically important fish and fish populations of the Nation. Although the current staff may rarely stop to think about it, WFRC’s antecedents extend many years into the past and are intimately involved with the history of fisheries conservation in the Western United States. Thus, WFRC Director Lyman Thorsteinson asked me to write the story of this laboratory “while there are still a few of you around who were here for some of the earlier years” to document the rich history and culture of WFRC by recognizing its many famous scientists and their achievements. This historyalso would help document WFRC’s research ‘footprint’ in the Western United States and its strategic directions. Center Director Thorsteinson concluded that WFRC’s heritage told by an emeritus scientist also would add a texture of legitimacy based on personal knowledge that will all-to-soon be lost to the WFRC and to the USGS. The WFRC story is important for the future as well as for historical reasons. It describes how we got to the place we are today by documenting the origin, original mission, and our evolving role in response to the constantly changing technical information requirements of new environmental legislation and organizational decision-making. The WFRC research program owes its existence to the policy requirements

  2. Shark recreational fisheries: Status, challenges, and research needs.

    Science.gov (United States)

    Gallagher, Austin J; Hammerschlag, Neil; Danylchuk, Andy J; Cooke, Steven J

    2017-05-01

    For centuries, the primary manner in which humans have interacted with sharks has been fishing. A combination of their slow-growing nature and high use-values have resulted in population declines for many species around the world, and to date the vast majority of fisheries-related work on sharks has focused on the commercial sector. Shark recreational fishing remains an overlooked area of research despite the fact that these practices are popular globally and could present challenges to their populations. Here we provide a topical overview of shark recreational fisheries, highlighting their history and current status. While recreational fishing can provide conservation benefits under certain circumstances, we focus our discourse on the relatively understudied, potentially detrimental impacts these activities may have on shark physiology, behavior, and fitness. We took this angle given the realized but potentially underestimated significance of recreational fishing for shark conservation management plans and stock assessments, in hopes of creating a dialogue around sustainability. We also present a series of broad and focused research questions and underpin areas of future research need to assist with the development of this emergent area of research.

  3. Columbia River: Terminal fisheries research project. 1994 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, P.; Miller, M.; Hill, J.

    1996-12-01

    Columbia River terminal fisheries have been conducted in Youngs Bay, Oregon, since the early 1960`s targeting coho salmon produced at the state facility on the North Fork Klaskanine River. In 1977 the Clatsop County Economic Development Council`s (CEDC) Fisheries Project began augmenting the Oregon Department of Fish and Wildlife production efforts. Together ODFW and CEDC smolt releases totaled 5,060,000 coho and 411,300 spring chinook in 1993 with most of the releases from the net pen acclimation program. During 1980-82 fall commercial terminal fisheries were conducted adjacent to the mouth of Big Creek in Oregon. All past terminal fisheries were successful in harvesting surplus hatchery fish with minimal impact on nonlocal weak stocks. In 1993 the Northwest Power Planning Council recommended in its` Strategy for Salmon that terminal fishing sites be identified and developed. The Council called on the Bonneville Power Administration to fund a 10-year study to investigate the feasibility of creating and expanding terminal known stock fisheries in the Columbia River Basin. The findings of the initial year of the study are included in this report. The geographic area considered for study extends from Bonneville Dam to the river mouth. The initial year`s work is the beginning of a 2-year research stage to investigate potential sites, salmon stocks, and methodologies; a second 3-year stage will focus on expansion in Youngs Bay and experimental releases into sites with greatest potential; and a final 5-year phase establishing programs at full capacity at all acceptable sites. After ranking all possible sites using five harvest and five rearing criteria, four sites in Oregon (Tongue Point, Blind Slough, Clifton Channel and Wallace Slough) and three in Washington (Deep River, Steamboat Slough and Cathlamet Channel) were chosen for study.

  4. Challenges in merging fisheries research and management: The Upper Mississippi River experience

    Science.gov (United States)

    Garvey, J.; Ickes, B.; Zigler, S.

    2010-01-01

    The Upper Mississippi River System (UMRS) is a geographically diverse basin extending 10?? north temperate latitude that has produced fishes for humans for millennia. During European colonization through the present, the UMRS has been modified to meet multiple demands such as navigation and flood control. Invasive species, notably the common carp, have dominated fisheries in both positive and negative ways. Through time, environmental decline plus reduced economic incentives have degraded opportunities for fishery production. A renewed focus on fisheries in the UMRS may be dawning. Commercial harvest and corresponding economic value of native and non-native species along the river corridor fluctuates but appears to be increasing. Recreational use will depend on access and societal perceptions of the river. Interactions (e. g., disease and invasive species transmission) among fish assemblages within the UMRS, the Great Lakes, and other lakes and rivers are rising. Data collection for fisheries has varied in intensity and contiguousness through time, although resources for research and management may be growing. As fisheries production likely relies on the interconnectivity of fish populations and associated ecosystem processes among river reaches (e. g., between the pooled and unpooled UMRS), species-level processes such as genetics, life-history interactions, and migratory behavior need to be placed in the context of broad ecosystem- and landscape-scale restoration. Formal communication among a diverse group of researchers, managers, and public stakeholders crossing geographic and disciplinary boundaries is necessary through peer-reviewed publications, moderated interactions, and the embrace of emerging information technologies. ?? Springer Science+Business Media B.V. 2010.

  5. Southeast Fishery-Independent Survey (PC1402, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Southeast Fishery-Independent Survey (SEFIS) was created by the National Marine Fisheries Service in 2010 and operates out of the NOAA Beaufort Laboratory. The...

  6. Southeast Fishery-Independent Survey (PC1304, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Southeast Fishery-Independent Survey (SEFIS) was created by the National Marine Fisheries Service in 2010 and operates out of the NOAA Beaufort Laboratory. The...

  7. Southeast Fishery-Independent Survey (PC1204, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Southeast Fishery-Independent Survey (SEFIS) was created by the National Marine Fisheries Service in 2010 and operates out of the NOAA Beaufort Laboratory. The...

  8. Ocean robotics in support of fisheries research and management

    CSIR Research Space (South Africa)

    Swart, S

    2016-12-01

    Full Text Available South Africa’s small pelagic fishery is an important component of the country’s commercial fisheries sector, second in value only to the demersal trawl fishery. Management of this sector relies on frequent hydro-acoustic surveys, which provide...

  9. Building a fisheries research network | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-02-01

    Feb 1, 2011 ... In the capture fishery, the “common property” nature of the resource meant there ... to put fisheries and coastal resource management high on policy agendas. ... AFSSRN has entrenched the idea that fishing, like pretty much all human activity, ... Entrepreneurship has been a major driver of growth and job ...

  10. Fisheries regulation

    DEFF Research Database (Denmark)

    Jensen, Frank; Frost, Hans Staby; Abildtrup, Jens

    2017-01-01

    Economists normally claim that a stock externality arises within fisheries because each individual fisherman does not take the effect on stock size into account when making harvest decisions. Due to the stock externality, it is commonly argued that fisheries regulation is necessary, but regulatory...... decisions are complicated by a tremendous amount of uncertainty and asymmetric information. This paper provides an overview of selected parts of the literature on the regulation of fisheries under uncertainty and asymmetric information, and possible areas for future research are identified. Specifically...

  11. Lower Columbia River Terminal Fisheries Research Project : Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1995-04-01

    This notice announces BPA`S`s decision to fund the Oregon Department of Fish and Wildlife (ODFW), the Washington Department of Fish and Wildlife (WDFW), and the Clatsop Economic Development Committee for the Lower Columbia River Terminal Fisheries Research Project (Project). The Project will continue the testing of various species/stocks, rearing regimes, and harvest options for terminal fisheries, as a means to increase lower river sport and commercial harvest of hatchery fish, while providing both greater protection of weaker wild stocks and increasing the return of upriver salmon runs to potential Zone 6 Treaty fisheries. The Project involves relocating hatchery smolts to new, additional pen locations in three bays/sloughs in the lower Columbia River along both the Oregon and Washington sides. The sites are Blind Slough and Tongue Point in Clatsop County, Oregon, and Grays Bay/Deep River, Wahkiakum County, Washington. The smolts will be acclimated for various lengths of time in the net pens and released from these sites. The Project will expand upon an existing terminal fisheries project in Youngs Bay, Oregon. The Project may be expanded to other sites in the future, depending on the results of this initial expansion. BPA`S has determined the project is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required, and BPA`S is issuing this FONSI.

  12. Fisheries economics and fisheries management

    DEFF Research Database (Denmark)

    Andersen, Peder

    2013-01-01

    spent too much time on fundamentals in fisheries economics at the expense of the development of applicable models for fisheries managers? Of course, this question is relevant only IF fisheries economics and fisheries economists have a role to play in fisheries management.......Professor Rögnvaldur Hannesson's influence on the development and history of fisheries economics is unquestionable. Also, he has strongly pointed out the potential gains from a more active use of fisheries economics in fisheries management. In light of this, one may ask if fisheries economists have...

  13. Simula Research Laboratory

    CERN Document Server

    Tveito, Aslak

    2010-01-01

    The Simula Research Laboratory, located just outside Oslo in Norway, is rightly famed as a highly successful research facility, despite being, at only eight years old, a very young institution. This fascinating book tells the history of Simula, detailing the culture and values that have been the guiding principles of the laboratory throughout its existence. Dedicated to tackling scientific challenges of genuine social importance, the laboratory undertakes important research with long-term implications in networks, computing and software engineering, including specialist work in biomedical comp

  14. 78 FR 25703 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Fisheries Research

    Science.gov (United States)

    2013-05-02

    ..., migration, breathing, nursing, breeding, feeding, or sheltering [Level B harassment].'' Summary of Request... federal fisheries-related research. This research is aimed at monitoring fish stock recruitment, abundance...

  15. Mixed fisheries forecasts—lessons learned from their initial application to North Sea fisheries

    DEFF Research Database (Denmark)

    Holmes, S.J.; Ulrich, Clara; Reeves, S.A.

    2012-01-01

    the work with the existing single‐stock assessments. The explicit representation of the complexity of the fisheries also raises questions about the extent to which mixed fisheries science can be used to give ”advice” in the traditional sense. This paper addresses the challenges and issues that have arisen......Mixed fisheries and technical interactions in European fisheries have been a subject of research for many years. The establishment in 2010 of an ICES Working Group tasked with producing annual mixed fisheries forecasts and advice for North Sea demersal fisheries represents a commitment to use...... these approaches in routine scientific advice for the first time. The demersal fisheries of the North Sea provide a particularly interesting context for this work because of their high complexity in terms of the numbers of fleets, gears, métiers, and species involved, and also because mixedfishery effects have...

  16. Reservoir fisheries of Asia

    International Nuclear Information System (INIS)

    Silva, S.S. De.

    1990-01-01

    At a workshop on reservoir fisheries research, papers were presented on the limnology of reservoirs, the changes that follow impoundment, fisheries management and modelling, and fish culture techniques. Separate abstracts have been prepared for three papers from this workshop

  17. The use of CPR data in fisheries research [review article

    Science.gov (United States)

    Corten, A.; Lindley, J. A.

    2003-08-01

    The Continuous Plankton Recorder (CPR) survey was initiated partly to contribute to our understanding of the variability of fish stocks and as a potential method for predicting fish distributions from the abundance and composition of the plankton. The latter objective has been superseded by technological developments in fish detection, but the former has been the subject of continuing, and in recent years expanding use of the CPR data. Examples are presented of application of the data to studies on North Sea herring, cod, mackerel, blue whiting and redfish as well as more general plankton studies relevant to fisheries research. Variations in the migration patterns of herring as well as recruitment have been related to abundances and species composition of the plankton in the CPR survey. Extensive use has been made of the CPR data in relation to cod, particularly in the development and testing of the ‘match-mismatch’ hypothesis. Advection of sufficient numbers of Calanus from the core oceanic areas of its distribution into the areas where the cod stocks occur may partly determine the success of those stocks. The analysis of the distribution and abundances of mackerel larvae in the CPR survey have shown contrasting variations between the North Sea and Celtic Sea. The expansion of the horse mackerel fishery in the north-eastern North Sea since 1987 has been related to physical events and a ‘regime shift’ in the plankton, described from CPR data. The oceanic spawning areas of the blue whiting and redfish were highlighted by the expansion of the CPR survey into the north-eastern and north-western Atlantic respectively. These results helped to focus the attention of fisheries scientists on stocks that have subsequently become the targets for commercial exploitation. The results of the CPR survey, particularly those on Calanusfinmarchicus, the phytoplankton standing stock as measured by the CPR colour index, the overall patterns of trends in plankton abundance and

  18. Combustion Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Combustion Research Laboratory facilitates the development of new combustion systems or improves the operation of existing systems to meet the Army's mission for...

  19. Aquatic Research Laboratory (ARL)

    Data.gov (United States)

    Federal Laboratory Consortium — Columbia River and groundwater well water sources are delivered to the Aquatic Research Laboratory (ARL), where these resources are used to conduct research on fish...

  20. Application of theory and research in fishery management of the Laurentian Great Lakes

    Science.gov (United States)

    Smith, Stanford H.

    1973-01-01

    The Great Lakes have a high potential for the conduct of research and useful application of research findings, but the history of the Great Lakes indicates that extensive research and intensive management have failed to prevent deterioration of the fisheries. At times the research was not done before a loss occurred, or did not provide the information needed to solve a problem, or was not interpreted to indicate a need for corrective action.

  1. Peruvian anchoveta as a telecoupled fisheries system

    Directory of Open Access Journals (Sweden)

    Andrew K. Carlson

    2018-03-01

    Full Text Available Fisheries are coupled human and natural systems (CHANS across distant places, yet fisheries research has generally focused on better understanding either fisheries ecology or human dimensions in a specific place, rather than their interactions over distances. As economic and ideational globalization accelerate, fisheries are becoming more globally connected via movements of fish products and fisheries finances, information, and stakeholders throughout the world. As such, there is a pressing need for systematic approaches to assess these linkages among global fisheries, their effects on ecosystems and food security, and their implications for fisheries science and sustainability. Use of the telecoupling framework is a novel and insightful method to systematically evaluate socioeconomic and environmental interactions among CHANS. We apply the telecoupling framework to the Peruvian anchoveta (Engraulis ringens fishery, the world's largest single-species commercial fishery and a complex CHANS. The anchoveta fishery has diverse and significant telecouplings, socioeconomic and environmental interactions over distances, with the rest of the world, including fishmeal and fish oil trade, monetary flow, knowledge transfer, and movement of people. The use of the telecoupling framework reveals complex fishery dynamics such as feedbacks (e.g., profit maximization causing fishery overcapitalization and surprises (e.g., stock collapse resulting from local and long-distance ecological and socioeconomic interactions. The Peruvian anchoveta fishery illustrates how the telecoupling framework can be used to systematically assess the magnitude and diversity of local and distant fisheries interactions and thereby advance knowledge derived from traditional monothematic research approaches. Insights from the telecoupling framework provide a foundation from which to develop sustainable fisheries policy and management strategies across local, national, and international

  2. 75 FR 1023 - International Fisheries Regulations; Fisheries in the Western Pacific; Pelagic Fisheries; Hawaii...

    Science.gov (United States)

    2010-01-08

    ...; Pelagic Fisheries; Hawaii-based Shallow-set Longline Fishery; Correction AGENCY: National Marine Fisheries... process is preserved for closing the Hawaii-based shallow-set longline fishery as a result of the fishery...

  3. 77 FR 4282 - Gulf of Mexico Fishery Management Council; Public Meeting

    Science.gov (United States)

    2012-01-27

    ... meeting. SUMMARY: The Gulf of Mexico Fishery Management Council will convene a meeting of the Shrimp Stock... Laboratory, 4700 Avenue U, Galveston, TX 77551-5997. Council address: Gulf of Mexico Fishery Management... Management Council; telephone: (813) 348-1630. SUPPLEMENTARY INFORMATION: The Shrimp Stock Assessment Review...

  4. Marine fisheries in Tanzania.

    Science.gov (United States)

    Jiddawi, Narriman S; Ohman, Marcus C

    2002-12-01

    Fishery resources are a vital source of food and make valuable economic contributions to the local communities involved in fishery activities along the 850 km stretch of the Tanzania coastline and numerous islands. Small-scale artisanal fishery accounts for the majority of fish catch produced by more than 43 000 fishermen in the country, mainly operating in shallow waters within the continental shelf, using traditional fishing vessels including small boats, dhows, canoes, outrigger canoes and dinghys. Various fishing techniques are applied using uncomplicated passive fishing gears such as basket traps, fence traps, nets as well as different hook and line techniques. Species composition and size of the fish varies with gear type and location. More than 500 species of fish are utilized for food with reef fishes being the most important category including emperors, snappers, sweetlips, parrotfish, surgeonfish, rabbitfish, groupers and goatfish. Most of the fish products are used for subsistence purposes. However, some are exported. Destructive fishing methods such as drag nets and dynamite fishing pose a serious problem as they destroy important habitats for fish and other organisms, and there is a long-term trend of overharvested fishery resources. However, fishing pressure varies within the country as fishery resources are utilized in a sustainable manner in some areas. For this report more than 340 references about Tanzanian fishery and fish ecology were covered. There are many gaps in terms of information needed for successful fishery management regarding both basic and applied research. Most research results have been presented as grey literature (57%) with limited distribution; only one-fifth were scientific publications in international journals.

  5. The safety of fishery products

    OpenAIRE

    Zugravu Gheorghe, Adrian; Turek Rahoveanu, Maria Magdalena; Turek Rahoveanu, Adrian

    2012-01-01

    The paper follows two main objectives: to understand consumers' perception and image of fishery products and to identify communication levers in order to improve the perceived image of fishery products. Orientations in terms of communication are product-focused and aim at enhancing the reputation of products, consequently with impact on product consumption. The present research is focused on the fishery products, regardless of their presentation - fresh, frozen or processed. This paper conduc...

  6. 78 FR 57841 - Western Pacific Fishery Management Council; Public Meetings

    Science.gov (United States)

    2013-09-20

    ... Marine Mammal Stock Assessment Reports F. False Killer Whale Take Reduction Plan Research Priorities G.... Insular Fisheries A. Report on the Main Hawaiian Islands (MHI) Bottomfish Research Working Group Outcomes.... Pacific Island Fisheries Research Program E. Report on the Fisheries Data Clients Meeting F. SSC...

  7. NASA's Propulsion Research Laboratory

    Science.gov (United States)

    2004-01-01

    The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

  8. Research into fisheries equity and fairness—addressing conservation burden concerns in transboundary fisheries

    NARCIS (Netherlands)

    Hanich, Q.; Campbell, B.; Bailey, M.L.; Molenaar, E.

    2015-01-01

    Conservation and management of transboundary fisheries must account for diverse national interests while adopting compromises necessary to develop and implement robust conservation and management measures. The United Nations Fish Stocks Agreement requires states to ensure that conservation and

  9. The Traceability and Safety of Fishery Products

    OpenAIRE

    Gheorghe Adrian ZUGRAVU; Ionica SOARE

    2012-01-01

    The paper follows two main objectives: to understand consumers’ perception of safety trasability and quality of fishery products and to identify communication levers in order to improve the perceived image of fishery products. The present research is focused on the fishery products, regardless of their presentation – fresh, frozen or processed. This paper conducted a questionnaire survey of Romanian consumers’ perception toward fishery products. The empirical study with brands indicated that ...

  10. Participatory research towards co-management: lessons from artisanal fisheries in coastal Uruguay.

    Science.gov (United States)

    Trimble, Micaela; Berkes, Fikret

    2013-10-15

    Participatory research has become increasingly common in natural resources management. Even though participatory research is considered a strategy to facilitate co-management, there is little empirical evidence supporting this. The objective of the present paper is to analyze the contributions of participatory research to help encourage the emergence of co-management, based on a case study in Piriápolis artisanal fishery in coastal Uruguay (where management has been top-down). We argue that participatory research involving artisanal fishers, government, and other stakeholders (university scientists and NGOs) can be a key stimulus towards co-management. We build this argument by considering "seven faces" by which co-management can be analyzed: (1) as power sharing; (2) as institution building; (3) as trust building; (4) as process; (5) as learning and knowledge co-production; (6) as problem solving; and (7) as governance. Our findings show that participatory research had an impact on these various faces: (1) power was shared when making research decisions; (2) a multi-stakeholder group (POPA), with a common vision and goals, was created; (3) trust among participants increased; (4) the process of group formation was valued by participants; (5) stakeholders learned skills for participation; (6) two problem-solving exercises were conducted; and (7) a diversity of stakeholders of the initial problem identified by fishers (sea lions' impact on long-line fishery) participated in the process. The case shows that participatory research functions as a platform which enhances learning and knowledge co-production among stakeholders, paving the way towards future co-management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. The Traceability and Safety of Fishery Products

    Directory of Open Access Journals (Sweden)

    Gheorghe Adrian ZUGRAVU

    2012-12-01

    Full Text Available The paper follows two main objectives: to understand consumers’ perception of safety trasability and quality of fishery products and to identify communication levers in order to improve the perceived image of fishery products. The present research is focused on the fishery products, regardless of their presentation – fresh, frozen or processed. This paper conducted a questionnaire survey of Romanian consumers’ perception toward fishery products. The empirical study with brands indicated that consumers are different awareness to domestic and foreign safety fish products. National fishery products got more attention from the consumers.

  12. Energy Materials Research Laboratory (EMRL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energy Materials Research Laboratory at the Savannah River National Laboratory (SRNL) creates a cross-disciplinary laboratory facility that lends itself to the...

  13. Small-Engine Research Laboratory (SERL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Small-Engine Research Laboratory (SERL) is a facility designed to conduct experimental small-scale propulsion and power generation systems research....

  14. Descriptions of marine mammal specimens in Marine Mammal Osteology Reference Collection, Alaska Fisheries Science Center, National Marine Mammal Laboratory from 1938-01-01 to 2015-12-05 (NCEI Accession 0140937)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NMFS Alaska Fisheries Science Center National Marine Mammal Laboratory (NMML) Marine Mammal Osteology Collection consists of approximately 2500 specimens (skulls...

  15. Research Combustion Laboratory (RCL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Research Combustion Laboratory (RCL) develops aerospace propulsion technology by performing tests on propulsion components and materials. Altitudes up to 137,000...

  16. Market-Based Fisheries Management

    DEFF Research Database (Denmark)

    Høst, Jeppe Engset

    a timely, critical insight into the social, cultural and economic aspects and consequences of market-based fisheries management. The privatization of fish quotas in Denmark represents one of the most far-reaching and comprehensive privatization schemes of its kind and has been widely promoted as a market......-based system with innovative social safeguards. This work critically examines this privatization of fish resources, combining quantitative and qualitative material to provide new understanding of fish quotas and their social value. Scholars with an interest in privatization and the socio-economic aspects...... of fisheries, and those working with NGOs, fishers and fisheries, and concerned with political conflicts will all value the research presented here....

  17. A Social Wellbeing in Fisheries Tool (SWIFT to Help Improve Fisheries Performance

    Directory of Open Access Journals (Sweden)

    Tracy Van Holt

    2016-07-01

    Full Text Available We report on a rapid and practical method to assess social dimensions of performance in small-scale and industrial fisheries globally (Social Wellbeing in Fisheries Tool (SWIFT. SWIFT incorporates aspects of security (fairness and stability of earnings, benefits of employment to local fishing communities, worker protection, and personal safety and health in communities associated with fisheries; flexibility (including opportunity for economic advancement; and the fishery’s social viability (including whether the fishery is recruiting new harvesters and diverse age classes of workers, whether women’s participation and leadership in global production networks are on an upward trajectory.. We build on resilience research by conceptualizing wellbeing in terms of security, flexibility, and viability, and assessing wellbeing at individual, community, and system levels. SWIFT makes social performance measures more broadly accessible to global production networks, incorporates an everyday understanding of wellbeing for people involved in the seafood industry, and helps put social sustainability into measurable terms that are relevant for businesses.

  18. Fisheries Information Network in Indonesia.

    Science.gov (United States)

    Balachandran, Sarojini

    During the early 1980s the Indonesian government made a policy decision to develop fisheries as an important sector of the national economy. In doing so, it recognized the need for the collection and dissemination of fisheries research information not only for the scientists themselves, but also for the ultimate transfer of technology through…

  19. Field and laboratory notes on instream research - Research and Development of New Marking and Monitoring Technologies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project addresses how to expand the current fish-tracking technologies to enable the fisheries community to successfully carry out the actions, research, and...

  20. Handbook of acute toxicity of chemicals to fish and aquatic invertebrates : summaries of toxicity tests conducted at Columbia National Fisheries Research Laboratory, 1965-78

    Science.gov (United States)

    Johnson, W. Waynon; Finley, Mack T.

    1980-01-01

    Acute toxicity is a major subject of research at Columbia National Fisheries Research Laboratory for evaluating the impact of toxic chemicals on fishery resources. The Laboratory has played a leading role in developing research technology for toxicity testing and data interpretation. In 1965-78, more than 400 chemicals were tested against a variety of invertebrates and fish species representative of both cold- and warm-water climates.The use of acute toxicity tests for assessing the potential hazard of chemical contaminants to aquatic organisms is well documented (Boyd 1957; Henderson et al. 1960; Sanders and Cope 1966; Macek and McAllister 1970). Static acute toxicity tests provide rapid and (within limits) reproducible concentration-response curves for estimating toxic effects of chemicals on aquatic organisms. These tests provide a database for determining relative toxicity of a large number of chemicals to a variety of species and for estimating acute effects of chemical spills on natural aquatic systems; they also assist in determining priority and design of additional toxicity studies.Acute toxicity tests usually provide estimates of the exposure concentration causing 50% mortality (LC50) to test organisms during a specified period of time. For certain invertebrates, the effective concentration is based on immobilization, or some other identifiable endpoint, rather than on lethality. The application of the LC50 has gained acceptance among toxicologists and is generally the most highly rated test for assessing potential adverse effects of chemical contaminants to aquatic life (Brungs and Mount 1978; American Institute for Biological Sciences 1978a).The literature contains numerous papers dealing with the acute toxicity of chemicals to freshwater organisms. However, there is a tremendous need for a concise compendium of toxicity data covering a large variety of chemicals and test species. This Handbook is a compilation of a large volume of acute toxicity data

  1. Use of isotopes in fisheries research

    International Nuclear Information System (INIS)

    Ayyappan, S.

    2001-01-01

    Fisheries is an interdisciplinary science, incorporating not only different aspect of biology like anatomy, physiology, ecology, etc., but also oceanography, biochemistry, biotechnology and such emerging areas in the recent years. Isotopes are being employed for a variety of studies like quantification of aquatic production processes, nutrient cycles and food chain dynamics (primary production, bacterial activity, sediment-water nutrient interactions, nitrification, fertilizer use efficiencies, organic mineralisation, amino acid uptake in algal-bacterial assemblages, hydrological studies including water transport and budgeting, partitioning of trophic pathways), fish nutrition (feed utility and digestibility), fatty acid metabolism, compartmentalization of food spectra in different species of fish and shellfish), fish physiology, genetics and immunology (radioimmunoassay, enzyme assays, evaluation of hormone levels, gene markers -DNA labeling and plasmid incorporation, immuno diagnostics), fish health management and pollution (host-parasite interactions chemical/pesticide uptake and accumulation), etc. Radioisotopes commonly used in ecological studies are beta emitters like 14 C, 3 H, 32 P and 35 S, while a stable isotope like 15 N is used in quantifying nitrogen fixation rates in water and sediment media. Results of some of the studies and potential applications of isotopes in fish research are presented. (author)

  2. 78 FR 25702 - Notice of Availability of a Draft Programmatic Environmental Assessment for Fisheries Research...

    Science.gov (United States)

    2013-05-02

    ... environment. Cumulative effects of external actions and the contribution of fisheries research activities to... may also be viewed, by appointment, during regular business hours, at the aforementioned address. FOR.... Potential direct and indirect effects on the environment are evaluated under each alternative in the DPEA...

  3. Fisheries policy, research and the social sciences in Europe: Challenges for the 21st century

    NARCIS (Netherlands)

    Symes, D.; Hoefnagel, E.W.J.

    2010-01-01

    Despite evidence of a broadening of the science base for European fisheries policy with the incorporation of an ecosystem approach and increasing use of economic modelling, the contribution of the social sciences to policy related research remains less conspicuous. Progress has occurred in the

  4. Highly migratory shark fisheries research by the National Shark Research Consortium (NSRC), 2002-2007

    OpenAIRE

    Hueter, Robert E.; Cailliet, Gregor M.; Ebert, David A.; Musick, John A.; Burgess, George H.

    2007-01-01

    The National Shark Research Consortium (NSRC) includes the Center for Shark Research at Mote Marine Laboratory, the Pacific Shark Research Center at Moss Landing Marine Laboratories, the Shark Research Program at the Virginia Institute of Marine Science, and the Florida Program for Shark Research at the University of Florida. The consortium objectives include shark-related research in the Gulf of Mexico and along the Atlantic and Pacific coasts of the U.S., education and scientific cooperation.

  5. 77 FR 75101 - Fisheries Off West Coast States; West Coast Salmon Fisheries; Amendment 17 to the Salmon Fishery...

    Science.gov (United States)

    2012-12-19

    .... 120813333-2647-01] RIN 0648-BC28 Fisheries Off West Coast States; West Coast Salmon Fisheries; Amendment 17 to the Salmon Fishery Management Plan AGENCY: National Marine Fisheries Service (NMFS), National.... SUMMARY: NMFS proposes regulations to implement Amendment 17 to the Pacific Coast Salmon Fishery...

  6. 76 FR 81851 - Fisheries Off West Coast States; West Coast Salmon Fisheries; Amendment 16 to the Salmon Fishery...

    Science.gov (United States)

    2011-12-29

    .... 101206604-1758-02] RIN 0648-BA55 Fisheries Off West Coast States; West Coast Salmon Fisheries; Amendment 16 to the Salmon Fishery Management Plan AGENCY: National Marine Fisheries Service (NMFS), National...) to implement Amendment 16 to the Pacific Coast Salmon Fishery Management Plan for Commercial and...

  7. 76 FR 65673 - Fisheries Off West Coast States; West Coast Salmon Fisheries; Amendment 16 to the Salmon Fishery...

    Science.gov (United States)

    2011-10-24

    .... 101206604-1620-01] RIN 0648-BA55 Fisheries Off West Coast States; West Coast Salmon Fisheries; Amendment 16 to the Salmon Fishery Management Plan AGENCY: National Marine Fisheries Service (NMFS), National... implement Amendment 16 to the Pacific Coast Salmon Fishery Management Plan for Commercial and Recreational...

  8. 78 FR 10557 - Fisheries Off West Coast States; West Coast Salmon Fisheries; Amendment 17 to the Salmon Fishery...

    Science.gov (United States)

    2013-02-14

    .... 120813333-3107-02] RIN 0648-BC28 Fisheries Off West Coast States; West Coast Salmon Fisheries; Amendment 17 to the Salmon Fishery Management Plan AGENCY: National Marine Fisheries Service (NMFS), National... implement Amendment 17 to the Pacific Coast Salmon Fishery Management Plan for Commercial and Recreational...

  9. Climate and oceanic fisheries: recent observations and projections and future needs

    DEFF Research Database (Denmark)

    Salinger, M.J.; Bell, Johan D.; Evans, Karen

    2013-01-01

    Several lines of evidence show that climatic variation and global warming can have a major effect on fisheries production and replenishment. To prevent overfishing and rebuild overfished stocks under changing and uncertain environmental conditions, new research partnerships between fisheries scie...... scientists and climate change experts are required. The International Workshop on Climate and Oceanic Fisheries held in Rarotonga, Cook Islands, 3–5......Several lines of evidence show that climatic variation and global warming can have a major effect on fisheries production and replenishment. To prevent overfishing and rebuild overfished stocks under changing and uncertain environmental conditions, new research partnerships between fisheries...

  10. Acoustic telemetry and fisheries management

    Science.gov (United States)

    Crossin, Glenn T.; Heupel, Michelle R.; Holbrook, Christopher; Hussey, Nigel E.; Lowerre-Barbieri, Susan K.; Nguyen, Vivian M.; Raby, Graham D.; Cooke, Steven J.

    2017-01-01

    This paper reviews the use of acoustic telemetry as a tool for addressing issues in fisheries management, and serves as the lead to the special Feature Issue of Ecological Applications titled “Acoustic Telemetry and Fisheries Management”. Specifically, we provide an overview of the ways in which acoustic telemetry can be used to inform issues central to the ecology, conservation, and management of exploited and/or imperiled fish species. Despite great strides in this area in recent years, there are comparatively few examples where data have been applied directly to influence fisheries management and policy. We review the literature on this issue, identify the strengths and weaknesses of work done to date, and highlight knowledge gaps and difficulties in applying empirical fish telemetry studies to fisheries policy and practice. We then highlight the key areas of management and policy addressed, as well as the challenges that needed to be overcome to do this. We conclude with a set of recommendations about how researchers can, in consultation with stock assessment scientists and managers, formulate testable scientific questions to address and design future studies to generate data that can be used in a meaningful way by fisheries management and conservation practitioners. We also urge the involvement of relevant stakeholders (managers, fishers, conservation societies, etc.) early on in the process (i.e. in the co-creation of research projects), so that all priority questions and issues can be addressed effectively.

  11. Chemical research at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Argonne National Laboratory is a research and development laboratory located 25 miles southwest of Chicago, Illinois. It has more than 200 programs in basic and applied sciences and an Industrial Technology Development Center to help move its technologies to the industrial sector. At Argonne, basic energy research is supported by applied research in diverse areas such as biology and biomedicine, energy conservation, fossil and nuclear fuels, environmental science, and parallel computer architectures. These capabilities translate into technological expertise in energy production and use, advanced materials and manufacturing processes, and waste minimization and environmental remediation, which can be shared with the industrial sector. The Laboratory`s technologies can be applied to help companies design products, substitute materials, devise innovative industrial processes, develop advanced quality control systems and instrumentation, and address environmental concerns. The latest techniques and facilities, including those involving modeling, simulation, and high-performance computing, are available to industry and academia. At Argonne, there are opportunities for industry to carry out cooperative research, license inventions, exchange technical personnel, use unique research facilities, and attend conferences and workshops. Technology transfer is one of the Laboratory`s major missions. High priority is given to strengthening U.S. technological competitiveness through research and development partnerships with industry that capitalize on Argonne`s expertise and facilities. The Laboratory is one of three DOE superconductivity technology centers, focusing on manufacturing technology for high-temperature superconducting wires, motors, bearings, and connecting leads. Argonne National Laboratory is operated by the University of Chicago for the U.S. Department of Energy.

  12. Teaching Sustainability and Resource Management Using NOAA's Voices Of The Bay Community Fisheries Education Curriculum

    Science.gov (United States)

    Hams, J. E.; Uttal, L.; Hunter-Thomson, K.; Nachbar, S.

    2010-12-01

    This presentation highlights the implementation of the NOAA VOICES OF THE BAY education curriculum at a two-year college. The VOICES OF THE BAY curriculum provides students with an understanding of the marine ecology, economy, and culture of fisheries through three interdisciplinary modules that use hands-on activities while meeting a wide range of science, math, social science, and communications standards. In the BALANCE IN THE BAY module, students use critical-thinking skills and apply principles of ecosystem-based management to analyze data, debate and discuss their findings, and make decisions that recognize the complex dynamics associated with maintaining a balance in fisheries. Through role-playing, teamwork, and a little fate, the FROM OCEAN TO TABLE module provides students with an opportunity to get an insider’s view of what it takes to be an active stakeholder in a commercial fishery. In the CAPTURING THE VOICES OF THE BAY module, students research, plan, and conduct personal interviews with citizens of the local fishing community and explore the multiple dimensions of fisheries and how they inter-connect through the lives of those who live and work in the region. The VOICES OF THE BAY modules were introduced into the curriculum at Los Angeles Valley College during the Fall 2009 semester and are currently being used in the introductory Oceanography lecture, introductory Oceanography laboratory, and Environmental Science laboratory courses. Examples of curriculum materials being used (power point presentations, module worksheets and simulated fishing activities) will be presented. In addition, samples of completed student worksheets for the three interdisciplinary modules are provided. Students commented that their overall awareness and knowledge of the issues involved in sustainable fishing and managing fishery resources increased following completion of the VOICES OF THE BAY education curriculum. Students enrolled in the laboratory sections commented

  13. African Journal of Tropical Hydrobiology and Fisheries

    African Journals Online (AJOL)

    The African Journal of Tropical Hydrobiology and Fisheries (Afr. J. Trop. Hydrobiol. Fish.) provides a medium for the publication of original and well supported ideas and findings on techniques, methodology and research findings from aquatic scientists, fishery economists and sociologists. CALL FOR PAPERS – for the ...

  14. Laboratory for Large Data Research

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The Laboratory for Large Data Research (LDR) addresses a critical need to rapidly prototype shared, unified access to large amounts of data across both the...

  15. The National Fire Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The National Fire Research Laboratory (NFRL) is adding a unique facility that will serve as a center of excellence for fireperformance of structures ranging in size...

  16. Filling regulatory gaps in high seas fisheries: discrete high seas fish stocks, deep-sea fisheries and vulnerable marine ecosystems

    NARCIS (Netherlands)

    Takei, Y.

    2008-01-01

    The present study examines the legal regime of high seas fisheries with a view to identifying regulatory gaps. The main research questions are as follows: 1. What general principles are applicable to high seas fisheries?; 2. What implications do these general principles have for new challenges in

  17. Cooperation between scientists, NGOs and industry in support of sustainable fisheries: the South African hake Merluccius spp. trawl fishery experience.

    Science.gov (United States)

    Field, J G; Attwood, C G; Jarre, A; Sink, K; Atkinson, L J; Petersen, S

    2013-10-01

    This paper examines the increasingly close interaction between natural and social scientists, non-governmental organizations (NGO) and industry, in pursuit of responsible ecosystem-based management of fisheries. South Africa has committed to implementing an ecosystem approach to fisheries management. Management advice stems from multi-stakeholder representation on government-led scientific and management working groups. In the hake Merluccius capensis and Merluccius paradoxus fishery, the primary management measure is an annual total allowable catch (TAC), the level of which is calculated using a management procedure (MP) that is revised approximately every 4 years. Revision of the MP is a consultative process involving most stakeholders, and is based on simulation modelling of projected probable scenarios of resource and fishery dynamics under various management options. NGOs, such as the Worldwide Fund for Nature in South Africa (WWF-SA), have played an important role in influencing consumers, the fishing industry and government to develop responsible fishing practices that minimize damage to marine ecosystems. Cooperation between industry, government and scientists has helped to improve sustainability and facilitated the meeting of market-based incentives for more responsible fisheries. Research includes ecosystem modelling, spatial analysis and ecosystem risk assessment with increasing research focus on social and economic aspects of the fishery. A four-year cooperative experiment to quantify the effect of trawling on benthic community structure is being planned. The food requirements of top predators still need to be included in the TAC-setting formulae and more social and economic research is needed. This paper also demonstrates how NGO initiatives such as Marine Stewardship Council certification and the Southern African Sustainable Seafood Initiative, a traffic light system of classifying seafood for consumers, have contributed to responsible fishing

  18. Projected impacts of climate change on marine fish and fisheries

    DEFF Research Database (Denmark)

    Hollowed, Anne B.; Barange, Manuel; Beamish, Richard J.

    2013-01-01

    This paper reviews current literature on the projected effects of climate change on marine fish and shellfish, their fisheries, and fishery-dependent communities throughout the northern hemisphere. The review addresses the following issues: (i) expected impacts on ecosystem productivity and habitat......) implications for food security and associated changes; and (v) uncertainty and modelling skill assessment. Climate change will impact fish and shellfish, their fisheries, and fishery-dependent communities through a complex suite of linked processes. Integrated interdisciplinary research teams are forming...... in many regions to project these complex responses. National and international marine research organizations serve a key role in the coordination and integration of research to accelerate the production of projections of the effects of climate change on marine ecosystems and to move towards a future where...

  19. Laboratory Directed Research ampersand Development Program

    International Nuclear Information System (INIS)

    Ogeka, G.J.; Romano, A.J.

    1993-12-01

    At Brookhaven National Laboratory the Laboratory Directed Research and Development (LDRD) Program is a discretionary research and development tool critical in maintaining the scientific excellence and vitality of the laboratory. It is also a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence, and a means to address national needs, within the overall mission of the Department of Energy and Brookhaven National Laboratory. This report summarizes research which was funded by this program during fiscal year 1993. The research fell in a number of broad technical and scientific categories: new directions for energy technologies; global change; radiation therapies and imaging; genetic studies; new directions for the development and utilization of BNL facilities; miscellaneous projects. Two million dollars in funding supported 28 projects which were spread throughout all BNL scientific departments

  20. Postscript: Everyday Life and Mediated Fisheries

    DEFF Research Database (Denmark)

    Høst, Jeppe Engset

    2015-01-01

    Two waypoints were identified at the beginning of this book. The first was a reflection on the different ways social sciences have conceptualized, criticized, and worked with market-based fisheries management. The second was a promise to show diversity and complexity in the social and cultural ma...... perspectives concerning the strong and international currents favoring market-based fisheries. In addition, I suggest mediated fisheries as a possible alternative management principle instead of distribution based purely on market mechanisms.......Two waypoints were identified at the beginning of this book. The first was a reflection on the different ways social sciences have conceptualized, criticized, and worked with market-based fisheries management. The second was a promise to show diversity and complexity in the social and cultural......, in general, the two approaches had diverging views on market-based fisheries management, and I have suggested that these originate in the different research objects, instruments, and assumptions that underlie the social sciences. In this postscript, I reflect on the two waypoints, and I discuss the wider...

  1. Fuel Combustion Laboratory | Transportation Research | NREL

    Science.gov (United States)

    Fuel Combustion Laboratory Fuel Combustion Laboratory NREL's Fuel Combustion Laboratory focuses on designs, using both today's technology and future advanced combustion concepts. This lab supports the combustion chamber platform for fuel ignition kinetics research, was acquired to expand the lab's

  2. Integration of fisheries into marine spatial planning: Quo vadis?

    Science.gov (United States)

    Janßen, Holger; Bastardie, Francois; Eero, Margit; Hamon, Katell G.; Hinrichsen, Hans-Harald; Marchal, Paul; Nielsen, J. Rasmus; Le Pape, Olivier; Schulze, Torsten; Simons, Sarah; Teal, Lorna R.; Tidd, Alex

    2018-02-01

    The relationship between fisheries and marine spatial planning (MSP) is still widely unsettled. While several scientific studies highlight the strong relation between fisheries and MSP, as well as ways in which fisheries could be included in MSP, the actual integration of fisheries into MSP often fails. In this article, we review the state of the art and latest progress in research on various challenges in the integration of fisheries into MSP. The reviewed studies address a wide range of integration challenges, starting with techniques to analyse where fishermen actually fish, assessing the drivers for fishermen's behaviour, seasonal dynamics and long-term spatial changes of commercial fish species under various anthropogenic pressures along their successive life stages, the effects of spatial competition on fisheries and projections on those spaces that might become important fishing areas in the future, and finally, examining how fisheries could benefit from MSP. This paper gives an overview of the latest developments on concepts, tools, and methods. It becomes apparent that the spatial and temporal dynamics of fish and fisheries, as well as the definition of spatial preferences, remain major challenges, but that an integration of fisheries is already possible today.

  3. Network Science Research Laboratory (NSRL) Discrete Event Toolkit

    Science.gov (United States)

    2016-01-01

    ARL-TR-7579 ● JAN 2016 US Army Research Laboratory Network Science Research Laboratory (NSRL) Discrete Event Toolkit by...Laboratory (NSRL) Discrete Event Toolkit by Theron Trout and Andrew J Toth Computational and Information Sciences Directorate, ARL...Research Laboratory (NSRL) Discrete Event Toolkit 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Theron Trout

  4. Promoting innovative business in the fishery sector in West Java, Indonesia

    Science.gov (United States)

    Nurhayati, A.; Aisah, I.; Supriatna, A. K.

    2018-04-01

    West Java represents an important fisheries production center in Indonesia, owing to the abundant capture and aquaculture resources. However, the intrinsic characteristics of fish products such as perishable, voluminous, and seasonal currently prevent fisheries from having brought significant economic contribution to the province. In line with it, this research was aimed to analyze and identify leverage factors that will lead to fishery-based innovative business in West Java. Data used in this research were primary and secondary ones, which were collected through surveys involving 30 respondents representing fish processors and the same number representing consumers. A Focus Group Discussion (FGD) was also carried out to verify the collected data. Analytical tools adopted in this research were fishery triangle product model. Based on the analyses, it was found factors influencing the success of a fishery innovative business in West Java, Indonesia were consecutively: the existence of derivative products, product processing innovativeness, product price competitiveness, market place, and promotion. Based on the fishery trianggle product model, it was found that fish onboard handling, post-harvest handling, and procesing was in the development stage and therefore these production nodes need a particularly high attention.

  5. NAS Human Factors Safety Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory conducts an integrated program of research on the relationship of factors concerning individuals, work groups, and organizations as employees perform...

  6. The Trends and their Impact on Fishery Products Safety and Quality

    Directory of Open Access Journals (Sweden)

    Gheorghe Adrian ZUGRAVU

    2012-11-01

    Full Text Available The paper follows two main objectives: to understand consumers’ perception of safety and quality of fishery products and to identify communication levers in order to improve the perceived image of fishery products. The present research is focused on the fishery products, regardless of their presentation – fresh, frozen or processed. This paper conducted a questionnaire survey of Romanian consumers’ perception toward fishery products. The empirical study with brands indicated that consumers are different awareness to domestic and foreign safety fish products. National fishery products got more attention from the consumers.

  7. Sustainable Fisheries in Southeast Asia

    Directory of Open Access Journals (Sweden)

    Melda Kamil Ariadno

    2011-09-01

    Full Text Available Fisheries activity has increased significantly in number. As a result, we might see high investment in fisheries is due to the high demand for fish and fisheries products. Therefore, marine resources as well as other living resources are at risk in being harmed by excessive fisheries activities, for example: the use of trawl. Indonesia, as a Maritime State, need to impose sustainable fisheries because the principle of utilizing sustainable fisheries resources as adopted in the Law on Fisheries (Law No. 31 Year 2004 as amended by Law No. 45 Year 2009 to control fishery activities.Fishery activities are regulated not only by the Law on Fisheries but also international regulation adopted worldwide such as the Code of Conduct for Responsible Fisheries (CCRF. CCRF was prepared to include primary principles to elaborate the mechanism of fishery activities which is designated not to cost harmful damages in fisheries activities. CCRF is also accompanied by several technical guidelines that provide certain procedures to be applied to (1 fishing operations; (2 the precautionary approach as applied to capture fisheries and species introductions; (3 integrating fisheries into coastal area management; (4 fisheries management; (5 aquaculture development; and (6 inland fisheries. Consequently, CCRF is intended to cover any kind of fishery anywhere in the world not just marine capture fisheries, but also freshwater fisheries as well as aquaculture both marine and freshwater aquaculture. Excessive fishery activities would then not be harmful if Indonesia is willing to impose regulation which is significantly and effectively to manage these kind of fishery activities. Along with the fact that Indonesia is recognized as a Marine State, there is no reason to hold back in addressing this situation.

  8. The Trends and their Impact on Fishery Products Safety and Quality

    OpenAIRE

    Gheorghe Adrian ZUGRAVU; Maria Magdalena TUREK RAHOVEANU

    2012-01-01

    The paper follows two main objectives: to understand consumers’ perception of safety and quality of fishery products and to identify communication levers in order to improve the perceived image of fishery products. The present research is focused on the fishery products, regardless of their presentation – fresh, frozen or processed. This paper conducted a questionnaire survey of Romanian consumers’ perception toward fishery products. The empirical study with brands indicated that consumers ar...

  9. Green Building Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sailor, David Jean [Portland State Univ., Portland, OR (United States)

    2013-12-29

    This project provided support to the Green Building Research Laboratory at Portland State University (PSU) so it could work with researchers and industry to solve technical problems for the benefit of the green building industry. It also helped to facilitate the development of PSU’s undergraduate and graduate-level training in building science across the curriculum.

  10. Laboratory Technology Research: Abstracts of FY 1996 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program are conducted by the five ER multi-program laboratories: Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, and Pacific Northwest National Laboratories. These projects explore the applications of basic research advances relevant to Department of Energy`s (DOE) mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing/manufacturing research, and sustainable environments.

  11. Freedom and poverty in the fishery commons

    Directory of Open Access Journals (Sweden)

    Svein Jentoft

    2010-01-01

    Full Text Available Abstract In fisheries, alleviating poverty sometimes requires strategies that are inherently in conflict. When aiming to develop a fishery as a means to reduce poverty, its common pool resource basis might be undermined, resulting in greater poverty. But poverty in fisheries is also linked to, or a part of deeper social issues and processes, for instance, the marginalization and exclusion of certain communities. Poverty also has many factors— income, health, literacy, gender, power, security, etc.—all of which make poverty alleviation a particularly “wicked problem” that would require a broad process of political, social and institutional reform. In other words, poverty alleviation is not only an issue of sustainable resource management but also one of societal governance. Drawing from research in small-scale fisheries communities in Nicaragua, Tanzania, and Bangladesh, this paper describes how fishing people cope with poverty. The paper discusses what the governance implications are for alleviating poverty at individual, household and community levels, and argue that both the definition of poverty and poverty alleviation in small-scale fisheries must be rooted in real life experiences.

  12. The underground research laboratories

    International Nuclear Information System (INIS)

    1997-06-01

    This educational booklet is a general presentation of the selected sites for the installation of underground research laboratories devoted to the feasibility studies of deep repositories for long-life radioactive wastes. It describes the different type of wastes and their management, the management of long life radioactive wastes, the site selection and the 4 sites retained, the preliminary research studies, and the other researches carried out in deep disposal facilities worldwide. (J.S.)

  13. Techniques in cancer research: a laboratory manual

    International Nuclear Information System (INIS)

    Deo, M.G.; Seshadri, R.; Mulherkar, R.; Mukhopadhyaya, R.

    1995-01-01

    Cancer Research Institute (CRI) works on all facets of cancer using the latest biomedical tools. For this purpose, it has established modern laboratories in different branches of cancer biology such as cell and molecular biology, biochemistry, immunology, chemical and viral oncogenesis, genetics of cancer including genetic engineering, tissue culture, cancer chemotherapy, neurooncology and comparative oncology. This manual describes the protocols used in these laboratories. There is also a chapter on handling and care of laboratory animals, an essential component of any modern cancer biology laboratory. It is hoped that the manual will be useful to biomedical laboratories, specially those interested in cancer research. refs., tabs., figs

  14. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  15. science and fisheries management in southern africa and europe

    African Journals Online (AJOL)

    The comparison shows that, in Europe, despite comprehensive institutional arrangements for fisheries management based on a long history of fisheries research, management of stocks has not been particularly successful, and this contrasts with the rather more successful regime in southern Africa. The failure in Europe ...

  16. Fisheries: climate change impacts and adaptation

    International Nuclear Information System (INIS)

    2003-01-01

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on fisheries focuses on the impact of climate change on Canada's marine and freshwater fisheries, and the role of adaptation in reducing the vulnerability of the sector. Canadian fisheries encompass the Atlantic, Pacific and Arctic oceans as well as freshwater systems. Fish health, productivity and distribution is strongly influenced by climatic factors such as air and water temperature, precipitation and wind. Most fish species have a distinct set of environmental conditions for optimal growth and survival. If the conditions change in response to changing climate, the fish may be affected. Some of the impacts include reduced growth, increased competition, a shift in species distribution, greater susceptibility to disease, and altered ecosystem function. Studies show that in some areas, fisheries may already be experiencing the effect of climate change. Recommendations were suggested on how to deal with the impacts associated with climate change in sensitive environments. It was noted that actions taken in the fisheries sector will have implications for the water resources, transportation, tourism and human health sectors. 103 refs., 2 tabs., 6 figs

  17. Supply regimes in fisheries

    DEFF Research Database (Denmark)

    Nielsen, Max

    2006-01-01

    Supply in fisheries is traditionally known for its backward bending nature, owing to externalities in production. Such a supply regime, however, exist only for pure open access fisheries. Since most fisheries worldwide are neither pure open access, nor optimally managed, rather between the extremes......, the traditional understanding of supply regimes in fisheries needs modification. This paper identifies through a case study of the East Baltic cod fishery supply regimes in fisheries, taking alternative fisheries management schemes and mesh size limitations into account. An age-structured Beverton-Holt based bio......-economic supply model with mesh sizes is developed. It is found that in the presence of realistic management schemes, the supply curves are close to vertical in the relevant range. Also, the supply curve under open access with mesh size limitations is almost vertical in the relevant range, owing to constant...

  18. The Swedish Research Councils' Laboratory progress report for 1975

    International Nuclear Information System (INIS)

    Rudstam, G.

    1976-01-01

    The Swedish Research Councils' Laboratory herewith presents its progress report for 1975. The report summarizes the current projects carried out by the research groups working at the laboratory. The very efficient assistance of the staff of the laboratory is greatfully acknowledged. The laboratory has been financially supported by the Atomic Research Council, the Medical Research Council, the Natural Science Research Council, and the Board of Technical Development. Valuable support in various ways has also been given by the Atomic Energy Company (AB Atomenergi). (author)

  19. Columbia River : Terminal Fisheries Research Report : Annual Report 1994.

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Paul; Miller, Marc; Hill, Jim

    1996-12-01

    In 1993 the Northwest Power Planning Council recommended in its Strategy for Salmon that terminal fishing sites be identified and developed. The Council called on the Bonneville Power Administration to fund a 10-year study to investigate the feasibility of creating and expanding terminal known stock fisheries in the Columbia River Basin.

  20. Argonne Research Library | Argonne National Laboratory

    Science.gov (United States)

    Argonne Argonne Research Library The Argonne Research Library supports the scientific and technical research needs of Argonne National Laboratory employees. Our library catalog is available via the Research questions or concerns, please contact us at librarians@anl.gov. Contact the Library Argonne Research Library

  1. The Relation of Environmental Quality and Fishery Sector in Indonesia

    Science.gov (United States)

    Oktavilia, Shanty; Habibah Yusfi, Reikha; Firmansyah; Sugiyanto, FX

    2018-02-01

    The condition of fishery sector is currently stagnating, even tending to decline, which is indicated by the decrease of production in some areas in Indonesia. Environmental degradation in marine waters is due to global climate change and uncontrolled fish exploitation impact on the decline of marine fisheries production. While in aquaculture, the environmental quality is also indicated to influence the production. Nevertheless, the increase of production of both marine and terrestrial fisheries has an effect on the quality of the environment. This study aims to analyze the interrelationship between the influence of environmental quality on the production of fishery sub-sector and the influence of fishery subsector production on environmental quality. This research employs environmental quality data and output of fishery of 34 provinces in Indonesia during 2011-2015. The study finds that output of fishery sector affects the environmental quality, which proves the Environment Kuznets Curve in the fishery sector in Indonesia. Since a certain threshold is achieved, the increase in revenue followed by the increase in environmental quality. The study also finds that the environmental quality has a positive effect on the production of fishery. Implication of the study is the increase of income of fishery households can be encouraged the ability of the community to protect the environment and increases the willingness of households to sacrifice other goods to environmental protection.

  2. Physics Research at the Naval Research Laboratory

    Science.gov (United States)

    Coffey, Timothy

    2001-03-01

    The United States Naval Research Laboratory conducts a broad program of research into the physical properties of matter. Studies range from low temperature physics, such as that associated with superconducting systems to high temperature systems such as laser produced or astrophysical plasmas. Substantial studies are underway on surface science and nanoscience. Studies are underway on the electronic and optical properties of materials. Studies of the physical properties of the ocean and the earth’s atmosphere are of considerable importance. Studies of the earth’s sun particularly as it effects the earth’s ionosphere and magnetosphere are underway. The entire program involves a balance of laboratory experiments, field experiments and supporting theoretical and computational studies. This talk will address NRL’s funding of physics, its employment of physicists and will illustrate the nature of NRL’s physics program with several examples of recent accomplishments.

  3. Laboratory directed research and development program, FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  4. A Research-Based Laboratory Course Designed to Strengthen the Research-Teaching Nexus

    Science.gov (United States)

    Parra, Karlett J.; Osgood, Marcy P.; Pappas, Donald L., Jr.

    2010-01-01

    We describe a 10-week laboratory course of guided research experiments thematically linked by topic, which had an ultimate goal of strengthening the undergraduate research-teaching nexus. This undergraduate laboratory course is a direct extension of faculty research interests. From DNA isolation, characterization, and mutagenesis, to protein…

  5. 76 FR 47563 - Fisheries of the South Atlantic; Southeast Data, Assessment, and Review (SEDAR); South Atlantic...

    Science.gov (United States)

    2011-08-05

    ... Management Councils, in conjunction with NOAA Fisheries and the Atlantic and Gulf States Marine Fisheries... Management Councils and NOAA Fisheries Southeast Regional Office and Southeast Fisheries Science Center..., biologists, and researchers; constituency representatives including fishermen, environmentalists, and NGO's...

  6. Laboratory technology research - abstracts of FY 1997 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

  7. Report of test and research results on atomic energy obtained in national institutes in fiscal 1990

    International Nuclear Information System (INIS)

    1991-01-01

    The tests and researches on the development and utilization of atomic energy in national laboratories were begun in 1956, and have accomplished the great role for the advance of the development and utilization of atomic energy in Japan by having produced many valuable results so far. Atomic energy has been utilized in diverse fields, and also in national laboratories, the research for expanding the development and utilization of atomic energy in food irradiation, medicine, agriculture, forestry, fishery and others in addition to the basic research on nuclear fusion and safety have been advanced. Further expecting the pervasive effect to general science and technology, the development of basic technology and integrated research are promoted from the viewpoint of new techical innovation and creative technology. This is 31st report in which the results of the tests and researches carried out by national laboratories in fiscal year 1990 are summarized. Nuclear fusion, safety research, food irradiation, cancer countermeasures, agriculture, forestry, fishery, medicine, mining and manufacture, power utilization, construction, radioactivation analysis and so on were the main subjects. (K.I.)

  8. 75 FR 44938 - Atlantic Coastal Fisheries Cooperative Management Act Provisions; Atlantic Coastal Shark Fishery

    Science.gov (United States)

    2010-07-30

    ... Coastal Fisheries Cooperative Management Act Provisions; Atlantic Coastal Shark Fishery AGENCY: National... moratorium on fishing for Atlantic coastal sharks in the State waters of New Jersey. NMFS canceled the... Fisheries Commission's (Commission) Interstate Fishery Management Plan for Atlantic Coastal Sharks (Coastal...

  9. Fishery Employment Support Systems and Status of Fishery Job Training in Japan

    OpenAIRE

    Kawasaki, Junji

    2016-01-01

    Attracting fishermen has become one of the critical challenges to maintain a basic fisheries production system. Therefore, institutions in Japan have been introducing courses, such as fisheries techniques, to attract students to this industry. The aim of the present study is to identify effective methods of developing job training systems to attract more fishery workers to the industry. The current job training courses for becoming a fishery worker are analyzed, and the results indicate that ...

  10. Integration of fisheries into marine spatial planning: Quo vadis?

    DEFF Research Database (Denmark)

    Janssen, Holger; Bastardie, Francois; Eero, Margit

    2018-01-01

    fails. In this article, we review the state of the art and latest progress in research on various challenges in the integration of fisheries into MSP. The reviewed studies address a wide range of integration challenges, starting with techniques to analyse where fishermen actually fish, assessing...... in the future, and finally, examining how fisheries could benefit from MSP. This paper gives an overview of the latest developments on concepts, tools, and methods. It becomes apparent that the spatial and temporal dynamics of fish and fisheries, as well as the definition of spatial preferences, remain major...

  11. Laboratory Directed Research and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new fundable'' R D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  12. Introduction: Regionalising the Common Fisheries Policy

    DEFF Research Database (Denmark)

    Raakjær, Jesper; Hegland, Troels Jacob

    2012-01-01

    The idea of putting together a special issue of MAST on the issue of regionalisation of the Common Fisheries Policy (CFP), was born in late 2010. Having participated in an EU funded research project looking into how an eco-system based approach to fisheries management could be operationalised...... in the European Union (EU) with particular focus on regionalisation, we found that the coming reform of the CFP would be a good opportunity to make a substantial contribution on the topic of regionalisation, which we felt ought to be a central component of the reform discussions....

  13. Introduction to fisheries oceanography

    Digital Repository Service at National Institute of Oceanography (India)

    Sumitra-Vijayaraghavan

    Fisheries oceanography can be applied to fisheries ecology, fisheries management and practical fishing. Physico-chemical parameters of the environment (temperature, currents, waves, light, oxygen and salinity) have profound effect on fish...

  14. Yakima Fisheries Project : Revised Draft Environmental Impact Statement.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1995-05-01

    BPA proposes to fund several fishery-related activities in the Yakima River Basin. The Yakima Fisheries Project (YFP), included in the Northwest Power Planning Council`s fish and wildlife program, would be jointly managed by the State of Washington and the Yakima Indian Nation. Fisheries resources in the Yakima River are severely reduced from historical levels and there is a significant potential for enhancement of these resources. BPA`s proposed action is to fund (1) information gathering on the implementation of supplementation techniques and on feasibility of reintroducing coho salmon in an environment where native populations have become extinct; (2) research activities based on continuous assessment, feedback and improvement of research design and activities ({open_quotes}adaptive management{close_quotes}); and (3) the construction, operation, and maintenance of facilities for supplementing populations of upper Yakima spring chinook salmon. The project has been considerably revised from the original proposal described in the first draft EIS. Examined in addition to No Action (which would leave present anadromous fisheries resources unchanged in the, Basin) are two alternatives for action: (1) supplementation of depressed natural populations of upper Yakima spring chinook and (2) that same supplementation plus a study to determine the feasibility of re-establishing (via stock imported from another basin) naturally spawning population and a significant fall fishery for coho in the Yakima Basin. Alternative 2 has been identified as the preferred action. Major issues examined in the Revised Draft EIS include potential impacts of the project on genetic and ecological resources of existing fish populations, on water quality and quantity, on threatened and endangered species listed under the Endangered Species Act, and on the recreational fishery.

  15. Laboratory Animal Technician | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused

  16. Cereal Feeding in Fishes Nutrition for Fishery in Fresh Water from Banat Region

    Directory of Open Access Journals (Sweden)

    Dumitru Mnerie

    2010-10-01

    Full Text Available Fisheries have traditionally been managed by direct restrictions, including seasonal and area closures, minimum mesh size, and access limitations. In recent years, licensing and an individual quota system were introduced as effortcontrol measures, in order to bring fishing effort more in line with the available resources. The overall responsibility for fisheries policy in Romania falls under auspices of the Ministry of Agriculture, Forests and Rural Development through its Directorate of Fisheries. The major objectives of Romanian fisheries are to bring the national fisheries legislation closer to the European Union (EU Common Fisheries Policy (CFP and to set up the administrative capacity and institutional building needed to cope with EU accession in 2007. In June 2001, Romania completed negotiations with EU in the area of fisheries, accepting the entire acquis communautaire without requesting any derogation or transition periods. The European Fisheries Fund will support Romania as a new EU Member State to develop a competitive, modern and dynamic fisheries sector, based on sustainable fishing and aquaculture activities, while also taking account of other important aspects such as environmental protection, the demands of the consumers and the food industry. The program is also expected to increase the competitiveness of the fisheries sector, encourage job creation and promote the growth of the aquaculture industry. The paper shows some aspects about Romanian fishery policy, an important opportunity for development research in fishery in fresh water from Banat region. Also, it is presents some research results about using the cereal feeding as fish’s nutrition, in special for common carp.

  17. 75 FR 32375 - New England Fishery Management Council; Public Meeting

    Science.gov (United States)

    2010-06-08

    ... associated with the Joint Groundfish/Sea Scallop Committee. The afternoon session will begin with an overview...-year research priorities and an ecosystem-based fisheries management white paper. This report will be... Council meeting will include a review of any experimental fishery permit applications that have been...

  18. 77 FR 51709 - International Fisheries; Western and Central Pacific Fisheries for Highly Migratory Species...

    Science.gov (United States)

    2012-08-27

    ... Migratory Species; Bigeye Tuna Catch Limit in Longline Fisheries for 2012 AGENCY: National Marine Fisheries... Fisheries of the Western Pacific Region (Pelagics FEP) developed by the Western Pacific Fishery Management... Pelagics FEP. Section 113(a) further directs the Secretary of Commerce, for the purposes of annual...

  19. Occupational radiation exposures in research laboratories

    International Nuclear Information System (INIS)

    Vaccari, S.; Papotti, E.; Pedrazzi, G.

    2006-01-01

    Radioactive sources are widely used in many research activities at University centers. In particular, the activities concerning use of sealed form ( 57 Co in Moessbauer application) and unsealed form ( 3 H, 14 C, 32 P in radioisotope laboratories) are analyzed. The radiological impact of these materials and potential effective doses to researchers and members of the public were evaluated to show compliance with regulatory limits. A review of the procedures performed by researchers and technicians in the research laboratories with the relative dose evaluations is presented in different situations, including normal operations and emergency situations, for example the fire. A study of the possible exposure to radiation by workers, restricted groups of people, and public in general, as well as environmental releases, is presented. (authors)

  20. Impact of Fishery Policy on Fishery Manufacture Output, Economy and Welfare in Indonesia

    Science.gov (United States)

    Firmansyah; Oktavilia, Shanty; Sugiyanto, F. X.; Hamzah, Ibnu N.

    2018-02-01

    The fisheries sector and fish manufacturing industry are the bright prospect sectors of Indonesia, due to its huge potency, which has not been worked out optimally. In facts, these sectors can generate a large amount of foreign exchange. The Government has paid significant attention to the development of these sectors. This study simulates the impact of fishery policies on the production of fish manufacturing industry, national economic and welfare in Indonesia. By employing the Input-Output Analysis approach, impacts of various government policy scenarios are developed, covering fisheries technical policy, as well as infrastructure development policies in the fisheries sector. This study indicates that the policies in the fisheries sector increase the output of fishery, the production of fish manufacturing industry, the sectoral and national outputs, as well as the level of national income.

  1. 78 FR 30780 - Fisheries Off West Coast States; Modifications of the West Coast Commercial Salmon Fisheries...

    Science.gov (United States)

    2013-05-23

    ... Commercial Salmon Fisheries; Inseason Action 3 AGENCY: National Marine Fisheries Service (NMFS), National... in the ocean salmon fisheries. This inseason action modified the commercial fisheries in the area... ocean salmon fisheries (78 FR 25865, May 3, 2013), NMFS announced the commercial and recreational...

  2. Yakima Fisheries Project. Final environmental impact statement

    International Nuclear Information System (INIS)

    1996-01-01

    BPA proposes to fund several fishery-related activities in the Yakima River Basin. These activities, known as the Yakima Fisheries Project (YFP), would be jointly managed by the State of Washington and the Yakima Indian Nation. The YFP is included in the Northwest Power Planning Council's (Council's) fish and wildlife program. The Council selected the Yakima River system for attention because fisheries resources are severely reduced from historical levels and because there is a significant potential for enhancement of these resources. BPA's proposed action is to fund (1) information gathering on the implementation of supplementation techniques and on feasibility of reintroducing coho salmon in an environment where native populations have become extinct; (2) research activities based on continuous assessment, feedback and improvement of research design and activities (open-quotes adaptive managementclose quotes); and (3) die construction, operation, and maintenance of facilities for supplementing populations of upper Yakima spring chinook salmon. Examined in addition to No Action are two alternatives for action: (1) supplementation of depressed natural populations of upper Yakima spring chinook and (2) that same supplementation plus a study to determine the feasibility of reestablishing naturally spawning population and a significant fall fishery for coho in the Yakima Basin. Alternative 2 is the preferred action. A central hatchery would be built for either alternative, as well as three sites with six raceways each for acclimation and release of spring chinook smolts. Major issues examined in the Revised Draft EIS include potential impacts of the project on genetic and ecological resources of existing fish populations, on water quality and quantity, on threatened and endangered species listed under the Endangered Species Act, and on the recreational fishery

  3. 77 FR 27716 - Fishery of the Gulf of Mexico; Southeast Data, Assessment, and Review (SEDAR); Public Meetings

    Science.gov (United States)

    2012-05-11

    [email protected] . SUPPLEMENTARY INFORMATION: The Gulf of Mexico Fishery Management Council, in conjunction... Fishery Management Council, NOAA Fisheries Southeast Regional Office, and NOAA Southeast Fisheries Science..., biologists, and researchers; constituency representatives including fishermen, environmentalists, and NGO's...

  4. 75 FR 53951 - Fisheries of the Gulf of Mexico; Southeast Data, Assessment, and Review (SEDAR) Update; Greater...

    Science.gov (United States)

    2010-09-02

    ... Gulf of Mexico, South Atlantic, and Caribbean Fishery Management Councils, in conjunction with NOAA... Caribbean Fishery Management Councils and NOAA Fisheries Southeast Regional Office and Southeast Fisheries..., biologists, and researchers; constituency representatives including fishermen, environmentalists, and NGO's...

  5. Fishery-biological investigations at Stevns Syd 1978

    International Nuclear Information System (INIS)

    Hovgaard Hansen, H.; Munk Christensen, P.; Hoffmann, E.

    1979-01-01

    The Danish Institute for Fisheries and Marine Research investigated fish species distribution and industrial fishing activities in waters south of Stevns (Sealand). The project was ordered by electric utilities company Elkraft in connection with planned siting of a nuclear power plant at Stevns. The study included collection of statictics about fish species, their distribution and habitat, fishery and evaluation of changes in fish biology, if a nuclear power plant is to let out cooling water, thus causing thermal water pollution. (EG)

  6. "A Future for Fisheries?" Setting of a Field-based Class for Evaluation of Aquaculture and Fisheries Sustainability

    Science.gov (United States)

    Macko, Stephen; O'Connell, Matthew

    2016-04-01

    For the first time in 2015, aquaculture yields approximately equaled global wild capture fisheries. Are either of these levels of production sustainable? This course explored the limitations of both sources of fishery landings and included legal limitations, environmental concerns and technological problems and adaptations. It made use of visits to aquaculture facilities, government laboratories like NOAA , as well as large fish distribution centers like J.J. McDowell's Seafood (Jessup, MD), and included presentations by experts on legalities including the Law of the Sea. In addition, short day-long trips to "ocean-related" locations were also used to supplement the experience and included speakers involved with aquaculture. Central Virginia is a fortunate location for such a class, with close access for travel to the Chesapeake Bay and numerous field stations, museums with ocean-based exhibits (the Smithsonian and National Zoo) that address both extant and extinct Earth history, as well as national/state aquaria in Baltimore and Virginia Beach. Furthermore, visits to local seafood markets at local grocery stores, or larger city markets in Washington, Baltimore and Virginia Beach, enhance the exposure to productivity in the ocean, and viability of the fisheries sustainability. Sustainability awareness is increasingly a subject in educational settings. Marine science classes are perfect settings of establishing sustainability awareness owing to declining populations of organisms and perceived collapse in fisheries worldwide. Students in oceanography classes often request more direct exposure to actual ocean situations or field trips. This new approach to such a course supplement addresses the requests by utilizing local resources and short field trips for a limited number of students to locations in which Ocean experiences are available, and are often supported through education and outreach components. The vision of the class was a mixture of classroom time

  7. Great Lakes Environmental Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NOAA-GLERL and its partners conduct innovative research on the dynamic environments and ecosystems of the Great Lakes and coastal regions to provide information for...

  8. Research report 1987-1989: Environmental Quality Laboratory and Environmental Engineering Science, W. M. Keck Laboratories

    OpenAIRE

    Brooks, Norman H.

    1990-01-01

    This research biennial report for 1987-89 covers the activities of both the Environmental Engineering Science program and the Environmental Quality Laboratory for the period October 1987-November 1989. Environmental Engineering Science is the degree-granting academic program housed in the Keck Laboratories, with associated research projects. The Environmental Quality Laboratory is a research center focusing on large scale problems of environmental quality and natural resources. All the facult...

  9. 78 FR 35153 - Fisheries Off West Coast States; Modifications of the West Coast Commercial Salmon Fisheries...

    Science.gov (United States)

    2013-06-12

    ... Commercial Salmon Fisheries; Inseason Actions 4 and 5 AGENCY: National Marine Fisheries Service (NMFS... inseason actions in the ocean salmon fisheries. These inseason actions modified the commercial fisheries in...: Background In the 2013 annual management measures for ocean salmon fisheries (78 FR 25865, May 3, 2013), NMFS...

  10. Thirty Years of Research on the Application of Cybernetic Methods in Fisheries and Aquaculture Technology

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    2000-01-01

    Full Text Available The paper surveys the research activities at the Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway, in the application of cybernetic principles in fisheries technology, aqua-culture technology and ocean ranching during the period 1969-1999. It is believed that the results obtained in these activities will have an impact upon the future developments in one of the most important sectors of the Norwegian economy. Numerous reports and publications are listed in the comprehensive bibliography.

  11. 77 FR 8776 - Fisheries of the Northeastern United States; Atlantic Bluefish Fishery; 2012 Atlantic Bluefish...

    Science.gov (United States)

    2012-02-15

    .... 120201086-2085-01] RIN 0648-XA904 Fisheries of the Northeastern United States; Atlantic Bluefish Fishery; 2012 Atlantic Bluefish Specifications AGENCY: National Marine Fisheries Service (NMFS), National... comments. SUMMARY: NMFS proposes specifications for the 2012 Atlantic bluefish fishery, including an annual...

  12. 78 FR 50347 - Fisheries Off West Coast States; Modifications of the West Coast Commercial Salmon Fisheries...

    Science.gov (United States)

    2013-08-19

    ... Commercial Salmon Fisheries; Inseason Actions 6 Through 11 AGENCY: National Marine Fisheries Service (NMFS... salmon fisheries. These inseason actions modified the commercial fisheries in the area from the U.S...: Background In the 2013 annual management measures for ocean salmon fisheries (78 FR 25865, May 3, 2013), NMFS...

  13. Occupational radiation exposures in research laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Vaccari, S.; Papotti, E. [Parma Univ., Health Physics (Italy); Pedrazzi, G. [Parma Univ., Dept. of Public Health (Italy)

    2006-07-01

    Radioactive sources are widely used in many research activities at University centers. In particular, the activities concerning use of sealed form ({sup 57}Co in Moessbauer application) and unsealed form ({sup 3}H, {sup 14}C, {sup 32}P in radioisotope laboratories) are analyzed. The radiological impact of these materials and potential effective doses to researchers and members of the public were evaluated to show compliance with regulatory limits. A review of the procedures performed by researchers and technicians in the research laboratories with the relative dose evaluations is presented in different situations, including normal operations and emergency situations, for example the fire. A study of the possible exposure to radiation by workers, restricted groups of people, and public in general, as well as environmental releases, is presented. (authors)

  14. 77 FR 25100 - Fisheries of the Northeastern United States; Atlantic Bluefish Fishery; 2012 Atlantic Bluefish...

    Science.gov (United States)

    2012-04-27

    .... 120201086-2418-02] RIN 0648-XA904 Fisheries of the Northeastern United States; Atlantic Bluefish Fishery; 2012 Atlantic Bluefish Specifications AGENCY: National Marine Fisheries Service (NMFS), National... specifications for the 2012 Atlantic bluefish fishery, including an annual catch limit, total allowable landings...

  15. 78 FR 11809 - Fisheries of the Northeastern United States; Atlantic Bluefish Fishery; 2013-2014 Atlantic...

    Science.gov (United States)

    2013-02-20

    .... 130104009-3099-01] RIN 0648-XC432 Fisheries of the Northeastern United States; Atlantic Bluefish Fishery; 2013-2014 Atlantic Bluefish Specifications AGENCY: National Marine Fisheries Service (NMFS), National... comments. SUMMARY: NMFS proposes specifications for the 2013 and 2014 Atlantic bluefish fishery, including...

  16. Research System Integration Laboratory (SIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The VEA Research SIL (VRS) is essential to the success of the TARDEC 30-Year Strategy. The vast majority of the TARDEC Capability Sets face challenging electronics...

  17. 75 FR 9158 - Atlantic Coastal Fisheries Cooperative Management Act Provisions; Coastal Sharks Fishery

    Science.gov (United States)

    2010-03-01

    ... Coastal Fisheries Cooperative Management Act Provisions; Coastal Sharks Fishery AGENCY: National Marine... Commission's Interstate Fishery Management Plan (ISFMP) for Coastal Sharks. Subsequently, the Commission... New Jersey failed to carry out its responsibilities under the Coastal Sharks ISFMP, and if the...

  18. Outline of new extra high voltage research equipment at Kumatori research laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Hohki, S; Ikeda, G

    1965-01-01

    Following up the construction in 1939 of an ehv research laboratory, another new research laboratory was established at Kumatori with a ground area of 142,000 square meters. As the first stage of this construction plan, the new research equipment was installed in November 1963 and began operation. The laboratory consists of comprehensive ehv research equipment and facilities relating to atomic energy. The former includes a 6000-kV impulse voltage generator, a 1650-kV alternating current testing transformer, a 300-m overhead transmission test line, a tower strength testing facility, and other various high-power test facilities. Studies on a 400- to 500-kV overhead power transmission system and other new transmission systems are currently being conducted. The details of the construction of the ehv research equipment together with the research policy for future ehv engineering are given.

  19. Best practices for assessing forage fish fisheries-seabird resource competition

    Science.gov (United States)

    Sydeman, William J.; Thompson, Sarah Ann; Anker-Nilssen, Tycho; Arimitsu, Mayumi L.; Bennison, Ashley; Bertrand, Sophie; Boersch-Supan, Philipp; Boyd, Charlotte; Bransome, Nicole C.; Crawford, Robert J.M.; Daunt, Francis; Furness, Robert W.; Gianuca, Dimas; Gladics, Amanda; Koehn, Laura; Lang, Jennifer W.; Loggerwell, Elizabeth; Morris, Taryn L.; Phillips, Elizabeth M.; Provencher, Jennifer; Punt, André E..; Saraux, Claire; Shannon, Lynne; Sherley, Richard B.; Simeone, Alejandro; Wanless, Ross M.; Wanless, Sarah; Zador, Stephani

    2017-01-01

    Worldwide, in recent years capture fisheries targeting lower-trophic level forage fish and euphausiid crustaceans have been substantial (∼20 million metric tons [MT] annually). Landings of forage species are projected to increase in the future, and this harvest may affect marine ecosystems and predator-prey interactions by removal or redistribution of biomass central to pelagic food webs. In particular, fisheries targeting forage fish and euphausiids may be in competition with seabirds, likely the most sensitive of marine vertebrates given limitations in their foraging abilities (ambit and gape size) and high metabolic rate, for food resources. Lately, apparent competition between fisheries and seabirds has led to numerous high-profile conflicts over interpretations, as well as the approaches that could and should be used to assess the magnitude and consequences of fisheries-seabird resource competition. In this paper, we review the methods used to date to study fisheries competition with seabirds, and present “best practices” for future resource competition assessments. Documenting current fisheries competition with seabirds generally involves addressing two major issues: 1) are fisheries causing localized prey depletion that is sufficient to affect the birds? (i.e., are fisheries limiting food resources?), and 2) how are fisheries-induced changes to forage stocks affecting seabird populations given the associated functional or numerical response relationships? Previous studies have been hampered by mismatches in the scale of fisheries, fish, and seabird data, and a lack of causal understanding due to confounding by climatic and other ecosystem factors (e.g., removal of predatory fish). Best practices for fisheries-seabird competition research should include i) clear articulation of hypotheses, ii) data collection (or summation) of fisheries, fish, and seabirds on matched spatio-temporal scales, and iii) integration of observational and experimental

  20. KB WOT Fisheries 2017

    NARCIS (Netherlands)

    Damme, van C.J.G.; Verver, S.W.

    2017-01-01

    The KB WOT Fisheries programme is developed to maintain and advance the expertise needed to carry out the statutory obligations in fisheries monitoring and advice of The Netherlands. The contents of the KB WOT Fisheries programme for 2017 reflects the scientific and management needs of the WOT

  1. Laboratory directed research and development program, FY 1996

    International Nuclear Information System (INIS)

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices

  2. 78 FR 28292 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-05-14

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board; Notice of Meetings; Amendment The... Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development...

  3. Laboratory Directed Research and Development FY-15 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rekha Sukamar [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    The Laboratory Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2015.

  4. Laboratory Directed Research and Development FY-10 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  5. Fish welfare in capture fisheries

    NARCIS (Netherlands)

    Veldhuizen, L.J.L.; Berentsen, P.B.M.; Boer, de I.J.M.; Vis, van de J.W.; Bokkers, E.A.M.

    2018-01-01

    Concerns about the welfare of production animals have extended from farm animals to fish, but an overview of the impact of especially capture fisheries on fish welfare is lacking. This review provides a synthesis of 85 articles, which demonstrates that research interest in fish welfare in capture

  6. Fishery Performance Indicators

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Performance indicators for landings, effort, revenue and distribution of revenue are collected for various fisheries nation-wide. The fisheries include catch and...

  7. Yakima Fisheries Project : Final Environmental Impact Statement.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration; Washington (State). Dept. of Fish and Wildlife; Confederated Tribes and Bands of the Yakama Nation, Washington.

    1996-01-01

    BPA proposes to fund several fishery-related activities in the Yakima River Basin. These activities, known as the Yakima Fisheries Project (YFP), would be jointly managed by the State of Washington and the Yakima Indian Nation. The YFP is included in the Northwest Power Planning Council`s (Council`s) fish and wildlife program. The Council selected the Yakima River system for attention because fisheries resources are severely reduced from historical levels and because there is a significant potential for enhancement of these resources. BPA`s proposed action is to fund (1) information gathering on the implementation of supplementation techniques and on feasibility of reintroducing coho salmon in an environment where native populations have become extinct; (2) research activities based on continuous assessment, feedback and improvement of research design and activities ({open_quotes}adaptive management{close_quotes}); and (3) die construction, operation, and maintenance of facilities for supplementing populations of upper Yakima spring chinook salmon. Examined in addition to No Action are two alternatives for action: (1) supplementation of depressed natural populations of upper Yakima spring chinook and (2) that same supplementation plus a study to determine the feasibility of reestablishing naturally spawning population and a significant fall fishery for coho in the Yakima Basin. Alternative 2 is the preferred action. A central hatchery would be built for either alternative, as well as three sites with six raceways each for acclimation and release of spring chinook smolts. Major issues examined in the Revised Draft EIS include potential impacts of the project on genetic and ecological resources of existing fish populations, on water quality and quantity, on threatened and endangered species listed under the Endangered Species Act, and on the recreational fishery.

  8. Laboratory Directed Research and Development FY 2000

    International Nuclear Information System (INIS)

    Hansen, Todd; Levy, Karin

    2001-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000

  9. Local fisheries management at the Swedish coast: biological and social preconditions.

    Science.gov (United States)

    Bruckmeier, Karl; Neuman, Erik

    2005-03-01

    Most of the Swedish coastal fisheries are not sustainable from either a social, economic or ecological point of view. We propose the introduction of local fisheries management (LFM) as a tool for restructuring the present large-scale management system in order to achieve sustainability. To implement LFM two questions need to be answered: How to distribute the resource fish among different resource user groups? How to restructure present fisheries management to meet the criteria of sustainability? Starting from these questions we describe possible forms of LFM for Swedish coastal fishery supported by recent research. The biological and social preconditions for restructuring fisheries management are derived from an analysis of the ecological and managerial situation in Swedish fishery. Three types of LFM--owner based, user based, and community based management--are analyzed with regard to the tasks to be carried outin LFM, the roles of management groups, and the definition and optimal size of management areas.

  10. 76 FR 71501 - Atlantic Coastal Fisheries Cooperative Management Act Provisions; American Lobster Fishery

    Science.gov (United States)

    2011-11-18

    ... Lobster Fishery AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric... American lobster regulations that would limit entry into the lobster trap fishery in Lobster Conservation... to fish in Area 1 with up to 800 lobster traps. The proposed limited entry program responds to the...

  11. 76 FR 74009 - Fisheries of the Northeastern United States; Bluefish Fishery; Quota Transfer

    Science.gov (United States)

    2011-11-30

    .... 101228634-1149-02] RIN 0648-XA825 Fisheries of the Northeastern United States; Bluefish Fishery; Quota... a portion of its 2011 commercial bluefish quota to New York State. By this action, NMFS adjusts the... Specialist, (978) 281-9224. SUPPLEMENTARY INFORMATION: Regulations governing the bluefish fishery are found...

  12. 78 FR 64182 - Fisheries of the Northeastern United States; Bluefish Fishery; Quota Transfer

    Science.gov (United States)

    2013-10-28

    .... 130104009-3416-02] RIN 0648-XC921 Fisheries of the Northeastern United States; Bluefish Fishery; Quota... Jersey is transferring a portion of its 2013 commercial bluefish quota to the State of New York. By this... Management Specialist, 978-281-9224. SUPPLEMENTARY INFORMATION: Regulations governing the bluefish fishery...

  13. 77 FR 76424 - Fisheries of the Northeastern United States; Bluefish Fishery; Quota Transfer

    Science.gov (United States)

    2012-12-28

    .... 120201086-2418-02] RIN 0648-XC394 Fisheries of the Northeastern United States; Bluefish Fishery; Quota... Florida is transferring a portion of its 2012 commercial bluefish quota to the State of New York. By this... Management Specialist, 978-281-9224. SUPPLEMENTARY INFORMATION: Regulations governing the bluefish fishery...

  14. 75 FR 51983 - Fisheries of the South Atlantic and Gulf of Mexico; Southeast Data, Assessment, and Review (SEDAR...

    Science.gov (United States)

    2010-08-24

    ... INFORMATION: The Gulf of Mexico, South Atlantic, and Caribbean Fishery Management Councils, in conjunction... Caribbean Fishery Management Councils and NOAA Fisheries Southeast Regional Office and Southeast Fisheries..., biologists, and researchers; constituency representatives including fishermen, environmentalists, and NGO's...

  15. Effectiveness of fully documented fisheries to estimate discards in a participatory research scheme

    DEFF Research Database (Denmark)

    Mortensen, Lars O.; Ulrich, Clara; Olesen, Hans Jakob

    2017-01-01

    A key challenge for fisheries science and management is the access to reliable and verifiable catch data. In science, the challenge is to collect reliable, precise and traceable data to provide sound advice. In management, the challenge is that catch documentation is necessary to enforce regulati......A key challenge for fisheries science and management is the access to reliable and verifiable catch data. In science, the challenge is to collect reliable, precise and traceable data to provide sound advice. In management, the challenge is that catch documentation is necessary to enforce...

  16. Can fisheries-induced evolution shift reference points for fisheries management?

    DEFF Research Database (Denmark)

    Heino, Mikko; Baulier, Loїc; Boukal, David S.

    2013-01-01

    Biological reference points are important tools for fisheries management. Reference points are not static, but may change when a population's environment or the population itself changes. Fisheries-induced evolution is one mechanism that can alter population characteristics, leading to “shifting...

  17. Research laboratories annual report 1991

    International Nuclear Information System (INIS)

    1992-08-01

    The 1990-1991 activities, of the Israel Atomic Energy Commission's research laboratories, are presented in this report. The main fields of interest are chemistry and material sciences, life and environmental sciences, nuclear physics and technology

  18. 78 FR 66992 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-11-07

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research..., behavioral, and clinical science research. The panel meetings will be open to the public for approximately...

  19. 75 FR 57833 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2010-09-22

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research... Crowne Plaza Clinical Research Program December 3, 2010 *VA Central Office Mental Hlth & Behav Sci-A...

  20. 78 FR 22622 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-04-16

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research... biomedical, behavioral and clinical science research. The panel meetings will be open to the public for...

  1. 78 FR 54399 - Fisheries of the Northeastern United States; Bluefish Fishery; Quota Transfer

    Science.gov (United States)

    2013-09-04

    .... 130104009-3416-02] RIN 0648-XC815 Fisheries of the Northeastern United States; Bluefish Fishery; Quota... North Carolina is transferring a portion of its 2013 commercial bluefish quota to the Commonwealth of... governing the bluefish fishery are found at 50 CFR part 648. The regulations require annual specification of...

  2. 75 FR 3434 - Fisheries of the Northeastern United States; Northeast Skate Complex Fishery; Amendment 3

    Science.gov (United States)

    2010-01-21

    ...NMFS proposes regulations to implement measures in Amendment 3 to the Northeast Skate Complex Fishery Management Plan (Skate FMP). Amendment 3 was developed by the New England Fishery Management Council (Council) to rebuild overfished skate stocks and implement annual catch limits (ACLs) and accountability measures (AMs) consistent with the requirements of the reauthorized Magnuson-Stevens Fishery Conservation and Management Act (Magnuson-Stevens Act). Amendment 3 would implement a rebuilding plan for smooth skate and establish an ACL and annual catch target (ACT) for the skate complex, total allowable landings (TAL) for the skate wing and bait fisheries, seasonal quotas for the bait fishery, reduced possession limits, in-season possession limit triggers, and other measures to improve management of the skate fisheries. This proposed rule also includes skate fishery specifications for fishing years (FY) 2010 and 2011.

  3. Laboratory Directed Research and Development Annual Report FY 2017

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kelly O.

    2018-03-30

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate up to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.

  4. Laboratory Directed Research and Development Annual Report FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kelly O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-03-30

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate up to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.

  5. 76 FR 19188 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-04-06

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research.... Neurobiology-D June 10, 2011 Crowne Plaza DC/Silver Spring. Clinical Research Program June 13, 2011 VA Central...

  6. 75 FR 23847 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2010-05-04

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... & Behav Sci-A June 7, 2010 L'Enfant Plaza Hotel. Clinical Research Program June 9, 2010 *VA Central Office...

  7. 77 FR 58969 - Fisheries of the Northeastern United States; Bluefish Fishery; Quota Transfer

    Science.gov (United States)

    2012-09-25

    .... 120201086-2418-02] RIN 0648-XC235 Fisheries of the Northeastern United States; Bluefish Fishery; Quota... North Carolina is transferring a portion of its 2012 commercial bluefish quota to the State of New... governing the bluefish fishery are found at 50 CFR part 648. The regulations require annual specification of...

  8. Report of the KB-WOT fisheries programme carried out in 2007

    NARCIS (Netherlands)

    Dickey-Collas, M.; Beek, van F.A.

    2008-01-01

    This report documents the activities of the KB WOT fisheries programme in 2007. It gives the results, products and documents the experienced gained by staff through the programme. It also shows how the individual projects fit into the research priority areas of WOT fisheries programme for 2007. The

  9. Research and Progress on Virtual Cloud Laboratory

    Directory of Open Access Journals (Sweden)

    Zhang Jian Wei

    2016-01-01

    Full Text Available In recent years, cloud computing technology has experienced continuous development and improvement, and has gradually expanded to the education sector. First, this paper will introduce the background knowledge of the current virtual cloud laboratory; by comparing the advantages and disadvantages between traditional laboratory and virtual cloud laboratory, and comparing the application, advantages and disadvantages, and development trend of OpenStack technology and VMWare technology in safety, performance, design, function, use case, and value of virtual cloud laboratory, this paper concludes that application based on OpenStack virtual cloud laboratory in universities and research institutes and other departments is essential.

  10. 78 FR 26523 - Fisheries of the Northeastern United States; Atlantic Bluefish Fishery; 2013 and 2014 Atlantic...

    Science.gov (United States)

    2013-05-07

    .... 130104009-3416-02] RIN 0648-XC432 Fisheries of the Northeastern United States; Atlantic Bluefish Fishery; 2013 and 2014 Atlantic Bluefish Specifications AGENCY: National Marine Fisheries Service (NMFS... final specifications for the 2013 and 2014 Atlantic bluefish fishery, including annual catch limits...

  11. 1995 Laboratory-Directed Research and Development Annual report

    International Nuclear Information System (INIS)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-01-01

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy

  12. 1995 Laboratory-Directed Research and Development Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-12-31

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  13. A welfare study into capture fisheries in cirata reservoir: a bio-economic model

    Science.gov (United States)

    Anna, Z.; Hindayani, P.

    2018-04-01

    Capture fishery in inland such as reservoirs can be a source of food security and even the economy and public welfare of the surrounding community. This research was conducted on Cirata reservoir fishery in West Java, to see how far reservoir capture fishery can contribute economically in the form of resource rents. The method used is the bioeconomic model Copes, which can analyze the demand and supply functions to calculate the optimization of stakeholders’ welfare in various management regimes. The results showed that the management of capture fishery using Maximum Economic Yield regime (MEY) gave the most efficient result, where fewer inputs would produce maximum profit. In the MEY management, the producer surplus obtained is IDR 2,610.203.099, - per quarter and IDR 273.885.400,- of consumer surplus per quarter. Furthermore, researches showed that sustainable management regime policy MEY result in the government rent/surplus ofIDR 217.891,345, - per quarter with the average price of fish per kg being IDR 13.929. In open access fishery, it was shown that the producer surplus becomesIDR 0. Thus the implementation of the MEY-based instrument policy becomes a necessity for Cirata reservoir capture fishery.

  14. Anticipating ocean acidification's economic consequences for commercial fisheries

    International Nuclear Information System (INIS)

    Cooley, Sarah R; Doney, Scott C

    2009-01-01

    Ocean acidification, a consequence of rising anthropogenic CO 2 emissions, is poised to change marine ecosystems profoundly by increasing dissolved CO 2 and decreasing ocean pH, carbonate ion concentration, and calcium carbonate mineral saturation state worldwide. These conditions hinder growth of calcium carbonate shells and skeletons by many marine plants and animals. The first direct impact on humans may be through declining harvests and fishery revenues from shellfish, their predators, and coral reef habitats. In a case study of US commercial fishery revenues, we begin to constrain the economic effects of ocean acidification over the next 50 years using atmospheric CO 2 trajectories and laboratory studies of its effects, focusing especially on mollusks. In 2007, the $3.8 billion US annual domestic ex-vessel commercial harvest ultimately contributed $34 billion to the US gross national product. Mollusks contributed 19%, or $748 million, of the ex-vessel revenues that year. Substantial revenue declines, job losses, and indirect economic costs may occur if ocean acidification broadly damages marine habitats, alters marine resource availability, and disrupts other ecosystem services. We review the implications for marine resource management and propose possible adaptation strategies designed to support fisheries and marine-resource-dependent communities, many of which already possess little economic resilience.

  15. 77 FR 58051 - Fisheries of the Northeastern United States; Bluefish Fishery; Commercial Quota Harvested for the...

    Science.gov (United States)

    2012-09-19

    .... 120201086-2418-02] RIN 0648-XC236 Fisheries of the Northeastern United States; Bluefish Fishery; Commercial...: NMFS announces that the 2012 bluefish commercial quota allocated to the Commonwealth of Massachusetts has been harvested. Vessels issued a commercial Federal fisheries permit for the bluefish fishery may...

  16. Continuing education needs for fishery professionals: a survey of North American fisheries administrators

    Science.gov (United States)

    Rassam, G.N.; Eisler, R.

    2001-01-01

    North American fishery professionals? continuing education needs were investigated in an American Fisheries Society questionnaire sent to 111 senior fishery officials in winter 2000. Based on a response rate of 52.2% (N = 58), a minimum of 2,967 individuals would benefit from additional training, especially in the areas of statistics and analysis (83% endorsement rate), restoration and enhancement (81%), population dynamics (81%), multi-species interactions (79%), and technical writing (79%). Other skills and techniques recommended by respondents included computer skills (72%), fishery modeling (69%), habitat modification (67%), watershed processes (66%), fishery management (64%), riparian and stream ecology (62%), habitat management (62%), public administration (62%), nonindigenous species (57%), and age and growth (55%). Additional comments by respondents recommended new technical courses, training in various communications skills, and courses to more effectively manage workloads.

  17. Safe handling of plutonium in research laboratories

    International Nuclear Information System (INIS)

    1976-01-01

    The training film illustrates the main basic requirements for the safe handling of small amounts of plutonium. The film is intended not only for people setting up plutonium research laboratories but also for all those who work in existing plutonium research laboratories. It was awarded the first prize in the category ''Protection of Workers'' at the international film festival organized by the 4th World Congress of the International Radiation Protection Association (IRPA) in Paris in April 1977

  18. Safe handling of plutonium in research laboratories

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-12-31

    The training film illustrates the main basic requirements for the safe handling of small amounts of plutonium. The film is intended not only for people setting up plutonium research laboratories but also for all those who work in existing plutonium research laboratories. It was awarded the first prize in the category ``Protection of Workers`` at the international film festival organized by the 4th World Congress of the International Radiation Protection Association (IRPA) in Paris in April 1977

  19. International Fisheries Agreements

    DEFF Research Database (Denmark)

    Pintassilgo, Pedro; Kronbak, Lone Grønbæk; Lindroos, Marko

    2015-01-01

    This paper surveys the application of game theory to the economic analysis of international fisheries agreements. The relevance of this study comes not only from the existence of a vast literature on the topic but especially from the specific features of these agreements. The emphasis of the survey...... is on coalition games, an approach that has become prominent in the fisheries economics literature over the last decade. It is shown that coalition games were first applied to international fisheries agreements in the late 1990s addressing cooperative issues under the framework of characteristic function games...... and stability of international fisheries agreements. A key message that emerges from this literature strand is that self-enforcing cooperative management of internationally shared fish stocks is generally difficult to achieve. Hence, the international legal framework and regulations play a decisive role...

  20. The Utilization of Rawa Pening Swamp Area for Fisheries

    Directory of Open Access Journals (Sweden)

    Su Ritohardoyo

    2004-01-01

    Full Text Available This article concern with the impact of the fishery ‘karamba’ system on socio-economics of fishermen in the Rawa Pening Environs. The aim of the study is to appraise the activities of fishery ‘karamba’ system. In the relationship with loccal fishermen income, and labor force employment. To some extent, the research is directed to study on income differentation based on job status as fishermen and ‘karamba’ farmers. Differentation of tools kinds for fishing, and seasonal variation. Survey method is employed in this research, whether it is for karamba farmer or local fishermen. Respondent number about 187 consists of 139 fishermen, 28 ‘karamba’ labors, and 20 ‘karamba’ farmers. Technical of tabulation and ‘t’ test statistical use for data analysis. The research shows that fishery ‘karamba’ system so much decreases on the activities, number of facilities, and it fish production. Decreasing of those are mainly caused by uncontrolled growth of ‘eceng gondok’ (Eichornia crassipes, capital constrain, and security constraint especially stealing of fish production. The existing of fishery ‘karamba’ system employs 68,00% labors are local fishermen, and 32,00% are not fishermen come from other areas. Viewed by the job opportunities most of part contribute ‘karamba’ farmers (55% who ome from out of the area, and 45% ‘karamba’ farmer are local people. Really affect of the fishery ‘karamba’ system to the local fishermen is decreasing of fish production. Fish production of local fishermen has been lower since fishery ‘karamba’ system be carried out in this lake. Though the fish production of fishery ‘karamba’ system decreases, however income average of the ‘karamba’ farmer is higher (Rp 1,849,000/annum than the income average of local fishermen. The average of fishermen income who using fish grasper is higher (Rp 1,401,000/annum than the average of fishermen income who using fish trap (Rp 1

  1. Virtual laboratory for fusion research in Japan

    International Nuclear Information System (INIS)

    Tsuda, K.; Nagayama, Y.; Yamamoto, T.; Horiuchi, R.; Ishiguro, S.; Takami, S.

    2008-01-01

    A virtual laboratory system for nuclear fusion research in Japan has been developed using SuperSINET, which is a super high-speed network operated by National Institute of Informatics. Sixteen sites including major Japanese universities, Japan Atomic Energy Agency and National Institute for Fusion Science (NIFS) are mutually connected to SuperSINET with the speed of 1 Gbps by the end of 2006 fiscal year. Collaboration categories in this virtual laboratory are as follows: the large helical device (LHD) remote participation; the remote use of supercomputer system; and the all Japan ST (Spherical Tokamak) research program. This virtual laboratory is a closed network system, and is connected to the Internet through the NIFS firewall in order to keep higher security. Collaborators in a remote station can control their diagnostic devices at LHD and analyze the LHD data as they were at the LHD control room. Researchers in a remote station can use the supercomputer of NIFS in the same environment as NIFS. In this paper, we will describe detail of technologies and the present status of the virtual laboratory. Furthermore, the items that should be developed in the near future are also described

  2. Laboratory Directed Research and Development FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2001-02-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000.

  3. Idaho National Laboratory Research & Development Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Stricker, Nicole [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and government agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.

  4. 77 FR 64598 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-10-22

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical...) that the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science... areas of biomedical, behavioral and clinical science research. The panel meetings will be open to the...

  5. 77 FR 16942 - Magnuson-Stevens Fishery Conservation and Management Act Provisions; Fisheries of the...

    Science.gov (United States)

    2012-03-23

    ... Multispecies Fishery Management Plan which was approved on March 8, 2012. This action amends the Northeast Multispecies Fishery Management Plan to explicitly define and facilitate the effective operation of state.... 110901552-20494-02] RIN 0648-BB34 Magnuson-Stevens Fishery Conservation and Management Act Provisions...

  6. Senior Laboratory Animal Technician | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused

  7. Plants used in artisanal fisheries on the Western Mediterranean coasts of Italy

    Directory of Open Access Journals (Sweden)

    Savo Valentina

    2013-01-01

    Full Text Available Abstract Background Artisanal fisheries in the Mediterranean, especially in Italy, have been poorly investigated. There is a long history of fishing in this region, and it remains an important economic activity in many localities. Our research entails both a comprehensive review of the relevant literature and 58 field interviews with practitioners on plants used in fishing activities along the Western Mediterranean Italian coastal regions. The aims were to record traditional knowledge on plants used in fishery in these regions and to define selection criteria for plant species used in artisanal fisheries, considering ecology and intrinsic properties of plants, and to discuss the pattern of diffusion of shared uses in these areas. Methods Information was gathered both from a general review of ethnobotanical literature and from original data. A total of 58 semi-structured interviews were carried out in Liguria, Latium, Campania and Sicily (Italy. Information on plant uses related to fisheries were collected and analyzed through a chi-square residual analysis and the correspondence analysis in relation to habitat, life form and chorology. Results A total of 60 plants were discussed as being utilized in the fisheries of the Western Italian Mediterranean coastal regions, with 141 different uses mentioned. Of these 141 different uses, 32 are shared among different localities. A multivariate statistical analysis was performed on the entire dataset, resulting in details about specific selection criteria for the different usage categories (plants have different uses that can be classified into 11 main categories. In some uses, species are selected for their features (e.g., woody, or habitat (e.g., riverine, etc. The majority of uses were found to be obsolete (42% and interviews show that traditional fishery knowledge is in decline. There are several reasons for this, such as climatic change, costs, reduction of fish stocks, etc. Conclusions Our research

  8. Small-scale fisheries bycatch jeopardizes endangered Pacific loggerhead turtles.

    Directory of Open Access Journals (Sweden)

    S Hoyt Peckham

    2007-10-01

    Full Text Available Although bycatch of industrial-scale fisheries can cause declines in migratory megafauna including seabirds, marine mammals, and sea turtles, the impacts of small-scale fisheries have been largely overlooked. Small-scale fisheries occur in coastal waters worldwide, employing over 99% of the world's 51 million fishers. New telemetry data reveal that migratory megafauna frequent coastal habitats well within the range of small-scale fisheries, potentially producing high bycatch. These fisheries occur primarily in developing nations, and their documentation and management are limited or non-existent, precluding evaluation of their impacts on non-target megafauna.30 North Pacific loggerhead turtles that we satellite-tracked from 1996-2005 ranged oceanwide, but juveniles spent 70% of their time at a high use area coincident with small-scale fisheries in Baja California Sur, Mexico (BCS. We assessed loggerhead bycatch mortality in this area by partnering with local fishers to 1 observe two small-scale fleets that operated closest to the high use area and 2 through shoreline surveys for discarded carcasses. Minimum annual bycatch mortality in just these two fleets at the high use area exceeded 1000 loggerheads year(-1, rivaling that of oceanwide industrial-scale fisheries, and threatening the persistence of this critically endangered population. As a result of fisher participation in this study and a bycatch awareness campaign, a consortium of local fishers and other citizens are working to eliminate their bycatch and to establish a national loggerhead refuge.Because of the overlap of ubiquitous small-scale fisheries with newly documented high-use areas in coastal waters worldwide, our case study suggests that small-scale fisheries may be among the greatest current threats to non-target megafauna. Future research is urgently needed to quantify small-scale fisheries bycatch worldwide. Localizing coastal high use areas and mitigating bycatch in

  9. Small-scale fisheries bycatch jeopardizes endangered Pacific loggerhead turtles.

    Science.gov (United States)

    Peckham, S Hoyt; Maldonado Diaz, David; Walli, Andreas; Ruiz, Georgita; Crowder, Larry B; Nichols, Wallace J

    2007-10-17

    Although bycatch of industrial-scale fisheries can cause declines in migratory megafauna including seabirds, marine mammals, and sea turtles, the impacts of small-scale fisheries have been largely overlooked. Small-scale fisheries occur in coastal waters worldwide, employing over 99% of the world's 51 million fishers. New telemetry data reveal that migratory megafauna frequent coastal habitats well within the range of small-scale fisheries, potentially producing high bycatch. These fisheries occur primarily in developing nations, and their documentation and management are limited or non-existent, precluding evaluation of their impacts on non-target megafauna. 30 North Pacific loggerhead turtles that we satellite-tracked from 1996-2005 ranged oceanwide, but juveniles spent 70% of their time at a high use area coincident with small-scale fisheries in Baja California Sur, Mexico (BCS). We assessed loggerhead bycatch mortality in this area by partnering with local fishers to 1) observe two small-scale fleets that operated closest to the high use area and 2) through shoreline surveys for discarded carcasses. Minimum annual bycatch mortality in just these two fleets at the high use area exceeded 1000 loggerheads year(-1), rivaling that of oceanwide industrial-scale fisheries, and threatening the persistence of this critically endangered population. As a result of fisher participation in this study and a bycatch awareness campaign, a consortium of local fishers and other citizens are working to eliminate their bycatch and to establish a national loggerhead refuge. Because of the overlap of ubiquitous small-scale fisheries with newly documented high-use areas in coastal waters worldwide, our case study suggests that small-scale fisheries may be among the greatest current threats to non-target megafauna. Future research is urgently needed to quantify small-scale fisheries bycatch worldwide. Localizing coastal high use areas and mitigating bycatch in partnership with small

  10. Converging biology, economics and social science in fisheries research –lessons learned

    DEFF Research Database (Denmark)

    Haapasaari, Päivi Elisabet; Kulmala, Soile; Kuikka, Sakari

    2011-01-01

    of the Baltic salmon stocks, using the Bayesian networks. It enabled the analysis of the outcomes of different management measures from biological, social and economic perspectives. The synthesis was the final output of a learning process of eight years. We reflect how and what kind of interdisciplinarity...... between natural scientists, economists and social scientists grew from the need to better understand complexity related to the salmon fisheries in the Baltic Sea, what we learned about the fishery, and what we learned about interdisciplinary collaboration.......It has been acknowledged that natural sciences cannot provide an adequate basis for the management of complex environmental problems. The scientific knowledge base has to be expanded towards a more holistic direction by incorporating social and economic issues. Besides this, the multifaceted...

  11. 75 FR 82295 - Fisheries of the Northeastern United States; Atlantic Bluefish Fishery; Quota Transfer

    Science.gov (United States)

    2010-12-30

    .... 100204079-0199-02] RIN 0648-XA084 Fisheries of the Northeastern United States; Atlantic Bluefish Fishery... the Commonwealth of Virginia is transferring commercial bluefish quota to the State of North Carolina... INFORMATION: Regulations governing the Atlantic bluefish fishery are found at 50 CFR part 648. The regulations...

  12. Fisheries and the marine environment: policy support and research 1991-92

    International Nuclear Information System (INIS)

    1993-01-01

    This Directorate of Fisheries Report for 1991-2 reviews the work of the Fish Stock Management Division and the Aquatic Environment Protection Division in the fields of control and monitoring of non-radioactive and radioactive waste and of fish and shellfish disease monitoring. (UK)

  13. Progress report for (1974-1984) of Nuclear Research Laboratory, Srinagar, Kashmir

    International Nuclear Information System (INIS)

    Kaul, P.K.; Razdan, H.

    1985-01-01

    The Nuclear Research Laboratory, established at Srinagar in 1974, serves as a base laboratory to organise research activities at the High Altitude Research Laboratory at Gulmarg. Space physics, nuclear physics, radiation and atmospheric chemistry, and technical physics: are the fields in which the research facilities are established at the Laboratory, over the past ten years. The highlights of the various research programmes undertaken at the Laboratory during the period 1974-1984 are presented in the form of summaries. A list of papers published in various journals and presented at different conferences, symposia etc. is given at the end. (M.G.B.)

  14. 1999 LDRD Laboratory Directed Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Rita Spencer; Kyle Wheeler

    2000-06-01

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  15. Laboratory directed research and development

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-15

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  16. Designing a global assessment of climate change on inland fishes and fisheries: knowns and needs

    Science.gov (United States)

    Paukert, Craig P.; Lynch, Abigail J.; Beard, T. Douglas; Chen, Yushun; Cooke, Steven J.; Cooperman, Michael S.; Cowx, Ian G.; Infante, Dana M.; Ibengwe, Lilian; Myers, Bonnie; Nguyen, Phu Hoa; Winfield, Ian J.

    2017-01-01

    To date, there are few comprehensive assessments of how climate change affects inland finfish, fisheries, and aquaculture at a global scale, but one is necessary to identify research needs and commonalities across regions and to help guide decision making and funding priorities. Broadly, the consequences of climate change on inland fishes will impact global food security, the livelihoods of people who depend on inland capture and recreational fisheries. However, understanding how climate change will affect inland fishes and fisheries has lagged behind marine assessments. Building from a North American inland fisheries assessment, we convened an expert panel from seven countries to provide a first-step to a framework for determining how to approach an assessment of how climate change may affect inland fishes, capture fisheries, and aquaculture globally. Starting with the small group helped frame the key questions (e.g., who is the audience? What is the best approach and spatial scale?). Data gaps identified by the group include: the tolerances of inland fisheries to changes in temperature, stream flows, salinity, and other environmental factors linked to climate change, and the adaptive capacity of fishes and fisheries to adjust to these changes. These questions are difficult to address, but long-term and large-scale datasets are becoming more readily available as a means to test hypotheses related to climate change. We hope this perspective will help researchers and decision makers identify research priorities and provide a framework to help sustain inland fish populations and fisheries for the diversity of users around the globe.

  17. Current safety practices in nano-research laboratories in China.

    Science.gov (United States)

    Zhang, Can; Zhang, Jing; Wang, Guoyu

    2014-06-01

    China has become a key player in the global nanotechnology field, however, no surveys have specifically examined safety practices in the Chinese nano-laboratories in depth. This study reports results of a survey of 300 professionals who work in research laboratories that handle nanomaterials in China. We recruited participants at three major nano-research laboratories (which carry out research in diverse fields such as chemistry, material science, and biology) and the nano-chemistry session of the national meeting of the Chinese Chemical Society. Results show that almost all nano-research laboratories surveyed had general safety regulations, whereas less than one third of respondents reported having nanospecific safety rules. General safety measures were in place in most surveyed nano-research laboratories, while nanospecific protective measures existed or were implemented less frequently. Several factors reported from the scientific literature including nanotoxicology knowledge gaps, technical limitations on estimating nano-exposure, and the lack of nano-occupational safety legislation may contribute to the current state of affairs. With these factors in mind and embracing the precautionary principle, we suggest strengthening or providing nanosafety training (including raising risk awareness) and establishing nanosafety guidelines in China, to better protect personnel in the nano-workplace.

  18. Laboratory technology research: Abstracts of FY 1998 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of the country: the world-class basic research capability of the DOE Office of Science (SC) national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program in FY 1998 explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing and manufacturing research, and environmental and biomedical research. Abstracts for 85 projects are contained in this report.

  19. Climate, fishery and society interactions: Observations from the North Atlantic

    Science.gov (United States)

    Hamilton, Lawrence C.

    2007-11-01

    Interdisciplinary studies comparing fisheries-dependent regions across the North Atlantic find a number of broad patterns. Large ecological shifts, disastrous to historical fisheries, have resulted when unfavorable climatic events occur atop overfishing. The "teleconnections" linking fisheries crises across long distances include human technology and markets, as well as climate or migratory fish species. Overfishing and climate-driven changes have led to a shift downwards in trophic levels of fisheries takes in some ecosystems, from dominance by bony fish to crustaceans. Fishing societies adapt to new ecological conditions through social reorganization that have benefited some people and places, while leaving others behind. Characteristic patterns of demographic change are among the symptoms of such reorganization. These general observations emerge from a review of recent case studies of individual fishing communities, such as those conducted for the North Atlantic Arc research project.

  20. Using Machine Learning to Uncover Latent Research Topics in Fishery Models

    NARCIS (Netherlands)

    Syed, Shaheen; Weber, Charlotte Teresa

    2018-01-01

    Modeling has become the most commonly used method in fisheries science, with numerous types of models and approaches available today. The large variety of models and the overwhelming amount of scientific literature published yearly can make it difficult to effectively access and use the output of

  1. 76 FR 37761 - Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Amendment 13 to the Coastal...

    Science.gov (United States)

    2011-06-28

    .... 110606318-1319-01] RIN 0648-BA68 Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Amendment 13 to the Coastal Pelagic Species Fishery Management Plan; Annual Catch Limits AGENCY: National... the Coastal Pelagic Species (CPS) Fishery Management Plan (FMP). This proposed rule will implement...

  2. Biological and Physical Space Research Laboratory 2002 Science Review

    Science.gov (United States)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  3. Yakima fisheries project. Revised draft environmental impact statement

    International Nuclear Information System (INIS)

    1995-05-01

    BPA proposes to fund several fishery-related activities in the Yakima River Basin. These activities, known as the Yakima Fisheries Project (YFP), would be jointly managed by the State of Washington and the Yakima Indian Nation. The YFP is included in the Northwest Power Planning Council's (Council's) fish and wildlife program. The Council selected the Yakima River system for attention because fisheries resources are severely reduced from historical levels and because there is a significant potential for enhancement of these resources. BPA's proposed action is to fund (1) information gathering on the implementation of supplementation techniques and on feasibility of reintroducing coho salmon in an environment where native populations have become extinct; (2) research activities based on continuous assessment, feedback and improvement of research design and activities (adaptive management); and (3) the construction, operation, and maintenance of facilities for supplementing populations of upper Yakima spring chinook salmon. Major issues examined in the Revised Draft EIS include potential impacts of the project on genetic and ecological resources of existing fish populations, on water quality and quantity, on threatened and endangered species listed under the Endangered Species Act, and on the recreational fishery. Only minor differences in environmental consequences were found between Alternatives 1 and 2. Potentially high impacts on wild, native, and non-target fish populations under both alternatives would be mitigated through careful adherence to the adaptive management process outlined in the EIS

  4. 75 FR 7435 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic...

    Science.gov (United States)

    2010-02-19

    .... 100105009-0053-01] RIN 0648-AY51 Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic Deep-Sea Red Crab Specifications AGENCY: National Marine Fisheries Service (NMFS... comments. SUMMARY: NMFS proposes 2010 specifications for the Atlantic deep-sea red crab fishery, including...

  5. 77 FR 25144 - Fisheries of the South Atlantic; South Atlantic Fishery Management Council; Public Meetings

    Science.gov (United States)

    2012-04-27

    .... The Council will consider input from the workgroup and workshops during its June meeting in Orlando... Atlantic; South Atlantic Fishery Management Council; Public Meetings AGENCY: National Marine Fisheries... public meeting and public workshop. SUMMARY: The South Atlantic Fishery Management Council (Council) will...

  6. Marine biodiversity and fishery sustainability.

    Science.gov (United States)

    Shao, Kwang-Tsao

    2009-01-01

    Marine fish is one of the most important sources of animal protein for human use, especially in developing countries with coastlines. Marine fishery is also an important industry in many countries. Fifty years ago, many people believed that the ocean was so vast and so resilient that there was no way the marine environment could be changed, nor could marine fishery resources be depleted. Half a century later, we all agree that the depletion of fishery resources is happening mainly due to anthropogenic factors such as overfishing, habitat destruction, pollution, invasive species introduction, and climate change. Since overfishing can cause chain reactions that decrease marine biodiversity drastically, there will be no seafood left after 40 years if we take no action. The most effective ways to reverse this downward trend and restore fishery resources are to promote fishery conservation, establish marine-protected areas, adopt ecosystem-based management, and implement a "precautionary principle." Additionally, enhancing public awareness of marine conservation, which includes eco-labeling, fishery ban or enclosure, slow fishing, and MPA (marine protected areas) enforcement is important and effective. In this paper, we use Taiwan as an example to discuss the problems facing marine biodiversity and sustainable fisheries.

  7. WEFTA interlaboratory comparison on total lipid determination in fishery products using the Smedes method

    DEFF Research Database (Denmark)

    Horst, Karl; Oehlenschaeger, J.; Bakaert, K.

    2012-01-01

    Lipid determination by the Smedes method was tested in an interlaboratory trial performed by 9 laboratories from 7 countries belonging to the West European Fish Technologists Association Analytical Methods Working Group. 5 samples of fish and fishery products with different lipid contents, includ...

  8. Cyber Defense Research and Monitoring Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This facility acts as a fusion point for bridging ARL's research in tactical and operational Information Assurance (IA) areas and the development and assessment of...

  9. 75 FR 39918 - Fisheries of the South Atlantic and Gulf of Mexico; Southeast Data, Assessment, and Review (SEDAR...

    Science.gov (United States)

    2010-07-13

    ...-4366. SUPPLEMENTARY INFORMATION: The Gulf of Mexico, South Atlantic, and Caribbean Fishery Management... Management Councils and NOAA Fisheries Southeast Regional Office and Southeast Fisheries Science Center... researchers; constituency representatives including fishermen, environmentalists, and NGO's; International...

  10. Economic Vulnerability Assessment of U.S. Fishery Revenues to Ocean Acidification

    Science.gov (United States)

    Cooley, S. R.; Doney, S. C.

    2008-12-01

    Ocean acidification, a predictable consequence of rising anthropogenic CO2 emissions, is poised to change marine ecosystems profoundly by decreasing average ocean pH and the carbonate mineral saturation state worldwide. These conditions slow or reverse marine plant and animal calcium carbonate shell growth, thereby harming economically valuable species. In 2006, shellfish and crustaceans provided 50% of the 4 billion U.S. domestic commercial harvest value; value added to commercial fishery products contributed 35 billion to the gross national product that year. Laboratory studies have shown that ocean acidification decreases shellfish calcification; ocean acidification--driven declines in commercial shellfish and crustacean harvests between now and 2060 could decrease nationwide time-integrated primary commercial revenues by 860 million to 14 billion (net present value, 2006 dollars), depending on CO2 emissions, discount rates, biological responses, and fishery structure. This estimate excludes losses from coral reef damage and possible fishery collapses if ocean acidification pushes ecosystems past ecological tipping points. Expanding job losses and indirect economic costs will follow harvest decreases as ocean acidification broadly damages marine habitats and alters marine resource availability. Losses will harm many regions already possessing little economic resilience. The only true solution to ocean acidification is reducing atmospheric CO2 emissions, but implementing regional adaptive responses now from an ecosystem-wide, fisheries perspective will help better preserve sustainable ecosystem function and economic yields. Comprehensive management strategies must include monitoring critical fisheries, explicitly accounting for ocean acidification in management models, reducing fishing pressure and environmental stresses, and supporting regional economies most sensitive to acidification's impacts.

  11. GaInSn usage in the research laboratory

    International Nuclear Information System (INIS)

    Morley, N. B.; Burris, J.; Cadwallader, L. C.; Nornberg, M. D.

    2008-01-01

    GaInSn, a eutectic alloy, has been successfully used in the Magneto-Thermofluid Research Laboratory at the University of California-Los Angeles and at the Princeton Plasma Physics Laboratory for the past six years. This paper describes the handling and safety of GaInSn based on the experience gained in these institutions, augmented by observations from other researchers in the liquid metal experimental community. GaInSn is an alloy with benign properties and shows considerable potential in liquid metal experimental research and cooling applications

  12. The Johns Hopkins Hunterian Laboratory Philosophy: Mentoring Students in a Scientific Neurosurgical Research Laboratory.

    Science.gov (United States)

    Tyler, Betty M; Liu, Ann; Sankey, Eric W; Mangraviti, Antonella; Barone, Michael A; Brem, Henry

    2016-06-01

    After over 50 years of scientific contribution under the leadership of Harvey Cushing and later Walter Dandy, the Johns Hopkins Hunterian Laboratory entered a period of dormancy between the 1960s and early 1980s. In 1984, Henry Brem reinstituted the Hunterian Neurosurgical Laboratory, with a new focus on localized delivery of therapies for brain tumors, leading to several discoveries such as new antiangiogenic agents and Gliadel chemotherapy wafers for the treatment of malignant gliomas. Since that time, it has been the training ground for 310 trainees who have dedicated their time to scientific exploration in the lab, resulting in numerous discoveries in the area of neurosurgical research. The Hunterian Neurosurgical Laboratory has been a unique example of successful mentoring in a translational research environment. The laboratory's philosophy emphasizes mentorship, independence, self-directed learning, creativity, and people-centered collaboration, while maintaining productivity with a focus on improving clinical outcomes. This focus has been served by the diverse backgrounds of its trainees, both in regard to educational status as well as culturally. Through this philosophy and strong legacy of scientific contribution, the Hunterian Laboratory has maintained a positive and productive research environment that supports highly motivated students and trainees. In this article, the authors discuss the laboratory's training philosophy, linked to the principles of adult learning (andragogy), as well as the successes and the limitations of including a wide educational range of students in a neurosurgical translational laboratory and the phenomenon of combining clinical expertise with rigorous scientific training.

  13. Capacity building improve Malaysia's inspection and monitoring system for aquaculture and fishery products

    NARCIS (Netherlands)

    Gevers, G.J.M.; Zoontjes, P.W.; Essers, M.L.; Klijnstra, M.; Gerssen, A.

    2012-01-01

    The project aimed to help build a credible inspection and monitoring system that can guarantee safe quality products of Ministry of Health (MoH) and Department of Fisheries (DoF) by upgrading the analytical capacity of the laboratory staff directly involved in the analysis and detection of forbidden

  14. Fisheries Oceanography in the Virgin Islands: Preliminary Results from a Collaborative Research Endeavor

    Science.gov (United States)

    Smith, R. H.; Gerard, T. L.; Johns, E. M.; Lamkin, J. T.

    2008-05-01

    A multi-species spawning aggregation located on the banks south of St. Thomas includes several economically important fish species, including dog snapper, yellowfin grouper, Nassau grouper, and tiger grouper. Increased fishing pressure on these banks has prompted the Caribbean Fisheries Council to take actions such as seasonally closing fishing grounds and establishing Marine Protected Areas (MPAs). Due to a lack of biological and oceanographic data for the region, these management decisions have been based on professional judgment rather than scientific data. In response to this situation, NOAA scientists from SEFSC and AOML began an interdisciplinary field study in the region in 2007. Research cruises utilize biological sampling techniques such as MOCNESS, neuston, and bongo trawl tows simultaneously with standard physical sampling methods such as CTD/LADCP casts, hull- mounted water velocity measurements, and Lagrangian drifter deployments. The three year project aims to determine how the unprotected banks of the Virgin Islands and surrounding region, the seasonally closed banks and MPAs, and near-shore areas are ecologically linked in terms of larval dispersal, transport, and life history patterns. This collaboration should produce an assessment, based on scientific data, of the effectiveness of Caribbean Research Council management decisions and suggest modifications and improvements to current policy. Additionally, this project will also provide fisheries independent data, and develop ecological indices which can be integrated into stock assessment models. Analysis of data gathered during the project's first research cruise is yielding preliminary results. A total of 26,809 fish larvae were collected from the Grammanik and Red Hind Banks and surrounding regions. Of this total, 585 Serranidae (grouper) and 93 Lutjanidae (snapper) larval specimens were collected. Typical sampling transects included near-shore, shelf-break, and offshore regimes. The most

  15. 76 FR 54727 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Spiny Lobster Fishery of the Gulf...

    Science.gov (United States)

    2011-09-02

    ... RIN 0648-AY72 Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Spiny Lobster Fishery of...) have submitted Amendment 10 to the Fishery Management Plan for the Spiny Lobster Fishery of the Gulf of... actions to revise the lobster species contained within the fishery management unit; revise definitions of...

  16. 78 FR 25865 - Fisheries Off West Coast States; West Coast Salmon Fisheries; 2013 Management Measures

    Science.gov (United States)

    2013-05-03

    ... defined: One or more lines that drag hooks behind a moving fishing vessel. In that portion of the fishery..., 2014. Specific fishery management measures vary by fishery and by area. The measures establish fishing areas, seasons, quotas, legal gear, recreational fishing days and catch limits, possession and landing...

  17. Small-scale fisheries in Greenlandic planning

    DEFF Research Database (Denmark)

    Jacobsen, Rikke Becker

    2013-01-01

    This article analyses an ongoing planning process in Greenlandic fisheries governance aiming to reform the coastal Greenland halibut fishery. It examines the way certain truths about this fishery and the need for reform are produced up to and in the final policy document ‘regulation concerning...... could also be understood as primarily a problem to a certain ‘governmentality’ mode of governance. Whereas some fishery studies document how governmentality modes of governance in fisheries succeeds in transforming subjectivities, this study offers a view into the process that might go before successful...

  18. Government-industry-uUniversity and rResearch lLaboratories cCoordination for new product development: Session 2. Government research laboratory perspective

    International Nuclear Information System (INIS)

    Kuzay, T.M.

    1997-01-01

    This talk is the second in an expanded series of presentations on the Government-Industry-University and Research Laboratories Coordination for new product development, which is a timely and important public policy issue. Such interactions have become particularly timely in light of the present decline in funding for research and development (R ampersand D) in the nation''s budget and in the private sector. These interactions, at least in principle, provide a means to maximize benefits for the greater good of the nation by pooling the diminishing resources. National laboratories, which traditionally interacted closely with the universities in educational training, now are able to also participate closely with industry in joint R ampersand D thanks to a number of public laws legislated since the early 80s. A review of the experiences with such interactions at Argonne National Laboratory, which exemplifies the national laboratories, shows that, despite differences in their traditions and the missions, the national laboratory-industry-university triangle can work together

  19. Design study of underground facility of the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Hibiya, Keisuke; Akiyoshi, Kenji; Ishizuka, Mineo; Anezaki, Susumu

    1998-03-01

    Geoscientific research program to study deep geological environment has been performed by Power Reactor and Nuclear Fuel Development Corporation (PNC). This research is supported by 'Long-Term Program for Research, Development and Utilization of Nuclear Energy'. An Underground Research Laboratory is planned to be constructed at Shoma-sama Hora in the research area belonging to PNC. A wide range of geoscientific research and development activities which have been previously studied at the Tono Area is planned in the laboratory. The Underground Research Laboratory is consisted of Surface Laboratory and Underground Research Facility located from the surface down to depth between several hundreds and 1,000 meters. Based on the results of design study in last year, the design study performed in this year is to investigate the followings in advance of studies for basic design and practical design: concept, design procedure, design flow and total layout. As a study for the concept of the underground facility, items required for the facility are investigated and factors to design the primary form of the underground facility are extracted. Continuously, design methods for the vault and the underground facility are summarized. Furthermore, design procedures of the extracted factors are summarized and total layout is studied considering the results to be obtained from the laboratory. (author)

  20. The Laboratories at Seibersdorf: Multi-disciplinary research and support centre

    International Nuclear Information System (INIS)

    Danesi, P.R.

    1987-01-01

    The main research activities performed at the IAEA laboratories at Seibersdorf in the Agriculture Laboratory, Physics-Chemistry-Instrumentation Laboratory and Safeguards Analytical Laboratory, as well as the training activities are briefly described

  1. Laboratory Directed Research and Development Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2007-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

  2. Laboratory Directed Research and Development Program: FY 2015 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    SLAC,

    2016-04-04

    The Department of Energy (DOE) and the SLAC National Accelerator Laboratory (SLAC) encourage innovation, creativity, originality and quality to maintain the Laboratory’s research activities and staff at the forefront of science and technology. To further advance its scientific research capabilities, the Laboratory allocates a portion of its funds for the Laboratory Directed Research and Development (LDRD) program. With DOE guidance, the LDRD program enables SLAC scientists to make rapid and significant contributions that seed new strategies for solving important national science and technology problems. The LDRD program is conducted using existing research facilities.

  3. Laboratory Directed Research and Development Program Activities for FY 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Looney,J.P.; Fox, K.

    2009-04-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that maintains a primary mission focus the physical sciences, energy sciences, and life sciences, with additional expertise in environmental sciences, energy technologies, and national security. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2008 budget was $531.6 million. There are about 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Developlnent at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. Accordingly, this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2008. BNL expended $12 million during Fiscal Year 2008 in support of 69 projects. The program has two categories, the annual Open Call LDRDs and Strategic LDRDs, which combine to meet the overall objectives of the LDRD Program. Proposals are solicited annually for review and approval concurrent with the next fiscal year, October 1. For the open call for proposals, an LDRD Selection Committee, comprised of the Associate Laboratory Directors (ALDs) for the Scientific Directorates, an equal number of scientists recommended by the Brookhaven Council, plus the Assistant Laboratory Director for Policy and Strategic Planning, review the proposals submitted in response to the solicitation. The Open Can LDRD category emphasizes innovative research concepts

  4. Research at the Oak Ridge National Laboratory (ORNL)

    International Nuclear Information System (INIS)

    Postma, H.

    1980-01-01

    The Oak Ridge National Laboratory is a large (5300 people), US-government-funded laboratory, which performs research in many disciplines and in many technological areas. Programs and organization of ORNL are described for the People's Republic of China

  5. Laboratory research irradiators with enhanced security features

    International Nuclear Information System (INIS)

    Srivastava, Piyush

    2016-01-01

    Over the years BRIT has developed state of art technology for laboratory research irradiators which are suited most for carrying out research and development works in the fields of radiation processing. These equipment which house radioactive sources up to 14 kCi are having a number of features to meet users requirements. They are manufactured as per the national and International standards of safety codes. The paper deals with design, development and application aspects of laboratory research irradiator called Gamma Chamber and also the new security features planned for incorporation in the equipment. Equipment are being regularly manufactured, supplied and installed by BRIT in India and Abroad. There is a number of such equipment in use at different institutions and are found to be very useful. (author)

  6. Laboratory research irradiators with enhanced security features

    International Nuclear Information System (INIS)

    Srivastava, Piyush

    2014-01-01

    Over the years BRIT has developed state of art technology for laboratory research irradiators which are suited most for carrying out research and development works in the fields of radiation processing. These equipment which house radioactive sources up to 14 kCi are having a number of features to meet users requirements. They are manufactured as per the national and International standards of safety codes. The paper deals with design, development and application aspects of laboratory research irradiator called Gamma Chamber and also the new security features planned for incorporation in the equipment. Equipment are being regularly manufactured, supplied and installed by BRIT in India and Abroad. There are a number of such equipment in use at different institutions and are found to be very useful. (author)

  7. Laboratory Directed Research and Development Program Assessment for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps

  8. Laboratory Directed Research and Development FY2008 Annual Report

    International Nuclear Information System (INIS)

    Kammeraad, J.E.; Jackson, K.J.; Sketchley, J.A.; Kotta, P.R.

    2009-01-01

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal year 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with universities

  9. Laboratory Directed Research and Development annual report, fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The Department of Energy Order 413.2(a) establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 413.2, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. DOE Order 413.2 requires that each laboratory submit an annual report on its LDRD activities to the cognizant Secretarial Officer through the appropriate Operations Office Manager. The report provided in this document represents Pacific Northwest National Laboratory`s LDRD report for FY 1997.

  10. Signal and Image Processing Research at the Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R S; Poyneer, L A; Kegelmeyer, L M; Carrano, C J; Chambers, D H; Candy, J V

    2009-06-29

    Lawrence Livermore National Laboratory is a large, multidisciplinary institution that conducts fundamental and applied research in the physical sciences. Research programs at the Laboratory run the gamut from theoretical investigations, to modeling and simulation, to validation through experiment. Over the years, the Laboratory has developed a substantial research component in the areas of signal and image processing to support these activities. This paper surveys some of the current research in signal and image processing at the Laboratory. Of necessity, the paper does not delve deeply into any one research area, but an extensive citation list is provided for further study of the topics presented.

  11. Historical Perspectives and Recent Trends in the Coastal Mozambican Fishery

    Directory of Open Access Journals (Sweden)

    Jessica L. Blythe

    2013-12-01

    Full Text Available Historical data describing changing social-ecological interactions in marine systems can help guide small-scale fisheries management efforts. Fisheries landings data are often the primary source for historical reconstructions of fisheries; however, we argue that reliance on data of a single type and/or from a single scale can lead to potentially misleading conclusions. For example, a narrow focus on aggregate landings statistics can mask processes and trends occurring at local scales, as well as the complex social changes that result from and precipitate marine ecosystem change. Moreover, in the case of many small-scale fisheries, landings statistics are often incomplete and/or inaccurate. We draw on case study research in Mozambique that combines national landings statistics and career history interviews with fish harvesters to generate a multi-scale historical reconstruction that describes social-ecological interactions within the coastal Mozambican fishery. At the national level, our analysis points toward trends of fishing intensification and decline in targeted species, and it highlights the significant impact of small-scale fisheries on marine stocks. At the local level, fishers are experiencing changes in fish abundance and distribution, as well as in their physical, social, and cultural environments, and have responded by increasing their fishing effort. We conclude with a discussion of the governance implications of our methodological approach and findings.

  12. NASA Ames Fluid Mechanics Laboratory research briefs

    Science.gov (United States)

    Davis, Sanford (Editor)

    1994-01-01

    The Ames Fluid Mechanics Laboratory research program is presented in a series of research briefs. Nineteen projects covering aeronautical fluid mechanics and related areas are discussed and augmented with the publication and presentation output of the Branch for the period 1990-1993.

  13. Welded rupture disc assemblies for use in Tritium Research Laboratory

    International Nuclear Information System (INIS)

    Faltings, R.E.

    1976-01-01

    Welded rupture disc assemblies were investigated and developed in various ranges for probable use by experimenters in their activities in the Tritium Research Laboratory at Sandia Laboratories, Livermore. This study indicates that currently welded rupture disc assemblies with appropriate testing and installation by certified pressure installers may be used in pressure systems in the Tritium Research Laboratory and other areas at SLL

  14. Bringing the excitement and motivation of research to students; Using inquiry and research-based learning in a year-long biochemistry laboratory : Part II-research-based laboratory-a semester-long research approach using malate dehydrogenase as a research model.

    Science.gov (United States)

    Knutson, Kristopher; Smith, Jennifer; Nichols, Paul; Wallert, Mark A; Provost, Joseph J

    2010-09-01

    Research-based learning in a teaching environment is an effective way to help bring the excitement and experience of independent bench research to a large number of students. The program described here is the second of a two-semester biochemistry laboratory series. Here, students are empowered to design, execute and analyze their own experiments for the entire semester. This style of laboratory replaces a variety of shorter labs in favor of an in depth research-based learning experience. The concept is to allow students to function in independent research groups. The research projects are focused on a series of wild-type and mutant clones of malate dehydrogenase. A common research theme for the laboratory helps instructors administer the course and is key to delivering a research opportunity to a large number of students. The outcome of this research-based learning laboratory results in students who are much more confident and skilled in critical areas in biochemistry and molecular biology. Students with research experience have significantly higher confidence and motivation than those students without a previous research experience. We have also found that all students performed better in advanced courses and in the workplace. Copyright © 2010 International Union of Biochemistry and Molecular Biology, Inc.

  15. Southeast Fishery-Independent Survey (PC1603, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA ship Pisces departed Morehead city on 3 July 2016 for a Southeast Fishery-Independent Survey (SEFIS) research cruise in continental shelf and shelf-break...

  16. Applications of Geographic Information System and Remote Sensing in marine fisheries management and challenges for its development in Colombia

    International Nuclear Information System (INIS)

    Selvaraj, John J; Rajasekharan, Maya; Guzman Angela I

    2008-01-01

    Geographic Information System (GIS) and Remote Sensing (RS) techniques have been used increasingly for marine fisheries development and management over the last years. However, its applications continue to be scarce in Colombia. This paper briefly reviews use of spatial tools in marine fisheries management, both retrospectively and predictively. Case studies of RS and GIS in fisheries research in Colombia and challenges for future use for management measures are discussed. In order to harness the potential of GIS and RS tools in marine fisheries research and management, priority should be given for training fisheries scientists in RS and GIS, increasing collaboration among institutions, departments, standardize data collection, and development of a common platform for data sharing.

  17. MSU-DOE Plant Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This document is the compiled progress reports of research funded through the Michigan State University/Department of Energy Plant Research Laboratory. Fourteen reports are included, covering the molecular basis of plant/microbe symbiosis, cell wall biosynthesis and proteins, gene expression, stress responses, plant hormone biosynthesis, interactions between the nuclear and organelle genomes, sensory transduction and tropisms, intracellular sorting and trafficking, regulation of lipid metabolism, molecular basis of disease resistance and plant pathogenesis, developmental biology of Cyanobacteria, and hormonal involvement in environmental control of plant growth. 320 refs., 26 figs., 3 tabs. (MHB)

  18. Laboratory Directed Research and Development Program. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new ``fundable`` R&D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  19. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ASSESSMENT FOR FY 2006.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2006-01-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19,2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13,2006. The goals and' objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new

  20. Laboratory Directed Research and Development Program Assessment for FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.; Fox, K.J.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2007 spending was $515 million. There are approximately 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which

  1. Laboratory Directed Research and Development annual report, Fiscal year 1993

    International Nuclear Information System (INIS)

    1994-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ''research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER ampersand D, as well as other discretionary research and development activities not provided for in a DOE program.'' Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ''core competencies.'' Currently, PNL's core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL's LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project

  2. Laboratory Directed Research and Development annual report, Fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER&D, as well as other discretionary research and development activities not provided for in a DOE program.`` Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  3. Laboratory directed research and development program FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  4. Laboratory Directed Research and Development Program FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2002-03-15

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  5. An overview of freshwater prawn fishery in Bangladesh: present status and future prospect

    Directory of Open Access Journals (Sweden)

    Ferdous Ahamed

    2014-07-01

    Full Text Available The freshwater prawn fishery plays an important role in the economy of Bangladesh. The fishery is mainly based on the culture of Macrobrachium rosenbergii. The culture fishery has been growing rapidly, thus, masking the dwindling capture fishery which is faced with serious environmental issues augmented by deleterious fishing methods. Despite the high prospects of the freshwater prawn aquaculture in Bangladesh, a lot of research is needed to ensure the sustainable development of the capture fishery which forms a key source of prawn aquaculture seed as well as provide a baseline for future appraisals. Freshwater prawn aquaculture in Bangladesh is based on traditional methods with continuous adaptations by the rural fishers. However, numerous constraints to its full development are evident at all stages of its production. Lack of quality brood stock, seed, feeds and poor technical knowledge at farmers level are but some of the impediments challenging the sustainability of this industry. This paper reviews the freshwater prawn fishery of Bangladesh over the last few decades and outlines approaches for the development of an ecosystem-based management of both the culture and capture sectors of this important fishery.

  6. Laboratory Directed Research and Development FY2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Kammeraad, J E; Jackson, K J; Sketchley, J A; Kotta, P R

    2009-03-24

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal year 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with

  7. Sandia, California Tritium Research Laboratory transition and reutilization project

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, T.B. [Sandia National Lab., Albuquerque, NM (United States)

    1997-02-01

    This paper describes a project within Sandia National Laboratory to convert the shut down Tritium Research Laboratory into a facility which could be reused within the laboratory complex. In the process of decommissioning and decontaminating the facility, the laboratory was able to save substantial financial resources by transferring much existing equipment to other DOE facilities, and then expeditiously implementing a decontamination program which has resulted in the building being converted into laboratory space for new lab programs. This project of facility reuse has been a significant financial benefit to the laboratory.

  8. Laboratory and cyclotron requirements for PET research

    International Nuclear Information System (INIS)

    Schlyer, D.J.

    1993-01-01

    The requirements for carrying out PET research can vary widely depending on the type of basic research being carried out and the extent of a clinical program at a particular center. The type of accelerator and laboratory facilities will, of course, depend on the exact mix. These centers have been divided into four categories. 1. Clinical PET with no radionuclide production facilities, 2. clinical PET with some radionuclide production facilities, 3. clinical PET with research support, and 4. a PET research facility developing new tracers and exploring clinical applications. Guidelines for the choice of an accelerator based on these categories and the practical yields of the common nuclear reactions for production of PET isotopes have been developed and are detailed. Guidelines as to the size and physical layout of the laboratory space necessary for the synthesis of various radiopharmaceuticals have also been developed and are presented. Important utility and air flow considerations are explored

  9. Laboratory directed research and development annual report: Fiscal year 1992

    International Nuclear Information System (INIS)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ''research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ''core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project

  10. 77 FR 31327 - Pacific Fishery Management Council; Public Meeting

    Science.gov (United States)

    2012-05-25

    ... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National... fisheries, including Columbia River fisheries issues, the NOAA Habitat Blueprint, and the Council's.... Thompson, Acting Director, Office of Sustainable Fisheries, National Marine Fisheries Service. [FR Doc...

  11. 50 CFR 216.87 - Wildlife research.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Wildlife research. 216.87 Section 216.87 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION... Pribilof Islands Administration § 216.87 Wildlife research. (a) Wildlife research, other than research on...

  12. 76 FR 59102 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Spiny Lobster Fishery of the Gulf...

    Science.gov (United States)

    2011-09-23

    ... Atlantic; Spiny Lobster Fishery of the Gulf of Mexico and South Atlantic; Amendment 10 AGENCY: National... Fishery Management Plan for the Spiny Lobster Fishery of the Gulf of Mexico and South Atlantic (FMP), as... implemented, this rule would revise the lobster species contained within the fishery management unit...

  13. 78 FR 37208 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of Puerto Rico...

    Science.gov (United States)

    2013-06-20

    ... the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of Puerto Rico and the U.S. Virgin Islands; Exempted Fishing Permit AGENCY: National Marine Fisheries Service (NMFS), National... implementing the Fishery Management Plan for the Reef Fish Fishery of Puerto Rico and the U.S. Virgin Islands...

  14. Is the Dutch shrimp fishery sustainable?

    NARCIS (Netherlands)

    Welleman, H.C.; Daan, N.

    2001-01-01

    The fishery of the brown shrimp (Crangon crangon LINNEAUS 1758) is a widespread human activity in the coastal zone. Yet management of this fishery has never been implemented. The question is raised whether an uncontrolled fishery is sustainable or the conceivable ecological stress results in

  15. Anticipating ocean acidification's economic consequences for commercial fisheries

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, Sarah R; Doney, Scott C [Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)], E-mail: scooley@whoi.edu

    2009-06-15

    Ocean acidification, a consequence of rising anthropogenic CO{sub 2} emissions, is poised to change marine ecosystems profoundly by increasing dissolved CO{sub 2} and decreasing ocean pH, carbonate ion concentration, and calcium carbonate mineral saturation state worldwide. These conditions hinder growth of calcium carbonate shells and skeletons by many marine plants and animals. The first direct impact on humans may be through declining harvests and fishery revenues from shellfish, their predators, and coral reef habitats. In a case study of US commercial fishery revenues, we begin to constrain the economic effects of ocean acidification over the next 50 years using atmospheric CO{sub 2} trajectories and laboratory studies of its effects, focusing especially on mollusks. In 2007, the $3.8 billion US annual domestic ex-vessel commercial harvest ultimately contributed $34 billion to the US gross national product. Mollusks contributed 19%, or $748 million, of the ex-vessel revenues that year. Substantial revenue declines, job losses, and indirect economic costs may occur if ocean acidification broadly damages marine habitats, alters marine resource availability, and disrupts other ecosystem services. We review the implications for marine resource management and propose possible adaptation strategies designed to support fisheries and marine-resource-dependent communities, many of which already possess little economic resilience.

  16. Luring anglers to enhance fisheries

    Science.gov (United States)

    Martin, Dustin R.; Pope, Kevin L.

    2011-01-01

    Current fisheries management is, unfortunately, reactive rather than proactive to changes in fishery characteristics. Furthermore, anglers do not act independently on waterbodies, and thus, fisheries are complex socio-ecological systems. Proactive management of these complex systems necessitates an approach-adaptive fisheries management-that allows learning to occur simultaneously with management. A promising area for implementation of adaptive fisheries management is the study of luring anglers to or from specific waterbodies to meet management goals. Purposeful manipulation of anglers, and its associated field of study, is nonexistent in past management. Evaluation of different management practices (i.e., hypotheses) through an iterative adaptive management process should include both a biological and sociological survey to address changes in fish populations and changes in angler satisfaction related to changes in management. We believe adaptive management is ideal for development and assessment of management strategies targeted at angler participation. Moreover these concepts and understandings should be applicable to other natural resource users such as hunters and hikers.

  17. Catalog of Research Abstracts, 1993: Partnership opportunities at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The 1993 edition of Lawrence Berkeley Laboratory`s Catalog of Research Abstracts is a comprehensive listing of ongoing research projects in LBL`s ten research divisions. Lawrence Berkeley Laboratory (LBL) is a major multi-program national laboratory managed by the University of California for the US Department of Energy (DOE). LBL has more than 3000 employees, including over 1000 scientists and engineers. With an annual budget of approximately $250 million, LBL conducts a wide range of research activities, many that address the long-term needs of American industry and have the potential for a positive impact on US competitiveness. LBL actively seeks to share its expertise with the private sector to increase US competitiveness in world markets. LBL has transferable expertise in conservation and renewable energy, environmental remediation, materials sciences, computing sciences, and biotechnology, which includes fundamental genetic research and nuclear medicine. This catalog gives an excellent overview of LBL`s expertise, and is a good resource for those seeking partnerships with national laboratories. Such partnerships allow private enterprise access to the exceptional scientific and engineering capabilities of the federal laboratory systems. Such arrangements also leverage the research and development resources of the private partner. Most importantly, they are a means of accessing the cutting-edge technologies and innovations being discovered every day in our federal laboratories.

  18. 76 FR 65155 - Fisheries Off West Coast States; Highly Migratory Species Fisheries; Swordfish Retention Limits

    Science.gov (United States)

    2011-10-20

    ...; Swordfish Retention Limits AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and... consistent with regulations implementing the Western Pacific Fishery Management Council's Pacific Pelagics...

  19. Fisheries and climate

    DEFF Research Database (Denmark)

    Brander, Keith

    2009-01-01

    Fish stocks and the fisheries based on them have always experienced variability due to climate. Changes in temperature, salinity, winds, ocean currents, oxygen, and other factors affect their distribution, growth, survival, and recruitment. Examples of such effects are given for several regions...... of the oceans and the processes are described. Poleward distribution shifts have occurred since the 1960s and can be attributed to the effects of anthropogenic climate change with a high degree of confidence. In addition to climate effects, fisheries are subjected to other anthropogenic stresses, including high...... fishing mortality, loss of habitat, pollution, and introduction of alien species. These interact and may reduce the resilience of exploited stocks, although climate change may also increase productivity in some cases. Fisheries production depends on primary production, but to date we have low confidence...

  20. Towards an ecosystem approach to small island fisheries: A preliminary study of a balanced fishery in Kotania Bay (Seram Island, Indonesia

    Directory of Open Access Journals (Sweden)

    B.G. Hutubessy

    2014-12-01

    Full Text Available The Ecosystem Approach to Fisheries (EAF is a holistic one as EAF considers all species as important elements within the eco-system. An EAF requires that community and ecosystem structure should be maintained by harvesting fish communities in proportion to their natural productivity, thereby sustaining the balance of species and sizes in a community. This article draws from research on the reef fish community and catch in Kotania Bay on Seram Island in Maluku, Indonesia, an area of approximately 6000 ha. Based on the trophic guild (ie the aggregation of species utilizing similar food resources on the reef, the biomass of predator fish currently being captured now represents 40.4% of the total catch biomass. Members of the grouper family, the humphead wrasse (Cheilinus undulatus and trevally (Caranx melampygus in particular, have become targeted for sale in fish markets. If these predators are selectively targeted and exploited, the overall reef fishery and the human populations that depend on it may become imperilled, given these species’ significant roles in controlling those lower in the food chain. This study thereby emphasizes the need for balanced fisheries informed by the EAF model in small island fisheries management in order to sustain food security in such regions.

  1. Laboratory-Directed Research and Development 2016 Summary Annual Report

    International Nuclear Information System (INIS)

    Pillai, Rekha Sukamar; Jacobson, Julie Ann

    2017-01-01

    The Laboratory-Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2C, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2016. INL is the lead laboratory for the DOE Office of Nuclear Energy (DOE-NE). The INL mission is to discover, demonstrate, and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure with a vision to change the world's energy future and secure our critical infrastructure. Operating since 1949, INL is the nation's leading research, development, and demonstration center for nuclear energy, including nuclear nonproliferation and physical and cyber-based protection of energy systems and critical infrastructure, as well as integrated energy systems research, development, demonstration, and deployment. INL has been managed and operated by Battelle Energy Alliance, LLC (a wholly owned company of Battelle) for DOE since 2005. Battelle Energy Alliance, LLC, is a partnership between Battelle, BWX Technologies, Inc., AECOM, the Electric Power Research Institute, the National University Consortium (Massachusetts Institute of Technology, Ohio State University, North Carolina State University, University of New Mexico, and Oregon State University), and the Idaho university collaborators (i.e., University of Idaho, Idaho State University, and Boise State University). Since its creation, INL's research and development (R&D) portfolio has broadened with targeted programs supporting national missions to advance nuclear energy, enable clean

  2. ORNLs Laboratory Directed Research and Development Program FY 2010 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2010. The associated FY 2010 ORNL LDRD Self-Assessment (ORNL/PPA-2011/2) provides financial data and an internal evaluation of the program’s management process.

  3. ORNLs Laboratory Directed Research and Development Program FY 2009 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2010-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2009. The associated FY 2009 ORNL LDRD Self-Assessment (ORNL/PPA-2010/2) provides financial data and an internal evaluation of the program’s management process.

  4. ORNLs Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-03-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2008. The associated FY 2008 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program’s management process.

  5. ORNLs Laboratory Directed Research and Development Program FY 2013 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2013. The associated FY 2013 ORNL LDRD Self-Assessment (ORNL/PPA-2014/2) provides financial data and an internal evaluation of the program’s management process.

  6. ORNLs Laboratory Directed Research and Development Program FY 2012 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2012. The associated FY 2012 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  7. ORNLs Laboratory Directed Research and Development Program FY 2011 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2011. The associated FY 2011 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  8. 76 FR 33189 - Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Amendment 13 to the Coastal...

    Science.gov (United States)

    2011-06-08

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration 50 CFR Part 660 RIN 0648-BA68 Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Amendment 13 to the Coastal... Pacific Fishery Management Council (Council) has submitted Amendment 13 to the Coastal Pelagic Species...

  9. Laboratory Directed Research and Development Program FY98

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T. [ed.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

  10. 77 FR 25116 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Spiny Lobster Fishery of the Gulf...

    Science.gov (United States)

    2012-04-27

    ...-BB44 Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Spiny Lobster Fishery of the Gulf... (Councils) have submitted Amendment 11 to the Fishery Management Plan for the Spiny Lobster Fishery of the... proposes to limit spiny lobster fishing using trap gear in certain areas in the exclusive economic zone off...

  11. Transboundary fisheries science: Meeting the challenges of inland fisheries management in the 21st century

    Science.gov (United States)

    Midway, Stephen R.; Wagner, Tyler; Zydlewski, Joseph D.; Irwin, Brian J.; Paukert, Craig P.

    2016-01-01

    Managing inland fisheries in the 21st century presents several obstacles, including the need to view fisheries from multiple spatial and temporal scales, which usually involves populations and resources spanning sociopolitical boundaries. Though collaboration is not new to fisheries science, inland aquatic systems have historically been managed at local scales and present different challenges than in marine or large freshwater systems like the Laurentian Great Lakes. Therefore, we outline a flexible strategy that highlights organization, cooperation, analytics, and implementation as building blocks toward effectively addressing transboundary fisheries issues. Additionally, we discuss the use of Bayesian hierarchical models (within the analytical stage), due to their flexibility in dealing with the variability present in data from multiple scales. With growing recognition of both ecological drivers that span spatial and temporal scales and the subsequent need for collaboration to effectively manage heterogeneous resources, we expect implementation of transboundary approaches to become increasingly critical for effective inland fisheries management.

  12. Laboratory Directed Research and Development Program Activities for FY 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in

  13. 78 FR 75843 - Pacific Halibut Fisheries; Catch Sharing Plan for Guided Sport and Commercial Fisheries in Alaska

    Science.gov (United States)

    2013-12-12

    ... balance the differing needs of the charter and commercial sectors over a wide range of halibut abundance... Plan for Guided Sport and Commercial Fisheries in Alaska; Final Rule #0;#0;Federal Register / Vol. 78... and Commercial Fisheries in Alaska AGENCY: National Marine Fisheries Service (NMFS), National Oceanic...

  14. 2015 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W., editor

    2015-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  15. 2014 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W., editor

    2016-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  16. Laboratory directed research and development annual report: Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  17. Laboratory directed research and development annual report: Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project.

  18. 75 FR 49420 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic...

    Science.gov (United States)

    2010-08-13

    .... 100513223-0289-02] RIN 0648-AY88 Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic Deep-Sea Red Crab Specifications In- season Adjustment AGENCY: National Marine...-sea (DAS) allocation for the Atlantic deep- sea red crab fishery that were implemented in May 2010...

  19. 76 FR 72643 - Western Pacific Pelagic Fisheries; Closure of the Hawaii Shallow-Set Pelagic Longline Fishery Due...

    Science.gov (United States)

    2011-11-25

    .... 080225267-91393-03] RIN 0648-XA370 Western Pacific Pelagic Fisheries; Closure of the Hawaii Shallow- Set...: Temporary rule; fishery closure. SUMMARY: NMFS closes the shallow-set pelagic longline fishery north of the Equator for all vessels registered under the Hawaii longline limited access program. The shallow-set...

  20. 75 FR 38938 - Fisheries of the Economic Exclusive Zone Off Alaska; Shallow-Water Species Fishery by Catcher...

    Science.gov (United States)

    2010-07-07

    .... 0910131362-0087-02] RIN 0648-XX31 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water Species...: NMFS is prohibiting directed fishing for species that comprise the shallow-water species fishery for... (PSC) sideboard limit specified for the shallow-water species fishery for catcher/processors subject to...

  1. 75 FR 54290 - Fisheries of the Economic Exclusive Zone Off Alaska; Shallow-Water Species Fishery by Vessels...

    Science.gov (United States)

    2010-09-07

    .... 0910131362-0087-02] RIN 0648-XY78 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water Species...: NMFS is prohibiting directed fishing for species that comprise the shallow-water species fishery by... apportionment of the Pacific halibut bycatch allowance specified for the shallow-water species fishery in the...

  2. The widening gap between fisheries biology and fisheries management in the European Union

    NARCIS (Netherlands)

    Corten, A.

    1996-01-01

    The extension of economic zones and the introduction of a common fisheries policy in the European Union have not had the results expected in fish stock management. Fisheries managers seem to be increasingly sceptical about the prospects of exploiting fish stocks at anywhere near the maximum

  3. Capacity building to improve the Malaysian inspection and monitoring systems for aquaculture and fisheries products

    NARCIS (Netherlands)

    Berendsen, B.; Wegh, R.S.; Zaaijer, S.; Dijk, van J.P.; Gevers, G.J.M.

    2013-01-01

    This report describes the content, the approach used and lessons learned during the implementation of a capacity development programme to build the analytical capacity of laboratory staff of the Department of Fisheries (DoF) and the Ministry of Health (MoH) who are directly involved in the analysis

  4. Customizable Electronic Laboratory Online (CELO): A Web-based Data Management System Builder for Biomedical Research Laboratories

    Science.gov (United States)

    Fong, Christine; Brinkley, James F.

    2006-01-01

    A common challenge among today’s biomedical research labs is managing growing amounts of research data. In order to reduce the time and resource costs of building data management tools, we designed the Customizable Electronic Laboratory Online (CELO) system. CELO automatically creates a generic database and web interface for laboratories that submit a simple web registration form. Laboratories can then use a collection of predefined XML templates to assist with the design of a database schema. Users can immediately utilize the web-based system to query data, manage multimedia files, and securely share data remotely over the internet. PMID:17238541

  5. 75 FR 35435 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic...

    Science.gov (United States)

    2010-06-22

    .... 100513223-0254-01] RIN 0648-AY88 Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic Deep-Sea Red Crab Specifications In- season Adjustment AGENCY: National Marine... deep-sea red crab fishery, including a target total allowable catch (TAC) and a fleet-wide days-at-sea...

  6. USVI commercial fisheries cost data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To assist the Caribbean Fishery Management Council in managing marine living resources in the United States Virgin Islands, the Southeast Fisheries Science Center...

  7. Laboratory Directed Research and Development Program FY 2007 Annual Report

    International Nuclear Information System (INIS)

    Sjoreen, Terrence P.

    2008-01-01

    The Oak Ridge National LaboratoryLaboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R and D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R and D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science

  8. Laboratory Directed Research and Development Program FY 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2008-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating

  9. Increased competition for aquaculture from fisheries

    DEFF Research Database (Denmark)

    Jensen, Frank; Nielsen, Max; Nielsen, Rasmus

    2014-01-01

    ; and supplies from aquaculture have grown continuously. In this paper, the impact of improved fisheries management on aquaculture growth is studied assuming perfect substitution between farmed and wild fish. We find that improved fisheries management, ceteris paribus, reduces the growth potential of global...... aquaculture in markets where wild fisheries constitute a large share of total supply....

  10. Idaho National Laboratory - Nuclear Research Center

    International Nuclear Information System (INIS)

    Zaidi, M.K.

    2005-01-01

    Full text: The Idaho National Laboratory is committed to the providing international nuclear leadership for the 21st Century, developing and demonstrating compiling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multiprogram national laboratories. INL runs three major programs - Nuclear, Security and Science. nuclear programs covers the Advanced test reactor, Six Generation technology concepts selected for R and D, Targeting tumors - Boron Neutron capture therapy. Homeland security - Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science - INL facility established for Geocentrifuge Research, Idaho Laboratory, a Utah company achieved major milestone in hydrogen research and INL uses extremophile bacteria to ease bleaching's environmental cost. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (Inset). The institute will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer Inset is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'

  11. Laboratory-Directed Research and Development 2016 Summary Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rekha Sukamar [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Julie Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    The Laboratory-Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2016. INL is the lead laboratory for the DOE Office of Nuclear Energy (DOE-NE). The INL mission is to discover, demonstrate, and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure with a vision to change the world’s energy future and secure our critical infrastructure. Operating since 1949, INL is the nation’s leading research, development, and demonstration center for nuclear energy, including nuclear nonproliferation and physical and cyber-based protection of energy systems and critical infrastructure, as well as integrated energy systems research, development, demonstration, and deployment. INL has been managed and operated by Battelle Energy Alliance, LLC (a wholly owned company of Battelle) for DOE since 2005. Battelle Energy Alliance, LLC, is a partnership between Battelle, BWX Technologies, Inc., AECOM, the Electric Power Research Institute, the National University Consortium (Massachusetts Institute of Technology, Ohio State University, North Carolina State University, University of New Mexico, and Oregon State University), and the Idaho university collaborators (i.e., University of Idaho, Idaho State University, and Boise State University). Since its creation, INL’s research and development (R&D) portfolio has broadened with targeted programs supporting national missions to advance nuclear energy

  12. Artisanal Fisheries in Zimbabwe: Options for Effective Management

    Directory of Open Access Journals (Sweden)

    Wilson Mhlanga

    2013-08-01

    Full Text Available The small-scale (artisanal fisheries in Zimbabwe play an important role in income-generation and food security at the household level. This sector has the potential to significantly increase its contribution to household income and food security if more effective fisheries management strategies are put in place. Historically, fisheries management has adopted a centralised “Top-down” approach. This approach has had very limited effectiveness. Over the last decade, efforts have been made to implement co-management in the fisheries sector. Several factors have hampered the success of fisheries co-management in the artisanal fishery. These factors have been institutional, ecological, human and financial. This paper discusses these factors and proposes possible solutions. A more innovative and effective fisheries management approach is also proposed.

  13. Environmental survey at Lucas Heights Research Laboratories, 1989

    International Nuclear Information System (INIS)

    Hoffman, E.L.; Arthur, J.

    1990-09-01

    Results are presented of an environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1989. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne waste during this period is estimated to be less than 0.01 millisieverts, which is one per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council. 9 refs., 17 tabs., 2 figs

  14. Environmental survey at Lucas Heights Research Laboratories, 1990

    International Nuclear Information System (INIS)

    Hoffmann, E.L.

    1991-10-01

    Results are presented of an environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1990. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne waste during this period is estimated to be less than 0.01 millisieverts, which is one per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council. 11 refs., 16 tabs., 2 figs

  15. Environmental survey at Lucas Heights Research Laboratories, 1987

    International Nuclear Information System (INIS)

    Giles, M.S.; Foy, J.J.; Hoffmann, E.L.

    1989-12-01

    Results are presented of an environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1987. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorized limits. The maximum possible annual dose to the general public from airborne waste during this period is estimated to be less than 0.01 millisieverts, which is one per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council. 9 refs., 18 tabs., 2 figs

  16. Environmental survey at Lucas Heights Research Laboratories, 1984

    International Nuclear Information System (INIS)

    Giles, M.S.; Dudaitis, A.

    1986-12-01

    Results are presented of the environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1984. These results are satisfactory. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne waste discharges during this period is estimated to be less than 0.01 millisieverts, which is one per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council

  17. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

  18. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    International Nuclear Information System (INIS)

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research

  19. 77 FR 1908 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Snapper-Grouper Fishery Off the...

    Science.gov (United States)

    2012-01-12

    .... SUMMARY: NMFS announces that the South Atlantic Fishery Management Council (Council) has submitted Amendment 20A to the Fishery Management Plan (FMP) for the Snapper-Grouper Fishery of the South Atlantic... for the wreckfish individual transferable quota (ITQ) program, including actions to define and revert...

  20. Harvest Strategies for an Ecosystem Approach to Fisheries Management in Western Mediterranean Demersal Fisheries

    Directory of Open Access Journals (Sweden)

    Antoni Quetglas

    2017-04-01

    Full Text Available The serious overfishing of most Mediterranean stocks demands urgent reforms of the management measures aiming to guarantee the sustainability of resources, notably when compared with the improvement observed in other European areas. The new EU Common Fisheries Policy (CFP constitutes an excellent opportunity to introduce the changes needed for such a reform. According to this CFP, all European fish stocks should be brought to a state where they can produce at MSY by 2020 at the latest. The CFP also establishes that the objective of sustainable exploitation should be achieved through multiannual plans (MAPs adopted in consultation with relevant stakeholders having fisheries management interests such as fishermen, non-governmental organizations, and policy makers. Together with the MSY and MAP approaches, the new CFP contains several other measures, directed to guarantee the ecological and socio-economic sustainability of fisheries by means of the implementation of the ecosystem approach to fisheries management (EAFM. With this new perspective, the CFP wants to avoid past failures of fisheries management based on monospecific approaches. This study is a first step toward the application of the EAFM in the Balearic Islands by means of the development of a harvest strategy with defined objectives, targets, limits, and clear management control rules aimed at optimizing socioeconomic and ecological objectives in the framework of the new CFP. Different management scenarios designed to achieve that goal were modeled for the main demersal commercial fisheries from the study area, the bottom trawl, and small-scale fisheries. The work begins with a general description of those fisheries, their main fishing grounds, and assessments of the exploitation status of the main target stocks in order to establish the current situation. Secondly, alternative management scenarios to maximize catch and profits while considering societal objectives were evaluated by

  1. Magnuson-Stevens Fishery Conservation Act

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnuson-Stevens Fishery Conservation and Management Act (MSA) is the primary law governing marine fisheries management in U.S. federal waters. It has since been...

  2. Fisheries in the Mediterranean

    Directory of Open Access Journals (Sweden)

    C. PAPACONSTANTINOU

    2000-06-01

    Full Text Available The aim of this paper is to give a description of the Mediterranean fisheries, and its level of exploitation and to address the main questions dealing with its management. The Mediterranean is a semi-enclosed marine area with generally narrow continental shelves. The primary production of the Mediterranean is among the lowest in the world (26-50g C m-2 y-1. The Mediterranean fisheries can be broken down into three main categories: small scale fisheries, trawling and seining fisheries, which operated on demersal, small pelagic and large pelagic resources. After a general description of the state of the resources in the different areas of the Mediterranean it is concluded that (a the overall pictures from the western to the eastern Mediterranean are not considerably different, (b the total landings in the Mediterranean have been increased the last decades, and (c from the perspective of stock assessment, the very few available time series data show stable yield levels. In general fisheries management in the Mediterranean is at a rela- tively early stage of development, judging by the criteria of North Atlantic fisheries. Quota systems are generally not applied, mesh-size regulations usually are set at low levels relative to scientific advice, and effort limitation is not usually applied or, if it is, is not always based on a formal resource assessment. The conservation/management measures applied by the Mediterranean countries can be broadly separated into two major categories: those aiming to keep the fishing effort under control and those aiming to make the exploitation pattern more rational. The most acute problems in the management of the Mediterranean resources are the multispecificity of the catches and the lack of reliable official statistics.

  3. 75 FR 1753 - Fisheries of the Atlantic; Southeast Data, Assessment, and Review (SEDAR); Atlantic croaker and...

    Science.gov (United States)

    2010-01-13

    ... Management Councils, in conjunction with NOAA Fisheries and the Atlantic and Gulf States Marine Fisheries... researchers; constituency representatives including fishermen, environmentalists, and NGO's; international... Conservation and Management Act, provided the public has been notified of the Council's intent to take final...

  4. Shaft extension design at the Underground Research Laboratory, Pinawa, Manitoba

    International Nuclear Information System (INIS)

    Kuzyk, G.W.; Ball, A.E.

    1991-01-01

    AECL Research has constructed an underground laboratory for the research and development required for the Canadian Nuclear Fuel Waste Management Program. The experimental program in the laboratory will contribute to the assessment of the feasibility and safety of nuclear fuel waste disposal deep in stable plutonic rock. In 1988, AECL extended the shaft of the Underground Research Laboratory (URL) from the existing 255 m depth to a depth of 443 m in cooperation with the United States Department of Energy. The project, which involved carrying out research activities while excavation and construction work was in progress, required careful planning. To accommodate the research programs, full-face blasting with a burn cut was used to advance the shaft. Existing facilities at the URL had to be modified to accommodate an expanded underground facility at a new depth. This paper discusses the design criteria, shaft-sinking methods and approaches used to accommodate the research work during this shaft extension project. (11 refs., 11 figs.)

  5. 50 CFR 600.760 - Fishery Negotiation Panel lifetime.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Fishery Negotiation Panel lifetime. 600... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS Fishery Negotiation Panels § 600.760 Fishery Negotiation Panel lifetime. (a) An FNP shall terminate upon either: (1) Submission of...

  6. Linking effort and fishing mortality in a mixed fisheries model

    DEFF Research Database (Denmark)

    Thøgersen, Thomas Talund; Hoff, Ayoe; Frost, Hans Staby

    2012-01-01

    in fish stocks has led to overcapacity in many fisheries, leading to incentives for overfishing. Recent research has shown that the allocation of effort among fleets can play an important role in mitigating overfishing when the targeting covers a range of species (multi-species—i.e., so-called mixed...... fisheries), while simultaneously optimising the overall economic performance of the fleets. The so-called FcubEcon model, in particular, has elucidated both the biologically and economically optimal method for allocating catches—and thus effort—between fishing fleets, while ensuring that the quotas...

  7. MANAGEMENT OF LOBSTER FISHERY WITH EAFM APPROACH IN PALABUHANRATU BAY

    Directory of Open Access Journals (Sweden)

    Katarina Hesty Rombe

    2018-06-01

    Full Text Available This research was conducted in the Palabuhanratu Bay-Sukabumi in March 2016. The purpose of this study is to diagnose the Palabuhanratu Lobster Fishery using factors of Ecosystem Approach to Fisheries Management (EAFM. Water sampling was conducted at two lobster fishing ground. Measuring and weighing morphology lobster were conducted in collectors’s house. The results of this study showed that Palabuhanratu bay water quality was still within tolerable limits for live lobster. Panulirus homarus  is the most widely lobster caught below the size of a decent catch, reaching 2528.9 Kg. CPUE of lobster was declining which indicates a decline in the stock of lobster. The income of fishermen were still very far from the average wage and stakeholder participation was still lacking in the management of the lobster fishery. Keywords: EAFM factors, lobster, palabuhanratu

  8. Argonne National Laboratory: Laboratory Directed Research and Development FY 1993 program activities. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-12-23

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R&D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle`` assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory LDRD Plan for FY 1993.

  9. Safety Design Requirements for The Interior Architecture of Scientific Research Laboratories

    International Nuclear Information System (INIS)

    ElDib, A.A.

    2014-01-01

    The paper discusses one of the primary objectives of interior architecture design of research laboratories (specially those using radioactive materials) where it should provide a safe, accessible environment for laboratory personnel to conduct their work. A secondary objective is to allow for maximum flexibility for safe research. Therefore, health and safety hazards must be anticipated and carefully evaluated so that protective measures can be incorporated into the interior architectural design of these facilities wherever possible. The interior architecture requirements discussed in this paper illustrate some of the basic health and safety design features required for new and remodeled laboratories.The paper discusses one of the primary objectives of interior architecture design of research laboratories (specially those using radioactive materials) where it should provide a safe, accessible environment for laboratory personnel to conduct their work. A secondary objective is to allow for maximum flexibility for safe research. Therefore, health and safety hazards must be anticipated and carefully evaluated so that protective measures can be incorporated into the interior architectural design of these facilities wherever possible. The interior architecture requirements discussed in this paper illustrate some of the basic health and safety design features required for new and remodeled laboratories.

  10. CROATIAN FISHERIES IN 2004

    Directory of Open Access Journals (Sweden)

    Irena Jahutka

    2005-10-01

    Full Text Available This work deals with all the relevant statistic data regarding fisheries of Republic of Croatia, including freshwater fisheries data (aquaculture of fish and other aquatic organisms, commercial and sports fisheries, marine fisheries data (mariculture, commercial fisheries, small–scale fisheries and processing of fish and other marine organisms, as well as data about import and export of fish and fish products and the data about financial subventions in fisheries. Regarding aquaculture (freshwater fish farming in 2004 there have been noticed slight changes comparing to 2003. The total freshwater fish production in 2004 was 5,618 tons (4,259 tons of warm–water species and 1,359 tons of cold–water species. Total areas and production areas were increased comparing to 2003 (total areas 1.94% and production areas 5.42%. Total catch of freshwater fish in 2004 was 567 tons. The total marine fish species production was increased cca. 20% comparing to 2003. Mussels farming, which is slightly increasing since 1999, during 2004 was decreased, while oysters farming were stagnating. The catch of marine fish was increased by 9.74% comparing to 2003. The biggest increase is noticed regarding catch of demersal and other fish species. As well as the increase of the total catch, the number of commercial fishermen and fishing vessels was also increased in 2003. The number of fishermen who fish for their own consumption (without the right to sell fish–small scale fishermen in 2004 was 13,700. The total production of fish products in 2004 was 14,270 tons, which is 24.89% less comparing to 2003. Along this decrease, there has been also noticed an increasing trend of the production assortments, specially salted anchovy. The value of import in 2004 was higher than the value of export, although the export/import balance was higher in amount on the import side. Financial subventions payments in 2004 were 67.21% higher comparing to the first year of payments (1997

  11. Laboratory-directed research and development

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; Caughran, A.B.

    1992-05-01

    This report summarizes progress from the Laboratory-Directed Research and Development (LDRD) program during fiscal year 1991. In addition to a programmatic and financial overview, the report includes progress reports from 230 individual R ampersand D projects in 9 scientific categories: atomic and molecular physics; biosciences; chemistry; engineering and base technologies; geosciences; space sciences, and astrophysics; materials sciences; mathematics and computational sciences; nuclear and particle physics; and plasmas, fluids, and particle beams

  12. 76 FR 56985 - Magnuson-Stevens Fishery Conservation and Management Act Provisions; Fisheries of the...

    Science.gov (United States)

    2011-09-15

    ... to estimate total haddock catch by the herring midwater trawl fleet in these herring management areas.... 110627355-1539-02] RIN 0648-BB08 Magnuson-Stevens Fishery Conservation and Management Act Provisions... the NE Multispecies Fishery Management Plan (FMP), which increases the haddock incidental catch cap...

  13. Revealing all: misleading self-disclosure rates in laboratory-based online research.

    Science.gov (United States)

    Callaghan, Diana E; Graff, Martin G; Davies, Joanne

    2013-09-01

    Laboratory-based experiments in online self-disclosure research may be inadvertently compromising the accuracy of research findings by influencing some of the factors known to affect self-disclosure behavior. Disclosure-orientated interviews conducted with 42 participants in the laboratory and in nonlaboratory settings revealed significantly greater breadth of self-disclosure in laboratory interviews, with message length and intimacy of content also strongly related. These findings suggest that a contrived online setting with a researcher presence may stimulate motivation for greater self-disclosure than would occur naturally in an online environment of an individual's choice. The implications of these findings are that researchers should consider the importance of experimental context and motivation in self-disclosure research.

  14. National Renewable Energy Laboratory 2004 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    2005-03-01

    In-depth articles on several NREL technologies and advances, including: aligning quantum dots and related nanoscience and nanotechnology research; using NREL's Advanced Automotive Manikin (ADAM) to help test and design ancillary automotive systems; and harvesting ocean wind to generate electricity with deep-water wind turbines. Also covered are NREL news, research updates, and awards and honors received by the Laboratory.

  15. A review and analysis of Easter Island's traditional and artisan fisheries

    Directory of Open Access Journals (Sweden)

    Juan Carlos Castilla

    2014-10-01

    Full Text Available Based on a review of published and unpublished reports we analyzed Rapa Nui's (Easter Island traditional and artisan fisheries. We include information from 2000-2009 on landings, species, fishing grounds, fleet and number of fisherfolks according to the Servicio Nacional de Pesca (SERNAPESCA and personal communication with SERNAPESCA officials. Presently, 29 species of fishes and two invertebrates are fished (along with a group of species reported as "non-identified", primarily from the 10 main fishing grounds within 5 nm from the shore. Sporadic fishing trips reach areas up to 25 nm offshore. Statistics about the artisan fleet and number of operative fishers is spotty and unreliable. In 2011 SERNAPESCA reported 123 artisan fishers and 31 boats for the island. Landings occur in five coves, of which Hanga Piko and Hanga Roa are the most important. Between 2000-2009 the mean annual landing ranged between 109-171 ton. The main exploited resources during this period were yellowfin tuna, snoek, Pacific rudderfin, rainbow runner, glasseye, oilfish, deep-water jack and swordfish. We highlight the urgent need to improve fisheries statistics (catch, effort, fishing grounds in order to develop a science-fishery management and conservation plan, particularly linked with artisan fishery activities. Globally, we identify the need to integrate across fields (i.e., ecology, conservation, fisheries, education, outreach more broadly in the national research system, to improve the management and conservation of Easter Island's unique marine environment. Within this framework, we identify an urgent need to create a research marine station on the island with permanent personnel, which can focus on this fragile oligotrophic ecosystem.

  16. 77 FR 34024 - New England Fishery Management Council; Public Meeting

    Science.gov (United States)

    2012-06-08

    ... Bank Scallop Fishery by Maximizing Meat Yield and Minimizing Bycatch; 2011 Sea Scallop Research Set... Genovese, Ph.D. Northeast University; (5) Ecological Role of Adult and Juvenile Anadromous Forage fish in...

  17. Breathing life into fisheries stock assessments with citizen science.

    Science.gov (United States)

    Fairclough, D V; Brown, J I; Carlish, B J; Crisafulli, B M; Keay, I S

    2014-11-28

    Citizen science offers a potentially cost-effective way for researchers to obtain large data sets over large spatial scales. However, it is not used widely to support biological data collection for fisheries stock assessments. Overfishing of demersal fishes along 1,000 km of the west Australian coast led to restrictive management to recover stocks. This diminished opportunities for scientists to cost-effectively monitor stock recovery via fishery-dependent sampling, particularly of the recreational fishing sector. As fishery-independent methods would be too expensive and logistically-challenging to implement, a citizen science program, Send us your skeletons (SUYS), was developed. SUYS asks recreational fishers to voluntarily donate fish skeletons of important species from their catch to allow biological data extraction by scientists to produce age structures and conduct stock assessment analyses. During SUYS, recreational fisher involvement, sample sizes and spatial and temporal coverage of samples have dramatically increased, while the collection cost per skeleton has declined substantially. SUYS is ensuring sampling objectives for stock assessments are achieved via fishery-dependent collection and reliable and timely scientific advice can be provided to managers. The program is also encouraging public ownership through involvement in the monitoring process, which can lead to greater acceptance of management decisions.

  18. CURRENT STATE AND DEVELOPMENT OF THE FISHERIES SECTOR OF UKRAINE IN THE CRISIS

    Directory of Open Access Journals (Sweden)

    І. Hrytsyniak

    2015-03-01

    Full Text Available Purpose. Fisheries has a strategic importance for supplying the population with food, while the sectors of the national economy with raw materials, for strengthening the country’s position in the international arena, for preserving spatial and national integrity of Ukraine, plays an important role in the restoration of natural resources and in the increase in employment. In recent years, fisheries sector of Ukraine is in a severe, protracted economic crisis. Considering its socio-economic and strategic importance for the state, there is a task for developing an effective policy for fisheries development in Ukraine that defines the relevance of the research and practical importance of its results. Thus, a compilation and analysis of the existing information on the current state and development of fisheries sector in the crisis period will allow a deeper understanding of problems in the fisheries sector in Ukraine and finding quick solutions. The main goal of the state policy in the field of fisheries in Ukraine has to be meeting the needs of the population in fish and fish products by creating conditions for effective operations and development of aquaculture and fishing enterprises. Findings. The article reviews the current state of the development of fisheries sector in Ukraine, consumption, catch, processing of fish and seafood, dynamics of fish product exports and imports, legislative and regulatory framework of fisheries sector, state of the implementation of WTO and EU requirements, as well as finding ways for the fisheries sector out from the crisis. Originality. This work is a compilation of the information on the current state of fisheries sector development in Ukraine. The information is provided in the form of a coherent presentation of information on the current state of fisheries sector in Ukraine, both in the domestic and foreign markets. Practical Value. The fact that the fisheries sector of Ukraine is still in a depressive state

  19. U.S. Army Research Laboratory Annual Review 2011

    Science.gov (United States)

    2011-12-01

    bioremediation of wastewater. The researchers created a functional atomic circuit with stationary barrier. This “atom circuit” is composed of ultra...high energy content approaching jet propellant (JP)-8/ diesel fuel, are a means to address these demands. The Army Research Laboratory has

  20. Integrating Interdisciplinary Research-Based Experiences in Biotechnology Laboratories

    Science.gov (United States)

    Iyer, Rupa S.; Wales, Melinda E.

    2012-01-01

    The increasingly interdisciplinary nature of today's scientific research is leading to the transformation of undergraduate education. In addressing these needs, the University of Houston's College of Technology has developed a new interdisciplinary research-based biotechnology laboratory curriculum. Using the pesticide degrading bacterium,…

  1. Laboratory directed research development annual report. Fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This document comprises Pacific Northwest National Laboratory`s report for Fiscal Year 1996 on research and development programs. The document contains 161 project summaries in 16 areas of research and development. The 16 areas of research and development reported on are: atmospheric sciences, biotechnology, chemical instrumentation and analysis, computer and information science, ecological science, electronics and sensors, health protection and dosimetry, hydrological and geologic sciences, marine sciences, materials science and engineering, molecular science, process science and engineering, risk and safety analysis, socio-technical systems analysis, statistics and applied mathematics, and thermal and energy systems. In addition, this report provides an overview of the research and development program, program management, program funding, and Fiscal Year 1997 projects.

  2. Energy consumption in the Danish fishery

    DEFF Research Database (Denmark)

    Thrane, Mikkel

    2004-01-01

    Previous studies based on life-cycle assessment (LCA) in Denmark and Sweden have shown that the fishery is the environmental "hot spot" in the life cycle of certain fish products. Within the fishery, fuel consumption is one of the most important factors addressed by LCA. The present study reveals...... that there are great differences in fuel consumption between fisheries targeting groundfish or shellfish and those targeting pelagic fish or industrial fish. Here, I show that fuel consumption per kilogram of caught fish varies considerably as a function of fishing gear and vessel size, even considering the same......) in Denmark and Sweden have shown that the fishery is the environmental "hot spot" in the life cycle of certain fish products. Within the fishery, fuel consumption is one of the most important factors addressed by LCA. The present study reveals that there are great differences in fuel consumption between...

  3. Laboratory Directed Research and Development Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2006-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  4. Laboratory Directed Research and Development Program FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2005-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  5. Reactor safety research and development in Chalk River Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Nitheanandan, T. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Atomic Energy of Canada Limited's Chalk River Laboratories provides three different services to stakeholders and customers. The first service provided by the laboratory is the implementation of Research and Development (R&D) programs to provide the underlying technological basis of safe nuclear power reactor designs. A significant portion of the Canadian R&D capability in reactor safety resides at Atomic Energy of Canada Limited's Chalk River Laboratories, and this capability was instrumental in providing the science and technology required to aid in the safety design of CANDU power reactors. The second role of the laboratory has been in supporting nuclear facility licensees to ensure the continued safe operation of nuclear facilities, and to develop safety cases to justify continued operation. The licensing of plant life extension is a key industry objective, requiring extensive research on degradation mechanisms, such that safety cases are based on the original safety design data and valid and realistic assumptions regarding the effect of ageing and management of plant life. Recently, Chalk River Laboratories has been engaged in a third role in research to provide the technical basis and improved understanding for decision making by regulatory bodies. The state-of-the-art test facilities in Chalk River Laboratories have been contributing to the R&D needs of all three roles, not only in Canada but also in the international community, thorough Canada's participation in cooperative programs lead by International Atomic Energy Agency and the OECD's Nuclear Energy Agency. (author)

  6. 50 CFR 665.220 - Hawaii coral reef ecosystem fisheries. [Reserved

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Hawaii coral reef ecosystem fisheries. [Reserved] 665.220 Section 665.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... PACIFIC Hawaii Fisheries § 665.220 Hawaii coral reef ecosystem fisheries. [Reserved] ...

  7. An overview of Quality Management System implementation in a research laboratory

    Science.gov (United States)

    Molinéro-Demilly, Valérie; Charki, Abdérafi; Jeoffrion, Christine; Lyonnet, Barbara; O'Brien, Steve; Martin, Luc

    2018-02-01

    The aim of this paper is to show the advantages of implementing a Quality Management System (QMS) in a research laboratory in order to improve the management of risks specific to research programmes and to increase the reliability of results. This paper also presents experience gained from feedback following the implementation of the Quality process in a research laboratory at INRA, the French National Institute for Agronomic Research and details the various challenges encountered and solutions proposed to help achieve smoother adoption of a QMS process. The 7Ms (Management, Measurement, Manpower, Methods, Materials, Machinery, Mother-nature) methodology based on the Ishikawa `Fishbone' diagram is used to show the effectiveness of the actions considered by a QMS, which involve both the organization and the activities of the laboratory. Practical examples illustrate the benefits and improvements observed in the laboratory.

  8. Report of test and research results on atomic energy obtained in national institutes in fiscal 1992

    International Nuclear Information System (INIS)

    1994-01-01

    The tests and researches on the development and utilization of atomic energy in national laboratories were begun in 1956, and have accomplished the great role for the advance of the development and utilization of atomic energy in Japan by having produced many valuable results so far. Atomic energy has been utilized not only in the field of nuclear power but also in diverse fields, and in national laboratories, the research for expanding the development and utilization of atomic energy in medicine, agriculture, forestry, fishery, radioactivation analysis and others in addition the basic research on nuclear fusion have been advanced. Further expecting the pervasive effect to general science and technology, the development of integrated research are promoted from the viewpoint of new technical innovation and creative technology. The safety research of nuclear facilities have been carried out to keep them high level on the basis of the yearly program enacted by Nuclear Safety Commission. This is the report No. 33, in which the results of the test and research in the fields of nuclear fusion safety research, food irradiation, cancer countermeasures, agriculture, forestry, fishery, medicine, mining and manufacture, power utilization, construction, radioactivation analysis carried on in fiscal 1992 are summarized. (J.P.N.)

  9. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2002-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  10. Achieving maximum sustainable yield in mixed fisheries

    NARCIS (Netherlands)

    Ulrich, Clara; Vermard, Youen; Dolder, Paul J.; Brunel, Thomas; Jardim, Ernesto; Holmes, Steven J.; Kempf, Alexander; Mortensen, Lars O.; Poos, Jan Jaap; Rindorf, Anna

    2017-01-01

    Achieving single species maximum sustainable yield (MSY) in complex and dynamic fisheries targeting multiple species (mixed fisheries) is challenging because achieving the objective for one species may mean missing the objective for another. The North Sea mixed fisheries are a representative example

  11. Location | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    The Frederick National Laboratory for Cancer Research campus is located 50 miles northwest of Washington, D.C., and 50 miles west of Baltimore, Maryland, in Frederick, Maryland. Satellite locations include leased and government facilities extending s

  12. 50 CFR 665.420 - Mariana coral reef ecosystem fisheries. [Reserved

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Mariana coral reef ecosystem fisheries. [Reserved] 665.420 Section 665.420 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... PACIFIC Mariana Archipelago Fisheries § 665.420 Mariana coral reef ecosystem fisheries. [Reserved] ...

  13. Egg production methdos in marine fisheries: An introduction

    NARCIS (Netherlands)

    Bernal, M.; Somarakis, S.; Witthames, P.R.; Damme, van C.J.G.; Uriarte, A.R.; Lo, N.C.H.; Dickey-Collas, M.

    2012-01-01

    This paper is an introduction of the Fisheries Research special issue on egg production methods (EPM) that emerged from a dedicated workshop held in Athens, Greece, in 2010. The workshop considered if EPMs are still valid today, it reviewed recent developments in the methods and discussed the

  14. 50 CFR 660.311 - Open access fishery-definitions.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Open access fishery-definitions. 660.311... Groundfish-Open Access Fisheries § 660.311 Open access fishery—definitions. General definitions for the... specific to the open access fishery covered in this subpart and are in addition to those specified at § 660...

  15. 78 FR 3848 - Fisheries Off West Coast States; Pacific Coast Groundfish Fishery; Trawl Rationalization Program...

    Science.gov (United States)

    2013-01-17

    ... Rationalization Program; Emergency Rule Extension AGENCY: National Marine Fisheries Service (NMFS), National... Coast Groundfish Fishery Trawl Rationalization Program (program) regulations. This emergency rule... trawl rationalization program. Background on this rule was provided in the proposed rule, published on...

  16. 75 FR 13081 - Fisheries off West Coast States; Pacific Coast Groundfish Fishery; Trawl Rationalization Program

    Science.gov (United States)

    2010-03-18

    ... West Coast States; Pacific Coast Groundfish Fishery; Trawl Rationalization Program AGENCY: National... proposed Trawl Rationalization Program. We are interested in feedback concerning proposed regulations to... Pacific Fishery Management Council (Council) has been developing a trawl rationalization program that...

  17. 50 CFR 665.620 - PRIA coral reef ecosystem fisheries. [Reserved

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false PRIA coral reef ecosystem fisheries. [Reserved] 665.620 Section 665.620 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... PACIFIC Pacific Remote Island Area Fisheries § 665.620 PRIA coral reef ecosystem fisheries. [Reserved] ...

  18. The Barents Sea, its fisheries and past and present status of radioactive contamination, and its impacts on fisheries

    International Nuclear Information System (INIS)

    Foeyn, L.; Svaeren, I.

    1995-01-01

    For Norway and Russia the fisheries in the Barents Sea is of great importance. When the Chernobyl accident happened, almost two decades had passed without any systematic monitoring of the radioactivity in the Sea. The accident initiated new activity in this field at the Norwegian Institute of Marine Research. In 1990 a programme of sampling sediments, biota and water was started for, in the first hand, determination of radiocesium. The obtained results have shown that the fish resources as such of the Barents Sea have not yet been affected by anthropogenic radioactivity, neither during the nuclear bomb tests in the fifties and sixties, nor during recent years due to accidental releases. The fisheries may, however, be dramatically affected by the fact that the focus of media on radioactive contamination frightens people from eating fish. 11 refs., 1 fig

  19. 78 FR 34310 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Queen Conch Fishery of Puerto...

    Science.gov (United States)

    2013-06-07

    .... 130402313-3499-01] RIN 0648-BD15 Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Queen Conch Fishery of Puerto Rico and the U.S. Virgin Islands; Regulatory Amendment 2 AGENCY: National Marine... the Fishery Management Plan (FMP) for the Queen Conch Resources of Puerto Rico and the U.S. Virgin...

  20. 77 FR 64488 - Magnuson-Stevens Fishery Conservation and Management Act Provisions; Fisheries of the...

    Science.gov (United States)

    2012-10-22

    ... closed to the harvest of surfclams and ocean quahogs since 1990 due to red tide blooms that cause...; Atlantic Surfclam and Ocean Quahog Fishery AGENCY: National Marine Fisheries Service (NMFS), National... portion of the Georges Bank Closed Area to the harvest of Atlantic surfclams and ocean quahogs. The full...

  1. The need for a quality standard for assurance in medical research laboratories

    Directory of Open Access Journals (Sweden)

    S Cohen

    2014-01-01

    Full Text Available The objective of this article is to show the results of a research study conducted to evaluate the need for a quality standard specific for medical research laboratories based on the shortfalls of ISO 15189 when used for this purpose. A qualitative research methodology was used, which comprised of collecting data from 20 well-qualified and experienced medical laboratory personnel by means of interviews based on a framework developed from a literature review. The data were analysed by means of a thematic technique and the results were verified by a team of medical researchers. The seven themes arising from the analyses were inflexibility; ambiguity; unfair requirements; inappropriate focus; inadequacy for research; renewal; and acceptance for accreditation. The results indicated that the ISO 15189 standard in its present content does not totally suit medical research laboratories and shows support for the development of a standard specific for research laboratories.

  2. Laboratory Directed Research and Development FY 1998 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    John Vigil; Kyle Wheeler

    1999-04-01

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  3. Laboratory directed research and development: FY 1997 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  4. Laboratory Directed Research and Development Program FY2016 Annual Summary of Completed Projects

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-30

    ORNL FY 2016 Annual Summary of Laboratory Directed Research and Development Program (LDRD) Completed Projects. The Laboratory Directed Research and Development (LDRD) program at ORNL operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (October 22, 2015), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. The LDRD program funds are obtained through a charge to all Laboratory programs. ORNL reports its status to DOE in March of each year.

  5. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development Program Activities for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-02-25

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R and D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R and D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle; assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five-Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory's LDRD Plan for FY 1994. Project summaries of research in the following areas are included: (1) Advanced Accelerator and Detector Technology; (2) X-ray Techniques for Research in Biological and Physical Science; (3) Nuclear Technology; (4) Materials Science and Technology; (5) Computational Science and Technology; (6) Biological Sciences; (7) Environmental Sciences: (8) Environmental Control and Waste Management Technology; and (9) Novel Concepts in Other Areas.

  6. Energy consumption in the Danish fishery

    DEFF Research Database (Denmark)

    Thrane, Mikkel

    2003-01-01

    Previous studies based on Life Cycle Assessment (LCA) in Denmark and Sweden have shown that the fishery is the environmental "hot spot" in the life cycle of fish products. Within the fishery, fuel consumption is one of the most important factors addressed by LCA. The present study reveals...... that there are great differences in the fuel consumption between fisheries targeting ground or shellfish and those targeting pelagic or industrial fish....

  7. Guidelines for use of fishes in research: revised and expanded

    Science.gov (United States)

    Jenkins, Jill A.; Bart, Henry L.; Bowker, James D.; Bowser, Paul R.; MacMillan, J. Randy; Nickum, John G.; Rachlin, Joseph W.; Rose, James D.; Sorensen, Peter W.; Warkentine, Barbara E.; Whitledge, Greg W.

    2014-01-01

    The Guidelines for the Use of Fishes in Research (2014; 2014 Guidelines), now available through the American fisheries Society (AFS) website and in print from the AFS bookstore, is a resource to aid researchers and regulatory authorities regarding responsible, scientifically valid research on fish and aquatic wildlife. The Guidelines for the Use of Fishes in Field Research (American Society of Ichthyologists and Herpetologists [ASIH] et al. 1987, 1988) emphasized field research and was followed by the 2004 Guidelines including laboratory research topics. Each version of the Guidelines has been jointly endorsed and/or published by the ASIH, the American Institute of Fishery Research Biologists (AIFRB), and AFS--each focusing on the scientific understanding, global conservation, and sustainability of aquatic animals, fisheries, and ecosystems. Changes with time necessitate revisions to make the Guidelines consistent with contemporary practices and scientific literature so to remain relevant as a technical resource. This document provides not only general principles relevant for field and laboratory research endeavors but includes specific requirements for researchers working within the United States and outside of the country. Within the scope of their expertise, the 2014 Uses of Fishers in Research (UFR) Committee members updated and revised sections, resulting in a 90-page 2014 Guidelines having undergone through peer review. As before, topical areas were addressed (see Table of Contents on page 416). Expanded coverage was provided on U.S. and international agencies and programs relevant to research with fishes. The Surgical Procedures and the Marking and Tagging section received special focus by a UFR Subcommittee. Feeds and Feeding and the Administration of Drugs, Biologics and Other Chemicals are just some of the newly added topics. The 2014 Guidelines is user-friendly by way of hyperlinks to external Internet sites, intradocument sections, and tables of

  8. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Altman, Susan J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Biedermann, Laura [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuzio, Stephanie P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rempe, Susan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documents Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.

  9. Laboratory directed research and development annual report. Fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. This report represents Pacific Northwest Laboratory`s (PNL`s) LDRD report for FY 1994. During FY 1994, 161 LDRD projects were selected for support through PNL`s LDRD project selection process. Total funding allocated to these projects was $13.7 million. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our {open_quotes}core competencies.{close_quotes} Currently, PNL`s core competencies have been identified as integrated environmental research; process science and engineering; energy systems development. In this report, the individual summaries of LDRD projects (presented in Section 1.0) are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. Projects within the three core competency areas were approximately 91.4 % of total LDRD project funding at PNL in FY 1994. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. Funding allocated to each of these projects is typically $35K or less. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program, the management process used for the program, and project summaries for each LDRD project.

  10. International Fisheries Management and Recreational Benefits

    DEFF Research Database (Denmark)

    Oinonen, Soile; Grønbæk, Lone; Laukkanen, Marita

    2016-01-01

    This article studies how accounting for the benefits of recreational fisheries affects the formation and stability of an international fisheries agreement (IFA) on the management of Baltic salmon stocks. The interaction between four countries is modelled through a partition function game, under two...... scenarios. In the first scenario, countries take their participation decision for the IFA based only on the net present value of profits from commercial fisheries. In the second scenario, the net present value of the recreational benefits from angling is also considered. The results show that accounting...... for recreational benefits leads to the formation of the grand coalition, whereas only partial cooperation occurs when payoffs are confined to profits from commercial fisheries....

  11. 78 FR 49967 - Magnuson-Stevens Fishery Conservation and Management Act Provisions; Fisheries of the...

    Science.gov (United States)

    2013-08-16

    ..., has been closed to the harvest of surfclams and ocean quahogs since 1990 due to red tide blooms that... surfclams and ocean quahogs since 1990 due to red tide blooms that cause PSP, without resulting in...; Fisheries of the Northeastern United States; Atlantic Surfclam and Ocean Quahog Fishery AGENCY: National...

  12. 77 FR 53164 - Magnuson-Stevens Fishery Conservation and Management Act Provisions; Fisheries of the...

    Science.gov (United States)

    2012-08-31

    ... surfclams and ocean quahogs since 1990 due to red tide blooms that cause paralytic shellfish poisoning (PSP...; Fisheries of the Northeastern United States; Atlantic Surfclam and Ocean Quahog Fishery AGENCY: National... Area to the harvest of Atlantic surfclams and ocean quahogs. The area has been closed since 1990 due to...

  13. Climate Change in U.S. South Atlantic, Gulf of Mexico and Caribbean Fisheries Regions

    Science.gov (United States)

    Roffer, M. A.; Hernandez, D. L.; Lamkin, J. T.; Pugliese, R.; Reichert, M.; Hall, C.

    2016-02-01

    A review of the recent evidence that climate change is affecting marine ecosystems in the U.S. fishery management zones of the South Atlantic, Gulf of Mexico and Caribbean regions will be presented. This will include affects on the living marine resources (including fish, invertebrates, marine mammals and turtles), fisheries, habitat and people. Emphasis will be given on the effects that impact managed species and the likely new challenges that they present to fishery managers. The evidence is being derived from the results of the "Climate Variability and Fisheries Workshop: Setting Research Priorities for the Gulf of Mexico, South Atlantic, and Caribbean Regions," October 26-28, 2015 in St. Petersburg Beach, Florida. Commonalities and regional differences will be presented in terms of how climate variability is likely to impact distribution, catch, catchability, socioeconomics, and management.

  14. Fisheries management under nutrient influence

    DEFF Research Database (Denmark)

    Hammarlund, Cecilia; Nielsen, Max; Waldo, Staffan

    2018-01-01

    A fisheries management model that identifies the economic optimal management of fisheries under the influence of nutrients is presented. The model starts from the idea that growth in fish biomass increases with increasing availability of nutrients owing to higher food availability up to a peak...

  15. The History and Characteristics of the Mobulid Ray Fishery in the Bohol Sea, Philippines.

    Directory of Open Access Journals (Sweden)

    Jo Marie V Acebes

    Full Text Available The fishery for mobulid rays, also known as devil rays, has been practiced in the Bohol Sea for over a century yet very little is known about its history and characteristics. This study provides the first detailed description of the mobulid ray fishery in the Bohol Sea, Philippines. It describes the history and evolution of the fishery from the 19th century to 2013. It characterizes the fishery based on the species targeted, gears used, the organization, catch distribution, processing, monetary value, and the market of its by-products. This paper also analyses the changes that occurred through time, the management of the fishery and the drivers of the fishery. A multi-disciplinary approach was employed by combining ethno-historical research methods and catch landing monitoring in four primary sites within the Bohol Sea. This fishery began as an artisanal fishery using sail and row boats equipped with harpoons and gaff hooks practiced in at least four coastal villages in Bohol, Camiguin and Limasawa. The fishing fleet has decreased since the beginning of the 20th century however, with the motorization of the fishery and shift to the use of gillnets, the extent of the fishing grounds and market of the products have expanded. Four species of mobulid rays are caught in the Bohol Sea: Manta birostris, Mobula japanica, Mobula thurstoni and Mobula tarapacana. A fifth species, targeted by a fishing community off Dinagat as an off-shoot of the Bohol fishery is most likely the Manta alfredi. Currently, the fishery for mobulids is centered in Bohol Province where it has been practiced longest. The monetary value of mobulids in this region has increased and the dependence of fishing communities for their livelihood is significant. The unique characteristics of this fishery and the socio-cultural context within which it operates merits a thorough investigation in order to design the appropriate management strategy.

  16. The History and Characteristics of the Mobulid Ray Fishery in the Bohol Sea, Philippines.

    Science.gov (United States)

    Acebes, Jo Marie V; Tull, Malcolm

    2016-01-01

    The fishery for mobulid rays, also known as devil rays, has been practiced in the Bohol Sea for over a century yet very little is known about its history and characteristics. This study provides the first detailed description of the mobulid ray fishery in the Bohol Sea, Philippines. It describes the history and evolution of the fishery from the 19th century to 2013. It characterizes the fishery based on the species targeted, gears used, the organization, catch distribution, processing, monetary value, and the market of its by-products. This paper also analyses the changes that occurred through time, the management of the fishery and the drivers of the fishery. A multi-disciplinary approach was employed by combining ethno-historical research methods and catch landing monitoring in four primary sites within the Bohol Sea. This fishery began as an artisanal fishery using sail and row boats equipped with harpoons and gaff hooks practiced in at least four coastal villages in Bohol, Camiguin and Limasawa. The fishing fleet has decreased since the beginning of the 20th century however, with the motorization of the fishery and shift to the use of gillnets, the extent of the fishing grounds and market of the products have expanded. Four species of mobulid rays are caught in the Bohol Sea: Manta birostris, Mobula japanica, Mobula thurstoni and Mobula tarapacana. A fifth species, targeted by a fishing community off Dinagat as an off-shoot of the Bohol fishery is most likely the Manta alfredi. Currently, the fishery for mobulids is centered in Bohol Province where it has been practiced longest. The monetary value of mobulids in this region has increased and the dependence of fishing communities for their livelihood is significant. The unique characteristics of this fishery and the socio-cultural context within which it operates merits a thorough investigation in order to design the appropriate management strategy.

  17. 77 FR 66577 - Fisheries Off West Coast States; Pacific Coast Groundfish Fishery; Trawl Rationalization Program...

    Science.gov (United States)

    2012-11-06

    ...-XC165 Fisheries Off West Coast States; Pacific Coast Groundfish Fishery; Trawl Rationalization Program... implemented as part of the trawl rationalization program. FOR FURTHER INFORMATION CONTACT: Jamie Goen, phone..., NMFS implemented a trawl rationalization program, a catch share program, for the Pacific coast...

  18. Open- and closed-formula laboratory animal diets and their importance to research.

    Science.gov (United States)

    Barnard, Dennis E; Lewis, Sherry M; Teter, Beverly B; Thigpen, Julius E

    2009-11-01

    Almost 40 y ago the scientific community was taking actions to control environmental factors that contribute to variation in the responses of laboratory animals to scientific manipulation. Laboratory animal diet was recognized as an important variable. During the 1970s, the American Institute of Nutrition, National Academy of Science, Institute of Laboratory Animal Resources, and Laboratory Animals Centre Diets Advisory Committee supported the use of 'standard reference diets' in biomedical research as a means to improve the ability to replicate research. As a result the AIN76 purified diet was formulated. During this same time, the laboratory animal nutritionist at the NIH was formulating open-formula, natural-ingredient diets to meet the need for standardized laboratory animal diets. Since the development of open-formula diets, fixed-formula and constant-nutrient-concentration closed-formula laboratory animal natural ingredient diets have been introduced to help reduce the potential variation diet can cause in research.

  19. Follow that fish: Uncovering the hidden blue economy in coral reef fisheries.

    Science.gov (United States)

    Grafeld, Shanna; Oleson, Kirsten L L; Teneva, Lida; Kittinger, John N

    2017-01-01

    Despite their importance for human well-being, nearshore fisheries are often data poor, undervalued, and underappreciated in policy and development programs. We assess the value chain for nearshore Hawaiian coral reef fisheries, mapping post-catch distribution and disposition, and quantifying associated monetary, food security, and cultural values. We estimate that the total annual value of the nearshore fishery in Hawai'i is $10.3-$16.4 million, composed of non-commercial ($7.2-$12.9 million) and commercial ($2.97 million licensed + $148,500-$445,500 unlicensed) catch. Hawaii's nearshore fisheries provide >7 million meals annually, with most (>5 million) from the non-commercial sector. Over a third (36%) of meals were planktivores, 26% piscivores, 21% primary consumers, and 18% secondary consumers. Only 62% of licensed commercial catch is accounted for in purchase reports, leaving 38% of landings unreported in sales. Value chains are complex, with major buyers for the commercial fishery including grocery stores (66%), retailers (19%), wholesalers (14%), and restaurants (sharing. A small amount (~37,000kg) of reef fish-the equivalent of 1.8% of local catch-is imported annually into Hawai'i, 23,000kg of which arrives as passenger luggage on commercial flights from Micronesia. Evidence of exports to the US mainland exists, but is unquantifiable given existing data. Hawaiian nearshore fisheries support fundamental cultural values including subsistence, activity, traditional knowledge, and social cohesion. These small-scale coral reef fisheries provide large-scale benefits to the economy, food security, and cultural practices of Hawai'i, underscoring the need for sustainable management. This research highlights the value of information on the value chain for small-scale production systems, making the hidden economy of these fisheries visible and illuminating a range of conservation interventions applicable to Hawai'i and beyond.

  20. Interior Architectural Requirements for Electronic Circuits and its Applications Research Laboratory

    International Nuclear Information System (INIS)

    ElDib, A.A.

    2014-01-01

    This paper discusses the pivotal role of the Interior Architecture As one of the scientific disciplines minute to complete the Architectural Sciences, which relied upon the achievement and development of facilities containing scientific research laboratories, in terms of planning and design, particularly those containing biological laboratories using radioactive materials, adding to that, the application of the materials or raw materials commensurate with each discipline of laboratory and its work nature, and by the discussion the processing of design techniques and requirements of interior architecture dealing with Research Laboratory for electronic circuits and their applications with the making of its prototypes

  1. Critical report of current fisheries management measures implemented for the North Sea mixed demersal fisheries

    DEFF Research Database (Denmark)

    Nielsen, J. Rasmus; Ulrich, Clara; Hegland, Troels J.

    the scientific advice, the development in recent years has been towards this gap being reduced. Management of the fisheries has undergone a number of structural and behavioral changes, and these have already yielded some positive results as the state of the demersal stocks in the North Sea have globally improved......, at least in the prosperous countries around the North Sea, provides only few jobs. Despite the above trends indicating positive effects of the most recent fisheries management of the North Sea mixed demersal fisheries there are a row of general problems in the present management. Population dynamics...... states’ ministers in the Council have exercised strong control over the fisheries management measures which have been developed and adopted on the background of proposals from the Commission and the Parliament, though since the ratification of the Lisbon Treaty the Parliament has assumed a role of co...

  2. Trust and new modes of fisheries governance

    NARCIS (Netherlands)

    Vos, de B.I.

    2011-01-01

    It is a commonplace today that many of the world’s commercial fisheries are in a state of crisis. As a response to the state of fisheries management, a large array of governance innovations has been deployed over the past two decades in many fisheries industries worldwide. In these new

  3. 76 FR 55363 - Pacific Fishery Management Council; Public Meeting

    Science.gov (United States)

    2011-09-07

    ... Pacific Fishery Management Council's (Pacific Council) Groundfish Management Team (GMT) [[Page 55364... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National...; telephone: (206) 526-6150. Council address: Pacific Fishery Management Council, 7700 NE Ambassador Place...

  4. 77 FR 75614 - Pacific Fishery Management Council; Public Meeting

    Science.gov (United States)

    2012-12-21

    ... Pacific Fishery Management Council's (Pacific Council) Highly Migratory Species Management Team (HMSMT... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National.... Council address: Pacific Fishery Management Council, 7700 NE. Ambassador Place, Suite 101, Portland, OR...

  5. FY2007 Laboratory Directed Research and Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Craig, W W; Sketchley, J A; Kotta, P R

    2008-03-20

    The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted from the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

  6. A 50-year research journey. From laboratory to clinic.

    Science.gov (United States)

    Ross, John

    2009-01-01

    Prior important research is not always cited, exemplified by Oswald Avery's pioneering discovery that DNA is the genetic transforming factor; it was not cited by Watson and Crick 10 years later. My first laboratory research (National Institutes of Health 1950s) resulted in the clinical development of transseptal left heart catheterization. Laboratory studies on cardiac muscle mechanics in normal and failing hearts led to the concept of afterload mismatch with limited preload reserve. At the University of California, San Diego in La Jolla (1968) laboratory experiments on coronary artery reperfusion after sustained coronary occlusion showed salvage of myocardial tissue, a potential treatment for acute myocardial infarction proven in clinical trials of thrombolysis 14 years later. Among 60 trainees who worked with me in La Jolla, one-third were Japanese and some of their important laboratory experiments are briefly recounted, beginning with Sasayama, Tomoike and Shirato in the 1970 s. Recently, we developed a method for cardiac gene transfer, and subsequently we showed that gene therapy for the defect in cardiomyopathic hamsters halted the progression of advanced disease. Cardiovascular research and medicine are producing continuing advances in technologies for gene transfer and embryonic stem cell transplantation, targeting of small molecules, and tissue and organ engineering.

  7. Hazardous waste management in research laboratories

    International Nuclear Information System (INIS)

    Sundstrom, G.

    1989-01-01

    Hazardous waste management in research laboratories benefits from a fundamentally different approach to the hazardous waste determination from industry's. This paper introduces new, statue-based criteria for identifying hazardous wastes (such as radiological mixed wastes and waste oils) and links them to a forward-looking compliance of laboratories, the overall system integrates hazardous waste management activities with other environmental and hazard communication initiatives. It is generalizable to other waste generators, including industry. Although only the waste identification and classification aspects of the system are outlined in detail here, four other components are defined or supported, namely: routine and contingency practices; waste treatment/disposal option definition and selection; waste minimization, recycling, reuse, and substitution opportunities; and key interfaces with other systems, including pollution prevention

  8. 76 FR 75488 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Spiny Lobster Fishery of the Gulf...

    Science.gov (United States)

    2011-12-02

    ... Atlantic; Spiny Lobster Fishery of the Gulf of Mexico and South Atlantic; Amendment 10 AGENCY: National... Plan for the Spiny Lobster Fishery of the Gulf of Mexico and South Atlantic (FMP), as prepared and... the lobster species contained within the fishery management unit; establishes an annual catch limit...

  9. 78 FR 64200 - Caribbean Fishery Management Council; Public Meetings

    Science.gov (United States)

    2013-10-28

    ... Caribbean Fishery Management Council's (Council) Scientific and Statistical Committee (SSC) will hold... Fishery Management Council; Public Meetings AGENCY: National Marine Fisheries Service (NMFS), National... held at the Caribbean Fishery Management Council Headquarters, located at 270 Mu[ntilde]oz Rivera...

  10. 75 FR 55745 - Pacific Fishery Management Council; Public Meeting

    Science.gov (United States)

    2010-09-14

    ... Pacific Fishery Management Council's (Pacific Council) Coastal Pelagic Species Management Team (CPSMT) and... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National... sardine stock assessment for 2010. Other issues relevant to Coastal Pelagic Species fisheries management...

  11. 78 FR 77658 - Pacific Fishery Management Council; Public Meeting

    Science.gov (United States)

    2013-12-24

    ... Pacific Fishery Management Council's (Pacific Council) Highly Migratory Species Management Team (HMSMT... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National.... Potential changes to management measures for the west coast drift gillnet fishery. 2. Developments to...

  12. 75 FR 49890 - Pacific Fishery Management Council; Public Meeting

    Science.gov (United States)

    2010-08-16

    ... Pacific Fishery Management Council's (Pacific Council) Coastal Pelagic Species Management Team (CPSMT) and... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National... will be available at the following location: Pacific Fishery Management Council, Small Conference Room...

  13. 75 FR 80470 - Pacific Fishery Management Council; Public Meeting

    Science.gov (United States)

    2010-12-22

    ... Pacific Fishery Management Council's (Council) Groundfish Management Team (GMT) will hold a working... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National.... Council address: Pacific Fishery Management Council, 7700 NE. Ambassador Place, Suite 101, Portland, OR...

  14. Environmental survey at Lucas Heights Research Laboratories, 1993

    International Nuclear Information System (INIS)

    Hoffmann, E.L.; Looz, T.

    1995-04-01

    Results are presented of the environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1993. No activity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne discharges during this period is estimated to be less than 0.01 mSv, which is one per cent of the dose limit for long term exposure that is recommended by the National Health and Medical Research Council. A list of previous environmental survey reports is attached. 22 refs., 21 tabs., 4 figs

  15. 76 FR 14378 - Fisheries of the South Atlantic; South Atlantic Fishery Management Council; Public Meeting

    Science.gov (United States)

    2011-03-16

    ... the South Atlantic; South Atlantic Fishery Management Council; Public Meeting AGENCY: National Marine... the Coastal Migratory Pelagics Fishery Management Plan (FMP) for the South Atlantic and Gulf of Mexico... AP will also review Amendment 19 to the Coastal Migratory Pelagics FMP regarding alternatives for bag...

  16. 76 FR 13297 - Western Pacific Pelagic Fisheries; Hawaii-Based Shallow-set Longline Fishery; Court Order

    Science.gov (United States)

    2011-03-11

    .... 100826393-1171-01] RIN 0648-BA19 Western Pacific Pelagic Fisheries; Hawaii-Based Shallow-set Longline... allowable incidental interactions that may occur between the Hawaii-based shallow-set pelagic longline... to optimize yield from the Hawaii-based pelagic shallow-set longline fishery without jeopardizing the...

  17. 77 FR 60380 - Caribbean Fishery Management Council; Public Meeting

    Science.gov (United States)

    2012-10-03

    ... Caribbean Fishery Management Council's Scientific and Statistical Committee (SSC) will hold meetings. DATES... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National... CONTACT: Caribbean Fishery Management Council, 268 Mu[ntilde]oz Rivera Avenue, Suite 1108, San Juan...

  18. 78 FR 26616 - Pacific Fishery Management Council; Public Meeting

    Science.gov (United States)

    2013-05-07

    ... Pacific Fishery Management Council's (Pacific Council) Groundfish Management Team (GMT) will hold a... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National... number) and use the access code 802-457-985 when prompted. Council address: Pacific Fishery Management...

  19. 75 FR 81971 - Pacific Fishery Management Council; Public Meeting

    Science.gov (United States)

    2010-12-29

    ... Pacific Fishery Management Council's (Council) Highly Migratory Species Management Team (HMSMT) will hold... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National...., Carlsbad, CA 92011; telephone: (760) 431-9440. Council address: Pacific Fishery Management Council, 7700 NE...

  20. 75 FR 33245 - Pacific Fishery Management Council; Public Meeting

    Science.gov (United States)

    2010-06-11

    ... Pacific Fishery Management Council's (Council) Groundfish Management Team (GMT) will hold a working... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National... be held at the Pacific Fishery Management Council office, Large Conference Room, 7700 NE Ambassador...

  1. 77 FR 21972 - Pacific Fishery Management Council; Public Meeting

    Science.gov (United States)

    2012-04-12

    ... Pacific Fishery Management Council's (Council) Highly Migratory Species Management Team (HMSMT) will hold... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National... work sessions will be held at Large Conference Room, Pacific Fishery Management Council Office, 7700 NE...

  2. 77 FR 74469 - Pacific Fishery Management Council; Public Meeting

    Science.gov (United States)

    2012-12-14

    ... Pacific Fishery Management Council's (Pacific Council) Groundfish Management Team (GMT) will hold a week... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National...) 634-2000. Council address: Pacific Fishery Management Council, 7700 NE Ambassador Place, Suite 101...

  3. Fisheries Districts

    Data.gov (United States)

    Vermont Center for Geographic Information — The Fisheries districts data layer is part of a larger dataset that contains administrative boundaries for Vermont's Agency of Natural Resources. The dataset...

  4. Elasmobranch fisheries in the Arabian Seas Region: Characteristics, trade and management

    KAUST Repository

    Jabado, Rima W

    2017-05-23

    The Arabian Seas Region plays an important role in the global landings and trade of sharks and rays. The United Arab Emirates (UAE) and Yemen, two countries with stark socio-economic differences, serve as major regional trade hubs for shark and ray products and four countries (Oman, Pakistan, UAE and Yemen) supply nearly 11% of dried fin exports to Hong Kong. Yet, little information is available on the characteristics of this trade and the fisheries contributing to it. Here, we review the fisheries characteristics, trade, utilization and distribution chain of sharks and rays in 15 countries of the Arabian Seas Region based on published and grey literature, landing surveys, field observations and interviews with fishermen and traders. Although regional shark fisheries remain mostly artisanal, reported shark and ray landings represent 28% of the regional total fish production, reaching 56,074 mt in 2012 (7.3% of total world catches), with Iran, Oman, Pakistan and Yemen ranking as the primary catchers. Utilization and distribution patterns are complex, vary between landing sites and countries, and remain unmonitored. Based on widespread over-exploitation of most teleost fisheries, current exploitation levels for most sharks and rays are potentially unsustainable. The situation is exacerbated by limited research and political will to support policy development, the incomplete nature of fisheries data, as well as insufficient regulations and enforcement. A better understanding of shark and ray fisheries will be key for regulating trade, promoting conservation and developing management initiatives to secure food security, livelihoods and biodiversity conservation in the region.

  5. 77 FR 26069 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-05-02

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board, Notice of Meeting Amendment The... Development and Clinical Science Research and Development Services Scientific Merit Review Board have changed...

  6. 78 FR 45894 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of Puerto Rico...

    Science.gov (United States)

    2013-07-30

    .... 120510052-3615-02] RIN 0648-BC20 Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of Puerto Rico and the U.S. Virgin Islands; Parrotfish Management Measures in St. Croix AGENCY.... Virgin Islands (FMP), as prepared by the Caribbean Fishery Management Council (Council). This rule...

  7. Solar Radiation Research Laboratory | Energy Systems Integration Facility |

    Science.gov (United States)

    Solar Radiation Research Laboratory (SRRL) has been collecting continuous measurements of basic solar continuous operation. More than 75 instruments contribute to the Baseline Measurement System by recording

  8. Nuclear physics and heavy element research at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, Mark A; Ahle, L E; Becker, J A; Bernshein, L A; Bleuel, D L; Burke, J T; Dashdorj, D; Henderson, R A; Hurst, A M; Kenneally, Jacqueline M; Lesher, S R; Moody, K J; Nelson, S L; Norman, E B; Pedretti, M; Scielzo, N D; Shaughnessy, D A; Sheets, S A; Stoeffl, W; Stoyer, N J [Lawrence Livermore National Laboratory, University of California, Livermore (United States)

    2009-12-31

    This paper highlights some of the current basic nuclear physics research at Lawrence Livermore National Laboratory (LLNL). The work at LLNL concentrates on investigating nuclei at the extremes. The Experimental Nuclear Physics Group performs research to improve our understanding of nuclei, nuclear reactions, nuclear decay processes and nuclear astrophysics; an expertise utilized for important laboratory national security programs and for world-class peer-reviewed basic research.

  9. 76 FR 2672 - Caribbean Fishery Management Council; Public Meeting

    Science.gov (United States)

    2011-01-14

    ... Caribbean Fishery Management Council (Council) in partnership with the Fisheries Leadership and... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National... Management of Data Poor Stocks.'' The intent of this workshop is to discuss tools that the region may find...

  10. Research Opportunities at Storm Peak Laboratory

    Science.gov (United States)

    Hallar, A. G.; McCubbin, I. B.

    2006-12-01

    The Desert Research Institute (DRI) operates a high elevation facility, Storm Peak Laboratory (SPL), located on the west summit of Mt. Werner in the Park Range near Steamboat Springs, Colorado at an elevation of 3210 m MSL (Borys and Wetzel, 1997). SPL provides an ideal location for long-term research on the interactions of atmospheric aerosol and gas- phase chemistry with cloud and natural radiation environments. The ridge-top location produces almost daily transition from free tropospheric to boundary layer air which occurs near midday in both summer and winter seasons. Long-term observations at SPL document the role of orographically induced mixing and convection on vertical pollutant transport and dispersion. During winter, SPL is above cloud base 25% of the time, providing a unique capability for studying aerosol-cloud interactions (Borys and Wetzel, 1997). A comprehensive set of continuous aerosol measurements was initiated at SPL in 2002. SPL includes an office-type laboratory room for computer and instrumentation setup with outside air ports and cable access to the roof deck, a cold room for precipitation and cloud rime ice sample handling and ice crystal microphotography, a 150 m2 roof deck area for outside sampling equipment, a full kitchen and two bunk rooms with sleeping space for nine persons. The laboratory is currently well equipped for aerosol and cloud measurements. Particles are sampled from an insulated, 15 cm diameter manifold within approximately 1 m of its horizontal entry point through an outside wall. The 4 m high vertical section outside the building is capped with an inverted can to exclude large particles.

  11. 76 FR 6567 - Pacific Halibut Fisheries; Guided Sport Charter Vessel Fishery for Halibut; Recordkeeping and...

    Science.gov (United States)

    2011-02-07

    ... definition of fishing week. This action is necessary to improve consistency between Federal and State of... to the logbook reporting format. This action is intended to achieve the halibut fishery management goals of the North Pacific Fishery Management Council and to support the conservation and management...

  12. Contested Norms in Inter-National Encounters: The ‘Turbot War’ as a Prelude to Fairer Fisheries Governance

    Directory of Open Access Journals (Sweden)

    Antje Wiener

    2016-08-01

    Full Text Available This article is about contested norms in inter-national encounters in global fisheries governance. It illustrates how norms work by reconstructing the trajectory of the 1995 ‘Turbot War’ as a series of inter-national encounters among diverse sets of Canadian and European stakeholders. By unpacking the contestations and identifying the norms at stake, it is suggested that what began as action at cross-purposes (i.e. each party referring to a different fundamental norm, ultimately holds the potential for fairer fisheries governance. This finding is shown by linking source and settlement of the dispute and identifying the shared concern for the balance between the right to fish and the responsibility for sustainable fisheries. The article develops a framework to elaborate on procedural details including especially the right for stakeholder access to regular contestation. It is organised in four sections: section 1 summarises the argument, section 2 presents the framework of critical norms research, section 3 reconstructs contestations of fisheries norms over the duration of the dispute, and section 4 elaborates on the dispute as a prelude to fairer fisheries governance. The latter is based on a novel conceptual focus on stakeholder access to contestation at the meso-layer of fisheries governance where organising principles are negotiated close to policy and political processes, respectively. The conclusion suggests for future research to pay more attention to the link between the ‘is’ and the ‘ought’ of norms in critical norms research in International Relations theories (IR.

  13. 78 FR 15338 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of Puerto Rico...

    Science.gov (United States)

    2013-03-11

    .... 120510052-3174-01] RIN 0648-BC20 Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of Puerto Rico and the U.S. Virgin Islands; Parrotfish Management Measures in St. Croix AGENCY... Puerto Rico and the U.S. Virgin Islands (FMP), as prepared by the Caribbean Fishery Management Council...

  14. Tensions within an industrial research laboratory: the Philips laboratory's x-ray department between the wars

    NARCIS (Netherlands)

    Boersma, F.K.

    2003-01-01

    Tensions arose in the X-ray department of the Philips research laboratory during the interwar period, caused by the interplay among technological development, organizational culture, and individual behavior. This article traces the efforts of Philips researchers to find a balance between their

  15. AFSC/NMML/CCEP: California Current Ecosystem Program and Cascadia Research Collective: Aerial and small boat line transect data in waters of OR/WA/BC from 1989, 1990, 1991, 1996, 1997, 2002, and 2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Marine Mammal Laboratory (NMML) a division of NOAA's Alaska Fisheries Science Center (Seattle, WA) and Cascadia Research Collective (Olympia, WA)...

  16. Mobile robotics research at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Morse, W.D.

    1998-09-01

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  17. Research laboratories annual report. 1973 and 1974

    International Nuclear Information System (INIS)

    1975-02-01

    This report presents brief summaries of the research carried out at the Israel A.E.C. laboratories during the two years 1973 and 1974 in the following fields: theoretical physics and chemistry, neutron and reactor physics, solid state physics and metallurgy, laser-induced plasma research, nuclear physics and chemistry, radiation chemistry and applications of radiation and radioisotopes, physical and inorganic chemistry, analytical chemistry, health physics, environmental studies, instrumentation and techniques. (B.G.)

  18. The Horonobe Underground Research Laboratory (Tentative name) Project. A program on survey and research performed from earth surface

    International Nuclear Information System (INIS)

    2001-03-01

    The Horonobe Underground Research Laboratory (Tentative name) Project under planning at Horonobe-machi by the Japan Nuclear Cycle Development Institute (JNC) is a research facility on deep underground shown in the Long-term program on research, development and application of nuclear energy (June, 1994)' (LPNE), where some researches on the deep underground targeted at sedimentary rocks are carried out. The plan on The Horonobe Underground Research Laboratory performed at Horonobe-machi' is an about 20 years plan ranging from beginning to finishing of its survey and research, which is carried out by three steps such as 'Survey and research performed from earth surface', 'Survey and research performed under excavation of road', and Survey and research performed by using the road'. The Horonobe Underground Research Laboratory is one of research facilities on deep underground shown its importance in LPNE, and carries out some researches on the deep underground at a target of the sedimentary rocks. And also The Horonobe Underground Research Laboratory confirms some technical reliability and support on stratum disposal shown in the 'Technical reliability on stratum disposal of the high level radioactive wastes. The Second Progress Report of R and D on geological disposal' summarized on November, 1999 by JNC through actual tests and researches at the deep stratum. The obtained results are intended to reflect to disposal business of The Horonobe Underground Research Laboratory and safety regulation and so on performed by the government, together with results of stratum science research, at the Tono Geoscience Center, of geological disposal R and D at the Tokai Works, or of international collaborations. For R and D at the The Horonobe Underground Research Laboratory after 2000, following subjects are shown: 1) Survey technique on long-term stability of geological environment, 2) Survey technique on geological environment, 3) Engineering technique on engineered barrier and

  19. Beyond duplicity and ignorance in global fisheries

    Directory of Open Access Journals (Sweden)

    Daniel Pauly

    2009-06-01

    Full Text Available The three decades following World War II were a period of rapidly increasing fishing effort and landings, but also of spectacular collapses, particularly in small pelagic fish stocks. This is also the period in which a toxic triad of catch underreporting, ignoring scientific advice and blaming the environment emerged as standard response to ongoing fisheries collapses, which became increasingly more frequent, finally engulfing major North Atlantic fisheries. The response to the depletion of traditional fishing grounds was an expansion of North Atlantic (and generally of northern hemisphere fisheries in three dimensions: southward, into deeper waters and into new taxa, i.e. catching and marketing species of fish and invertebrates previously spurned, and usually lower in the food web. This expansion provided many opportunities for mischief, as illustrated by the European Union’s negotiated ‘agreements’ for access to the fish resources of Northwest Africa, China’s agreement-fee exploitation of the same, and Japan blaming the resulting resource declines on the whales. Also, this expansion provided new opportunities for mislabelling seafood unfamiliar to North Americans and Europeans, and misleading consumers, thus reducing the impact of seafood guides and similar effort toward sustainability. With fisheries catches declining, aquaculture—despite all public relation efforts—not being able to pick up the slack, and rapidly increasing fuel prices, structural changes are to be expected in both the fishing industry and the scientific disciplines that study it and influence its governance. Notably, fisheries biology, now predominantly concerned with the welfare of the fishing industry, will have to be converted into fisheries conservation science, whose goal will be to resolve the toxic triad alluded to above, and thus maintain the marine biodiversity and ecosystems that provide existential services to fisheries. Similarly, fisheries

  20. 76 FR 57945 - Fisheries Off West Coast States; West Coast Salmon Fisheries; Notice of Availability for...

    Science.gov (United States)

    2011-09-19

    ... Reauthorization Act (MSRA). These guidelines are intended to prevent and end overfishing and rebuild fisheries through implementation of status determination criteria, overfishing limits, annual catch limits, and... end overfishing and rebuild fisheries. In particular, the revised guidelines provide guidance on...

  1. Laboratory services series: the utilization of scientific glassblowing in a national research and development laboratory

    International Nuclear Information System (INIS)

    Farnham, R.M.; Poole, R.W.

    1976-04-01

    Glassblowing services at a national research and development laboratory provide unique equipment tailored for specific research efforts, small-scale process items for flowsheet demonstrations, and solutions for unusual technical problems such as glass-ceramic unions. Facilities, equipment, and personnel necessary for such services are described

  2. 50 CFR 600.755 - Establishment of a fishery negotiation panel.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Establishment of a fishery negotiation panel. 600.755 Section 600.755 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS Fishery Negotiation Panels § 600.755 Establishment of a...

  3. Laboratory Directed Research and Development Program FY2004

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also

  4. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1989

    International Nuclear Information System (INIS)

    1990-01-01

    This report summerizes the research and educational activities at the Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo. The Laboratory holds four main facilities, which are Yayoi reactor, an electron accelerator, fusion blanket research facility, and heavy ion irradiation research facility. And they are open to the researchers both inside and outside the University. The application of the facilities are described. The activities and achievements of the Laboratory staffs, and theses for graduate, master, and doctor degrees are also summerized. (J.P.N.)

  5. Progress report from the Studsvik Neutron Research Laboratory 1987-89

    International Nuclear Information System (INIS)

    Dahlborg, U.; Ebbsjoe, I.; Holmqvist, B.

    1993-01-01

    The present publication contains information from activities at the Studsvik Neutron Research Laboratory (NFL) and the Department of Neutron Research. NFL is the base for the research activities at the Studvik reactors. It is administrated by the University of Uppsala and is established to facilitate reactor based research. The laboratory is intended to, in co-operation with institutes and departments at universities in Sweden, develop, construct and maintain experimental equipment for this kind of research and to make it available for scientists at Swedish universitites and, if possible, also to scientists outside the universities. The research at the Studsvik facilities has during 1989 been performed by groups from Uppsala University, Royal Institute of Technology in Stockholm, Chalmers Technical University, Gothenburg, and by scientists at NFL. The research program of the groups is divided into three main areas, scattering of thermal neutrons, nuclear chemistry and nuclear physics, and neutron capture radiography. The program for subatomic physics, especially neutron physics, at the Department for Neutron Research, Uppsala University has also staff permanently placed at NFL but they are in their research using the facilities at the The Svedberg Laboratory, Uppsala. In addition to supporting research NFL has also put substantial efforts on creating facilities for training of undergraduate students. Thus a facility for practical exercises in neutron physics, activation analysis and radiography has recently been installed at the R2-0 reactor as a collaboration between NFL, Dept. of Neutron Research, Upppsala and Department for Reactor Physics, KTH

  6. 50 CFR 660.320 - Open access fishery-crossover provisions.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Open access fishery-crossover provisions... West Coast Groundfish-Open Access Fisheries § 660.320 Open access fishery—crossover provisions. (a) Operating in both limited entry and open access fisheries. See provisions at § 660.60, subpart C. (b...

  7. Comparison of microbiological diagnosis of urinary tract infection in young children by routine health service laboratories and a research laboratory: Diagnostic cohort study.

    Directory of Open Access Journals (Sweden)

    Kate Birnie

    Full Text Available To compare the validity of diagnosis of urinary tract infection (UTI through urine culture between samples processed in routine health service laboratories and those processed in a research laboratory.We conducted a prospective diagnostic cohort study in 4808 acutely ill children aged <5 years attending UK primary health care. UTI, defined as pure/predominant growth ≥105 CFU/mL of a uropathogen (the reference standard, was diagnosed at routine health service laboratories and a central research laboratory by culture of urine samples. We calculated areas under the receiver-operator curve (AUC for UTI predicted by pre-specified symptoms, signs and dipstick test results (the "index test", separately according to whether samples were obtained by clean catch or nappy (diaper pads.251 (5.2% and 88 (1.8% children were classified as UTI positive by health service and research laboratories respectively. Agreement between laboratories was moderate (kappa = 0.36; 95% confidence interval [CI] 0.29, 0.43, and better for clean catch (0.54; 0.45, 0.63 than nappy pad samples (0.20; 0.12, 0.28. In clean catch samples, the AUC was lower for health service laboratories (AUC = 0.75; 95% CI 0.69, 0.80 than the research laboratory (0.86; 0.79, 0.92. Values of AUC were lower in nappy pad samples (0.65 [0.61, 0.70] and 0.79 [0.70, 0.88] for health service and research laboratory positivity, respectively than clean catch samples.The agreement of microbiological diagnosis of UTI comparing routine health service laboratories with a research laboratory was moderate for clean catch samples and poor for nappy pad samples and reliability is lower for nappy pad than for clean catch samples. Positive results from the research laboratory appear more likely to reflect real UTIs than those from routine health service laboratories, many of which (particularly from nappy pad samples could be due to contamination. Health service laboratories should consider adopting procedures used

  8. Comparison of microbiological diagnosis of urinary tract infection in young children by routine health service laboratories and a research laboratory: Diagnostic cohort study

    Science.gov (United States)

    Birnie, Kate; Hay, Alastair D.; Wootton, Mandy; Howe, Robin; MacGowan, Alasdair; Whiting, Penny; Lawton, Michael; Delaney, Brendan; Downing, Harriet; Dudley, Jan; Hollingworth, William; Lisles, Catherine; Little, Paul; O’Brien, Kathryn; Pickles, Timothy; Rumsby, Kate; Thomas-Jones, Emma; Van der Voort, Judith; Waldron, Cherry-Ann; Harman, Kim; Hood, Kerenza; Butler, Christopher C.; Sterne, Jonathan A. C.

    2017-01-01

    Objectives To compare the validity of diagnosis of urinary tract infection (UTI) through urine culture between samples processed in routine health service laboratories and those processed in a research laboratory. Population and methods We conducted a prospective diagnostic cohort study in 4808 acutely ill children aged <5 years attending UK primary health care. UTI, defined as pure/predominant growth ≥105 CFU/mL of a uropathogen (the reference standard), was diagnosed at routine health service laboratories and a central research laboratory by culture of urine samples. We calculated areas under the receiver-operator curve (AUC) for UTI predicted by pre-specified symptoms, signs and dipstick test results (the “index test”), separately according to whether samples were obtained by clean catch or nappy (diaper) pads. Results 251 (5.2%) and 88 (1.8%) children were classified as UTI positive by health service and research laboratories respectively. Agreement between laboratories was moderate (kappa = 0.36; 95% confidence interval [CI] 0.29, 0.43), and better for clean catch (0.54; 0.45, 0.63) than nappy pad samples (0.20; 0.12, 0.28). In clean catch samples, the AUC was lower for health service laboratories (AUC = 0.75; 95% CI 0.69, 0.80) than the research laboratory (0.86; 0.79, 0.92). Values of AUC were lower in nappy pad samples (0.65 [0.61, 0.70] and 0.79 [0.70, 0.88] for health service and research laboratory positivity, respectively) than clean catch samples. Conclusions The agreement of microbiological diagnosis of UTI comparing routine health service laboratories with a research laboratory was moderate for clean catch samples and poor for nappy pad samples and reliability is lower for nappy pad than for clean catch samples. Positive results from the research laboratory appear more likely to reflect real UTIs than those from routine health service laboratories, many of which (particularly from nappy pad samples) could be due to contamination. Health service

  9. Adverse reproduction outcomes among employees working in biomedical research laboratories

    DEFF Research Database (Denmark)

    Wennborg, H.; Bonde, Jens Peter; Stenbeck, M.

    2002-01-01

    Objectives The aim of the study was to investigate reproductive outcomes such as birthweight, preterm births, and postterm births among women working in research laboratories while pregnant. Methods Female university personnel were identified from a source cohort of Swedish laboratory employees...

  10. The sceptical optimist: challenges and perspectives for the application of environmental DNA in marine fisheries

    DEFF Research Database (Denmark)

    Hansen, Brian Klitgaard; Bekkevold, Dorte; Worsøe Clausen, Lotte

    2018-01-01

    principles in relation to eDNA analysis with potential for marine fisheries application. We describe fundamental processes governing eDNA generation, breakdown and transport and summarize current uncertainties about these processes. We describe five major challenges in relation to application in fisheries......Application of environmental DNA (eDNA) analysis has attracted the attention of researchers, advisors and managers of living marine resources and biodiversity. The apparent simplicity and cost-effectiveness of eDNA analysis make it highly attractive as species distributions can be revealed from...... assessment, where there is immediate need for knowledge building in marine systems, and point to apparent weaknesses of eDNA compared to established marine fisheries monitoring methods. We provide an overview of emerging applications of interest to fisheries management and point to recent technological...

  11. The waste management at research laboratories - problems and solutions

    International Nuclear Information System (INIS)

    Dellamano, Jose Claudio; Vicente, Roberto

    2011-01-01

    The radioactive management in radioactive installations must be planned and controlled. However, in the case of research laboratories, that management is compromised due to the common use of materials and installations, the lack of trained personnel and the nonexistence of clear and objective orientations by the regulator organism. Such failures cause an increasing of generated radioactive wastes and the imprecision or nonexistence of record of radioactive substances, occasioning a financial wastage, and the cancelling of licences for use of radioactive substances. This paper discusses and proposes solutions for the problems found at radioactive waste management in research laboratories

  12. Environmental survey at the Lucas Heights Research Laboratories. 1983

    International Nuclear Information System (INIS)

    Giles, M.S.; Dudaitis, A.

    1985-12-01

    Results are presented of the environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1983. These results are satisfactory. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne waste discharges during this period is estimated to be less than 0.01 millisieverts, which is 1 per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council

  13. Progress report from the Studsvik Neutron Research Laboratory 1990-91

    International Nuclear Information System (INIS)

    Dahlborg, U.; Ebbsjoe, I.; Holmqvist, B.

    1992-01-01

    The Studsvik Neutron Research Laboratory (NFL) is the base for the research activities at the Studsvik reactors. It is administrated by the University of Uppsala and is established to facilitate reactor based research. The laboratory is intended to, in co-operation with institutes and department at universities in Sweden, develop, construct and maintain experimental equipment for this kind of research and to make it available for scientists at Swedish universities and, if possible, also to scientists outside the universities. The research at the Studsvik facilities has during 1990 and 1991 been performed by groups form Uppsala University, Royal Institute of Technology, Stockholm, Chalmers Technical University, Gothenburg, and by scientists at NFL. The research programme of the groups is divided into three main areas, scattering of thermal neutrons, nuclear chemistry/nuclear physics, and neutron capture radiography

  14. Fisheries Exploitation by Albatross Quantified With Lipid Analysis

    Directory of Open Access Journals (Sweden)

    Melinda G. Conners

    2018-04-01

    Full Text Available Mortality from incidental bycatch in longline fishery operations is a global threat to seabird populations, and especially so for the albatross family (Diomedeidae in which 15 out of 22 species are threatened with extinction. Despite the risks, fisheries remain attractive to many species of seabird by providing access to high-energy foods in the form of discarded fish and offal, target fish, and baited hooks. Current policy regarding fisheries management is increasingly aimed at discard reform, exemplified by a discard ban initiated in the European Union Common Fisheries Policy in 2014. While there is global agreement on the importance of minimizing the waste inherent in bycatch and discards, there is also growing concern that there is a need to understand the extent to which marine animals rely on fisheries-associated resources, especially at the colony and individual levels. We used a novel adaptation of quantitative fatty acid signature analysis (QFASA to quantify fisheries-associated prey in the diet of two threatened North Pacific albatross species. Diet was estimated with QFASA using multiple lipid classes from stomach oil collected from incubating and chick-brooding Laysan and black-footed albatrosses across three breeding seasons. Prey-specific error was estimated by comparing QFASA estimated diets from known “simulated” diets, which informed the level of precaution appropriate when interpreting model results. Fisheries-associated diet occurred in both albatross species across both the incubation and chick-brood stages; however, neither species relied on fisheries food as the dominant food source (consisting of <10% of the total pooled proportional diet in each species. While total diet proportion was low, the incidence of fisheries-associated resources in albatross diets was highest in the 2009–2010 breeding season when there was a strong central Pacific El Niño. Additionally, the diets of a few individuals consisted almost

  15. The problems in the formation of the habitat of fisheries

    Directory of Open Access Journals (Sweden)

    Agarkov S. A.

    2017-09-01

    Full Text Available Habitat as a combination of political, economic, social and environmental conditions of human activity plays an important role in raising productivity and efficiency of the national economy. On the basis of actual data the essence of problems of formation and management of the fishery complex habitat has been revealed. The authors consider the working conditions of the crews of fishing vessels as an important component of habitat, the influence of climatic conditions and inadequate social infrastructure on turnover of out-migration from the northern regions, the low level of training that generally has a negative impact on results of the fishing industry activity. The state government fishery development programme does not contain measures to shape habitats: improving the quality of life of fishermen and their families, promoting social and environmental infrastructure. On the basis of researches some practical recommendations allowing solve the problems in formation and development of the fishery habitat have been proposed. There are the following recommendations: improving the working conditions of the crews of fishing vessels, economically advantageous working conditions for shipowners, efforts to combat poaching, training of highly qualified personnel, the development of programme of staff motivation and its interest in the work on the internal market, the development of social programmes for the protection of seafarers and their families. For successful implementation of all measures to increase the competitiveness of fisheries of Russia on the international market it is necessary to improve the quality and effectiveness of the system of fisheries complex management, including its socio-ecological-economic habitat

  16. 76 FR 45742 - Fisheries of the Northeastern United States; Atlantic Mackerel, Squid, and Butterfish Fisheries...

    Science.gov (United States)

    2011-08-01

    ... mackerel; an update to essential fish habitat (EFH) designations for all life stages of mackerel, Loligo... limited access fisheries; Establish a 10-percent maximum volumetric fish hold upgrade for Tier 1 and Tier... fishery that occurs prior to June 1, vessels issued a mackerel permit may not fish for, possess, or land...

  17. Laboratory Directed Research and Development Program FY 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hansen (Ed.), Todd

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

  18. 77 FR 52 - Fisheries of the Northeastern United States; Atlantic Sea Scallop Fishery; Framework Adjustment 23

    Science.gov (United States)

    2012-01-03

    ... Fishery Management Plan, which was developed and adopted by the New England Fishery Management Council and... limited access general category Northern Gulf of Maine management program; and modify the scallop vessel monitoring system trip notification procedures to improve flexibility for the scallop fleet. DATES: Comments...

  19. Laboratory directed research and development FY98 annual report; TOPICAL

    International Nuclear Information System (INIS)

    Al-Ayat, R; Holzrichter, J

    1999-01-01

    In 1984, Congress and the Department of Energy (DOE) established the Laboratory Directed Research and Development (LDRD) Program to enable the director of a national laboratory to foster and expedite innovative research and development (R and D) in mission areas. The Lawrence Livermore National Laboratory (LLNL) continually examines these mission areas through strategic planning and shapes the LDRD Program to meet its long-term vision. The goal of the LDRD Program is to spur development of new scientific and technical capabilities that enable LLNL to respond to the challenges within its evolving mission areas. In addition, the LDRD Program provides LLNL with the flexibility to nurture and enrich essential scientific and technical competencies and enables the Laboratory to attract the most qualified scientists and engineers. The FY98 LDRD portfolio described in this annual report has been carefully structured to continue the tradition of vigorously supporting DOE and LLNL strategic vision and evolving mission areas. The projects selected for LDRD funding undergo stringent review and selection processes, which emphasize strategic relevance and require technical peer reviews of proposals by external and internal experts. These FY98 projects emphasize the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs

  20. Migratory Fishes of South America : Biology, Fisheries, and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Migratory Fishes of South America : Biology, Fisheries, and Conservation Status. Couverture du livre Migratory Fishes of South America : Biology, Fisheries, and Conservation Status. Directeur(s) : Joachim Carolsfield, Brian Harvey, Carmen Ross et Anton Baer. Maison(s) d'édition : World Fisheries Trust, Banque mondiale, ...

  1. New perspectives in small-scale fisheries management: challenges ...

    African Journals Online (AJOL)

    This is in response to the recognition that conventional fisheries management is not equipped to deal with the complexities, uncertainties and challenges prevalent in small-scale fishery systems. Consequently, a new fisheries paradigm is emerging based on the principles and ideas underpinning systems thinking, ...

  2. Rapid recovery of Dungeness crab within spatial fishery closures declared under indigenous law in British Columbia

    Directory of Open Access Journals (Sweden)

    Alejandro Frid

    2016-04-01

    Full Text Available Canada’s constitution grants indigenous people priority access to marine resources, yet indigenous, commercial and recreational fishers target the same species. Avoiding conflict between different users, therefore, requires evidence-based policies that manage fisheries for conservation while respecting indigenous rights. From 2006 to 2015, Canada’s Conservative government demoted the role of science in resource management, stifling research by federal agencies like Fisheries and Oceans Canada. To address ensuing data gaps, during 2014–2015 the Heiltsuk, Kitasoo/Xai’Xais, Nuxalk, and Wuikinuxv First Nations conducted coordinated research on Dungeness crab (Cancer magister, a culturally-significant resource. These indigenous groups are experiencing declining catch rates of Dungeness crab and postulate that commercial and recreational fisheries are primary causes of local declines. Accordingly, they applied indigenous laws and declared spatial fishery closures for commercial and recreational fishers at 10 sites (closed while allowing exploitation by all users to continue at 10 other sites (open. Sampling occurred repeatedly over time and analyses compared temporal trends in population characteristics between closed and open sites. Results were consistent with the hypothesis that fisheries decrease the abundance and size of exploited species, but spatial protection can reverse these effects. The body size and catch-per-unit effort of legal-sized males increased over time at closed sites but declined at open sites. Importantly, fishery status did not affect temporal changes in the relative abundance of unfished classes of crab–sublegal males and females–which is logically consistent with the hypothesis. Our study demonstrates that indigenous governance can create spatial closures for conservation and research when Canada’s government fails to do so. Long-term solutions, however, require collaboration in research and management between

  3. Guidelines for Biosafety Training Programs for Workers Assigned to BSL-3 Research Laboratories.

    Science.gov (United States)

    Homer, Lesley C; Alderman, T Scott; Blair, Heather Ann; Brocard, Anne-Sophie; Broussard, Elaine E; Ellis, Robert P; Frerotte, Jay; Low, Eleanor W; McCarthy, Travis R; McCormick, Jessica M; Newton, JeT'Aime M; Rogers, Francine C; Schlimgen, Ryan; Stabenow, Jennifer M; Stedman, Diann; Warfield, Cheryl; Ntiforo, Corrie A; Whetstone, Carol T; Zimmerman, Domenica; Barkley, Emmett

    2013-03-01

    The Guidelines for Biosafety Training Programs for Workers Assigned to BSL-3 Research Laboratories were developed by biosafety professionals who oversee training programs for the 2 national biocontainment laboratories (NBLs) and the 13 regional biocontainment laboratories (RBLs) that participate in the National Institute of Allergy and Infectious Diseases (NIAID) NBL/RBL Network. These guidelines provide a general training framework for biosafety level 3 (BSL-3) high-containment laboratories, identify key training concepts, and outline training methodologies designed to standardize base knowledge, understanding, and technical competence of laboratory personnel working in high-containment laboratories. Emphasis is placed on building a culture of risk assessment-based safety through competency training designed to enhance understanding and recognition of potential biological hazards as well as methods for controlling these hazards. These guidelines may be of value to other institutions and academic research laboratories that are developing biosafety training programs for BSL-3 research.

  4. Monitoring system of the Tritium Research Laboratory, Sandia Laboratories, Livermore, CA

    International Nuclear Information System (INIS)

    Wall, W.R.; Hafner, R.S.; Westfall, D.L.; Ristau, R.D.

    1978-11-01

    Automated tritium monitoring is now in use at the Tritium Research Laboratory (TRL). Betatec 100 tritium monitors, along with several Sandia-designed accessories, have been combined with a PDP 11/40 computer to automatically read and record tritium concentrations of room air, containment, and cleanup systems. Each individual monitoring system, in addition to a local display in the area of interest, has a visible/audible display in the control room. Each system is then channeled into the PDP 11/40 computer, providing immediate assessment of the status of the entire laboratory from a central location. Measurement capability ranges from μCi/m 3 levels for room air monitoring to kCi/m 3 levels for glove box and cleanup systems monitoring. In this report the overall monitoring system and its capabilities are discussed, with detailed descriptions given of monitors and their components

  5. Field and laboratory notes on development of a PIT-tag system for spillways - Research and Development of New Marking and Monitoring Technologies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project addresses how to expand the current fish-tracking technologies to enable the fisheries community to successfully carry out the actions, research, and...

  6. 78 FR 23539 - National Marine Fisheries Service, Pacific Fishery Management Council (Pacific Council); May 6...

    Science.gov (United States)

    2013-04-19

    ..., including: budget issues, CCC meeting protocols, Managing Our Nation's Fisheries 3 (MONF3) conference...: The meeting will be held at the Mayflower Renaissance Hotel, 1127 Connecticut Avenue NW., Washington... Fisheries III Conference 12 p.m.-1:30 p.m. Lunch 1:30-4 p.m. CCC Meeting Guidance Budget Issues 4-5 p.m. The...

  7. 75 FR 21512 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Science.gov (United States)

    2010-04-26

    ...: NMFS issues this final rule to implement Amendment 31 to the Fishery Management Plan for the Reef Fish Resources of the Gulf of Mexico (FMP) prepared by the Gulf of Mexico Fishery Management Council (Council... operation of the bottom longline component of the reef fish fishery in the eastern Gulf while maintaining...

  8. Space Station life science research facility - The vivarium/laboratory

    Science.gov (United States)

    Hilchey, J. D.; Arno, R. D.

    1985-01-01

    Research opportunities possible with the Space Station are discussed. The objective of the research program will be study gravity relationships for animal and plant species. The equipment necessary for space experiments including vivarium facilities are described. The cost of the development of research facilities such as the vivarium/laboratory and a bioresearch centrifuge is examined.

  9. Pacific Northwest Laboratory: Director`s overview of research performed for DOE Office of Health And Environmental Research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    A significant portion of the research undertaken at Pacific Northwest Laboratory (PNL) is focused on the strategic programs of the US Department of Energy`s (DOE) Office of Health and Environmental Research (OHER). These programs, which include Environmental Processes (Subsurface Science, Ecosystem Function and Response, and Atmospheric Chemistry), Global Change (Climate Change, Environmental Vulnerability, and Integrated Assessments), Biotechnology (Human Genome and Structural Biology), and Health (Health Effects and Medical Applications), have been established by OHER to support DOE business areas in science and technology and environmental quality. PNL uses a set of critical capabilities based on the Laboratory`s research facilities and the scientific and technological expertise of its staff to help OHER achieve its programmatic research goals. Integration of these capabilities across the Laboratory enables PNL to assemble multidisciplinary research teams that are highly effective in addressing the complex scientific and technical issues associated with OHER-sponsored research. PNL research efforts increasingly are focused on complex environmental and health problems that require multidisciplinary teams to address the multitude of time and spatial scales found in health and environmental research. PNL is currently engaged in research in the following areas for these OHER Divisions: Environmental Sciences -- atmospheric radiation monitoring, climate modeling, carbon cycle, atmospheric chemistry, ecological research, subsurface sciences, bioremediation, and environmental molecular sciences; Health Effects and Life Sciences -- cell/molecular biology, and biotechnology; Medical Applications and Biophysical Research -- analytical technology, and radiological and chemical physics. PNL`s contributions to OHER strategic research programs are described in this report.

  10. 76 FR 23940 - Fisheries of the Northeastern United States; Atlantic Sea Scallop Fishery; Framework Adjustment 22

    Science.gov (United States)

    2011-04-29

    ... the LA fleet, Amendment 15 proposes a management uncertainty buffer based on the F associated with a... to implement Framework Adjustment 22 (Framework 22) to the Atlantic Sea Scallop Fishery Management Plan (FMP), which was developed and adopted by the New England Fishery Management Council (Council) and...

  11. 77 FR 20728 - Fisheries of the Northeastern United States; Atlantic Sea Scallop Fishery; Framework Adjustment 23

    Science.gov (United States)

    2012-04-06

    ... to the proposed rule from: A representative from Nordic Fisheries, a family-owned company that runs... Nordic Fisheries generally supports the proposed measures in Framework 23, but commented that the final... regulatory language describing the TDD requirement. However, FSF continue to note their opinion that the TDD...

  12. CROATIAN FISHERY IN 2003 YEAR

    Directory of Open Access Journals (Sweden)

    Irena Jahutka

    2004-12-01

    Full Text Available This work deals with the analysis and sublimation of all the relevant informations regarding fisheries in Republic of Croatia. This means that there were processed data about freshwater fisheries (farming of freshwater fish and other aquatic organisms, commercial and sports fisheries, marine fisheries (mariculture, commercial fisheries, small–scale fisheries and processing of fish products, import and export of fish and fish products as well as the financial subventions regarding fisheries. The farming of freshwater fish in 2003 is marked by the decrease of production comparing to the past 5 years. Carp is furthermore the most dominant fish species in freshwater fish farming, but it’s percentage is decreasing, and the percentage of the trout is increasing over the years. In addition to the decrease of production, the areas of production are decreasing as well, and now they are the smallest in the past decade — 6,281.97 ha. In 2003 the amount of used food is also decreased, but the amount of used fertilizers and lime is increased, that means it is the biggest in the past decade. This is caused by the bad climate conditions during the summer. Marine fisheries farming (mariculture in 2003 is in a slightly better position then the freshwater fish farming. The production of white fish species, which was reached before few years, is not changing — 2,510 tons, also the farming of oysters is stagnating, but in the past few years the farming of mussels and tuna fish is increasing. The total marine fish catch is 29,102 tons and it is performed over 34,000 km2, comparing to the 2002 it is increased by almost 49.24%. Additional to the increase of the total catch the number of commercial fishermen and fishing vessels is also increased. The number of fisherman which fish for their own consumption without the right to sell fish, that means the small–scale fishermen in 2003 is 13,500. The production of fish and fish products in 2003 is 19,000 tons

  13. Eighteenth annual risk reduction engineering laboratory research symposium

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The Eighteenth Annual Risk Reduction Engineering Laboratory Research Symposium was held in Cincinnati, Ohio, April 14-16, 1992. The purpose of this Symposium was to present the latest significant research findings from ongoing and recently completed projects funded by the Risk Reduction Engineering Laboratory (RREL). These Proceedings are organized into two sections. Sessions A and B, which contain extended abstracts of the paper presentations. A list of poster displays is also included. Subjects include remedial action, treatment, and control technologies for waste disposal, landfill liner and cover systems, underground storage tanks, and demonstration and development of innovative/alternative treatment technologies for hazardous waste. Alternative technology subjects include thermal destruction of hazardous wastes, field evaluations, existing treatment options, emerging treatment processes, waste minimization, and biosystems for hazardous waste destruction

  14. A trans-ecosystem fishery: Environmental effects on the small-scale gillnet fishery along the Río de la Plata boundary

    Science.gov (United States)

    Jaureguizar, Andrés Javier; Cortés, Federico; Milessi, Andrés Conrado; Cozzolino, Ezequiel; Allega, Lucrecia

    2015-12-01

    To improve the understanding of the environmental processes affecting small-scale gillnet fisheries along neighboring waters of estuaries, we analyzed the main climatic forcing and the environmental conditions, the fishery landing spatial and temporal variation, including the relative importance of site, distance to coast, temperature and salinity in the structuring of landed species profile. Data were collected monthly in two sites along the adjacent south coast of the Río de la Plata between October 2009 and September 2010. The gillnet fishery was dominated by four species (Cynoscion guatucupa, Micropogonias furnieri, Mustelus schmitti and Parona signata) from a total of 38 species landed, which accounted for 98.6% of total landings. The fishing effort and landings by the fishery were largely conditioned by the availability of fish species in the fishing grounds resulting from the combination of the species reproductive behavior and the predominant environmental conditions. The highest abundances for some species occurred before (M. furnieri, C. guatucupa, P. signata) or during the reproductive period (M. schmitti, Squatina guggenheim), while in other species it was associated with favorable environmental conditions during cold months (Squalus acanthias, Callorhinchus callorhynchus, Galeorhinus galeus) or warm months (Trichiurus lepturus). The predominant seasonal environmental conditions along the coast were mainly determined by the location of Río de la Plata boundary, whose spatial extent was forced by the wind patterns and freshwater discharge. The strong environmental dependence means that the small-scale fishery is in fact a seasonal trans-ecosystem fishery. This attribute, together that shared the resources with the industrial fishery and the overlap of the fishery ground with essential habitat of sharks, make this kind of small-scale gillnet fishery particularly relevant to be included in the development of a coastal ecosystem-based management approach.

  15. Global Impact | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Through its direct support of clinical research, Frederick National Laboratory activities are not limited to national programs. The labis actively involved in more than 400 domestic and international studies related to cancer; influenza, HIV, E

  16. 76 FR 68719 - Mid-Atlantic Fishery Management Council; Public Meeting

    Science.gov (United States)

    2011-11-07

    ... Mid-Atlantic Fishery Management Council's (Council) Scientific and Statistical Committee (SSC) will... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National....org . Council address: Mid-Atlantic Fishery Management Council, 800 North State Street, Suite 201...

  17. Four cases on market orientation of value chains in agribusiness and fisheries

    DEFF Research Database (Denmark)

    Grunert, Klaus G.; Jeppesen, Lisbeth Fruensgaard; Jespersen, Kristina Risom

    2004-01-01

    is the 'long' version of the empirical work in the first major phase of the project, where we study four examples of food value chains to get insight into their degree of market orientation and possible determinants. The insights gained here have been used in subsequent empirical work that is currently......This working paper presents results from the project 'Supra-company level determinants of degree of market orientation of value chains in agriculture and fisheries', which is carried out in cooperation between MAPP - Centre for Research on Customer Relations in the Food Sector, Aarhus School...... of Business, Denmark, the Norwegian College of Fisheries Science, University of Tromsø, Norway, and the Department of Marketing, University of Stirling, Scotland. It has benefited from grants from the Danish Social Science Research Council and from the Norwegian Research Council. The present working paper...

  18. Maintaining the competitiveness of the American fisheries society journals: an assessment based on influence and cost-effectiveness

    Science.gov (United States)

    Hewitt, David A.; Link, Jason S.; Steinich, Dave R.; Wahl, David H.; Mather, Martha E.

    2009-01-01

    Recent changes in the landscape of scientific publishing prompted the Publications Overview Committee of the American Fisheries Society (AFS) to review the Society's portfolio of scientific journals. We evaluated journals based on metrics in two categories: (1) citation-based measures of the influence of a journal on the scientific literature, and (2) measures of the cost-effectiveness of a journal (citation rate adjusted for subscription cost). Over the long-term, we found that ecology journals had far stronger citation-based influence than fisheries and aquatic sciences journals, and that journals publishing primarily basic research had stronger influence than journals publishing applied research (including four AFS journals and Fisheries magazine). In evaluating the current status of fisheries and aquatic sciences journals, we found that metrics of influence and cost-effectiveness provided considerably different portrayals of journals relative to their peers. In terms of citation-based influence, we found that the AFS journal Transactions of the American Fisheries Society (TAFS) and Fisheries magazine were competitive with highly regarded peer fisheries journals, but that North American Journal of Aquaculture (NAJA) and Journal of Aquatic Animal Health (JAAH) were less influential than their peers. The citation-based influence of North American Journal of Fisheries Management (NAJFM) was intermediate between TAFS/Fisheries and NAJA/JAAH. For journals like NAJFM and NAJA, we expect that much of the scientific influence on policy and management is not captured by citations in the primary literature, and alternative methods of evaluation may be needed. All of the AFS journals ranked highly with regard to cost-effectiveness because their subscription costs are low, and these rankings are in accordance with membership needs and the strategic mission of AFS to provide broad and timely dissemination of scientific information. We conclude by suggesting

  19. Development of a Research-Oriented Inorganic Chemistry Laboratory Course

    Science.gov (United States)

    Vallarino, L. M.; Polo, D. L.; Esperdy, K.

    2001-02-01

    We report the development of a research-oriented, senior-level laboratory course in inorganic chemistry, which is a requirement for chemistry majors who plan to receive the ACS-approved Bachelor of Science degree and is a recommended elective for other chemistry majors. The objective of this course is to give all students the advantage of a research experience in which questions stemming from the literature lead to the formulation of hypotheses, and answers are sought through experiment. The one-semester Inorganic Chemistry Laboratory is ideal for this purpose, since for most students it represents the last laboratory experience before graduation and can assume the role of "capstone" course--a course where students are challenged to recall previously learned concepts and skills and put them into practice in the performance of an individual, original research project. The medium chosen for this teaching approach is coordination chemistry, a branch of chemistry that involves the interaction of inorganic and organic compounds and requires the use of various synthetic and analytical methods. This paper presents an outline of the course organization and requirements, examples of activities performed by the students, and a critical evaluation of the first five years' experience.

  20. 78 FR 23708 - List of Fisheries for 2013

    Science.gov (United States)

    2013-04-22

    .... 121024581-3333-01] RIN 0648-BC71 List of Fisheries for 2013 AGENCY: National Marine Fisheries Service (NMFS....S. Atlantic Ocean, Caribbean, Gulf of Mexico large pelagics longline vessels operating in special..., through state agencies, or through the fishery summary documents available on the NMFS Office of Protected...

  1. Laboratory Directed Research and Development Program. FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory`s core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology. (GHH)

  2. 77 FR 51968 - Mid-Atlantic Fishery Management Council; Public Meeting

    Science.gov (United States)

    2012-08-28

    ... Mid-Atlantic Fishery Management Council's (Council) Scientific and Statistical Committee (SSC) will... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National....mafmc.org . Council address: Mid-Atlantic Fishery Management Council, 800 North State Street, Suite 201...

  3. 75 FR 8673 - Mid-Atlantic Fishery Management Council; Public Meeting

    Science.gov (United States)

    2010-02-25

    ... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National... Mid-Atlantic Fishery Management Council (Council) will conduct an educational workshop on catch shares in cooperation with the Fisheries Leadership and Sustainability Forum (FLSF), the Atlantic States...

  4. Monitoring fisheries in data-limited situations : a case study of the artisanal reef fisheries of Eritrea

    NARCIS (Netherlands)

    Tsehaye, I.W.

    2007-01-01

    Elucidating trends in catch rate and composition is important to evaluate the impact of fishing on fish stocks, and thereby guide fisheries management action. Since major changes in fish community structure can take place even at the initial stages in the development of fisheries, the onset of reef

  5. Laboratory Directed Research and Development Program Assessment for FY 2014

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-03-01

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report fulfills that requirement.

  6. The monitoring system of the Tritium Research Laboratory, Sandia Laboratories, Livermore, California

    International Nuclear Information System (INIS)

    Hafner, R.S.; Westfall, D.L.; Ristau, R.D.

    1978-01-01

    Computerized tritium monitoring is now in use at the Tritium Research Laboratory (TRL). Betatec 100 tritium monitors, along with several Sandia designed accessories, have been combined with a PDP 11/40 computer to provide maximum personnel and environmental protection. Each individual monitoring system, in addition to a local display in the area of interest, has a visual/audible display in the control room. Each system is then channeled into the PDP 11/40 computer, providing immediate assessment of the status of the entire laboratory from a central location. Measurement capability ranges from uCi/m 3 levels for room air monitoring to KCi/m 3 levels for glove box and process system monitoring. The overall monitoring system and its capabilities will be presented

  7. The Los Alamos Scientific Laboratory - An Isolated Nuclear Research Establishment

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Norris E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-23

    Early in his twenty-five year career as the Director of the Los Alamos Scientific Laboratory, Norris Bradbury wrote at length about the atomic bomb and the many implications the bomb might have on the world. His themes were both technical and philosophical. In 1963, after nearly twenty years of leading the nation’s first nuclear weapons laboratory, Bradbury took the opportunity to broaden his writing. In a paper delivered to the International Atomic Energy Agency’s symposium on the “Criteria in the Selection of Sites for the Construction of Reactors and Nuclear Research Centers,” Bradbury took the opportunity to talk about the business of nuclear research and the human component of operating a scientific laboratory. This report is the transcript of his talk.

  8. 78 FR 32624 - Western Pacific Fishery Management Council; Public Meetings

    Science.gov (United States)

    2013-05-31

    ... Group B. Allocation C. Subsistence Fisheries Definition D. Cooperative Research Priorities E. National... Associated Cetacean Ecology Survey (PACES) C. Updates on Endangered Species Act (ESA) and Marine Mammal... Histories of Bottomfish: Hawaii and the Western Pacific D. Community Projects, Activities and Issues 1...

  9. 75 FR 2488 - Mid-Atlantic Fishery Management Council; Public Meeting

    Science.gov (United States)

    2010-01-15

    ... Mid-Atlantic Fishery Management Council's (MAFMC) Scientific and Statistical Committee (SSC) will hold... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National... 21240; telephone: (410) 859-3300. Council address: Mid-Atlantic Fishery Management Council, 300 S. New...

  10. 75 FR 20567 - Mid-Atlantic Fishery Management Council; Public Meeting

    Science.gov (United States)

    2010-04-20

    ... Mid-Atlantic Fishery Management Council's (MAFMC) Scientific and Statistical Committee (SSC) will hold... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National... Fishery Management Council, 800 N. State Street, Suite 201, Dover, DE 19901; telephone: (302) 674-2331...

  11. 75 FR 55743 - Mid-Atlantic Fishery Management Council; Public Meeting

    Science.gov (United States)

    2010-09-14

    ... Mid-Atlantic Fishery Management Council's (MAFMC) Scientific and Statistical Committee (SSC) will hold... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National... address: Mid-Atlantic Fishery Management Council, 800 N. State Street, Suite 201, Dover, DE 19901...

  12. 2015 Fermilab Laboratory Directed Research & Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-26

    The Fermi National Accelerator Laboratory (FNAL) is conducting a Laboratory Directed Research and Development (LDRD) program. Fiscal year 2015 represents the first full year of LDRD at Fermilab and includes seven projects approved mid-year in FY14 and six projects approved in FY15. One of the seven original projects has been completed just after the beginning of FY15. The implementation of LDRD at Fermilab is captured in the approved Fermilab 2015 LDRD Annual Program Plan. In FY15, the LDRD program represents 0.64% of Laboratory funding. The scope of the LDRD program at Fermilab will be established over the next couple of years where a portfolio of about 20 on-going projects representing approximately between 1% and 1.5% of the Laboratory funding is anticipated. This Annual Report focuses on the status of the current projects and provides an overview of the current status of LDRD at Fermilab.

  13. Smart Electronic Laboratory Notebooks for the NIST Research Environment.

    Science.gov (United States)

    Gates, Richard S; McLean, Mark J; Osborn, William A

    2015-01-01

    Laboratory notebooks have been a staple of scientific research for centuries for organizing and documenting ideas and experiments. Modern laboratories are increasingly reliant on electronic data collection and analysis, so it seems inevitable that the digital revolution should come to the ordinary laboratory notebook. The most important aspect of this transition is to make the shift as comfortable and intuitive as possible, so that the creative process that is the hallmark of scientific investigation and engineering achievement is maintained, and ideally enhanced. The smart electronic laboratory notebooks described in this paper represent a paradigm shift from the old pen and paper style notebooks and provide a host of powerful operational and documentation capabilities in an intuitive format that is available anywhere at any time.

  14. Evaluating fishery rehabilitation under uncertainty: A bioeconomic analysis of quota management for the Green Bay yellow perch fishery

    Science.gov (United States)

    Johnson, B.L.; Milliman, S.R.; Bishop, R.C.; Kitchell, J.F.

    1992-01-01

    The fishery for yellow perch Perca flavescens in Green Bay, Lake Michigan, is currently operating under a rehabilitation plan based on a commercial harvest quota. We developed a bioeconomic computer model that included links between population density and growth, recruitment, and fishing effort for this fishery. Random variability was included in the stock-recruitment relation and in a simulated population assessment. We used the model in an adaptive management framework to evaluate the effects of the rehabilitation plan on both commercial and sport fisheries and to search for ways to improve the plan. Results indicate that the current quota policy is a member of a set of policies that would meet most management goals and increase total value of the fishery. Sensitivity analyses indicate that this conclusion is robust over a wide range of biological conditions. We predict that commercial fishers will lose money relative to the baseline condition, but they may receive other benefits from the elimination of the common-property nature of the fishery. The prospect exists for managing variability in harvest and stock size and for maximizing economic returns in the fishery, but more information is required, primarily on sportfishing effort dynamics and angler preferences. Stock-recruitment relations, density dependence of growth, and dynamics of sportfishing effort are the primary sources of uncertainty limiting the precision of our predictions. The current quota policy is about as good as other policies at reducing this uncertainty and appears, overall, to be one of the best choices for this fishery. The analytical techniques used in this study were primarily simple, heuristic approaches that could be easily transferred to other studies.

  15. 77 FR 53179 - North Pacific Fishery Management Council; Public Meeting

    Science.gov (United States)

    2012-08-31

    .... SUMMARY: The North Pacific Fishery Management Council's (NPFMC) Crab Plan Team (CPT) will meet in Seattle... Pacific Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS..., WA. Council address: North Pacific Fishery Management Council, 605 W. 4th Avenue, Suite 306...

  16. 76 FR 3878 - Mid-Atlantic Fishery Management Council; Public Meeting

    Science.gov (United States)

    2011-01-21

    ... Mid-Atlantic Fishery Management Council's (MAFMC) Scientific and Statistical Committee (SSC) will hold... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National.... ADDRESSES: The webinar will be held at Mid-Atlantic Fishery Management Council, 800 N. State Street, Suite...

  17. 75 FR 56994 - Mid-Atlantic Fishery Management Council; Public Meeting

    Science.gov (United States)

    2010-09-17

    ... Mid-Atlantic Fishery Management Council's (MAFMC) Scientific and Statistical Committee (SSC) will hold... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National.... ADDRESSES: The webinar will be held at Mid-Atlantic Fishery Management Council, 800 N. State Street, Suite...

  18. Oceanographic and fisheries data collected from NOAA and academic research vessels, and commercial menhaden vessels in Gulf of Mexico from 1988-06-14 to 1991-06-22 (NCEI Accession 0156304)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic and fisheries data were collected during 1988 through 1991 through a multiagency research project to develop a remote sensing system to provide near...

  19. Fisheries management in inland and coastal waters in Denmark from 1987 to 1999

    DEFF Research Database (Denmark)

    Rasmussen, Gorm; Geertz-Hansen, Peter

    2001-01-01

    Fishing is a major recreational activity in Denmark, involving both inland and coastal waters. Anglers, aged 18-67, and amateur fishermen, aged 12-67, must hold a valid fishing pen- nit. Fees are used for stocking, river restoration and fisheries research. All proposals for stocking inland waters...... for several generations. Stocking is also subject to genetic guidelines. This paper reviews the status of fisheries in Danish inland waters, their regulation, socio-economic aspects, stocking, aquaculture and the main problems and trends....

  20. 50 CFR 660.512 - Limited entry fishery.

    Science.gov (United States)

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST STATES Coastal Pelagics Fisheries.... The Regional Administrator's action shall constitute final action for the agency for the purposes of...

  1. THE FISHERIES AND AQUACULTURE COMPONENT OF RURAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Adrian ZUGRAVU

    2006-01-01

    Full Text Available Fisheries and aquaculture can provide a key contribution to food security and poverty alleviation. Fisheries and aquaculture policy is an instrument for the conservation and management of fisheries and aquaculture. It was created with the aims of managing a common resource. Fisheries policies and management strategies the world over is in a state of flux, continued attempts to use fisheriesas the key to solving a complex web of social and economic issues threaten to overwhelm the basic fact that, if this resources are overfished, they will not sustain either social or development.

  2. Material Transfer Agreement (MTA) | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Material Transfer Agreements are appropriate for exchange of materials into or out of the Frederick National Laboratory for research or testing purposes, with no collaborative research by parties involving the materials.

  3. 77 FR 67631 - Atlantic Highly Migratory Species; Atlantic Shark Management Measures; 2013 Research Fishery

    Science.gov (United States)

    2012-11-13

    ... site at http://www.nmfs.noaa.gov/sfa/hms/index.htm . Additionally, please be advised that your...; Maintain time-series of abundance from previously derived indices for the shark BLL observer program... the previous 2 years for any HMS fishery, but failed to contact NMFS to arrange the placement of an...

  4. Biomass-based targets and the management of multispecies coral reef fisheries.

    Science.gov (United States)

    McClanahan, T R; Graham, N A J; MacNeil, M A; Cinner, J E

    2015-04-01

    The failure of fisheries management among multispecies coral reef fisheries is well documented and has dire implications for the 100 million people engaged in these small-scale operations. Weak or missing management institutions, a lack of research capacity, and the complex nature of these ecosystems have heralded a call for ecosystem-based management approaches. However, ecosystem-based management of coral reef fisheries has proved challenging due to the multispecies nature of catches and the diversity of fish functional roles. We used data on fish communities collected from 233 individual sites in 9 western Indian Ocean countries to evaluate changes in the site's functional composition and associated life-history characteristics along a large range of fish biomass. As biomass increased along this range, fish were larger and grew and matured more slowly while the abundance of scraping and predatory species increased. The greatest changes in functional composition occurred below relatively low standing stock biomass (<600 kg/ha); abundances of piscivores, apex predators, and scraping herbivores were low at very light levels of fishing. This suggests potential trade-offs in ecosystem function and estimated yields for different management systems. Current fishing gear and area restrictions are not achieving conservation targets (proposed here as standing stock biomass of 1150 kg/ha) and result in losses of life history and ecological functions. Fish in reefs where destructive gears were restricted typically had very similar biomass and functions to young and low compliance closures. This indicates the potentially important role of fisheries restrictions in providing some gains in biomass and associated ecological functions when fully protected area enforcement potential is limited and likely to fail. Our results indicate that biomass alone can provide broad ecosystem-based fisheries management targets that can be easily applied even where research capacity and

  5. Radioisotope research and development at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Peterson, E.J.

    1993-01-01

    Throughout its fifty year history, Los Alamos National Laboratory has conducted research and development in the production, isolation, purification, and application of radioactive isotopes. Initially this work supported the weapons development mission of the Laboratory. Over the years the work has evolved to support basic and applied research in many diverse fields, including nuclear medicine, biomedical studies, materials science, environmental research and the physical sciences. In the early 1970s people in the Medical Radioisotope Research Program began irradiating targets at the Los Alamos Meson Physics Facility (LAMPF) to investigate the production and recovery of medically important radioisotopes. Since then spallation production using the high intensity beam at LAMPF has become a significant source of many important radioisotopes. Los Alamos posesses other facilities with isotope production capabilities. Examples are the Omega West Reactor (OWR) and the Van de Graaf Ion Beam Facility (IBF). Historically these facilities have had limited availability for radioisotope production, but recent developments portend a significant radioisotope production mission in the future

  6. 50 CFR 660.313 - Open access fishery-recordkeeping and reporting.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Open access fishery-recordkeeping and... West Coast Groundfish-Open Access Fisheries § 660.313 Open access fishery—recordkeeping and reporting... to open access fisheries. (b) Declaration reports for vessels using nontrawl gear. Declaration...

  7. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  8. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  9. Radiotracer laboratory for agricultural research at the Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Nashriyah Mat; Misman Sumin; Maizatul Akmam Mhd Nasir

    2007-01-01

    Radiotracer Laboratory for agricultural research at the Malaysian Nuclear Agency was established since 1990. It accommodates three laboratories, three chemical temporary storage compartments plus one compartment for storage of pressurized gas. This facility is situated in ground floor of Block 44, Agrotechnology and Biosciences Division, Dengkil Complex. Currently it houses a liquid scintillation counter, sample oxidizer, gas liquid chromatography, high performance liquid chromatography and auxiliary equipments. A road map for this laboratory will be discussed in relation with present scenario i.e. R and D service, training and consultancy provided by this laboratory; and future requirements and direction. (Author)

  10. Inclusive blue swimming crab fishery management initiative in Betahwalang Demak, Indonesia

    Science.gov (United States)

    Ghofar, A.; Redjeki, S.; Madduppa, H.; Abbey, M.; Tasunar, N.

    2018-02-01

    There has been a growing interest in the sustainability of the blue swimming crab (Portunus pelagicus, BSC) fisheries in Indonesia. The fishery is operated on a small-scale basis and yet it significantly contributes to the Indonesia’s fisheries as the third biggest export commodities following tuna and shrimp. The project inclusively (i) brings together coastal and fishing communities, university, the private sector, government at various levels and international agencies, (ii) bottom up approach is integrated with top-down (government policy) approach and (iii) integration o f conservation into fisheries management. This approach resulted in better understanding and participation among the coastal fishing communities on sustainable fisheries and the necessity to perform fisheries management. This led to the establishment of BSC fishery management body (legally support by Village Regulation - No.06/2013 on BSC fishery management in 2013, followed by a District Regulation No.523/0166/2014 on BSC fishery management in 2014. More recently, the Governor of Central Java issued a Governor Regulation No. 33/2017 on Crab and Lobster fisheries management and a Governor Decree No. 523/93/2017 on the establishment of the BSC fisheries management committee in Central Java. Further impacts have been raised awareness in sustainable BSC fishery management in surrounding districts in other provinces, namely East Java and Southeast Sulawesi. There remains, further needs to strengthen fishery governance by means of integrating national and local government effort in sustaining the fisheries, including the Issuance and effective implementation of the provincial decree on BSC fishery management for Central Java, that will enable the use of province’s resource to implement fisheries management and strengthen law enforcement. To help improve the stock, a plan for stock enhancement should also be developed with proper monitoring program and community commitment to avoid “put and

  11. 2016 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-25

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab. LDRD is able to fund employee-initiated proposals that address the current strategic objectives and better position Fermilab for future mission needs. The request for such funds is made in consideration of the investment needs, affordability, and directives from DOE and Congress. Review procedures of the proposals will insure that those proposals which most address the strategic goals of the DOE and the Laboratory or which best position Fermilab for the future will be recommended to the Laboratory Director who has responsibility for approval. The execution of each approved project will be the responsibility of the Principal Investigator, PI, who will follow existing Laboratory guidelines to ensure compliance with safety, environmental, and quality assurance practices. A Laboratory Director-appointed LDRD Coordinator will work with Committees, Laboratory Management, other Fermilab Staff, and the PI’s to oversee the implementation of policies and procedures of LDRD and provide the management and execution of this Annual Program Plan. FY16 represents third fiscal year in which LDRD has existed at Fermilab. The number of preliminary proposals (117) submitted in response to the LDRD Call for Proposals indicates very strong interest of the program within the Fermilab community. The first two Calls have resulted in thirteen active LDRD projects – and it is expected that between five and seven new

  12. New working paradigms in research laboratories.

    Science.gov (United States)

    Keighley, Wilma; Sewing, Andreas

    2009-07-01

    Work in research laboratories, especially within centralised functions in larger organisations, is changing fast. With easier access to external providers and Contract Research Organisations, and a focus on budgets and benchmarking, scientific expertise has to be complemented with operational excellence. New concepts, globally shared projects and restricted resources highlight the constraints of traditional operating models working from Monday to Friday and nine to five. Whilst many of our scientists welcome this new challenge, organisations have to enable and foster a more business-like mindset. Organisational structures, remuneration, as well as systems in finance need to be adapted to build operations that are best-in-class rather than merely minimising negative impacts of current organisational structures.

  13. 75 FR 20985 - North Pacific Fishery Management Council; Public Meeting

    Science.gov (United States)

    2010-04-22

    .... SUMMARY: The North Pacific Fishery Management Council's Crab Plan Team (CPT) will meet in Alaska on May 10... Pacific Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS... Room - May 14. Council address: North Pacific Fishery Management Council, 605 W. 4th Avenue, Suite 306...

  14. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1992

    International Nuclear Information System (INIS)

    1993-07-01

    In this annual report, the activities of education and research, the state of operation of research facilities and others in Nuclear Engineering Research Laboratory, University of Tokyo in fiscal year 1992 are summarized. In this Laboratory, there are four large research facilities, that are, the fast neutron source reactor 'Yayoi', the electron beam linac, the nuclear fusion reactor blanket experiment facility and the heavy irradiation research facility. Those are used for carrying out education and research in the wide fields of nuclear engineering, and are offered also for joint utilization. The results of research by using respective research facilities have been summarized in separate reports. The course of the management and operation of each research facility is described, and the research activities, the theses for doctorate and graduation these of teachers, personnel and graduate students in the Laboratory are summarized. (J.P.N.)

  15. 78 FR 25955 - Pacific Fishery Management Council; Public Meeting

    Science.gov (United States)

    2013-05-03

    ... Pacific Fishery Management Council's (Pacific Council) Highly Migratory Species Management Team (HMSMT... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National... be implemented pursuant to the precautionary management framework for North Pacific albacore...

  16. 78 FR 27367 - Pacific Fishery Management Council; Public Meeting

    Science.gov (United States)

    2013-05-10

    ... Pacific Fishery Management Council's (Pacific Council) Highly Migratory Species Management Team (HMSMT... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National... be implemented pursuant to the precautionary management framework for North Pacific albacore...

  17. Laboratory directed research and development 2006 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Westrich, Henry Roger

    2007-03-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2006. In addition to a programmatic and financial overview, the report includes progress reports from 430 individual R&D projects in 17 categories.

  18. 77 FR 15721 - Fisheries of the South Atlantic and Gulf of Mexico; South Atlantic Fishery Management Council...

    Science.gov (United States)

    2012-03-16

    ... the South Atlantic and Gulf of Mexico; South Atlantic Fishery Management Council; Public Meeting...), Commerce. ACTION: Notice of a public meeting. SUMMARY: The South Atlantic Fishery Management Council (SAFMC... Biological Catch (ABC) values for managed stocks including the effect of revised recreational catch estimates...

  19. 76 FR 57958 - Fisheries of the South Atlantic and Gulf of Mexico; South Atlantic Fishery Management Council...

    Science.gov (United States)

    2011-09-19

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN: 0648-XA708 Fisheries...), Commerce. ACTION: Notice of public meetings. SUMMARY: The South Atlantic Fishery Management Council (SAFMC...-pane reviews social and economic information and reports its findings to the SSC. The SEP will discuss...

  20. 78 FR 14983 - Fisheries of the Gulf of Mexico; Gulf of Mexico Fishery Management Council; Public Meeting

    Science.gov (United States)

    2013-03-08

    ... the Gulf of Mexico; Gulf of Mexico Fishery Management Council; Public Meeting AGENCY: National Marine... of Gulf of Mexico Fishery Management Council Spanish Mackerel and Cobia Stock Assessment Review Workshop. SUMMARY: Independent peer review of Gulf of Mexico Spanish Mackerel and Cobia stocks will be...

  1. Use of Laboratory Animals in Biomedical and Behavioral Research

    National Research Council Canada - National Science Library

    1988-01-01

    ... of Laboratory Animals in Biomedical and Behavioral Research Commission on Life Sciences National Research Council Institute of Medicine NATIONAL ACADEMY PRESS Washington, D.C. 1988 Copyrightoriginal retained, the be not from cannot book, paper original however, for version formatting, authoritative the typesetting-specific created from the as publ...

  2. 78 FR 56659 - Pacific Fishery Management Council; Public Meeting

    Science.gov (United States)

    2013-09-13

    ... Pacific Fishery Management Council's (Pacific Council) Groundfish Management Team (GMT) will hold a... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National...-16 groundfish harvest specifications and management measures, long-term impact analysis, and...

  3. 50 CFR 600.754 - Decision to establish a fishery negotiation panel.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Decision to establish a fishery negotiation panel. 600.754 Section 600.754 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS Fishery Negotiation Panels § 600.754 Decision to...

  4. The National Marine Mammal's California Current Ecosystem Program and Cascadia Research Collective: Aerial and small boat line transect surveys conducted in waters of Oregon, Washington, and British Columbia, Canada from 1989-07-13 to 2003-08-29 (NCEI Accession 0141100)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Marine Mammal Laboratory (NMML), a division of NOAA's Alaska Fisheries Science Center (Seattle, WA) and Cascadia Research Collective (Olympia, WA),...

  5. Integrating Science-Based Co-management, Partnerships, Participatory Processes and Stewardship Incentives to Improve the Performance of Small-Scale Fisheries

    Directory of Open Access Journals (Sweden)

    Kendra A. Karr

    2017-10-01

    Full Text Available Small scale fisheries are critically important for the provision of food security, livelihoods, and economic development for billions of people. Yet, most of these fisheries appear to not be achieving either fisheries or conservation goals, with respect to creating healthier oceans that support more fish, feed more people and improve livelihoods. Research and practical experience have elucidated many insights into how to improve the performance of small-scale fisheries. Here, we present lessons learned from five case studies of small-scale fisheries in Cuba, Mexico, the Philippines, and Belize. The major lessons that arise from these cases are: (1 participatory processes empower fishers, increase compliance, and support integration of local and scientific knowledge; (2 partnership across sectors improves communication and community buy-in; (3 scientific analysis can lead fishery reform and be directly applicable to co-management structures. These case studies suggest that a fully integrated approach that implements a participatory process to generate a scientific basis for fishery management (e.g., data collection, analysis, design and to design management measures among stakeholders will increase the probability that small-scale fisheries will implement science-based management and improve their performance.

  6. Job Satisfaction in the Coastal Pelagic Fisheries of Senegal

    Science.gov (United States)

    Sall, Aliou

    2012-01-01

    The marine fishery in Senegal, West Africa, is a major source of employment and food security. It currently faces the consequences of ecological degradation. This paper examines job satisfaction among small-scale purse seine fishers, who constitute one of the dominant fishing metiers in Senegal. The research sample consists of 80 purse seine…

  7. Food Security, Fisheries and Aquaculture in the Bolivian Amazon ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Indigenous communities involved in fisheries and aquaculture are among the most food insecure in the Bolivian Amazon. Although fish could be the main source of protein, it is often not part of the local diet. This project - supported by the Canadian International Food Security Research Fund (CIFSRF), a joint program of ...

  8. 50 CFR 660.24 - Limited entry and open access fisheries.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Limited entry and open access fisheries... Groundfish Fisheries § 660.24 Limited entry and open access fisheries. (a) General. All commercial fishing for groundfish must be conducted in accordance with the regulations governing limited entry and open...

  9. 76 FR 13604 - Western Pacific Fishery Management Council; Public Meeting

    Science.gov (United States)

    2011-03-14

    .... SUMMARY: The Western Pacific Fishery Management Council (Council) will hold a Western Pacific Stock... councils and NOAA Fisheries to conduct a review and revision of the EFH components of fisheries management... and enhancement of EFH for each Fishery Management Plan. The Act requires that both steps of the...

  10. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DOE - DECEMBER 2001

    International Nuclear Information System (INIS)

    FOX, K.J.

    2001-01-01

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about$450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2, ''Laboratory Directed Research and Development,'' March 5, 1997, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 4 13.2. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R and D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence

  11. Review of State-Space Models for Fisheries Science

    DEFF Research Database (Denmark)

    Aeberhard, William H.; Flemming, Joanna Mills; Nielsen, Anders

    2018-01-01

    Fisheries science is concerned with the management and understanding of the raising and harvesting of fish. Fish stocks are assessed using biological and fisheries data with the goal of estimating either their total population or biomass. Stock assessment models also make it possible to predict how...... highlights what should be considered best practices for science-based fisheries management....

  12. Fisheries and Oceans Canada - habitat management program in Ontario

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    On May 5, 2011, the Ontario Waterpower Association hosted the emergent hydro workshop in Peterborough. In the course of the workshop, Fisheries and Oceans Canada presented the habitat management program in Ontario. Fisheries and Oceans Canada explained that their role is to protect water resources. The Fisheries Act was passed to manage fisheries and fish habitats in Canada and to protect them from harmful alteration, disruption or destruction. The policy for the management of fish was written to interpret the Fisheries Act and enhance the productive capacity of fish habitats. In addition, two other Acts were passed, the Species at Risk Act and the Canadian Environmental Assessment Act, designed to protect species from extinction and improve coordination of, and public access to EA information. This presentation highlighted the different existing policies aimed at protecting fisheries and fish habitats in Canada.

  13. 50 CFR 660.712 - Longline fishery.

    Science.gov (United States)

    2010-10-01

    ... Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION..., ensure that the main longline is deployed slack to maximize its sink rate; (2) Use completely thawed bait... operating under the permit must: (i) Provide opportunity for the SAC to install and make operational a VMS...

  14. 76 FR 39794 - Fisheries of the Economic Exclusive Zone Off Alaska; Shallow-Water Species Fishery by Catcher...

    Science.gov (United States)

    2011-07-07

    .... 101126522-0640-02] RIN 0648-XA539 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water...; closure. SUMMARY: NMFS is prohibiting directed fishing for species that comprise the shallow-water species... species catch (PSC) sideboard limit specified for the shallow-water species fishery for catcher/processors...

  15. Ultra-Short-Pulse Laser Effects Research and Analysis Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Enables research into advanced laser countermeasure techniques.DESCRIPTION: This laser facility has a capability to produce very high peak power levels of...

  16. Causes and consequences of fleet diversity in fisheries: The case of the Norwegian Barents Sea cod fishery

    Directory of Open Access Journals (Sweden)

    Arne Eide

    2016-05-01

    Full Text Available Abstract Fisheries operate under fluctuating environmental conditions, targeting fish stocks that appear in varying densities in different areas, often with abrupt and unexpected local changes. Physical conditions, markets and management regulations constrain vessels in different and varying ways. These factors all contribute to forming the fleet diversity we find in most fisheries. Here, a simulation model of the Northeast Arctic cod fishery is used in order to investigate how this diversity is formed and maintained, assuming rational economic behaviour under varying combined constraints. The study also focuses on how the ability of vessels to find fish influences fleet diversity, profitability, stock development and seasonal profiles of the fishery. Results indicate that an increased ability to target the most profitable fishing grounds may influence fleet diversity positively or negatively, depending on overall exploitation level. High exploitation rates also increase the temporal fluctuations in fleet diversity and profits, which are amplified as the fish-finding ability increases.

  17. Aespoe hard rock laboratory. Current research projects 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    In 1986 SKB decided to construct the Aespoe Hard Rock Laboratory (HRL) in order to provide an opportunity for research, development and demonstration in a realistic and undisturbed underground rock environment down to the depth planned for the future deep repository. The focus of current and future work is on development and testing of site characterization methods, verification of models describing the function of the natural and engineered barriers and development, testing, and demonstration of repository technology. The program has been organised so that all important steps in the development of a repository are covered, in other words the Aespoe HRL constitutes a `dress rehearsal` for the Swedish deep geological repository for spent fuel and other long-lived waste. Geoscientific investigations on Aespoe and nearby islands began in 1986. Aespoe was selected as the site for the laboratory in 1988. Construction of the facility, which reaches a depth of 460 m below the surface, began in 1990 and was completed in 1995. A major milestone had been reached in 1996 with the completion of the pre-investigation and construction phases of the Aespoe HRL. The comprehensive research conducted has permitted valuable development and verification of site characterization methods applied from the ground surface, boreholes, and underground excavations. The results of this research are summarised in the book `Aespoe Hard Rock Laboratory - 10 years of Research` published by SKB in 1996. The Operating Phase of the Aespoe HRL began in 1995 and is expected to continue for 15-20 years, that is until the first stage of the development of the Swedish deep geological repository for spent nuclear fuel is expected to be completed. A number of research projects were initiated at the start of the Operating Phase. Most of these projects have made substantial progress since then and important results have been obtained. The purpose of this brochure is to provide a brief presentation of the

  18. Aespoe hard rock laboratory. Current research projects 1998

    International Nuclear Information System (INIS)

    1998-01-01

    In 1986 SKB decided to construct the Aespoe Hard Rock Laboratory (HRL) in order to provide an opportunity for research, development and demonstration in a realistic and undisturbed underground rock environment down to the depth planned for the future deep repository. The focus of current and future work is on development and testing of site characterization methods, verification of models describing the function of the natural and engineered barriers and development, testing, and demonstration of repository technology. The program has been organised so that all important steps in the development of a repository are covered, in other words the Aespoe HRL constitutes a 'dress rehearsal' for the Swedish deep geological repository for spent fuel and other long-lived waste. Geoscientific investigations on Aespoe and nearby islands began in 1986. Aespoe was selected as the site for the laboratory in 1988. Construction of the facility, which reaches a depth of 460 m below the surface, began in 1990 and was completed in 1995. A major milestone had been reached in 1996 with the completion of the pre-investigation and construction phases of the Aespoe HRL. The comprehensive research conducted has permitted valuable development and verification of site characterization methods applied from the ground surface, boreholes, and underground excavations. The results of this research are summarised in the book 'Aespoe Hard Rock Laboratory - 10 years of Research' published by SKB in 1996. The Operating Phase of the Aespoe HRL began in 1995 and is expected to continue for 15-20 years, that is until the first stage of the development of the Swedish deep geological repository for spent nuclear fuel is expected to be completed. A number of research projects were initiated at the start of the Operating Phase. Most of these projects have made substantial progress since then and important results have been obtained. The purpose of this brochure is to provide a brief presentation of the

  19. Laboratory Directed Research and Development LDRD-FY-2011

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2012-03-01

    This report provides a summary of the research conducted at the Idaho National Laboratory (INL) during Fiscal Year (FY) 2011. This report demonstrates the types of cutting edge research the INL is performing to help ensure the nation's energy security. The research conducted under this program is aligned with our strategic direction, benefits the Department of Energy (DOE) and is in compliance with DOE order 413.2B. This report summarizes the diverse research and development portfolio with emphasis on the DOE Office of Nuclear Energy (DOE-NE) mission, encompassing both advanced nuclear science and technology and underlying technologies.

  20. Lobster and Conch Fisheries of Belize: a History of Sequential Exploitation

    Directory of Open Access Journals (Sweden)

    Miriam Huitric

    2005-06-01

    Full Text Available This article presents a historical review of the lobster and conch fisheries in Belize, Central America. In terms of yield and value, these are the main wild-caught targets of the national fisheries, a small-scale commercial fishery of around 3000 fishermen. Data were collected during interviews with key informants involved with the fisheries and through literature and archive research. The goal was to study how the fishing industry has responded to environmental signals from these resources and from their ecosystems and ecosystem dynamics. National yields for both lobster and conch have been relatively stable, however, individuals' yields have been declining despite increased effort since the 1980s. This study concludes that the use of fossil fuel-based technology and organizational change, with the establishment of fishermen's cooperatives, have masked environmental signals. This masking, together with economic incentives, has led to the "pathology of resource use." As a symptom of this pathology, four forms of sequential exploitation in these fisheries were identified. A major conclusion is that social resilience may not confer ecological resilience. The development of the cooperatives was needed in order to improve equity in the industry. Before their impacts could be assessed, this organizational change, together with new technology, led to very important and rapid changes in the industry. Together with existing regulations that allow de facto open access to lobster and conch, these changes resulted in a short-term boom that has resulted in the pathology of resource use, with over-capitalization and dependence on maintained yields, regardless of environmental feedback.