WorldWideScience

Sample records for fischer-tropsch slurry catalysts

  1. Fischer-Tropsch synthesis in slurry-phase reactors using Co/SBA-15 catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, J.J.; Lima, L.A.; Lima, W.S.; Rodrigues, M.G.F. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia Quimica], e-mail: meiry@deq.ufcg.edu.br; Fernandes, F.A.N. [Universidade Federal do Ceara (UFCE), CE (Brazil). Dept. de Engenharia Quimica

    2011-07-15

    The objective of this work is to describe the production of bifunctional catalysts using the incipient humidity method, producing catalysts with 15 wt.% cobalt supported in SBA-15 molecular sieve, to be applied in the Fischer-Tropsch (FT) reaction. The originality of this work is its focus on the use of a 15 wt.% Co/SBA-15 catalyst in FT synthesis in slurry reactors. The deposition of cobalt over SBA-15 support was accomplished by impregnation with a 0.1-M aqueous solution of cobalt nitrate. The Fischer-Tropsch synthesis was carried out with the catalyst at 240 deg C and 20 atm, under a COH{sub 2} atmosphere (molar ratio= 1), in a slurry reactor for 8 hours. X-ray diffraction measurements showed that the calcined cobalt catalyst did not modify the structure of SBA-15, proving that Co was present under the form of Co{sub 3}O{sub 4} in the catalyst. The addition of cobalt in the SBA-15 decreased the specific superficial area of the molecular sieve. The 15 wt.% Co/SBA-15 catalyst had a 40% CO conversion rate and a high selectivity towards the production of C{sub 5}{sup +} (53.9% after 8 hours). (author)

  2. TECHNOLOGY DEVELOPMENT FOR IRON FISCHER-TROPSCH CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    Davis, B.H.

    1998-07-22

    The goal of the proposed work described in this Final Report was the development of iron-based Fischer-Tropsch catalysts that combined high activity, selectivity and life with physical robustness for slurry phase reactors that will produce either low-alpha or high-alpha products. The work described here has optimized the catalyst composition and pretreatment operation for a low-alpha catalyst. In parallel, work has been conducted to design a high-alpha iron catalyst that is suitable for slurry phase synthesis. Studies have been conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors have been studied at the laboratory scale. Catalyst performance has been determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  3. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Dragomir B. Bukur; Gilbert F. Froment; Lech Nowicki; Jiang Wang; Wen-Ping Ma

    2003-09-29

    This report covers the first year of this three-year research grant under the University Coal Research program. The overall objective of this project is to develop a comprehensive kinetic model for slurry phase Fischer-Tropsch synthesis on iron catalysts. This model will be validated with experimental data obtained in a stirred tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict concentrations of all reactants and major product species (H{sup 2}O, CO{sub 2}, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the reporting period we have completed one STSR test with precipitated iron catalyst obtained from Ruhrchemie AG (Oberhausen-Holten, Germany). This catalyst was initially in commercial fixed bed reactors at Sasol in South Africa. The catalyst was tested at 13 different sets of process conditions, and had experienced a moderate deactivation during the first 500 h of testing (decrease in conversion from 56% to 50% at baseline process conditions). The second STSR test has been initiated and after 270 h on stream, the catalyst was tested at 6 different sets of process conditions.

  4. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYNTHESIS

    International Nuclear Information System (INIS)

    Dragomir B. Bukur; Gilbert F. Froment; Lech Nowicki; Jiang Wang; Wen-Ping Ma

    2003-01-01

    This report covers the first year of this three-year research grant under the University Coal Research program. The overall objective of this project is to develop a comprehensive kinetic model for slurry phase Fischer-Tropsch synthesis on iron catalysts. This model will be validated with experimental data obtained in a stirred tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict concentrations of all reactants and major product species (H 2 O, CO 2 , linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the reporting period we have completed one STSR test with precipitated iron catalyst obtained from Ruhrchemie AG (Oberhausen-Holten, Germany). This catalyst was initially in commercial fixed bed reactors at Sasol in South Africa. The catalyst was tested at 13 different sets of process conditions, and had experienced a moderate deactivation during the first 500 h of testing (decrease in conversion from 56% to 50% at baseline process conditions). The second STSR test has been initiated and after 270 h on stream, the catalyst was tested at 6 different sets of process conditions

  5. Technology development for iron Fischer-Tropsch catalysts

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, R.J.; Raje, A.; Keogh, R.A. [and others

    1995-12-31

    The objective of this research project is to develop the technology for the production of physically robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry phase synthesis reactor development. The catalysts that are developed shall be suitable for testing in the Advanced Fuels Development Facility at LaPorte, Texas, to produce either low-or high-alpha product distributions. Previous work by the offeror has produced a catalyst formulation that is 1.5 times as active as the {open_quotes}standard-catalyst{close_quotes} developed by German workers for slurry phase synthesis. In parallel, work will be conducted to design a high-alpha iron catalyst this is suitable for slurry phase synthesis. Studies will be conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors will be studied at the laboratory scale. Catalyst performance will be determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  6. Novel Fischer-Tropsch catalysts. [DOE patent

    Science.gov (United States)

    Vollhardt, K.P.C.; Perkins, P.

    Novel compounds are described which are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO + H/sub 2/ to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

  7. Fischer-Tropsch Catalyst for Aviation Fuel Production

    Science.gov (United States)

    DeLaRee, Ana B.; Best, Lauren M.; Bradford, Robyn L.; Gonzalez-Arroyo, Richard; Hepp, Aloysius F.

    2012-01-01

    As the oil supply declines, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to nonpetroleum sources as a feedstock for aviation (and other transportation) fuels. The Fischer-Tropsch process uses a gas mixture of carbon monoxide and hydrogen which is converted into various liquid hydrocarbons; this versatile gas-to-liquid technology produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fischer-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur and aromatic compounds. It is most commonly catalyzed by cobalt supported on alumina, silica, or titania or unsupported alloyed iron powders. Cobalt is typically used more often than iron, in that cobalt is a longer-active catalyst, has lower water-gas shift activity, and lower yield of modified products. Promoters are valuable in improving Fischer-Tropsch catalyst as they can increase cobalt oxide dispersion, enhance the reduction of cobalt oxide to the active metal phase, stabilize a high metal surface area, and improve mechanical properties. Our goal is to build up the specificity of the Fischer-Tropsch catalyst while adding less-costly transition metals as promoters; the more common promoters used in Fischer-Tropsch synthesis are rhenium, platinum, and ruthenium. In this report we will describe our preliminary efforts to design and produce catalyst materials to achieve our goal of preferentially producing C8 to C18 paraffin compounds in the NASA Glenn Research Center Gas-To-Liquid processing plant. Efforts at NASA Glenn Research Center for producing green fuels using non-petroleum feedstocks support both the Sub-sonic Fixed Wing program of Fundamental Aeronautics and the In Situ Resource Utilization program of the Exploration Technology Development and Demonstration program.

  8. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYNTHESIS

    International Nuclear Information System (INIS)

    Dragomir B. Bukur

    2004-01-01

    This report covers the second year of this three-year research grant under the University Coal Research program. The overall objective of this project is to develop a comprehensive kinetic model for slurry phase Fischer-Tropsch synthesis on iron catalysts. This model will be validated with experimental data obtained in a stirred tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict concentrations of all reactants and major product species (H 2 O, CO 2 , linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the second year of the project we completed the STSR test SB-26203 (275-343 h on stream), which was initiated during the first year of the project, and another STSR test (SB-28603 lasting 341 h). Since the inception of the project we completed 3 STSR tests, and evaluated catalyst under 25 different sets of process conditions. A precipitated iron catalyst obtained from Ruhrchemie AG (Oberhausen-Holten, Germany) was used in all tests. This catalyst was used initially in commercial fixed bed reactors at Sasol in South Africa. Also, during the second year we performed a qualitative analysis of experimental data from all three STSR tests. Effects of process conditions (reaction temperature, pressure, feed composition and gas space velocity) on water-gas-shift (WGS) activity and hydrocarbon product distribution have been determined

  9. SEPARATION OF FISCHER-TROPSCH WAX PRODUCTS FROM ULTRAFINE IRON CATALYST PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    James K. Neathery; Gary Jacobs; Burtron H. Davis

    2004-03-31

    In this reporting period, a fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of production since the reaction is highly exothermic. Consequently, heavy wax products must be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase FTS. The separation problem is further compounded by catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbon particles. Existing pilot-scale equipment was modified to include a filtration test apparatus. After undergoing an extensive plant shakedown period, filtration tests with cross-flow filter modules using simulant FTS wax slurry were conducted. The focus of these early tests was to find adequate mixtures of polyethylene wax to simulate FTS wax. Catalyst particle size analysis techniques were also developed. Initial analyses of the slurry and filter permeate particles will be used by the research team to design improved filter media and cleaning strategies.

  10. Morphological transformation during activation and reaction of an iron Fischer-Tropsch catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, N.B.; Kohler, S.; Harrington, M. [Sandia National Lab., Albuquerque, NM (United States)] [and others

    1995-12-31

    The purpose of this project is to support the development of slurry-phase bubble column processes being studied at the La Porte Alternative Fuel Development Unit. This paper describes the aspects of Sandia`s recent work regarding the advancement and understanding of the iron catalyst used in the slurry phase process. A number of techniques were used to understand the chemical and physical effects of pretreatment and reaction on the attrition and carbon deposition characteristics of iron catalysts. Unless otherwise stated, the data discussed was derived form experiments carried out on the catalyst chosen for the summer 1994 Fischer-Tropsch run at LaPorte, UCI 1185-78-370, (an L 3950 type) that is 88% Fe{sub 2}O{sub 3}, 11% CuO, and 0.052%K{sub 2}O.

  11. Comprehensive characterisation of products from cobalt catalysed Fischer-Tropsch reaction

    Energy Technology Data Exchange (ETDEWEB)

    Marion, M.C.; Bertoncini, F.; Hugues, F.; Forestiere, A. [IFP, Vernaison (France)

    2006-07-01

    Fischer-Tropsch reaction synthesis has been studied in presence of supported cobalt catalysts. The experimental work has been performed by using a slurry pilot plant. All the gaseous and liquid products, including by-products recovered in the water phase produced, have been analysed in order to determine the whole products distribution and the catalyst selectivity. Apart from paraffin which are the main products obtained via cobalt-catalyzed Fischer-Tropsch synthesis, olefins and oxygenates by-products present also their own distribution. These detailed data are available thanks to new dedicated analytical methods developed in IFP laboratories. (orig.)

  12. DEVELOPMENT OF PRECIPITATED IRON FISCHER-TROPSCH CATALYSTS

    International Nuclear Information System (INIS)

    Bukur, Dragomir B.; Lang, X.; Chokkaram, S.; Nowicki, L.; Wei, G.; Ding, Y.; Reddy, B.; Xiao, S.

    1999-01-01

    Despite the current worldwide oil glut, the US will ultimately require large-scale production of liquid (transportation) fuels from coal. Slurry phase Fischer-Tropsch (F-T) technology, with its versatile product slate, may be expected to play a major role in production of transportation fuels via indirect coal liquefaction. Some of the F-T catalysts synthesized and tested at Texas A and M University under DOE Contract No. DE-AC22-89PC89868 were more active than any other known catalysts developed for maximizing production of high molecular weight hydrocarbons (waxes). The objectives of the present contract were to demonstrate repeatability of catalyst performance and reproducibility of preparation procedures of two of these catalysts on a laboratory scale. Improvements in the catalyst performance were attempted through the use of: (a) higher reaction pressure and gas space velocity to maximize the reactor productivity; (b) modifications in catalyst preparation steps; and (c) different pretreatment procedures. Repeatability of catalyst performance and reproducibility of catalyst synthesis procedure have been successfully demonstrated in stirred tank slurry reactor tests. Reactor space-time-yield was increased up to 48% by increasing reaction pressure from 1.48 MPa to 2.17 MPa, while maintaining the gas contact time and synthesis gas conversion at a constant value. Use of calcination temperatures above 300 C, additional CaO promoter, and/or potassium silicate as the source of potassium promoter, instead of potassium bicarbonate, did not result in improved catalyst performance. By using different catalyst activation procedures they were able to increase substantially the catalyst activity, while maintaining low methane and gaseous hydrocarbon selectivities. Catalyst productivity in runs SA-0946 and SA-2186 was 0.71 and 0.86 gHC/g-Fe/h, respectively, and this represents 45-75% improvement in productivity relative to that achieved in Rheinpreussen's demonstration plant

  13. How to make Fischer-Tropsch catalyst scale-up fully reliable?

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, L.; Heraud, J.P.; Forret, A.; Gazarian, J. [IFP Energies nouvelles, Solaize (France); Cornaro, U. [Eni S.p.A., San Donato Milanese (Italy). R and M Div.; Carugati, A. [Eni S.p.A., San Donato Milanese (Italy). E and P Div.

    2011-07-01

    Several players use Fischer-Tropsch catalysts and technologies industrially [1,2] or declare to be ready for industrial application [e.g. 3]. Present R and D aims to further increase capacities per train [4] or improve catalyst selectivity towards middle distillates [5]. For transforming promising laboratory results into industrial reality, representative catalyst testing is of particular importance for slurry bubble column FT. In the Italian eni's refinery of Sannazzaro, a 20 BPD slurry bubble column pilot plant has cumulated more than 20,000 hours time on stream in different campaigns. Non reactive slurry bubble columns corresponding to reactor capacities between 20 BPD and 1000 BPD permitted to determine the profiles for gas hold up and liquid velocities as a function of gas flow, catalyst loading, reactor diameter and internals. A hydrodynamic model based on those data led to design a Large Validation Tool, which can reproduce under reaction conditions a high mechanical stress on the catalyst equivalent to the one experienced in an industrial 15000 BPD reactor. While those tools have proven to be efficient for developing an industrial scale FT catalyst [3], they predict today in a representative manner fines formation, activity and selectivity of improved catalysts and / or for optimization of operation conditions to increase the capacity per train. We compare the here presented approach to others. We have found that it is mandatory to combine chemical stress from the reaction products with mechanical stress as experienced in an industrial slurry bubble column, in order to evaluate in a reliable way catalyst performance stability and fines formation. The potential of improvements are discussed. (orig.)

  14. Influence of liquid medium on the activity of a low-alpha Fischer-Tropsch catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Gormley, R.J.; Zarochak, M.F.; Deffenbaugh, P.W.; Rao, K.R.P.M.

    1995-12-31

    The purpose of this research was to measure activity, selectivity, and the maintenance of these properties in slurry autoclave experiments with a Fischer-Tropsch (FT) catalyst that was used in the {open_quotes}FT II{close_quotes} bubble-column test, conducted at the Alternative Fuels Development Unit (AFDU) at LaPorte, Texas during May 1994. The catalyst contained iron, copper, and potassium and was formulated to produce mainly hydrocarbons in the gasoline range with lesser production of diesel-range products and wax. The probability of chain growth was thus deliberately kept low. Principal goals of the autoclave work have been to find the true activity of this catalyst in a stirred tank reactor, unhindered by heat or mass transfer effects, and to obtain a steady conversion and selectivity over the approximately 15 days of each test. Slurry autoclave testing of the catalyst in heavier waxes also allows insight into operation of larger slurry bubble column reactors. The stability of reactor operation in these experiments, particularly at loadings exceeding 20 weight %, suggests the likely stability of operations on a larger scale.

  15. DEVELOPMENT OF ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    International Nuclear Information System (INIS)

    Adeyinka A. Adeyiga

    2001-01-01

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H 2 ) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. The use of iron-based catalysts is attractive not only due to their low cost and ready availability, but also due to their high water-gas shift activity which makes it possible to use these catalysts with low H 2 /CO ratios. However, a serious problem with use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, makes the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. Recently, fundamental understanding of physical attrition is being addressed by incorporating suitable binders into the catalyst recipe. This has resulted in the preparation of a spray dried Fe-based catalyst having aps of 70 mm with high attrition resistance. This Fe-based attrition resistant, active and selective catalyst gave 95% CO conversion through 125 hours of testing in a fixed-bed at 270 C, 1.48 MPa, H 2 /CO=0.67 and 2.0 NL/g-cat/h with C 5 + selectivity of >78% and methane selectivity of <5%. However, further development of the catalyst is needed to address the chemical attrition due to phase changes that any Fe-catalyst goes through potentially causing internal stresses within the particle and resulting in weakening, spalling or cracking. The objective of this research is to develop robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry bubble column reactor. Specifically we aim to develop to: (i) improve the performance and preparation procedure of the high activity, high attrition resistant, high alpha iron

  16. The Application of Moessbauer Emission Spectroscopy to Industrial Cobalt Based Fischer-Tropsch Catalysts

    International Nuclear Information System (INIS)

    Loosdrecht, J. van de; Berge, P. J. van; Craje, M. W. J.; Kraan, A. M. van der

    2002-01-01

    The application of Moessbauer emission spectroscopy to study cobalt based Fischer-Tropsch catalysts for the gas-to-liquids process was investigated. It was shown that Moessbauer emission spectroscopy could be used to study the oxidation of cobalt as a deactivation mechanism of high loading cobalt based Fischer-Tropsch catalysts. Oxidation was observed under conditions that are in contradiction with the bulk cobalt phase thermodynamics. This can be explained by oxidation of small cobalt crystallites or by surface oxidation. The formation of re-reducible Co 3+ species was observed as well as the formation of irreducible Co 3+ and Co 2+ species that interact strongly with the alumina support. The formation of the different cobalt species depends on the oxidation conditions. Iron was used as a probe nuclide to investigate the cobalt catalyst preparation procedure. A high-pressure Moessbauer emission spectroscopy cell was designed and constructed, which creates the opportunity to study cobalt based Fischer-Tropsch catalysts under realistic synthesis conditions.

  17. Research Opportunities for Fischer-Tropsch Technology

    International Nuclear Information System (INIS)

    Jackson, Nancy B.

    1999-01-01

    Fischer-Tropsch synthesis was discovered in Germany in the 1920's and has been studied by every generation since that time. As technology and chemistry, in general, improved through the decades, new insights, catalysts, and technologies were added to the Fischer-Tropsch process, improving it and making it more economical with each advancement. Opportunities for improving the Fischer-Tropsch process and making it more economical still exist. This paper gives an overview of the present Fischer-Tropsch processes and offers suggestions for areas where a research investment could improve those processes. Gas-to-liquid technology, which utilizes the Fischer Tropsch process, consists of three principal steps: Production of synthesis gas (hydrogen and carbon monoxide) from natural gas, the production of liquid fuels from syngas using a Fischer-Tropsch process, and upgrading of Fischer-Tropsch fuels. Each step will be studied for opportunities for improvement and areas that are not likely to reap significant benefits without significant investment

  18. Development of improved iron Fischer-Tropsch catalysts. Final technical report: Project 6464

    Energy Technology Data Exchange (ETDEWEB)

    Bukur, D.B.; Ledakowicz, S.; Koranne, M. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemical Engineering] [and others

    1994-02-28

    Despite the current worldwide oil glut, the United States will ultimately require large-scale production of liquid (transportation) fuels from coal. Slurry phase Fischer Tropsch (FT) technology, with its versatile product slate, may be expected to play a major role in production of transportation fuels via indirect coal liquefaction. Texas A&M University (TAMU) with sponsorship from the US Department of Energy, Center for Energy and Mineral Resources at TAMU, Texas Higher Education Coordinating Board, and Air Products and Chemicals, Inc., has been working on development of improved iron FT catalysts and characterization of hydrodynamic parameters in two- and three-phase bubble columns with FT derived waxes. Our previous studies have provided an improved understanding of the role of promoters (Cu and K), binders (silica) and pretreatment procedures on catalyst activity, selectivity and longevity (deactivation). The objective of the present contract was to develop improved catalysts with enhanced slurry phase activity and higher selectivity to liquid fuels and wax. This was accomplished through systematic studies of the effects of pretreatment procedures and variations in catalyst composition (promoters and binders). The major accomplishments and results in each of these two main areas of research are summarized here.

  19. On the Deactivation of Cobalt-based Fischer-Tropsch Catalysts

    NARCIS (Netherlands)

    Cats, K.H.

    2016-01-01

    The Fischer-Tropsch Synthesis (FTS) process is an attractive way to obtain synthetic liquid fuel from alternative energy sources such as natural gas, coal or biomass. However, the deactivation of the catalyst, consisting of cobalt nanoparticles supported on TiO2, currently hampers the industrial

  20. Design of generic coal conversion facilities: Indirect coal liquefaction, Fischer-Tropsch synthesis

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    A comprehensive review of Fischer-Tropsch (F-T) technology, including fixed, fluidized, and bubble column reactors, was undertaken in order to develop an information base before initiating the design of the Fischer-Tropsch indirect liquefaction PDU as a part of the Generic Coal Conversion Facilities to be built at the Pittsburgh Energy Technology Center (PETC). The pilot plant will include a fixed bed and slurry bubble column reactor for the F-T mode of operation. The review encompasses current status of both these technologies, their key variables, catalyst development, future directions, and potential improvement areas. However, more emphasis has been placed on the slurry bubble column reactor since this route is likely to be the preferred technology for commercialization, offering process advantages and, therefore, better economics than fixed and fluidized bed approaches.

  1. Moessbauer spectroscopic investigations of Fe/Mn-Fischer-Tropsch-catalysts

    International Nuclear Information System (INIS)

    Deppe, P.; Papp, H.; Rosenberg, M.

    1986-01-01

    The phase composition of Fe/Mn oxide catalysts of different compositions after 200 h of Fischer-Tropsch synthesis have been investigated by Moessbauer spectroscopy at room temperature, 77 K and 5 K. The final composition of the bulk catalysts depends strongly on the Mn content and the temperature of reduction before the synthesis. Catalytic activity and selectivity are partly correlated to this phase composition. (Auth.)

  2. Ruthenium Modification on Mn and Zr-Modified Co/SiO2 Catalysts for Slurry-Phase Fischer-Tropsch Synthesis

    Directory of Open Access Journals (Sweden)

    Tomohisa Miyazawa

    2015-01-01

    Full Text Available The addition of Ru to Mn and Zr-modified Co/SiO2 catalysts, while applying different preparation orders and loading amounts, was investigated as a means of enhancing the Fischer-Tropsch synthesis reaction. The coimpregnation of Zr/SiO2 with Co, Mn and Ru gave the most attractive catalytic properties. This can be attributed to the higher dispersion of Co metal resulting from the coimpregnation of Co and Mn as well as enhanced reducibility due to the presence of Ru. The addition of a moderate amount of Ru together with the appropriate order of addition affected both the Co reducibility and the catalytic activity, primarily because of increased reducibility. The addition of even 0.1 wt.% Ru resulted in an obvious enhancement of Fischer-Tropsch synthesis activity.

  3. Alternative Fuel Research in Fischer-Tropsch Synthesis

    Science.gov (United States)

    Surgenor, Angela D.; Klettlinger, Jennifer L.; Yen, Chia H.; Nakley, Leah M.

    2011-01-01

    NASA Glenn Research Center has recently constructed an Alternative Fuels Laboratory which is solely being used to perform Fischer-Tropsch (F-T) reactor studies, novel catalyst development and thermal stability experiments. Facility systems have demonstrated reliability and consistency for continuous and safe operations in Fischer-Tropsch synthesis. The purpose of this test facility is to conduct bench scale Fischer-Tropsch (F-T) catalyst screening experiments while focusing on reducing energy inputs, reducing CO2 emissions and increasing product yields within the F-T process. Fischer-Tropsch synthesis is considered a gas to liquid process which reacts syn-gas (a gaseous mixture of hydrogen and carbon monoxide), over the surface of a catalyst material which is then converted into liquids of various hydrocarbon chain length and product distributions1. These hydrocarbons can then be further processed into higher quality liquid fuels such as gasoline and diesel. The experiments performed in this laboratory will enable the investigation of F-T reaction kinetics to focus on newly formulated catalysts, improved process conditions and enhanced catalyst activation methods. Currently the facility has the capability of performing three simultaneous reactor screening tests, along with a fourth fixed-bed reactor used solely for cobalt catalyst activation.

  4. The role of zeolites in the deactivation of multifunctional fischer-tropsch synthesis catalysts: the interaction between HZSM-5 and Fe-based Ft-catalysts

    Directory of Open Access Journals (Sweden)

    P. C. Zonetti

    2013-12-01

    Full Text Available In order to produce gasoline directly from syngas, HZSM-5 can be added to the Fischer-Tropsch catalyst. However, this catalytic system shows an important deactivation rate. Aiming at describing this phenomenon, Fe-based catalysts and physical mixtures containing these catalysts and HZSM-5 were employed in this reaction. All these systems were characterized using the following techniques: XRD, XPS, TPR and TPD of CO. This work shows that HZSM-5 interacts with the Fe-based Fischer-Tropsch catalyst during the reduction step, decreasing the Fe concentration on the catalytic surface and thus lowering the activity of the catalytic system in the Fischer-Tropsch Synthesis.

  5. The role of zeolites in the deactivation of multifunctional Fischer-Tropsch Synthesis catalysts: the interaction between HZSM-5 and Fe-based FT-catalysts

    International Nuclear Information System (INIS)

    Zonetti, P.C.; Gaspar, A.B.; Mendes, F.M.T.; Appel, L.G.; Avillez, R. R. de; Sousa-Aguiar, E.F.

    2013-01-01

    In order to produce gasoline directly from syngas, HZSM-5 can be added to the Fischer-Tropsch catalyst. However, this catalytic system shows an important deactivation rate. Aiming at describing this phenomenon, Fe-based catalysts and physical mixtures containing these catalysts and HZSM-5 were employed in this reaction. All these systems were characterized using the following techniques: XRD, XPS, TPR and TPD of CO. This work shows that HZSM-5 interacts with the Fe-based Fischer-Tropsch catalyst during the reduction step, decreasing the Fe concentration on the catalytic surface and thus lowering the activity of the catalytic system in the Fischer-Tropsch Synthesis. (author)

  6. The role of zeolites in the deactivation of multifunctional Fischer-Tropsch Synthesis catalysts: the interaction between HZSM-5 and Fe-based FT-catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zonetti, P.C.; Gaspar, A.B.; Mendes, F.M.T.; Appel, L.G., E-mail: lucia.appel@int.gov.br [Instituto Nacional de Tecnologia (INT/MCT), Rio de Janeiro, RJ (Brazil); Avillez, R. R. de [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil); Sousa-Aguiar, E.F. [Centro de Pesquisa Leopoldo Americo Miguez de Mello (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2013-10-15

    In order to produce gasoline directly from syngas, HZSM-5 can be added to the Fischer-Tropsch catalyst. However, this catalytic system shows an important deactivation rate. Aiming at describing this phenomenon, Fe-based catalysts and physical mixtures containing these catalysts and HZSM-5 were employed in this reaction. All these systems were characterized using the following techniques: XRD, XPS, TPR and TPD of CO. This work shows that HZSM-5 interacts with the Fe-based Fischer-Tropsch catalyst during the reduction step, decreasing the Fe concentration on the catalytic surface and thus lowering the activity of the catalytic system in the Fischer-Tropsch Synthesis. (author)

  7. Principles of selectivity in Fischer-Tropsch SYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, H. [Karlsruhe Univ. (Germany). Engler-Bunte-Institut

    2006-07-01

    The detailed selectivity of Fischer-Tropsch synthesis with iron and cobalt as catalysts with high temporal resolution has been determined and used to derive the values of probability of chain growth, chain branching and olefin/paraffin molar ratio as a function of carbon number and time. Catalyst reassembling and self-organization of the Fischer-Tropsch regime are investigated. The basic principle of Fischer-Tropsch synthesis, suppression of desorption of growing chains is disclosed. This frustration governs FT-synthesis of the otherwise different systems with iron and cobalt. The advanced characterization of sites and elementary reactions (specifically with cobalt) is thought to be a more realistic basis for future theoretical calculations. (orig.)

  8. Effect of K promoter on the structure and catalytic behavior of supported iron-based catalysts in fischer-tropsch synthesis

    Directory of Open Access Journals (Sweden)

    F. E. M Farias

    2011-09-01

    Full Text Available Effects of K addition on the performance of supported Fe catalysts for Fischer - Tropsch synthesis (FTS were studied in a slurry reactor at 240 to 270ºC, 2.0 to 4.0 MPa and syngas H2/CO = 1.0. The catalysts were characterized by N2 adsorption, H2 temperature programmed reduction, X - ray diffraction, X - ray fluorescence, thermogravimetric analysis, scanning electron microscopy and dispersive X - ray spectroscopy. A strong interaction was observed between Fe and K, which inhibited the reduction of Fe catalyst. Addition of potassium increased the production of heavy hydrocarbons (C20+.

  9. Co-Zn-Al based hydrotalcites as catalysts for Fischer-Tropsch process

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, C.L.; Pirola, C.; Boffito, D.C.; Di Fronzo, A. [Univ. degli Studi di Milano (Italy). Dipt. di Chimica Fisica ed Elettrochimica; Di Michele, A. [Univ. degli Studi di Perugia (Italy). Dipt. di Fisica; Vivani, R.; Nocchetti, M.; Bastianini, M.; Gatto, S. [Univ. degli Studi di Perugia (Italy). Dipt. di Chimica

    2011-07-01

    Co-Zn-Al based hydrotalcites have been investigated as catalysts for the well-known Fischer- Tropsch synthesis. A series of ternary hydrotalcites in nitrate form was prepared with the urea method in order to obtain active catalysts for the above mentioned process. The thermal activation at 350 C gives raise to finely dispersed metallic Co on the mixed oxides, so resulting in retaining the metal distribution of the parent compounds. An optimization study concerning the amount of cobalt of the prepared catalysts (range 15-70% mol, metal based) and the reaction temperature (220-260 C) is reported. All the samples have been fully characterized (BET, ICP-OES, XRPD, TG-DTA, FT-IR, SEM and TEM) and tested in a laboratory pilot plant. Tests to evaluate the stability of these materials were carried out in stressed conditions concerning both the activation and the operating temperatures and pressures (up to 350 C and 2.0 MPa). The obtained results suggest the possibility of using synthetic hydrotalcites as suitable Co-based catalysts for the Fischer-Tropsch synthesis. (orig.)

  10. Cobalt supported on carbon nanofibers as catalysts for the Fischer-Tropsch synthesis

    NARCIS (Netherlands)

    Bezemer, G.L.

    2006-01-01

    The Fischer-Tropsch (FT) process converts synthesis gas (H2/CO) over a heterogeneous catalyst into hydrocarbons. Generally, cobalt catalysts supported on oxidic carriers are used for the FT process, however it appears to be difficult to obtain and maintain fully reduced cobalt particles. To overcome

  11. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYSTHESIS

    International Nuclear Information System (INIS)

    Dragomir B. Bukur; Gilbert F. Froment; Tomasz Olewski

    2005-01-01

    This report covers the third year of this research grant under the University Coal Research program. The overall objective of this project is to develop a comprehensive kinetic model for slurry phase Fischer-Tropsch synthesis (FTS) on iron catalysts. This model will be validated with experimental data obtained in a stirred tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict molar flow rates and concentrations of all reactants and major product species (H 2 O, CO 2 , linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the reporting period we utilized experimental data from the STSR, that were obtained during the first two years of the project, to perform vapor-liquid equilibrium (VLE) calculations and estimate kinetic parameters. We used a modified Peng-Robinson (PR) equation of state (EOS) with estimated values of binary interaction coefficients for the VLE calculations. Calculated vapor phase compositions were in excellent agreement with experimental values from the STSR under reaction conditions. Occasional discrepancies (for some of the experimental data) between calculated and experimental values of the liquid phase composition were ascribed to experimental errors. The VLE calculations show that the vapor and the liquid are in thermodynamic equilibrium under reaction conditions. Also, we have successfully applied the Levenberg-Marquardt method (Marquardt, 1963) to estimate parameters of a kinetic model proposed earlier by Lox and Froment (1993b) for FTS on an iron catalyst. This kinetic model is well suited for initial studies where the main goal is to learn techniques for parameter estimation and statistical analysis of estimated values of model parameters. It predicts that the chain growth parameter (α) and olefin to paraffin ratio are independent of carbon number, whereas our experimental data show that they vary with the carbon number. Predicted molar flow

  12. Alkali promotion effect in Fischer-Tropsch cobalt-alumina catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, O.L.; Tsapkina, M.V.; Davydov, P.E.; Kazantsev, R.V. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Inst. of Organic Chemistry; Belousova, O.S.; Lapidus, A.L. [Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation)

    2011-07-01

    Promoting Co-alumina Fischer-Tropsch synthesis catalysts with alkali and alkaline-earth metals was studied. XRD, oxygen titration and CO chemisorption were used for the characterization of the catalysts. The best results in terms of catalyst selectivity and long-chain alkanes content in synthesized products were obtained with K-promoted catalyst. Catalytic performance strongly depends on K:Co atomic ratio as well as preparation procedure. Effect of K loading on selectivities is non-linear with extreme point at K:Co=0.01. Significant increase in C{sub 5+} selectivity of K-promoted catalyst may be explained as a result of strong CO adsorption on the catalyst surface, as was confirmed in CO chemisorption experiments. (orig.)

  13. Development of Hydrotalcite Based Cobalt Catalyst by Hydrothermal and Co-precipitation Method for Fischer-Tropsch Synthesis

    Directory of Open Access Journals (Sweden)

    Muhammad Faizan Shareef

    2017-10-01

    Full Text Available This paper presents the effect of a synthesis method for cobalt catalyst supported on hydrotalcite material for Fischer-Tropsch synthesis. The hydrotalcite supported cobalt (HT-Co catalysts were synthesized by co-precipitation and hydrothermal method. The prepared catalysts were characterized by using various techniques like BET (Brunauer–Emmett–Teller, SEM (Scanning Electron Microscopy, TGA (Thermal Gravimetric Analysis, XRD (X-ray diffraction spectroscopy, and FTIR (Fourier Transform Infrared Spectroscopy. Fixed bed micro reactor was used to test the catalytic activity of prepared catalysts. The catalytic testing results demonstrated the performance of hydrotalcite based cobalt catalyst in Fischer-Tropsch synthesis with high selectivity for liquid products. The effect of synthesis method on the activity and selectivity of catalyst was also discussed. Copyright © 2017 BCREC Group. All rights reserved Received: 3rd November 2016; Revised: 26th February 2017; Accepted: 9th March 2017; Available online: 27th October 2017; Published regularly: December 2017 How to Cite: Sharif, M.S., Arslan, M., Iqbal, N., Ahmad, N., Noor, T. (2017. Development of Hydrotalcite Based Cobalt Catalyst by Hydrothermal and Co-precipitation Method for Fischer-Tropsch Synthesis. Bulletin of Chemical Reaction Engineering & Catalysis, 12(3: 357-363 (doi:10.9767/bcrec.12.3.762.357-363

  14. Reduction and reoxidation of cobalt Fischer-Tropsch catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hilmen, Anne-Mette

    1996-12-31

    The Fischer-Tropsch synthesis involves the hydrogenation of carbon monoxide to produce mainly hydrocarbons, water and carbon dioxide, but also alcohols, aldehydes and acids are formed. The distribution of these products is determined by the choice of catalyst and synthesis conditions. This thesis studies the reduction and reoxidation of 17%Co/Al{sub 2}O{sub 3} and 17%Co-1%Re/Al{sub 2}O{sub 3} by means of several characterization techniques. The effect of small amounts of Re on the reduction properties of Al{sub 2}O{sub 3}-supported Co catalysts has been studied by temperature-programmed reduction (TPR). An intimate mixture of CoAl{sub 2}O{sub 3} and Re/Al{sub 2}O{sub 3} catalysts showed a promoting effect of Re similar to that for co impregnated CoRe/Al{sub 2}O{sub 3}. A loose mixture of Co/Al{sub 2}O{sub 3} + Re/Al{sub 2}O{sub 3} did not show any effect of Re on the reduction of Co. But a promoting effect was observed if the mixture had been pre-treated with Ar saturated with water before the TPR. It is suggested that Re promotes the reduction of Co oxide by hydrogen spillover. It is shown that a high temperature TPK peak at 1200K assigned to Co aluminate is mainly caused by the diffusion of Co ions during the TPR and not during calcination. The Co particle size measured by x-ray diffraction on oxidized catalysts decreased compared to the particle size on the calcined catalysts, while the dispersion measured by volumetric chemisorption decreased somewhat after the oxidation-reduction treatment. The role of water in the deactivation of Co/Al{sub 2}O{sub 3} and CoRe/Al{sub 2}O{sub 3} Fischer-Tropsch catalysts has been extensively studied. There were significant differences in the reducibility of the phases formed for the two catalysts during exposure to H{sub 2}O/He. 113 refs., 76 figs., 18 tabs.

  15. Characterization of working iron Fischer-Tropsch catalysts using quantitative diffraction methods

    Science.gov (United States)

    Mansker, Linda Denise

    This study presents the results of the ex-situ characterization of working iron Fischer-Tropsch synthesis (F-TS) catalysts, reacted hundreds of hours at elevated pressures, using a new quantitative x-ray diffraction analytical methodology. Compositions, iron phase structures, and phase particle morphologies were determined and correlated with the observed reaction kinetics. Conclusions were drawn about the character of each catalyst in its most and least active state. The identity of the active phase(s) in the Fe F-TS catalyst has been vigorously debated for more than 45 years. The highly-reduced catalyst, used to convert coal-derived syngas to hydrocarbon products, is thought to form a mixture of oxides, metal, and carbides upon pretreatment and reaction. Commonly, Soxhlet extraction is used to effect catalyst-product slurry separation; however, the extraction process could be producing irreversible changes in the catalyst, contributing to the conflicting results in the literature. X-ray diffraction doesn't require analyte-matrix separation before analysis, and can detect trace phases down to 300 ppm/2 nm; thus, working catalyst slurries could be characterized as-sampled. Data were quantitatively interpreted employing first principles methods, including the Rietveld polycrystalline structure method. Pretreated catalysts and pure phases were examined experimentally and modeled to explore specific behavior under x-rays. Then, the working catalyst slurries were quantitatively characterized. Empirical quantitation factors were calculated from experimental data or single crystal parameters, then validated using the Rietveld method results. In the most active form, after pretreatment in H 2 or in CO at Pambient, well-preserved working catalysts contained significant amounts of Fe7C3 with trace alpha-Fe, once reaction had commenced at elevated pressure. Amounts of Fe3O 4 were constant and small, with carbide dpavg 65 wt%, regardless of pretreatment gas and pressure, with

  16. TECHNOLOGY DEVELOPMENT FOR IRON AND COBALT FISCHER-TROPSCH CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    Burtron H. Davis

    1999-01-30

    The effects of copper on Fischer-Tropsch activity, selectivity and water-gas shift activity were studied over a wide range of syngas conversion. Three catalyst compositions were prepared for this study: (a) 100Fe/4.6Si/1.4K, (b) 100Fe/4.6Si/0.10Cu/1.4K and (c) 100Fe/4.6Si/2.0Cu/1.4K. The results are reported in Task 2. The literature review for cobalt catalysts is approximately 90% complete. Due to the size of the document, it has been submitted as a separate report labeled Task 6.

  17. Moessbauer investigations of the Fe-Cu-Mn catalysts for Fischer-Tropsch synthesis

    International Nuclear Information System (INIS)

    Spanu, V.; Filoti, G.; Ilie, I.; Zamfirescu, E.

    1990-01-01

    In the selective process of the syngas conversion to synthetic gasoline a bifunctional catalytic system has to be used. It was obtained by combination a Fischer-Tropsch catalyst with the HZSM-5 zeolite. The phase compositions of the precursor and the fresh catalyst were established as well as the optimum thermal treatment. The catalyst was reduced in pure H 2 or in a H 2 +CO mixture. The influence of the reduction and reaction conditions on the catalyst structure was investigated. (orig.)

  18. Simulation models and designs for advanced Fischer-Tropsch technology

    Energy Technology Data Exchange (ETDEWEB)

    Choi, G.N.; Kramer, S.J.; Tam, S.S. [Bechtel Corp., San Francisco, CA (United States)

    1995-12-31

    Process designs and economics were developed for three grass-roots indirect Fischer-Tropsch coal liquefaction facilities. A baseline and an alternate upgrading design were developed for a mine-mouth plant located in southern Illinois using Illinois No. 6 coal, and one for a mine-mouth plane located in Wyoming using Power River Basin coal. The alternate design used close-coupled ZSM-5 reactors to upgrade the vapor stream leaving the Fischer-Tropsch reactor. ASPEN process simulation models were developed for all three designs. These results have been reported previously. In this study, the ASPEN process simulation model was enhanced to improve the vapor/liquid equilibrium calculations for the products leaving the slurry bed Fischer-Tropsch reactors. This significantly improved the predictions for the alternate ZSM-5 upgrading design. Another model was developed for the Wyoming coal case using ZSM-5 upgrading of the Fischer-Tropsch reactor vapors. To date, this is the best indirect coal liquefaction case. Sensitivity studies showed that additional cost reductions are possible.

  19. PROGRESS TOWARDS MODELING OF FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; Tami Grimmett; Anastasia M. Gandrik; Steven P. Antal

    2010-11-01

    The Hybrid Energy Systems Testing (HYTEST) Laboratory is being established at the Idaho National Laboratory to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions will be performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. SBCRs are cylindrical vessels in which gaseous reactants (for example, synthesis gas or syngas) is sparged into a slurry of liquid reaction products and finely dispersed catalyst particles. The catalyst particles are suspended in the slurry by the rising gas bubbles and serve to promote the chemical reaction that converts syngas to a spectrum of longer chain hydrocarbon products, which can be upgraded to gasoline, diesel or jet fuel. These SBCRs operate in the churn-turbulent flow regime which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer, that effect reactor performance. The purpose of this work is to develop a computational multiphase fluid dynamic (CMFD) model to aid in understanding the physico-chemical processes occurring in the SBCR. Our team is developing a robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) that includes twelve species: (1) CO reactant, (2) H2 reactant, (3) hydrocarbon product, and (4) H2O product in small bubbles, large bubbles, and the bulk fluid. Properties of the hydrocarbon product were specified by vapor liquid equilibrium calculations. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is determined based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield [1]. The

  20. Cerium Modified Pillared Montmorillonite Supported Cobalt Catalysts for Fischer Tropsch Synthesis

    International Nuclear Information System (INIS)

    Ahmad, N.; Ali, Z.; Abbas, S. M.; Hussain, F.

    2015-01-01

    Fischer-Tropsch (FT) synthesis was accomplished over Al-pillared Montmorillonite supported 20 wt% Co modified with different weight% of cerium catalysts. These catalysts were prepared by impregnation method while structural characterizations of the prepared samples were performed by XRD, TPR, NH/sub 3/TPD, TGA, BET, XRF and SEM techniques. The Fischer Tropsch reaction was studied in fixed bed micro catalytic reactor at temperature range of 220, 260 and 275 degree C and at different pressure (1, 5 and 10 bars). From the activity results, it was found that by pillaring NaMMT with Al higher catalytic activity and lower methane selectivity of NaMMT was achieved. Furthermore, the results of FT synthesis reaction revealed that cerium incorporation increased the dispersion of Co/sub 3/O/sub 4/ on the surface and consequently resulted in enhanced catalytic activity. Additionally, the C/sub 5/-C/sub 12/ hydrocarbons and methane selectivity increased while C/sub 22+/ hydrocarbons selectivity was decreased over cerium modified catalysts. Higher reaction temperature (>220 degree C) resulted in significant enhancement in CO conversion and methane selectivity. Though, increase in pressure from 1 to 10 bars eventually resulted in increase in C/sub 5+/ hydrocarbons and decrease in methane and C/sub 2/-C/sub 5/ hydrocarbons selectivity. (author)

  1. Moessbauer study of CO-precipitated Fischer-Tropsch iron catalysts

    International Nuclear Information System (INIS)

    Rao, K.R.P.M.; Huggins, F.E.; Mahajan, V.; Huffman, G.P.; Bukur, D.B.; Rao, V.U.S.

    1994-01-01

    Moessbauer spectroscopy studies of precipitated Fischer-Tropsch (FT) iron catalysts, viz. 100 Fe/5 Cu/4.2 K/x SiO 2 , where x = 0, 8, 16, 24, 25, 40, or 100, have shown that reduction of the oxide precursor in CO gives rise to χ-carbide Fe 5 C 2 whose amount decreases with an increase of SiO 2 content. The χ-carbide is converted into magnetite Fe 3 O 4 while catalyzing the FT synthesis reaction. A correlation between FT activity and the content of χ-carbide in the catalysts was found, which indicated that χ-carbide is active for FT synthesis reaction. (orig.)

  2. Fischer-Tropsch Synthesis on Multicomponent Catalysts: What Can We Learn from Computer Simulations?

    Directory of Open Access Journals (Sweden)

    José L. C. Fajín

    2015-01-01

    Full Text Available In this concise review paper, we will address recent studies based on the generalized-gradient approximation (GGA of the density functional theory (DFT and on the periodic slab approach devoted to the understanding of the Fischer-Tropsch synthesis process on transition metal catalysts. As it will be seen, this computational combination arises as a very adequate strategy for the study of the reaction mechanisms on transition metal surfaces under well-controlled conditions and allows separating the influence of different parameters, e.g., catalyst surface morphology and coverage, influence of co-adsorbates, among others, in the global catalytic processes. In fact, the computational studies can now compete with research employing modern experimental techniques since very efficient parallel computer codes and powerful computers enable the investigation of more realistic molecular systems in terms of size and composition and to explore the complexity of the potential energy surfaces connecting reactants, to intermediates, to products of reaction. In the case of the Fischer-Tropsch process, the calculations were used to complement experimental work and to clarify the reaction mechanisms on different catalyst models, as well as the influence of additional components and co-adsorbate species in catalyst activity and selectivity.

  3. Effect of pre-heat treatment on a Fischer-Tropsch iron catalyst

    International Nuclear Information System (INIS)

    Rao, K.R.P.M.; Huggins, F.E.; Ganguly, B.; Mahajan, V.; Huffman, G.P.; Davis, B.; O'Brien, R.J.; Xu Liguang; Rao, V.U.S.

    1994-01-01

    Moessbauer spectroscopy was used to investigate the effect of heating the Fischer-Tropsch catalyst 100 Fe/5 Cu/4.2 K/24 SiO 2 in two different atmospheres while ramping the temperature of the catalyst from room temperature to 280 C in 5.5 h prior to pretreatment of the catalyst. Preheating in H 2 /CO = 0.7 gave rise to an iron (Fe 2+ ) silicate, while preheating in helium resulted in the formation of ε'-carbide Fe 2.2 C. Iron oxides and χ-carbide Fe 5 C 2 were also formed in both preheat treatments. (orig.)

  4. Activity and selectivity control through periodic composition forcing over Fischer-Tropsch catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Silveston, P L; Hudgins, R R; Adesina, A A; Ross, G S; Feimer, J L

    1986-01-01

    Data collected under steady-state and periodic composition forcing of the Fischer-Tropsch synthesis over three commonly used catalysts demonstrate that both activity and selectivity can be changed by the latter operating mode. Synthesis of hydrocarbons up to C/sub 7/are favored at the expense of the higher carbon numbers for the Co catalyst, while for the Ru catalyst, only the C/sub 3/ and lower species are favored. Only methane production is stimulated with the Fe catalyst. Fe and Ru catalysts shift production from alkenes to alkanes. Transient data is interpreted in the paper.

  5. Effect of Lanthanum as a Promoter on Fe-Co/SiO2 Catalyst for Fischer-Tropsch Synthesis

    Directory of Open Access Journals (Sweden)

    Ali Abbasi

    2014-03-01

    Full Text Available Iron-Cobalt catalyst is well known from both operational and economical aspects for Fischer-Tropsch synthesis. Effort to increase the efficiency of this kind of catalyst is an important research topic. In this work, the effect of lanthanum on characteristic behavior, conversion and selectivity of a Fe-Co/SiO2 Fischer-Tropsch catalyst was studied. The Fe-Co-La/SiO2 Catalysts were prepared using an incipient wetness impregnation method. These catalysts were then characterized by XRF-EDAX, BET and TPR techniques, and their performance were evaluated in a lab-scale reactor at 250ºC, H2/CO = 1.8 of molar ratio, 16 barg pressure and GHSV=600 h-1. TPR analysis showed that the addition of La lowered the reduction temperature of Fe-Co catalyst, and due to a lower temperature, the sintering of the catalyst can be mitigated. Furthermore, from the micro reactor tests (about 4 days, it was found that lanthanum promoted catalyst had higher selectivity toward hydrocarbons, and lower selectivity toward CO2.Received: 8th July 2013; Revised: 18th November 2013; Accepted: 1st December 2013[How to Cite: Abbasi, A., Ghasemi, M., Sadighi, S. (2014. Effect of Lanthanum as a Promoter on Fe-Co/SiO2 Catalyst for Fischer-Tropsch Synthesis. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1: 23-27. (doi:10.9767/bcrec.9.1.5142.23-27][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.1.5142.23-27

  6. Synthesis gas solubility in Fischer-Tropsch slurry: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chao, K.C.; Lin, H.M.

    1988-01-01

    The objective is to investigate the phase equilibrium behavior of synthesis gases and products in a Fischer-Tropsch slurry reactor. A semi-flow apparatus has been designed and constructed for this purpose. Measurements have been made for hydrogen, cabon monoxide, methane, ethane, ethylene, and carbon dioxide in a heavy n-paraffin at temperatures from 100 to 300)degree)C and pressures 10 to 50 atm. Three n-paraffin waxes: n-eicosane (n-C/sub 20/), n-octacosane )n-C/sub 28/), and n-hexatriacontane (n-C/sub 36/), were studied to model the industrial wax. Solubility of synthesis gas mixtures of H/sub 2/ and CO in n-C/sub 28/ was also determined at two temperatures (200 and 300)degree)C) for each of three gas compositions (40.01, 50.01, and 66.64 mol%) of hydrogen). Measurements were extended to investigate the gas solubility in two industrial Fischer-Tropsch waxes: Mobilwax and SASOL wax. Observed solubility increases in the order: H/sub 2/, CO, CH/sub 4/, CO/sub 2/, C/sub 2/H/sub 4/, C/sub 2/H/sub 6/, at a given temperature pressure, and in the same solvent. Solubility increases with increasing pressure for all the gases. Lighter gases H/sub 2/ and CO show increased solubility with increasing temperature, while the heavier gases CO/sub 2/, ethane, and ethylene show decreased solubility with increasing temperature. The solubility of methane, the intermediate gas, changes little with temperature, and shows a shallow minimum at about 200)degrees)C or somewhat above. Henry's constant and partial molal volume of the gas solute at infinite dilution are determinedfrom the gas solubility data. A correlation is developed from the experimental data in the form on an equation of state. A computer program has been prepared to implement the correlation. 19 refs., 66 figs., 39 tabs.

  7. Synthetic production of fuels by the Fischer Tropsch reaction using iron catalysts

    International Nuclear Information System (INIS)

    Rodriguez Cepeda, Rodrigo; Pacheco Ochoa, Luis

    2004-01-01

    A series of iron catalysts were prepared on three different types of supports: alumina and two activated carbons from eucalyptus woods and tagua seeds. Potassium was used as promoter and palladium was deposited by the excess wetness impregnation method. The catalysts were characterized by N 2 adsorption at 77 K, XRD and TPR analysis and evaluated as Fischer-Tropsch catalysts. The carbon supported catalysts favour the production of liquid hydrocarbons and decrease the aqueous phase. Those supported with alumina form gases and aqueous phase as the main products. The α p parameters of the Schulz-Flory distribution show hydrocarbons between gasoline and diesel

  8. The formation and influence of carbon on cobalt-based Fischer-Tropsch synthesis catalysts : an integrated review

    NARCIS (Netherlands)

    Moodley, D.J.; Loosdrecht, van de J.; Saib, A.M.; Niemantsverdriet, J.W.; Davis, B.H.; Occelli, M.L.; Speight, J.G.

    2010-01-01

    Cobalt-based Fischer-Tropsch synthesis (FTS) catalysts are the systems of choice for use in gas-to-liquid (GTL) processes. As with most catalysts, cobalt systems gradually lose their activity with increasing time on stream. There are various mechanisms that have been proposed for the deactivation of

  9. Fischer-Tropsch. A futuristic view

    Energy Technology Data Exchange (ETDEWEB)

    Vosloo, A.C. [Sasol Technology Research and Development, PO Box 1, 9570 Sasolburg (South Africa)

    2001-06-01

    Although the three processing steps that constitute the Fischer-Tropsch based Gas-to-Liquids (GTL) technology, namely syngas generation, syngas conversion and hydroprocessing, are all commercially proven and individually optimized, their combined use is not widely applied. In order to make the GTL technology more cost-effective, the focus must be on reducing both the capital and the operating costs of such a plant. Current developments in the area of syngas generation, namely oxygen transfer membranes and heat exchange reforming, have the potential to significantly reduce the capital cost and improve the thermal efficiency of a GTL plant. Further improvements in terms of the activity and selectivity of the Fischer-Tropsch catalyst can also make a significant reduction in the operating cost of such a plant.

  10. Liquefaction of syngas by fischer-tropsch process (abstract)

    International Nuclear Information System (INIS)

    Khalid, N.; Saeed, M.M.; Riaz, M.; Khan, A.S.A.

    2011-01-01

    The Fischer-Tropsch process is a set of chemical reactions that convert syngas into liquid hydrocarbons and is gaining attention under the background of the resource depletion leading to the price hike of the petroleum oil. The diesel fuel obtained from syngas by Fischer-Tropsch process seems to be of high quality and environmental friendly. The present study deals with the optimization of the experimental conditions for the production/synthesis of mineral diesel from syngas by Fischer-Tropsch process. The catalyst was prepared by coating cobalt nitrate on alumina followed by calcinations and characterization by analytical techniques such as BET, SEM/EDXA and X-Ray diffraction. For the conversion of syngas to liquid fuel, the fixed bed column technique was employed. Different operational parameters such as temperature of the column, flow rate and pressure of the syngas were studied. The product formed was verified by comparing the GC/FID spectrum of the synthesized mineral diesel with commercial sample by employing GC analysis. The qualitative results indicate the success of the Fischer-Tropsch process in the present study. (author)

  11. Size and Promoter Effects on Stability of Carbon-Nanofiber-Supported Iron-Based Fischer-Tropsch Catalysts

    NARCIS (Netherlands)

    Xie, Jingxiu; Torres Galvis, Hirsa; Koeken, Ard C J; Kirilin, Alexey; Dugulan, A Iulian; Ruitenbeek, Matthijs; de Jong, Krijn P

    2016-01-01

    The Fischer-Tropsch Synthesis converts synthesis gas from alternative carbon resources, including natural gas, coal, and biomass, to hydrocarbons used as fuels or chemicals. In particular, iron-based catalysts at elevated temperatures favor the selective production of C2-C4 olefins, which are

  12. Effects of manganese oxide and sulphate on the olefin selectivity of iron catalysts in the Fischer Tropsch reaction

    NARCIS (Netherlands)

    Dijk, van W.L.; Niemantsverdriet, J.W.; Kraan, van der A.M.; van der Baan, Hessel

    1982-01-01

    Although it has been claimed by various authors that the addition of manganese oxide, MnO, to an iron catalyst gives a marked increase in the olefin selectivity of iron catalysts, we have been unable to confirm these claims in Fischer Tropsch experiments at 513 K for an iron manganese oxide catalyst

  13. An investigation of the physical and chemical changes occuring in a Fischer-Tropsch fixed bed catalyst during hydrocarbon synthesis

    International Nuclear Information System (INIS)

    Duvenhage, D.J.

    1990-01-01

    Deactivation studies: making use of fixed bed reactors, wet chemical analysis, surface area, pore volume determinations and X-ray diffraction spectrometry, scanning electron microscope spectrometry and secondary ion mass spectrometry techniques; were performed on a low temperature iron Fischer-Tropsch catalyst. It was revealed that this catalyst is mainly deactivated by sulphur poisoning, oxidation of the catalytic reactive phases, sintering of the iron crystallites and to a lesser extent deactivation through fouling of the catalytic surface by carbonaceous deposits. It was found that the top entry section of the catalyst bed deactivated relatively fast, the bottom exit section also deactivated, but not as fast as the top section. The central portion of the catalyst bed was least affected. Sulphur contaminants in the feed gas, even though present in only minute quantities, results in a loss of catalyst performance of the top section of the catalyst bed, while water, produced as a product from the Fischer-Tropsch reaction, oxidized and sintered the catalyst over the bottom section of the catalyst bed. 88 figs., 7 tabs., 224 refs

  14. Improved Fischer-Tropsch Slurry Reactors

    International Nuclear Information System (INIS)

    Lucero, Andrew

    2009-01-01

    The conversion of synthesis gas to hydrocarbons or alcohols involves highly exothermic reactions. Temperature control is a critical issue in these reactors for a number of reasons. Runaway reactions can be a serious safety issue, even raising the possibility of an explosion. Catalyst deactivation rates tend to increase with temperature, particularly of there are hot spots in the reactor. For alcohol synthesis, temperature control is essential because it has a large effect on the selectivity of the catalysts toward desired products. For example, for molybdenum disulfide catalysts unwanted side products such as methane, ethane, and propane are produced in much greater quantities if the temperature increases outside an ideal range. Slurry reactors are widely regarded as an efficient design for these reactions. In a slurry reactor a solid catalyst is suspended in an inert hydrocarbon liquid, synthesis gas is sparged into the bottom of the reactor, un-reacted synthesis gas and light boiling range products are removed as a gas stream, and heavy boiling range products are removed as a liquid stream. This configuration has several positive effects for synthesis gas reactions including: essentially isothermal operation, small catalyst particles to reduce heat and mass transfer effects, capability to remove heat rapidly through liquid vaporization, and improved flexibility on catalyst design through physical mixtures in addition to use of compositions that cannot be pelletized. Disadvantages include additional mass transfer resistance, potential for significant back-mixing on both the liquid and gas phases, and bubble coalescence. In 2001 a multiyear project was proposed to develop improved FT slurry reactors. The planned focus of the work was to improve the reactors by improving mass transfer while considering heat transfer issues. During the first year of the project the work was started and several concepts were developed to prepare for bench-scale testing. Power

  15. DEVELOPMENT OF A COMPUTATIONAL MULTIPHASE FLOW MODEL FOR FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; Tami Grimmett; Anastasia M. Gribik; Steven P. Antal

    2010-09-01

    The Hybrid Energy Systems Testing (HYTEST) Laboratory is being established at the Idaho National Laboratory to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions will be performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. SBCRs are cylindrical vessels in which gaseous reactants (for example, synthesis gas or syngas) is sparged into a slurry of liquid reaction products and finely dispersed catalyst particles. The catalyst particles are suspended in the slurry by the rising gas bubbles and serve to promote the chemical reaction that converts syngas to a spectrum of longer chain hydrocarbon products, which can be upgraded to gasoline, diesel or jet fuel. These SBCRs operate in the churn-turbulent flow regime which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer, that effect reactor performance. The purpose of this work is to develop a computational multiphase fluid dynamic (CMFD) model to aid in understanding the physico-chemical processes occurring in the SBCR. Our team is developing a robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) that includes twelve species: (1) CO reactant, (2) H2 reactant, (3) hydrocarbon product, and (4) H2O product in small bubbles, large bubbles, and the bulk fluid. Properties of the hydrocarbon product were specified by vapor liquid equilibrium calculations. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is determined based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield [1]. The

  16. TECHNOLOGY DEVELOPMENT FOR IRON AND COBALT FISCHER-TROPSCH CATALYSTS

    International Nuclear Information System (INIS)

    Burtron H. Davis

    1999-01-01

    The impact of activation procedure on the phase composition of precipitated iron Fischer-Tropsch (FT) catalysts has been studied. Catalyst samples taken during activation and FT synthesis have been characterized by Moessbauer spectroscopy. Formation of iron carbide is necessary for high FT activity. Hydrogen activation of precipitated iron catalysts results in reduction to predominantly metallic iron and Fe(sub 3)O(sub 4). Metallic iron is not stable under FT 3 4 conditions and is rapidly converted to(epsilon)(prime)-Fe(sub 2.2)C. Activation with carbon monoxide or syngas 2.2 with low hydrogen partial pressure reduces catalysts to(chi)-Fe(sub 5)C(sub 2) and a small amount of 5 2 superparamagnetic carbide. Exposure to FT conditions partially oxidizes iron carbide to Fe(sub 3)O(sub 4); however, catalysts promoted with potassium or potassium and copper maintain a constant carbide content and activity after the initial oxidation. An unpromoted iron catalyst which was activated with carbon monoxide to produce 94%(chi)-Fe(sub 5)C(sub 2), deactivated rapidly as the carbide was oxidized to Fe(sub 3)O(sub 4). No difference in activity, stability or deactivation rate was found for(chi)-Fe(sub 5)C(sub 2) and(epsilon)(prime)-Fe(sub 2.2)C

  17. TECHNOLOGY DEVELOPMENT FOR IRON AND COBALT FISCHER-TROPSCH CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    Burtron H. Davis

    1999-04-30

    The impact of activation procedure on the phase composition of precipitated iron Fischer-Tropsch (FT) catalysts has been studied. Catalyst samples taken during activation and FT synthesis have been characterized by Moessbauer spectroscopy. Formation of iron carbide is necessary for high FT activity. Hydrogen activation of precipitated iron catalysts results in reduction to predominantly metallic iron and Fe{sub 3}O{sub 4}. Metallic iron is not stable under FT 3 4 conditions and is rapidly converted to {epsilon}{prime}-Fe{sub 2.2}C. Activation with carbon monoxide or syngas 2.2 with low hydrogen partial pressure reduces catalysts to {chi}-Fe{sub 5}C{sub 2} and a small amount of 5 2 superparamagnetic carbide. Exposure to FT conditions partially oxidizes iron carbide to Fe{sub 3}O{sub 4}; however, catalysts promoted with potassium or potassium and copper maintain a constant carbide content and activity after the initial oxidation. An unpromoted iron catalyst which was activated with carbon monoxide to produce 94% {chi}-Fe{sub 5}C{sub 2}, deactivated rapidly as the carbide was oxidized to Fe{sub 3}O{sub 4}. No difference in activity, stability or deactivation rate was found for {chi}-Fe{sub 5}C{sub 2} and {epsilon}{prime}-Fe{sub 2.2}C.

  18. Fischer-Tropsch Synthesis on Multicomponent Catalysts: What Can We Learn from Computer Simulations?

    OpenAIRE

    Fajin, Jose L. C.; Cordeiro, M. Natalia D. S.; Gomes, Jose R. B.

    2015-01-01

    In this concise review paper, we will address recent studies based on the generalized-gradient approximation (GGA) of the density functional theory (DFT) and on the periodic slab approach devoted to the understanding of the Fischer-Tropsch synthesis process on transition metal catalysts. As it will be seen, this computational combination arises as a very adequate strategy for the study of the reaction mechanisms on transition metal surfaces under well-controlled conditions and allows separati...

  19. Radiation effects on Fischer-Tropsch syntheses

    International Nuclear Information System (INIS)

    Hatada, M.; Matsuda, K.

    1977-01-01

    Radiation effects on Fischer-Tropsch synthesis has been examined using high dose rate electron beams and Fe-Cu-diatomaceous earth catalyst. Yields of saturated hydrocarbons were found to increase by irradiation, but the yields of these compounds were decreased by raising reaction temperature without irradiation, suggesting the presence of radiation chemical process in catalytic reactions. (author)

  20. Preparation of Fischer-Tropsch catalysts from cobalt/iron hydrotalcites

    Energy Technology Data Exchange (ETDEWEB)

    Howard, B.H.; Boff, J.J.; Zarochak, M.F. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    Compounds with the (hydrotalcites) have properties that make them attractive as precursors for Fischer-Tropsch catalysts. A series of single-phase hydrotalcites with cobalt/iron atom ratios ranging from 75/25 to 25/75 has been synthesized. Mixed cobalt/iron oxides have been prepared from these hydrotalcites by controlled thermal decomposition. Thermal decomposition at temperatures below 600 {degrees}C typically produced a single-phase mixed metal oxide with a spinel structure. The BET surface areas of the spinal samples have been found to be as high as about 150 m{sup 2}/g. Appropriate reducing pretreatments have been developed for several of these spinels and their activity, selectivity, and activity and selectivity maintenance have been examined at 13 MPa in a fixed-bed microreactor.

  1. Coupling of glycerol processing with Fischer-Tropsch synthesis for production of liquid fuels

    DEFF Research Database (Denmark)

    Simonetti, D.A.; Rass-Hansen, Jeppe; Kunkes, E.L.

    2007-01-01

    Liquid alkanes can be produced directly from glycerol by an integrated process involving catalytic conversion to H-2/CO gas mixtures (synthesis gas) combined with Fischer-Tropsch synthesis. Synthesis gas can be produced at high rates and selectivities suitable for Fischer-Tropsch synthesis (H-2/CO...... between 1.0 and 1.6) from concentrated glycerol feed solutions at low temperatures (548 K) and high pressures (1-17 bar) over a 10 wt% Pt-Re/C catalyst with an atomic Pt : Re ratio of 1 : 1. The primary oxygenated hydrocarbon intermediates formed during conversion of glycerol to synthesis gas are ethanol...... in the liquid organic effluent stream and increasing the selectivity to C5+ alkanes by a factor of 2 ( from 0.30 to 0.60). Catalytic conversion of glycerol and Fischer-Tropsch synthesis were coupled in a two-bed reactor system consisting of a Pt-Re/C catalyst bed followed by a Ru/TiO2 catalyst bed...

  2. Fe/MCM-41 sylilated catalyst: structural changes determination during the Fischer-Tropsch reaction

    International Nuclear Information System (INIS)

    Bengoa, J. F.; Fellenz, N. A.; Cagnoli, M. V.; Cano, L. A.; Gallegos, N. G.; Alvarez, A. M.; Marchetti, S. G.

    2010-01-01

    Two Fe/MCM-41 systems, one of them sylilated, were obtained to be used as catalysts in Fischer-Tropsch reaction. They have more than 90% of the iron species located inside the support channels, leading to a narrow crystal size distribution accessible to reactive gases. The samples were characterized by X-ray diffraction, atomic absorption spectroscopy, N 2 adsorption, Moessbauer spectroscopy and Fourier transformer infrared spectroscopy. Moessbauer spectroscopy allowed us to demonstrate that the catalytic active species were the same in both catalysts. The only difference between them was the surface hydrophobicity, which decreases the 'water gas shift reaction' in the sylilated catalyst. Besides, this solid is more active for hydrocarbon production, with a lower methane yield.

  3. Niobia-supported Cobalt Catalysts for Fischer-Tropsch Synthesis

    NARCIS (Netherlands)

    den Otter, J.H.

    2016-01-01

    In this thesis niobia has been shown to be an attractive support for application in Fischer-Tropsch catalysis at industrially relevant conditions without apparent deactivation up to at least 200 hours of operation. This proves that the level of potentially poisoning contaminants is sufficiently low

  4. Fischer-Tropsch Cobalt Catalyst Activation and Handling Through Wax Enclosure Methods

    Science.gov (United States)

    Klettlinger, Jennifer L. S.; Yen, Chia H.; Nakley, Leah M.; Surgenor, Angela D.

    2016-01-01

    Fischer-Tropsch (F-T) synthesis is considered a gas to liquid process which converts syn-gas, a gaseous mixture of hydrogen and carbon monoxide, into liquids of various hydrocarbon chain length and product distributions. Cobalt based catalysts are used in F-T synthesis and are the focus of this paper. One key concern with handling cobalt based catalysts is that the active form of catalyst is in a reduced state, metallic cobalt, which oxidizes readily in air. In laboratory experiments, the precursor cobalt oxide catalyst is activated in a fixed bed at 350 ?C then transferred into a continuous stirred tank reactor (CSTR) with inert gas. NASA has developed a process which involves the enclosure of active cobalt catalyst in a wax mold to prevent oxidation during storage and handling. This improved method allows for precise catalyst loading and delivery into a CSTR. Preliminary results indicate similar activity levels in the F-T reaction in comparison to the direct injection method. The work in this paper was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.

  5. Silylated Co/SBA-15 catalysts for Fischer-Tropsch synthesis

    International Nuclear Information System (INIS)

    Jia Lihong; Jia Litao; Li Debao; Hou Bo; Wang Jungang; Sun Yuhan

    2011-01-01

    A series of silylated Co/SBA-15 catalysts were prepared via the reaction of surface Si-OH of SBA-15 with hexamethyldisilazane (HMDS) under anhydrous, vapor-phase conditions, and then characterized by FT-IR, N 2 physisorption, TG, XRD, and TPR-MS. The results showed that organic modification led to a silylated SBA-15 surface composed of stable hydrophobic Si-(CH 3 ) 3 species even after calcinations and H 2 reduction at 673 K. Furthermore, the hydrophobic surface strongly influenced both metal dispersion and reducibility. Compared with non-silylated Co/SBA, Co/S-SBA (impregnation after silylation) showed a high activity, due to the better cobalt reducibility on the hydrophobic support. However, S-Co/SBA (silylation after impregnation) had the lowest FT activity among all the catalysts, due to the lower cobalt reducibility along with the steric hindrance of grafted -Si(CH 3 ) 3 for the re-adsorption of α-olefins. -- Graphical abstract: The silylation of an SBA-15 before cobalt impregnation enhanced the reducibility of cobalt oxides on an SBA-15-supported cobalt catalyst and consequently increased the catalytic activity for Fischer-Tropsch synthesis. Display Omitted

  6. Influence of Reduction Promoters on Stability of Cobalt/g-Alumina Fischer-Tropsch Synthesis Catalysts

    OpenAIRE

    Gary Jacobs; Wenping Ma; Burtron H. Davis

    2014-01-01

    This focused review article underscores how metal reduction promoters can impact deactivation phenomena associated with cobalt Fischer-Tropsch synthesis catalysts. Promoters can exacerbate sintering if the additional cobalt metal clusters, formed as a result of the promoting effect, are in close proximity at the nanoscale to other cobalt particles on the surface. Recent efforts have shown that when promoters are used to facilitate the reduction of small crystallites with the aim of increasing...

  7. The effect of zirconium on cobalt catalyst in fischer-tropsch synthesis

    International Nuclear Information System (INIS)

    Moradi, GH.R.; Mahbob Basir, M.; Taeb, A.

    2003-01-01

    A series of 10 wt % Co/SiO 2 catalysts with different loading ratios of zirconia (0, 5, 10, 15, 20) has been prepared through an original pseudo sol-gel method. All catalysts were characterized by BET, XRD, SEM, and TPR experiments. The catalytic performance of the catalysts for the so-called fischer- tropsch synthesis was examined under H 2 /CO=2 at 230 d ig C and 8 bar in a fixed bed microreactor. By increasing zirconia, the Co-SiO 2 interaction decreases and is replaced by Co-Zr interaction which favours reduction of the catalyst at lower temperatures. While it leads to a higher degree of reduction and as increase in the metallic cobalt atoms on the surface. The activity of the promoted catalysts increases with the addition of zirconia (max. by a factor 2.5). The C 1 0 + selectivity increased with the addition of zirconia (from 42.3% in unpromoted catalyst to 68.8 % in the 20 % ZrO 2 promoted. This can be attributed to the higher amount of the surface Cobalt metal present and to the larger Cobalt particle size

  8. Structure-performance relationships for supported cobalt Fischer-Tropsch catalysts

    NARCIS (Netherlands)

    Eschemann, T.O.|info:eu-repo/dai/nl/33082712X

    2015-01-01

    The Fischer-Tropsch synthesis (FTS) involves the heterogeneously catalyzed conversion of synthesis gas into water and hydrocarbons and offers a promising route for the synthesis of ultraclean fuels, chemicals and lubricants. The synthesis gas can be generated from different feedstocks, such as coal

  9. Particle Size and Crystal Phase Effects in Fischer-Tropsch Catalysts

    Directory of Open Access Journals (Sweden)

    Jin-Xun Liu

    2017-08-01

    Full Text Available Fischer-Tropsch synthesis (FTS is an increasingly important approach for producing liquid fuels and chemicals via syngas—that is, synthesis gas, a mixture of carbon monoxide and hydrogen—generated from coal, natural gas, or biomass. In FTS, dispersed transition metal nanoparticles are used to catalyze the reactions underlying the formation of carbon-carbon bonds. Catalytic activity and selectivity are strongly correlated with the electronic and geometric structure of the nanoparticles, which depend on the particle size, morphology, and crystallographic phase of the nanoparticles. In this article, we review recent works dealing with the aspects of bulk and surface sensitivity of the FTS reaction. Understanding the different catalytic behavior in more detail as a function of these parameters may guide the design of more active, selective, and stable FTS catalysts.

  10. Correlation between Fischer-Tropsch catalytic activity and composition of catalysts

    Directory of Open Access Journals (Sweden)

    Subbarao Duvvuri

    2011-11-01

    Full Text Available Abstract This paper presents the synthesis and characterization of monometallic and bimetallic cobalt and iron nanoparticles supported on alumina. The catalysts were prepared by a wet impregnation method. Samples were characterized using temperature-programmed reduction (TPR, temperature-programmed oxidation (TPO, CO-chemisorption, transmission electron microscopy (TEM, field emission scanning electron microscopy (FESEM-EDX and N2-adsorption analysis. Fischer-Tropsch synthesis (FTS was carried out in a fixed-bed microreactor at 543 K and 1 atm, with H2/CO = 2 v/v and space velocity, SV = 12L/g.h. The physicochemical properties and the FTS activity of the bimetallic catalysts were analyzed and compared with those of monometallic cobalt and iron catalysts at similar operating conditions. H2-TPR analysis of cobalt catalyst indicated three temperature regions at 506°C (low, 650°C (medium and 731°C (high. The incorporation of iron up to 30% into cobalt catalysts increased the reduction, CO chemisorption and number of cobalt active sites of the catalyst while an opposite trend was observed for the iron-riched bimetallic catalysts. The CO conversion was 6.3% and 4.6%, over the monometallic cobalt and iron catalysts, respectively. Bimetallic catalysts enhanced the CO conversion. Amongst the catalysts studied, bimetallic catalyst with the composition of 70Co30Fe showed the highest CO conversion (8.1% while exhibiting the same product selectivity as that of monometallic Co catalyst. Monometallic iron catalyst showed the lowest selectivity for C5+ hydrocarbons (1.6%.

  11. Preparation, surface characterization and performance of a Fischer-Tropsch catalyst of cobalt supported on silica nanosprings

    International Nuclear Information System (INIS)

    Kengne, Blaise-Alexis Fouetio; Alayat, Abdulbaset M.; Luo, Guanqun; McDonald, Armando G.; Brown, Justin; Smotherman, Hayden; McIlroy, David N.

    2015-01-01

    Graphical abstract: - Highlights: • Determined that the reduction of Co nanoparticles on silica nanosprings 200 °C higher than the reduction temperature of Co in a solgel support. • The high reduction temperature of Co supported on silica nanosprings is attributed to the heat transfer properties of the nanosprings due to their high surface area. Co-silica nanospring Fischer-Tropsch catalyst can be used to produce drop in fuels such as JP-4. - Abstract: The reduction of cobalt (Co) catalyst supported on silica nanosprings for Fischer-Tropsch synthesis (FTS) has been monitored by X-ray photoelectron spectroscopy (XPS) and compared to FT catalytic activity. The cobalt is present in the starting catalyst as a Co 3 O 4 spinel phase. A two-step reduction of Co 3 O 4 to CoO and then to Co 0 is observed, which is consistent with the results of H 2 -temperature programmed reduction. During the reduction the two steps occur concurrently. The deconvolution of the Co 2p core level state for the catalyst reduced at 385 °C and 1.0 × 10 −6 Torr of H 2 revealed signatures of Co 0 , CoO, and Co 3 O 4 . The reduction saturates at a Co o concentration of approximately 41% after 20 h, which correlates with the activity and lifetime of the catalyst during FTS testing. Conversely, at 680 °C and 10 Torr of H 2 , the catalyst is completely reduced after 10 h. The evolution of the Co d-band at the Fermi level in the valence band XPS spectrum definitively verifies the metallic phase of Co. FTS evaluation of the Co/NS catalyst reduced at 609 °C showed higher production rate (3-fold) of C 6 -C 17 hydrocarbons than the catalyst reduced at 409 °C and is consistent with the XPS analysis.

  12. Fischer-Tropsch synthesis. Development and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Schaub, G.; Rohde, M.; Mena Subiranas, A. [Karlsruhe Univ. (Germany). Engler-Bunte-Institut

    2006-07-01

    Production of synthetic hydrocarbons via Fischer-Tropsch (FT) synthesis has the potential to produce high-value automotive fuels and petrochemicals from fossil and renewable sources. The availability of cheap natural gas and solid raw materials like coal and biomass has given momentum to synthesis technologies first developed in the mid-twentieth century. The present paper summarizes the fundamentals and describes some general aspects regarding driving forces, catalyst and reaction, synthesis reactor, and overall process. In this way, it indicates the context of present and future developments. Worldwide plant capacities will increase significantly in the next future, with natural gas favored as feedstock. Substitution of petroleum as well as production of improved products (like automotive fuels) are the most significant incentives. Energy loss and additional fossil CO{sub 2} emissions caused by the conversion process will be a problem in extended applications with fossil feedstocks. The current R and D activities worldwide, in all areas related to Fischer-Tropsch synthesis, will contribute to further process improvements and extended applications. (orig.)

  13. FeRu/TiO2 and Fe/TiO2 catalysts after reduction and Fischer-Tropsch synthesis studied by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Kraan, A.M. van der; Nonnekens, R.C.H.; Niemantsverdriet, J.W.

    1986-01-01

    A series of TiO 2 -supported bimetallic FeRu catalysts with different Fe:Ru ratios (infinity; 10:1; 3:1; 1:1; 1:3) has been studied by means of in situ Moessbauer spectroscopy. The influence of reduction and Fischer-Tropsch synthesis on the state of iron in the FeRu/TiO 2 catalysts is derived. (Auth.)

  14. Controlled formation of iron carbides and their performance in Fischer-Tropsch synthesis

    KAUST Repository

    Wezendonk, Tim A.

    2018-04-19

    Iron carbides are unmistakably associated with the active phase for Fischer-Tropsch synthesis (FTS). The formation of these carbides is highly dependent on the catalyst formulation, the activation method and the operational conditions. Because of this highly dynamic behavior, studies on active phase performance often lack the direct correlation between catalyst performance and iron carbide phase. For the above reasons, an extensive in situ Mössbauer spectroscopy study on highly dispersed Fe on carbon catalysts (Fe@C) produced through pyrolysis of a Metal Organic Framework was coupled to their FTS performance testing. The preparation of Fe@C catalysts via this MOF mediated synthesis allows control over the active phase formation and therefore provides an ideal model system to study the performance of different iron carbides. Reduction of fresh Fe@C followed by low-temperature Fischer-Tropsch (LTFT) conditions resulted in the formation of the ε′-Fe2.2C, whereas carburization of the fresh catalysts under high-temperature Fischer-Tropsch (HTFT) resulted in the formation of χ-Fe5C2. Furthermore, the different activation methods did not alter other important catalyst properties, as pre- and post-reaction transmission electron microscopy (TEM) characterization confirmed that the iron nanoparticle dispersion was preserved. The weight normalized activities (FTY) of χ-Fe5C2 and ε′-Fe2.2C are virtually identical, whilst it is found that ε′-Fe2.2C is a better hydrogenation catalyst than χ-Fe5C2. The absence of differences under subsequent HTFT experiments, where χ-Fe5C2 is the dominating phase, is a strong indication that the iron carbide phase is responsible for the differences in selectivity.

  15. Immobilised carbon nanotubes as carrier for Co-Fischer-Tropsch synthesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Thiessen, J.; Rose, A.; Kiendl, I.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering; Curulla-Ferre, D. [Total S.A., Gas and Power, Paris La Defense (France)

    2011-07-01

    A possibility to immobilise carbon nanotubes (CNT) to make them applicable in a technical scale fixed bed reactor is studied. The approach to fabricate millimetre scale composites containing CNT presented in this work is to confine the nano-carbon in macro porous ceramic particles. Thus CNT were grown on the inner surface of silica and alumina pellets and spheres, respectively. Cobalt nano particles were successfully deposited on the carbon surface inside the two types of ceramic carriers and the systems were tested in Fischer - Tropsch synthesis (FTS). The cobalt mass related activity of these novel catalysts is similar to a conventional system. The selectivities of the Co/CNT/ceramic composites were compared with non supported CNT and carbon nanofibres (CNF). (orig.)

  16. Preparation, characterization and testing of SiC-based catalytic sponges as structured catalysts for Fischer-Tropsch synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Baudry, A.; Schaub, G. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Engler-Bunte-Inst.

    2011-07-01

    Solid sponges (open-cell foams) may be used as catalyst support, due to favorable thermal properties and low pressure drop. As an example, they may lead to improved temperature control in Fischer-Tropsch applications, if compared to fixed beds of catalyst particles. The aim of this study was to develop and test a wet method for impregnating ceramic foam materials with a CoRe/{gamma}-Al{sub 2}O{sub 3} catalyst. Defined catalyst layers were generated on 20 ppi SiC-sponges. Resulting catalytic activities are nearly identical to those of the corresponding powder catalyst material. The difference observed can be explained by either mass transfer limitation or backmixing in the fixed bed configuration used. (orig.)

  17. The role of magnetite in Fischer-Tropsch synthesis

    International Nuclear Information System (INIS)

    Rao, K.R.P.M.; Huggins, F.E.; Mahajan, V.; Huffman, G.P.; Rao, V.U.S.

    1994-01-01

    Moessbauer spectroscopy studies of iron catalysts from a Fischer-Tropsch (FT) Pilot Plant run at different time-on-stream periods were carried out. Magnetite Fe 3 O 4 was found to be active for the water-gas-shift (WGS) reaction which accompanies the FT synthesis reaction over Fe-based catalysts. A correlation between the ratio of the occupancy of octahedral sites to the tetrahedral sites in magnetite to the WGS activity was found. Cation-deficient magnetite gave higher WGS activity as compared to the stoichiometric phase. (orig.)

  18. Controlled formation of iron carbides and their performance in Fischer-Tropsch synthesis

    KAUST Repository

    Wezendonk, Tim A.; Sun, Xiaohui; Dugulan, A. Iulian; van Hoof, Arno J.F.; Hensen, Emiel J.M.; Kapteijn, Freek; Gascon, Jorge

    2018-01-01

    high-temperature Fischer-Tropsch (HTFT) resulted in the formation of χ-Fe5C2. Furthermore, the different activation methods did not alter other important catalyst properties, as pre- and post-reaction transmission electron microscopy (TEM

  19. Petroleum formation by Fischer-Tropsch synthesis in plate tectonics

    Energy Technology Data Exchange (ETDEWEB)

    Szatmari, P. (Petrobras Research Center, Rio de Janeiro (Brazil))

    1989-08-01

    A somewhat speculative hypothesis of petroleum genesis in the upper lithosphere is proposed, based on Fischer-Tropsch synthesis. This hypothesis is distinct from both the organic (biogenic) model and the inorganic model of hydrocarbon degassing from the Earth's interior. The hypothesis presented in this paper proposes that petroleum liquids form by Fischer-Tropsch synthesis on magnetite and hematite catalysts when carbon dioxide (derived by massive metamorphic or igneous decarbonation of subducted sedimentary carbonates) reacts with hydrogen generated by the serpentinization (in the absence of air) of shallow-mantle lithosphere and ophiolite thrust sheets. Oblique plate movements may favor hydrocarbon formation by creating deep faults that aid fluid flow and serpentinization. The world's richest oil provinces, including those of the Middle East, may be tentatively interpreted to have formed by this mechanism. 8 figs., 1 tab.

  20. Transient Effects in Fischer-Tropsch Reactor with a Fixed Bed of Catalyst Particles

    Directory of Open Access Journals (Sweden)

    I. V. Derevich

    2015-01-01

    Full Text Available Based on analysis of small temperature disturbances in the Fischer-Tropsch reactor with a fixed bed of catalyst particles various scenarios of thermal instability were investigated. There are two possible scenarios of thermal instability of the reactor. First, thermal explosion may occur due to growth of temperature disturbances inside a catalytic granule. Second scenario connected with loss of thermal stability as a result of an initial increase in temperature in the reactor volume. The boundaries of thermal stability of the reactor were estimated by solving the eigenvalue problems for spherical catalyst particles and cylindrical reactor. Processes of diffusional resistance inside the catalytic granule and heat transfer from wall of the reactor tube are taken into account. Estimation of thermal stability area is compared with the results of numerical simulation of behavior of temperature and concentration of synthesis gas.

  1. Morphology Changes of Co Catalyst Nanoparticles at the Onset of Fischer-Tropsch Synthesis

    DEFF Research Database (Denmark)

    Høydalsvik, Kristin; Fløystad, Jostein B.; Voronov, Alexey

    2014-01-01

    Cobalt nanoparticles play an important role as catalysts for the Fischer-Tropsch synthesis, which is an attractive route for production of synthetic fuels. It is of particular interest to understand the varying conversion rate during the first hours after introducing synthesis gas (H-2 and CO......) to the system. To this end, several in situ characterization studies have previously been done on both idealized model systems and commercially relevant catalyst nanoparticles, using bulk techniques, such as X-ray powder diffraction and X-ray absorption spectroscopy. Since catalysis takes place at the surface...... of the cobalt particles, it is important to develop methods to gain surface-specific structural information under realistic processing conditions. We addressed this challenge using small-angle X-ray scattering (SAXS), a technique exploiting the penetrating nature of X-rays to provide information about particle...

  2. Preparation, surface characterization and performance of a Fischer-Tropsch catalyst of cobalt supported on silica nanosprings

    Energy Technology Data Exchange (ETDEWEB)

    Kengne, Blaise-Alexis Fouetio [Department of Physics, University of Idaho, Moscow, ID 83844-0903 (United States); Alayat, Abdulbaset M. [Environmental Science Program, University of Idaho, Moscow, ID 83844-3006 (United States); Luo, Guanqun [Department of Forest, Rangeland & Fire Sciences, University of Idaho, Moscow, ID 83844-1132 (United States); McDonald, Armando G. [Environmental Science Program, University of Idaho, Moscow, ID 83844-3006 (United States); Department of Forest, Rangeland & Fire Sciences, University of Idaho, Moscow, ID 83844-1132 (United States); Brown, Justin; Smotherman, Hayden [Department of Physics, University of Idaho, Moscow, ID 83844-0903 (United States); McIlroy, David N., E-mail: dmcilroy@uidaho.edu [Department of Physics, University of Idaho, Moscow, ID 83844-0903 (United States)

    2015-12-30

    Graphical abstract: - Highlights: • Determined that the reduction of Co nanoparticles on silica nanosprings 200 °C higher than the reduction temperature of Co in a solgel support. • The high reduction temperature of Co supported on silica nanosprings is attributed to the heat transfer properties of the nanosprings due to their high surface area. Co-silica nanospring Fischer-Tropsch catalyst can be used to produce drop in fuels such as JP-4. - Abstract: The reduction of cobalt (Co) catalyst supported on silica nanosprings for Fischer-Tropsch synthesis (FTS) has been monitored by X-ray photoelectron spectroscopy (XPS) and compared to FT catalytic activity. The cobalt is present in the starting catalyst as a Co{sub 3}O{sub 4} spinel phase. A two-step reduction of Co{sub 3}O{sub 4} to CoO and then to Co{sup 0} is observed, which is consistent with the results of H{sub 2}-temperature programmed reduction. During the reduction the two steps occur concurrently. The deconvolution of the Co 2p core level state for the catalyst reduced at 385 °C and 1.0 × 10{sup −6} Torr of H{sub 2} revealed signatures of Co{sup 0}, CoO, and Co{sub 3}O{sub 4}. The reduction saturates at a Co{sup o} concentration of approximately 41% after 20 h, which correlates with the activity and lifetime of the catalyst during FTS testing. Conversely, at 680 °C and 10 Torr of H{sub 2}, the catalyst is completely reduced after 10 h. The evolution of the Co d-band at the Fermi level in the valence band XPS spectrum definitively verifies the metallic phase of Co. FTS evaluation of the Co/NS catalyst reduced at 609 °C showed higher production rate (3-fold) of C{sub 6}-C{sub 17} hydrocarbons than the catalyst reduced at 409 °C and is consistent with the XPS analysis.

  3. Effect of Surface Modification by Chelating Agents on Fischer- Tropsch Performance of Co/SiO{sub 2} Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Bambal, Ashish S.; Kugler, Edwin L.; Gardner, Todd H.; Dadyburjor, Dady B.

    2013-11-14

    The silica support of a Co-based catalyst for Fischer-Tropsch (FT) synthesis was modified by the chelating agents (CAs) nitrilotriacetic acid (NTA) and ethylenediaminetetraacetic acid (EDTA). After the modification, characterization of the fresh and spent catalysts show reduced crystallite sizes, a better-dispersed Co₃O₄ phase on the calcined samples, and increased metal dispersions for the reduced samples. The CA-modified catalysts display higher CO conversions, product yields, reaction rates and rate constants. The improved FT performance of CA-modified catalysts is attributed to the formation of stable complexes with Co. The superior performance of the EDTA-modified catalyst in comparison to the NTA-modified catalyst is due to the higher affinity of the former for complex formation with Co ions.

  4. Evidence for H2/D2 isotope effects on Fischer-Tropsch synthesis over supported ruthenium catalysts

    International Nuclear Information System (INIS)

    Kellner, C.S.; Bell, A.T.

    1981-01-01

    The effects of using D 2 rather than H 2 during Fischer-Tropsch synthesis were investigated using alumina- and silica-supported Ru catalysts. For the alumina-supported catalysts, the rate of CD 4 formation was 1.4 to 1.6 times faster than the formation of CH 4 . A noticeable isotope effect was also observed for higher molecular weight products. The magnitude of the isotope effects observed using the silica-supported catalyst was much smaller than that found using the alumina-supported catalysts. The formation of olefins relative to paraffins was found to be higher when H 2 rather than D 2 was used, independent of the catalyst support. The observed isotope effects are explained in terms of a mechanism for CO hydrogenation and are shown to arise from a complex combination of the kinetic and equilibrium isotope effects associated with elementary processes occurring on the catalyst surface

  5. Fischer-Tropsch Performance of an SiO2-Supported Co-Based Catalyst Prepared by Hydrogen Dielectric-Barrier Discharge Plasma

    International Nuclear Information System (INIS)

    Fu Tingjun; Huang Chengdu; Lv Jing; Li Zhenhua

    2014-01-01

    A silica-supported cobalt catalyst was prepared by hydrogen dielectric-barrier discharge (H 2 -DBD) plasma. Compared to thermal hydrogen reduction, H 2 -DBD plasma treatment can not only fully decompose the cobalt precursor but also partially reduce the cobalt oxides at lower temperature and with less time. The effect of the discharge atmosphere on the property of the plasma-prepared catalyst and the Fischer-Tropsch synthesis activity was studied. The results indicate that H 2 -DBD plasma treatment is a promising alternative for preparing Co/SiO 2 catalysts from the viewpoint of energy savings and efficiency

  6. Kinetics of Slurry Phase Fischer-Tropsch Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Dragomir B. Bukur; Gilbert F. Froment; Tomasz Olewski; Lech Nowicki; Madhav Nayapati

    2006-12-31

    The overall objective of this project is to develop a comprehensive kinetic model for slurry-phase Fischer-Tropsch synthesis (FTS) employing iron-based catalysts. This model will be validated with experimental data obtained in a stirred-tank slurry reactor (STSR) over a wide range of process conditions. Three STSR tests of the Ruhrchemie LP 33/81 catalyst were conducted to collect data on catalyst activity and selectivity under 25 different sets of process conditions. The observed decrease in 1-olefin content and increase in 2-olefin and n-paraffin contents with the increase in conversion are consistent with a concept that 1-olefins participate in secondary reactions (e.g. 1-olefin hydrogenation, isomerization and readsorption), whereas 2-olefins and n-paraffins are formed in these reactions. Carbon number product distribution showed an increase in chain growth probability with increase in chain length. Vapor-liquid equilibrium calculations were made to check validity of the assumption that the gas and liquid phases are in equilibrium during FTS in the STSR. Calculated vapor phase compositions were in excellent agreement with experimental values from the STSR under reaction conditions. Discrepancies between the calculated and experimental values for the liquid-phase composition (for some of the experimental data) are ascribed to experimental errors in the amount of wax collected from the reactor, and the relative amounts of hydrocarbon wax and Durasyn 164 oil (start-up fluid) in the liquid samples. Kinetic parameters of four kinetic models (Lox and Froment, 1993b; Yang et al., 2003; Van der Laan and Beenackers, 1998, 1999; and an extended kinetic model of Van der Laan and Beenackers) were estimated from experimental data in the STSR tests. Two of these kinetic models (Lox and Froment, 1993b; Yang et al., 2003) can predict a complete product distribution (inorganic species and hydrocarbons), whereas the kinetic model of Van der Laan and Beenackers (1998, 1999) can

  7. Kinetics of Slurry Phase Fischer-Tropsch Synthesis

    International Nuclear Information System (INIS)

    Dragomir B. Bukur; Gilbert F. Froment; Tomasz Olewski; Lech Nowicki; Madhav Nayapati

    2006-01-01

    The overall objective of this project is to develop a comprehensive kinetic model for slurry-phase Fischer-Tropsch synthesis (FTS) employing iron-based catalysts. This model will be validated with experimental data obtained in a stirred-tank slurry reactor (STSR) over a wide range of process conditions. Three STSR tests of the Ruhrchemie LP 33/81 catalyst were conducted to collect data on catalyst activity and selectivity under 25 different sets of process conditions. The observed decrease in 1-olefin content and increase in 2-olefin and n-paraffin contents with the increase in conversion are consistent with a concept that 1-olefins participate in secondary reactions (e.g. 1-olefin hydrogenation, isomerization and readsorption), whereas 2-olefins and n-paraffins are formed in these reactions. Carbon number product distribution showed an increase in chain growth probability with increase in chain length. Vapor-liquid equilibrium calculations were made to check validity of the assumption that the gas and liquid phases are in equilibrium during FTS in the STSR. Calculated vapor phase compositions were in excellent agreement with experimental values from the STSR under reaction conditions. Discrepancies between the calculated and experimental values for the liquid-phase composition (for some of the experimental data) are ascribed to experimental errors in the amount of wax collected from the reactor, and the relative amounts of hydrocarbon wax and Durasyn 164 oil (start-up fluid) in the liquid samples. Kinetic parameters of four kinetic models (Lox and Froment, 1993b; Yang et al., 2003; Van der Laan and Beenackers, 1998, 1999; and an extended kinetic model of Van der Laan and Beenackers) were estimated from experimental data in the STSR tests. Two of these kinetic models (Lox and Froment, 1993b; Yang et al., 2003) can predict a complete product distribution (inorganic species and hydrocarbons), whereas the kinetic model of Van der Laan and Beenackers (1998, 1999) can

  8. Effect of pretreatment temperature on catalytic performance of the catalysts derived from cobalt carbonyl cluster in Fischer-Tropsch Synthesis

    Directory of Open Access Journals (Sweden)

    Byambasuren O

    2017-02-01

    Full Text Available The monometallic cobalt-based catalysts were prepared by pretreating the catalysts derived from carbonyl cluster precursor (CO6Co2CC(COOH2 supported on γ-Al2O3 with hydrogen at 180, 220, and 260°C respectively. The temperature effect of the pretreatments on the structure evolution of cluster precursors and the catalytic performance of the Fischer-Tropsch (F-T synthesis was investigated. The pretreated catalyst at 220°C with unique phase structure exhibited best catalytic activity and selectivity among three pretreated catalysts. Moreover, the catalysts exhibited high dispersion due to the formation of hydrogen bonds between the cluster precursor and γ-Al2O3 support.

  9. DEVELOPMENT OF A COMPUTATIONAL MULTIPHASE FLOW MODEL FOR FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; Tami Grimmett; Anastasia M. Gribik; Steven P. Antal

    2011-12-01

    The Hybrid Energy Systems Testing (HYTEST) Laboratory at the Idaho National Laboratory was established to develop and test hybrid energy systems with the principal objective of reducing dependence on imported fossil fuels. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions are performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. These SBCRs operate in the churn-turbulent flow regime, which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer. Our team is developing a research tool to aid in understanding the physicochemical processes occurring in the SBCR. A robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) consisting of thirteen species, which are CO reactant, H2 reactant, hydrocarbon product, and H2O product in small bubbles, large bubbles, and the bulk fluid plus catalyst is outlined. Mechanistic submodels for interfacial momentum transfer in the churn-turbulent flow regime are incorporated, along with bubble breakup/coalescence and two-phase turbulence submodels. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield. The model includes heat generation produced by the exothermic chemical reaction, as well as heat removal from a constant temperature heat exchanger. A property method approach is employed to incorporate vapor-liquid equilibrium (VLE) in a robust manner. Physical and thermodynamic properties as functions of changes in both pressure and temperature are obtained from VLE calculations performed external to the CMFD solver. The novelty of this approach is in its simplicity, as well as its

  10. Characterization of catalysts by Moessbauer spectroscopy: An application to the study of Fischer-Tropsch, hydrotreating and super Claus catalysts

    International Nuclear Information System (INIS)

    Kraan, A.M. van der; Boellaard, E.; Craje, M.W.J.

    1993-01-01

    Moessbauer spectroscopy is an excellent in-situ technique for the identification of phases present in catalysts. Applied to metallic iron catalysts used in the Fischer-Tropsch reaction it reveals a detailed picture of the carburization process and provides insight into the relation between the properties of the catalytic material and its activity. The influence of a support and the effect of alloying iron with an (in)active metal on the catalytic performance is discussed for Fe, Cu-Fe and Ni-Fe systems. In addition, Moessbauer spectroscopy is used for the identification of 'Co-sulfide' species present in sulfided Co and CoMo catalysts applied in one of the largest chemical processes in the world, the hydrotreatment of crude oil. A structural model is proposed. Finally, the contribution of Moessbauer spectroscopic studies to the development of a new catalyst for cleaning of Claus tail gas via selective oxidation of hydrogen sulfide to elemental sulfur is discussed. (orig.)

  11. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYNTHESIS. FOURTH ANNUAL TECHNICAL PROGRESS REPORT

    International Nuclear Information System (INIS)

    Bukur, Dragomir B.; Froment, Gilbert F.; Olewski, Tomasz

    2006-01-01

    This report covers the fourth year of a research project conducted under the University Coal Research Program. The overall objective of this project is to develop a comprehensive kinetic model for slurry-phase Fischer-Tropsch synthesis (FTS) employing iron-based catalysts. This model will be validated with experimental data obtained in a stirred-tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict molar flow rates and concentrations of all reactants and major product species (water, carbon dioxide, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the fourth year of the project, an analysis of experimental data collected during the second year of this project was performed. Kinetic parameters were estimated utilizing product distributions from 27 mass balances. During the reporting period two kinetic models were employed: a comprehensive kinetic model of Dr. Li and co-workers (Yang et al., 2003) and a hydrocarbon selectivity model of Van der Laan and Beenackers (1998, 1999) The kinetic model of Yang et al. (2003) has 24 parameters (20 parameters for hydrocarbon formation, and 4 parameters for the water-gas-shift (WGS) reaction). Kinetic parameters for the WGS reaction and FTS synthesis were estimated first separately, and then simultaneously. The estimation of these kinetic parameters employed the Levenberg-Marquardt (LM) method and the trust-region reflective Newton large-scale (LS) method. A genetic algorithm (GA) was incorporated into estimation of parameters for FTS reaction to provide initial estimates of model parameters. All reaction rate constants and activation energies were found to be positive, but at the 95% confidence level the intervals were large. Agreement between predicted and experimental reaction rates has been fair to good. Light hydrocarbons are predicted fairly accurately, whereas the model underpredicts values of higher molecular weight

  12. Particle Size and Crystal Phase Effects in Fischer-Tropsch Catalysts

    OpenAIRE

    Jin-Xun Liu; Peng Wang; Wayne Xu; Emiel J.M. Hensen

    2017-01-01

    Fischer-Tropsch synthesis (FTS) is an increasingly important approach for producing liquid fuels and chemicals via syngas—that is, synthesis gas, a mixture of carbon monoxide and hydrogen—generated from coal, natural gas, or biomass. In FTS, dispersed transition metal nanoparticles are used to catalyze the reactions underlying the formation of carbon-carbon bonds. Catalytic activity and selectivity are strongly correlated with the electronic and geometric structure of the nanoparticles, which...

  13. Lump Kinetic Analysis of Syngas Composition Effect on Fischer-Tropsch Synthesis over Cobalt and Cobalt-Rhenium Alumina Supported Catalyst

    Directory of Open Access Journals (Sweden)

    Dewi Tristantini

    2016-03-01

    Received: 10th November 2015; Revised: 10th February 2016; Accepted: 16th February 2016 How to Cite: Tristantini, D., Suwignjo, R.K. (2016. Lump Kinetic Analysis of Syngas Composition Effect on Fischer-Tropsch Synthesis over Cobalt and Cobalt-Rhenium Alumina Supported Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 84-92. (doi:10.9767/bcrec.11.1.424.84-92 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.424.84-92

  14. A combined in situ XAS-XRPD-Raman study of Fischer-Tropsch synthesis over a carbon supported Co catalyst

    DEFF Research Database (Denmark)

    Tsakoumis, Nikolaos E.; Dehghan, Roya; Johnsen, Rune

    2013-01-01

    A cobalt based Fischer-Tropsch synthesis (FTS) catalyst, supported on a carbon nanofibers/carbon felt composite (Co/CNF/CF) was studied in situ at realistic conditions. The catalyst was monitored by Xray absorption spectroscopy (XAS), high-resolution X-ray powder diffraction (HR-XRPD) and Raman...... spectroscopy, while changes in the gas phase were observed by mass spectrometry (MS). Transmission electron microscopy (TEM) was also applied to characterise the catalyst. The catalyst has a bimodal particle size distribution and exhibits a high deactivation rate. During the in situ study the catalyst appears...... to reduce further at the induction period of FTS, while crystallite growth is been detected in the same period. At steady state FTS the amount of metallic Co is constant. A change in the volumetric flow towards higher conversions did not affect the degree of reduction or the crystallite size of the catalyst...

  15. Effect of CO Concentration on the α-Value of Plasma-Synthesized Co/C Catalyst in Fischer-Tropsch Synthesis

    Directory of Open Access Journals (Sweden)

    James Aluha

    2017-02-01

    Full Text Available A plasma-synthesized cobalt catalyst supported on carbon (Co/C was tested for Fischer-Tropsch synthesis (FTS in a 3-phase continuously-stirred tank slurry reactor (3-φ-CSTSR operated isothermally at 220 °C (493 K, and 2 MPa pressure. Initial syngas feed stream of H2:CO ratio = 2 with molar composition of 0.6 L/L (60 vol % H2 and 0.3 L/L (30 vol % CO, balanced in 0.1 L/L (10 vol % Ar was used, flowing at hourly space velocity (GHSV of 3600 cm3·h−1·g−1 of catalyst. Similarly, other syngas feed compositions of H2:CO ratio = 1.5 and 1.0 were used. Results showed ~40% CO conversion with early catalyst selectivity inclined towards formation of gasoline (C4–C12 and diesel (C13–C20 fractions. With prolonged time-on-stream (TOS, catalyst selectivity escalated towards the heavier molecular-weight fractions such as waxes (C21+. The catalyst’s α-value, which signifies the probability of the hydrocarbon chain growth was empirically determined to be in the range of 0.85–0.87 (at H2:CO ratio = 2, demonstrating prevalence of the hydrocarbon-chain propagation, with particular predisposition for wax production. The inhibiting CO effect towards FTS was noted at molar H2:CO ratio of 1.0 and 1.5, giving only ~10% and ~20% CO conversion respectively, although with a high α-value of 0.93 in both cases, which showed predominant production of the heavier molecular weight fractions.

  16. Cobalt Fischer-Tropsch catalysts: influence of cobalt dispersion and titanium oxides promotion

    Energy Technology Data Exchange (ETDEWEB)

    Azib, H

    1996-04-10

    The aim of this work is to study the effect of Sol-Gel preparation parameters which occur in silica supported cobalt catalysts synthesis. These catalysts are particularly used for the waxes production in natural gas processing. The solids have been characterized by several techniques: transmission electron microscopy (TEM), X-ray absorption near edge spectroscopy (XANES), programmed temperature reduction (TPR), infrared spectroscopy (IR), ultraviolet spectroscopy (UV), Magnetism, thermodesorption of H{sub 2} (TPD). The results indicate that the control of the cobalt dispersion and oxide phases nature is possible by modifying Sol-Gel parameters. The catalytic tests in Fischer-Tropsch synthesis were conducted on a pilot unit under pressure (20 atm) and suggested that turnover rates were independent of Co crystallite size, Co phases in the solids (Co deg., cobalt silicate) and titanium oxide promotion. On the other methane, the C{sub 3}{sup +} hydrocarbon selectivity is increased with increasing crystallite size. Inversely, the methane production is favoured by very small crystallites, cobalt silicate increase and titanium addition. However, the latter, used as a cobalt promoter, has a benefic effect on the active phase stability during the synthesis. (author). 149 refs., 102 figs., 71 tabs.

  17. SEPARATION OF FISCHER-TROPSCH WAX FROM CATALYST BY SUPERCRITICAL EXTRACTION

    Energy Technology Data Exchange (ETDEWEB)

    Patrick C. Joyce; Mark C. Thies

    1999-03-31

    The objective of this research project was to evaluate the potential of supercritical fluid (SCF) extraction for the recovery and fractionation of the wax product from the slurry bubble column (SBC) reactor of the Fischer-Tropsch (F-T) process. The wax, comprised mostly of branched and linear alkanes with a broad molecular weight distribution up to C{sub 100}, is to be extracted with a hydrocarbon solvent that has a critical temperature near the operating temperature of the SBC reactor, i.e., 200-300 C. Aspen Plus{trademark} was used to perform process simulation studies on the proposed extraction process, with Redlich-Kwong-Soave (RKS) being used for the thermodynamic property model. In summary, we have made comprehensive VLE measurements for short alkane + long alkane systems over a wide range of pressures and temperatures, dramatically increasing the amount of high-quality data available for these simple, yet highly relevant systems. In addition, our work has demonstrated that, surprisingly, no current thermodynamic model can adequately predict VLE behavior for these systems. Thus, process simulations (such as those for our proposed SCF extraction process) that incorporate these systems can currently only give results that are qualitative at best. Although significant progress has been made in the past decade, more experimental and theoretical work remain to be done before the phase equilibria of asymmetric alkane mixtures can be predicted with confidence.

  18. Development of an Innovative XRD-DRIFTS Prototype Allowing Operando Characterizations during Fischer-Tropsch Synthesis over Cobalt-Based Catalysts under Representative Conditions

    Directory of Open Access Journals (Sweden)

    Scalbert Julien

    2015-03-01

    Full Text Available An original system combining both X-Ray Diffraction and diffuse reflectance infrared Fourier transform spectroscopy was developed with the aim to characterize Fischer-Tropsch catalysts in relevant reaction conditions. The catalytic properties of a model PtCo/silica catalyst tested with this prototype have shown to be in the same range of those obtained in similar conditions with classical fixed-bed reactors. No bulk cobalt oxidation nor sintering were observed on operando XRD patterns. The formation of linear carbonyls and adsorbed hydrocarbons species at the surface of the catalyst was observed on operando DRIFT spectra. The surface of the catalyst was also suspected to be covered with carbon species inducing unfavorable changes in selectivity.

  19. Deactivation and Regeneration of Commercial Type Fischer-Tropsch Co-Catalysts—A Mini-Review

    OpenAIRE

    Erling Rytter; Anders Holmen

    2015-01-01

    Deactivation of commercially relevant cobalt catalysts for Low Temperature Fischer-Tropsch (LTFT) synthesis is discussed with a focus on the two main long-term deactivation mechanisms proposed: Carbon deposits covering the catalytic surface and re-oxidation of the cobalt metal. There is a great variety in commercial, demonstration or pilot LTFT operations in terms of reactor systems employed, catalyst formulations and process conditions. Lack of sufficient data makes it difficult to correlat...

  20. Raising distillate selectivity and catalyst life time in Fischer-Tropsch synthesis by using a novel dual-bed reactor

    International Nuclear Information System (INIS)

    Tavasoli, A.; Sadaghiani, K.; Khodadadi, A. A.; Mortazavi, Y.

    2007-01-01

    In a novel dual bed reactor Fischer-Tropsch synthesis was studied by using two diff rent cobalt catalysts. An alkali-promoted cobalt catalyst was used in the first bed of a fixed-bed reactor followed by a Raiment promoted cobalt catalyst in the second bed. The activity, product selectivity and accelerated deactivation of the system were assessed and compared with a conventional single bed reactor system. The methane selectivity in the dual-bed reactor was about 18.9% less compared to that of the single-bed reactor. The C 5+ selectivity for the dual-bed reactor was 10.9% higher than that of the single-bed reactor. Accelerated deactivation of the catalysts in the dual-bed reactor was 42% lower than that of the single-bed reactor. It was revealed that the amount of catalysts activity recovery after regeneration at 400 d eg C in the dual-bed system is higher than that of the single-bed system

  1. 40 CFR 721.10178 - Distillates (Fischer-Tropsch), hydroisomerized middle, C10-13-branched alkane fraction.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Distillates (Fischer-Tropsch... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10178 Distillates (Fischer-Tropsch... to reporting. (1) The chemical substance identified as distillates (Fischer-Tropsch), hydroisomerized...

  2. Freeze-drying for controlled nanoparticle distribution in Co/SiO 2 Fischer–Tropsch catalysts

    NARCIS (Netherlands)

    Eggenhuisen, T.M.; Munnik, P.; Talsma, H.; de Jongh, P.E.; de Jong, K.P.

    2013-01-01

    Controlling the nanoparticle distribution over a support is considered essential to arrive at more stable catalysts. By developing a novel freeze drying method, the nanoparticle distribution was successfully manipulated for the preparation of Co/SiO2 Fischer-Tropsch catalysts using a commercial

  3. Performance of Cobalt-Based Fischer-Tropsch Synthesis Catalysts Using Dielectric-Barrier Discharge Plasma as an Alternative to Thermal Calcination

    International Nuclear Information System (INIS)

    Bai Suli; Huang Chengdu; Lv Jing; Li Zhenhua

    2012-01-01

    Co-based catalysts were prepared by using dielectric-barrier discharge (DBD) plasma as an alternative method to conventional thermal calcination. The characterization results of N 2 -physisorption, temperature programmed reduction (TPR), transmission electron microscope (TEM), and X-ray diffraction (XRD) indicated that the catalysts prepared by DBD plasma had a higher specific surface area, lower reduction temperature, smaller particle size and higher cobalt dispersion as compared to calcined catalysts. The DBD plasma method can prevent the sintering and aggregation of active particles on the support due to the decreased treatment time (0.5 h) at lower temperature compared to the longer thermal calcination at higher temperature (at 500° C for 5 h). As a result, the catalytic performance of the Fischer-Tropsch synthesis on DBD plasma treated Co/SiO 2 catalyst showed an enhanced activity, C 5+ selectivity and catalytic stability as compared to the conventional thermal calcined Co/SiO 2 catalyst.

  4. Development of the Fischer-Tropsch Process: From the Reaction Concept to the Process Book

    Directory of Open Access Journals (Sweden)

    Boyer C.

    2016-05-01

    Full Text Available The process development by IFP Energies nouvelles (IFPEN/ENI/Axens of a Fischer-Tropsch process is described. This development is based on upstream process studies to choose the process scheme, reactor technology and operating conditions, and downstream to summarize all development work in a process guide. A large amount of work was devoted to the catalyst performances on one hand and the scale-up of the slurry bubble reactor with dedicated complementary tools on the other hand. Finally, an original approach was implemented to validate both the process and catalyst on an industrial scale by combining a 20 bpd unit in ENI’s Sannazzaro refinery, with cold mock-ups equivalent to 20 and 1 000 bpd at IFPEN and a special “Large Validation Tool” (LVT which reproduces the combined effect of chemical reaction condition stress and mechanical stress equivalent to a 15 000 bpd industrial unit. Dedicated analytical techniques and a dedicated model were developed to simulate the whole process (reactor and separation train, integrating a high level of complexity and phenomena coupling to scale-up the process in a robust reliable base on an industrial scale.

  5. Biosyngas Fischer. Tropsch conversion by high Fe loaded supported catalysts prepared with ultrasound and microwave

    Energy Technology Data Exchange (ETDEWEB)

    Pirola, C.; Di Fronzo, A.; Boffito, D.C.; Bianchi, C. [Milano Univ. (Italy). Dipt. di Chimica; Di Michele, A. [Perugia Univ. (Italy). Dipt. di Fisica

    2012-07-01

    Catalysts with iron high loading of 30 wt%, promoted with K (2.0 wt%) and Cu (3.75 wt%), have been synthesized according to three different methods: (1) the traditional impregnation method (TR); (2) Ultrasound (US) assisted TR method; (3) Microwave (MW) assisted TR method. All the samples have been fully characterized by BET, ICP/OES, XRPD, TG-DTA, FT-IR, TPR, SEM and TEM and tested in a laboratory pilot plant for Fischer-Tropsch synthesis working at 220 C and 20 bar. The results of the catalysts characterization indicated that the morphology of the samples strongly depends on the method of preparation. The best FTS results in term of C{sub 2+} yield (41%) has been obtained using MW with a good value of the selectivity towards heavy hydrocarbons, while in term of CO conversion (58%), using US. The samples prepared with non-traditional methods show FTS better results, probably due to a more wide and uniform distribution of Fe in the medium during the synthesis phase. (orig.)

  6. Influence of Reduction Promoters on Stability of Cobalt/g-Alumina Fischer-Tropsch Synthesis Catalysts

    Directory of Open Access Journals (Sweden)

    Gary Jacobs

    2014-03-01

    Full Text Available This focused review article underscores how metal reduction promoters can impact deactivation phenomena associated with cobalt Fischer-Tropsch synthesis catalysts. Promoters can exacerbate sintering if the additional cobalt metal clusters, formed as a result of the promoting effect, are in close proximity at the nanoscale to other cobalt particles on the surface. Recent efforts have shown that when promoters are used to facilitate the reduction of small crystallites with the aim of increasing surface Co0 site densities (e.g., in research catalysts, ultra-small crystallites (e.g., <2–4.4 nm formed are more susceptible to oxidation at high conversion relative to larger ones. The choice of promoter is important, as certain metals (e.g., Au that promote cobalt oxide reduction can separate from cobalt during oxidation-reduction (regeneration cycles. Finally, some elements have been identified to promote reduction but either poison the surface of Co0 (e.g., Cu, or produce excessive light gas selectivity (e.g., Cu and Pd, or Au at high loading. Computational studies indicate that certain promoters may inhibit polymeric C formation by hindering C-C coupling.

  7. Performance characterization of CNTs and γ-Al2O3 supported cobalt catalysts in Fischer-Tropsch reaction

    International Nuclear Information System (INIS)

    Ali, Sardar; Zabidi, Noor Asmawati Mohd; Subbarao, Duvvuri

    2014-01-01

    Catalysts were prepared via a wet impregnation method. Different physicochemical properties of the samples were revealed by transmission electron microscope (TEM), temperature programmed reduction (H 2 -TPR) and carbon dioxide desorption (CO 2 -desorption). Fischer-Tropsch reaction (FTS) was carried out in a fixed-bed microreactor at 220°C and 1 atm, with H 2 /CO = 2v/v and space velocity, SV of 12L/g.h for 5 h. Various characterization techniques revealed that there was a stronger interaction between Co and Al 2 O 3 support compared to that of CNTs support. CNTs support increased the reducibility and decreased Co particle size. A significant increase in % CO conversion and FTS reaction rate was observed over CNTs support compared to that of Co/Al 2 O 3 . Co/CNTs resulted in higher C 5+ hydrocarbons selectivity compared to that of Co/Al 2 O 3 catalyst. CNTs are a better support for Co compared to Al 2 O 3

  8. X-ray physico-chemical imaging during activation of cobalt-based Fischer-Tropsch synthesis catalysts

    Science.gov (United States)

    Beale, Andrew M.; Jacques, Simon D. M.; Di Michiel, Marco; Mosselmans, J. Frederick W.; Price, Stephen W. T.; Senecal, Pierre; Vamvakeros, Antonios; Paterson, James

    2017-11-01

    The imaging of catalysts and other functional materials under reaction conditions has advanced significantly in recent years. The combination of the computed tomography (CT) approach with methods such as X-ray diffraction (XRD), X-ray fluorescence (XRF) and X-ray absorption near-edge spectroscopy (XANES) now enables local chemical and physical state information to be extracted from within the interiors of intact materials which are, by accident or design, inhomogeneous. In this work, we follow the phase evolution during the initial reduction step(s) to form Co metal, for Co-containing particles employed as Fischer-Tropsch synthesis (FTS) catalysts; firstly, working at small length scales (approx. micrometre spatial resolution), a combination of sample size and density allows for transmission of comparatively low energy signals enabling the recording of `multimodal' tomography, i.e. simultaneous XRF-CT, XANES-CT and XRD-CT. Subsequently, we show high-energy XRD-CT can be employed to reveal extent of reduction and uniformity of crystallite size on millimetre-sized TiO2 trilobes. In both studies, the CoO phase is seen to persist or else evolve under particular operating conditions and we speculate as to why this is observed. This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'.

  9. Fischer-Tropsch synthesis in a two-phase reactor with presaturation

    Energy Technology Data Exchange (ETDEWEB)

    Wache, W. [Bayernoil Raffineriegesellschaft mbH, Ingolstadt (Germany); Datsevich, L.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2006-07-01

    In industry, the Fischer-Tropsch (FTS) synthesis is mostly carried out in multiphase slurry or multitubular reactors (MTR), where gaseous reactants and liquid products (hydrocarbons up to waxes) are contacted in the presence of a solid catalyst. Such reactors are characterized by a complex temperature control, necessity of gas recycling, complicated design and problematic scale-up. A new alternative to conventional FTS-processes is the presaturated-one-liquid-phase (POLF) technology. The basic principle of this concept is a recirculation of the liquid phase, in which a gaseous reactant(s) is (are) solved before entering the fixed-bed reactor. In a simple column reactor, this technology ensures the effective heat removal and intensive fluid-solid mass transfer. In comparison to conventional reactors, the plant design is very simple, the temperature control is uncomplicated and there is no danger of any runaways. That results in lower investment and operation costs as well as in higher reliability. The experiments show that the conversion of CO and the product distribution of hydrocarbons are practically independent on the mode of operation (two- or three-phase system). However, in the lab-scale apparatus, water is accumulated in the loop, which leads to a loss of the catalyst activity (due to Fe-carbonate). In a technical process, the water accumulation in a loop can be eluded by taking an oil free of water from the oil work-up unit. Our experiments with the removal of water from the stream by a zeolite demonstrate a much promising applicability of the POLF process to the industrial FTS. (orig.)

  10. Fischer-Tropsch diesel production over calcium-promoted Co/alumina catalyst: Effect of reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    A.R. de la Osa; A. De Lucas; A. Romero; J.L. Valverde; P. Sanchez [University of Castilla-La Mancha, Ciudad Real (Spain). Chemical Engineering Department

    2011-05-15

    The effects of reaction conditions on the Fischer-Tropsch activity and product distribution of an alkali-earth metal promoted cobalt based catalyst were studied. The influence of the promoter on the reducibility and cobalt particle size was studied by different techniques, including N{sub 2} adsorption, X-ray diffraction, temperature-programmed reduction, temperature-programmed desorption and acid-base titrations. Experiments were carried out on a bench-scale fixed bed reactor and catalysts were prepared by incipient wetness impregnation. It was observed that addition of a small amount of calcium oxide as a promoter (0.6 wt.%) improved the cobalt oxide reducibility and reduced the formation of cobalt-aluminate species. A positive correlation between basicity and particle size was observed. In terms of FTS results, CO conversion and C{sub 5}{sup +} selectivity were found to be enhanced by the addition of this promoter. It was important to note that the addition of calcium shifted the distribution to mainly C{sub 16}-C{sub 18} hydrocarbons fraction, which could be greatly considered for a diesel formulation. Furthermore, the variation of the reaction conditions seemed to influence product distribution in a lesser extent than unpromoted catalyst. Also, a displacement of hydrocarbon distribution to higher molecular weight with decreasing space velocity and temperature was observed. Moreover, the addition of calcium to the cobalt based catalyst was found to greatly maintain selectivity to C{sub 5}{sup +} for a wide range of H{sub 2}/CO molar ratios. 60 refs., 10 figs., 5 tabs.

  11. Rate and selectivity modification in Fischer-Tropsch synthesis over charcoal supported molybdenum by forced concentration cycling

    International Nuclear Information System (INIS)

    Dun, J.W.; Gulari, E.

    1985-01-01

    Forced concentration cycling of the feed between pure CO and pure H/sub 2/ was used to successfully change both the selectivities and reactivities of promoted and unpromoted charcoal supported molybdenum catalysts in Fischer-Tropsch synthesis. It was found that with the unpromoted catalyst the rate enhancement increases with temperature and selectivity shifts towards methane. At the lower temperatures concentration cycling increases selectivity to ethane and higher hydrocarbons to levels only achievable with promised catalysts. Periodic operation with the potassium promoted catalyst results in small rate enhancements but the olefin to paraffin ratio is dramatically changed without changing the carbon number distribution

  12. New perspectives in the Fischer-Tropsch synthesis using cobalt supported on mesoporous molecular sieves; Novas perspectivas na sintese de Fischer-Tropsch usando cobalto suportado em peneiras moleculares mesoporosas

    Energy Technology Data Exchange (ETDEWEB)

    Souza, M.J.B.; Silva, A.O.S. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Engenharia Quimica; Fernandes Junior, V.J.; Araujo, A.S. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Quimica

    2004-07-01

    The conversion of synthesis gas to liquid products via Fischer-Tropsch synthesis (FTS) is an important process in the generation of clean fuels of sulfur and nitrogen compounds. Catalysts based on iron are very used in the conventional process due its cheap manufacture price. Recently the use of cobalt as promoter gave good results. MCM-41 mesoporous materials were discovered by Mobil scientists in the nineties and ever since they have great successes as support and catalyst in several processes of the oil industry as catalytic cracking, reformer and hydrotreating. In this work are presented new alternatives for FTS with the use of cobalt supported on molecular sieves of the type MCM-41. A comparative study with the usual catalysts based on silica was accomplished with different levels of cobalt. (author)

  13. Fischer-Tropsch Slurry Reactor modeling

    Energy Technology Data Exchange (ETDEWEB)

    Soong, Y.; Gamwo, I.K.; Harke, F.W. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    This paper reports experimental and theoretical results on hydrodynamic studies. The experiments were conducted in a hot-pressurized Slurry-Bubble Column Reactor (SBCR). It includes experimental results of Drakeol-10 oil/nitrogen/glass beads hydrodynamic study and the development of an ultrasonic technique for measuring solids concentration. A model to describe the flow behavior in reactors was developed. The hydrodynamic properties in a 10.16 cm diameter bubble column with a perforated-plate gas distributor were studied at pressures ranging from 0.1 to 1.36 MPa, and at temperatures from 20 to 200{degrees}C, using a dual hot-wire probe with nitrogen, glass beads, and Drakeol-10 oil as the gas, solid, and liquid phase, respectively. It was found that the addition of 20 oil wt% glass beads in the system has a slight effect on the average gas holdup and bubble size. A well-posed three-dimensional model for bed dynamics was developed from an ill-posed model. The new model has computed solid holdup distributions consistent with experimental observations with no artificial {open_quotes}fountain{close_quotes} as predicted by the earlier model. The model can be applied to a variety of multiphase flows of practical interest. An ultrasonic technique is being developed to measure solids concentration in a three-phase slurry reactor. Preliminary measurements have been made on slurries consisting of molten paraffin wax, glass beads, and nitrogen bubbles at 180 {degrees}C and 0.1 MPa. The data show that both the sound speed and attenuation are well-defined functions of both the solid and gas concentrations in the slurries. The results suggest possibilities to directly measure solids concentration during the operation of an autoclave reactor containing molten wax.

  14. Synthesis of Hydrocarbons from H2-Deficient Syngas in Fischer-Tropsch Synthesis over Co-Based Catalyst Coupled with Fe-Based Catalyst as Water-Gas Shift Reaction

    Directory of Open Access Journals (Sweden)

    Ting Ma

    2015-01-01

    Full Text Available The effects of metal species in an Fe-based catalyst on structural properties were investigated through the synthesis of Fe-based catalysts containing various metal species such, as Mn, Zr, and Ce. The addition of the metal species to the Fe-based catalyst resulted in high dispersions of the Fe species and high surface areas due to the formation of mesoporous voids about 2–4 nm surrounded by the catalyst particles. The metal-added Fe-based catalysts were employed together with Co-loaded beta zeolite for the synthesis of hydrocarbons from syngas with a lower H2/CO ratio of 1 than the stoichiometric H2/CO ratio of 2 for the Fischer-Tropsch synthesis (FTS. Among the catalysts, the Mn-added Fe-based catalyst exhibited a high activity for the water-gas shift (WGS reaction with a comparative durability, leading to the enhancement of the CO hydrogenation in the FTS in comparison with Co-loaded beta zeolite alone. Furthermore, the loading of Pd on the Mn-added Fe-based catalyst enhanced the catalytic durability due to the hydrogenation of carbonaceous species by the hydrogen activated over Pd.

  15. Effect of Drying Temperature on Iron Fischer-Tropsch Catalysts Prepared by Solvent Deficient Precipitation

    Directory of Open Access Journals (Sweden)

    Michael K. Albretsen

    2017-01-01

    Full Text Available A novel solvent deficient precipitation (SDP method to produce nanoparticles was studied for its potential in Fischer-Tropsch synthesis (FTS catalysis. Using Fe(NO33·9H2O as the iron-containing precursor, this method produces ferrihydrite particles which are then dried, calcined, reduced, and carbidized to form the active catalytic phase for FTS. Six different drying profiles, including final drying temperatures ranging between 80 and 150°C, were used to investigate the effect of ammonium nitrate (AN, a major by-product of reaction between Fe(NO33·9H2O and NH4HCO3 in the SDP method. Since AN has two phase-transitions within this range of drying temperatures, three different AN phases can exist during the drying of the catalyst precursors. These AN phases, along with physical changes occurring during the phase transitions, may affect the pore structure and the agglomeration of ferrihydrite crystallites, suggesting possible reasons for the observed differences in catalytic performance. Catalysts dried at 130°C showed the highest FTS rate and the lowest methane selectivity. In general, better catalytic performance is related to the AN phase present during drying as follows: phase III > phase II > phase I. However, within each AN phase, lower drying temperatures led to better catalytic properties.

  16. Carbon/H-ZSM-5 composites as supports for bi-functional Fischer-Tropsch synthesis catalysts

    NARCIS (Netherlands)

    Valero-Romero, M.J.; Sartipi, S.; Sun, X.; Rodríguez-Mirasol, J.; Cordero, T.; Kapteijn, F.; Gascon, J.

    2016-01-01

    Mesoporous H-ZSM-5–carbon composites, prepared via tetrapropylammonium hydroxide (TPAOH) post treatment of H-ZSM-5 followed by deposition of pyrolytic carbon, have been used as the support for the preparation of Co-based Fischer–Tropsch catalysts. The resulting catalysts display an improved

  17. Preparation for Pt-Loaded Zeolite Catalysts Using w/o Microemulsion and Their Hydrocracking Behaviors on Fischer-Tropsch Product

    Directory of Open Access Journals (Sweden)

    Toshiaki Hanaoka

    2015-02-01

    Full Text Available Pt-loaded β-type zeolite catalysts with constant Pt content (0.11 wt.% and similar pore structure were prepared using a water-in-oil (w/o microemulsion. The effect of Pt particle synthesis conditions using microemulsion (a type of Pt complex-forming agents and the molar ratio of complex-forming agent to Pt4+ on loaded Pt particle size was investigated. The Pt particle size of the Pt catalyst using tetraethylammonium chloride (TEAC as a complex-forming agent with the molar TEAC/Pt ratio 10 was the minimum value (3.8 nm, and was much smaller than that (6.7 nm prepared by the impregnation method. The utilization of the complex-forming agent of which hydrophobic groups occupied a small volume and the appropriate complex-forming agent/Pt ratio were favorable for synthesis of small Pt particles. The effect of loaded Pt particle size on the hydrocracking of the Fischer-Tropsch (FT product was investigated using the Pt-loaded zeolite catalysts at 250 °C with an initial H2 pressure of 0.5 MPa, and reaction time of 1 h. The Pt catalyst with a Pt particle size of 4.2 nm prepared using the microemulsion exhibited the maximum corresponding jet fuel yield (30.0%, which was higher than that of the impregnated catalyst.

  18. Monetization of Nigeria coal by conversion to hydrocarbon fuels through Fischer-Tropsch process

    Energy Technology Data Exchange (ETDEWEB)

    Oguejiofor, G.C. [Nnamdi Azikiwe University, Awka (Nigeria). Dept. of Chemical Engineering

    2008-07-01

    Given the instability of crude oil prices and the disruptions in crude oil supply chains, this article offers a complementing investment proposal through diversification of Nigeria's energy source and dependence. Therefore, the following issues were examined and reported: A comparative survey of coal and hydrocarbon reserve bases in Nigeria was undertaken and presented. An excursion into the economic, environmental, and technological justifications for the proposed diversification and roll-back to coal-based resource was also undertaken and presented. The technology available for coal beneficiation for environmental pollution control was reviewed and reported. The Fischer-Tropsch synthesis and its advances into Sasol's slurry phase distillate process were reviewed. Specifically, the adoption of Sasol's advanced synthol process and the slurry phase distillate process were recommended as ways of processing the products of coal gasification. The article concludes by discussing all the above-mentioned issues with regard to value addition as a means of wealth creation and investment.

  19. Study of (Fe/HZM-5) catalyst be used in the Fischer-Tropsch synthesis: preparation and characterization; Estudo do catalisador (Fe/HZSM-5) a ser utilizado na sintese de Fischer-Tropsch: preparacao e caracterizacao

    Energy Technology Data Exchange (ETDEWEB)

    Gonzaga, Arthur C. [Universidade Estadual do Maranhao (UEMA0), MA (Brazil); Sousa, Bianca V. de; Lima, Wellington S.; Rodrigues, Meiry G.F. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia Quimica

    2008-07-01

    In this work it was developed an iron catalyst supported on the ZSM-5 zeolite to be used in the Fischer-Tropsch Synthesis (FTS). The NH{sub 4}{sup +}ZSM-5 zeolitic support was submitted to the wet impregnation, using the 0.1 M of the Fe(NO{sub 3}){sub 3}.9H{sub 2}O solution to obtain the Fe/NH{sub 4}{sup +}ZSM-5 sample in the content of iron 5% wt. After, the material was submitted for the drying process and in the following, for the calcination one, obtaining the Fe/HZSM-5 form. The EDS characterization analyses showed that in the Fe/HZSM-5 sample the iron is in the Fe{sub 2}O{sub 3} form and that the impregnation and calcination processes did not cause significant exchanges in the zeolitic support framework. The results of the N{sub 2} physical adsorption of the 5% Fe/HZSM-5 showed the presence of the micropores and mesopores. From these results, the obtained material (5% Fe/HZSM-5) presents a great potential to be used like a catalyst in the FTS. (author)

  20. Performance characterization of CNTs and γ-Al{sub 2}O{sub 3} supported cobalt catalysts in Fischer-Tropsch reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Sardar, E-mail: alikhan-635@yahoo.com [Centralized Analytical Laboratory, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Zabidi, Noor Asmawati Mohd, E-mail: noorasmawati-mzabidi@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my [Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-10-24

    Catalysts were prepared via a wet impregnation method. Different physicochemical properties of the samples were revealed by transmission electron microscope (TEM), temperature programmed reduction (H{sub 2}-TPR) and carbon dioxide desorption (CO{sub 2}-desorption). Fischer-Tropsch reaction (FTS) was carried out in a fixed-bed microreactor at 220°C and 1 atm, with H{sub 2}/CO = 2v/v and space velocity, SV of 12L/g.h for 5 h. Various characterization techniques revealed that there was a stronger interaction between Co and Al{sub 2}O{sub 3} support compared to that of CNTs support. CNTs support increased the reducibility and decreased Co particle size. A significant increase in % CO conversion and FTS reaction rate was observed over CNTs support compared to that of Co/Al{sub 2}O{sub 3}. Co/CNTs resulted in higher C{sub 5+} hydrocarbons selectivity compared to that of Co/Al{sub 2}O{sub 3} catalyst. CNTs are a better support for Co compared to Al{sub 2}O{sub 3}.

  1. Overview of reactors for liquid phase Fischer-Tropsch synthesis

    International Nuclear Information System (INIS)

    Davis, Burtron H.

    2002-01-01

    The following overview is divided roughly into three sections. The first section covers the period from the late 1920s when the first liquid phase synthesis was first conducted until about 1960 when the interest in Fischer-Tropsch synthesis (FTS) declined because of the renewed view of an abundance of petroleum at a low price. The second period includes the activity that resulted from the oil shortage due to the Arab embargo in 1972 and covers from about 1960 to 1985 when the period of gloomy projections for rapidly increasing prices for crude had faded away. The third section covers the period from when the interest in FTS was no longer driven by the projected supply and/or price of petroleum but by the desire to monetize stranded natural gas and/or terminate flaring the gas associated with petroleum production and other environmental concerns (1985 to date). These sections are followed by a brief overview of the current status of the scientific and engineering understanding of slurry bubble column reactors

  2. The role of palladium in iron based Fischer-Tropsch catalysts prepared by flame spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Minnermann, M.; Zielasek, V.; Baeumer, M. [Bremen Univ. (DE). Inst. of Applied and Physical Chemistry (IAPC); Pokhrei, S.; Maedler, L. [Bremen Univ. (DE). Foundation Inst. of Materials Science (IWT); Thiel, K. [Fraunhofer Institute for Manufactoring Technology and Applied Materials Research, Bremen (Germany)

    2011-07-01

    Flame spray pyrolysis (FSP) is a novel technique for the fabrication of nanostructured catalysts with far-reaching options to control structure and composition even in cases where complex composites need to be prepared. In this study, we took advantage of this technique to synthesize highly dispersed pure and Pd-doped iron oxide nanoparticles and investigated them as Fischer-Tropsch (FT) catalysts. By systematically varying the Pd content over a large range from 0.1 wt % to 10 wt %, we were able to directly analyze the influence of the Pd content on activity and selectivity. In addition to catalytic measurements, the structure and composition of the particles were characterized before and after these measurements, using transmission electron microscopy, adsorption measurements, X-ray diffraction and EXAFS. The comparison revealed, on the one hand, that small Pd clusters (diameter: 1-2 nm) evolve from initially homogeneously distributed Pd and, on the other hand, that the iron oxide transforms into iron carbides depending on the Pd content. The presence of Pd influences the particle size in the pristine samples (8 - 11 nm), resulting in specific surface areas that increase as the Pd content increases. However, after activation and reaction the specific surface areas become similar due to partial agglomeration and sintering. In a fixed bed FT reaction test, enhanced FT activity was observed with increasing Pd content while the selectivity shifts to longer chain hydrocarbons, mainly paraffins. (orig.)

  3. BASELINE DESIGN/ECONOMICS FOR ADVANCED FISCHER-TROPSCH TECHNOLOGY; FINAL

    International Nuclear Information System (INIS)

    None

    1998-01-01

    Bechtel, along with Amoco as the main subcontractor, developed a Baseline design, two alternative designs, and computer process simulation models for indirect coal liquefaction based on advanced Fischer-Tropsch (F-T) technology for the U. S. Department of Energy's (DOE's) Federal Energy Technology Center (FETC)

  4. Studies of carbon deposition and consumption on Ru/TiO2 during Fischer-Tropsch synthesis

    International Nuclear Information System (INIS)

    Yokomizo, G.; Bell, A.T.; Duncan, T.M.

    1986-01-01

    Isotropic tracer techniques have been used to characterize the dynamics of carbon deposition on the surface of a Ru/TiO 2 catalyst during Fischer-Tropsch synthesis and 13 C-NMR spectroscopy has been used to characterize the structure of the deposited carbon. Elemental carbon, designated C/sub α/ is formed very rapidly, whereas alkyl carbon, designated C/sub β/ accumulates much more slowly. The influence of catalyst reduction on temperature, reaction conditions, and time under reaction conditions on the surface concentrations and reactivity of C/sub α/ and C/sub β/ will be discussed. It will be shown that C/sub β/ progressively becomes less reactive and may be the precursor to the formation of graphitic carbon

  5. Fischer-Tropsch synthesis : catalysts and chemistry

    NARCIS (Netherlands)

    Loosdrecht, van de J.; Botes, F.G.; Ciobica, I.M.; Ferreira, A.C.; Gibson, P.; Moodley, D.J.; Saib, A.M.; Visagie, J.L.; Weststrate, C.J.; Niemantsverdriet, J.W.; Reedijk, J.; Poeppelmeier, K.

    2013-01-01

    The Fischer–Tropsch synthesis represents a time-tested and fully proven technology for the conversion of synthesis gas (CO + H2) into paraffins, olefins, and oxygenated hydrocarbons. Depending on the origin of the syngas, one speaks of gas-to-liquids, coal-to-liquids, biomass-to-liquids, or

  6. Impact of Contaminants Present in Coal-Biomass Derived Synthesis Gas on Water-gas Shift and Fischer-Tropsch Synthesis Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gokhan [TDA Research, Inc., Wheat Ridge, CO (United States)

    2013-02-15

    Co-gasification of biomass and coal in large-scale, Integrated Gasification Combined Cycle (IGCC) plants increases the efficiency and reduces the environmental impact of making synthesis gas ("syngas") that can be used in Coal-Biomass-to-Liquids (CBTL) processes for producing transportation fuels. However, the water-gas shift (WGS) and Fischer-Tropsch synthesis (FTS) catalysts used in these processes may be poisoned by multiple contaminants found in coal-biomass derived syngas; sulfur species, trace toxic metals, halides, nitrogen species, the vapors of alkali metals and their salts (e.g., KCl and NaCl), ammonia, and phosphorous. Thus, it is essential to develop a fundamental understanding of poisoning/inhibition mechanisms before investing in the development of any costly mitigation technologies. We therefore investigated the impact of potential contaminants (H2S, NH3, HCN, AsH3, PH3, HCl, NaCl, KCl, AS3, NH4NO3, NH4OH, KNO3, HBr, HF, and HNO3) on the performance and lifetime of commercially available and generic (prepared in-house) WGS and FT catalysts.

  7. Fischer-Tropsch Cobalt Catalyst Improvements with the Presence of TiO2, La2O3, and ZrO2 on an Alumina Support

    Science.gov (United States)

    Klettlinger, Jennifer Lindsey Suder

    2012-01-01

    The objective of this study was to evaluate the effect of titanium oxide, lanthanum oxide, and zirconium oxide on alumina supported cobalt catalysts. The hypothesis was that the presence of lanthanum oxide, titanium oxide, and zirconium oxide would reduce the interaction between cobalt and the alumina support. This was of interest because an optimized weakened interaction could lead to the most advantageous cobalt dispersion, particle size, and reducibility. The presence of these oxides on the support were investigated using a wide range of characterization techniques such as SEM, nitrogen adsorption, x-ray diffraction (XRD), temperature programmed reduction (TPR), temperature programmed reduction after reduction (TPR-AR), and hydrogen chemisorptions/pulse reoxidation. Results indicated that both La2O3 and TiO2 doped supports facilitated the reduction of cobalt oxide species in reference to pure alumina supported cobalt catalysts, however further investigation is needed to determine the effect of ZrO2 on the reduction profile. Results showed an increased corrected cluster size for all three doped supported catalysts in comparison to their reference catalysts. The increase in reduction and an increase in the cluster size led to the conclusion that the support-metal interaction weakened by the addition of TiO2 and La2O3. It is also likely that the interaction decreased upon presence of ZrO2 on the alumina, but further research is necessary. Preliminary results have indicated that the alumina-supported catalysts with titanium oxide and lanthanum oxide present are of interest because of the weakened cobalt support interaction. These catalysts showed an increased extent of reduction, therefore more metallic cobalt is present on the support. However, whether or not there is more cobalt available to participate in the Fischer-Tropsch synthesis reaction (cobalt surface atoms) depends also on the cluster size. On one hand, increasing cluster size alone tends to decrease the

  8. Fischer-Tropsch synthesis in supercritical phase carbon dioxide: Recycle rates

    Science.gov (United States)

    Soti, Madhav

    With increasing oil prices and attention towards the reduction of anthropogenic CO2, the use of supercritical carbon dioxide for Fischer Tropsch Synthesis (FTS) is showing promise in fulfilling the demand of clean liquid fuels. The evidence of consumption of carbon dioxide means that it need not to be removed from the syngas feed to the Fischer Tropsch reactor after the gasification process. Over the last five years, research at SIUC have shown that FTS in supercritical CO2reduces the selectivities for methane, enhances conversion, reduces the net CO2produces in the coal to liquid fuels process and increase the life of the catalyst. The research has already evaluated the impact of various operating and feed conditions on the FTS for the once through process. We believe that the integration of unreacted feed recycle would enhance conversion, increase the yield and throughput of liquid fuels for the same reactor size. The proposed research aims at evaluating the impact of recycle of the unreacted feed gas along with associated product gases on the performance of supercritical CO2FTS. The previously identified conditions will be utilized and various recycle ratios will be evaluated in this research once the recycle pump and associated fittings have been integrated to the supercritical CO2FTS. In this research two different catalysts (Fe-Zn-K, Fe-Co-Zn-K) were analyzed under SC-FTS in different recycle rate at 350oC and 1200 psi. The use of recycle was found to improve conversion from 80% to close to 100% with both catalysts. The experiment recycle rate at 4.32 and 4.91 was clearly surpassing theoretical recycle curve. The steady state reaction rate constant was increased to 0.65 and 0.8 min-1 for recycle rate of 4.32 and 4.91 respectively. Carbon dioxide selectivity was decreased for both catalyst as it was converting to carbon monoxide. Carbon dioxide consumption was increased from 0.014 to 0.034 mole fraction. This concluded that CO2is being used in the system and

  9. Subtask 3.4 - Fischer - Tropsch Fuels Development

    Energy Technology Data Exchange (ETDEWEB)

    Strege, Joshua; Snyder, Anthony; Laumb, Jason; Stanislowski, Joshua; Swanson, Michael

    2012-05-01

    Under Subtask 3.4, the Energy & Environmental Research Center (EERC) examined the opportunities and challenges facing FischerTropsch (FT) technology in the United States today. Work was completed in two distinct budget periods (BPs). In BP1, the EERC examined the technical feasibility of using modern warm-gas cleanup techniques for FT synthesis. FT synthesis is typically done using more expensive and complex cold-gas sweetening. Warm-gas cleanup could greatly reduce capital and operating costs, making FT synthesis more attractive for domestic fuel production. Syngas was generated from a variety of coal and biomass types; cleaned of sulfur, moisture, and condensables; and then passed over a pilot-scale FT catalyst bed. Laboratory and modeling work done in support of the pilot-scale effort suggested that the catalyst was performing suboptimally with warm-gas cleanup. Long-term trends showed that the catalyst was also quickly deactivating. In BP3, the EERC compared FT catalyst results using warm-gas cleanup to results using cold-gas sweetening. A gas-sweetening absorption system (GSAS) was designed, modeled, and constructed to sweeten syngas between the gasifier and the pilot-scale FT reactor. Results verified that the catalyst performed much better with gas sweetening than it had with warm-gas cleanup. The catalyst also showed no signs of rapid deactivation when the GSAS was running. Laboratory tests in support of this effort verified that the catalyst had deactivated quickly in BP1 because of exposure to syngas, not because of any design flaw with the pilot-scale FT reactor itself. Based on these results, the EERC concludes that the two biggest issues with using syngas treated with warm-gas cleanup for FT synthesis are high concentrations of CO{sub 2} and volatile organic matter. Other catalysts tested by the EERC may be more tolerant of CO{sub 2}, but volatile matter removal is critical to ensuring long-term FT catalyst operation. This subtask was funded through

  10. Shape-selective catalysts for Fischer-Tropsch chemistry. Final report: January 1, 2001 - December 31, 2008

    International Nuclear Information System (INIS)

    Cronauer, D.C.

    2011-01-01

    Argonne National Laboratory carried out a research program to create, prepare, and evaluate catalysts to promote Fischer-Tropsch (FT) chemistry-specifically, the reaction of hydrogen with carbon monoxide to form long-chain hydrocarbons. In addition to needing high activity, it was desirable that the catalysts have high selectivity and stability with respect to both mechanical strength and aging properties. It was desired that selectivity be directed toward producing diesel fraction components and avoiding excess yields of both light hydrocarbons and heavy waxes. The original goal was to produce shape-selective catalysts that had the potential to limit the formation of long-chain products and yet retain the active metal sites in a protected 'cage.' This cage would also restrict their loss by attrition during use in slurry-bed reactors. The first stage of this program was to prepare and evaluate iron-containing particulate catalysts. Such catalysts were prepared with silica-containing fractal cages. The activity and strength was essentially the same as that of catalysts without the cages. Since there was no improvement, the program plan was modified as discussed below. A second experimental stage was undertaken to prepare and evaluate active FT catalysts formed by atomic-layer deposition [ALD] of active components on supported membranes and particulate supports. The concept was that of depositing active metals (i.e. ruthenium, iron or cobalt) upon membranes with well defined flow channels of small diameter and length such that the catalytic activity and product molecular weight distribution could be controlled. In order to rapidly evaluate the catalytic membranes, the ALD coating processes were performed in an 'exploratory mode' in which ALD procedures from the literature appropriate for coating flat surfaces were applied to the high surface area membranes. Consequently, the Fe and Ru loadings in the membranes were likely to be smaller than those expected for

  11. Six-flow operations for catalyst development in Fischer-Tropsch synthesis : Bridging the gap between high-throughput experimentation and extensive product evaluation

    NARCIS (Netherlands)

    Sartipi, S.; Jansma, H.; Bosma, D.; Boshuizen, B.; Makkee, M.; Gascon, J.; Kapteijn, F.

    2013-01-01

    Design and operation of a “six-flow fixed-bed microreactor” setup for Fischer-Tropsch synthesis (FTS) is described. The unit consists of feed and mixing, flow division, reaction, separation, and analysis sections. The reactor system is made of five heating blocks with individual temperature

  12. The role of Fischer-Tropsch catalysis in solar nebula chemistry

    NARCIS (Netherlands)

    Kress, ME; Tielens, AGGM

    Fischer-Tropsch catalysis, the iron/nickel catalyzed conversion of CO and H(2) to hydrocarbons, would have been the only thermally-driven pathway available in the solar nebula to convert CO into other forms of carbon. A major issue in meteoritics is to determine the origin of meteoritic organics:

  13. Deactivation and Regeneration of Commercial Type Fischer-Tropsch Co-Catalysts—A Mini-Review

    Directory of Open Access Journals (Sweden)

    Erling Rytter

    2015-03-01

    Full Text Available Deactivation of commercially relevant cobalt catalysts for Low Temperature Fischer-Tropsch (LTFT synthesis is discussed with a focus on the two main long-term deactivation mechanisms proposed: Carbon deposits covering the catalytic surface and re-oxidation of the cobalt metal. There is a great variety in commercial, demonstration or pilot LTFT operations in terms of reactor systems employed, catalyst formulations and process conditions. Lack of sufficient data makes it difficult to correlate the deactivation mechanism with the actual process and catalyst design. It is well known that long term catalyst deactivation is sensitive to the conditions the actual catalyst experiences in the reactor. Therefore, great care should be taken during start-up, shutdown and upsets to monitor and control process variables such as reactant concentrations, pressure and temperature which greatly affect deactivation mechanism and rate. Nevertheless, evidence so far shows that carbon deposition is the main long-term deactivation mechanism for most LTFT operations. It is intriguing that some reports indicate a low deactivation rate for multi-channel micro-reactors. In situ rejuvenation and regeneration of Co catalysts are economically necessary for extending their life to several years. The review covers information from open sources, but with a particular focus on patent literature.

  14. Iron on mixed zirconia-titania substrate F-T catalyst

    International Nuclear Information System (INIS)

    Dyer, P.N.; Nordquist, A.F.; Pierantozzi, R.

    1988-01-01

    This patent deals with a Fischer-Tropsch catalyst comprising iron co-deposited with or deposited on particles comprising a mixture of zirconia and titania, preferably formed by co-precipitation of compounds convertible to zirconia and titania, such as zirconium and titanium alkoxide. The invention also comprises the method of making this catalyst and an improved Fischer-Tropsch reaction process in which the catalyst is utilized

  15. The application of inelastic neutron scattering to explore the significance of a magnetic transition in an iron based Fischer-Tropsch catalyst that is active for the hydrogenation of CO

    International Nuclear Information System (INIS)

    Warringham, Robbie; McFarlane, Andrew R.; Lennon, David; MacLaren, Donald A.; Webb, Paul B.; Tooze, Robert P.; Taylor, Jon; Ewings, Russell A.; Parker, Stewart F.

    2015-01-01

    An iron based Fischer-Tropsch synthesis catalyst is evaluated using CO hydrogenation at ambient pressure as a test reaction and is characterised by a combination of inelastic neutron scattering (INS), powder X-ray diffraction, temperature-programmed oxidation, Raman scattering, and transmission electron microscopy. The INS spectrum of the as-prepared bulk iron oxide pre-catalyst (hematite, α-Fe 2 O 3 ) is distinguished by a relatively intense band at 810 cm −1 , which has previously been tentatively assigned as a magnon (spinon) feature. An analysis of the neutron scattering intensity of this band as a function of momentum transfer unambiguously confirms this assignment. Post-reaction, the spinon feature disappears and the INS spectrum is characterised by the presence of a hydrocarbonaceous overlayer. A role for the application of INS in magnetic characterisation of iron based FTS catalysts is briefly considered

  16. Meteorites, Organics and Fischer-Tropsch Type Reaction: Production and Destruction

    Science.gov (United States)

    Johnson, Natasha M.; Burton, A. S.; Nurth, J. A., III

    2011-01-01

    There has been an ongoing debate about the relative importance about the various chemical reactions that fonned organics in the early solar system. One proposed method that has long been recognized as a potential source of organics is Fischer-Tropsch type (FTT) synthesis. This process is commonly used in industry to produce fuels (i.e., complex hydrocarbons) by catalytic hydrogenation of carbon monoxide. Hill and Nuth were the first to publish results of FTT experiments that also included Haber-Bosch (HB) processes (hydrogenation of nitrogen. Their findings included the production of nitrilebearing compounds as well as trace amounts of methyl amine. Previous experience with these reactions revealed that the organic coating deposited on the grains is also an efficient catalyst and that the coating is composed of insoluble organic matter (10M) and could be reminiscent of the organic matrix found in some meteorites. This current set of FTT-styled experiments tracks the evolution of a set of organics, amino acids, in detail.

  17. Honeycomb supports with high thermal conductivity for the Tischer-Tropsch synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Visconti, C.G.; Rronconi, E.; Groppi, G.; Lietti, L. [Politecnico di Milano (Italy). Dipt. di Energia; Iovane, M.; Rossini, S.; Zennaro, R. [Eni S.p.A., San Donato Milanese (Italy). Div. Exploration and Production

    2011-07-01

    The potential of multitubular reactors loaded with washcoated structured catalysts having highly conductive honeycomb supports is investigated herein in the low temperature Fischer- Tropsch synthesis by means of a theoretical investigation. Simulation results indicate that extruded aluminum honeycomb monoliths, washcoated with a Co-based catalyst, are promising for the application at the industrial scale, in particular when adopting supports with high cell densities and catalysts with high activity. Limited temperature gradients within the reactor are in fact possible even at extreme process conditions, thus leading to interesting volumetric reactor yields with negligible pressure drop. This result is achieved without the need of cofeeding to the reactor large amounts of liquid hydrocarbons to remove the reaction heat, as opposite to existing industrial Fischer-Tropsch packed-bed reactors. (orig.)

  18. From Nanoparticles to Process An Aberration Corrected TEM Study of Fischer Tropsch Catalysts at Various Steps of the Process

    International Nuclear Information System (INIS)

    Braidy, N.; Blanchard, J.; Abatzoglou, N.; Andrei, C.

    2011-01-01

    χThe nanostructure of Fischer-Tropsch (FT) Fe carbides are investigated using aberration-corrected high-resolution transmission electron microscopy (TEM). The plasma-generated Fe carbides are analyzed just after synthesis, following reduction via a H2 treatment step and once used as FT catalyst and deactivated. The as-produced nanoparticles (NPs) are seen to be abundantly covered with graphitic and amorphous carbon. Using the extended information limit from the spherical aberration-corrected TEM, the NPs could be indexed as a mixture of NPs in the θ-Fe 3 C and χ-Fe 5 C 2 phases. The reduction treatment exposed the NPs by removing most of the carbonaceous speSubscript textcies while retaining the χ-Fe 5 C 2 . Fe-carbides NPs submitted to conditions typical to FT synthesis develop a Fe3O4 shell which eventually consumes the NPs up to a point where 3-4 nm residual carbide is left at the center of the particle. Subscript textVarious mechanisms explaining the formation of such a microstructure are discussed. (author)

  19. Shape-selective catalysts for Fischer-Tropsch chemistry. Final report : January 1, 2001 - December 31, 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Cronauer, D. C. (Chemical Sciences and Engineering Division)

    2011-04-11

    Argonne National Laboratory carried out a research program to create, prepare, and evaluate catalysts to promote Fischer-Tropsch (FT) chemistry-specifically, the reaction of hydrogen with carbon monoxide to form long-chain hydrocarbons. In addition to needing high activity, it was desirable that the catalysts have high selectivity and stability with respect to both mechanical strength and aging properties. It was desired that selectivity be directed toward producing diesel fraction components and avoiding excess yields of both light hydrocarbons and heavy waxes. The original goal was to produce shape-selective catalysts that had the potential to limit the formation of long-chain products and yet retain the active metal sites in a protected 'cage.' This cage would also restrict their loss by attrition during use in slurry-bed reactors. The first stage of this program was to prepare and evaluate iron-containing particulate catalysts. Such catalysts were prepared with silica-containing fractal cages. The activity and strength was essentially the same as that of catalysts without the cages. Since there was no improvement, the program plan was modified as discussed below. A second experimental stage was undertaken to prepare and evaluate active FT catalysts formed by atomic-layer deposition [ALD] of active components on supported membranes and particulate supports. The concept was that of depositing active metals (i.e. ruthenium, iron or cobalt) upon membranes with well defined flow channels of small diameter and length such that the catalytic activity and product molecular weight distribution could be controlled. In order to rapidly evaluate the catalytic membranes, the ALD coating processes were performed in an 'exploratory mode' in which ALD procedures from the literature appropriate for coating flat surfaces were applied to the high surface area membranes. Consequently, the Fe and Ru loadings in the membranes were likely to be smaller than those

  20. Effect of Manganese Promotion on Al-Pillared Montmorillonite Supported Cobalt Nanoparticles for Fischer-Tropsch Synthesis

    International Nuclear Information System (INIS)

    Ahmad, N.; Hussain, S. T.; Abbas, S. M.; Khan, Y.; Muhammad, B.; Ali, N.

    2013-01-01

    The effect of Mn-promotion on high surface area Al-pillared montmorillonite (AlMMT) supported Co nanoparticles prepared by hydrothermal method have been investigated. A series of different weight% Mn-promoted Co nanoparticles were prepared and characterized by XRD, TPR, TGA, BET and SEM techniques. An increase in the surface area of MMT is observed with Al-pillaring. Fischer-Tropsch catalytic activity of the as prepared catalysts was studied in a fixed bed micro reactor at 225 .deg. C, H 2 /CO = 2 and at 1 atm pressure. The data showed that by the addition of Mn the selectivity of C 1 dropped drastically while that of C 2 -C 12 hydrocarbons increased significantly over all the Mn-promoted Co/AlMMT catalysts. The C 13 -C 20 hydrocarbons remained almost same for all the catalysts while the selectivity of C 21+ long chain hydrocarbons decreased considerably with the addition of Mn. The catalyst with 3.5%Mn showed lowest C 21+ and highest C 2 -C 12 hydrocarbons selectivity due to cracking of long chain hydrocarbons over acidic sites of MMT

  1. Metal-carbon nanosystem IR-PVA/Fe-Co for catalysis in the Fischer-Tropsch synthesis

    International Nuclear Information System (INIS)

    Vasilev, A A; Dzidziguri, E L; Ivantsov, M I; Efimov, M N

    2016-01-01

    Metal-carbon nanosystems consisting of nanodimensional bimetallic particles of Fe- Co dispersed in a carbon matrix for the Fischer-Tropsch synthesis were studied. Prepared metal-carbon nanopowders samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). It was shown formation of FeCo nanoparticles with body-centered cubic structures started at 400 °C. FeCo nanoparticles have spherical form, the mean size is 7 - 12 nm and uniform distribution in a carbon matrix. The metal-carbon nanosystem demonstrates a catalytic activity in the Fischer- Tropsch synthesis. The maximum yield of liquid hydrocabons C 5+ was 92 g/m 3 while the selectivity for the target product - 35%. (paper)

  2. The application of inelastic neutron scattering to explore the significance of a magnetic transition in an iron based Fischer-Tropsch catalyst that is active for the hydrogenation of CO

    Energy Technology Data Exchange (ETDEWEB)

    Warringham, Robbie; McFarlane, Andrew R.; Lennon, David, E-mail: David.Lennon@Glasgow.ac.uk [School of Chemistry, University of Glasgow, Joseph Black Building, Glasgow, Scotland G12 8QQ (United Kingdom); MacLaren, Donald A. [School of Physics and Astronomy, University of Glasgow, The Kelvin Building, Glasgow, Scotland G12 8QQ (United Kingdom); Webb, Paul B.; Tooze, Robert P. [Sasol Technology UK Ltd., Purdie Building, North Haugh, St Andrews, Fife KY16 9ST (United Kingdom); Taylor, Jon; Ewings, Russell A.; Parker, Stewart F. [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom)

    2015-11-07

    An iron based Fischer-Tropsch synthesis catalyst is evaluated using CO hydrogenation at ambient pressure as a test reaction and is characterised by a combination of inelastic neutron scattering (INS), powder X-ray diffraction, temperature-programmed oxidation, Raman scattering, and transmission electron microscopy. The INS spectrum of the as-prepared bulk iron oxide pre-catalyst (hematite, α-Fe{sub 2}O{sub 3}) is distinguished by a relatively intense band at 810 cm{sup −1}, which has previously been tentatively assigned as a magnon (spinon) feature. An analysis of the neutron scattering intensity of this band as a function of momentum transfer unambiguously confirms this assignment. Post-reaction, the spinon feature disappears and the INS spectrum is characterised by the presence of a hydrocarbonaceous overlayer. A role for the application of INS in magnetic characterisation of iron based FTS catalysts is briefly considered.

  3. Modeling and optimization of Fischer-Tropsch synthesis over Co-Mn-Ce/SiO_2 catalyst using hybrid RSM/LHHW approaches

    International Nuclear Information System (INIS)

    Zohdi-Fasaei, Hossein; Atashi, Hossein; Farshchi Tabrizi, Farshad; Mirzaei, Ali Akbar

    2017-01-01

    Operating conditions considerably affect the energy required for Fischer-Tropsch synthesis, depending on the catalyst composition and reactor type (catalyst system). This paper reports the use of cobalt-manganese-cerium supported on silica as a novel CO hydrogenation catalyst, to produce hydrocarbons in a fixed bed micro-reactor. Response surface methodology (RSM) was applied to study the effects of temperature, pressure, feed ratio and their interactions on CO consumption rate, and the selectivity of light olefins (light olefinity), methane and C_5_+ hydrocarbons. Quadratic mathematical models adequately described the responses in this catalyst system. According to Langmuir Hinshelwood Hougen Watson (LHHW) approach, kinetic mechanism of the reaction was found to be an associative adsorption of H_2 and CO. Statistical analysis demonstrated that pressure and feed ratio were the most important factors for the production of C_5_+ and light alkenes, respectively. Model graphs indicated that minimum methane selectivity was achieved at 523.15 k and 2 bar. The maximum amounts of light olefins and heavier hydrocarbons were obtained at H_2/CO = 1 and H_2/CO = 2, respectively. Characterization of precursor and calcined catalyst (before and after the reaction) was carried out using SEM and BET techniques. - Highlights: • The performance of a new catalytic system was studied using RSM as a research plan. • Interactions between significant factors were investigated using mathematical models. • Based on LHHW approach, kinetic mechanism was molecular adsorptions of H_2 and CO. • RSM rate expression was in consistent with the LHHW kinetic model. • Hybrid RSM/LHHW is promising for optimization, mechanism and selectivity studies.

  4. Impact of H2/CO ratios on phase and performance of Mn-modified Fe-based Fischer Tropsch synthesis catalyst

    International Nuclear Information System (INIS)

    Ding, Mingyue; Yang, Yong; Li, Yongwang; Wang, Tiejun; Ma, Longlong; Wu, Chuangzhi

    2013-01-01

    Highlights: ► Decreasing H 2 /CO ratio facilitated the conversion of Fe 3 O 4 to iron carbides on the surface layers. ► The formation of surface carbonaceous species was promoted in higher CO partial pressure. ► The formation of iron carbides on the surface of Fe 3 O 4 provided the FTS active sites. ► Decreasing H 2 /CO ratio promoted the product shifting towards heavy hydrocarbons. - Abstract: Impacts of H 2 /CO ratios on both the bulky and surface compositions of an iron–manganese based catalyst were investigated by XRD, MES, N 2 -physisorption, XPS and LRS. Fischer–Tropsch (F–T) synthesis performances were studied in a slurry-phase continuously stirred tank reactor. The characterization results showed that the fresh catalyst was comprised of the hematite, which was converted firstly to Fe 3 O 4 , and then carburized to iron carbides in both the bulk and surface regions under different H 2 /CO ratios atmosphere. Pretreatment in lower H 2 /CO ratio facilitated the formation of iron carbides on the surface of magnetite and surface carbonaceous species. During the F–T synthesis reaction, the catalyst reduced in lower H 2 /CO ratio presented higher catalytic activity, which is assigned probably to the formation of more iron carbides (especially for χ-Fe 5 C 2 ) on the surface of magnetite. The increase of CO partial pressure promoted the product distribution shifting towards heavy hydrocarbons

  5. Small-Scale Coal-Biomass to Liquids Production Using Highly Selective Fischer-Tropsch Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gangwal, Santosh K. [Southern Research Institute, Durham, NC (United States); McCabe, Kevin [Southern Research Institute, Durham, NC (United States)

    2015-04-30

    The research project advanced coal-to-liquids (CTL) and coal-biomass to liquids (CBTL) processes by testing and validating Chevron’s highly selective and active cobalt-zeolite hybrid Fischer-Tropsch (FT) catalyst to convert gasifier syngas predominantly to gasoline, jet fuel and diesel range hydrocarbon liquids, thereby eliminating expensive wax upgrading operations The National Carbon Capture Center (NCCC) operated by Southern Company (SC) at Wilsonville, Alabama served as the host site for the gasifier slip-stream testing/demonstration. Southern Research designed, installed and commissioned a bench scale skid mounted FT reactor system (SR-CBTL test rig) that was fully integrated with a slip stream from SC/NCCC’s transport integrated gasifier (TRIGTM). The test-rig was designed to receive up to 5 lb/h raw syngas augmented with bottled syngas to adjust the H2/CO molar ratio to 2, clean it to cobalt FT catalyst specifications, and produce liquid FT products at the design capacity of 2 to 4 L/day. It employed a 2-inch diameter boiling water jacketed fixed-bed heat-exchange FT reactor incorporating Chevron’s catalyst in Intramicron’s high thermal conductivity micro-fibrous entrapped catalyst (MFEC) packing to efficiently remove heat produced by the highly exothermic FT reaction.

  6. Nitrogen isotope fractionations in the Fischer-Tropsch synthesis and in the Miller-Urey reaction

    International Nuclear Information System (INIS)

    Chun-Chan Kung; Hayatsu, R.; Studier, M.H.; Clayton, R.N.; Chicago Univ., IL; Chicago Univ., IL

    1979-01-01

    Nitrogen isotope fractionations have been measured in Fischer-Tropsch and Miller-Urey reactions in order to determine whether these processes can account for the large 15 N/ 14 N ratios found in organic matter in carbonaceous chondrites. Polymeric material formed in the Fischer-Tropsch reaction was enriched in 15 N by only 3 promille relative to the starting material (NH 3 ). The 15 N enrichment in polymers from the Miller-Urey reaction was 10-12 promille. Both of these fractionations are small compared to the 80-90 promille differences observed between enstatite chondrites and carbonaceous chondrites. These large differences are apparently due to temporal or spatial variations in the isotopic composition of nitrogen in the solar nebula, rather than to fractionation during the production of organic compounds. (orig.)

  7. Incorporation of catalytic dehydrogenation into fischer-tropsch synthesis to significantly reduce carbon dioxide emissions

    Science.gov (United States)

    Huffman, Gerald P.

    2012-11-13

    A new method of producing liquid transportation fuels from coal and other hydrocarbons that significantly reduces carbon dioxide emissions by combining Fischer-Tropsch synthesis with catalytic dehydrogenation is claimed. Catalytic dehydrogenation (CDH) of the gaseous products (C1-C4) of Fischer-Tropsch synthesis (FTS) can produce large quantities of hydrogen while converting the carbon to multi-walled carbon nanotubes (MWCNT). Incorporation of CDH into a FTS-CDH plant converting coal to liquid fuels can eliminate all or most of the CO.sub.2 emissions from the water-gas shift (WGS) reaction that is currently used to elevate the H.sub.2 level of coal-derived syngas for FTS. Additionally, the FTS-CDH process saves large amounts of water used by the WGS reaction and produces a valuable by-product, MWCNT.

  8. Moessbauer study of iron-carbide growth and Fischer-Tropsch activity

    Energy Technology Data Exchange (ETDEWEB)

    Rao, K.R.P.M.; Huggins, F.E.; Huffman, G.P. [Univ. of Kentucky, Lexington, (United States)] [and others

    1995-12-31

    There is a need to establish a correlation between the Fischer-Tropsch (FT) activity of an iron-based catalyst and the catalyst phase during FT synthesis. The nature of iron phases formed during activation and FT synthesis is influenced by the nature of the gas and pressure apart from other parameters like temperature, flow rate etc., used for activation. Moessbauer investigations of iron-based catalysts subjected to pretreatment at two different pressures in gas atmospheres containing mixtures of CO, H{sub 2}, and He have been carried out. Studies on UCI 1185-57 (64%Fe{sub 2}O{sub 3}/5%CuO/1%K{sub 2}O/30% Kaolin) catalyst indicate that activation of the catalyst in CO at 12 atms. leads to the formation of 100% magnetite and the magnetite formed gets rapidly converted to at least 90% of {chi}-Fe{sub 5}C{sub 2} during activation. The FT activity was found to be good at 70-80% of (H{sub 2}+CO) conversion. On the other hand, activation. The FT activity was found to be good at 70-80% of (H{sub 2}+CO) conversion. On the other hand, activation of the catalyst in synthesis gas at 12 atms. leads to formation of Fe{sub 3}O{sub 4} and it gets sluggishly converted to {chi}-Fe{sub 5}C{sub 2} and {epsilon}-Fe{sub 2.2}C during activation and both continue to grow slowly during FT synthesis. FT activity is found to be poor. Pretreatment of the catalyst, 100fe/3.6Si/0.71K at a low pressure of 1 atms. in syngas gave rise to the formation of {chi}-Fe{sub 5}C{sub 2} and good FT activity. On the other hand, pretreatment of the catalyst, 100Fe/3.6Si/0.71K at a relatively high pressure of 12 atms. in syngas did not give rise to the formation any carbide and FT activity was poor.

  9. Cerium promoted Fischer-Tropsch catalysts

    International Nuclear Information System (INIS)

    Fiato, R.A.; Bar-Gadda, R.; Miseo, S.

    1987-01-01

    This patent describes a hydrocarbon synthesis catalyst composition comprising sintered combination metal oxides having the following components in the stated weight percentage of the catalyst composition: (a) about 5 to about 80 weight percent Fe oxide; (b) about 4 to about 20 weight percent Zn oxide; (c) about 10 to about 40 weight percent Ti and/or Mn oxide; (d) about 1 to about 5 weight percent K, Rb, and/or Cs oxide; and (e) about 1 to about 10 weight percent Ce oxide, such that where the catalyst contains Fe, the sintered combination comprises a series of Fe, Zn, and/or Ti and/or Mn spinels and oxides of K, Rb and/or Cs, dispersed in a Ce oxide matrix

  10. Six-flow operations for catalyst development in Fischer-Tropsch synthesis: Bridging the gap between high-throughput experimentation and extensive product evaluation

    International Nuclear Information System (INIS)

    Sartipi, Sina; Jansma, Harrie; Bosma, Duco; Boshuizen, Bart; Makkee, Michiel; Gascon, Jorge; Kapteijn, Freek

    2013-01-01

    Design and operation of a “six-flow fixed-bed microreactor” setup for Fischer-Tropsch synthesis (FTS) is described. The unit consists of feed and mixing, flow division, reaction, separation, and analysis sections. The reactor system is made of five heating blocks with individual temperature controllers, assuring an identical isothermal zone of at least 10 cm along six fixed-bed microreactor inserts (4 mm inner diameter). Such a lab-scale setup allows running six experiments in parallel, under equal feed composition, reaction temperature, and conditions of separation and analysis equipment. It permits separate collection of wax and liquid samples (from each flow line), allowing operation with high productivities of C5+ hydrocarbons. The latter is crucial for a complete understanding of FTS product compositions and will represent an advantage over high-throughput setups with more than ten flows where such instrumental considerations lead to elevated equipment volume, cost, and operation complexity. The identical performance (of the six flows) under similar reaction conditions was assured by testing a same catalyst batch, loaded in all microreactors

  11. Six-flow operations for catalyst development in Fischer-Tropsch synthesis: Bridging the gap between high-throughput experimentation and extensive product evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Sartipi, Sina, E-mail: S.Sartipi@tudelft.nl, E-mail: J.Gascon@tudelft.nl; Jansma, Harrie; Bosma, Duco; Boshuizen, Bart; Makkee, Michiel; Gascon, Jorge, E-mail: S.Sartipi@tudelft.nl, E-mail: J.Gascon@tudelft.nl; Kapteijn, Freek [Department of Chemical Engineering, Catalysis Engineering, Delft University of Technology, Julianalaan 136, 2628 BL Delft (Netherlands)

    2013-12-15

    Design and operation of a “six-flow fixed-bed microreactor” setup for Fischer-Tropsch synthesis (FTS) is described. The unit consists of feed and mixing, flow division, reaction, separation, and analysis sections. The reactor system is made of five heating blocks with individual temperature controllers, assuring an identical isothermal zone of at least 10 cm along six fixed-bed microreactor inserts (4 mm inner diameter). Such a lab-scale setup allows running six experiments in parallel, under equal feed composition, reaction temperature, and conditions of separation and analysis equipment. It permits separate collection of wax and liquid samples (from each flow line), allowing operation with high productivities of C5+ hydrocarbons. The latter is crucial for a complete understanding of FTS product compositions and will represent an advantage over high-throughput setups with more than ten flows where such instrumental considerations lead to elevated equipment volume, cost, and operation complexity. The identical performance (of the six flows) under similar reaction conditions was assured by testing a same catalyst batch, loaded in all microreactors.

  12. Hydrodynamics and mass transfer in slurry bubble columns : scale and pressure effects

    NARCIS (Netherlands)

    Chilekar, V.P.

    2007-01-01

    Slurry bubble columns (SBC) are widely used in the chemical industry as a multiphase reactor. Applications include oxidation and hydrogenation reactions, fermentation, Fischer-Tropsch synthesis, and waste water treatment. The advantages of a SBC over other multiphase reactors are the simple

  13. Model studies of secondary hydrogenation in Fischer-Tropsch synthesis studied by cobalt catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Aaserud, Christian

    2003-07-01

    Mass transfer effects are very important in Fischer-Tropsch (FT) synthesis. In order to study the FT synthesis without the influence of any transport limitations, cobalt foils have been used as model catalysts. The effect of pretreatment (number of calcinations and different reduction times) for cobalt foil catalysts at 220 {sup o}C, 1 bar and H{sub 2}/CO = 3 has been studied in a microreactor. The foils were examined by Scanning electron microscopy (SEM). It was found that the catalytic activity of the cobalt foil increases with the number of pretreatments possibly due to an increase in the surface area of the cobalt foil. The SEM results support the assumption that the surface area of the cobalt foil increases with the number of pretreatments. The reduction time was also found to influence the catalytic activity of the cobalt foil. Highest activity was obtained using a reduction time of only five min (compared to one and thirty min). The decrease in activity after reduction for thirty min compared to five min was suggested to be due to restructuring of the surface of the cobalt foil and a reduction time of only 1 min was not enough to reduce the cobalt foil sufficiently. Time of reduction did also influence the product distribution. Increased reduction time resulted in a lower selectivity to light products and increased selectivity to heavier components. The paraffin/olefin ratio increased with increasing CO-conversion also for cobalt foils. The paraffin/olefin ratio also increased when the reduction period of the cobalt foil was increased at a given CO-conversion. Hydrogenation of propene to propane has been studied as a model reaction for secondary hydrogenation of olefins in the FT synthesis. The study has involved promoted and unpromoted cobalt FT catalysts supported on different types of supports and also unsupported cobalt. Hydrogenation of propene was carried out at 120 {sup o}C, 1.8 bar and H{sub 2}/C{sub 3}H{sub 6} 6 in a fixed bed microreactor. The rate

  14. Emissions characteristics of Military Helicopter Engines Fueled with JP-8 and a Fischer-Tropsch Fuel

    International Nuclear Information System (INIS)

    Corporan, E.; DeWitt, M.; Klingshirn, Christopher D.; Striebich, Richard; Cheng, Mengdawn

    2010-01-01

    The rapid growth in aviation activities and more stringent U.S. Environmental Protection Agency regulations have increased concerns regarding aircraft emissions, due to their harmful health and environmental impacts, especially in the vicinity of airports and military bases. In this study, the gaseous and particulate-matter emissions of two General Electric T701C engines and one T700 engine were evaluated. The T700 series engines power the U.S. Army's Black Hawk and Apache helicopters. The engines were fueled with standard military JP-8 fuel and were tested at three power settings. In addition, one of the T701C engines was operated on a natural-gas-derived Fischer-Tropsch synthetic paraffinic kerosene jet fuel. Test results show that the T701C engine emits significantly lower particulate-matter emissions than the T700 for all conditions tested. Particulate-matter mass emission indices ranged from 0.2-1.4 g/kg fuel for the T700 and 0.2-0.6 g/kg fuel for the T701C. Slightly higher NOx and lower CO emissions were observed for the T701C compared with the T700. Operation of the T701C with the Fischer-Tropsch fuel rendered dramatic reductions in soot emissions relative to operation on JP-8, due primarily to the lack of aromatic compounds in the alternative fuel. The Fischer-Tropsch fuel also produced smaller particles and slight reductions in CO emissions.

  15. Six-flow operations for catalyst development in Fischer-Tropsch synthesis: Bridging the gap between high-throughput experimentation and extensive product evaluation

    OpenAIRE

    Sartipi, S.; Jansma, H.; Bosma, D.; Boshuizen, B.; Makkee, M.; Gascon, J.; Kapteijn, F.

    2013-01-01

    Design and operation of a “six-flow fixed-bed microreactor” setup for Fischer-Tropsch synthesis (FTS) is described. The unit consists of feed and mixing, flow division, reaction, separation, and analysis sections. The reactor system is made of five heating blocks with individual temperature controllers, assuring an identical isothermal zone of at least 10 cm along six fixed-bed microreactor inserts (4?mm inner diameter). Such a lab-scale setup allows running six experiments in parallel, under...

  16. Comparative study of regulated and unregulated gaseous emissions during NEDC in a light-duty diesel engine fuelled with Fischer Tropsch and biodiesel fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bermudez, Vicente; Lujan, Jose M.; Pla, Benjamin; Linares, Waldemar G. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2011-02-15

    In this study, regulated and unregulated gaseous emissions and fuel consumption with five different fuels were tested in a 4-cylinder, light-duty diesel EURO IV typically used for the automotive vehicles in Europe. Three different biodiesel fuels obtained from soybean oil, rapeseed oil and palm oil, a Fischer Tropsch fuel and an ultra low sulphur diesel were studied. The test used was the New European Driving Cycle (NEDC), this allowed tests to be carried out on an engine warmed up beforehand to avoid the effect of cold starts and several tests a day. Regulated emissions of NO{sub X}, CO, HC and CO{sub 2} were measured for each fuel. Unburned Hydrocarbon Speciation and formaldehyde were also measured in order to determine the maximum incremental reactivity (MIR) of the gaseous emissions. Pollutants were measured without the diesel oxidation catalyst (DOC) to gather data about raw emissions. When biodiesel was used, increases in regulated and unregulated emissions were observed and also significant increases in engine fuel consumption. The use of Fischer Tropsch fuel, however, caused lower regulated and unregulated emissions and fuel consumption than diesel. (author)

  17. 40 CFR 721.10103 - Naphtha (Fischer-Tropsch), C4-11-alkane, branched and linear.

    Science.gov (United States)

    2010-07-01

    ...-alkane, branched and linear. 721.10103 Section 721.10103 Protection of Environment ENVIRONMENTAL..., branched and linear. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as naphtha (fischer-tropsch), C4-11-alkane, branched and linear (PMN P-04-235; CAS No...

  18. Pyrolysis-GCMS Analysis of Solid Organic Products from Catalytic Fischer-Tropsch Synthesis Experiments

    Science.gov (United States)

    Locke, Darren R.; Yazzie, Cyriah A.; Burton, Aaron S.; Niles, Paul B.; Johnson, Natasha M.

    2015-01-01

    Abiotic synthesis of complex organic compounds in the early solar nebula that formed our solar system is hypothesized to occur via a Fischer-Tropsch type (FTT) synthesis involving the reaction of hydrogen and carbon monoxide gases over metal and metal oxide catalysts. In general, at low temperatures (less than 200 C), FTT synthesis is expected to form abundant alkane compounds while at higher temperatures (greater than 200 C) it is expected to product lesser amounts of n-alkanes and greater amounts of alkene, alcohol, and polycyclic aromatic hydrocarbons (PAHs). Experiments utilizing a closed-gas circulation system to study the effects of FTT reaction temperature, catalysts, and number of experimental cycles on the resulting solid insoluble organic products are being performed in the laboratory at NASA Goddard Space Flight Center. These experiments aim to determine whether or not FTT reactions on grain surfaces in the protosolar nebula could be the source of the insoluble organic matter observed in meteorites. The resulting solid organic products are being analyzed at NASA Johnson Space Center by pyrolysis gas chromatography mass spectrometry (PY-GCMS). PY-GCMS yields the types and distribution of organic compounds released from the insoluble organic matter generated from the FTT reactions. Previously, exploratory work utilizing PY-GCMS to characterize the deposited organic materials from these reactions has been reported. Presented here are new organic analyses using magnetite catalyst to produce solid insoluble organic FTT products with varying reaction temperatures and number of experimental cycles.

  19. Bulk and surface structure of a NixFe/Al2O3 catalyst for Fischer-Tropsch synthesis studied by Moessbauer, infrared spectroscopy and magnetic methods

    International Nuclear Information System (INIS)

    Boellaard, E.; Kraan, A.M. van der; Geus, J.W.

    1992-01-01

    Deposition precipitation of a stoichiometric nickel-ironcyanide complex onto a alumina support and subsequent calcination and reduction has resulted in the formation of a homogeneous metallic alloy which exhibits activity for Fischer-Tropsch synthesis. During hydrocarbon synthesis conditions only a fraction of the metallic phase is converted in a phase which is most likely a thermally unstable (nickel-)iron carbide. (orig.)

  20. Attrition resistant Fischer-Tropsch catalyst and support

    Science.gov (United States)

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2004-05-25

    A catalyst support having improved attrition resistance and a catalyst produced therefrom. The catalyst support is produced by a method comprising the step of treating calcined .gamma.-alumina having no catalytic material added thereto with an acidic aqueous solution having an acidity level effective for increasing the attrition resistance of the calcined .gamma.-alumina.

  1. Atomic-Scale Design of Iron Fischer-Tropsch Catalysts; A Combined Computational Chemistry, Experimental, and Microkinetic Modeling Approach

    Energy Technology Data Exchange (ETDEWEB)

    Manos Mavrikakis; James Dumesic; Rahul Nabar; Calvin Bartholonew; Hu Zou; Uchenna Paul

    2008-09-29

    This work focuses on (1) searching/summarizing published Fischer-Tropsch synthesis (FTS) mechanistic and kinetic studies of FTS reactions on iron catalysts; (2) preparation and characterization of unsupported iron catalysts with/without potassium/platinum promoters; (3) measurement of H{sub 2} and CO adsorption/dissociation kinetics on iron catalysts using transient methods; (3) analysis of the transient rate data to calculate kinetic parameters of early elementary steps in FTS; (4) construction of a microkinetic model of FTS on iron, and (5) validation of the model from collection of steady-state rate data for FTS on iron catalysts. Three unsupported iron catalysts and three alumina-supported iron catalysts were prepared by non-aqueous-evaporative deposition (NED) or aqueous impregnation (AI) and characterized by chemisorption, BET, temperature-programmed reduction (TPR), extent-of-reduction, XRD, and TEM methods. These catalysts, covering a wide range of dispersions and metal loadings, are well-reduced and relatively thermally stable up to 500-600 C in H{sub 2} and thus ideal for kinetic and mechanistic studies. Kinetic parameters for CO adsorption, CO dissociation, and surface carbon hydrogenation on these catalysts were determined from temperature-programmed desorption (TPD) of CO and temperature programmed surface hydrogenation (TPSR), temperature-programmed hydrogenation (TPH), and isothermal, transient hydrogenation (ITH). A microkinetic model was constructed for the early steps in FTS on polycrystalline iron from the kinetic parameters of elementary steps determined experimentally in this work and from literature values. Steady-state rate data were collected in a Berty reactor and used for validation of the microkinetic model. These rate data were fitted to 'smart' Langmuir-Hinshelwood rate expressions derived from a sequence of elementary steps and using a combination of fitted steady-state parameters and parameters specified from the transient

  2. Large-scale production of Fischer-Tropsch diesel from biomass. Optimal gasification and gas cleaning systems

    International Nuclear Information System (INIS)

    Boerrigter, H.; Van der Drift, A.

    2004-12-01

    The paper is presented in the form of copies of overhead sheets. The contents concern definitions, an overview of Integrated biomass gasification and Fischer Tropsch (FT) systems (state-of-the-art, gas cleaning and biosyngas production, experimental demonstration and conclusions), some aspects of large-scale systems (motivation, biomass import) and an outlook

  3. On the deactivation of cobalt-based Fischer-Tropsch synthesis catalysts

    NARCIS (Netherlands)

    Moodley, D.J.

    2008-01-01

    The catalytic conversion of synthesis gas, derived from natural gas, into liquid hydrocarbon fuel via the Fischer–Tropsch synthesis (FTS), is currently receiving much attention due to the demand for environmentally friendly liquid fuel and the rising costs of crude oil. From an industrial

  4. Effect of structural promoters on Fe-based Fischer-Tropsch synthesis of biomass derived syngas

    Science.gov (United States)

    Pratibha Sharma; Thomas Elder; Leslie H. Groom; James J. Spivey

    2014-01-01

    Biomass gasification and subsequent conversion of this syngas to liquid hydrocarbons using Fischer–Tropsch (F–T) synthesis is a promising source of hydrocarbon fuels. However, biomass-derived syngas is different from syngas obtained from other sources such as steam reforming of methane. Specifically the H2/CO ratio is less than 1/1 and the CO

  5. A general chelate-assisted co-assembly to metallic nanoparticles-incorporated ordered mesoporous carbon catalysts for Fischer-Tropsch synthesis.

    Science.gov (United States)

    Sun, Zhenkun; Sun, Bo; Qiao, Minghua; Wei, Jing; Yue, Qin; Wang, Chun; Deng, Yonghui; Kaliaguine, Serge; Zhao, Dongyuan

    2012-10-24

    The organization of different nano objects with tunable sizes, morphologies, and functions into integrated nanostructures is critical to the development of novel nanosystems that display high performances in sensing, catalysis, and so on. Herein, using acetylacetone as a chelating agent, phenolic resol as a carbon source, metal nitrates as metal sources, and amphiphilic copolymers as a template, we demonstrate a chelate-assisted multicomponent coassembly method to synthesize ordered mesoporous carbon with uniform metal-containing nanoparticles. The obtained nanocomposites have a 2-D hexagonally arranged pore structure, uniform pore size (~4.0 nm), high surface area (~500 m(2)/g), moderate pore volume (~0.30 cm(3)/g), uniform and highly dispersed Fe(2)O(3) nanoparticles, and constant Fe(2)O(3) contents around 10 wt %. By adjusting acetylacetone amount, the size of Fe(2)O(3) nanoparticles is readily tunable from 8.3 to 22.1 nm. More importantly, it is found that the metal-containing nanoparticles are partially embedded in the carbon framework with the remaining part exposed in the mesopore channels. This unique semiexposure structure not only provides an excellent confinement effect and exposed surface for catalysis but also helps to tightly trap the nanoparticles and prevent aggregating during catalysis. Fischer-Tropsch synthesis results show that as the size of iron nanoparticles decreases, the mesoporous Fe-carbon nanocomposites exhibit significantly improved catalytic performances with C(5+) selectivity up to 68%, much better than any reported promoter-free Fe-based catalysts due to the unique semiexposure morphology of metal-containing nanoparticles confined in the mesoporous carbon matrix.

  6. Techno-economic assessment of integrating methanol or Fischer-Tropsch synthesis in a South African sugar mill.

    Science.gov (United States)

    Petersen, Abdul M; Farzad, Somayeh; Görgens, Johann F

    2015-05-01

    This study considered an average-sized sugar mill in South Africa that crushes 300 wet tonnes per hour of cane, as a host for integrating methanol and Fischer-Tropsch synthesis, through gasification of a combined flow of sugarcane trash and bagasse. Initially, it was shown that the conversion of biomass to syngas is preferably done by catalytic allothermal gasification instead of catalytic autothermal gasification. Thereafter, conventional and advanced synthesis routes for both Methanol and Fischer-Tropsch products were simulated with Aspen Plus® software and compared by technical and economic feasibility. Advanced FT synthesis satisfied the overall energy demands, but was not economically viable for a private investment. Advanced methanol synthesis is also not viable for private investment since the internal rate of return was 21.1%, because it could not provide the steam that the sugar mill required. The conventional synthesis routes had less viability than the corresponding advanced synthesis routes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The role of zeolite in the Fischer–Tropsch synthesis over cobalt–zeolite catalysts

    International Nuclear Information System (INIS)

    Sineva, L V; Mordkovich, V Z; Asalieva, E Yu

    2015-01-01

    The review deals with the specifics of the Fischer–Tropsch synthesis for the one-stage syncrude production from CO and H 2 in the presence of cobalt–zeolite catalytic systems. Different types of bifunctional catalysts (hybrid, composite) combining a Fischer–Tropsch catalyst and zeolite are reviewed. Special attention focuses on the mechanisms of transformations of hydrocarbons produced in the Fischer–Tropsch process on zeolite acid sites under the synthesis conditions. The bibliography includes 142 references

  8. Characterization of Catalyst Materials for Production of Aerospace Fuels

    Science.gov (United States)

    Best, Lauren M.; De La Ree, Ana B.; Hepp, Aloysius F.

    2012-01-01

    Due to environmental, economic, and security issues, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to non-petroleum sources as a feedstock for aviation (and other transportation) fuels. Additionally, efforts are concentrated on reducing costs coupled with fuel production from non-conventional sources. One solution to this issue is Fischer-Tropsch gas-to-liquid technology. Fischer-Tropsch processing of synthesis gas (CO/H2) produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fisher-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur or aromatic compounds. This process is most commonly catalyzed by heterogeneous (in this case, silver and platinum) catalysts composed of cobalt supported on alumina or unsupported alloyed iron powders. Physisorption, chemisorptions, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) are described to better understand the potential performance of Fischer-Tropsch cobalt on alumina catalysts promoted with silver and platinum. The overall goal is to preferentially produce C8 to C18 paraffin compounds for use as aerospace fuels. Progress towards this goal will eventually be updated and achieved by a more thorough understanding of the characterization of catalyst materials. This work was supported by NASA s Subsonic Fixed Wing and In-situ Resource Utilization projects.

  9. Enhancing the properties of Fischer-Tropsch fuel produced from syngas over Co/SiO2 catalyst: Lubricity and Calorific Value

    Science.gov (United States)

    Doustdar, O.; Wyszynski, M. L.; Mahmoudi, H.; Tsolakis, A.

    2016-09-01

    Bio-fuel produced from renewable sources is considered the most viable alternatives for the replacement of mineral diesel fuel in compression ignition engines. There are several options for biomass derived fuels production involving chemical, biological and thermochemical processes. One of the best options is Fischer Tropsch Synthesis, which has an extensive history of gasoline and diesel production from coal and natural gas. FTS fuel could be one of the best solutions to the fuel emission due to its high quality. FTS experiments were carried out in 16 different operation conditions. Mini structured vertical downdraft fixed bed reactor was used for the FTS. Instead of Biomass gasification, a simulated N2 -rich syngas cylinder of, 33% H2 and 50% N2 was used. FT fuels products were analyzed in GCMS to find the hydrocarbon distributions of FT fuel. Calorific value and lubricity of liquid FT product were measured and compared with commercial diesel fuel. Lubricity has become an important quality, particularly for biodiesel, due to higher pressures in new diesel fuel injection (DFI) technology which demands better lubrication from the fuel and calorific value which is amount of energy released in combustion paly very important role in CI engines. Results show that prepared FT fuel has desirable properties and it complies with standard values. FT samples lubricities as measured by ASTM D6079 standard vary from 286μm (HFRR scar diameter) to 417μm which are less than limit of 520μm. Net Calorific value for FT fuels vary from 9.89 MJ/kg to 43.29 MJ/kg, with six of the samples less than EN 14213 limit of 35MJ/kg. Effect of reaction condition on FT fuel properties was investigated which illustrates that in higher pressure Fischer-Tropsch reaction condition liquid product has better properties.

  10. Effect of CO{sub 2} and H{sub 2}O content in syngas on activity and selectivity of a cobalt based Fischer-Tropsch synthesis catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Poehlmann, F.; Kaiser, P.; Kern, C.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2013-11-01

    When liquid hydrocarbons are to be used as CO{sub 2} neutral storage media for electrical energy, it is necessary to convert CO{sub 2} from e.g. flue gas and hydrogen from water electrolysis to synthesis gas (CO/H{sub 2}). This can be achieved by a high temperature reverse water gas shift (RWGS) reaction. Due to thermodynamic limitations, the product gas of RWGS reactors operated at technically feasible temperatures of around 900 C will always contain significant amounts of water and carbon dioxide, which can influence the activity of Fischer-Tropsch synthesis (FTS) catalysts for the actual hydrocarbon production. In this study, a commercial cobalt catalyst was investigated under low temperature FTS conditions (2.5 MPa, 215 C) regard to activity and selectivity in the presence of H{sub 2}O and CO{sub 2}. A continuous flow apparatus including a fixed-bed reactor for the synthesis step was used to conduct all experiments. The experimental data reveals that the CO/CO{sub 2}-ratio does not affect the activity and product selectivity until the CO{sub 2}-concentration reaches 75 vol.-% (CO{sub 2}/(CO+CO{sub 2})). On increasing the carbon dioxide concentration to 100 vol.-% (H{sub 2}/CO{sub 2} = 2), the methane selectivity rose up to 70 % and even above. Addition of water caused an initial loss of activity. After the initial loss of activity the FT catalyst activity was found to remain constant, irrespectively of if the water was removed from the feed or not. Thus, the deactivation was permanent. (orig.)

  11. Bifunctional catalysts for the direct production of liquid fuels from syngas

    NARCIS (Netherlands)

    Sartipi, S.

    2014-01-01

    Design and development of catalyst formulations that maximize the direct production of liquid fuels by combining Fischer-Tropsch synthesis (FTS), hydrocarbon cracking, and isomerization into one single catalyst particle (bifunctional FTS catalyst) have been investigated in this thesis. To achieve

  12. Hydroprocessing of Fischer-Tropsch biowaxes to second-generation biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Schablitzky, Harald Walter; Hafner, C. [OMV Refining and Marketing, Centre of Excellence-Fuels, Innovation and Quality, Schwechat (Austria); Lichtscheidl, J.; Hutter, K. [OMV Refining and Marketing, New Technology, Schwechat (Austria); Rauch, R. [Bioenergy, Graz (Austria); Hofbauer, H. [Bioenergy, Graz (Austria); Vienna University of Technology, Institute of Chemical Engineering, Vienna (Austria)

    2011-03-15

    Upgrading of Fischer-Tropsch (FT) biowaxes to second-generation biofuels via hydroprocessing is the final step for increasing the fuel amount of the overall biomass conversion route: gasification of lignocellulosic biomass, FT synthesis, and hydroprocessing. The typical FT product portfolio consists of high molecular weight paraffinic waxes as the main product and FT fuels in the diesel and naphtha boiling range. OMV's objective and contribution to the project focus on achieving coprocessing of FT biowaxes with fossil feedstock using existing hydrotreating plants of crude oil refineries. Various test runs have been examined with a conventional refining catalyst under mild conditions (380-390 C, 5.8 MPa; WHSV, 0.7-1.3 h{sup -1}) in a pilot plant. Pure FT biowax is converted to gases, fuels, and an oil/waxy residue in a fixed-bed reactor with a porous catalyst layer technology. The presence of hydrogen in the reaction chamber reduces the fast deactivation of the catalyst caused by the formation of a coke layer around the catalyst particle surface and saturates cracked hydrocarbon fragments. Another approach is the creation of synthetic biodiesel components with excellent fuel properties for premium fuel application. Basically, premium diesel fuel differs from standard diesel quality by cetane number and cold flow properties. Hydroprocessed synthetic biodiesel (HPFT diesel) has compared to conventional diesel advantages in many aspects. Depending on the catalyst selected, premium diesel quality can be obtained by shifting cold flow operability properties of HPFT fuels to a range capable even under extreme cold conditions. In addition, a high-quality kerosene fraction is obtained to create bio jet fuels with an extremely deep freezing point, as low as -80 C. The isomerization degree, as well as the carbon number distribution of high paraffinic profile, and the branching degree have a major impact on the cold flow properties and cetane number. FT diesel has

  13. Anion-modified zirconia. Effect of metal promotion and hydrogen reduction on hydroisomerization of n-hexadecane and Fischer-Tropsch waxes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.; Zhang, Y.; Tierney, J.W.; Wender, I. [Department of Chemical and Petroleum Engineering, 1249 Benedum Hall, University of Pittsburgh, 15261 Pittsburgh, PA (United States)

    2001-01-01

    The effect of metal promoters on the activity and selectivity of tungstated zirconia (8 wt.% W) for n-hexadecane isomerization in a trickle bed continuous reactor is studied by using different metals (Pt, Ni, and Pd) and, in one case, by varying metal loading. Platinum is found to be the best promoter. The effect of hydrogen reduction is investigated using platinum-promoted tungstated zirconia catalysts (Pt/WO{sub 3}/ZrO{sub 2}, 0.5 wt.% Pt and 6.5 wt.% W). Pretreatment at temperatures between 300 and 400C for 3 h in hydrogen is found to be slightly beneficial for achieving high yields of isohexadecane. A platinum promoted sulfated zirconia (Pt/SO{sub 4}/ZrO{sub 2}) is compared with a Pt/WO{sub 3}/ZrO{sub 2} catalyst for the hydroisomerization of n-hexadecane in the same reactor at the same n-hexadecane conversion. The former is a good cracking catalyst and the latter is suitable for use as a hydroisomerization catalyst. In a 27-ml microautoclave reactor, studies of the hydroisomerization and hydrocracking of two Fischer-Tropsch (F-T) wax samples are carried out. Severe cracking can be effectively suppressed using a Pt/WO{sub 3}/ZrO{sub 2} catalyst so as to obtain branched isomers in the diesel fuel or lube-base oil range.

  14. Manufacture of highly loaded silica-supported cobalt Fischer–Tropsch catalysts from a metal organic framework

    KAUST Repository

    Sun, Xiaohui

    2017-11-16

    The development of synthetic protocols for the preparation of highly loaded metal nanoparticle-supported catalysts has received a great deal of attention over the last few decades. Independently controlling metal loading, nanoparticle size, distribution, and accessibility has proven challenging because of the clear interdependence between these crucial performance parameters. Here we present a stepwise methodology that, making use of a cobalt-containing metal organic framework as hard template (ZIF-67), allows addressing this long-standing challenge. Condensation of silica in the Co-metal organic framework pore space followed by pyrolysis and subsequent calcination of these composites renders highly loaded cobalt nanocomposites (~ 50 wt.% Co), with cobalt oxide reducibility in the order of 80% and a good particle dispersion, that exhibit high activity, C5 + selectivity and stability in Fischer-Tropsch synthesis.

  15. Techno-economic performance analysis of bio-oil based Fischer-Tropsch and CHP synthesis platform

    International Nuclear Information System (INIS)

    Ng, Kok Siew; Sadhukhan, Jhuma

    2011-01-01

    The techno-economic potential of the UK poplar wood and imported oil palm empty fruit bunch derived bio-oil integrated gasification and Fischer-Tropsch (BOIG-FT) systems for the generation of transportation fuels and combined heat and power (CHP) was investigated. The bio-oil was represented in terms of main chemical constituents, i.e. acetic acid, acetol and guaiacol. The compositional model of bio-oil was validated based on its performance through a gasification process. Given the availability of large scale gasification and FT technologies and logistic constraints in transporting biomass in large quantities, distributed bio-oil generations using biomass pyrolysis and centralised bio-oil processing in BOIG-FT system are technically more feasible. Heat integration heuristics and composite curve analysis were employed for once-through and full conversion configurations, and for a range of economies of scale, 1 MW, 675 MW and 1350 MW LHV of bio-oil. The economic competitiveness increases with increasing scale. A cost of production of FT liquids of 78.7 Euro/MWh was obtained based on 80.12 Euro/MWh of electricity, 75 Euro/t of bio-oil and 116.3 million Euro/y of annualised capital cost. -- Highlights: → Biomass to liquid process and gas to liquid process synthesis. → Biorefinery economic analysis. → Pyrolysis oil to biofuel. → Gasification and Fischer-Tropsch. → Process integration, pinch analysis and energy efficiency.

  16. Fischer-Tropsch synthesis: Support and cobalt cluster size effects on kinetics over Co/Al{sub 2}O{sub 3} and Co/SiO{sub 2} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Wenping Ma; Gary Jacobs; Dennis E. Sparks; Muthu K. Gnanamani; Venkat Ramana Rao Pendyala; Chia H. Yen; Jennifer L.S. Klettlinger; Thomas M. Tomsik; Burtron H. Davis [University of Kentucky, Lexington, KY (USA). Center for Applied Energy Research

    2011-02-15

    The influence of support type and cobalt cluster size (i.e., with average diameters falling within the range of 8-40 nm) on the kinetics of Fischer-Tropsch synthesis (FT) were investigated by kinetic tests employing a CSTR and two Co/{gamma}-Al{sub 2}O{sub 3} catalysts having different average pore sizes, and two Co/SiO{sub 2} catalysts prepared on the same support but having different loadings. A kinetic model -r{sub CO}=kP{sup a}{sub co}P{sup b}{sub H2}/(1 + mP{sub H2O}/P{sub H2}) that contains a water effect constant 'm' was used to fit the experimental data obtained with all four catalysts. Kinetic parameters suggest that both support type and average Co particle size impact FT behavior. Cobalt cluster size influenced kinetic parameters such as reaction order, rate constant, and the water effect parameter.Decreasing the average Co cluster diameter by about 30% led to an increase in the intrinsic reaction rate constant k, defined on a per g of catalyst basis, by 62-102% for the {gamma}-Al{sub 2}O{sub 3} and SiO{sub 2}-supported cobalt catalysts. Moreover, less inhibition by adsorbed CO and greater H{sub 2} dissociation on catalysts having smaller Co particles was suggested by the higher a and lower b values obtained for the measured reaction orders. Irrespective of support type, the catalysts having smaller average Co particles were more sensitive to water. Comparing the catalysts having strong interactions between cobalt and support (Co/Al{sub 2}O{sub 3}) to the ones with weak interactions (Co/SiO{sub 2}), the water effect parameters were found to be positive (indicating a negative influence on CO conversion) and negative (denoting a positive effect on CO conversion), respectively. Greater a and a/b values were observed for both Al{sub 2}O{sub 3}-supported Co catalysts, implying greater inhibition of the FT rate by strongly adsorbed CO on Co/Al{sub 2}O{sub 3} relative to Co/SiO{sub 2}. 78 refs., 4 figs., 3 tabs.

  17. Attrition Resistant Fischer-Tropsch Catalysts Based on FCC Supports

    Energy Technology Data Exchange (ETDEWEB)

    Adeyiga, Adeyinka

    2010-02-05

    Commercial spent fluid catalytic cracking (FCC) catalysts provided by Engelhard and Albemarle were used as supports for Fe-based catalysts with the goal of improving the attrition resistance of typical F-T catalysts. Catalysts with the Ruhrchemie composition (100 Fe/5 Cu/4.2 K/25 spent FCC on mass basis) were prepared by wet impregnation. XRD and XANES analysis showed the presence of Fe{sub 2}O{sub 3} in calcined catalysts. FeC{sub x} and Fe{sub 3}O{sub 4} were present in the activated catalysts. The metal composition of the catalysts was analyzed by ICP-MS. F-T activity of the catalysts activated in situ in CO at the same conditions as used prior to the attrition tests was measured using a fixed bed reactor at T = 573 K, P = 1.38 MPa and H{sub 2}:CO ratio of 0.67. Cu and K promoted Fe supported over Engelhard provided spent FCC catalyst shows relatively good attrition resistance (8.2 wt% fines lost), high CO conversion (81%) and C{sub 5}+ hydrocarbons selectivity (18.3%).

  18. IMPROVED IRON CATALYSTS FOR SLURRY PHASE FISCHER-TROPSCH SYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Dragomir B. Bukur; Dr. Lech Nowicki; Victor Carreto-Vazquez; Dr. Wen-Ping Ma

    2001-11-28

    PureVision Technology, Inc. (PureVision) of Fort Lupton, Colorado is developing a process for the conversion of lignocellulosic biomass into fuel-grade ethanol and specialty chemicals in order to enhance national energy security, rural economies, and environmental quality. Lignocellulosic-containing plants are those types of biomass that include wood, agricultural residues, and paper wastes. Lignocellulose is composed of the biopolymers cellulose, hemicellulose, and lignin. Cellulose, a polymer of glucose, is the component in lignocellulose that has potential for the production of fuel-grade ethanol by direct fermentation of the glucose. However, enzymatic hydrolysis of lignocellulose and raw cellulose into glucose is hindered by the presence of lignin. The cellulase enzyme, which hydrolyzes cellulose to glucose, becomes irreversibly bound to lignin. This requires using the enzyme in reagent quantities rather than in catalytic concentration. The extensive use of this enzyme is expensive and adversely affects the economics of ethanol production. PureVision has approached this problem by developing a biomass fractionator to pretreat the lignocellulose to yield a highly pure cellulose fraction. The biomass fractionator is based on sequentially treating the biomass with hot water, hot alkaline solutions, and polishing the cellulose fraction with a wet alkaline oxidation step. In September 2001 PureVision and Western Research Institute (WRI) initiated a jointly sponsored research project with the U.S. Department of Energy (DOE) to evaluate their pretreatment technology, develop an understanding of the chemistry, and provide the data required to design and fabricate a one- to two-ton/day pilot-scale unit. The efforts during the first year of this program completed the design, fabrication, and shakedown of a bench-scale reactor system and evaluated the fractionation of corn stover. The results from the evaluation of corn stover have shown that water hydrolysis prior to alkaline hydrolysis may be beneficial in removing hemicellulose and lignin from the feedstock. In addition, alkaline hydrolysis has been shown to remove a significant portion of the hemicellulose and lignin. The resulting cellulose can be exposed to a finishing step with wet alkaline oxidation to remove the remaining lignin. The final product is a highly pure cellulose fraction containing less than 1% of the native lignin with an overall yield in excess of 85% of the native cellulose. This report summarizes the results from the first year's effort to move the technology to commercialization.

  19. Bifunctional cobalt F-T catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.G.; Coughlin, P.K.; Yang, C.L.; Rabo, J.A.

    1986-03-01

    Results on the catalytic screening of Fischer-Tropsch catalysts containing shape selective components are reported. Catalysts consist of promoted cobalt intimately contacted with Union Carbide molecular sieves and were tested using a Berty type internally recycled reactor. Methods of preparation, promoters and shape selective components were varied and aimed at improving catalyst performance. Catalysts were developed demonstrating high C/sub 5/ + yields with high olefin content and low methane production while maintaining stability under both low and high H/sub 2/:CO ratio conditions.

  20. Hydrocarbon synthesis using Iron and Ruthenium/SiO2 with FISCHER-TROPSCH catalysis.

    Directory of Open Access Journals (Sweden)

    Y.J. Fonseca

    2007-12-01

    Full Text Available Fe2(CO9, Fe3(CO12 and Ru3(CO12 clusters were used as precursors for silica supported metals. The impregnated silica solids were obtained in organic solvents under inert atmosphere and the adsorbed complexes and reduced metals characterized by FT-IR, SEM EDX and HRTEM. The catalysts showed good Fischer–Tropsch (FT activity; the main products were alkanes, alkenes and medium and higher alcohols as analyzed by GCMS. The Ru catalysts showed higher alcohols selectivity. HRTEM showed Ru nanoparticle size.

  1. Advanced computational model for three-phase slurry reactors

    International Nuclear Information System (INIS)

    Goodarz Ahmadi

    2000-11-01

    In the first year of the project, solid-fluid mixture flows in ducts and passages at different angle of orientations were analyzed. The model predictions are compared with the experimental data and good agreement was found. Progress was also made in analyzing the gravity chute flows of solid-liquid mixtures. An Eulerian-Lagrangian formulation for analyzing three-phase slurry flows in a bubble column is being developed. The approach uses an Eulerian analysis of gas liquid flows in the bubble column, and makes use of the Lagrangian particle tracking procedure to analyze the particle motions. Progress was also made in developing a rate dependent thermodynamically consistent model for multiphase slurry flows in a state of turbulent motion. The new model includes the effect of phasic interactions and leads to anisotropic effective phasic stress tensors. Progress was also made in measuring concentration and velocity of particles of different sizes near a wall in a duct flow. The formulation of a thermodynamically consistent model for chemically active multiphase solid-fluid flows in a turbulent state of motion was also initiated. The general objective of this project is to provide the needed fundamental understanding of three-phase slurry reactors in Fischer-Tropsch (F-T) liquid fuel synthesis. The other main goal is to develop a computational capability for predicting the transport and processing of three-phase coal slurries. The specific objectives are: (1) To develop a thermodynamically consistent rate-dependent anisotropic model for multiphase slurry flows with and without chemical reaction for application to coal liquefaction. Also to establish the material parameters of the model. (2) To provide experimental data for phasic fluctuation and mean velocities, as well as the solid volume fraction in the shear flow devices. (3) To develop an accurate computational capability incorporating the new rate-dependent and anisotropic model for analyzing reacting and

  2. Emissions from Diesel and Gasoline Vehicles Fuelled by Fischer-Tropsch Fuels and Similar Fuels

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Lundorff, Peter; Ivarsson, Anders

    2007-01-01

    and an alkylate fuel (Aspen), which was taken to be the ultimate formula of FT gasoline. FT based diesel generally showed good emission performance, whereas the FT based gasoline not necessary lead to lower emissions. On the other hand, the Aspen fuel did show many advantages for the emissions from the gasoline...... vehicles fuelled by Fischer Tropsch (FT) based diesel and gasoline fuel, compared to the emissions from ordinary diesel and gasoline. The comparison for diesel fuels was based on a literature review, whereas the gasoline comparison had to be based on our own experiments, since almost no references were...

  3. Gas to liquids. Fischer Tropsch: what does the future hold?

    International Nuclear Information System (INIS)

    Maisonnier, G.

    2005-01-01

    The process concerning the chemical transformation of natural gas into oil-based products (a so-called 'clean' diesel) known under the term GTL FT (Gas To Liquids - Fischer Tropsch) will turn a new page in its history with the start-up of a major unit in Qatar in 2006 Up until now only two GTL units were deployed, in the early 1990's (Moss as and Shell) without however resulting in the widespread expansion of this process. The technological breakthroughs achieved around the year 2000 combined with a favourable background context (concerning geopolitical tension, ears of oil production peaks, significant increases in the price of crude) now account for much of the interest shown in this solution. Consequently, outside Qatar, projects are also being looked at in various natural gas producing countries such as Nigeria or Algeria. It would be justified however to think that a new wave of natural gas recycling will gradually emerge as part of the global energy market. (author)

  4. Catalysis. Innovative applications in petrochemistry and refining. Preprints

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, S.; Balfanz, U.; Jess, A.; Lercher, J.A.; Lichtscheidl, J.; Marchionna, M.; Nees, F.; Santacesaria, E. (eds.)

    2011-07-01

    Within the DGMK conference at 4th to 6th October, 2011 in Dresden (Federal Republic of Germany) the following lectures were held: (1) Developing linear-alpha-olefins technology - From laboratory to a commercial plant (A. Meiswinkel); (2) New developments in oxidation catalysis (F. Rosowski); (3) Study of the performance of vanadium based catalysts prepared by grafting in the oxidative dehydrogenation of propane (E. Santacesaria); (4) Hydrocracking for oriented conversion of heavy oils: recent trends for catalyst development (F. Bertoncini); (5) Acidic ionic liquids for n-alkane isomerization in a liquid-liquid or slurry-phase reaction mode (C. Meyer); (6) Dual catalyst system for the hydrocracking of heavy oils and residues (G. Bellussi); (7) Understanding hydrodenitrogenation on novel unsupported sulphide Mo-W-Ni catalysts (J. Hein); (8) Hydrocracking of ethyllaurate on bifunctional micro-/mesoporous composite materials (M. Adam); (9) Catalytic dehydration of ethanol to ethylene (Ying Zhu); (10) The Evonik-Uhde HPPO process for propylene oxide production (B. Jaeger); (11) A green two-step process for adipic acid production from cyclohexene: A study on parameters affecting selectivity (F. Cavani); (12) DISY: The direct synthesis of hydrogen peroxide, a bridge for innovative applications (R, Buzzoni); (13) Solid catalyst with ionic liquid layer (SCILL) - A concept to improve the selectivity of selective hydrogenations (A. Jess); (14) Co-Zn-Al based hydrotalcites as catalysts for Fischer-Tropsch process (C.L. Bianchi); (15) Honeycomb supports with high thermal conductivity for the Fischer-Tropsch synthesis (C.G. Visconti); (16) How to make Fischer-Tropsch catalyst scale-up fully reliable (L. Fischer); (17) New developments in FCC catalysis (C.P. Kelkar); (18) The potential of medium-pore zeolites for improved propene yields from catalytic cracking (F. Bager).

  5. Optimization of hydrogen production via coupling of the Fischer-Tropsch synthesis reaction and dehydrogenation of cyclohexane in GTL technology

    International Nuclear Information System (INIS)

    Rahimpour, M.R.; Bahmanpour, A.M.

    2011-01-01

    In this study, a thermally-coupled reactor containing the Fischer-Tropsch synthesis reaction in the exothermic side and dehydrogenation of cyclohexane in the endothermic side has been modified using a hydrogen perm-selective membrane as the shell of the reactor to separate the produced hydrogen from the dehydrogenation process. Permeated hydrogen enters another section called permeation side to be collected by Argon, known as the sweep gas. This three-sided reactor has been optimized using differential evolution (DE) method to predict the conditions at which the reactants' conversion and also the hydrogen recovery yield would be maximized. Minimizing the CO 2 and CH 4 yield in the reactor's outlet as undesired products is also considered in the optimization process. To reach this goal, optimal initial molar flow rate and inlet temperature of three sides as well as pressure of the exothermic side have been calculated. The obtained results have been compared with the conventional reactor data of the Research Institute of Petroleum Industry (RIPI), the membrane dual - type reactor suggested for Fischer-Tropsch synthesis, and the membrane coupled reactor presented for methanol synthesis. The comparison shows acceptable enhancement in the reactor's performance and that the production of hydrogen as a valuable byproduct should also be considered.

  6. Advanced computational model for three-phase slurry reactors

    International Nuclear Information System (INIS)

    Goodarz Ahmadi

    2001-10-01

    In the second year of the project, the Eulerian-Lagrangian formulation for analyzing three-phase slurry flows in a bubble column is further developed. The approach uses an Eulerian analysis of liquid flows in the bubble column, and makes use of the Lagrangian trajectory analysis for the bubbles and particle motions. An experimental set for studying a two-dimensional bubble column is also developed. The operation of the bubble column is being tested and diagnostic methodology for quantitative measurements is being developed. An Eulerian computational model for the flow condition in the two-dimensional bubble column is also being developed. The liquid and bubble motions are being analyzed and the results are being compared with the experimental setup. Solid-fluid mixture flows in ducts and passages at different angle of orientations were analyzed. The model predictions were compared with the experimental data and good agreement was found. Gravity chute flows of solid-liquid mixtures is also being studied. Further progress was also made in developing a thermodynamically consistent model for multiphase slurry flows with and without chemical reaction in a state of turbulent motion. The balance laws are obtained and the constitutive laws are being developed. Progress was also made in measuring concentration and velocity of particles of different sizes near a wall in a duct flow. The technique of Phase-Doppler anemometry was used in these studies. The general objective of this project is to provide the needed fundamental understanding of three-phase slurry reactors in Fischer-Tropsch (F-T) liquid fuel synthesis. The other main goal is to develop a computational capability for predicting the transport and processing of three-phase coal slurries. The specific objectives are: (1) To develop a thermodynamically consistent rate-dependent anisotropic model for multiphase slurry flows with and without chemical reaction for application to coal liquefaction. Also establish the

  7. Catalysts for conversion of syngas to liquid motor fuels

    Science.gov (United States)

    Rabo, Jule A.; Coughlin, Peter K.

    1987-01-01

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst composition capable of ensuring the production of only relatively minor amounts of heavy products boiling beyond the diesel oil range. The catalyst composition, having desirable stability during continuous production operation, employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component. The latter component is a steam-stabilized zeolite Y catalyst of hydrophobic character, desirably in acid-extracted form.

  8. Power to Fuels: Dynamic Modeling of a Slurry Bubble Column Reactor in Lab-Scale for Fischer Tropsch Synthesis under Variable Load of Synthesis Gas

    Directory of Open Access Journals (Sweden)

    Siavash Seyednejadian

    2018-03-01

    Full Text Available This research developed a comprehensive computer model for a lab-scale Slurry Bubble Column Reactor (SBCR (0.1 m Dt and 2.5 m height for Fischer–Tropsch (FT synthesis under flexible operation of synthesis gas load flow rates. The variable loads of synthesis gas are set at 3.5, 5, 7.5 m3/h based on laboratory adjustments at three different operating temperatures (483, 493 and 503 K. A set of Partial Differential Equations (PDEs in the form of mass transfer and chemical reaction are successfully coupled to predict the behavior of all the FT components in two phases (gas and liquid over the reactor bed. In the gas phase, a single-bubble-class-diameter (SBCD is adopted and the reduction of superficial gas velocity through the reactor length is incorporated into the model by the overall mass balance. Anderson Schulz Flory distribution is employed for reaction kinetics. The modeling results are in good agreement with experimental data. The results of dynamic modeling show that the steady state condition is attained within 10 min from start-up. Furthermore, they show that step-wise syngas flow rate does not have a detrimental influence on FT product selectivity and the dynamic modeling of the slurry reactor responds quite well to the load change conditions.

  9. Computational Fluid Dynamics Study of Channel Geometric Effect for Fischer-Tropsch Microchannel Reactor

    International Nuclear Information System (INIS)

    Na, Jonggeol; Jung, Ikhwan; Kshetrimayum, Krishnadash S.; Park, Seongho; Park, Chansaem; Han, Chonghun

    2014-01-01

    Driven by both environmental and economic reasons, the development of small to medium scale GTL(gas-to-liquid) process for offshore applications and for utilizing other stranded or associated gas has recently been studied increasingly. Microchannel GTL reactors have been preferred over the conventional GTL reactors for such applications, due to its compactness, and additional advantages of small heat and mass transfer distance desired for high heat transfer performance and reactor conversion. In this work, multi-microchannel reactor was simulated by using commercial CFD code, ANSYS FLUENT, to study the geometric effect of the microchannels on the heat transfer phenomena. A heat generation curve was first calculated by modeling a Fischer-Tropsch reaction in a single-microchannel reactor model using Matlab-ASPEN integration platform. The calculated heat generation curve was implemented to the CFD model. Four design variables based on the microchannel geometry namely coolant channel width, coolant channel height, coolant channel to process channel distance, and coolant channel to coolant channel distance, were selected for calculating three dependent variables namely, heat flux, maximum temperature of coolant channel, and maximum temperature of process channel. The simulation results were visualized to understand the effects of the design variables on the dependent variables. Heat flux and maximum temperature of cooling channel and process channel were found to be increasing when coolant channel width and height were decreased. Coolant channel to process channel distance was found to have no effect on the heat transfer phenomena. Finally, total heat flux was found to be increasing and maximum coolant channel temperature to be decreasing when coolant channel to coolant channel distance was decreased. Using the qualitative trend revealed from the present study, an appropriate process channel and coolant channel geometry along with the distance between the adjacent

  10. The Eni - IFP/Axens GTL technology. From R and D to a successful scale-up

    Energy Technology Data Exchange (ETDEWEB)

    Zennaro, R. [Eni S.p.A., Milan (Italy); Hugues, F. [Institut Francais du Petrole, Lyon (France); Caprani, E. [Axens, Paris (France)

    2006-07-01

    Proven natural gas reserves had reached about 184 Tscm in 2006 to which 36% is stranded gas far from the final market. Fischer Tropsch based GtL options today represent a viable route to develop such remote gas resources into high quality fuels and specialties. Thus opening different markets for the gas historically linked to the oil. Thanks to R and D successful improvements in the field of catalysis and reactor technology coupled with optimized integration and economies of scale have reduced the investment cost for building a Fischer Tropsch GtL complex. Basically all major Oil and Gas companies are involved in proprietary GtL development, and today several industrial projects have been announced. The most advanced is the Oryx project (QP-Sasol) which has been inaugurated the 6{sup th} of June '06 and currently in the starting up phase. Eni and IFP-Axens have developed a proprietary GtL Fischer-Tropsch and Upgrading technology in a close collaboration between the two groups. The Eni/IFP-Axens technology is based on proprietary catalysts and reactor, designed according to scale-up criteria defined in ten years of R and D activity. Unique large scale hydrodynamic facilities (bubble columns, loops) bench-scale dedicated pilot units, as well as large scale Fischer-Tropsch pilot plant, have been developed and operated to minimize reactor and ancillaries scale-up risks. The large scale Fischer-Tropsch pilot plant has been built and operated since 2001. The plant, located within the Eni refinery of Sannazzaro de' Burgondi (Pavia, Italy) is fully integrated to the refinery utilities and network. It reproduces at 20 bpd scale the overall Fischer Tropsch synthesis section: from slurry handling (loading, make-up, withdrawal), to reactor configuration and products separation units. Today the scale-up basis has been completed and the technology is ready for industrial deployment. (orig.)

  11. Effect of the Polymeric Stabilizer in the Aqueous Phase Fischer-Tropsch Synthesis Catalyzed by Colloidal Cobalt Nanocatalysts

    Directory of Open Access Journals (Sweden)

    Jorge A. Delgado

    2017-03-01

    Full Text Available A series of small and well defined cobalt nanoparticles were synthesized by the chemical reduction of cobalt salts in water using NaBH4 as a reducing agent and using various polymeric stabilizers. The obtained nanocatalysts of similar mean diameters (ca. 2.6 nm were fully characterized and tested in the aqueous phase Fischer-Tropsch Synthesis (AFTS. Interestingly, the nature and structure of the stabilizers used during the synthesis of the CoNPs affected the reduction degree of cobalt and the B-doping of these NPs and consequently, influenced the performance of these nanocatalysts in AFTS.

  12. Catalysts for synthetic liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, L.A.; Turney, T.W.

    1987-12-01

    Fischer-Tropsch catalysts have been designed, characterized and tested for the selective production of hydrocarbons suitable as synthetic liquid transport fuels from synthesis gas (i.e., by the reduction of carbon monoxide with hydrogen). It was found that hydrocarbons in the middle distillate range, or suitable for conversion to that range, could be produced over several of the new catalyst systems. The various catalysts examined included: (1) synthetic cobalt clays, mainly cobalt chlorites; (2) cobalt hydrotalcites; (3) ruthenium metal supported on rare earth oxides of high surface area; and (4) a novel promoted cobalt catalyst. Active and selective catalysts have been obtained, in each category. With the exception of the clays, reproducibility of catalyst performance has been good. Catalysts in groups 2 and 4 have exhibited very high activity, with long lifetimes and easy regeneration.

  13. Organic Analysis of Catalytic Fischer-Tropsch Synthesis Products and Ordinary Chondrite Meteorites by Stepwise Pyrolysis-GCMS: Organics in the Early Solar Nebula

    Science.gov (United States)

    Locke, Darren R.; Yazzie, Cyriah A.; Burton, Aaron S.; Niles, Paul B.; Johnson, Natasha M.

    2014-01-01

    Abiotic generation of complex organic compounds, in the early solar nebula that formed our solar system, is hypothesized by some to occur via Fischer-Tropsch (FT) synthesis. In its simplest form, FT synthesis involves the low temperature (300degC) produces FT products that include lesser amounts of n-alkanes and greater alkene, alcohol, and polycyclic aromatic hydrocarbon (PAH) compounds. We have begun to experimentally investigate FT synthesis in the context of abiotic generation of organic compounds in the early solar nebula. It is generally thought that the early solar nebula included abundant hydrogen and carbon monoxide gases and nano-particulate matter such as iron and metal silicates that could have catalyzed the FT reaction. The effect of FT reaction temperature, catalyst type, and experiment duration on the resulting products is being investigated. These solid organic products are analyzed by thermal-stepwise pyrolysis-GCMS and yield the types and distribution of hydrocarbon compounds released as a function of temperature. We show how the FT products vary by reaction temperature, catalyst type, and experimental duration and compare these products to organic compounds found to be indigenous to ordinary chondrite meteorites. We hypothesize that the origin of organics in some chondritic meteorites, that represent an aggregation of materials from the early solar system, may at least in part be from FT synthesis that occurred in the early solar nebula.

  14. A preliminary plant design study for the production of diesel from coal via fischer-tropsch synthesis

    International Nuclear Information System (INIS)

    Kamil, M.; Saleem, M.

    2010-01-01

    Pakistan's reliance on conventional means of producing energy has proven to be an inadequate strategy for overcoming it. The situation direly demands diversification of our energy resources not only to overcome current fiasco but also in planning for future. Among the other alternative sources, coal is the main source for producing cheaper electricity being available as huge reserves. This paper presents the preliminary plant design and cost estimation for the production of diesel from coal via coal gasification and fischer-Tropschs synthesis. Prelimnary design calculations and cost estimation are presented along with underlying assumptions. The results reveal that the diesel produced from this process might be cheaper than the crude oil based diesel. (author)

  15. Emissions from Diesel and Gasoline Vehicles Fuelled by Fischer-Tropsch Fuels and Similar Fuels

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Lundorff, Peter; Ivarsson, Anders

    2007-01-01

    The described investigation was carried out under the umbrella of IEA Advanced Motor Fuels Agreement. The purpose was to evaluate the emissions of carbon monoxide (CO), unburned hydrocarbons (HC), nitrogen oxides (NOx), particulate matter (PM) and polycyclic aromatic hydrocarbons (PAH) from...... vehicles fuelled by Fischer Tropsch (FT) based diesel and gasoline fuel, compared to the emissions from ordinary diesel and gasoline. The comparison for diesel fuels was based on a literature review, whereas the gasoline comparison had to be based on our own experiments, since almost no references were...... found in this field. In this context measurement according to the Federal Test Procedure (FTP) and the New European Driving Cycle (NEDC) were carried out on a chassis dynamometer with a directly injected gasoline vehicle. Experiments were carried out with a reference fuel, a fuel based 70% on FT...

  16. Structural modifications under reactive atmosphere of cobalt catalysts; Modifications structurales sous atmospheres reactionnelles de catalyseurs a base de cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Ducreux, O.

    1999-11-23

    The purpose of this work was to develop in situ methods under reactive dynamic conditions (XRD and Fourier transform infrared spectroscopy) to describe the active phase structure in order to understand Fischer-Tropsch catalyst behaviour and improve the natural gas conversion process performance. Experiments were designed to correlate structural modifications with catalytic results. The effect of ruthenium used as a promoter has also been studied. The impregnation process increases cobalt-support interaction. The presence of ruthenium promoter reduces this effect. Interactions between Co{sub 3}O{sub 4} oxide and support play an important role in the reducibility of cobalt and in the resulting metal structure. This in turn strongly influences the catalytic behaviour. Our results show a close correlation between structure modification and reactivity in the systems studied. Cobalt metal and CO can react to form a carbide Co{sub 2}C under conditions close to those of the Fischer-Tropsch synthesis. This carbide formation seems to be related to a deactivation process. The presence of interstitial carbon formed by dissociation of CO is proposed as a key to understanding the mechanism of the Fischer-Tropsch reaction. A specific catalyst activation treatment was developed to increase the catalytic activity. This work permits correlation of materials structure with their chemical properties and demonstrates the contribution of in situ physico-chemical characterisation methods to describe solids under reactive atmosphere. (author)

  17. Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions.

    Science.gov (United States)

    McCollom, T M; Ritter, G; Simoneit, B R

    1999-03-01

    Ever since their discovery in the late 1970's, mid-ocean-ridge hydrothermal systems have received a great deal of attention as a possible site for the origin of life on Earth (and environments analogous to mid-ocean-ridge hydrothermal systems are postulated to have been sites where life could have originated or Mars and elsewhere as well). Because no modern-day terrestrial hydrothermal systems are free from the influence of organic compounds derived from biologic processes, laboratory experiments provide the best opportunity for confirmation of the potential for organic synthesis in hydrothermal systems. Here we report on the formation of lipid compounds during Fischer-Tropsch-type synthesis from aqueous solutions of formic acid or oxalic acid. Optimum synthesis occurs in stainless steel vessels by heating at 175 degrees C for 2-3 days and produces lipid compounds ranging from C2 to > C35 which consist of n-alkanols, n-alkanoic acids, n-alkenes, n-alkanes and alkanones. The precursor carbon sources used are either formic acid or oxalic acid, which disproportionate to H2, CO2 and probably CO. Both carbon sources yield the same lipid classes with essentially the same ranges of compounds. The synthesis reactions were confirmed by using 13C labeled precursor acids.

  18. Breaking the Fischer–Tropsch synthesis selectivity : Direct conversion of syngas to gasoline over hierarchical Co/H-ZSM-5 catalysts

    NARCIS (Netherlands)

    Sartipi, S.; Parashar, K.; Makkee, M.; Gascon, J.; Kapteijn, F.

    2012-01-01

    We report the combination of Fischer–Tropsch catalyst with acid functionality in one single catalyst particle. The resulting bifunctional catalyst is capable of producing gasoline range hydrocarbons from synthesis gas in one catalytic step with outstanding activities and selectivities.

  19. Coatings of active and heat-resistant cobalt-aluminium xerogel catalysts.

    Science.gov (United States)

    Schubert, Miriam; Schubert, Lennart; Thomé, Andreas; Kiewidt, Lars; Rosebrock, Christopher; Thöming, Jorg; Roessner, Frank; Bäumer, Marcus

    2016-09-01

    The application of catalytically coated metallic foams in catalytic processes has a high potential for exothermic catalytic reactions such as CO2 methanation or Fischer-Tropsch synthesis due to good heat conductivity, improved turbulent flow properties and high catalyst efficiencies. But the preparation of homogenous catalyst coats without pore blocking is challenging with conventional wash coating techniques. Here, we report on a stable and additive free colloidal CoAlOOH suspension (sol) for the preparation of catalytically active Co/Al2O3 xerogel catalysts and coatings. Powders with 18wt% Co3O4 prepared from this additive free synthesis route show a catalytic activity in Fischer-Tropsch synthesis and CO2 methanation which is similar to a catalyst prepared by incipient wetness impregnation (IWI) after activating the material under flowing hydrogen at 430°C. Yet, the xerogel catalyst exhibits a much higher thermal stability as compared to the IWI catalyst, as demonstrated in catalytic tests after different heat agings between 430°C and 580°C. It was also found that the addition of polyethylene glycol (PEG) to the sol influences the catalytic properties of the formed xerogels negatively. Only non-reducible cobalt spinels were formed from a CoAlOOH sol with 20wt% PEG. Metallic foams with pores sizes between 450 and 1200μm were coated with the additive free CoAlOOH sol, which resulted in homogenous xerogel layers. First catalytic tests of the coated metal foams (1200μm) showed good performance in CO2 methanation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Influence of oxalate ligand functionalization on Co/ZSM-5 activity in Fischer Tropsch synthesis and hydrodeoxygenation of oleic acid into hydrocarbon fuels.

    Science.gov (United States)

    Ayodele, Olumide Bolarinwa

    2017-08-30

    Achieving high degree of active metal dispersions at the highest possible metal loading and high reducibility of the metal remains a challenge in Fischer Tropsch synthesis (FTS) as well as in hydrogeoxygenation (HDO).This study therefore reports the influence of oxalic acid (OxA) functionalization on the metal dispersion, reducibility and activity of Co supported ZSM-5 catalyst in FTS and HDO of oleic acid into paraffin biofuel. The Brunauer-Emmett-Teller (BET) results showed that cobalt oxalate supported ZSM-5 catalyst (CoOx/ZSM-5) synthesized from the incorporation of freshly prepared cobalt oxalate complex into ZSM-5 displayed increase in surface area, pore volume and average pore size while the nonfunctionalized cobalt supported on ZSM-5 (Co/ZSM-5) catalyst showed reduction in those properties. Furthermore, both XRD and XPS confirmed the presence of Co° formed from the decomposition of CoOx during calcination of CoOx/ZSM-5 under inert atmosphere. The HRTEM showed that Co species average particle sizes were smaller in CoOx/ZSM-5 than in Co/ZSM-5, and in addition, CoOx/ZSM-5 shows a clear higher degree of active metal dispersion. The FTS result showed that at CO conversion over Co/ZSM-5 and CoOx/ZSM-5 catalysts were 74.28% and 94.23% and their selectivity to C 5+ HC production were 63.15% and 75.4%, respectively at 4 h TOS. The HDO result also showed that the CoOx/ZSM-5 has higher OA conversion of 92% compared to 59% over Co/ZSM-5. In addition CoOx/ZSM-5 showed higher HDO and isomerization activities compared to Co/ZSM-5.

  1. Membrane Bioreactor (MBR) as Alternative to a Conventional Activated Sludge System Followed by Ultrafiltration (CAS-UF) for the Treatment of Fischer-Tropsch Reaction Water from Gas-to-Liquids Industries

    NARCIS (Netherlands)

    Laurinonyte, Judita; Meulepas, Roel J.W.; Brink, van den Paula; Temmink, Hardy

    2017-01-01

    The potential of a membrane bioreactor (MBR) system to treat Fischer-Tropsch (FT) reaction water from gas-to-liquids (GTL) industries was investigated and compared with the current treatment system: a conventional activated sludge system followed by an ultrafiltration (CAS-UF) unit. The MBR and

  2. The renaissance of iron-based Fischer–Tropsch synthesis: on the multifaceted catalyst deactivation behaviour

    NARCIS (Netherlands)

    de Smit, E.|info:eu-repo/dai/nl/304824232; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2008-01-01

    Iron-based Fischer–Tropsch catalysts, which are applied in the conversion of CO and H2 into longer hydrocarbon chains, are historically amongst the most intensively studied systems in heterogeneous catalysis. Despite this, fundamental understanding of the complex and dynamic chemistry of the

  3. Exergetic optimisation of a production process of Fischer-Tropsch fuels from biomass

    NARCIS (Netherlands)

    Prins, M.J.; Ptasinski, K.J.; Janssen, F.J.J.G.

    2005-01-01

    An exergy analysis of Biomass Integrated Gasification-Fischer–Tropsch process is presented. The process combines an air-blown, atmospheric gasifier, using sawdust as feedstock, with a Fischer–Tropsch reactor and a steam-Rankine cycle for electricity generation from the Fischer–Tropsch tail gas.

  4. CFD analysis of hot spot formation through a fixed bed reactor of Fischer-Tropsch synthesis

    Directory of Open Access Journals (Sweden)

    Hamed Aligolzadeh

    2015-12-01

    Full Text Available One of the interesting methods for conversion of synthesis gas to heavy hydrocarbons is Fischer–Tropsch process. The process has some bottlenecks, such as hot spot formation and low degree of conversion. In this work, computational fluid dynamics technique was used to simulate conversion of synthetic gas and product distribution. Also, hot spot formation in the catalytic fixed-bed reactor was investigated in several runs. Simulation results indicated that hot spot formation occurred more likely in the early and middle part of reactor due to high reaction rates. Based on the simulation results, the temperature of hot spots increased with increase in the inlet temperature as well as pressure. Among the many CFD runs conducted, it is found that the optimal temperature and pressure for Fischer–Tropsch synthesis are 565 K and 20 bar, respectively. As it seems that the reactor shall work very well under optimal conditions, the reaction rates and catalyst duration would simultaneously be maximum .

  5. Fischer-Tropsch Synthesis over Iron Manganese Catalysts: Effect of Preparation and Operating Conditions on Catalyst Performance

    Directory of Open Access Journals (Sweden)

    Ali A. Mirzaei

    2009-01-01

    molar basis which is the most active catalyst for the conversion of synthesis gas to light olefins. The effects of different promoters and supports with loading of optimum support on the catalytic performance of catalysts are also studied. It was found that the catalyst containing 50%Fe/50%Mn/5 wt.%Al2O3 is an optimum-modified catalyst. The catalytic performance of optimal catalyst has been studied in operation conditions such as a range of reaction temperatures, H2/CO molar feed ratios and a range of total pressures. Characterization of both precursors and calcined catalysts is carried out by powder X-ray diffraction (XRD, scanning electron microscopy (SEM, BET specific surface area and thermal analysis methods such as TGA and DSC.

  6. The Simple, Effective Synthesis of Highly Dispersed Pd/C and CoPd/C Heterogeneous Catalysts via Charge-Enhanced Dry Impregnation

    Directory of Open Access Journals (Sweden)

    Lawrence D’Souza

    2016-05-01

    Full Text Available Pd/C and CoPd/C heterogeneous catalysts have been synthesized by adopting Charge Enhanced Dry Impregnation (CEDI. The particles size distribution, their high metal surface-to-bulk ratios, and synthesis feasibility are unmatchable to any known noble metal bimetallic heterogeneous catalyst preparation techniques. Next generation Fuel Cells and Fischer-Tropsch catalytic processes economy will be benefited from the proposed methodology.

  7. Greenhouse impact assessment of peat-based Fischer-Tropsch diesel life-cycle

    International Nuclear Information System (INIS)

    Kirkinen, Johanna; Soimakallio, Sampo; Maekinen, Tuula; Savolainen, Ilkka

    2010-01-01

    New raw materials for transportation fuels need to be introduced, in order to fight against climate change and also to cope with increasing risks of availability and price of oil. Peat has been recognised suitable raw material option for diesel produced by gasification and Fischer-Tropsch (FT) synthesis. The energy content of Finnish peat reserves is remarkable. In this study, the greenhouse impact of peat-based FT diesel production and utilisation in Finland was assessed from the life-cycle point of view. In 100 year's time horizon the greenhouse impact of peat-based FT diesel is likely larger than the impact of fossil diesel. The impact can somewhat be lowered by producing peat from the agricultural peatland (strong greenhouse gas emissions from the decaying peatlayer are avoided) with new peat production technique, and utilising the produced biomass from the after-treatment area for diesel also. If diesel production is integrated with pulp and paper mill to achieve energy efficiency benefits and if the electricity demand can be covered by zero emission electricity, the greenhouse impact of peat-based FT diesel reduces to the level of fossil diesel when agricultural peatland is used, and is somewhat higher when forestry-drained peatland is used as raw material source.

  8. Important roles of Fischer-Tropsch synfuels in the global energy future

    International Nuclear Information System (INIS)

    Takeshita, Takayuki; Yamaji, Kenji

    2008-01-01

    This paper examines the potential roles of Fischer-Tropsch (FT) synfuels in the 21st century with a global energy model treating the entire fuel supply chain in detail. The major conclusions are the following. First, FT synfuels become a major alternative fuel regardless of CO 2 policy due to their low transportation costs and compatibility with existing petroleum infrastructure and vehicles. Secondly, the FT process brings stranded gas to world markets until around 2050. In a 550 ppm CO 2 stabilization case thereafter, producing FT synfuels from biomass, whose competitiveness is robust against its capital costs, and their interregional trade enable a worldwide diffusion of carbon-neutral fuels. This provides a significant source of income for developing regions, such as Latin America and Sub-Saharan Africa. Thirdly, FT synfuels play a crucial role in meeting the growing transportation energy demand and assuring diversified supplies of transportation fuels. Increasing portions of FT liquids are refined to FT-kerosene to be provided for the rapidly growing aviation sector in the second half of the century. Furthermore, upgrading FT-naphtha into FT-gasoline proves to be critically important. FT synfuels' participation could help the development in Africa through technological contributions of the South African leading companies in the world synfuel industry

  9. Extension of the Single-Event Methodology to Metal Catalysis: Application to Fischer-Tropsch Synthesis Extension de la méthodologie des événements constitutifs à la catalyse métallique : Application à la synthèse Fischer-Tropsch

    Directory of Open Access Journals (Sweden)

    Lozano-Blanco G.

    2010-10-01

    Full Text Available The single-event methodology has been extended to metal catalysis using Fischer-Tropsch synthesis on an iron-based catalyst as case study. The reaction mechanism has been assessed in terms of elementary steps that could be categorized in reaction families such as reductive elimination, β-hydride elimination and methylene insertion. A computer code has been developed for the generation of the reaction network containing these elementary steps. The representation of reacting and intermediate species explicitly takes into account metal-carbon bonds as well as the presence of oxygen. The model has been validated using iron-based catalytic data at 623 K, 0.6 to 2.1 MPa, inlet molar H2/CO ratio between 2 and 6. 14 parameters, among which 10 activation energies and 4 atomic chemisorption enthalpies have been adjusted to the experimental data. Experimentally observed trends in alkane and 1-alkene product yields with the carbon number were adequately reproduced as well as the individual molar yields of the non-hydrocarbon products. La méthodologie par événements constitutifs a été étendue à la catalyse métallique en utilisant la synthèse Fischer-Tropsch sur un catalyseur au fer comme cas d'étude. Le mécanisme réactionnel a été décomposé en étapes élémentaires qui peuvent être classées par type de réactions, telles que l'élimination réductrice, l'élimination d'hydrure en β, et l'insertion de groupe méthylène. Un code de calcul a été développé pour générer le réseau réactionnel impliquant ces étapes élémentaires. La représentation des réactifs et des espèces intermédiaires prend en compte explicitement les liaisons carbone-métal et inclut la présence d'atomes d'oxygène. Le modèle a été validé sur une base de données obtenues sur un catalyseur à base de fer à 623 K, sur une plage de 0,6 à 2,1 MPa, un ratio H2/CO en entrée variant de 2 à 6. Quatorze paramètres, dont 10 énergies d'activation et 4

  10. NOVEL SLURRY PHASE DIESEL CATALYSTS FOR COAL-DERIVED SYNGAS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Dragomir B. Bukur; Dr. Ketil Hanssen; Alec Klinghoffer; Dr. Lech Nowicki; Patricia O' Dowd; Dr. Hien Pham; Jian Xu

    2001-01-07

    This report describes research conducted to support the DOE program in novel slurry phase catalysts for converting coal-derived synthesis gas to diesel fuels. The primary objective of this research program is to develop attrition resistant catalysts that exhibit high activities for conversion of coal-derived syngas.

  11. Paraffin Alkylation Using Zeolite Catalysts in a slurry reactor: Chemical Engineering Principles to Extend Catalyst Lifetime

    NARCIS (Netherlands)

    Jong, K.P. de; Mesters, C.M.A.M.; Peferoen, D.G.R.; Brugge, P.T.M. van; Groot, C. de

    1996-01-01

    The alkylation of isobutane with 2-butene is carried out using a zeolitic catalyst in a well stirred slurry reactor. Whereas application of fixed bed technology using a solid acid alkylation catalyst has in the led to catalysts lifetimes in the range of minutes, in this work we report catalyst

  12. Emissions from Road Vehicles Fuelled by Fischer Tropsch Based Diesel and Gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, U; Lundorf, P; Ivarsson, A; Schramm, J [Technical University of Denmark (Denmark); Rehnlund, B [Atrax Energi AB (Sweden); Blinge, M [The Swedish Transport Institute (Sweden)

    2006-11-15

    The described results were carried out under the umbrella of IEA Advanced Motor Fuels Agreement. The purpose was to evaluate the emissions of carbon monoxide (CO), unburned hydrocarbons (HC), nitrogen oxides (NOx), particulate matter (PM) and polycyclic aromatic hydrocarbons (PAH) from vehicles fuelled by Fischer Tropsch (FT) based diesel and gasoline fuel, compared to the emissions from ordinary diesel and gasoline. The comparison for diesel fuels was based on a literature review, whereas the gasoline comparison had to be based on our own experiments, since almost no references were found in this field. In this context measurement according to the Federal Test Procedure (FTP) and the New European Driving Cycle (NEDC) were carried out on a chassis dynamometer with a directly injected gasoline vehicle. Experiments were carried out with a reference fuel, a fuel based 70% on FT and an alkylate fuel (Aspen), which was supposed to be very similar, in many ways, to FT fuel. FT based diesel generally showed good emission performance, whereas the FT based gasoline not necessary lead to lower emissions. On the other hand, the Aspen fuel did show many advantages for the emissions from the gasoline vehicle.

  13. Selective Metathesis of α-Olefins from Bio-Sourced Fischer–Tropsch Feeds

    KAUST Repository

    Rouen, Mathieu; Queval, Pierre; Borre, Etienne; Falivene, Laura; Poater, Albert; Berthod, Mikael; Hugues, Francois; Cavallo, Luigi; Basle, Olivier; Olivier-Bourbigou, Helene; Mauduit, Marc

    2016-01-01

    The search for a low-cost process for the valorization of linear alpha-olefins combining high productivity and high selectivity is a longstanding goal for chemists. Herein, we report a soluble ruthenium olefin metathesis catalyst that performs the conversion of linear alpha-olefins to longer internal linear olefins with high selectivity (>99%) under neat conditions at low loadings (50 ppm) and without the need of expensive additives. This robust catalytic process allowed us to efficiently and selectively re-equilibrate the naphtha fraction (C-5-C-8) of a Fischer-Tropsch feed derived from non petroleum resources to a higher-value product range (C-9-C-14), useful as detergent and plasticizer precursors.

  14. Selective Metathesis of α-Olefins from Bio-Sourced Fischer–Tropsch Feeds

    KAUST Repository

    Rouen, Mathieu

    2016-10-14

    The search for a low-cost process for the valorization of linear alpha-olefins combining high productivity and high selectivity is a longstanding goal for chemists. Herein, we report a soluble ruthenium olefin metathesis catalyst that performs the conversion of linear alpha-olefins to longer internal linear olefins with high selectivity (>99%) under neat conditions at low loadings (50 ppm) and without the need of expensive additives. This robust catalytic process allowed us to efficiently and selectively re-equilibrate the naphtha fraction (C-5-C-8) of a Fischer-Tropsch feed derived from non petroleum resources to a higher-value product range (C-9-C-14), useful as detergent and plasticizer precursors.

  15. Fischer-Tropsch synthesis: study of the promotion of Pt on the reduction property of Co/Al2O3 catalysts by in situ EXAFS of Co K and Pt LIII edges and XPS

    International Nuclear Information System (INIS)

    Jacobs, G.; Chaney, J.A.; Patterson, P.M.; Das, T.K.; Maillot, J.C.; Davis, B.H.

    2004-01-01

    The addition of platinum metal to cobalt/alumina-based Fischer-Tropsch synthesis (FTS) catalysts increases both the reduction rate and, consequently, the density of active cobalt sites. Platinum also lowers the temperature of the two-step conversion of cobalt oxide to cobalt metal observed in temperature programmed reduction (TPR) as Co 3 O 4 to CoO and CoO to Co 0 . The interaction of the alumina support with cobalt oxide ultimately determines the active site density of the catalyst surface. This interaction can be controlled by varying the cobalt loading and dispersion, selecting supports with differing surface areas or pore sizes, or changing the noble metal promoter. However, the active site density is observed to depend primarily on the cluster size and extent of reduction, and there is a direct relationship between site density and FTS rate. In this work, in situ extended X-ray absorption fine structure (EXAFS) at the L III edge of Pt was used to show that isolated Pt atoms interact with supported cobalt clusters without forming observable Pt-Pt bonds. K-edge EXAFS was also used to verify that the cobalt cluster size increases slightly for those systems with Pt promotion. X-ray absorption near-edge spectroscopy (XANES) was used to examine the remaining cobalt clusters after the first stage of TPR, and it revealed that the species were almost entirely cobalt (II) oxide. After the second stage of TPR to form cobalt metal, a residual oxide persists in the sample, and this oxide has been identified as cobalt (II) aluminate using X-ray photoelectron spectroscopy (XPS). Sequential in situ reduction of promoted and unpromoted systems was also monitored through XPS, and Pt was seen to increase the extent of cobalt reduction by a factor of two. (orig.)

  16. Incorporation of catalytic dehydrogenation into Fischer-Tropsch synthesis to lower carbon dioxide emissions

    Science.gov (United States)

    Huffman, Gerald P

    2012-09-18

    A method for producing liquid fuels includes the steps of gasifying a starting material selected from a group consisting of coal, biomass, carbon nanotubes and mixtures thereof to produce a syngas, subjecting that syngas to Fischer-Tropsch synthesis (FTS) to produce a hyrdrocarbon product stream, separating that hydrocarbon product stream into C1-C4 hydrocarbons and C5+ hydrocarbons to be used as liquid fuels and subjecting the C1-C4 hydrocarbons to catalytic dehydrogenation (CDH) to produce hydrogen and carbon nanotubes. The hydrogen produced by CDH is recycled to be mixed with the syngas incident to the FTS reactor in order to raise the hydrogen to carbon monoxide ratio of the syngas to values of 2 or higher, which is required to produce liquid hydrocarbon fuels. This is accomplished with little or no production of carbon dioxide, a greenhouse gas. The carbon is captured in the form of a potentially valuable by-product, multi-walled carbon nanotubes (MWNT), while huge emissions of carbon dioxide are avoided and very large quantities of water employed for the water-gas shift in traditional FTS systems are saved.

  17. Fischer-Tropsch Synthesis: Influence of CO Conversion on Selectivities H2/CO Usage Ratios and Catalyst Stability for a 0.27 percent Ru 25 percent Co/Al2O3 using a Slurry Phase Reactor

    Energy Technology Data Exchange (ETDEWEB)

    W Ma; G Jacobs; Y Ji; T Bhatelia; D Bukur; S Khalid; B Davis

    2011-12-31

    The effect of CO conversion on hydrocarbon selectivities (i.e., CH{sub 4}, C{sub 5+}, olefin and paraffin), H{sub 2}/CO usage ratios, CO{sub 2} selectivity, and catalyst stability over a wide range of CO conversion (12-94%) on 0.27%Ru-25%Co/Al{sub 2}O{sub 3} catalyst was studied under the conditions of 220 C, 1.5 MPa, H{sub 2}/CO feed ratio of 2.1 and gas space velocities of 0.3-15 NL/g-cat/h in a 1-L continuously stirred tank reactor (CSTR). Catalyst samples were withdrawn from the CSTR at different CO conversion levels, and Co phases (Co, CoO) in the slurry samples were characterized by XANES, and in the case of the fresh catalysts, EXAFS as well. Ru was responsible for increasing the extent of Co reduction, thus boosting the active site density. At 1%Ru loading, EXAFS indicates that coordination of Ru at the atomic level was virtually solely with Co. It was found that the selectivities to CH{sub 4}, C{sub 5+}, and CO{sub 2} on the Co catalyst are functions of CO conversion. At high CO conversions, i.e. above 80%, CH{sub 4} selectivity experienced a change in the trend, and began to increase, and CO{sub 2} selectivity experienced a rapid increase. H{sub 2}/CO usage ratio and olefin content were found to decrease with increasing CO conversion in the range of 12-94%. The observed results are consistent with water reoxidation of Co during FTS at high conversion. XANES spectroscopy of used catalyst samples displayed spectra consistent with the presence of more CoO at higher CO conversion levels.

  18. Formulation and catalytic performance of MOF-derived Fe@C/Al composites for high temperature Fischer–Tropsch synthesis

    KAUST Repository

    Oar-Arteta, Lide; Valero-Romero, Marí a José ; Wezendonk, Tim; Kapteijn, Freek; Gascon, Jorge

    2017-01-01

    High productivity towards C-2-C-4 olefins together with high catalyst stability are key for optimum operation in high temperature Fischer-Tropsch synthesis (HT-FTS). Here, we report the fabrication of Fe@C/Al composites that combine both the outstanding catalytic properties of the Fe-BTC MOF-derived Fe catalyst and the excellent mechanical resistance and textural properties provided by the inorganic AlOOH binder. The addition of AlOOH to Fe-BTC followed by pyrolysis in N-2 atmosphere at 500 degrees C results in composites with a large mesoporosity, a high Fe/Fe3O4 ratio, 10-35 nm average Fe crystallite size and coordinatively unsaturated Al3+ sites. In catalytic terms, the addition of AlOOH binder gives rise to enhanced C-2-C-4 selectivity and catalyst mechanical stability in HT-FTS, but at high Al contents the activity decreases. Altogether, the productivity of these Fe@C/Al composites is well above most known Fe catalysts for this process.

  19. Formulation and catalytic performance of MOF-derived Fe@C/Al composites for high temperature Fischer–Tropsch synthesis

    KAUST Repository

    Oar-Arteta, Lide

    2017-11-15

    High productivity towards C-2-C-4 olefins together with high catalyst stability are key for optimum operation in high temperature Fischer-Tropsch synthesis (HT-FTS). Here, we report the fabrication of Fe@C/Al composites that combine both the outstanding catalytic properties of the Fe-BTC MOF-derived Fe catalyst and the excellent mechanical resistance and textural properties provided by the inorganic AlOOH binder. The addition of AlOOH to Fe-BTC followed by pyrolysis in N-2 atmosphere at 500 degrees C results in composites with a large mesoporosity, a high Fe/Fe3O4 ratio, 10-35 nm average Fe crystallite size and coordinatively unsaturated Al3+ sites. In catalytic terms, the addition of AlOOH binder gives rise to enhanced C-2-C-4 selectivity and catalyst mechanical stability in HT-FTS, but at high Al contents the activity decreases. Altogether, the productivity of these Fe@C/Al composites is well above most known Fe catalysts for this process.

  20. Active phase distribution changes within a catalyst particle during Fischer-Tropsch synthesis as revealed by multi-scale microscopy

    NARCIS (Netherlands)

    Cats, K. H.; Andrews, J. C.; Stephan, O.; March, K.; Karunakaran, C.; Meirer, F.; de Groot, F. M. F.; Weckhuysen, B. M.

    The Fischer–Tropsch synthesis (FTS) reaction is one of the most promising processes to convert alternative energy sources, such as natural gas, coal or biomass, into liquid fuels and other high-value products. Despite its commercial implementation, we still lack fundamental insights into the various

  1. Fabrication of Fischer-Tropsch Catalysts by Deposition of Iron Nanocrystals on Carbon Nanotubes

    NARCIS (Netherlands)

    Casavola, Marianna; Hermannsdoerfer, Justus; de Jonge, Niels; Dugulan, A. Iulian; de Jong, Krijn P.

    2015-01-01

    The fabrication of supported catalysts consisting of colloidal iron oxide nanocrystals with tunable size, geometry, and loadinghomogeneously dispersed on carbon nanotube (CNT) supportsis described herein. The catalyst synthesis is performed in a two-step approach. First, colloidal iron and iron

  2. Coal-related research, organic chemistry, and catalysis

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Coal chemistry research topics included: H exchange at 400 0 C, breaking C-C bonds in coal, molecular weight estimation using small-angle neutron scattering, 13 C NMR spectra of coals, and tunneling during H/D isotope effects. Studies of coal conversion chemistry included thermolysis of bibenzyl and 1-naphthol, heating of coals in phenol, advanced indirect liquefaction based on Koelbel slurry Fischer-Tropsch reactor, and plasma oxidation of coal minerals. Reactions of PAHs in molten SbCl 3 , a hydrocracking catalyst, were studied. Finally, heterogeneous catalysis (desulfurization etc.) was studied using Cu, Au, and Ni surfaces. 7 figures, 6 tables

  3. Development of CuxFe/Al2O3 catalysts for the hydrogenation of carbon monoxide guided by magnetic methods, Moessbauer and infrared spectroscopy

    International Nuclear Information System (INIS)

    Boellaard, E.; Geus, J.W.; Bruggen, J.M. van; Kraan, A.M. van der

    1993-01-01

    A copper-iron catalyst for the hydrogenation of carbon monoxide has been prepared using a supported stoichiometric cyanide complex. Conversion of the cyanide precursor to a metallic catalyst appeared to be a precious process. Copper and iron in the bimetallic particles easily separate by thermal treatment and upon exposure to carbon monoxide, as revealed from Moessbauer and infrared spectroscopy. During Fischer-Tropsch reaction the catalyst exhibits a rapid decline of activity. Magnetisation measurements on spent catalysts indicate that the deactivation is caused by a fast conversion of metallic iron to initially unstable carbides which transform ultimately to more stable carbides. (orig.)

  4. Combined XRD and XANES studies of a Re-promoted Co/γ-Al2O3 catalyst at Fischer–Tropsch synthesis conditions

    DEFF Research Database (Denmark)

    Rønning, Magnus; Tsakoumis, Nikolaos E.; Voronov, Alexey

    2010-01-01

    A cobalt based Fischer–Tropsch catalyst was studied during the initial stages of the reaction at industrially relevant conditions. The catalyst consists of 20wt% cobalt supported on γ-Al2O3 and promoted by 1wt% of rhenium. X-ray diffraction (XRD) in combination with X-ray absorption near edge...

  5. On the Use of Fourier Transform Infrared (FT-IR) Spectroscopy and Synthetic Calibration Spectra to Quantify Gas Concentrations in a Fischer-Tropsch Catalyst System

    Science.gov (United States)

    Ferguson, Frank T.; Johnson, Natasha M.; Nuth, Joseph A., III

    2015-01-01

    One possible origin of prebiotic organic material is that these compounds were formed via Fischer-Tropsch-type (FTT) reactions of carbon monoxide and hydrogen on silicate and oxide grains in the warm, inner-solar nebula. To investigate this possibility, an experimental system has been built in which the catalytic efficiency of different grain-analog materials can be tested. During such runs, the gas phase above these grain analogs is sampled using Fourier transform infrared (FT-IR) spectroscopy. To provide quantitative estimates of the concentration of these gases, a technique in which high-resolution spectra of the gases are calculated using the high-resolution transmission molecular absorption (HITRAN) database is used. Next, these spectra are processed via a method that mimics the processes giving rise to the instrumental line shape of the FT-IR spectrometer, including apodization, self-apodization, and broadening due to the finite resolution. The result is a very close match between the measured and computed spectra. This technique was tested using four major gases found in the FTT reactions: carbon monoxide, methane, carbon dioxide, and water. For the ranges typical of the FTT reactions, the carbon monoxide results were found to be accurate to within 5% and the remaining gases accurate to within 10%. These spectra can then be used to generate synthetic calibration data, allowing the rapid computation of the gas concentrations in the FTT experiments.

  6. Hydrogenation of carbon monoxide on Co/MgAl2O4 and Ce-Co/MgAl2O4 catalysts

    International Nuclear Information System (INIS)

    Kondoh, S.; Muraki, H.; Fujitani

    1986-01-01

    It is well known that various hydrocarbons are obtained by hydrogenation of CO on Fischer-Tropsch catalysts, the products depending on the catalyst components such as Co, Ni, Fe and Ru: and the reaction conditions, particularly, temperature, pressure, space velocity and H 2 /CO ratio. Further, both reactivity and selectivity of catalysts may be improved by suitable selection of support and an additive. The main program of the present work is to develop a catalyst for producing C 5 + liquid hydrocarbons, as an automobile fuel, by the Fischer-Tropsch synthesis. The authors have studied unique CO catalyst systems consisting of various supports - such as Al 2 O 3 (γ, β, α), MgAl 2 O 4 (alumina magnesia spinel), MgO and additives selected from the lanthanoid elements (LE). The composition of spinel-based supports was altered in a range from 28 mol % excess Al 2 O 3 to 28 mol % excess MgO. Particularly, they found that a MgAl 2 O 4 support with 15-18 mol % excess Al 2 O 3 is the most preferable for our purpose and CeO 2 as the additive for Co/spinel catalyst remarkably improves C 5 + yield. Further, it was confirmed that the catalytic activity of Co-base catalysts agree with the oxidation state of Co-oxides on Co and Co-Ce/spinel catalysts. The performance of Co-based catalysts for the production of higher hydrocarbons from syn-gas were described elsewhere. The items described in this report include (a) selection of supports, (b) selection of optimum reaction conditions for Co-Ce/spinel catalyst, (c) redox characteristics of Co-oxides on a spinel surface, and (d) experimental observation of TPD profiles, adsorption capacities and IR spectra relating to adsorbed CO

  7. Fuel from the synthesis gas - the role of process engineering

    Energy Technology Data Exchange (ETDEWEB)

    Stelmachowski, Marek; Nowicki, Lech [Technical Univ. of Lodz, Dept. of Environmental Engineering Systems, Lodz (Poland)

    2003-02-01

    The paper presents the conclusions obtained in the investigations of methanol synthesis, Fischer-Tropsch synthesis, and higher alcohols synthesis from syngas as a raw material in slurry reactors. The overview of the role of process engineering was made on the basis of the experience in optimizing process conditions, modeling reactors and working out new technologies. Experimental data, obtained with a laboratory-stirred autoclave and theoretical considerations were used to develop the kinetic models that can describe the product formation and the model of the simultaneous phase and chemical equilibrium for the methanol and Fischer-Tropsch syntheses in the slurry reactors. These models were employed in modeling of the bubble-column slurry reactor (BCSR). Based on these considerations, a computer simulation of the low-pressure methanol synthesis for the pilot-scale, BCSR, was devised. The results of the calculations and the conclusions could be employed in the process for designing an industrial plant. (Author)

  8. Potential for Coal-to-Liquids Conversion in the United States-Fischer-Tropsch Synthesis

    International Nuclear Information System (INIS)

    Patzek, Tad W.; Croft, Gregory D.

    2009-01-01

    The United States has the world's largest coal reserves and Montana the highest potential for mega-mine development. Consequently, a large-scale effort to convert coal to liquids (CTL) has been proposed to create a major source of domestic transportation fuels from coal, and some prominent Montanans want to be at the center of that effort. We calculate that the energy efficiency of the best existing Fischer-Tropsch (FT) process applied to average coal in Montana is less than 1/2 of the corresponding efficiency of an average crude oil refining process. The resulting CO 2 emissions are 20 times (2000%) higher for CTL than for conventional petroleum products. One barrel of the FT fuel requires roughly 800 kg of coal and 800 kg of water. The minimum energy cost of subsurface CO 2 sequestration would be at least 40% of the FT fuel energy, essentially halving energy efficiency of the process. We argue therefore that CTL conversion is not the most valuable use for the coal, nor will it ever be, as long as it is economical to use natural gas for electric power generation. This finding results from the low efficiency inherent in FT synthesis, and is independent of the monumental FT plant construction costs, mine construction costs, acute lack of water, and the associated environmental impacts for Montana

  9. MoO3/Al2O3 catalyst: Comparison of catalysts prepared by new slurry impregnation with molybdic acid with conventional samples

    International Nuclear Information System (INIS)

    Spojakina, A.; Kostova, N.; Vit, Z.; Zdrazil, M.

    2003-01-01

    Alumina-supported molybdena catalysts were prepared by conventional impregnation with (NH 4 ) 6 Mo 7 O 24 (CIM) and by a new slurry impregnation method (SIM). SIM is the reaction of alumina support with a slurry of MoO 3 in water. Two commercial supports were used and the commercial Mo 3 /Al 2 O 3 catalyst was included for comparison. Maximum amount of MoO 3 deposited by SIM was about 19-20 % MoO 3 with the surface area of the support of 260-280 m 2 g -1 and this corresponded to saturation monolayer of similar density as described in literature for CIM catalysts. At the ratios of MoO 3 to Al 2 O 3 in the impregnation slurry below saturation monolayer, the pH of the slurry was 3.5-6 (depending on loading) and chemical erosion of alumina is negligible. However, using the large excess of MoO 3 (35% MoO 3 ) the pH was 2.4-3.4 and chemical erosion of alumina occurred. Silica contained in alumina supports was partly extracted as soluble silicomolybdic anions during SIM. The catalysts were characterized by BET, IR, DRS (UV-vis and NIR), TPR and catalytic activity in hydrodesulfurization of thiophene. Calcination had no significant effect on the properties of SIM catalysts and this proved that calcination is not needed in that method. All catalysts exhibited features of high monolayer dispersion of molybdena and no significant difference in structure and catalytic properties was observed between SIM and CIM catalysts. This confirmed that SIM is a simple, clean and reliable method of preparation of monolayer type MoO 3 /Al 2 O 3 catalysts. (author)

  10. Catalyst in alternate energy resources for producing environment friendly clean energy

    International Nuclear Information System (INIS)

    Hussain, S.T.; Atta, M.A.

    1998-01-01

    Carbon monoxide, a by-product of the Chemical Process Industries, is a deadly poisonous gas; if released into the atmosphere causes irreparable damage to the environment. A bimetallic catalyst system Ru: Mn doped with different concentrations of 'K' (Potassium) and supported on high surface area alumina support was prepared by co impregnation method, dispersed and reduced at 450 deg. C under hydrogen flow using a closed reactor system at atmospheric pressure for the utilization of poisonous CO gas to produce environmental friendly clean energy. Fischer Tropsch catalyst, when subjected to CO/hydrogenation, gives methane and other hydrocarbon products. The main purpose of this research work was two fold: 1. The powder catalyst when dispersed/reduced on a high surface area oxide support spreads on the surface of the system in a different orientations and shapes. The particle size of the prepared catalysts ranges from 5.0-25.0 nm. The whole system forms a complicated mixture of numerous particles and hence becomes very complicated to study. The characterisation of these randomly oriented particles having different sizes and shapes is a difficult job. This required sensitive UHV spectroscopic techniques like SSIMS, XPS, EEls, XRD and TEM. Their operations needs strong skills. Hence the first aim was to utilize these techniques for the characterization of the prepared catalysts and to establish the usefulness of these techniques in studying such complicated systems. 2. Since Ru is a very good Fischer Tropsch catalyst for the production of aliphatic hydrocarbons product. Our other aim was to find out whether if by surface modification through additives or by surface reconstructing through chemical treatment, we could alter the path of this CO/hydrogenation reaction to produce potentially important unsaturated/aromatic hydrocarbon products. This would serve our dual purpose in which we could use poisonous CO for useful purpose. Hence 'K' potassium as surface modifier is

  11. Effect of precipitating agent on the catalytic behaviour of precipitated iron catalysts

    International Nuclear Information System (INIS)

    Motjope, T.R.; Dlamini, H.T.; Pollak, H.; Coville, N.J.

    1999-01-01

    Iron precipitated catalysts have been prepared using different precipitating agents (NH 4 OH, K 2 CO 3 ) at different pH values. In situ Moessbauer (MES) study of the reduced catalyst prepared using NH 4 OH revealed the presence of superparamagnetic Fe 2+ , Fe 3+ and magnetically split α-Fe only, whereas the catalyst prepared with K 2 CO 3 also showed an extra magnetic sextuplet of Fe 3 O 4 . For both catalyst systems, in situ MES revealed that during Fischer-Tropsch synthesis α-Fe was converted into ε'-Fe 2,2 C and finally into χ-Fe 2,5 C when the synthesis time was increased. The rate of formation of hydrocarbons was observed to increase with the increase in the degree of carburisation with the NH 4 OH catalyst showing a higher rate of reaction. The K 2 CO 3 catalyst exhibited higher olefin selectivity than the NH 4 OH catalyst under similar pH conditions

  12. A novel water perm-selective membrane dual-type reactor concept for Fischer-Tropsch synthesis of GTL (gas to liquid) technology

    International Nuclear Information System (INIS)

    Rahimpour, M.R.; Mirvakili, A.; Paymooni, K.

    2011-01-01

    The present study proposes a novel configuration of Fischer-Tropsch synthesis (FTS) reactors in which a fixed-bed water perm-selective membrane reactor is followed by a fluidized-bed hydrogen perm-selective membrane reactor. This novel concept which has been named fixed-bed membrane reactor followed by fluidized-bed membrane reactor (FMFMDR) produces gasoline from synthesis gas. The walls of the tubes of a fixed-bed reactor (water-cooled reactor) of FMFMDR configuration are coated by a high water perm-selective membrane layer. In this new configuration, two membrane reactors instead of one membrane reactor are developed for FTS reactions. In other words, two different membrane layers are used. In order to investigate the performance of FMFMDR, a one-dimensional heterogeneous model is taken into consideration. The simulation results of three schemes named fluidized-bed membrane dual-type reactor (FMDR), FMFMDR and conventional fixed-bed reactor (CR) are presented. They have been compared in terms of temperature, gasoline and CO 2 yields, H 2 and CO conversions and the water permeation rate through the membrane layer. Results show that the gasoline yield in FMFMDR is higher than the one in FMDR. The FMFMDR configuration not only decreases the undesired product such as CO 2 but also produces more gasoline. -- Research highlights: → The application of H-SOD membrane layer in FTS reactors. → Approximate 7.5% and 37% increase in the gasoline yield in terms of [g/g feed x 100] in comparison with FMDR and CR, respectively. → A remarkable decrease in CO 2 emission to the environment. → A good configuration mainly due to reduction in catalysts sintering as a result of in situ water removal.

  13. Baseline design/economics for advanced Fischer-Tropsch technology. Quarterly report, January--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    The objectives of the study are to: Develop a baseline design for indirect liquefaction using advanced Fischer-Tropsch (F-T) technology. Prepare the capital and operating costs for the baseline design. Develop a process flow sheet simulation (PFS) model. This report summarizes the activities completed during the period December 23, 1992 through March 15, 1992. In Task 1, Baseline Design and Alternates, the following activities related to the tradeoff studies were completed: approach and basis; oxygen purity; F-T reactor pressure; wax yield; autothermal reformer; hydrocarbons (C{sub 3}/C{sub 4}s) recovery; and hydrogenrecovery. In Task 3, Engineering Design Criteria, activities were initiated to support the process tradeoff studies in Task I and to develop the environmental strategy for the Illinois site. The work completed to date consists of the development of the F-T reactor yield correlation from the Mobil dam and a brief review of the environmental strategy prepared for the same site in the direct liquefaction baseline study.Some work has also been done in establishing site-related criteria, in establishing the maximum vessel diameter for train sizing and in coping with the low H{sub 2}/CO ratio from the Shell gasifier. In Task 7, Project Management and Administration, the following activities were completed: the subcontract agreement between Amoco and Bechtel was negotiated; a first technical progress meeting was held at the Bechtel office in February; and the final Project Management Plan was approved by PETC and issued in March 1992.

  14. Deactivation by carbon of iron catalysts for indirect liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, C.H.

    1990-10-11

    This report describes recent progress in a fundamental, three-year investigation of carbon formation and its effects on the activity and selectivity of promoted iron catalysts for Fischer-Tropsch (FT) synthesis, the objectives of which are: determine rates and mechanisms of carbon deactivation of unsupported Fe and Fe/K catalysts during CO hydrogenation over a range of CO concentrations, CO:H{sub 2} ratios, and temperatures; model the rates of deactivation of the same catalysts in fixed-bed reactors. During the thirteenth quarter design of software for a computer-automated reactor system to be used in the kinetic and deactivation studies was continued. Further progress was made toward the completion of the control language, control routines, and software for operating this system. Progress was also made on the testing of the system hardware and software. H{sub 2} chemisorption capacities and activity selectivity data were also measured for three iron catalysts promoted with 1% alumina. 47 refs., 8 figs., 1 tab.

  15. Comparison of PM emissions from a commercial jet engine burning conventional, biomass, and Fischer-Tropsch fuels.

    Science.gov (United States)

    Lobo, Prem; Hagen, Donald E; Whitefield, Philip D

    2011-12-15

    Rising fuel costs, an increasing desire to enhance security of energy supply, and potential environmental benefits have driven research into alternative renewable fuels for commercial aviation applications. This paper reports the results of the first measurements of particulate matter (PM) emissions from a CFM56-7B commercial jet engine burning conventional and alternative biomass- and, Fischer-Tropsch (F-T)-based fuels. PM emissions reductions are observed with all fuels and blends when compared to the emissions from a reference conventional fuel, Jet A1, and are attributed to fuel properties associated with the fuels and blends studied. Although the alternative fuel candidates studied in this campaign offer the potential for large PM emissions reductions, with the exception of the 50% blend of F-T fuel, they do not meet current standards for aviation fuel and thus cannot be considered as certified replacement fuels. Over the ICAO Landing Takeoff Cycle, which is intended to simulate aircraft engine operations that affect local air quality, the overall PM number-based emissions for the 50% blend of F-T fuel were reduced by 34 ± 7%, and the mass-based emissions were reduced by 39 ± 7%.

  16. Synthesis and characterization of catalysts for the selective transformation of biomass-derived materials

    Science.gov (United States)

    Ghampson, Isaac Tyrone

    The experimental work in this thesis focuses on generating catalysts for two intermediate processes related to the thermal conversion of lignocellulosic biomass: the synthesis and characterization of mesoporous silica supported cobalt catalysts for the Fischer-Tropsch reaction, and an exploration of the reactivity of bulk and supported molybdenum-based nitride catalysts for the hydrodeoxygenation (HDO) of guaiacol, a lignin model compound. The first section of the work details the synthesis of a series of silica-supported cobalt Fischer-Tropsch catalysts with pore diameters ranging from 2-23 nm. Detailed X-ray diffraction measurements were used to determine the composition and particle diameters of the metal fraction, analyzed as a three-phase system containing Cofcc, Cohcp and CoO particles. Catalyst properties were determined at three stages in catalyst history: (1) after the initial calcination step to thermally decompose the catalyst precursor into Co3O4, (2) after the hydrogen reduction step to activate the catalyst to Co and (3) after the FT reaction. From the study, it was observed that larger pore diameters supported higher turnover frequency; smaller pore diameters yielded larger mole fraction of CoO; XRD on post-reduction and post-FTS catalyst samples indicated significant changes in dispersivity after reduction. In the next section, the catalytic behaviors of unsupported, activated carbon-, alumina-, and SBA-15 mesoporous silica-supported molybdenum nitride catalysts were evaluated for the hydrodeoxygenation of guaiacol (2-methoxy phenol) at 300°C and 5 MPa. The nitride catalysts were prepared by thermal decomposition of bulk and supported ammonium heptamolybdate to form MoO 3 followed by nitridation in either flowing ammonia or a nitrogen/hydrogen mixture. The catalytic properties were strongly affected by the nitriding and purging treatment as well as the physical and chemical properties of support. The overall reaction was influenced by the

  17. Fe3O4 nanocubes assembled on RGO nanosheets: Ultrasound induced in-situ and eco-friendly synthesis, characterization and their excellent catalytic performance for the production of liquid fuel in Fischer-tropsch synthesis.

    Science.gov (United States)

    Abbas, Mohamed; Zhang, Juan; Lin, Ke; Chen, Jiangang

    2018-04-01

    In this study, Fe 3 O 4 nanocubes (NCs) decorated on RGO nanosheets (NSs) structures were successfully synthesized through an innovative and environmentally-friendly rapid sonochemical method. More importantly, iron(II) sulfate heptahydrate and GO were employed as precursors and water as reaction medium, meanwhile, NaOH within the generated free radicals from the high intensity ultrasound were sufficient as reducing and base agent in our clean synthesis. Moreover, the hydrothermal method as a conventional approach was employed to synthesize the same catalysts for the comparison with the ultrasonocation technique. The as-synthesized Fe 3 O 4 and RGO/Fe 3 O 4 NSs catalysts were exposed to industrially relevant Fischer-tropsch synthesis (FTS) conditions at various reaction temperatures (250-290 °C), and they subjected to fully characterization before and after FTS reaction using XRD, TEM, HRTEM, EDS mapping, XPS, FTIR, BET, H 2 -TPR, H 2 -TPD and CO-TPD to understand the structure-performance relationships. Notably, the catalysts produced using the sonochemical method had a better CO conversion rate [Fe 3 O 4 (80%), RGO/Fe 3 O 4 (82%)] than the hydrothermally synthesized catalysts. However, compared to the naked-Fe 3 O 4 catalysts, the sonochemically and hydrothermally synthesized RGO-supported Fe 3 O 4 catalysts had higher long chain hydrocarbon (C5+) selectivity values (72% and 67%) and C 2 -C 4 olefin/paraffin selectivity ratio (3.2 and 2) and low CH4 selectivity values (6% and 8.5%), respectively. This can be attributed to their high surface area, the degree of reducibility, and content of Hägg iron carbide (χ-Fe 5 C 2 ) as the most active phase of the FTS reaction. Proposed reaction mechanisms for the sonochemical and hydrothermal reaction synthesis of Fe 3 O 4 and RGO/Fe 3 O 4 nanoparticles are discussed. In conclusion, our developed surfactantless-sonochemical method holds promise for the eco-friendly synthesis of highly efficient catalysts materials for

  18. ADVANCED DIAGNOSTIC TECHNIQUES FOR THREE-PHASE SLURRY BUBBLE COLUMN REACTORS (SBCR)

    Energy Technology Data Exchange (ETDEWEB)

    M.H. Al-Dahhan; M.P. Dudukovic; L.S. Fan

    2001-07-25

    This report summarizes the accomplishment made during the second year of this cooperative research effort between Washington University, Ohio State University and Air Products and Chemicals. The technical difficulties that were encountered in implementing Computer Automated Radioactive Particle Tracking (CARPT) in high pressure SBCR have been successfully resolved. New strategies for data acquisition and calibration procedure have been implemented. These have been performed as a part of other projects supported by Industrial Consortium and DOE via contract DE-2295PC95051 which are executed in parallel with this grant. CARPT and Computed Tomography (CT) experiments have been performed using air-water-glass beads in 6 inch high pressure stainless steel slurry bubble column reactor at selected conditions. Data processing of this work is in progress. The overall gas holdup and the hydrodynamic parameters are measured by Laser Doppler Anemometry (LDA) in 2 inch slurry bubble column using Norpar 15 that mimic at room temperature the Fischer Tropsch wax at FT reaction conditions of high pressure and temperature. To improve the design and scale-up of bubble column, new correlations have been developed to predict the radial gas holdup and the time averaged axial liquid recirculation velocity profiles in bubble columns.

  19. Towards an atomic level understanding of niobia based catalysts and catalysis by combining the science of catalysis with surface science

    Directory of Open Access Journals (Sweden)

    Martin Schmal

    2009-06-01

    Full Text Available The science of catalysis and surface science have developed, independently, key information for understanding catalytic processes. One might argue: is there anything fundamental to be discovered through the interplay between catalysis and surface science? Real catalysts of monometallic and bimetallic Co/Nb2O5 and Pd-Co/Nb2O5 catalysts showed interesting selectivity results on the Fischer-Tropsch synthesis (Noronha et al. 1996, Rosenir et al. 1993. The presence of a noble metal increased the C+5 selectivity and decreased the methane formation depending of the reduction temperature. Model catalyst of Co-Pd supported on niobia and alumina were prepared and characterized at the atomic level, thus forming the basis for a comparison with "real" support materials. Growth, morphology and structure of both pure metal and alloy particles were studied. It is possible to support the strong metal support interaction suggested by studies on real catalysts via the investigation of model systems for niobia in comparison to alumina support in which this effect does not occur. Formation of Co2+ penetration into the niobia lattice was suggested on the basis of powder studies and can be fully supported on the basis of model studies. It is shown for both real catalysts and model systems that oxidation state of Co plays a key role in controlling the reactivity in Fischer-Tropsch reactions systems and that the addition of Pd is a determining factor for the stability of the catalyst. It is demonstrated that the interaction with unsaturated hydrocarbons depends strongly on the state of oxidation.As ciências da catálise e da superfície têm desenvolvido independentemente temas básicos para o entendimento de processos catalíticos. Pode-se até questionar se há ainda algo fundamental para ser descoberto através da interface entre catálise eciência da superfície? Catalisadores mono e bimetálicos de Co/Nb2O5 e Pd-Co/ Nb2O5 apresentaram resultados interessantes de

  20. Development of a demonstration reactor using thoria as a Fischer-Tropsch catalyst

    International Nuclear Information System (INIS)

    Colmenares, C.A.; McLean, W.

    1981-12-01

    We have demonstrated experimentally that thorium oxide may be used as a catalyst with CO + H 2 mixtures to produce either methanol or a mixture of hydrocarbons from C 1 to C 5 (saturated and unsaturated). The immunity of ThO 2 to poisoning by sulfur compounds makes its use very attractive for industrial applications. We are proposing to optimize the experimental conditions of the catalytic process using a one-inch reactor and to scope and define the experimental conditions for a pilot plant demonstration

  1. Thermodynamic optimization of biomass gasification for decentralized power generation and Fischer-Tropsch synthesis

    International Nuclear Information System (INIS)

    Buragohain, Buljit; Mahanta, Pinakeswar; Moholkar, Vijayanand S.

    2010-01-01

    In recent years, biomass gasification has emerged as a viable option for decentralized power generation, especially in developing countries. Another potential use of producer gas from biomass gasification is in terms of feedstock for Fischer-Tropsch (FT) synthesis - a process for manufacture of synthetic gasoline and diesel. This paper reports optimization of biomass gasification process for these two applications. Using the non-stoichometric equilibrium model (SOLGASMIX), we have assessed the outcome of gasification process for different combinations of operating conditions. Four key parameters have been used for optimization, viz. biomass type (saw dust, rice husk, bamboo dust), air or equivalence ratio (AR = 0, 0.2, 0.4, 0.6, 0.8 and 1), temperature of gasification (T = 400, 500, 600, 700, 800, 900 and 1000 o C), and gasification medium (air, air-steam 10% mole/mole mixture, air-steam 30%mole/mole mixture). Performance of the gasification process has been assessed with four measures, viz. molar content of H 2 and CO in the producer gas, H 2 /CO molar ratio, LHV of producer gas and overall efficiency of gasifier. The optimum sets of operating conditions for gasifier for FT synthesis are: AR = 0.2-0.4, Temp = 800-1000 o C, and gasification medium as air. The optimum sets of operating conditions for decentralized power generation are: AR = 0.3-0.4, Temp = 700-800 o C with gasification medium being air. The thermodynamic model and methodology presented in this work also presents a general framework, which could be extended for optimization of biomass gasification for any other application.

  2. Iron carbide on titania surface modified with group VA oxides as Fischer-Tropsch catalysts

    International Nuclear Information System (INIS)

    Wachs, I.E.; Fiato, R.A.; Chersich, C.C.

    1986-01-01

    A catalyst is described comprising iron carbide supported on a surface modified titania wherein the support comprises an oxide of a metal selected form the group consisting of niobium, vanadium, tantalum or mixture thereof supported on the titania wherein at least a portion of the supported oxide of niobium, vanandium, tantalum or mixture is in a non-crystalline form. The amount of the supported oxide ranges from about 0.5 to 25 weight percent metal oxide on the titania support based on the total support composition and the catalyst contains at least about 2 milligrams of iron, calculated as Fe/sub 2/O/sub 3/, per square meter of support surface

  3. Synthetic gasoline and diesel oil produced by Fischer-Tropsch Technology. A possibility for the future? IEA/AMF annex XXXI

    Energy Technology Data Exchange (ETDEWEB)

    Rehnlund, B., (Atrax Energy AB, Goeteborg (SE)); Blinge, M., (The Swedish Transport Research Institute, TFK (SE)); Schramm, J.; Larsen, Ulrik, (Technical Univ. of Denmark, DTU, Kgs. Lyngby (DK))

    2007-03-15

    This report is the result of an annex (annex XXXI, Fischer-Tropsch Fuels) initiated by the International Energy Agency's Implementing Agreement on Advanced Motor Fuels. The annex has been managed by Atrax Energi AB, Bjorn Rehnlund, acting as the operating agent of the annex. The work in the annex has been carried out in co-operation with the Swedish Transportation Research Institute - TFK, Magnus Blinge and the Technical University of Denmark - DTU, Jesper Schramm and Ulrik Larsen. In this report the possibilities to produce synthetic gasoline and synthetic diesel oil from biomass, and also from natural gas, by Fischer-Tropsch (FT) Technology are analysed and discussed. After an introduction of the technology as such, environmental aspects and the life cycle perspective of synthetic gasoline and diesel oil are discussed, and some possible national/regional scenarios are analysed and presented. Vehicle emission tests with synthetic gasoline carried out at DTU are described and discussed in this report as well. Based on the result of the analysis and the vehicle emission tests presented in the report, a first SWOT analysis of Fischer-Tropsch technology is then presented, and finally some main conclusions are drawn. During the execution of the annex Sasol in South Africa, Nykomb Synergetics in Sweden, Chemrec in Sweden, the Technical University of Denmark, VTT in Finland, the Varnamo gasification research project in Sweden, and the Black liquor gasification project in Pitea, Sweden have been visited. Some of the most important conclusions are that: 1) FT-Fuels such as FT-Diesel (FTD) and FT-Gasoline (FTG) produced through CoalTo-Liquid, (CTL), Gas-To-Liquid (GTL) and Biomass-To-Liquid (BTL) technologies can contribute to reducing the dependency on crude oil. 2) FTD and FTG are attractive for use in neat form and also as components in blends with low quality diesel and gasoline, to upgrade fuels to meet the ever more stringent regulations. 3) Production and use of

  4. Research trends in Fischer-Tropsch catalysis for coal to liquids technology

    NARCIS (Netherlands)

    Hensen, E.J.M.; Wang, P.; Xu, W.

    2016-01-01

    Fischer–Tropsch Synthesis (FTS) constitutes catalytic technology that converts synthesis gas to synthetic liquid fuels and chemicals. While synthesis gas can be obtained from any carbonaceous feedstock, current industrial FTS operations are almost exclusively based on natural gas. Due to the energy

  5. Cobalt catalysts for the conversion of methanol and for Fischer-tropsch synthesis to produce hydrocarbons

    International Nuclear Information System (INIS)

    Mauldin, C.H.; Davis, S.M.; Arcuri, K.B.

    1987-01-01

    A regeneration stable catalyst is described for the conversion at reaction conditions of methanol or synthesis gas to liquid hydrocarbons which consists essentially of from about 2 percent to about 25 percent cobalt, based on the weight of the catalyst composition, composited with titania, or a titania-containing support, to which is added sufficient of a zirconium, hafnium, cerium, or uranium promoter to provide a weight ratio of the zirconium, hafnium, cerium, or uranium metal:cobalt greater than about 0.101:1

  6. Alkyl Chain Growth on a Transition Metal Center: How Does Iron Compare to Ruthenium and Osmium?

    Science.gov (United States)

    Sainna, Mala A.; de Visser, Sam P.

    2015-01-01

    Industrial Fischer-Tropsch processes involve the synthesis of hydrocarbons usually on metal surface catalysts. On the other hand, very few homogeneous catalysts are known to perform a Fischer-Tropsch style of reaction. In recent work, we established the catalytic properties of a diruthenium-platinum carbene complex, [(CpRu)2(μ2-H)(μ2-NHCH3)(μ3-C)PtCH3(P(CH3)3)2](CO)n+ with n = 0, 2 and Cp = η5-C5(CH3)5, and showed it to react efficiently by initial hydrogen atom transfer followed by methyl transfer to form an alkyl chain on the Ru-center. In particular, the catalytic efficiency was shown to increase after the addition of two CO molecules. As such, this system could be viewed as a potential homogeneous Fischer-Tropsch catalyst. Herein, we have engineered the catalytic center of the catalyst and investigated the reactivity of trimetal carbene complexes of the same type using iron, ruthenium and osmium at the central metal scaffold. The work shows that the reactivity should increase from diosmium to diruthenium to diiron; however, a non-linear trend is observed due to multiple factors contributing to the individual barrier heights. We identified all individual components of these reaction steps in detail and established the difference in reactivity of the various complexes. PMID:26426009

  7. Alkyl Chain Growth on a Transition Metal Center: How Does Iron Compare to Ruthenium and Osmium?

    Directory of Open Access Journals (Sweden)

    Mala A. Sainna

    2015-09-01

    Full Text Available Industrial Fischer-Tropsch processes involve the synthesis of hydrocarbons usually on metal surface catalysts. On the other hand, very few homogeneous catalysts are known to perform a Fischer-Tropsch style of reaction. In recent work, we established the catalytic properties of a diruthenium-platinum carbene complex, [(CpRu2(μ2-H (μ2-NHCH3(μ3-CPtCH3(P(CH332](COn+ with n = 0, 2 and Cp = η5-C5(CH35, and showed it to react efficiently by initial hydrogen atom transfer followed by methyl transfer to form an alkyl chain on the Ru-center. In particular, the catalytic efficiency was shown to increase after the addition of two CO molecules. As such, this system could be viewed as a potential homogeneous Fischer-Tropsch catalyst. Herein, we have engineered the catalytic center of the catalyst and investigated the reactivity of trimetal carbene complexes of the same type using iron, ruthenium and osmium at the central metal scaffold. The work shows that the reactivity should increase from diosmium to diruthenium to diiron; however, a non-linear trend is observed due to multiple factors contributing to the individual barrier heights. We identified all individual components of these reaction steps in detail and established the difference in reactivity of the various complexes.

  8. Insight on Biomass Supply and Feedstock Definition for Fischer-Tropsch Based BTL Processes

    International Nuclear Information System (INIS)

    Coignac, Julien

    2013-01-01

    Process chains of thermo chemical conversion of lignocellulosic biomass through gasification and Fischer-Tropsch synthesis (known as BTL) represent promising alternatives for biofuels production. Since biomass is heterogeneous and not homogeneously spread over territories, one of the major technological stakes of the project is to develop a flexible industrial chain capable of co-treating the widest possible range of biomass and fossil fuel feedstock. The present study aims at characterizing biomass diversity (availability and potentials by area, cost and mineral composition) by carrying out a state of the art, as a preliminary step in order to define a series of biomass to be tested in the demonstration plant and therefore define specifications for the process. Fifty different biomass were considered for their bio-energy application potential and were finally classified into four categories: agricultural by-products, dedicated energy crops, (Very) Short Rotation Coppice ((V)SRC) and forestry biomass. Biomass availability and potentials were investigated by the mean of a literature review of past and current projects (e.g. RENEW project, Biomass Energy Europe Project, etc.) and scientific articles. Most collected data are technical potentials, meaning that they take into account biophysical limits of crops and forests, technological possibilities, competition with other land uses and ecological constraints (e.g. natural reserves). Results show various emerging markets: North and South America have considerable amounts of agricultural by-products, forest residues, and large land areas which could be dedicated to energy crops; Africa shows relevant possibilities to grow Short Rotation Forestry (SRF) and energy crops; Russia has large available quantities of agricultural by-products and forest residues, as well as little valuable land where energy crops and SRC could be grown, and Asia shows relevant amounts of forest residues and possibilities of growing SRC, as well

  9. Proceedings of the DGMK-conference 'Synthesis gas chemistry'. Authors' manuscripts

    Energy Technology Data Exchange (ETDEWEB)

    Hoenicke, D; Kohlpaintner, C; Luecke, B; Reschetilowski, W [eds.

    2000-07-01

    The main topics of the DGMK-Conference ''Synthesis Gas Chemistry'' were: production of synthesis gas from several educts, new catalysts, Fischer-Tropsch synthesis, hydroformylation, steam reforming and carbonylation.

  10. Application of Fischer–Tropsch Synthesis in Biomass to Liquid Conversion

    Directory of Open Access Journals (Sweden)

    Yongwu Lu

    2012-06-01

    Full Text Available Fischer–Tropsch synthesis is a set of catalytic processes that can be used to produce fuels and chemicals from synthesis gas (mixture of CO and H2, which can be derived from natural gas, coal, or biomass. Biomass to Liquid via Fischer–Tropsch (BTL-FT synthesis is gaining increasing interests from academia and industry because of its ability to produce carbon neutral and environmentally friendly clean fuels; such kinds of fuels can help to meet the globally increasing energy demand and to meet the stricter environmental regulations in the future. In the BTL-FT process, biomass, such as woodchips and straw stalk, is firstly converted into biomass-derived syngas (bio-syngas by gasification. Then, a cleaning process is applied to remove impurities from the bio-syngas to produce clean bio-syngas which meets the Fischer–Tropsch synthesis requirements. Cleaned bio-syngas is then conducted into a Fischer–Tropsch catalytic reactor to produce green gasoline, diesel and other clean biofuels. This review will analyze the three main steps of BTL-FT process, and discuss the issues related to biomass gasification, bio-syngas cleaning methods and conversion of bio-syngas into liquid hydrocarbons via Fischer–Tropsch synthesis. Some features in regard to increasing carbon utilization, enhancing catalyst activity, maximizing selectivity and avoiding catalyst deactivation in bio-syngas conversion process are also discussed.

  11. Functionalized Natural Carbon-Supported Nanoparticles as Excellent Catalysts for Hydrocarbon Production.

    Science.gov (United States)

    Sun, Jian; Guo, Lisheng; Ma, Qingxiang; Gao, Xinhua; Yamane, Noriyuki; Xu, Hengyong; Tsubaki, Noritatsu

    2017-02-01

    We report a one-pot and eco-friendly synthesis of carbon-supported cobalt nanoparticles, achieved by carbonization of waste biomass (rice bran) with a cobalt source. The functionalized biomass provides carbon microspheres as excellent catalyst support, forming a unique interface between hydrophobic and hydrophilic groups. The latter, involving hydroxyl and amino groups, can catch much more active cobalt nanoparticles on surface for Fischer-Tropsch synthesis than chemical carbon. The loading amount of cobalt on the final catalyst is much higher than that prepared with a chemical carbon source, such as glucose. The proposed concept of using a functionalized natural carbon source shows great potential compared with conventional carbon sources, and will be meaningful for other fields concerning carbon support, such as heterogeneous catalysis or electrochemical fields. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Prospects of Fe/MCM-41 as a Catalyst for Hydrocarbon Synthesis

    International Nuclear Information System (INIS)

    Cagnoli, Maria V.; Gallegos, Norma G.; Bengoa, Jose F.; Alvarez, Ana M.; Marchetti, Sergio G.; Moreno, Sergio M. J.; Roig, Anna; Mercader, Roberto C.

    2005-01-01

    We report the synthesis of cylindrical nanoparticles of metallic Fe entirely included in MCM-41 pores. Their dimensions are approx.3 nm diameter and approx. 3.8 nm length. We show that a coherent analysis of the results yielded by the various techniques is essential to obtain a catalyst supported on an MCM-41 matrix of ≅ 3 nm average pore diameter, which is active and selective toward olefins. The solids were characterized by low-angle x-ray diffraction, high-resolution transmission electron microscopy, high-resolution scanning transmission electron microscopy equipped with a high-angle annular dark-field, CO chemisorption, volumetric oxidation, and Moessbauer spectroscopy (in controlled atmosphere for the reduced catalysts). Catalytic results in the Fischer-Tropsch synthesis, as well as some unexpected results --like the inhomogeneous pore filling and discontinuous Fe particles-- are also discussed

  13. Micelle-derived catalysts for extended Schulz-Flory

    Energy Technology Data Exchange (ETDEWEB)

    Abrevaya, H.

    1986-01-01

    The objective of this program is to develop a synthesis gas conversion catalyst with higher selectivity to liquid fuels, while maintaining catalytic activity and stability at least equivalent relative to state-of-the-art precipitated iron catalysts. During this quarter, the emphasis in the program has been the investigation of the hydrocarbon cutoff hypothesis with supported ruthenium catalysts. An alumina-supported catalyst with smaller than 20[Angstrom] ruthenium particles was tested under conditions of maximal water gas shift activity. During this test more than 90% of the water made in the Fischer-Tropsch synthesis reaction was converted to H[sub 2]. However, the extent of ruthenium metal agglomeration was not reduced. Accordingly, it was not possible to conclude whether hydrocarbon cutoff occurs with smaller than 20[Angstrom] ruthenium particles on [gamma]-alumina. A ruthenium catalyst prepared on Y-type zeolite had 20[Angstrom] or smaller ruthenium particles according to STEM examination and a 15[Angstrom] average ruthenium metal particle size according to EXAFS examination. The ruthenium metal particle size was stable during the test with this catalyst. The hydrocarbon product distribution was Anderson-Schulz-Flory with no cutoff up to a carbon number of 160. A well-dispersed titania-supported ruthenium catalyst is going to be evaluated during the next quarter in order to determine whether hydrocarbon cutoff occurs.

  14. Iron alloy Fischer-tropsch catalysts--1. Oxidation-reduction studies of the Fe-Ni system

    Energy Technology Data Exchange (ETDEWEB)

    Unmuth, E.E.; Schwartz, L.H.; Butt, J.B.

    1980-01-01

    Catalysts containing 5% iron, nickel, or 4:1 iron-nickel on silica were hydrogen-reduced at 425/sup 0/C for 12 or 24 hr, reoxidized in air for 2 or 4 hr, reduced again in hydrogen for 12 hr, and studied at each treatment step by Moessbauer spectroscopy, X-ray diffraction, and temperature-programed desorption. The nickel was reduced directly to the metal, redispersed during the oxidation, and gave 20% smaller particles in the second reduction than in the first reduction. The ..cap alpha..-Fe/sub 2/O/sub 3/ reduced via an Fe/sub 3/O/sub 4/ intermediate and yielded approx. 70% metallic iron and the second reduction produced about the same particle size as the first reduction. The alloy catalyst reduced into a mixture of two phases, a face-centered cubic phase containing approx. 37.5% Ni, i.e., the bulk equilibrium value, and a body-centered cubic phase, and the particle sizes obtained in the first and second reductions were similar. The activation energies for the reduction were determined.

  15. Isobutane/2-butene alkylation over potential heterogeneous catalysts in a slurry reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roervik, T.

    1996-12-31

    The trend towards more effective use of fossil fuels and reduced environmental pollution represents a major task of improvement within the refinery processes. The highly isomerized and high octane paraffins produced from isobutane and light olefins by alkylation fulfill all the requirements for reformulated gasoline. This doctoral thesis discusses new catalyst systems because of their potential in alkylation. A slurry reactor apparatus for solid-acid catalysed isobutane/butene alkylation was developed and used to investigate the performance of various heterogeneous catalysts. The selected materials were mainly zeolite types with faujasite structures. The samples were characterized by various methods before alkylation. In general, the order of decreasing catalyst activity after 3 h of reaction at 80{sup o}C was found to be: H-EMT >> H-FAU, dealuminated H-FAU >> NS.500, TA-Y, CeY-98 > Nafion-H. The order of decreasing alkylate selectivity of the catalysts was: H-EMT >> dealuminated H-FAU > H-FAU >> Nafion-H > CeY-98 > TA-Y > H-SAPO-37, NS.500. H-EMT was the most promising system for further development, also because of the very low formation of the undesirable isooctenes and a high selectivity towards isooctanes among the alkylates. A high density of accessible strong acid sites was found to be essential for a high alkylation activity and selectivity. Open structure, like hexagonal faujasite, was advantageous. The distribution of trimethylpentanes formed in zeolites was ascribed to pore restrictions as a major factor. The effect of operating conditions on catalyst performance was investigated statistically, and a high dilution of butene in the slurry reactor was found to be very important. 153 refs., 40 figs., 12 tabs.

  16. Structured catalyst bed and method for conversion of feed materials to chemical products and liquid fuels

    Science.gov (United States)

    Wang, Yong , Liu; Wei, [Richland, WA

    2012-01-24

    The present invention is a structured monolith reactor and method that provides for controlled Fischer-Tropsch (FT) synthesis. The invention controls mass transport limitations leading to higher CO conversion and lower methane selectivity. Over 95 wt % of the total product liquid hydrocarbons obtained from the monolithic catalyst are in the carbon range of C.sub.5-C.sub.18. The reactor controls readsorption of olefins leading to desired products with a preselected chain length distribution and enhanced overall reaction rate. And, liquid product analysis shows readsorption of olefins is reduced, achieving a narrower FT product distribution.

  17. Iron Fischer-Tropsch Catalysts Prepared by Solvent-Deficient Precipitation (SDP: Effects of Washing, Promoter Addition Step, and Drying Temperature

    Directory of Open Access Journals (Sweden)

    Kyle M. Brunner

    2015-07-01

    Full Text Available A novel, solvent-deficient precipitation (SDP method for catalyst preparation in general and for preparation of iron FT catalysts in particular is reported. Eight catalysts using a 23 factorial design of experiments to identify the key preparation variables were prepared. The catalysts were characterized by electron microprobe, N2 adsorption, TEM, XRD, and ICP. Results show that the morphology of the catalysts, i.e., surface area, pore volume, pore size distribution, crystallite sizes, and promoter distribution are significantly influenced by (1 whether or not the precursor catalyst is washed, (2 the promoter addition step, and (3 the drying condition (temperature. Consequently, the activity, selectivity, and stability of the catalysts determined from fixed-bed testing are also affected by these three variables. Unwashed catalysts prepared by a one-step method and dried at 100 °C produced the most active catalysts for FT synthesis. The catalysts of this study prepared by SDP compared favorably in activity, productivity, and stability with Fe FT catalysts reported in the literature. It is believed that this facile SDP approach has promise for development of future FT catalysts, and also offers a potential alternate route for the preparation of other catalysts for various other applications.

  18. Enhanced gasification of wood in the presence of mixed catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Weber, S. L.; Mudge, L. K.; Sealock, Jr., L. J.; Robertus, R. J.; Mitchell, D. E.

    Experimental results obtained in laboratory investigations of steam gasification of wood in the presence of mixed catalysts are presented. These studies are designed to test the technical feasibility of producing specific gaseous products from wood by enhancing its reactivity and product specificity through the use of combined catalysts. The desired products include substitute natural gas, hydrocarbon synthesis gas and ammonia synthesis gas. The gasification reactions are controlled through the use of specific catalyst combinations and operating parameters. A primary alkali carbonate gasification catalyst impregnated into the wood combined with specific commercially available secondary catalysts produced the desired products. A yield of 50 vol % methane was obtained with a randomly mixed combination of a commercial nickel methanation catalyst and silica-alumina cracking catalyst at a weight ratio of 3:1 respectively. Steam gasification of wood in the presence of a commercial Si-Al cracking catalyst produced the desired hydrocarbon synthesis gas. Hydrogen-to-carbon monoxide ratios needed for Fischer-Tropsch synthesis of hydrocarbons were obtained with this catalyst system. A hydrogen-to-nitrogen ratio of 3:1 for ammonia synthesis gas was achieved with steam-air gasification of wood in the presence of catalysts. The most effective secondary catalyst system employed to produce the ammonia synthesis gas included two commercially prepared catalysts formulated to promote the water-gas shift reaction.

  19. Comparing a Fischer-Tropsch Alternate Fuel to JP-8 and Their 50-50 Blend: Flow and Flame Visualization Results

    Science.gov (United States)

    Hicks, Yolanda R.; Tacina, M.

    2013-01-01

    Combustion performance of a Fischer-Tropsch (FT) jet fuel manufactured by Sasol was compared to JP-8 and a 50-50 blend of the two fuels, using the NASA/Woodward 9 point Lean Direct Injector (LDI) in its baseline configuration. The baseline LDI configuration uses 60deg axial air-swirlers, whose vanes generate clockwise swirl, in the streamwise sense. For all cases, the fuel-air equivalence ratio was 0.455, and the combustor inlet pressure and pressure drop were 10-bar and 4 percent. The three inlet temperatures used were 828, 728, and 617 K. The objectives of this experiment were to visually compare JP-8 flames with FT flames for gross features. Specifically, we sought to ascertain in a simple way visible luminosity, sooting, and primary flame length of the FT compared to a standard JP grade fuel. We used color video imaging and high-speed imaging to achieve these goals. The flame color provided a way to qualitatively compare soot formation. The length of the luminous signal measured using the high speed camera allowed an assessment of primary flame length. It was determined that the shortest flames resulted from the FT fuel.

  20. Assessment of fuel-cycle energy use and greenhouse gas emissions for Fischer-Tropsch diesel from coal and cellulosic biomass

    International Nuclear Information System (INIS)

    Xie, X.; Wang, M.; Han, J.

    2011-01-01

    This study expands and uses the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model to assess the effects of carbon capture and storage (CCS) technology and cellulosic biomass and coal cofeeding in Fischer-Tropsch (FT) plants on energy use and greenhouse gas (GHG) emissions of FT diesel (FTD). To demonstrate the influence of the coproduct credit methods on FTD life-cycle analysis (LCA) results, two allocation methods based on the energy value and the market revenue of different products and a hybrid method are employed. With the energy-based allocation method, fossil energy use of FTD is less than that of petroleum diesel, and GHG emissions of FTD could be close to zero or even less than zero with CCS when forest residue accounts for 55% or more of the total dry mass input to FTD plants. Without CCS, GHG emissions are reduced to a level equivalent to that from petroleum diesel plants when forest residue accounts for 61% of the total dry mass input. Moreover, we show that coproduct method selection is crucial for LCA results of FTD when a large amount of coproducts is produced.

  1. Proceedings of the DGMK-conference 'Synthesis gas chemistry'. Authors' manuscripts

    Energy Technology Data Exchange (ETDEWEB)

    Hoenicke, D.; Kohlpaintner, C.; Luecke, B.; Reschetilowski, W. [eds.

    2000-07-01

    The main topics of the DGMK-Conference ''Synthesis Gas Chemistry'' were: production of synthesis gas from several educts, new catalysts, Fischer-Tropsch synthesis, hydroformylation, steam reforming and carbonylation.

  2. Incentivizing wood-based Fischer-Tropsch diesel through financial policy instruments: An economic assessment for Norway

    International Nuclear Information System (INIS)

    Bright, Ryan M.; Stromman, Anders H.

    2010-01-01

    The objective of this study is to evaluate a select set of financial incentive instruments that can be employed by the Norwegian government for encouraging early investment and production experience in wood-based Fischer-Tropsch diesel (FTD) technologies as a means to accelerate reductions in greenhouse gas emissions (GHG) stemming from road-based transport. We start by performing an economic analysis of FTD produced from Norwegian forest biomass at a pioneer commercial plant in Norway, followed with a cost growth analysis to estimate production costs after uncertainty in early plant performance and capital cost estimates are considered. Results after the cost growth analysis imply that the initial production cost estimates for a pioneer producer may be underestimated by up to 30%. Using the revised estimate we then assess, through scenarios, how various financial support mechanisms designed to encourage near-term investment would affect production costs over a range of uncertain future oil prices. For all policy scenarios considered, we evaluate trade-offs between the levels of public expenditure, or subsidy, and private investor profitability. When considering the net present value of the subsidy required to incentivize commercial investment during a future of low oil prices, we find that GHG mitigation via wood-FTD is likely to be considered cost-ineffective. However, should the government expect that mean oil prices in the coming two decades will hover between $97 and 127/bbl, all the incentive policies considered would likely spur investment at net present values ≤$-100/tonne-fossil-CO 2 -equivalent avoided.

  3. Synthetic Fischer-Tropsch (FT) JP-5/JP-8 Aviation Turbine Fuel Elastomer Compatibility

    National Research Council Canada - National Science Library

    Muzzell, Pat; Stavinoha, Leo; Chapin, Rebecca

    2005-01-01

    ... to seal performance may arise, possibly leading to fuel leakage. The key objective of this study was to compare and contrast the material compatibility of nitrile coupons and O-rings with selected petroleum-derived fuels, Fisher-Tropsch (FT...

  4. Intermediate Product Regulation in Tandem Solid Catalysts with Multimodal Porosity for High-Yield Synthetic Fuel Production.

    Science.gov (United States)

    Duyckaerts, Nicolas; Bartsch, Mathias; Trotuş, Ioan-Teodor; Pfänder, Norbert; Lorke, Axel; Schüth, Ferdi; Prieto, Gonzalo

    2017-09-11

    Tandem catalysis is an attractive strategy to intensify chemical technologies. However, simultaneous control over the individual and concerted catalyst performances poses a challenge. We demonstrate that enhanced pore transport within a Co/Al 2 O 3 Fischer-Tropsch (FT) catalyst with hierarchical porosity enables its tandem integration with a Pt/ZSM-5 zeolitic hydrotreating catalyst in a spatially distant fashion that allows for catalyst-specific temperature adjustment. Nevertheless, this system resembles the case of close active-site proximity by mitigating secondary reactions of primary FT α-olefin products. This approach enables the combination of in situ dewaxing with a minimum production of gaseous hydrocarbons (18 wt %) and an up to twofold higher (50 wt %) selectivity to middle distillates compared to tandem pairs based on benchmark mesoporous FT catalysts. An overall 80 % selectivity to liquid hydrocarbons from syngas is attained in one step, attesting to the potential of this strategy for increasing the carbon efficiency in intensified gas-to-liquid technologies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Enhanced treatment of Fischer-Tropsch wastewater using up-flow anaerobic sludge blanket system coupled with micro-electrolysis cell: A pilot scale study.

    Science.gov (United States)

    Wang, Dexin; Han, Yuxing; Han, Hongjun; Li, Kun; Xu, Chunyan

    2017-08-01

    The coupling of micro-electrolysis cell (MEC) with an up-flow anaerobic sludge blanket (UASB) system in pilot scale was established for enhanced treatment of Fischer-Tropsch (F-T) wastewater. The lowest influent pH (4.99±0.10) and reduced alkali addition were accomplished under the assistance of anaerobic effluent recycling of 200% (stage 5). Simultaneously, the optimum COD removal efficiency (93.5±1.6%) and methane production (2.01±0.13m 3 /m 3 ·d) at the lower hydraulic retention time (HRT) were achieved in this stage. In addition, the dissolved iron from MEC could significantly increase the protein content of tightly bound extracellular polymeric substances (TB-EPS), which was beneficial to formation of stable granules. Furthermore, the high-throughput 16S rRNA gene pyrosequencing in this study further confirmed that Geobacter species could utilize iron oxides particles as electron conduit to perform the direct interspecies electron transfer (DIET) with Methanothrix, finally facilitating the syntrophic degradation of propionic acid and butyric acid and contributing completely methane production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Carbon monoxide hydrogenation over ruthenium zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, P.A.; Nijs, H.H.; Verdonck, J.J.; Uytterhoeven, J.B.

    1978-03-01

    Ru zeolites are active and stable methanation catalysts. Under Fischer--Tropsch conditions they show a narrow product distribution. Further work is needed to assign this to a possible effect exerted by the zeolite cages. When the size of the Ru particles enclosed in the zeolite cages is increased, a lower methanation activity is found and a higher amount of C/sub 2/ and C/sub 3/ products are formed under Fischer--Tropsch conditions. This effect has not been reported until now on other supports. The less acidic zeolites act as promoters of the CO hydrogenation: under methanation conditions the activity is increased; under Fischer--Tropsch conditions, the selectivity is shifted toward higher hydrocarbons. This is explained by the particular zeolite property that electron deficient metal agglomerates seem to be formed on the acidic zeolites. With respect to kinetic behavior, relative activity of different metals, influence of reaction temperature on product distribution, the zeolite behaves in the same way a conventional alumina support. 4 figs., 4 tables.

  7. Design, Synthesis, and Mechanistic Evaluation of Iron-Based Catalysis for Synthesis Gas Conversion to Fuels and Chemicals. Technical Progress Report

    International Nuclear Information System (INIS)

    Akio Ishikawa; Manuel Ojeda; Nan Yao; Enrique Iglesia

    2006-01-01

    This project extends previously discovered Fe-based catalysts to hydrogen-poor synthesis gas streams derived from coal and biomass sources. These catalysts have shown unprecedented Fischer-Tropsch synthesis rate, selectivity for feedstocks consisting of synthesis gas derived from methane. During the first reporting period, we certified a microreactor, installed required analytical equipment, and reproduced synthetic protocols and catalytic results previously reported. During the second reporting period, we prepared several Fe-based compositions for Fischer-Tropsch synthesis and tested the effects of product recycle under both subcritical and supercritical conditions. During the third and fourth reporting periods, we improved the catalysts preparation method, which led to Fe-based FT catalysts with the highest FTS reaction rates and selectivities so far reported, a finding that allowed their operation at lower temperatures and pressures with high selectivity to desired products (C 5+ , olefins). During this fifth reporting period, we have studied the effects of different promoters on catalytic performance, specifically how their sequence of addition dramatically influences the performance of these materials in the Fischer-Tropsch synthesis. The resulting procedures have been optimized to improve further upon the already unprecedented rates and C 5+ selectivities of the Fe-based catalysts that we have developed as part of this project. During this fifth reporting period, we have also continued our studies of optimal activation procedures, involving reduction and carburization of oxide precursors during the early stages of contact with synthesis gas. We have completed the analysis of the evolution of oxide, carbide, and metal phases of the active iron components during initial contact with synthesis gas using advanced synchrotron techniques based on X-ray absorption spectroscopy. We have confirmed that the Cu or Ru compensates for inhibitory effects of Zn, a surface

  8. Mg-Fe-mixed oxides derived from layered double hydroxides: A study of the surface properties

    Directory of Open Access Journals (Sweden)

    Marinković-Nedučin Radmila P.

    2011-01-01

    Full Text Available The influence of surface properties on the selectivity of the synthesized catalysts was studied, considering that their selectivity towards particular hydrocarbons is crucial for their overall activity in the chosen Fischer- -Tropsch reaction. Magnesium- and iron-containing layered double hydroxides (LDH, with the general formula: [Mg1-xFex(OH2](CO3x/2?mH2O, x = = n(Fe/(n(Mg+n(Fe, synthesized with different Mg/Fe ratio and their thermally derived mixed oxides were investigated. Magnesium was chosen because of its basic properties, whereas iron was selected due to its well-known high Fischer-Tropsch activity, redox properties and the ability to form specific active sites in the layered LDH structure required for catalytic application. The thermally less stable multiphase system (synthesized outside the optimal single LDH phase range with additional Fe-phase, having a lower content of surface acid and base active sites, a lower surface area and smaller fraction of smaller mesopores, showed higher selectivity in the Fischer-Tropsch reaction. The results of this study imply that the metastability of derived multiphase oxides structure has a greater influence on the formation of specific catalyst surface sites than other investigated surface properties.

  9. Fischer-Tropsch diesel production in a well-to-wheel perspective: A carbon, energy flow and cost analysis

    International Nuclear Information System (INIS)

    van Vliet, Oscar P.R.; Faaij, Andre P.C.; Turkenburg, Wim C.

    2009-01-01

    We calculated carbon and energy balances and costs of 14 different Fischer-Tropsch (FT) fuel production plants in 17 complete well-to-wheel (WTW) chains. The FT plants can use natural gas, coal, biomass or mixtures as feedstock. Technical data, and technological and economic assumptions for developments for 2020 were derived from the literature, recalculating to 2005 euros for (capital) costs. Our best-guess WTW estimates indicate BTL production costs break even when oil prices rise above $75/bbl, CTL above $60/bbl and GTL at $36/bbl. CTL, and GTL without carbon capture and storage (CCS), will emit more CO 2 than diesel from conventional oil. Driving on fuel from GTL with CCS may reduce GHG emissions to around 123 g CO 2 /km. Driving on BTL may cause emissions of 32-63 g CO 2 /km and these can be made negative by application of CCS. It is possible to have net climate neutral driving by combining fuels produced from fossil resources with around 50% BTL with CCS, if biomass gasification and CCS can be made to work on an industrial scale and the feedstock is obtained in a climate-neutral manner. However, the uncertainties in these numbers are in the order of tens of percents, due to uncertainty in the data for component costs, variability in prices of feedstocks and by-products, and the GHG impact of producing biomass. (author)

  10. Effects of K and Pt promoters on the performance of cobalt catalyst supported on CNTs

    International Nuclear Information System (INIS)

    Zabidi, Noor Asmawati Mohd; Ali, Sardar; Subbarao, Duvvuri

    2014-01-01

    This paper presents a comparative study on the effects of incorporation of potassium (K) and platinum (Pt) as promoters on the physicochemical properties of cobalt catalyst. The catalyst was prepared by a wet impregnation method on a CNTs support. Samples were characterized using transmission electron microscopy (TEM), H 2 -temperature-programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS) techniques. Fischer-Tropsch Synthesis (FTS) was carried out in a fixed-bed microreactor at 543 K and 1 atm, with H 2 /CO = 2v/v and space velocity, SV of 12 L/g.h for 5 hours. The K-promoted and Pt-promoted Co catalysts have different physicochemical properties and catalytic performances compared to that of the un-promoted Co catalyst. XPS analysis revealed that K and Pt promoters induced electronic modifications as exhibited by the shifts in the Co binding energies. Incorporation of 0.06 wt% K and 0.06 wt% Pt in Co/CNTs catalyst resulted in an increase in the CO conversion and C 5+ selectivity and a decrease in methane selectivity. Potassium was found to be a better promoter for Co/CNTs catalyst compared to platinum

  11. Effects of K and Pt promoters on the performance of cobalt catalyst supported on CNTs

    Energy Technology Data Exchange (ETDEWEB)

    Zabidi, Noor Asmawati Mohd, E-mail: noorasmawati-mzabidi@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Ali, Sardar, E-mail: alikhan-635@yahoo.com [Centralized Analytical Laboratory, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my [Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-10-24

    This paper presents a comparative study on the effects of incorporation of potassium (K) and platinum (Pt) as promoters on the physicochemical properties of cobalt catalyst. The catalyst was prepared by a wet impregnation method on a CNTs support. Samples were characterized using transmission electron microscopy (TEM), H{sub 2}-temperature-programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS) techniques. Fischer-Tropsch Synthesis (FTS) was carried out in a fixed-bed microreactor at 543 K and 1 atm, with H{sub 2}/CO = 2v/v and space velocity, SV of 12 L/g.h for 5 hours. The K-promoted and Pt-promoted Co catalysts have different physicochemical properties and catalytic performances compared to that of the un-promoted Co catalyst. XPS analysis revealed that K and Pt promoters induced electronic modifications as exhibited by the shifts in the Co binding energies. Incorporation of 0.06 wt% K and 0.06 wt% Pt in Co/CNTs catalyst resulted in an increase in the CO conversion and C{sub 5+} selectivity and a decrease in methane selectivity. Potassium was found to be a better promoter for Co/CNTs catalyst compared to platinum.

  12. SHS-produced intermetallides as catalysts for hydrocarbons synthesis from CO and H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, O.L.; Kazantsev, R.V.; Davydov, P.E.; Lapidus, A.L. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Institute of Organic Chemistry; Borshch, V.N.; Pugacheva, E.V. [Russian Academy of Sciences, Chernogolovka (Russian Federation). Inst. of Structural Macrokinetics and Materials Science

    2012-07-01

    Raney-type polymetallic alloys were prepared by Self-Propagating High-Temperature Synthesis followed by alkaline treating. Surface morphology and composition of were studied using XRD, BET, SEM and EMPA techniques. The samples were tested in Fischer-Tropsch synthesis demonstrated rather high activity and very high selectivity to heavy paraffins. High selectivity to C{sub 5+} hydrocarbons is attributed to high thermal conductivity of alloys which prevents hot spots formation and therefore suppresses formation of methane and light hydrocarbons. Selectivity can be further improved by adding some d-metals in catalyst composition. Promotion with La seems to be particularly suitable for lowering methane formation while doping with Ni enhances methane yield greatly. (orig.)

  13. Life cycle assessment of climate impact of Fischer-Tropsch diesel based on peat and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, Kristina; Hagberg, Linus

    2009-02-15

    By combining biomass gasification and Fischer-Tropsch synthesis it is possible to produce biodiesel. Vapo is investigating the possibilities for a plant where a mixture of different biomass fractions and peat would be used as raw material. In this study the climate impact of such synthetic diesel is calculated in terms of radiative forcing. The calculations show that the following parameters have large impact on the results: the emission factors associated with external power demand (purchased electricity) the use of carbon capture and storage the time perspective used in the analysis the raw material mix (amount of peat vs. amount of forest residues) the reference scenario for the peat production (type of peatland) All the FT-diesel scenarios with a peat input of 90% will have higher climate impact than fossil diesel after 100 years, except when CCS is applied and Swedish electricity mix is assumed for the external power demand. In order to have lower climate impact than conventional diesel after 100 years, the peat input must be significantly lower than the biomass input. Substantial reductions of the climate impact can be achieved by applying CCS. With CCS, all peat based FT-diesel scenarios (except the ones based on 90% peat) result in lower climate impact than fossil diesel after both 100 and 300 years. For scenarios with marginal electricity, the reductions are 50-84% after 100 years compared to conventional diesel. For scenarios with Swedish electricity mix the reductions are 100-135% (i.e. zero or negative radiative forcing). The scenarios in this study are based on the assumption that the biodiesel refinery is located close to a harbour so that transportation of captured CO{sub 2} to a storage site can be made by ship. An inland location would require truck transport or pipelines and the cost, infrastructure and logistics for this might not be feasible

  14. Reduced cobalt phases of ZrO2 and Ru/ZrO2 promoted cobalt catalysts and product distributions from Fischer–Tropsch synthesis

    International Nuclear Information System (INIS)

    Kangvansura, Praewpilin; Schulz, Hans; Suramitr, Anwaraporn; Poo-arporn, Yingyot; Viravathana, Pinsuda; Worayingyong, Attera

    2014-01-01

    Highlights: • Ru/ZrO 2 , ZrO 2 promoted Co/SiO 2 for FTS were reduced by time resolved XANES. • Reduced catalysts resulted from XANES reduction showed the mixed phases of Co, CoO. • The highest percentages of CoO resulted from the high ZrO 2 promoted Co/SiO 2 . • Product distributions of 1-alkenes, iso-alkanes indicated sites for FTS and the 2° reaction. • Alkene readsorption were high corresponding to the high CoO forming branched alkanes. - Abstract: Co/SiO 2 catalysts were promoted with 4% and 8% ZrO 2 . Small amounts (0.07%) of Ru were impregnated onto 4%ZrO 2 /Co/SiO 2 . Catalysts resulting from time-resolved XANES reduction showed mixed phases of Co and CoO, with the highest percentages of Co resulting from Ru/4%ZrO 2 /Co/SiO 2 and the highest percentages of CoO resulting from 8%ZrO 2 /Co/SiO 2 . Product distributions of n-alkanes, iso-alkanes and alkenes during Fischer–Tropsch Synthesis (FTS) were used to investigate the catalyst performance of 4%ZrO 2 /Co/SiO 2 8%ZrO 2 /Co/SiO 2 and Ru/4%ZrO 2 /Co/SiO 2 . FTS steady state was studied by growth probabilities of n-alkane products. No 1-alkene was produced from Ru/4%ZrO 2 /Co/SiO 2 , indicating high availability of Fischer–Tropsch sites for long chain hydrocarbon growth, despite high methanation. Branched alkanes produced from the secondary reaction were related to the high CoO percentages on 8%ZrO 2 /Co/SiO 2 . Alkene readsorption sites were high, corresponding to the high CoO percentages, causing a high probability of forming branched alkane products

  15. Effect of Support Pretreatment Temperature on the Performance of an Iron Fischer–Tropsch Catalyst Supported on Silica-Stabilized Alumina

    Directory of Open Access Journals (Sweden)

    Kamyar Keyvanloo

    2018-02-01

    Full Text Available The effect of support material pretreatment temperature, prior to adding the active phase and promoters, on Fischer–Tropsch activity and selectivity was explored. Four iron catalysts were prepared on silica-stabilized alumina (AlSi supports pretreated at 700 °C, 900 °C, 1100 °C or 1200 °C. Addition of 5% silica to alumina made the AlSi material hydrothermally stable, which enabled the unusually high support pretreatment temperatures (>900 °C to be studied. High-temperature dehydroxylation of the AlSi before impregnation greatly reduces FeO·Al2O3 surface spinel formation by removing most of the support-surface hydroxyl groups leading to more effectively carbided catalyst. The activity increases more than four-fold for the support calcined at elevated temperatures (1100–1200 °C compared with traditional support calcination temperatures of <900 °C. This unique pretreatment also facilitates the formation of ε′-Fe2.2C rather than χ-Fe2.5C on the AlSi support, which shows an excellent correlation with catalyst productivity.

  16. Ultra-clean Fischer-Tropsch (F-T) Fuels Production and Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Stephen P. Bergin

    2006-06-30

    The objective of the DOE-NETL Fischer-Tropsch (F-T) Production and Demonstration Program was to produce and evaluate F-T fuel derived from domestic natural gas. The project had two primary phases: (1) fuel production of ultra-clean diesel transportation fuels from domestic fossil resources; and (2) demonstration and performance testing of these fuels in engines. The project also included a well-to-wheels economic analysis and a feasibility study of small-footprint F-T plants (SFPs) for remote locations such as rural Alaska. During the fuel production phase, ICRC partnered and cost-shared with Syntroleum Corporation to complete the mechanical design, construction, and operation of a modular SFP that converts natural gas, via F-T and hydro-processing reactions, into hydrogensaturated diesel fuel. Construction of the Tulsa, Oklahoma plant started in August 2002 and culminated in the production of over 100,000 gallons of F-T diesel fuel (S-2) through 2004, specifically for this project. That fuel formed the basis of extensive demonstrations and evaluations that followed. The ultra-clean F-T fuels produced had virtually no sulfur (less than 1 ppm) and were of the highest quality in terms of ignition quality, saturation content, backend volatility, etc. Lubricity concerns were investigated to verify that commercially available lubricity additive treatment would be adequate to protect fuel injection system components. In the fuel demonstration and testing phase, two separate bus fleets were utilized. The Washington DC Metropolitan Area Transit Authority (WMATA) and Denali National Park bus fleets were used because they represented nearly opposite ends of several spectra, including: climate, topography, engine load factor, mean distance between stops, and composition of normally used conventional diesel fuel. Fuel evaluations in addition to bus fleet demonstrations included: bus fleet emission measurements; F-T fuel cold weather performance; controlled engine dynamometer

  17. Toward better understanding of the support effect: test cases for CO dissociation on Fe n /TiO 2 (110), n=4,5

    KAUST Repository

    Jedidi, Abdesslem; Aziz, Saadullah G.; Cavallo, Luigi; Minot, Christian

    2017-01-01

    The Fischer-Tropsch reaction is initiated by direct CO dissociation for Iron catalyst even though a H-assisted mechanism may be easier on other metals. In the gas phase, the CO dissociation is only favorable for Fe-clusters composed by more than 11

  18. Solid phosphoric acid oligomerisation: Manipulating diesel selectivity by controlling catalyst hydration

    International Nuclear Information System (INIS)

    Prinsloo, Nicolaas M.

    2006-01-01

    Solid phosphoric acid (SPA) catalyst is traditionally used in crude oil refineries to produce unhydrogenated motor-gasoline by propene and butene oligomerisation. SPA is also used in High-Temperature Fischer-Tropsch refineries (HTFT) to produce synthetic fuels albeit with a different emphasis. The petrol/diesel ratio of an HTFT refinery is very different from crude refining and it is often necessary to shift this ratio depending on market requirements. The influence of hydration was investigated as a means of improving diesel selectivity. This was achieved by studying SPA over a hydration range of 99-110% H 3 PO 4 , a temperature range of 140-230 o C and using C 3 -C 6 model and synthetic FT-derived olefinic feedstocks. A direct correlation was found between the selectivity towards diesel range products and the distribution of the phosphoric acid species viz. H 3 PO 4 , H 4 P 2 O 7 and H 5 P 3 O 10 . For various olefinic feedstocks, diesel selectivity increased with decreasing catalyst hydration with a maximum around 108% H 3 PO 4 for propene oligomerisation. Commercial tests confirmed the increase in diesel selectivity with lowered catalyst hydration. (author)

  19. An Investigation into the Effects of Mn Promotion on the Activity and Selectivity of Co/SiO2 for Fischer - Tropsch Synthesis: Evidence for Enhanced CO Adsorption and Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gregory R.; Werner, Sebastian; Bell, Alexis T. (LBNL); (UCB)

    2016-03-04

    Mn is an effective promoter for improving the activity and selectivity of Co-based Fischer-Tropsch synthesis (FTS) catalysts, but the mechanism by which this promoter functions is poorly understood. The work reported here was aimed at defining the manner in which Mn interacts with Co and determining how these interactions affect the activity and selectivity of Co. Detailed measurements are reported for the kinetics of FTS as a function of Mn/Co ratio, temperature, and reactant partial pressure. These data are described by a single, two-parameter rate expression. Mn promotion was found to increase both the apparent rate constant for CO consumption and the CO adsorption constant. Further evidence for enhanced CO adsorption and dissociation was obtained from measurements of temperature-programmed desorption of CO and CO disproportionation rates, respectively. Our quantitative analysis of elemental maps obtained by STEM-EDS revealed that the promoter accumulates preferentially on the surface of Co nanoparticles at low Mn loadings, resulting in a rapid onset of improvements in the product selectivity as the Mn loading increases. For catalysts prepared with loadings higher than Mn/Co = 0.1, the additional Mn accumulates in the form of nanometer-scale particles of MnO on the support. In situ IR spectra of adsorbed CO show that Mn promotion increases the abundance of adsorbed CO with weakened C-O bonds. Furthermore, it is proposed that the cleavage of the C-O bond is promoted through Lewis acid-base interactions between the Mn2+ cations located at the edges of MnO islands covering the Co nanoparticles and the O atom of CO adsorbates adjacent to the MnO islands. The observed decrease in selectivity to CH4 and the increased selectivity to C5+ products with increasing Mn/Co ratio are attributed to a decrease in the ratio of adsorbed H to CO on the surface of the supported Co nanoparticles.

  20. Biomass-derived Syngas Utilization for Fuels and Chemicals - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dayton, David C

    2010-03-24

    Executive Summary The growing gap between petroleum production and demand, mounting environmental concerns, and increasing fuel prices have stimulated intense interest in research and development (R&D) of alternative fuels, both synthetic and bio-derived. Currently, the most technically defined thermochemical route for producing alternative fuels from lignocellulosic biomass involves gasification/reforming of biomass to produce syngas (carbon monoxide [CO] + hydrogen [H2]), followed by syngas cleaning, Fischer-Tropsch synthesis (FTS) or mixed alcohol synthesis, and some product upgrading via hydroprocessing or separation. A detailed techno-economic analysis of this type of process has recently been published [1] and it highlights the need for technical breakthroughs and technology demonstration for gas cleanup and fuel synthesis. The latter two technical barrier areas contribute 40% of the total thermochemical ethanol cost and 70% of the production cost, if feedstock costs are factored out. Developing and validating technologies that reduce the capital and operating costs of these unit operations will greatly reduce the risk for commercializing integrated biomass gasification/fuel synthesis processes for biofuel production. The objective of this project is to develop and demonstrate new catalysts and catalytic processes that can efficiently convert biomass-derived syngas into diesel fuel and C2-C4 alcohols. The goal is to improve the economics of the processes by improving the catalytic activity and product selectivity, which could lead to commercialization. The project was divided into 4 tasks: Task 1: Reactor Systems: Construction of three reactor systems was a project milestone. Construction of a fixed-bed microreactor (FBR), a continuous stirred tank reactor (CSTR), and a slurry bubble column reactor (SBCR) were completed to meet this milestone. Task 2: Iron Fischer-Tropsch (FT) Catalyst: An attrition resistant iron FT catalyst will be developed and tested

  1. Effect of support surface treatment on the synthesis, structure, and performance of Co/CNT Fischer-Tropsch catalysts

    NARCIS (Netherlands)

    Eschemann, Thomas O.; Lamme, Wouter S.; Manchester, Rene L.; Parmentier, Tanja E.; Cognigni, Andrea; Ronning, Magnus; de Jong, Krijn P.

    We report the preparation of supported cobalt catalysts (9 wt% Co) on untreated (CNT) and surface-oxidized (CNT-ox) carbon nanotube materials by incipient wetness impregnation with solutions of cobalt nitrate in water, ethanol, or 1-propanol. The results show that by a judicious selection of solvent

  2. Thermodynamic models to predict gas-liquid solubilities in the methanol synthesis, the methanol-higher alcohol synthesis, and the Fischer-Tropsch synthesis via gas-slurry processes

    NARCIS (Netherlands)

    Breman, B.B; Beenackers, A.A C M

    1996-01-01

    Various thermodynamic models were tested concerning their applicability to predict gas-liquid solubilities, relevant for synthesis gas conversion to methanol, higher alcohols, and hydrocarbons via gas-slurry processes. Without any parameter optimization the group contribution equation of state

  3. Catalytic hydroprocessing of coal-derived gasification residues to fuel blending stocks: effect of reaction variables and catalyst on hydrodeoxygenation (HDO), hydrodenitrogenation (HDN), and hydrodesulfurization (HDS)

    Energy Technology Data Exchange (ETDEWEB)

    Dieter Leckel [Sasol Technology Research and Development, Sasolburg (South Africa). Fischer-Tropsch Refinery Catalysis

    2006-10-15

    Gas liquors, tar oils, and tar products resulting from the coal gasification of a high-temperature Fischer-Tropsch plant can be successfully refined to fuel blending components by the use of severe hydroprocessing conditions. High operating temperatures and pressures combined with low space velocities ensure the deep hydrogenation of refractory oxygen, sulfur, and nitrogen compounds. Hydrodeoxygenation, particularly the removal of phenolic components, hydrodesulfurization, and hydrodenitrogenation were obtained at greater than 99% levels using the NiMo and NiW on {gamma}-Al{sub 2}O{sub 3} catalysts. Maximum deoxygenation activity was achieved using the NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst having a maximum pore size distribution in the range of 110-220{angstrom}. The NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst, which also has a relatively high proportion of smaller pore sizes (35-60 {angstrom}), displays lower hydrogenation activity. 30 refs., 1 fig. 8 tabs.

  4. Micelle-derived catalysts for extended Schulz-Flory. Technical progress report, July 1, 1986--September 30, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Abrevaya, H.

    1986-12-31

    The objective of this program is to develop a synthesis gas conversion catalyst with higher selectivity to liquid fuels, while maintaining catalytic activity and stability at least equivalent relative to state-of-the-art precipitated iron catalysts. During this quarter, the emphasis in the program has been the investigation of the hydrocarbon cutoff hypothesis with supported ruthenium catalysts. An alumina-supported catalyst with smaller than 20{Angstrom} ruthenium particles was tested under conditions of maximal water gas shift activity. During this test more than 90% of the water made in the Fischer-Tropsch synthesis reaction was converted to H{sub 2}. However, the extent of ruthenium metal agglomeration was not reduced. Accordingly, it was not possible to conclude whether hydrocarbon cutoff occurs with smaller than 20{Angstrom} ruthenium particles on {gamma}-alumina. A ruthenium catalyst prepared on Y-type zeolite had 20{Angstrom} or smaller ruthenium particles according to STEM examination and a 15{Angstrom} average ruthenium metal particle size according to EXAFS examination. The ruthenium metal particle size was stable during the test with this catalyst. The hydrocarbon product distribution was Anderson-Schulz-Flory with no cutoff up to a carbon number of 160. A well-dispersed titania-supported ruthenium catalyst is going to be evaluated during the next quarter in order to determine whether hydrocarbon cutoff occurs.

  5. Cobalt catalysts, and use thereof for the conversion of methanol and for fischer-tropsch synthesis, to produce hydrocarbons

    International Nuclear Information System (INIS)

    Mauldin, C.H.; Davis, S.M.; Arcuri, K.B.

    1988-01-01

    This patent describes a process useful for the conversion of methanol to hydrocarbons which comprises contacting the methanol at reaction conditions with a catalyst which comprises from about 2 percent to about 25 percent cobalt, based on the weight of the catalyst composition, composited with titania, or a titania-containing support, to which is added a zirconium, hafnium, cerium, or uranium promoter, the weight ratio of the zirconium, hafnium, cerium, or uranium metal:cobalt being greater than about 0.010:1; the reaction conditions being defined within ranges as follows: Methanol:H/sub 2/ ratio: greater than about 4:1, Space Velocities, Hr/sup -1/:about 0.1 to 10, Temperatures, 0 C.:about 150 to 350, Methanol Partial Pressure, psia: about 100 to 1000

  6. Enhanced anaerobic degradation of Fischer-Tropsch wastewater by integrated UASB system with Fe-C micro-electrolysis assisted.

    Science.gov (United States)

    Wang, Dexin; Ma, Wencheng; Han, Hongjun; Li, Kun; Xu, Hao; Fang, Fang; Hou, Baolin; Jia, Shengyong

    2016-12-01

    Coupling of the Fe-C micro-electrolysis (IC-ME) into the up-flow anaerobic sludge blanket (UASB) was developed for enhanced Fischer-Tropsch wastewater treatment. The COD removal efficiency and methane production in R 3 with IC-ME assisted both reached up to 80.6 ± 1.7% and 1.38 ± 0.11 L/L·d that higher than those values in R 1 with GAC addition (63.0 ± 3.4% and 0.95 ± 0.09 L/L·d) and R 2 with ZVI addition (74.5 ± 2.8% and 1.21 ± 0.09 L/L·d) under the optimum HRT (5 d). The Fe corrosion as electron donor reduced the ORP values and stimulated the activities of hydrogenotrophic methanogens to lower H 2 partial pressure in R 2 and R 3 . Additionally, Fe 2+ as by-product of iron corrosion, its presence could effectively increase the percentage of protein content in tightly bound extracellular polymeric substances (TB-EPS) to promote better bioflocculation, increasing to 90.5 mg protein/g·VSS (R 2 ) and 106.3 mg protein/g·VSS (R 3 ) while this value in R1 was simply 56.6 mg protein/g·VSS. More importantly, compared with R 1 , the excess accumulation of propionic acid and butyric acid in system was avoided. The macroscopic galvanic cells around Fe-C micro-electrolysis carriers in R 3 , that larger than microscopic galvanic cells in R 2 , further accelerate to transfer the electrons from anodic Fe to cathodic carbon that enhance interspecies hydrogen transfer, making the decomposition of propionic acid and butyric acid more thermodynamically feasible, finally facilitate more methane production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Cover Letter Dear Editor, Please find enclosed a paper entitled ...

    African Journals Online (AJOL)

    Ajamein

    Dear Editor,. Please find enclosed a paper entitled ' Intrinsic Kinetics of Fischer- Tropsch Synthesis Over a. Promoted Iron Catalyst '. I am submitting to your journal to be considered for publication as a research paper in Bulletin of the Chemical Society of Ethiopia. The manuscript has not been previously published, is not ...

  8. Small Molecule Catalysts for Harvesting Methane Gas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, S. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ceron-Hernandez, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Oakdale, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lau, E. Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-06

    As the average temperature of the earth increases the impact of these changes are becoming apparent. One of the most dramatic changes to the environment is the melting of arctic permafrost. The disappearance of the permafrost has resulted in release of streams of methane that was trapped in remote areas as gas hydrates in ice. Additionally, the use of fracking has also increased emission of methane. Currently, the methane is either lost to the atmosphere or flared. If these streams of methane could be brought to market, this would be an abundant source of revenue. A cheap conversion of gaseous methane to a more convenient form for transport would be necessary to economical. Conversion of methane is a difficult reaction since the C-H bond is very stable (104 kcal/mole). At the industrial scale, the Fischer-Tropsch reaction can be used to convert gaseous methane to liquid methanol but is this method is impractical for these streams that have low pressures and are located in remote areas. Additionally, the Fischer-Tropsch reaction results in over oxidation of the methane leading to many products that would need to be separated.

  9. Ototoxic potential of JP-8 and a Fischer-Tropsch synthetic jet fuel following subacute inhalation exposure in rats.

    Science.gov (United States)

    Fechter, Laurence D; Gearhart, Caroline A; Fulton, Sherry

    2010-07-01

    This study was undertaken to identify the ototoxic potential of two jet fuels presented alone and in combination with noise. Rats were exposed via a subacute inhalation paradigm to JP-8 jet fuel, a kerosene-based fuel refined from petroleum, and a synthetic fuel produced by the Fischer-Tropsch (FT) process. Although JP-8 contains small ( approximately 5%) concentrations of aromatic hydrocarbons some of which known to be ototoxic, the synthetic fuel does not. The objectives of this study were to identify a lowest observed adverse effect level and a no observed adverse effect level for each jet fuel and to provide some preliminary, but admittedly, indirect evidence concerning the possible role of the aromatic hydrocarbon component of petroleum-based jet fuel on hearing. Rats (n = 5-19) received inhalation exposure to JP-8 or to FT fuel for 4 h/day on five consecutive days at doses of 500, 1000, and 2000 mg/m(3). Additional groups were exposed to various fuel concentrations followed by 1 h of an octave band of noise, noise alone, or no exposure to fuel or noise. Significant dose-related impairment in the distortion product otoacoustic emissions (DPOAE) was seen in subjects exposed to combined JP-8 plus noise exposure when JP-8 levels of at least 1000 mg/m(3) were presented. No noticeable impairment was observed at JP-8 levels of 500 mg/m(3) + noise. In contrast to the effects of JP-8 on noise-induced hearing loss, FT exposure had no effect by itself or in combination with noise exposure even at the highest exposure level tested. Despite an observed loss in DPOAE amplitude seen only when JP-8 and noise were combined, there was no loss in auditory threshold or increase in hair cell loss in any exposure group.

  10. Carbon-14 studies on the role of oxygen-containing compounds in the reaction mechanism of the Fischer-Tropsch synthesis

    International Nuclear Information System (INIS)

    Aksoy, H.A.

    1975-01-01

    In this work the behaviour of organic oxygen compounds has been studied in the reaction mechanism of Fischer-Tropsch synthesis using the tracer method. As an oxygen carrying tracer materials i-propanole (2- 14 C), acetone (2- 14 C) and ethanole (1- 14 C) have been added to the synthesis gas. The synthesis experiments are performed under standard conditions: The synthesis products are separated in suitable fractions and then studied by gas- and radio-gaschromatography. As a result the C-number distributions of the synthesis products are obtained as a function of concentration (weight %, mol %) and radioactivity (activity %). On this basis the relative molar activities have been calculated for certain compounds and fractions. Adding i-propanole- 14 C a great part of the tracer compound is transformed to acetone- 14 C, however adding acetone- 14 C to the synthesis gas a large amount of i-propanole- 14 C is produced. The main hydrocarbon reaction product from i-propanol and acetone is propane. Besides propane also propene is produced with equal molar radioactivity. This indicates that the formation of adsorbed oxygen compounds, as they may also be produced by chemisorption from alcohols or carbonyle compounds, is the first step in the formation of hydrocarbons by hydrogenolytic separation of oxygen. Comparing the results obtained with ethanole- 14 C and i-propanole- 14 C as a tacer material, for ethane an essentially lower molar activity is obtained when adding ethanole- 14 C compared with propane when adding i-propanole- 14 C. This corresponds with a particularly low desorption probability at the C 2 -hydrocarbon level. (orig./HK) [de

  11. Design of slurry bubble column reactors: novel technique for optimum catalyst size selection contractual origin of the invention

    Science.gov (United States)

    Gamwo, Isaac K [Murrysville, PA; Gidaspow, Dimitri [Northbrook, IL; Jung, Jonghwun [Naperville, IL

    2009-11-17

    A method for determining optimum catalyst particle size for a gas-solid, liquid-solid, or gas-liquid-solid fluidized bed reactor such as a slurry bubble column reactor (SBCR) for converting synthesis gas into liquid fuels considers the complete granular temperature balance based on the kinetic theory of granular flow, the effect of a volumetric mass transfer coefficient between the liquid and the gas, and the water gas shift reaction. The granular temperature of the catalyst particles representing the kinetic energy of the catalyst particles is measured and the volumetric mass transfer coefficient between the gas and liquid phases is calculated using the granular temperature. Catalyst particle size is varied from 20 .mu.m to 120 .mu.m and a maximum mass transfer coefficient corresponding to optimum liquid hydrocarbon fuel production is determined. Optimum catalyst particle size for maximum methanol production in a SBCR was determined to be in the range of 60-70 .mu.m.

  12. An XPS study on ruthenium compounds and catalysts

    International Nuclear Information System (INIS)

    Bianchi, C.L.; Ragaini, V.; Cattania, M.G.

    1991-01-01

    The binding energy (BE) of the relevant peaks of several ruthenium compounds have been measured with a monochromatic small spot XPS. The BE of the 3d 5/2 level of ruthenium is in the range 279.91-282.88 eV. The variation of BE is due either to the variation of the oxidation state or to the different counter-ion. A series of catalysts with varying amounts of ruthenium supported on alumina and prepared using different precursors was also analyzed. The presence of more ruthenium species other than the metal was observed. On the basis of the values previously obtained on unsupported compounds, the species with higher BE were assigned to oxides. On all the samples prepared from RuCl 3 , an additional peak at a very high BE (283.79 eV) has been observed. This peak is related to the presence of chlorine on the surface: it is suggested that it is related to a charge transfer interaction. The influence of this species on the CO reactivity in the Fischer-Tropsch reaction is discussed. (orig.)

  13. Synthetic Or Reformulated Fuels: a Challenge for Catalysis Carburants de synthèse ou reformulés : un défi pour la catalyse

    Directory of Open Access Journals (Sweden)

    Courty P.

    2006-12-01

    Full Text Available Despite comparative figures for wordwide crude oil and natural gas proven reserves, present time contribution of syngas chemistry to motorfuels remains marginal when the refining industry is faced to main constraints: market demand evolution, stringent specifications and environmental issues. Actually natural gas upgrading via syngas chemistry yields key products (e. g. methanol among which clean motorfuels (ethers, FT products should develop despite the huge investments required, mostly for syngas production. Main challenges and corresponding issues for catalysts and related technologies are identified for Fischer-Tropsch synthesis and motorfuels long-term reformulation. Among other, mastering the chain-growth (FT synthesis improving the FCC products: gasoline, and LCO for Diesel pool. All these issues need significant progresses in catalyst and technology to be solved. Lastly, our economical study, focused on Diesel-fuel production, shows up that clean diesel (from SR-LCO mixtures and FT Diesel reach similar production costs when cheap NG is available. In the future, FT middle distillates should amount to a few percent (5-150 Mt of the 1700-2000 Mt of transport middle distillates expected from oil refining. However they should more and more be a compulsory part of diesel pool if the level of investment for an FT process continues to decrease significantly. Malgré des réserves prouvées en pétrole et en gaz du même ordre de grandeur, la contribution de la chimie du gaz de synthèse à la production de carburants reste marginale, alors que l'industrie du raffinage est confrontée à des contraintes majeures : évolution de la demande, durcissement des spécifications des produits et contraintes environnementales. Cependant, la conversion chimique du gaz, via la chimie du gaz de synthèse, fournit des produits stratégiques (e. g. méthanol parmi lesquels les carburants propres (éthers, produits Fischer-Tropsch devraient se développer, bien

  14. Comparison of Cobalt based Catalysts Supported on MWCNT and SBA-15 Supporters for Fischer-tropsch Synthesis by Using Novel Vortex Type Reactor

    International Nuclear Information System (INIS)

    Yakubov, A.; Shahrun, M.S.; Kutty, M.G.; Hamid, S.B.A.; Piven, V.

    2011-01-01

    10 and 40 wt% Co/ Multi wall Carbon Nano tubes (MWCNT) and 10 and 40 wt% Co/ Santa Barbara Amorphous-15 (SBA) catalysts were prepared via incipient wetness impregnation and characterized by Scanning Electron Microscopy equipped with Energy Dispersive X-ray Spectroscopy (SEM and EDX), N 2 adsorption-desorption (BET), X-ray Diffractometry (XRD), Transmission Electron Microscopy (TEM) and Temperature- Programmed Reduction and H 2 desorption TPD/RO. Co(NO 3 ) 2 * 6H 2 O was used as a cobalt precursor. 200 ml hastelloy autoclave reactor was implemented to see the performance of the catalysts. This report presents details about the catalyst synthesis and reactor study. (author)

  15. Optimal design issues of a gas-to-liquid process

    Energy Technology Data Exchange (ETDEWEB)

    Rafiee, Ahmad

    2012-07-01

    Interests in Fischer-Tropsch (FT) synthesis is increasing rapidly due to the recent improvements of the technology, clean-burning fuels (low sulphur, low aromatics) derived from the FT process and the realization that the process can be used to monetize stranded natural gas resources. The economy of GTL plants depends very much on the natural gas price and there is a strong incentive to reduce the investment cost and in addition there is a need to improve energy efficiency and carbon efficiency. A model is constructed based on the available information in open literature. This model is used to simulate the GTL process with UNISIM DESIGN process simulator. In the FT reactor with cobalt based catalyst, Co2 is inert and will accumulate in the system. Five placements of Co2 removal unit in the GTL process are evaluated from an economical point of view. For each alternative, the process is optimized with respect to steam to carbon ratio, purge ratio of light ends, amount of tail gas recycled to syngas and FT units, reactor volume, and Co2 recovery. The results show that carbon and energy efficiencies and the annual net cash flow of the process with or without Co2 removal unit are not significantly different and there is not much to gain by removing Co2 from the process. It is optimal to recycle about 97 % of the light ends to the process (mainly to the FT unit) to obtain higher conversion of CO and H2 in the reactor. Different syngas configurations in a gas-to-liquid (GTL) plant are studied including auto-thermal reformer (ATR), combined reformer, and series arrangement of Gas Heated Reformer (GHR) and ATR. The Fischer-Tropsch (FT) reactor is based on cobalt catalyst and the degrees of freedom are; steam to carbon ratio, purge ratio of light ends, amount of tail gas recycled to synthesis gas (syngas) and Fischer-Tropsch (FT) synthesis units, and reactor volume. The production rate of liquid hydrocarbons is maximized for each syngas configuration. Installing a steam

  16. Study of selective Fischer-Tropsch catalysts synthesized by the destruction of bimetallic carbonyl complexes on activated γ-Al2O3 support

    International Nuclear Information System (INIS)

    Maksimov, Yu.V.; Matveev, V.V.; Suzdalev, I.P.; Khomenko, T.I.; Kadushin, A.A.

    1990-01-01

    The bimetallic catalysts obtained by the deposition of a Fe-Co binuclear cluster on the dehydroxylated γ-Al 2 O 3 are studied and compared to some other relative systems. These bimetallic catalysts are found to be active and selective in olefin synthesis. This is connected with the formation of Fe-Co contact which is detectable by Moessbauer spectroscopy. (orig.)

  17. Electrochemical promotion of catalytic reactions with Pt/C (or Pt/Ru/C)//PBI catalysts

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bjerrum, Niels; Bandur, Viktor

    2007-01-01

    The paper is an overview of the results of the investigation on electrochemical promotion of three catalytic reactions: methane oxidation with oxygen, NO reduction with hydrogen at 135 degrees C and Fischer-Tropsch synthesis (FTS) at 170 degrees C in the [CH4/O-2(or NO/H-2 or CO/H-2)/Ar//Pt(or Pt....../Ru)//PBI(H3PO4)/H-2, Ar] fuel cell. It has been shown that the partial methane oxidation to C2H2 and the C-2 selectivity were electrochemically promoted by the negative catalyst polarization. This was also the case in NO reduction with hydrogen for low NO and H-2 partial pressures. In both cases the catalytic...... reactions have been promoted by the electrochemically produced hydrogen. It has been found that the NO reduction with hydrogen on the Pt/PBI strongly depends on NO and hydrogen partial pressures in the working gas mixture. At higher NO and H-2 partial pressures the catalysis is promoted...

  18. (Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending June 30, 1987. [Advanced Coal Research and Technology Development Programs

    Energy Technology Data Exchange (ETDEWEB)

    None

    1988-02-01

    Research programs on coal and coal liquefaction are presented. Topics discussed are: coal science, combustion, kinetics, surface science; advanced technology projects in liquefaction; two stage liquefaction and direct liquefaction; catalysts of liquefaction; Fischer-Tropsch synthesis and thermodynamics; alternative fuels utilization; coal preparation; biodegradation; advanced combustion technology; flue gas cleanup; environmental coordination, and technology transfer. Individual projects are processed separately for the data base. (CBS)

  19. Wabash Valley Integrated Gasification Combined Cycle, Coal to Fischer Tropsch Jet Fuel Conversion Study

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Jayesh [Lummus Technology Inc., Bloomfield, NJ (United States); Hess, Fernando [Lummus Technology Inc., Bloomfield, NJ (United States); Horzen, Wessel van [Lummus Technology Inc., Bloomfield, NJ (United States); Williams, Daniel [Lummus Technology Inc., Bloomfield, NJ (United States); Peevor, Andy [JM Davy, London (United Kingdom); Dyer, Andy [JM Davy, London (United Kingdom); Frankel, Louis [Canonsburgh, PA (United States)

    2016-06-01

    This reports examines the feasibility of converting the existing Wabash Integrated Gasification Combined Cycle (IGCC) plant into a liquid fuel facility, with the goal of maximizing jet fuel production. The fuels produced are required to be in compliance with Section 526 of the Energy Independence and Security Act of 2007 (EISA 2007 §526) lifecycle greenhouse gas (GHG) emissions requirements, so lifecycle GHG emissions from the fuel must be equal to or better than conventional fuels. Retrofitting an existing gasification facility reduces the technical risk and capital costs associated with a coal to liquids project, leading to a higher probability of implementation and more competitive liquid fuel prices. The existing combustion turbine will continue to operate on low cost natural gas and low carbon fuel gas from the gasification facility. The gasification technology utilized at Wabash is the E-Gas™ Technology and has been in commercial operation since 1995. In order to minimize capital costs, the study maximizes reuse of existing equipment with minimal modifications. Plant data and process models were used to develop process data for downstream units. Process modeling was utilized for the syngas conditioning, acid gas removal, CO2 compression and utility units. Syngas conversion to Fischer Tropsch (FT) liquids and upgrading of the liquids was modeled and designed by Johnson Matthey Davy Technologies (JM Davy). In order to maintain the GHG emission profile below that of conventional fuels, the CO2 from the process must be captured and exported for sequestration or enhanced oil recovery. In addition the power utilized for the plant’s auxiliary loads had to be supplied by a low carbon fuel source. Since the process produces a fuel gas with sufficient energy content to power the plant’s loads, this fuel gas was converted to hydrogen and exported to the existing gas turbine for low carbon power production. Utilizing low carbon fuel gas and

  20. Comparative electrophysiological evaluation of hippocampal function following repeated inhalation exposures to JP-8, Jet A, JP-5, and the synthetic Fischer Tropsch fuel.

    Science.gov (United States)

    Rohan, Joyce G; McInturf, Shawn M; Miklasevich, Molly K; Gut, Chester P; Grimm, Michael D; Reboulet, James E; Howard, William R; Mumy, Karen L

    2018-01-01

    Exposure to fuels continues to be a concern in both military and general populations. The aim of this study was to examine effects of in vivo rat repeated exposures to different types of jet fuel utilizing microelectrode arrays for comparative electrophysiological (EP) measurements in hippocampal slices. Animals were exposed to increasing concentrations of four jet fuels, Jet Propellant (JP)-8, Jet A, JP-5, or synthetic Fischer Tropsch (FT) fuel via whole-body inhalation for 20 d (6 hr/d, 5 d/week for 28 d) and synaptic transmission as well as behavioral performance were assessed. Our behavioral studies indicated no significant changes in behavioral performance in animals exposed to JP-8, Jet A, or JP-5. A significant deviation in learning pattern during the Morris water maze task was observed in rats exposed to the highest concentration of FT (2000 mg/m 3 ). There were also significant differences in the EP profile of hippocampal neurons from animals exposed to JP-8, Jet A, JP-5, or FT compared to control air. However, these differences were not consistent across fuels or dose dependent. As expected, patterns of EP alterations in brain slices from JP-8 and Jet A exposures were more similar compared to those from JP-5 and FT. Further longitudinal investigations are needed to determine if these EP effects are transient or persistent. Such studies may dictate if and how one may use EP measurements to indicate potential susceptibility to neurological impairments, particularly those that result from inhalation exposure to chemicals or mixtures.

  1. Development of structural characterisation tools for catalysts; Developpement d'outils de caracterisation structurale de catalyseurs

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, J.

    1999-10-01

    Because of the diversity of their compositions and structures, and the treatments needed to render them active, heterogeneous catalysts present a major challenge in structural characterisation. Electron microscopy provides textural and structural information at the scale of the individual particle. We have been able to analyse epitaxial relationships between nanometer size particles and their support and to determine which crystal faces are most exposed. Chemical analysis can be carried out on individual particles in a bimetallic catalyst. Limitations of this technique are shown for characterisation of catalysts at the atomic scale or in reactive conditions. Here, global analysis methods based on X-ray absorption and diffraction provide more information. W-ray absorption fine structure analysis has been applied to sub-nanometer size particles in platinum based catalysts to explore interactions between the metal and reactive gases such as hydrocarbons and H{sub 2}S. Differences observed between mono-metallic and bimetallic solids lead to structural models to explain differences in catalyst reactivity. X-ray diffraction, combined with electron microscopy, shows the presence of different forms of extra-framework aluminium is steamed zeolites. Quantification of some these forms has been possible and a study of their reactivity towards different de-aluminating agents has been achieved. Work in progress shows the advantages of a combination of X-ray diffraction and absorption to study decomposition of hydrotalcites to form mixed oxides as well as possibilities in infra-red spectroscopy of adsorbed CO to determine surface sites in Fischer Tropsch catalysts. Use of in-situ analysis cells enables a detailed description of catalyst structure in reactive atmospheres and opens the possibility of correlating structure with catalytic activity. (author)

  2. Method for customizing an organic Rankine cycle to a complex heat source for efficient energy conversion, demonstrated on a Fischer Tropsch plant

    International Nuclear Information System (INIS)

    DiGenova, Kevin J.; Botros, Barbara B.; Brisson, J.G.

    2013-01-01

    Highlights: ► Methods for customizing organic Rankine cycles are proposed. ► A set of cycle modifications help to target available heat sources. ► Heat sources with complex temperature–enthalpy profiles can be matched. ► Significant efficiency improvements can be achieved over basic ORC’s. -- Abstract: Organic Rankine cycles (ORCs) provide an alternative to traditional steam Rankine cycles for the conversion of low grade heat sources into power, where conventional steam power cycles are known to be inefficient. A large processing plant often has multiple low temperature waste heat streams available for conversion to electricity by a low temperature cycle, resulting in a composite heat source with a complex temperature–enthalpy profile. This work presents a set of ORC design concepts: reheat stages, multiple pressure levels, and balanced recuperators; and demonstrates the use of these design concepts as building blocks to create a customized cycle that matches an available heat source. Organic fluids are modeled using a pure substance database. The pinch analysis technique of forming composite curves is applied to analyze the effect of each building block on the temperature–enthalpy profile of the ORC heat requirement. The customized cycle is demonstrated on a heat source derived from a Fischer Tropsch reactor and its associated processes. Analysis shows a steam Rankine cycle can achieve a 20.6% conversion efficiency for this heat source, whereas a simple organic Rankine cycle using hexane as the working fluid can achieve a 20.9% conversion efficiency. If the ORC building blocks are combined into a cycle targeted to match the temperature–enthalpy profile of the heat source, this customized ORC can achieve 28.5% conversion efficiency.

  3. Cobalt–iron nano catalysts supported on TiO{sub 2}–SiO{sub 2}: Characterization and catalytic performance in Fischer–Tropsch synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Feyzi, Mostafa, E-mail: Dalahoo2011@yahoo.com [Faculty of Chemistry, Razi University, P. O. Box: +98-67149, Kermanshah (Iran, Islamic Republic of); Yaghobi, Nakisa; Eslamimanesh, Vahid [Iran Polymer and Petrochemical Institute, P. O. Box: +98- 14965 Tehran, Iran, (Iran, Islamic Republic of)

    2015-12-15

    Graphical abstract: The Co–Fe/TiO{sub 2}–SiO{sub 2} catalysts were prepared. The prepared catalysts were tested for light olefins and C{sub 5}–C{sub 12} production. The best operational conditions are 250 °C, H{sub 2}/CO = 1/1 under 5 bar pressure. - Highlights: • The TiO{sub 2}–SiO{sub 2} supported cobalt–iron catalysts were prepared via sol–gel method. • The best operational conditions were 250 °C, GHSV = 2000 h{sup −1}, H{sub 2}/CO = 1/1 and 5 bar. • The (Co/Fe)/TiO{sub 2}–SiO{sub 2} is efficient catalyst for light olefins and C{sub 5}–C{sub 12} production. - Abstract: A series of Co–Fe catalysts supported on TiO{sub 2}–SiO{sub 2} were prepared by the sol–gel method. This research investigated the effects of (Co/Fe) wt.%, the solution pH, different Co/Fe molar ratio, calcination conditions and different promoters on the catalytic performance of cobalt–iron catalysts for the Fisher–Tropsch synthesis (FTS). It was found that the catalyst containing 35 wt.% (Co–Fe)/TiO{sub 2}–SiO{sub 2} (Co/Fe molar ratio is 80/20) promoted with 1.5 wt.% Cu and calcined in air atmosphere at 600 °C for 7 h with a heating rate of 3 °C min{sup −1} is an optimal nano catalyst for converting synthesis gas to light olefins and C{sub 5}–C{sub 12} hydrocarbons. The effects of operational conditions such as the H{sub 2}/CO ratio, gas hourly space velocity (GHSV), different reaction temperature, and reaction pressure were investigated. The results showed that the best operational conditions for optimal nano catalyst are 250 °C, GHSV = 2000 h{sup −1}, H{sub 2}/CO molar ratio 1/1 under 5 bar total pressure. Catalysts and precursors were characterized by, X-ray diffraction (XRD), scanning electron microcopy (SEM), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), temperature program reduction (TPR) and N{sub 2} adsorption–desorption measurements.

  4. Separation of Fischer-Tropsch Wax from Catalyst by Supercritical Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Mark C. Thies; Patrick C. Joyce

    1998-04-30

    Further progress in achieving the objectives of the project was made in the period of January I to March 31, 1998. The direct numerical simulation of particle removal process in turbulent gas flows was completed. Variations of particle trajectories are studied. It is shown that the near wall vortices profoundly affect the particle removal process in turbulent boundary layer flows. Experimental data for transport and deposition of fibrous particles in the aerosol wind tunnel was obtained. The measured deposition velocity for irregular fibrous particles is compared with the empirical correlation and the available data for glass fibers and discussed. Additional progress on the sublayer model for evaluating the particle deposition and resuspension in turbulent flows was made.

  5. Catalytic conversion of CO2 into valuable products

    International Nuclear Information System (INIS)

    Pham-Huu, C.; Ledoux, M.J.

    2008-01-01

    Complete text of publication follows: Synthesis gas, a mixture of H 2 and CO, is an important feed-stock for several chemical processes operated in the production of methanol and synthetic fuels through a Fischer- Tropsch synthesis. Synthesis gas is produced via an endothermic steam reforming of methane (CH 4 + H 2 O → CO + 3H 2 , ΔH = +225.4 kJ.mol -1 ), catalytic or direct partial oxidation of methane (CH 4 + (1/2)O 2 → CO + 2H 2 , ΔH -38 kJ.mol -1 ) and CO 2 reforming of methane (CH 4 + CO 2 → 2CO + 2H 2 , ΔH= +247 kJ.mol -1 ). The main disadvantage of these processes is the high coke formation, essentially in the nano-filament form, which may cause severe deactivation of the catalyst by pore or active site blocking and sometimes, physical disintegration of the catalyst body causing a high pressure drop along the catalyst bed and even, in some cases, inducing damage to the reactor itself. Previous results obtained in the catalytic partial oxidation of methane have shown that due to the hot spot and carbon nano-filaments formation, especially in the case of the CO 2 reforming, the alumina-based catalyst in an extrudate form was broken into powder which induces a significant pressure drop across the catalytic bed. In the case of endothermic reactions, steam and CO 2 reforming, the temperature drop within the catalyst bed could also modified the activity of the catalyst. Silicon carbide (SiC) exhibits a high thermal conductivity, a high resistance towards oxidation, a high mechanical strength, and chemical inertness, all of which make it a good candidate for use as catalyst support in several endothermic and exothermic reactions such as dehydrogenation, selective partial oxidation, and Fischer-Tropsch synthesis. The gas-solid reaction allows the preparation of SiC with medium surface area, i.e. 10 to 40 m 2 .g -1 , and controlled macroscopic shape, i.e. grains, extrudates or foam, for it subsequence use as catalyst support. In addition, due to its chemical

  6. Reductions in greenhouse gas emissions and oil use by DME (di-methyl ether) and FT (Fischer-Tropsch) diesel production in chemical pulp mills

    International Nuclear Information System (INIS)

    Joelsson, Jonas M.; Gustavsson, Leif

    2012-01-01

    Using energy systems analysis, we examine the potential to reduce CO 2 emissions and oil use by integrating motor biofuel production with pulp mills. BLG-DME (black liquor gasification with di-methyl ether production) is compared with solid biomass gasification with BIG-FT (solid biomass gasification with Fischer-Tropsch fuel production). The studied systems are expanded with stand-alone production of biomass-based electricity and motor fuel so that they yield the same functional unit in terms of motor fuel and electricity as well as pulp or paper product, in order to facilitate comparison. More motor biofuel can be produced in integration with the studied mills with BLG-DME than with BIG-FT because the black liquor flow is large compared with other fuel streams in the mill and the integration potential for BIG-FT is limited by the mill’s heat demand. When both systems are required to produce the same functional unit, the BLG-DME system achieves higher system efficiency and larger reductions in CO 2 emissions and oil use per unit of biomass consumed. In general, integration of motor biofuel production with a pulp mill is more efficient than stand-alone motor biofuel production. Larger reductions in CO 2 emissions or oil use can, however, be achieved if biomass replaces coal or oil in stationary applications. -- Highlights: ► CO 2 emission and oil use reductions quantified for pulp mill-based biorefineries. ► Black liquor gasification gives larger reductions than solid biomass gasification. ► Lower mill steam demand increases the black liquor gasification advantage. ► Biomass directly replacing coal or oil in stationary plants gives larger reductions.

  7. Fundamentals of Melt infiltration for the Preparation of Supported Metal Catalysts.The Case of Co/SiO2 Fischer-Tropsch Synthesis

    NARCIS (Netherlands)

    Eggenhuisen, T.M.|info:eu-repo/dai/nl/313959498; den Breejen, J.P.|info:eu-repo/dai/nl/304837318; Verdoes, D.; de Jongh, P.E.|info:eu-repo/dai/nl/186125372; de Jong, K.P.|info:eu-repo/dai/nl/06885580X

    2013-01-01

    We explored melt infiltration of mesoporous silica supports to prepare supported metal catalysts with high loadings and controllable particle sizes. Melting of Co(NO3)2 ·6H2O in the presence of silica supports was studied in situ with differential scanning calorimetry. The melting point depression

  8. Iron oxides and their applications in catalytic processes: a review

    OpenAIRE

    Oliveira, Luiz C. A.; Fabris, José D.; Pereira, Márcio C.

    2013-01-01

    A review of most of the reported studies on the use of iron oxides as catalyst in specific processes, namely Haber-Bosch reaction, Fischer-Tropsch synthesis, Fenton oxidation and photolytic molecular splitting of water to produce gaseous hydrogen, was carried out. An essential overview is thus presented, intending to address the fundamental meaning, as well as the corresponding chemical mechanisms, and perspectives on new technological potentialities of natural and synthetic iron oxides, more...

  9. Theoretical characterization of the surface composition of ruthenium nanoparticles in equilibrium with syngas

    Science.gov (United States)

    Cusinato, Lucy; Martínez-Prieto, Luis M.; Chaudret, Bruno; Del Rosal, Iker; Poteau, Romuald

    2016-05-01

    A deeper understanding of the relationship between experimental reaction conditions and the surface composition of nanoparticles is crucial in order to elucidate mechanisms involved in nanocatalysis. In the framework of the Fischer-Tropsch synthesis, a resolution of this complex puzzle requires a detailed understanding of the interaction of CO and H with the surface of the catalyst. In this context, the single- and co-adsorption of CO and H to the surface of a 1 nm ruthenium nanoparticle has been investigated with density functional theory. Using several indexes (d-band center, crystal overlap Hamilton population, density of states), a systematic analysis of the bond properties and of the electronic states has also been done, in order to bring an understanding of structure/property relationships at the nanoscale. The H : CO surface composition of this ruthenium nanoparticle exposed to syngas has been evaluated according to a thermodynamic model fed with DFT energies. Such ab initio thermodynamic calculations give access to the optimal H : CO coverage values under a wide range of experimental conditions, through the construction of free energy phase diagrams. Surprisingly, under the Fischer-Tropsch synthesis experimental conditions, and in agreement with new experiments, only CO species are adsorbed at the surface of the nanoparticle. These findings shed new light on the possible reaction pathways underlying the Fischer-Tropsch synthesis, and specifically the initiation of the reaction. It is finally shown that the joint knowledge of the surface composition and energy descriptors can help to identify possible reaction intermediates.A deeper understanding of the relationship between experimental reaction conditions and the surface composition of nanoparticles is crucial in order to elucidate mechanisms involved in nanocatalysis. In the framework of the Fischer-Tropsch synthesis, a resolution of this complex puzzle requires a detailed understanding of the interaction

  10. Reductions in greenhouse gas emissions and oil use by DME (di-methyl ether) and FT (Fischer-Tropsch) diesel production in chemical pulp mills

    Energy Technology Data Exchange (ETDEWEB)

    Joelsson, Jonas M., E-mail: joelsson.jonas@hotmail.com [Ecotechnology and Environmental Science, Mid Sweden University, SE-831 25 Oestersund (Sweden); Gustavsson, Leif [Linnaeus University, SE- 351 95 Vaexjoe (Sweden)

    2012-03-15

    Using energy systems analysis, we examine the potential to reduce CO{sub 2} emissions and oil use by integrating motor biofuel production with pulp mills. BLG-DME (black liquor gasification with di-methyl ether production) is compared with solid biomass gasification with BIG-FT (solid biomass gasification with Fischer-Tropsch fuel production). The studied systems are expanded with stand-alone production of biomass-based electricity and motor fuel so that they yield the same functional unit in terms of motor fuel and electricity as well as pulp or paper product, in order to facilitate comparison. More motor biofuel can be produced in integration with the studied mills with BLG-DME than with BIG-FT because the black liquor flow is large compared with other fuel streams in the mill and the integration potential for BIG-FT is limited by the mill's heat demand. When both systems are required to produce the same functional unit, the BLG-DME system achieves higher system efficiency and larger reductions in CO{sub 2} emissions and oil use per unit of biomass consumed. In general, integration of motor biofuel production with a pulp mill is more efficient than stand-alone motor biofuel production. Larger reductions in CO{sub 2} emissions or oil use can, however, be achieved if biomass replaces coal or oil in stationary applications. -- Highlights: Black-Right-Pointing-Pointer CO{sub 2} emission and oil use reductions quantified for pulp mill-based biorefineries. Black-Right-Pointing-Pointer Black liquor gasification gives larger reductions than solid biomass gasification. Black-Right-Pointing-Pointer Lower mill steam demand increases the black liquor gasification advantage. Black-Right-Pointing-Pointer Biomass directly replacing coal or oil in stationary plants gives larger reductions.

  11. Lanthanum cobalt oxides as models for La-promoted Co/{gamma}-Al{sub 2}O{sub 3} catalys

    Energy Technology Data Exchange (ETDEWEB)

    Hansteen, Ole Henrik

    1998-12-31

    Cobalt supported on {gamma}-Al{sub 2}O{sub 3} have for a long time been interesting catalysts for the synthesis of hydrocarbons by hydrogenation of carbonmonoxide, the so-called Fischer-Tropsch synthesis. The reduction and catalytic properties of these catalysts are largely improved by addition of promotors like rhenium and lanthanum. This thesis attempts to provide additional knowledge to the nature of the reduction processes from metal oxides via partially reduced phases into metal and to the large degree of interaction/reaction between the catalyst components. It focuses on detailed studies of model oxides in the La-Co-O and Co-Al-O systems under reducing conditions typically used for the synthesis of the catalysts. 132 refs., 41 figs., 16 tabs.

  12. Harnessing biofuels. A global Renaissance in energy production?

    Energy Technology Data Exchange (ETDEWEB)

    Jegannathan, Kenthorai Raman; Chan, Eng-Seng; Ravindra, Pogaku [Centre of Materials and Minerals, School of Engineering and Information Technology, Universiti Malaysia Sabah, 88999 Kota Kinabalu, Sabah (Malaysia)

    2009-10-15

    Biofuel, peoples' long awaiting alternative fuel, is yet to struggle a long way to reach in retail outlet all over the world as an economical and environmental friendly fuel. Biofuels include bioethanol, biodiesel, biogas, bio-synthetic gas (bio-syngas), bio-oil, bio-char, Fischer-Tropsch liquids, and biohydrogen. Among these bioethanol, biodiesel, biogas are predominant which can be produced either using chemical catalyst or biocatalyst from biomass. At present, the conventional process involves the chemical catalyst while a rigorous research is focused on using a biocatalyst. This review brings out the advantages and disadvantages of using different type of catalyst in biofuel production and emphasis on new technologies as an alternative to conventional technologies. (author)

  13. Efficient filtration system for paraffin-catalyst slurry separation

    Directory of Open Access Journals (Sweden)

    Khodagholi Mohammad Ali

    2013-01-01

    Full Text Available The filtration efficiency for separating liquid paraffin (or water from a slurry consisting of 25 weight% spherical alumina in a Slurry Bubble Column Reactor (SBCR comprised of a cylindrical tube of 10 cm diameter and 150 cm length was studied. Various differential pressures (ΔP were applied to two separate tubular sintered metal stainless steel filter elements with nominal pore size of 4 and 16μm. The experimental results disclosed that the rate of filtrations increased on applying higher differential pressure to the filter element. Albeit this phenomenon is limited to moderate ΔPs and for ΔP more than 1 bar is neither harmful nor helpful. The highest filtration rates at ΔPs higher than 1 bar were 170 and 248 ml/minute for 4 and 16μm respectively. Using water as the liquid in slurry the rate of filtration enhanced to 4 folds, and this issue reveals impact of viscosity on filtration efficiency clearly. In all situations, the total amount of particles present in the filtrate part never exceeded a few parts per million (ppm. The statistical analysis of the SEM image of the filtrate indicated that by applying higher pressure difference to the filter element the frequency percent of larger particle size increases. The operation of filter cake removing was performed with back flashing of 300 ml of clean liquid with pressures of 3-5 bar of N2 gas.

  14. Fischer–Tropsch Synthesis at a Low Pressure on Subnanometer Cobalt Oxide Clusters: The Effect of Cluster Size and Support on Activity and Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sungsik; Lee, Byeongdu; Seifert, Sönke; Winans, Randall E.; Vajda, Stefan

    2015-05-21

    In this study, the catalytic activity and changes in the oxidation state during the Fischer Tropsch (FT) reaction was investigated on subnanometer size-selected cobalt clusters deposited on oxide (Al2O3, MgO) and carbon-based (ultrananocrystalline diamond UNCD) supports by temperature programmed reaction (TPRx) combined with in-situ grazing-incidence X-ray absorption characterization (GIXAS). The activity and selectivity of ultrasmall cobalt clusters exhibits a very strong dependence on cluster size and support. The evolution of the oxidation state of metal cluster during the reaction reveals that metal-support interaction plays a key role in the reaction.

  15. Novel inorganic precursors [Co.sub.4.32./sub.Zn.sub.1.68./sub.(HCO.sub.2./sub.).sub.18./sub.(C.sub.2./sub.H.sub.8./sub.N).sub.6./sub.]/SiO.sub.2./sub. and Co.sub.4.32./sub.Zn.sub.1.68./sub.(HCO2).sub.18./sub.(C.sub.2./sub.H.sub.8./sub.N).sub.6./sub.]/Al.sub.2./sub.O.sub.3./sub. for Fischer-Tropsch synthesis

    Czech Academy of Sciences Publication Activity Database

    Saheli, S.; Rezvani, A.R.; Malekzadeh, A.; Dušek, Michal; Eigner, Václav

    2018-01-01

    Roč. 43, č. 2 (2018), s. 685-694 ISSN 0360-3199 R&D Projects: GA ČR(CZ) GA15-12653S; GA MŠk(CZ) LO1603 EU Projects: European Commission(CZ) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : Fischer-Tropsch synthesis * coordination polymers * inorganic precursor * impregnation * catalytic performance Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.582, year: 2016

  16. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    Science.gov (United States)

    Doherty, J.P.; Marek, J.C.

    1987-02-25

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.

  17. Short-term global warming mitigation costs of fischer-tropsch diesel production and policy scenarios in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Bright, Ryan M.; Stroemman, Anders Hammer

    2010-07-01

    Full text: Increasing the supply of advanced biofuels like synthetic diesel produced from woody biomass require attractive investment environments so that novel technologies are deployed and technological learning can lead to reduced production costs and accelerated market diffusion. Technology-specific biofuel policy designed to minimize perceived risk may encourage shortterm investment into those biofuels offering superior environmental benefits - particularly climate mitigation benefits - thereby leading to steeper learning curves and deeper greenhouse gas (GHG) emission cuts over the medium- and long-term horizon. We perform both a Life Cycle Assessment (LCA) and an economic analysis of Fischer-Tropsch diesel (FTD) produced from Norwegian forest biomass at an 'nth' commercial plant (a plant with the same technologies that have been employed in previous commercial plants). This is followed with a cost growth analysis in order to derive production costs likely to be borne by pioneer commercial plants in Norway in the short-term (2016). LCA results are used to calculate shortterm GHG mitigation costs. We then assess, through scenarios, how various policy measures and financial support mechanisms would reduce production costs for incentivizing short-term investment and expediting commercial deployment in Norway. Because 'top-down' or 'market pull' biofuel support policy like excise tax exemptions or carbon taxes do not directly encourage investment into specific biofuel technologies like wood-FTD in the short term, we choose to analyze three 'bottom-up' or 'market push' policy scenarios to assess their effects on reducing levelized unit production costs. These include a Capital Grant, a low-interest Loan Guarantee, a Corporate Tax Credit, and a Feedstock Credit scenario. Under the Capital Grant scenario, we assess the change in levelized production and thus GHG abatement costs when a 50% capital grant (TCI) is

  18. Alcohol synthesis in a high-temperature slurry reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, G.W.; Marquez, M.A.; McCutchen, M.S. [North Carolina State Univ., Raleigh, NC (United States)

    1995-12-31

    The overall objective of this contract is to develop improved process and catalyst technology for producing higher alcohols from synthesis gas or its derivatives. Recent research has been focused on developing a slurry reactor that can operate at temperatures up to about 400{degrees}C and on evaluating the so-called {open_quotes}high pressure{close_quotes} methanol synthesis catalyst using this reactor. A laboratory stirred autoclave reactor has been developed that is capable of operating at temperatures up to 400{degrees}C and pressures of at least 170 atm. The overhead system on the reactor is designed so that the temperature of the gas leaving the system can be closely controlled. An external liquid-level detector is installed on the gas/liquid separator and a pump is used to return condensed slurry liquid from the separator to the reactor. In order to ensure that gas/liquid mass transfer does not influence the observed reaction rate, it was necessary to feed the synthesis gas below the level of the agitator. The performance of a commercial {open_quotes}high pressure {close_quotes} methanol synthesis catalyst, the so-called {open_quotes}zinc chromite{close_quotes} catalyst, has been characterized over a range of temperature from 275 to 400{degrees}C, a range of pressure from 70 to 170 atm., a range of H{sub 2}/CO ratios from 0.5 to 2.0 and a range of space velocities from 2500 to 10,000 sL/kg.(catalyst),hr. Towards the lower end of the temperature range, methanol was the only significant product.

  19. Comparison of catalytic ethylene polymerization in slurry and gas phase

    OpenAIRE

    Daftaribesheli, Majid

    2009-01-01

    Polyethylene (PE) with the annual consumption of 70 million tones in 2007 is mostly produced in slurry, gas-phase or combination of both processes. This work focuses on a comparison between the slurry and gas phase processes. Why does PE produced in theses two processes can show extremely different properties and extremely different reaction behaviour even if the same Ziegler-Natta (ZN) catalyst is used? Generally, it is known that the reason can be found in the differences of local condition...

  20. Relating FTS Catalyst Properties to Performance

    Science.gov (United States)

    Ma, Wenping; Ramana Rao Pendyala, Venkat; Gao, Pei; Jermwongratanachai, Thani; Jacobs, Gary; Davis, Burton H.

    2016-01-01

    During the reporting period June 23, 2011 to August 31, 2013, CAER researchers carried out research in two areas of fundamental importance to the topic of cobalt-based Fischer-Tropsch Synthesis (FTS): promoters and stability. The first area was research into possible substitute promoters that might be used to replace the expensive promoters (e.g., Pt, Re, and Ru) that are commonly used. To that end, three separate investigations were carried out. Due to the strong support interaction of ?-Al2O3 with cobalt, metal promoters are commonly added to commercial FTS catalysts to facilitate the reduction of cobalt oxides and thereby boost active surface cobalt metal sites. To date, the metal promoters examined have been those up to and including Group 11. Because two Group 11 promoters (i.e., Ag and Au) were identified to exhibit positive impacts on conversion, selectivity, or both, research was undertaken to explore metals in Groups 12 - 14. The three metals selected for this purpose were Cd, In, and Sn. At a higher loading of 25%Co on alumina, 1% addition of Cd, In, or Sn was found to-on average-facilitate reduction by promoting a heterogeneous distribution of cobalt consisting of larger lesser interacting cobalt clusters and smaller strongly interacting cobalt species. The lesser interacting species were identified in TPR profiles, where a sharp low temperature peak occurred for the reduction of larger, weakly interacting, CoO species. In XANES, the Cd, In, and Sn promoters were found to exist as oxides, whereas typical promoters (e.g., Re, Ru, Pt) were previously determined to exist in an metallic state in atomic coordination with cobalt. The larger cobalt clusters significantly decreased the active site density relative to the unpromoted 25%Co/Al2O3 catalyst. Decreasing the cobalt loading to 15%Co eliminated the large non-interacting species. The TPR peak for reduction of strongly interacting CoO in the Cd promoted catalyst occurred at a measurably lower temperature

  1. Enhancement of Glycerol Steam Reforming Activity and Thermal Stability by Incorporating CeO2 and TiO2 in Ni- and Co-MCM-41 Catalysts

    Science.gov (United States)

    Dade, William N.

    Hydrogen (H2) has many applications in industry with current focus shifted to production of hydrocarbon fuels and valuable oxygenates using the Fischer-Tropsch technology and direct use in proton exchange membrane fuel cell (PEMFC). Hydrogen is generally produced via steam reforming of natural gas or alcohols like methanol and ethanol. Glycerol, a by-product of biodiesel production process, is currently considered to be one of the most attractive sources of sustainable H2 due to its high H/C ratio and bio-based origin. Ni and Co based catalysts have been reported to be active in glycerol steam reforming (GSR); however, deactivation of the catalysts by carbon deposition and sintering under GSR operating conditions is a major challenge. In this study, a series of catalysts containing Ni and Co nanoparticles incorporated in CeO2 and TiO2 modified high surface area MCM-41 have been synthesized using one-pot method. The catalysts are tested for GSR (at H2O/Glycerol mole ratio of 12 and GHSV of 2200 h-1) to study the effect of support modification and reaction temperature (450 - 700 °C) on the product selectivity and long term stability. GSR results revealed that all the catalysts performed significantly well exhibiting over 85% glycerol conversion at 650 °C except Ni catalysts that showed better low temperature activities. Deactivation studies of the catalysts conducted at 650 °C indicated that the Ni-TiO2-MCM-41 and Ni-CeO 2-MCM-41 were resistant to deactivation with ˜100% glycerol conversion for 40 h. In contrast, Co-TiO2-MCM-41 perform poorly as the catalyst rapidly deactivated after 12 h to yield ˜20% glycerol conversion after 40 h. The WAXRD and TGA-DSC analyses of spent catalysts showed a significant amount of coke deposition that might explain catalysts deactivation. The flattening shape of the original BET type IV isotherm with drastic reduction of catalyst surface area can also be responsible for observed drop in catalysts activities.

  2. Temperature stabilisation in Fischer–Tropsch reactors using phase change material (PCM)

    International Nuclear Information System (INIS)

    Odunsi, Ademola O.; O'Donovan, Tadhg S.; Reay, David A.

    2016-01-01

    The Fischer–Tropsch (FT) reaction is highly exothermic. The exothermicity combined with a high sensitivity of product selectivity to temperature constitute the main challenges in the design of FT reactors. Temperature control is particularly critical to the process in order to ensure longevity of the catalyst, optimise the product distribution, and to ensure thermo-mechanical reliability of the entire process. The use of encapsulated, Phase Change Material (PCM), in conjunction with a supervisory temperature control mechanism, could help mitigate these challenges and intensify the heat transport from the reactor. A 2D-axisymmetric, pseudo-homogeneous, steady-state model, with the dissipation of the enthalpy of reaction into an isothermal PCM sink, in a wall-cooled, single-tube fixed bed reactor is presented. Effective temperature control shows a shift in thermodynamic equilibrium, favouring the selectivity of longer chain hydrocarbons (C_5_+) to the disadvantage of CH_4 selectivity-a much desired outcome in the hydrocarbon Gas-to-Liquid (GTL) industry. - Highlights: • Phase change material is used to control temperature in a Fischer–Tropsch reactor. • Effective temperature control favours the production of C_5_+ over CH_4. • A 2D-axisymmetric, steady-state model is presented. • The model is verified against similar experimental work done in literature.

  3. Organic molecules in the atmosphere of Jupiter. Final report

    International Nuclear Information System (INIS)

    Ponnamperuma, C.A.

    1978-01-01

    Organic synthesis in the primitive solar system was simulated by Fischer Tropsch type experiments. Particular attention was given to the formation of lower molecular weight hydrocarbons. In a gas flow experiment, a gas mixture of H 2 and CO was introduced into a heated reaction tube at a constant flow rate and passed through a catalyst (powdered Canyon Diablo). The products that emerged were directly analyzed by gas chromatography. The results of 21 runs under various gas mixing rations, reaction temperatures, and gas-catalyst contact times showed the predominance of the saturated hydrocarbon formation at C 4 and C 5 over the unsaturated ones. Saturate/unsaturate ratios were mostly less than 0.4 and none showed over 0.7

  4. The Comparison of Hydrotreated Vegetable Oils With Respect to Petroleum Derived Fuels and the Effects of Transient Plasma Ignition in a Compression-Ignition Engine

    Science.gov (United States)

    2012-09-01

    Content per Combustion J FAME Fatty Acid Methyl Ester FMEP Friction Mean Effective Pressure PSI or Bar FT Fischer-Tropsch h Heat...recently, algae-derived oils. Biodiesel has gained popularity in North America over the past decade, but the ester content of Fatty Acid Methyl ... Ester ( FAME ) fuel creates both cold weather and water- based operational issues. The Fischer-Tropsch (FT) process produces liquid fuels from “syngas,” a

  5. Mathematical Model of Synthesis Catalyst with Local Reaction Centers

    Directory of Open Access Journals (Sweden)

    I. V. Derevich

    2017-01-01

    Full Text Available The article considers a catalyst granule with a porous ceramic passive substrate and point active centers on which an exothermic synthesis reaction occurs. A rate of the chemical reaction depends on the temperature according to the Arrhenius law. Heat is removed from the pellet surface in products of synthesis due to heat transfer. In our work we first proposed a model for calculating the steady-state temperature of a catalyst pellet with local reaction centers. Calculation of active centers temperature is based on the idea of self-consistent field (mean-field theory. At first, it is considered that powers of the reaction heat release at the centers are known. On the basis of the found analytical solution, which describes temperature distribution inside the granule, the average temperature of the reaction centers is calculated, which then is inserted in the formula for heat release. The resulting system of transcendental algebraic equations is transformed into a system of ordinary differential equations of relaxation type and solved numerically to achieve a steady-state value. As a practical application, the article considers a Fischer-Tropsch synthesis catalyst granule with active cobalt metallic micro-particles. Cobalt micro-particles are the centers of the exothermic reaction of hydrocarbons macromolecular synthesis. Synthesis occurs as a result of absorption of the components of the synthesis gas on metallic cobalt. The temperature distribution inside the granule for a single local center and reaction centers located on the same granule diameter is found. It was found that there is a critical temperature of reactor exceeding of which leads to significant local overheating of the centers - thermal explosion. The temperature distribution with the local reaction centers is qualitatively different from the granule temperature, calculated in the homogeneous approximation. It is shown that, in contrast to the homogeneous approximation, the

  6. European workshop on spent catalysts. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    In 1999 and 2002 two well attended workshops on recycling, regeneration, reuse and disposal of spent catalysts took place in Frankfurt. This series has been continued in Berlin. The workshop was organized in collaboration with DGMK, the German Society for Petroleum and Coal Science and Technology. Contributions were in the following areas of catalyst deactivation: recycling of spent catalysts in chemical and petrochemical industry, recycling of precious metal catalysts and heterogenous base metal catalysts, legal aspects of transboundary movements, catalyst regeneration, quality control, slurry catalysts, commercial reactivation of hydrotreating catalysts. (uke)

  7. Multi-Phase Combustion and Transport Processes Under the Influence of Acoustic Excitation

    Science.gov (United States)

    2014-01-01

    waveguide. Alcohol fuels (ethanol and methonal) as well as aviation fuel replacements ( Fischer -Tropsch (FT) synfuel and an FT blend with JP-8) were studied...replacements ( Fischer -Tropsch (FT) synfuel and an FT blend with JP-8) were studied here. During acoustic excitation, the flame surrounding the droplet was...Wegener is approved. Chris R. Anderson Jeff D. Eldredge Ivett A. Leyva Owen I. Smith Ann R. Karagozian, Committee Chair University of California, Los

  8. Study on the effects of temperature, time and policy of pre polymerization on particle morphology in propylene slurry polymerization with heterogeneous ziegler-Natta catalysts

    International Nuclear Information System (INIS)

    Pircheraghi, G.; Pourmahdian, S.; Vatankhah, M.

    2008-01-01

    The effects of temperature, time and the strategy of pre polymerization were studied on the morphology of polypropylene particles. Propylene polymerization was carried out in slurry phase using fourth generation of Ziegler-Natta Catalyst, cyclohexylmethyl dimethoxysilane as external electron donor, and triethyl aluminum as co-catalyst. Pre polymerizations were carried out based on two strategies: isothermal and non-isothermal conditions. Particle imaging using SEM, bulk density, and particle size distribution was used to analyse the particle morphology. It was found that the variation of initial condition together with the change in the mechanism of particle fracture has a dominant effect on particle morphology. Each combination between the temperature and reaction time causes to have a special effect on the product particle morphology. It has become clear that in isothermal pre polymerization, spherical particles with identical properties were produced. In low temperature experiments particles with porous surface were observed. At increasing temperature, however, the pores disappeared. Non-isothermal pre polymerization produced different morphological types. In all experiments core shell structures were observed that seemed to be related to the structure of catalysts

  9. Applications of density functional theory calculations to selected problems in hydrocarbon processing

    Science.gov (United States)

    Nabar, Rahul

    Recent advances in theoretical techniques and computational hardware have made it possible to apply Density Functional Theory (DFT) methods to realistic problems in heterogeneous catalysis. Hydrocarbon processing is economically, and strategically, a very important industrial sector in today's world. In this thesis, we employ DFT methods to examine several important problems in hydrocarbon processing. Fischer Tropsch Synthesis (FTS) is a mature technology to convert synthesis gas derived from coal, natural-gas or biomass into liquid fuels, specifically diesel. Iron is an active FTS catalyst, but the absence of detailed reaction mechanisms make it difficult to maximize activity and optimize product distribution. We evaluate thermochemistry, kinetics and Rate Determining Steps (RDS) for Fischer Tropsch Synthesis on several models of Fe catalysts: Fe(110), Fe(211) and Pt promoted Fe(110). Our studies indicated that CO-dissociation is likely to be the RDS under most reaction conditions, but the DFT-calculated activation energy ( Ea) for direct CO dissociation was too large to explain the observed catalyst activity. Consequently we demonstrate that H-assisted CO-dissociation pathways are competitive with direct CO dissociation on both Co and Fe catalysts and could be responsible for a major fraction of the reaction flux (especially at high CO coverages). We then extend this alternative mechanistic model to closed-packed facets of nine transition metal catalysts (Fe, Co, Ni, Ru, Rh, Pd, Os, Ir and Pt). H-assisted CO dissociation offers a kinetically easier route on each of the metals studied. DFT methods are also applied to another problem from the petroleum industry: discovery of poison-resistant, bimetallic, alloy catalysts (poisons: C, S, CI, P). Our systematic screening studies identify several Near Surface Alloys (NSAs) that are expected to be highly poison-resistant yet stable and avoiding adsorbate induced reconstruction. Adsorption trends are also correlated with

  10. Status and prospects in higher alcohols synthesis from syngas.

    Science.gov (United States)

    Luk, Ho Ting; Mondelli, Cecilia; Ferré, Daniel Curulla; Stewart, Joseph A; Pérez-Ramírez, Javier

    2017-03-06

    Higher alcohols are important compounds with widespread applications in the chemical, pharmaceutical and energy sectors. Currently, they are mainly produced by sugar fermentation (ethanol and isobutanol) or hydration of petroleum-derived alkenes (heavier alcohols), but their direct synthesis from syngas (CO + H 2 ) would comprise a more environmentally-friendly, versatile and economical alternative. Research efforts in this reaction, initiated in the 1930s, have fluctuated along with the oil price and have considerably increased in the last decade due to the interest to exploit shale gas and renewable resources to obtain the gaseous feedstock. Nevertheless, no catalytic system reported to date has performed sufficiently well to justify an industrial implementation. Since the design of an efficient catalyst would strongly benefit from the establishment of synthesis-structure-function relationships and a deeper understanding of the reaction mechanism, this review comprehensively overviews syngas-based higher alcohols synthesis in three main sections, highlighting the advances recently made and the challenges that remain open and stimulate upcoming research activities. The first part critically summarises the formulations and methods applied in the preparation of the four main classes of materials, i.e., Rh-based, Mo-based, modified Fischer-Tropsch and modified methanol synthesis catalysts. The second overviews the molecular-level insights derived from microkinetic and theoretical studies, drawing links to the mechanisms of Fischer-Tropsch and methanol syntheses. Finally, concepts proposed to improve the efficiency of reactors and separation units as well as to utilise CO 2 and recycle side-products in the process are described in the third section.

  11. Effects of oxygen and catalyst on tetraphenylborate decomposition rate

    International Nuclear Information System (INIS)

    Walker, D.D.

    1999-01-01

    Previous studies indicate that palladium catalyzes rapid decomposition of alkaline tetraphenylborate slurries. Oxygen inhibits the reaction at low temperature (25 C), presumably by preventing activation of the catalyst. The present study investigated oxygen's inhibiting effectiveness at higher temperature (45 C) and catalyst concentrations

  12. Óxidos de ferro e suas aplicações em processos catalíticos: uma revisão

    Directory of Open Access Journals (Sweden)

    Luiz C. A. Oliveira

    2013-01-01

    Full Text Available A review of most of the reported studies on the use of iron oxides as catalyst in specific processes, namely Haber-Bosch reaction, Fischer-Tropsch synthesis, Fenton oxidation and photolytic molecular splitting of water to produce gaseous hydrogen, was carried out. An essential overview is thus presented, intending to address the fundamental meaning, as well as the corresponding chemical mechanisms, and perspectives on new technological potentialities of natural and synthetic iron oxides, more specifically hematite (α-Fe2O3, goethite (α-FeOOH, magnetite (Fe3O4 and maghemite (γ-Fe2O3, in heterogeneous catalysis.

  13. Óxidos de ferro e suas aplicações em processos catalíticos: uma revisão Iron oxides and their applications in catalytic processes: a review

    Directory of Open Access Journals (Sweden)

    Luiz C. A. Oliveira

    2013-01-01

    Full Text Available A review of most of the reported studies on the use of iron oxides as catalyst in specific processes, namely Haber-Bosch reaction, Fischer-Tropsch synthesis, Fenton oxidation and photolytic molecular splitting of water to produce gaseous hydrogen, was carried out. An essential overview is thus presented, intending to address the fundamental meaning, as well as the corresponding chemical mechanisms, and perspectives on new technological potentialities of natural and synthetic iron oxides, more specifically hematite (α-Fe2O3, goethite (α-FeOOH, magnetite (Fe3O4 and maghemite (γ-Fe2O3, in heterogeneous catalysis.

  14. The direct conversion of synthesis gas to chemicals / Ernest du Toit

    OpenAIRE

    Du Toit, Ernest

    2002-01-01

    The catalytic conversion of synthesis gas, obtainable from the processing of coal, biomass or natural gas, to a complex hydrocarbon product stream can be achieved via the Fischer-Tropsch process. The Fischer-Tropsch synthesis process has evolved from being mainly a fuel producing process in the early 1950's to that of a solvent and speciality wax production process towards the end of the 1970's. From the early 1980's there has been a clear shift towards the production of commod...

  15. Catalytic synthesis of diesel from syngas: Theoretical and practical aspects

    International Nuclear Information System (INIS)

    Khalid, N.; Saeed, M.M.

    2013-01-01

    The world energy needs have been increasing tremendously resulting in the depletion of the resources of fossil fuel and increase in the prices of crude oil. To meet the required needs or decrease the dependency at least in parts, the attention of the scientists is being focused on the generation of alternate sources for the diesel fuel and other valued products. The catalytic based Fisher-Tropsch process for the generation of liquid chemicals, specially the diesel fuels from syngas is gaining attention since the products formed are of relatively low cost, high quality and environmental friendly due to low aromaticity and sulphur contents. Two main characteristics of the Fischer-Tropsch synthesis (FTS) are the unavoidable production of a wide range of hydrocarbon products (olefins, paraffins, and oxygenated products) and the liberation of large amount of heat from the highly exothermic synthesis reactions. FT synthesis products are influenced by various factors like temperature and pressure of syngas, nature of the catalyst, and the type of reactors. All these parameters are discussed by focusing special attention to the synthesis of cobalt catalyst for the production of diesel fuel. (author)

  16. COMPUTATIONAL AND EXPERIMENTAL MODELING OF THREE-PHASE SLURRY-BUBBLE COLUMN REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Isaac K. Gamwo; Dimitri Gidaspow

    1999-09-01

    Considerable progress has been achieved in understanding three-phase reactors from the point of view of kinetic theory. In a paper in press for publication in Chemical Engineering Science (Wu and Gidaspow, 1999) we have obtained a complete numerical solution of bubble column reactors. In view of the complexity of the simulation a better understanding of the processes using simplified analytical solutions is required. Such analytical solutions are presented in the attached paper, Large Scale Oscillations or Gravity Waves in Risers and Bubbling Beds. This paper presents analytical solutions for bubbling frequencies and standing wave flow patterns. The flow patterns in operating slurry bubble column reactors are not optimum. They involve upflow in the center and downflow at the walls. It may be possible to control flow patterns by proper redistribution of heat exchangers in slurry bubble column reactors. We also believe that the catalyst size in operating slurry bubble column reactors is not optimum. To obtain an optimum size we are following up on the observation of George Cody of Exxon who reported a maximum granular temperature (random particle kinetic energy) for a particle size of 90 microns. The attached paper, Turbulence of Particles in a CFB and Slurry Bubble Columns Using Kinetic Theory, supports George Cody's observations. However, our explanation for the existence of the maximum in granular temperature differs from that proposed by George Cody. Further computer simulations and experiments involving measurements of granular temperature are needed to obtain a sound theoretical explanation for the possible existence of an optimum catalyst size.

  17. Slurry walls and slurry trenches - construction quality control

    International Nuclear Information System (INIS)

    Poletto, R.J.; Good, D.R.

    1997-01-01

    Slurry (panel) walls and slurry trenches have become conventional methods for construction of deep underground structures, interceptor trenches and hydraulic (cutoff) barriers. More recently polymers mixed with water are used to stabilize the excavation instead of bentonite slurry. Slurry walls are typically excavated in short panel segments, 2 to 7 m (7 to 23 ft) long, and backfilled with structural materials; whereas slurry trenches are fairly continuous excavations with concurrent backfilling of blended soils, or cement-bentonite mixtures. Slurry trench techniques have also been used to construct interceptor trenches. Currently no national standards exist for the design and/or construction of slurry walls/trenches. Government agencies, private consultants, contractors and trade groups have published specifications for construction of slurry walls/trenches. These specifications vary in complexity and quality of standards. Some place excessive emphasis on the preparation and control of bentonite or polymer slurry used for excavation, with insufficient emphasis placed on quality control of bottom cleaning, tremie concrete, backfill placement or requirements for the finished product. This has led to numerous quality problems, particularly with regard to identification of key depths, bottom sediments and proper backfill placement. This paper will discuss the inspection of slurry wall/trench construction process, identifying those areas which require special scrutiny. New approaches to inspection of slurry stabilized excavations are discussed

  18. Synthesis Gas Purification Purification des gaz de synthèse

    Directory of Open Access Journals (Sweden)

    Chiche D.

    2013-10-01

    Full Text Available Fischer-Tropsch (FT based B-XTL processes are attractive alternatives for future energy production. These processes aim at converting lignocellulosic biomass possibly in co-processing with petcoke, coal, or vacuum residues into synthetic biofuels. A gasification step converts the feed into a synthesis gas (CO and H2 mixture , which undergoes the Fischer-Tropsch reaction after H2/CO ratio adjustment and CO2 removal. However synthesis gas also contains various impurities that must be removed in order to prevent Fischer-Tropsch catalyst poisoning. Due to the large feedstocks variety that can be processed, significant variations of the composition of the synthesis gas are expected. Especially, this affects the nature of the impurities that are present (element, speciation, as well as their relative contents. Moreover, due to high FT catalyst sensitivity, severe syngas specifications regarding its purity are required. For these reasons, synthesis gas purification constitutes a major challenge for the development of B-XTL processes. In this article, we focus on these major hurdles that have to be overcome. The different kinds of syngas impurities are presented. The influence of the nature of feedstocks, gasification technology and operating conditions on the type and content of impurities is discussed. Highlight is given on the fate of sulfur compounds, nitrogen compounds, halides, transition and heavy metals. Main synthesis gas purification technologies (based on adsorption, absorption, catalytic reactions, etc. are finally described, as well as the related challenges. Les procédés de synthèse de biocarburants par voie Fischer-Tropsch (FT, voies B-XTL, représentent des alternatives prometteuses pour la production d’énergie. Ces procédés permettent la conversion en carburants de synthèse de biomasse lignocellulosique, éventuellement mise en oeuvre en mélange avec des charges fossiles telles que petcoke, charbons ou résidus sous vide. Pour

  19. Cobalt-Iron-Manganese Catalysts for the Conversion of End-of-Life-Tire-Derived Syngas into Light Terminal Olefins.

    Science.gov (United States)

    Falkenhagen, Jan P; Maisonneuve, Lise; Paalanen, Pasi P; Coste, Nathalie; Malicki, Nicolas; Weckhuysen, Bert M

    2018-03-26

    Co-Fe-Mn/γ-Al 2 O 3 Fischer-Tropsch synthesis (FTS) catalysts were synthesized, characterized and tested for CO hydrogenation, mimicking end-of-life-tire (ELT)-derived syngas. It was found that an increase of C 2 -C 4 olefin selectivities to 49 % could be reached for 5 wt % Co, 5 wt % Fe, 2.5 wt % Mn/γ-Al 2 O 3 with Na at ambient pressure. Furthermore, by using a 5 wt % Co, 5 wt % Fe, 2.5 wt % Mn, 1.2 wt % Na, 0.03 wt % S/γ-Al 2 O 3 catalyst the selectivity towards the fractions of C 5+ and CH 4 could be reduced, whereas the selectivity towards the fraction of C 4 olefins could be improved to 12.6 % at 10 bar. Moreover, the Na/S ratio influences the ratio of terminal to internal olefins observed as products, that is, a high Na loading prevents the isomerization of primary olefins, which is unwanted if 1,3-butadiene is the target product. Thus, by fine-tuning the addition of promoter elements the volume of waste streams that need to be recycled, treated or upgraded during ELT syngas processing could be reduced. The most promising catalyst (5 wt % Co, 5 wt % Fe, 2.5 wt % Mn, 1.2 wt % Na, 0.03 wt % S/γ-Al 2 O 3 ) has been investigated using operando transmission X-ray microscopy (TXM) and X-ray diffraction (XRD). It was found that a cobalt-iron alloy was formed, whereas manganese remained in its oxidic phase. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Preprints of the DGMK-Conference - Future feedstocks for fuels and chemicals. Author's manuscripts

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, S.; Jess, A.; Nees, F.; Peters, U.; Ricci, M.; Santacesaria, E. (eds.)

    2008-07-01

    Within the conference,Future Feedstocks for Fuels and Chemicals, of the German Society for Petroleum and Coal Science and Technology at 29th Spetember to 1st October, 2008, in Berlin (Federal Republic of Germany), the following lectures were held: (a) New technologies in Biodiesel production (E. Santacessari, M. Di Serio, R. Tesser, L. Casale); (b) A new heterogeneous process catalyst for the Biodiesel production (O. Meyer, F. Roessner, R.A. Rakoczy, R.W. Fischer); (c) Vegetable oil hydrotreating for production of high quality diesel Components (M. Endisch, U. Balfanz, M. Olschar, Th. Kuchling); (d) Hydrocracking of vegetable oil using bifunctional, porous catalyst systems (O. Busse, K. Raeuchle, H. Toufar, W. Reschetilowski); (e) Raw material change in the chemical industry (R. Diercks); (f) Fundamentals of the oxidative conversion of methane to ethylene, methanol and formaldehyde (E. Kondratenko); (g) The dehydroalkylation of toluene with ethane - an example for the non-oxidative activation of light alkanes (Y. Traa); (h) Isoprene - Applications beyond polymers (S. Reyer, A. Behr); (i) The gas-phase ammocidation of n-hexane to unsaturated 1,6-C{sub 6} dinitriles, intermediates for 1,6-hexamethylenediamine synthesis (N. Ballarini, A. Battisti, A. Castelli, F. Cavani, C. Lucarelli, P. Marion, P. Righi, A. Turrini); (j) Chemicals from Biomass (T. Tacke); (k) Coal Processing and Fuels from Coal - State of the Art (R. Abraham); (l) Energy from aquatic biomass: an integrated approach to biodiesel and hydrogen production (M. Aresta, A. Dibenedetto); (m) High throughput catalyst optimization program for the gas-to-liquids (GTL) technologies Methanol-to-Gasoline (MTG), higher alcohol synthesis (HAS) and Fischer-Tropsch-Synthesis (FTS) (H. Dathe, K.-F. Finger, A. Haas, P. Kolb, A. Sundermann, G. Wasserschaff); (n) Diesel yield according to Fischer-Tropsch process conditions (M.-C. Marion, F. Hugues); (o) Glycerol derivatives as fuel components (D. Bianchi, E. Batistelle

  1. Catalytic performance and characterization of cobalt-nickel nano catalysts for CO hydrogenation

    International Nuclear Information System (INIS)

    Feyzi, Mostafa; Gholivand, Mohammad Bagher; Babakhanian, Arash

    2014-01-01

    A series of Co-Ni nano catalysts were prepared by co-precipitation method. We investigated the effect of Co/Ni molar ratios precipitate and calcination conditions on the catalytic performance of cobalt nickel catalysts for Fisher-Tropsch synthesis (FTS). The catalyst containing 90%Co/10%Ni was found to be optimal for the conversion of synthesis gas to light olefins. The activity and selectivity of the optimal catalyst were studied in different operational conditions. The results show that the best operational conditions are the H 2 /CO=2/1 molar feed ratio at 310 .deg. C and GHSV=1,200 h - 1 under 5 bar of pressure. The prepared catalysts were characterized by powder X-ray diffraction (XRD), N 2 adsorption-desorption measurements such as BET and BJH methods, transmission electron microscopy (TEM) and thermal gravimetric analysis (TGA)

  2. Fischer–tropsch diesel production and evaluation as alternative automotive fuel in pilot-scale integrated biomass-to-liquid process

    International Nuclear Information System (INIS)

    Kim, Young-Doo; Yang, Chang-Won; Kim, Beom-Jong; Moon, Ji-Hong; Jeong, Jae-Yong; Jeong, Soo-Hwa; Lee, See-Hoon; Kim, Jae-Ho; Seo, Myung-Won; Lee, Sang-Bong; Kim, Jae-Kon; Lee, Uen-Do

    2016-01-01

    Highlights: • A pilot scale biomass-to-liquid (BTL) process was investigated for Fischer-Tropsch diesel production. • 200 kW_t_h dual fluidized bed gasifier was integrated with 1 bbl/day F-T synthesis reactor. • Purified syngas satisfies minimum requirements of F-T synthesis. • F-T diesel produced successfully (1 L/h) and satisfies the automotive fuel standard. • Fully integrated BTL system was operated successfully more than 500 h. - Abstract: Fischer–Tropsch (F-T) diesel produced from biomass through gasification is a promising alternative fuel. In this study, a biomass-to-liquid (BTL) system involving a dual fluidized bed gasifier (DFBG), a methanol absorption tower, and an F-T synthesis process was investigated for producing clean biodiesel as an automotive fuel. A DFBG, which is an efficient indirect gasifier, can produce syngas with high caloric value while minimizing the amount of nitrogen in the product gas. In order to meet the strict requirements of syngas for F-T synthesis, any contaminants in the syngas must be minimized and its composition must be carefully controlled. In this work, the syngas mainly comprised 35 vol% of H_2 and 21.3 vol% of CO. The concentrations of H_2S and COS in the syngas were less than 1 ppmV owing to the use of chilled methanol cleaning process. Furthermore, long-term operation of a fully integrated BTL system was successfully conducted for over 500 h. The results showed that the BTL diesel can be used as an alternative automotive diesel fuel.

  3. Comparative techno-economic analysis and process design for indirect liquefaction pathways to distillate-range fuels via biomass-derived oxygenated intermediates upgrading: Liquid Transportation Fuel Production via Biomass-derived Oxygenated Intermediates Upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Eric C. D. [National Renewable Energy Laboratory, Golden CO USA; Snowden-Swan, Lesley J. [Pacific Northwest National Laboratory, Richland WA USA; Talmadge, Michael [National Renewable Energy Laboratory, Golden CO USA; Dutta, Abhijit [National Renewable Energy Laboratory, Golden CO USA; Jones, Susanne [Pacific Northwest National Laboratory, Richland WA USA; Ramasamy, Karthikeyan K. [Pacific Northwest National Laboratory, Richland WA USA; Gray, Michel [Pacific Northwest National Laboratory, Richland WA USA; Dagle, Robert [Pacific Northwest National Laboratory, Richland WA USA; Padmaperuma, Asanga [Pacific Northwest National Laboratory, Richland WA USA; Gerber, Mark [Pacific Northwest National Laboratory, Richland WA USA; Sahir, Asad H. [National Renewable Energy Laboratory, Golden CO USA; Tao, Ling [National Renewable Energy Laboratory, Golden CO USA; Zhang, Yanan [National Renewable Energy Laboratory, Golden CO USA

    2016-09-27

    This paper presents a comparative techno-economic analysis (TEA) of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with specific focus on pathways utilizing oxygenated intermediates. The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include: biomass to syngas via indirect gasification, gas cleanup, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. Conversion of biomass-derived syngas to oxygenated intermediates occurs via three different pathways, producing: 1) mixed alcohols over a MoS2 catalyst, 2) mixed oxygenates (a mixture of C2+ oxygenated compounds, predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate) using an Rh-based catalyst, and 3) ethanol from syngas fermentation. This is followed by the conversion of oxygenates/alcohols to fuel-range olefins in two approaches: 1) mixed alcohols/ethanol to 1-butanol rich mixture via Guerbet reaction, followed by alcohol dehydration, oligomerization, and hydrogenation, and 2) mixed oxygenates/ethanol to isobutene rich mixture and followed by oligomerization and hydrogenation. The design features a processing capacity of 2,000 tonnes/day (2,205 short tons) of dry biomass. The minimum fuel selling prices (MFSPs) for the four developing pathways range from $3.40 to $5.04 per gasoline-gallon equivalent (GGE), in 2011 US dollars. Sensitivity studies show that MFSPs can be improved with co-product credits and are comparable to the commercial Fischer-Tropsch benchmark ($3.58/GGE). Overall, this comparative TEA study documents potential economics for the developmental biofuel pathways via mixed oxygenates.

  4. Toward better understanding of the support effect: test cases for CO dissociation on Fe n /TiO 2 (110), n=4,5

    KAUST Repository

    Jedidi, Abdesslem

    2017-06-17

    The Fischer-Tropsch reaction is initiated by direct CO dissociation for Iron catalyst even though a H-assisted mechanism may be easier on other metals. In the gas phase, the CO dissociation is only favorable for Fe-clusters composed by more than 11 atoms. We show here the remarkable effect of the support TiO2(110), making this dissociation exothermic for Fe4 and Fe5 clusters. The main factor for the CO activation is the electron transfer to the reducible support. The role of the TiO2(110) support is to transform the neutral cluster into a positively charged one for which CO dissociation is easier.

  5. Production of Organic Grain Coatings by Surface-Mediated Reactions and the Consequences of This Process for Meteoritic Constituents

    Science.gov (United States)

    Nuth, Joseph A., III; Johnson, Natasha M.

    2011-01-01

    When hydrogen, nitrogen and CO are exposed to amorphous iron silicate surfaces at temperatures between 500 - 900K, a carbonaceous coating forms via Fischer-Tropsch type reactions. Under normal circumstances such a catalytic coating would impede or stop further reaction. However, we find that this coating is a better catalyst than the amorphous iron silicates that initiate these reactions. The formation of a self-perpetuating catalytic coating on grain surfaces could explain the rich deposits of macromolecular carbon found in primitive meteorites and would imply that protostellar nebulae should be rich in organic material. Many more experiments are needed to understand this chemical system and its application to protostellar nebulae.

  6. Economics of gas to liquids manufacture

    International Nuclear Information System (INIS)

    Gradassi, M.J.

    1998-01-01

    The last year has seen a great deal in the literature about the rebirth of gas to liquids processes, most notably, Fischer Tropsch processes. This renewed interest has been brought about by a technology that is said to have been so improved that it is now a commercially attractive option for natural gas monetization. No one single reason can be cited for this positive economic change. Rather, it is the result of several technological improvements that together have cut the capital cost of Fischer-Tropsch gas to liquids projects in half. Among these technological improvements are lower cost syngas preparation and lower cost gas to liquids reactors. This paper examines the economics of Fischer-Tropsch gas to liquids manufacture, using recent literature articles to develop process capital costs, operating expenses, liquid product value parameters, and other economic factors, to paint a general picture of the technology's current economic status. While manufacturing economics are reviewed, the answer to the question of gas to liquids project profitability is left to the individual investor whose economic thresholds must, in the final analysis, be met. 15 refs

  7. Catalytic and atmospheric effects on microwave pyrolysis of corn stover.

    Science.gov (United States)

    Huang, Yu-Fong; Kuan, Wen-Hui; Chang, Chi-Cheng; Tzou, Yu-Min

    2013-03-01

    Corn stover, which is one of the most abundant agricultural residues around the world, could be converted into valuable biofuels and bio based products by means of microwave pyrolysis. After the reaction at the microwave power level of 500W for the processing time of 30min, the reaction performance under N2 atmosphere was generally better than under CO2 atmosphere. This may be due to the better heat absorbability of CO2 molecules to reduce the heat for stover pyrolysis. Most of the metal-oxide catalysts effectively increased the maximum temperature and mass reduction ratio but lowered the calorific values of solid residues. The gas most produced was CO under N2 atmosphere but CO2 under CO2 atmosphere. Catalyst addition lowered the formation of PAHs and thus made liquid products less toxic. More liquid products and less gas products were generated when using the catalysts possibly due to the existence of the Fischer-Tropsch synthesis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Fiscal 1998 research report on the development trends of natural gas conversion technologies into liquefied fuel in Russia; 1998 nendo Roshia ni okeru tennen gas no ekitai nenryoka gijutsu no kaihatsu doko nado ni kansuru chosa kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Russia having natural gas resources largest in the world is actively promoting the basic research on liquefaction technology of natural gas such as Fischer-Tropsch (FT) synthetic catalyst, and its research potential is extremely high. This 3-year research project surveys the R and D trends of catalyst technology for liquefaction of natural gas, and fabricates the prototype FT synthetic catalyst based on the idea of Russian researchers to evaluate its feasibility experimentally. This report summarizes the following to clarify the research background: (1) The technology system for liquefaction of natural gas, and its future R and D trend, (2) The R and D trends of liquefaction technology of natural gas in the world, (3) The R and D trends of liquefaction technology of natural gas in Russia, (4) The research system of catalyses in Russia, (5) The activities of Russian catalysis research institutes, (6) The fuel liquefaction technologies of Russian major research institutes, and (7) The proposals from Russian research institutes. (NEDO)

  9. CO chemistry/research trends in CO chemistry in the US

    Energy Technology Data Exchange (ETDEWEB)

    Cantacuzene, M

    1978-10-01

    Research trends in CO chemistry in the U.S. include the development of stable and selective homogeneous catalysts which would facilitate the removal of the heat of reaction and be resistant to sulfur poisoning for the methanation reaction, methanol synthesis, and Fischer-Tropsch synthesis; development of low-temperature homogeneous water gas shift catalysts; and research on the coordination chemistry and photochemical conversions of CO/sub 2/. In 1977, the National Science Foundation awarded 16 contracts for a total of $720,000 to promote the research in this field, including studies on chemisorption and heterogeneous catalysis (four contracts) and on transition metal complexes (ten contracts, of which seven are dedicated to metal clusters). Carbon monoxide-based processes, including water gas shift reactions, CO reduction to alkanes and alcohols, hydroformylation, and homogeneous carbonylation processes, recently developed in the U.S. are listed.

  10. Bioenergy/Biotechnology projects

    Energy Technology Data Exchange (ETDEWEB)

    Napper, Stan [Louisiana Tech Univ., Ruston, LA (United States); Palmer, James [Louisiana Tech Univ., Ruston, LA (United States); Wilson, Chester [Louisiana Tech Univ., Ruston, LA (United States); Guilbeau, Eric [Louisiana Tech Univ., Ruston, LA (United States); Allouche, Erez [Louisiana Tech Univ., Ruston, LA (United States)

    2012-06-30

    This report describes the progress of five different projects. The first is an enzyme immobilization study of cellulase to reduce costs of the cellulosic ethanol process. High reusability and use of substrates applicable to large scale production were focus areas for this study. The second project was the development of nanostructured catalysts for conversion of syngas to diesel. Cobalt nanowire catalyst was used in Fischer-Tropsch synthesis. The third project describes work on developing a microfluidic calorimeter to measure reaction rates of enzymes. The fourth project uses inorganic polymer binders that have the advantage of a lower carbon footprint than Portland cement while also providing excellent performance in elevated temperature, high corrosion resistance, high compressive and tensile strengths, and rapid strength gains. The fifth project investigates the potential of turbines in drop structures (such as sewer lines in tall buildings) to recover energy.

  11. Black Liquor Gasification with Motor Fuel Production - BLGMF II - A techno-economic feasibility study on catalytic Fischer-Tropsch synthesis for synthetic diesel production in comparison with methanol and DME as transport fuels

    Energy Technology Data Exchange (ETDEWEB)

    Ekbom, Tomas; Berglin, Niklas; Loegdberg, Sara [Nykomb Synergetics AB, Stockholm (Sweden)

    2005-06-15

    The present project presents additional results to the former BLGMF project, which investigate Black Liquor Gasification with Motor Fuels (BLGMF) production. The objectives were to investigate, based on the KAM 2 program Ecocyclic Pulp Mill (2,000 ADt/day of pulp) the feasibility of synthetic fuels production. Specifically the route to Fischer-Tropsch diesel fuels is investigated as comparison to earlier work on methanol/DME. As modern kraft pulp mills have a surplus of energy, they could become key suppliers of renewable fuels. It is thus of great interest to convert the spent cooking product 'black liquor' to an energy carrier of high value. The resulting biomass-to-fuel energy efficiency when only biomass is used as an external energy source was 43% for FTD or 65% for FT products compared with 66% for methanol and 67% for DME. The FTD calculation is considerably more complicated and based on assumptions, therefore the uncertainty is higher. Would the diesel be taken out with a T95% of 320 deg C the FTD efficiency would be 45%. FT synthesis also opens up a possibility to produce e.g. lube oils from waxes produced. The total net FT-products output equals 4115 barrels/day. The FTD production cost is calculated as the energy share of the total production cost and assumes an offset of naphtha covering its own costs, where it is essential that it finds a market. Assuming same petrol (methanol) and diesel (DME, FTD) costs for the consumer the payback time were 2.6, 2.9 and 3.4 years with an IRR of 40%, 45% and 30%, respectively. In conclusion, there are necessary resources and potential for large-scale methanol (or DME, FTD) production and substantial economic incentive for making plant investments and achieving competitive product revenues.

  12. A Self-Perpetuating Catalyst for the Production of Complex Organic Molecules in Protostellar Nebulae

    Science.gov (United States)

    Nuth, Joseph A.; Johnson, N. M.

    2010-01-01

    The formation of abundant carbonaceous material in meteorites is a long standing problem and an important factor in the debate on the potential for the origin of life in other stellar systems. Many mechanisms may contribute to the total organic content in protostellar nebulae, ranging from organics formed via ion-molecule and atom-molecule reactions in the cold dark clouds from which such nebulae collapse, to similar ion-molecule and atom-molecule reactions in the dark regions of the nebula far from the proto star, to gas phase reactions in sub-nebulae around growing giant planets and in the nebulae themselves. The Fischer-Tropsch-type (FTT) catalytic reduction of CO by hydrogen was once the preferred model for production of organic materials in the primitive solar nebula. The Haber-Bosch catalytic reduction of N2 by hydrogen was thought to produce the reduced nitrogen found in meteorites. However, the clean iron metal surfaces that catalyze these reactions are easily poisoned via reaction with any number of molecules, including the very same complex organics that they produce and both reactions work more efficiently in the hot regions of the nebula. We have demonstrated that many grain surfaces can catalyze both FTT and HB-type reactions, including amorphous iron and magnesium silicates, pure silica smokes as well as several minerals. Although none work as well as pure iron grains, and all produce a wide range of organic products rather than just pure methane, these materials are not truly catalysts.

  13. Rocket Fuel Synthesis by Fisher-Tropsch Process

    Data.gov (United States)

    National Aeronautics and Space Administration — This study aims to investigate the feasibility of using Fisher Tropsch (FT), a commercial-scale technology that currently produces liquid fuels from syngas (CO &...

  14. Effects of calcination and activation conditions on ordered mesoporous carbon supported iron catalysts for production of lower olefins from synthesis gas

    NARCIS (Netherlands)

    Oschatz, M; van Deelen, T W; Weber, J L; Lamme, W S; Wang, G; Goderis, B; Verkinderen, O; Dugulan, A I; de Jong, K P

    2016-01-01

    Lower C2–C4 olefins are important commodity chemicals usually produced by steam cracking of naphtha or fluid catalytic cracking of vacuum gas oil. The Fischer–Tropsch synthesis of lower olefins (FTO) with iron-based catalysts uses synthesis gas as an alternative feedstock. Nanostructured carbon

  15. Synthetic-fuel production using Texas lignite and a very-high-temperature gas-cooled reactor for process heat and electrical power generation

    International Nuclear Information System (INIS)

    Ross, M.A.; Klein, D.E.

    1981-05-01

    This report presents two alternatives to increased reliance on foreign energy sources; each method utilizes the abundant domestic resources of coal, uranium, and thorium. Two approaches are studied in this report. First, the gasification and liquefaction of coal are accomplished with Lurgi gasifiers and Fischer-Tropsch synthesis. A 50,000 barrel per day facility, consuming 15 million tons of lignite coal per year, is used. Second, a nuclear-assisted coal conversion approach is studied using a very high temperature gas-cooled reactor with a modified Lurgi gasifier and Fischer-Tropsch synthesis. This is a preliminary report presenting background data and a means of comparison for the two approaches considered

  16. Low temperature hydrogenolysis of waxes to diesel range gasoline and light alkanes: Comparison of catalytic properties of group 4, 5 and 6 metal hydrides supported on silica-alumina

    KAUST Repository

    Norsic, Sébastien

    2012-01-01

    A series of metal hydrides (M = Zr, Hf, Ta, W) supported on silica-alumina were studied for the first time in hydrogenolysis of light alkanes in a continuous flow reactor. It was found that there is a difference in the reaction mechanism between d 0 metal hydrides of group 4 and d 0 ↔ d 2 metal hydrides of group 5 and group 6. Furthermore, the potential application of these catalysts has been demonstrated by the transformation of Fischer-Tropsch wax in a reactive distillation set-up into typical gasoline and diesel molecules in high selectivity (up to 86 wt%). Current results show that the group 4 metal hydrides have a promising yield toward liquid fuels.

  17. Studies of coal slurries property; Slurry no seijo ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Kawabata, M.; Aihara, Y.; Imada, K. [Nippon Steel Corp., Tokyo (Japan); Nogami, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan); Sakaki, T.; Shibata, M.; Hirosue, H. [Kyushu National Industrial Research Institute, Saga (Japan)

    1996-10-28

    It was previously found that the increase of slurry temperature provides a significant effect of slurry viscosity reduction for the coal slurry with high concentration of 50 wt%. To investigate the detailed influence of slurry temperature for the coal slurry with concentration of 50 wt%, influence of temperature on the successive change of apparent viscosity was observed at the constant shear rate. When the concentration of coal was increased from 45 wt% to 50 wt%, viscosity of the slurry was rapidly increased. When heated above 70{degree}C, the apparent viscosity decreased during heating to the given temperature, but it increased successively after reaching to the given temperature. The apparent viscosity showed higher value than that of the initial viscosity. The coal slurry with concentration of 50 wt% showed the fluidity of Newtonian fluid at the lower shear rate region, but showed the fluidity of pseudo-plastic fluid at the higher shear rate region. The slurry having high apparent viscosity by the successive change showed higher apparent viscosity with increasing the higher even by changing the shear rate. 1 ref., 4 figs.

  18. Opportunities and challenges at the interface between petrochemistry and refinery. Preprints

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, S.; Leitner, W.; Lercher, J.A.; Nees, F.; Perego, C.; Rupp, M.; Santacesaria. E. (eds.)

    2007-07-01

    .A. Botavina, P. Pertici, D.V. Trushin, N.V. Nekraskov, C. Evangelisti, N. Panziera, G. Martra, K. Tenchev, L. Petrov, S. Coluccia); (q) Facile synthesis of 2,6-dichlorobenzonitrile by vapour phase ammoxidation (V. Narayana Kalevaru, B. Luecke, A. Martin); (r) Energy efficiency of the cold train of an ethylene cracker (K. Van Geem, N. Hedebouw, J. Grootjans, G.B. Martin); (s) From fuel to wheel: How modern fuels behave in combustion engines (S. Pischinger, M. Muether, F. Fricke, A. Kolbeck); (t) Sulphur poisoning of a Co/Al{sub 2}O{sub 3} Fischer-Tropsch catalyst (C.G. Visconti, L. Lietti, R. Zennaro, P. Forzatti); (u) From Fischer Tropsch raw products to Fischer Tropsch fuels: Development of an upgrading model and application to XtL processes (D. Beiermann).

  19. Mixed alcohols production from syngas

    International Nuclear Information System (INIS)

    Stevens, R.R.; Conway, M.M.

    1988-01-01

    A process is described for selectively producing mixed alcohols from synthesis gas comprising contacting a mixture of hydrogen and carbon monoxide with a catalytic amount of a catalyst containing components of (1) a catalytically active metal of molybdenum or tungsten, in free or combined form; (2) a cocatalytic metal or cobalt or nickel in free or combined form; and (3) a Fischer-Tropsch promoter of an alkali or alkaline earth series metal, in free or combined form; the components combined by dry mixing, mixing as a wet paste, wet impregnation, and then sulfided, the catalyst excluding rhodium, ruthenium and copper, at a pressure of at least about 500 psig and under conditions sufficient to form the mixed alcohols in at least 20 percent CO/sub 2/ free carbon selectivity, the mixed alcohols containing a C/sub 1/ to C/sub 2-5/ alcohol weight ratio of less than about 1:1

  20. Methanol and carbonylation

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier-Lafaye, J.; Perron, R.

    1987-01-01

    The overall focus of the book is on homogeneous catalysed processes which were seen to offer the most promising routes to C/sub 2/ oxygenates. The first three chapters review the industrial synthesis and applications of carbon monoxide such as in the manufacture of gasoline (e.g. Fischer-Tropsch, Mobil processes), organic chemicals (e.g. ethanol, acetic acid, etc.), industrial importance of C/sub 2/ oxygenates, and use of methanol as a future feedstock are discussed. The next six chapters are each concerned with the production of a particular C/sub 2/ oxygenate and a detailed analysis of the methods and catalysts used. The hydrocarbonylation of methanol occupies a large chapter (136 references) with a comparative examination of the catalysts available, and their modification to increase selectivity to either acetylaldehyde or ethanol. Following chapters examine the synthesis of ethyl acetate, acetic acid, acetic anhydride, vinyl acetate, ethylene glycol and oxalic acid.

  1. Application of Fischer–Tropsch Synthesis in Biomass to Liquid Conversion

    OpenAIRE

    Yongwu Lu; Fei Yu; Jin Hu

    2012-01-01

    Fischer–Tropsch synthesis is a set of catalytic processes that can be used to produce fuels and chemicals from synthesis gas (mixture of CO and H2), which can be derived from natural gas, coal, or biomass. Biomass to Liquid via Fischer–Tropsch (BTL-FT) synthesis is gaining increasing interests from academia and industry because of its ability to produce carbon neutral and environmentally friendly clean fuels; such kinds of fuels can help to meet the globally increasing energy demand and to me...

  2. Hydrogenation active sites of unsupported molybdenum sulfide catalysts for hydroprocessing heavy oils

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, Y.; Araki, Y.; Honna, K. [Tsukuba-branch, Advanced Catalyst Research Laboratory, Petroleum Energy Center, 1-1 Higashi, Tsukuba, 305-8565 Ibaraki (Japan); Miki, Y.; Sato, K.; Shimada, H. [National Institute of Materials and Chemical Research, 1-1 Higashi, Tsukuba, 305-8565 Ibaraki (Japan)

    2001-02-20

    The purpose of the present study was to elucidate the nature of the hydrogenation active sites on unsupported molybdenum sulfide catalysts, aimed at the improvement of the catalysts for the slurry processes. The number of hydrogenation active sites was found to relate to the 'inflection' on the basal plane of the catalyst particles. The comparison of the catalytic activity to that of an oil-soluble catalyst in the hydroprocessing of heavy oils suggests that the performance of the oil-soluble catalyst was near the maximum, unless another component such as Ni or Co was incorporated.

  3. Total catalytic wet oxidation of phenol and its chlorinated derivates with MnO2/CeO2 catalyst in a slurry

    Directory of Open Access Journals (Sweden)

    A. J. Luna

    2009-09-01

    Full Text Available In the present work, a synthetic effluent of phenol was treated by means of a total oxidation process-Catalyzed Wet Oxidation (CWO. A mixed oxide of Mn-Ce (7:3, the catalyst, was synthesized by co-precipitation from an aqueous solution of MnCl2 and CeCl3 in a basic medium. The mixed oxide, MnO2/CeO2, was characterized and used in the oxidation of phenol in a slurry reactor in the temperature range of 80-130ºC and pressure of 2.04-4.76 MPa. A phenol solution containing 2.4-dichlorophenol and 2.4-dichlorophenoxyacetic acid was also degraded with good results. A lumped kinetic model, with two parallel reaction steps, fits precisely with the integrated equation and the experimental data. The kinetic parameters obtained are in agreement with the Arrhenius equation. The activation energies were determined to be 38.4 for the total oxidation and 53.4 kJ/mol for the organic acids formed.

  4. Effect of important operating parameters on product properties and operation of HDPE slurry reactor

    International Nuclear Information System (INIS)

    Soltanieh, M.; Remezani Saadat Abadi, A.; Dashti, A.; Mokhtari, J.

    2007-01-01

    In this article, a complete model for the mixed flow slurry reactor for polymerization of ethylene to high density polyethylene in the presence of Ziegler-Natta catalyst is presented. In addition to the effects of the multiple active sites, the effect of other important parameters such as the catalyst concentration, co-catalyst, hydrogen, monomer, impurities and pressure on the mass-average and number-average polymer product chain length, the average product distribution index and the required residence time for the reactor were investigated. The simulation results show that as the catalyst, hydrogen and solvent concentrations increase, the mass and number-average polymer chain length decrease, whereas with increasing monomer concentration and pressure, the average molecular weight increases. The effects of these parameters on the polydispersity index and residence time do not follow the same trend and their relationship changes in some of these variables

  5. Sputtered catalysts

    International Nuclear Information System (INIS)

    Tyerman, W.J.R.

    1978-01-01

    A method is described for preparing a supported catalyst by a sputtering process. A material that is catalytic, or which is a component of a catalytic system, is sputtered on to the surface of refractory oxide particles that are compatible with the sputtered material and the sputtered particles are consolidated into aggregate form. The oxide particles before sputtering should have a diameter in the range 1000A to 50μ and a porosity less than 0.4 ml/g, and may comprise MgO, Al 2 O 3 or SiO 2 or mixtures of these oxides, including hydraulic cement. The particles may possess catalytic activity by themselves or in combination with the catalytic material deposited on them. Sputtering may be effected epitaxially and consolidation may be effected by compaction pelleting, extrusion or spray drying of a slurry. Examples of the use of such catalysts are given. (U.K.)

  6. Selective transformation of syngas into gasoline-range hydrocarbons over mesoporous H-ZSM-5-supported cobalt nanoparticles.

    Science.gov (United States)

    Cheng, Kang; Zhang, Lei; Kang, Jincan; Peng, Xiaobo; Zhang, Qinghong; Wang, Ye

    2015-01-26

    Bifunctional Fischer-Tropsch (FT) catalysts that couple uniform-sized Co nanoparticles for CO hydrogenation and mesoporous zeolites for hydrocracking/isomerization reactions were found to be promising for the direct production of gasoline-range (C5-11 ) hydrocarbons from syngas. The Brønsted acidity results in hydrocracking/isomerization of the heavier hydrocarbons formed on Co nanoparticles, while the mesoporosity contributes to suppressing the formation of lighter (C1-4 ) hydrocarbons. The selectivity for C5-11 hydrocarbons could reach about 70 % with a ratio of isoparaffins to n-paraffins of approximately 2.3 over this catalyst, and the former is markedly higher than the maximum value (ca. 45 %) expected from the Anderson-Schulz-Flory distribution. By using n-hexadecane as a model compound, it was clarified that both the acidity and mesoporosity play key roles in controlling the hydrocracking reactions and thus contribute to the improved product selectivity in FT synthesis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The differences between soil grouting with cement slurry and cement-water glass slurry

    Science.gov (United States)

    Zhu, Mingting; Sui, Haitong; Yang, Honglu

    2018-01-01

    Cement slurry and cement-water glass slurry are the most widely applied for soil grouting reinforcement project. The viscosity change of cement slurry is negligible during grouting period and presumed to be time-independent while the viscosity of cement-water glass slurry increases with time quickly and is presumed to be time-dependent. Due to the significantly rheology differences between them, the grouting quality and the increasing characteristics of grouting parameters may be different, such as grouting pressure, grouting surrounding rock pressure, i.e., the change of surrounding rock pressure deduced by grouting pressure. Those are main factors for grouting design. In this paper, a large-scale 3D grouting simulation device was developed to simulate the surrounding curtain grouting for a tunnel. Two series of surrounding curtain grouting experiments under different geo-stress of 100 kPa, 150 kPa and 200 kPa were performed. The overload test on tunnel was performed to evaluate grouting effect of all surrounding curtain grouting experiments. In the present results, before 240 seconds, the grouting pressure increases slowly for both slurries; after 240 seconds the increase rate of grouting pressure for cement-water glass slurry increases quickly while that for cement slurry remains roughly constant. The increasing trend of grouting pressure for cement-water glass is similar to its viscosity. The setting time of cement-water glass slurry obtained from laboratory test is less than that in practical grouting where grout slurry solidifies in soil. The grouting effect of cement-water glass slurry is better than that of cement slurry and the grouting quality decreases with initial pressure.

  8. Application of a mixed metal oxide catalyst to a metallic substrate

    Science.gov (United States)

    Sevener, Kathleen M. (Inventor); Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Wisner, Daniel L. (Inventor)

    2009-01-01

    A method for applying a mixed metal oxide catalyst to a metallic substrate for the creation of a robust, high temperature catalyst system for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in propulsion systems. The method begins by forming a prepared substrate material consisting of a metallic inner substrate and a bound layer of a noble metal intermediate. Alternatively, a bound ceramic coating, or frit, may be introduced between the metallic inner substrate and noble metal intermediate when the metallic substrate is oxidation resistant. A high-activity catalyst slurry is applied to the surface of the prepared substrate and dried to remove the organic solvent. The catalyst layer is then heat treated to bind the catalyst layer to the surface. The bound catalyst layer is then activated using an activation treatment and calcinations to form the high-activity catalyst system.

  9. Eli Fischer-Jørgensen, Eugeniu Coseriu et Louis Hjelmslev

    DEFF Research Database (Denmark)

    Jensen, Viggo Bank

    2015-01-01

    Based on a correspondence between Eugenio Coseriu (1921-2002) and Eli Fischer-Jørgensen (1911-2010), the article discusses the importance of Louis Hjelmslev (1899-1965) for the development of the theory of Coseriu. In a letter dated 1955, Fischer-Jørgensen agrees with Coseriu in his criticism of ...... to be a slight change in Coseriu’s view on content substance. This way, the article aims to show that Fischer-Jørgensen played an important role as a critical mediator between Hjelmslev and Coseriu.......Based on a correspondence between Eugenio Coseriu (1921-2002) and Eli Fischer-Jørgensen (1911-2010), the article discusses the importance of Louis Hjelmslev (1899-1965) for the development of the theory of Coseriu. In a letter dated 1955, Fischer-Jørgensen agrees with Coseriu in his criticism...

  10. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D

    2015-03-31

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  11. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    Science.gov (United States)

    Aines, Roger D.

    2013-03-12

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  12. A Novel Slurry-Based Biomass Reforming Process Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Emerson, Sean C. [United Technologies Research Center, East Hartford, CT (United States); Davis, Timothy D. [United Technologies Research Center, East Hartford, CT (United States); Peles, A. [United Technologies Research Center, East Hartford, CT (United States); She, Ying [United Technologies Research Center, East Hartford, CT (United States); Sheffel, Joshua [United Technologies Research Center, East Hartford, CT (United States); Willigan, Rhonda R. [United Technologies Research Center, East Hartford, CT (United States); Vanderspurt, Thomas H. [United Technologies Research Center, East Hartford, CT (United States); Zhu, Tianli [United Technologies Research Center, East Hartford, CT (United States)

    2011-09-30

    This project was focused on developing a catalytic means of producing H2 from raw, ground biomass, such as fast growing poplar trees, willow trees, or switch grass. The use of a renewable, biomass feedstock with minimal processing can enable a carbon neutral means of producing H2 in that the carbon dioxide produced from the process can be used in the environment to produce additional biomass. For economically viable production of H2, the biomass is hydrolyzed and then reformed without any additional purification steps. Any unreacted biomass and other byproduct streams are burned to provide process energy. Thus, the development of a catalyst that can operate in the demanding corrosive environment and presence of potential poisons is vital to this approach. The concept for this project is shown in Figure 1. The initial feed is assumed to be a >5 wt% slurry of ground wood in dilute base, such as potassium carbonate (K2CO3). Base hydrolysis and reforming of the wood is carried out at high but sub-critical pressures and temperatures in the presence of a solid catalyst. A Pd alloy membrane allows the continuous removal of pure , while the retentate, including methane is used as fuel in the plant. The project showed that it is possible to economically produce H2 from woody biomass in a carbon neutral manner. Technoeconomic analyses using HYSYS and the DOE's H2A tool [1] were used to design a 2000 ton day-1 (dry basis) biomass to hydrogen plant with an efficiency of 46% to 56%, depending on the mode of operation and economic assumptions, exceeding the DOE 2012 target of 43%. The cost of producing the hydrogen from such a plant would be in the range of $1/kg H2 to $2/kg H2. By using raw biomass as a feedstock, the cost of producing hydrogen at large biomass consumption rates is more cost effective than steam reforming of hydrocarbons or biomass gasification and can achieve the overall cost goals of the DOE Fuel Cell Technologies Program. The complete conversion of wood

  13. Ice slurry applications

    Energy Technology Data Exchange (ETDEWEB)

    Kauffeld, M. [Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133 Karlsruhe (Germany); Wang, M.J.; Goldstein, V. [Sunwell Technologies Inc., 180 Caster Avenue, Woodbridge, L4L 5Y (Canada); Kasza, K.E. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2010-12-15

    The role of secondary refrigerants is expected to grow as the focus on the reduction of greenhouse gas emissions increases. The effectiveness of secondary refrigerants can be improved when phase changing media are introduced in place of single-phase media. Operating at temperatures below the freezing point of water, ice slurry facilitates several efficiency improvements such as reductions in pumping energy consumption as well as lowering the required temperature difference in heat exchangers due to the beneficial thermo-physical properties of ice slurry. Research has shown that ice slurry can be engineered to have ideal ice particle characteristics so that it can be easily stored in tanks without agglomeration and then be extractable for pumping at very high ice fraction without plugging. In addition ice slurry can be used in many direct contact food and medical protective cooling applications. This paper provides an overview of the latest developments in ice slurry technology. (author)

  14. Twee Fischers, twee dramas: Die geheime Bloemfontein ...

    African Journals Online (AJOL)

    Two Fischers, two plays: Die geheime Bloemfontein-konferensie [The secret Bloemfontein conference] (1938) and Die Bram Fischer waltz (2011). There is no better example within Afrikaner history where different generations of the same family played such extraordinary roles in the course of important historical events for ...

  15. Effect of Particle Size Distribution on Slurry Rheology: Nuclear Waste Simulant Slurries

    International Nuclear Information System (INIS)

    Chun, Jaehun; Oh, Takkeun; Luna, Maria L.; Schweiger, Michael J.

    2011-01-01

    Controlling the rheological properties of slurries has been of great interest in various industries such as cosmetics, ceramic processing, and nuclear waste treatment. Many physicochemical parameters, such as particle size, pH, ionic strength, and mass/volume fraction of particles, can influence the rheological properties of slurry. Among such parameters, the particle size distribution of slurry would be especially important for nuclear waste treatment because most nuclear waste slurries show a broad particle size distribution. We studied the rheological properties of several different low activity waste nuclear simulant slurries having different particle size distributions under high salt and high pH conditions. Using rheological and particle size analysis, it was found that the percentage of colloid-sized particles in slurry appears to be a key factor for rheological characteristics and the efficiency of rheological modifiers. This behavior was shown to be coupled with an existing electrostatic interaction between particles under a low salt concentration. Our study suggests that one may need to implement the particle size distribution as a critical factor to understand and control rheological properties in nuclear waste treatment plants, such as the U.S. Department of Energy's Hanford and Savannah River sites, because the particle size distributions significantly vary over different types of nuclear waste slurries.

  16. Slurry reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kuerten, H; Zehner, P [BASF A.G., Ludwigshafen am Rhein (Germany, F.R.)

    1979-08-01

    Slurry reactors are designed on the basis of empirical data and model investigations. It is as yet not possible to calculate the flow behavior of such reactors. The swarm of gas bubbles and cluster formations of solid particles and their interaction in industrial reactors are not known. These effects control to a large extent the gas hold-up, the gas-liquid interface and, similarly as in bubble columns, the back-mixing of liquids and solids. These hydrodynamic problems are illustrated in slurry reactors which constructionally may be bubble columns, stirred tanks or jet loop reactors. The expected effects are predicted by means of tests with model systems modified to represent the conditions in industrial hydrogenation reactors. In his book 'Mass Transfer in Heterogeneous Catalysis' (1970) Satterfield complained of the lack of knowledge about the design of slurry reactors and hence of the impossible task of the engineer who has to design a plant according to accepted rules. There have been no fundamental changes since then. This paper presents the problems facing the engineer in designing slurry reactors, and shows new development trends.

  17. Synthesis in situ of gold nanoparticles by a dialkynyl Fischer carbene complex anchored to glass surfaces

    International Nuclear Information System (INIS)

    Bertolino, María Candelaria; Granados, Alejandro Manuel

    2016-01-01

    Highlights: • Fischer carbene 1-W reacts via cycloaddition without Cu(I) with azide terminal surface. • This reaction on the surface is regioselective to internal triple bond of 1-W. • 1-W bound to glass surface produce AuNps in situ fixed to the surface. • This ability is independent of how 1-W is bonded to the surface. • This hybrid surface can be valuable as SERS substrate or in heterogeneous catalysis. - Abstract: In this work we present a detailed study of classic reactions such as “click reaction” and nucleophilic substitution reaction but on glass solid surface (slides). We used different reactive center of a dialkynylalcoxy Fischer carbene complex of tungsten(0) to be anchored to modified glass surface with amine, to obtain aminocarbene, and azide terminal groups. These cycloaddition reaction showed regioselectivity to internal triple bond of dialkynyl Fischer carbene complex without Cu(I) as catalyst. Anyway the carbene anchored was able to act as a reducing agent to produce in situ very stable gold nanoparticles fixed on surface. We showed the characterization of modified glasses by contact angle measurements and XPS. Synthesized nanoparticles were characterized by SEM, XPS, EDS and UV–vis. The modified glasses showed an important enhancement Raman-SERS. This simple, fast and robust method to create a polifunctional and hybrid surfaces can be valuable in a wide range of applications such as Raman-SERS substrates and other optical fields.

  18. Synthesis in situ of gold nanoparticles by a dialkynyl Fischer carbene complex anchored to glass surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bertolino, María Candelaria, E-mail: cbertolino@fcq.unc.edu.ar; Granados, Alejandro Manuel, E-mail: ale@fcq.unc.edu.ar

    2016-10-15

    Highlights: • Fischer carbene 1-W reacts via cycloaddition without Cu(I) with azide terminal surface. • This reaction on the surface is regioselective to internal triple bond of 1-W. • 1-W bound to glass surface produce AuNps in situ fixed to the surface. • This ability is independent of how 1-W is bonded to the surface. • This hybrid surface can be valuable as SERS substrate or in heterogeneous catalysis. - Abstract: In this work we present a detailed study of classic reactions such as “click reaction” and nucleophilic substitution reaction but on glass solid surface (slides). We used different reactive center of a dialkynylalcoxy Fischer carbene complex of tungsten(0) to be anchored to modified glass surface with amine, to obtain aminocarbene, and azide terminal groups. These cycloaddition reaction showed regioselectivity to internal triple bond of dialkynyl Fischer carbene complex without Cu(I) as catalyst. Anyway the carbene anchored was able to act as a reducing agent to produce in situ very stable gold nanoparticles fixed on surface. We showed the characterization of modified glasses by contact angle measurements and XPS. Synthesized nanoparticles were characterized by SEM, XPS, EDS and UV–vis. The modified glasses showed an important enhancement Raman-SERS. This simple, fast and robust method to create a polifunctional and hybrid surfaces can be valuable in a wide range of applications such as Raman-SERS substrates and other optical fields.

  19. Kinetic modelling of slurry polymerization of ethylene with a polymer supported Ziegler-Natta catalyst (hydrogen)

    Energy Technology Data Exchange (ETDEWEB)

    Shariati, A.

    1996-12-31

    The kinetics of polymerization of ethylene catalyzed by a polymer supported Ziegler-Natta catalyst were investigated in a semi-batch reactor system. The influences of six polymerization variables were investigated using a central composite design. The variables were monomer partial pressure, catalyst loading, co-catalyst loading, catalyst particle size and hydrogen to monomer ratio. The influence of temperature on rate and polymer properties were investigated. Empirical models were fitted to the experimental data to quantify the effects of the polymerization variables on the rate characteristics and polymer properties. The rate of polymerization exhibited a first order dependency with respect to monomer partial pressure, but a nonlinear relationship with respect to catalyst loading. In the absence of hydrogen, the polymerization rate showed a non-decaying profile at the centre point conditions for the other variables. Catalyst loading and catalyst particle size had a negligible effect on weight-and-number-average molecular weights, while increasing co-catalysts loading lowered the molecular weights, as did increased temperature and hydrogen concentration. refs., figs.

  20. Conductivity and electrochemical performance of LiFePO4 slurry in the lithium slurry battery

    Science.gov (United States)

    Feng, Caimei; Chen, Yongchong; Liu, Dandan; Zhang, Ping

    2017-06-01

    Lithium slurry battery is a new type of energy storage technique which uses the slurry of solid active materials, conductive additions and liquid electrolyte as the electrode. The proportion of conductive addition and the active material has significant influence on the conductivity and electrochemical performance of the slurry electrode. In the present work, slurries with different volume ratios of LiFePO4 (LFP) and Ketjenblack (KB) were investigated by the electrochemical workstation and charge-discharge testing system (vs. Li/Li+). Results show that the conductivity of the slurry increases linearly with the addition of KB, and the measured specific capacity of the slurry reaches its theoretical value when the volume ratio of KB to LFP is around 0.2. Based on this ratio, a slurry battery with higher loading of LFP (19.1 wt.% in the slurry) was tested, and a specific capacity of 165 mAh/g at 0.2 mA/cm2 and 102 mAh/g at 5 mA/cm2 was obtained for LFP.

  1. System and method for slurry handling

    Science.gov (United States)

    Steele, Raymond Douglas; Oppenheim, Judith Pauline

    2015-12-29

    A system includes a slurry depressurizing system that includes a liquid expansion system configured to continuously receive a slurry at a first pressure and continuously discharge the slurry at a second pressure. For example, the slurry depressurizing system may include an expansion turbine to expand the slurry from the first pressure to the second pressure.

  2. Production of Fischer–Tropsch fuels and electricity from bituminous coal based on steam hydrogasification

    International Nuclear Information System (INIS)

    Lu, Xiaoming; Norbeck, Joseph M.; Park, Chan S.

    2012-01-01

    A new thermochemical process for (Fischer–Tropsch) FT fuels and electricity coproduction based on steam hydrogasification is addressed and evaluated in this study. The core parts include (Steam Hydrogasification Reactor) SHR, (Steam Methane Reformer) SMR and (Fisher–Tropsch Reactor) FTR. A key feature of SHR is the enhanced conversion of carbon into methane at high steam environment with hydrogen and no need for catalyst or the use of oxygen. Facilities utilizing bituminous coal for coproduction of FT fuels and electricity with carbon dioxide sequestration are designed in detail. Cases with design capacity of either 400 or 4000 TPD (Tonne Per Day) (dry basis) are investigated with process modeling and cost estimation. A cash flow analysis is performed to determine the fuels (Production Cost) PC. The analysis shows that the 400 TPD case due to a FT fuels PC of 5.99 $/gallon diesel equivalent results in a plant design that is totally uneconomic. The 4000 TPD plant design is expected to produce 7143 bbl/day FT liquids with PC of 2.02 $/gallon and 2.27 $/gallon diesel equivalent at overall carbon capture ratio of 65% and 90%, respectively. Prospective commercial economics benefits with increasing plant size and improvements from large-scale demonstration efforts on steam hydrogasification. -- Highlights: ► We develop a new thermochemical method for synthetic fuels production. ► Detailed plant design and process modeling for the Coal-to-Liquid facilities are performed. ► Economic analysis has been carried out in determining the fuel production cost and IRR. ► The fuels produced in this study can compete with petroleum when crude oil price is 100 $/bbl. ► Further economic benefit comes with plant scale-up and process commercial demonstration efforts.

  3. Interconversion of Fischer and Zig-Zag Projections Learning ...

    Indian Academy of Sciences (India)

    IAS Admin

    Stereochemistry, conforma- tional analysis, hands-on learn- ing, Fischer projections, zig-zag projection, C–C bond rotations. Interconversion of Fischer and Zig-Zag Projections. Learning Stereochemistry with the Help of Hands. Visualization of molecules in three dimensions is an important aspect of organic chemistry.

  4. Analysis and identification of gaps in the research for the production of second-generation liquid transportation biofuels

    International Nuclear Information System (INIS)

    Schwietzke, S.; Ladisch, M.; Russo, L.; Kwant, K.; Maekinen, T.; Kavalov, B.; Maniatis, K.; Zwart, R.; Shahanan, G.; Sipila, K.; Grabowski, P.; Telenius, B.; White, M.

    2008-08-01

    Research gaps were found in cellulosic ethanol, Fischer-Tropsch liquids and green diesel, dimethyl ether and P-Series fuels. Lignocellulosic ethanol is derived from pre-treatment, hydrolysis, and fermentation of the resulting sugars from cellulosic sources such as wood chips, agricultural residues, and grasses. Green diesel is a high boiling component, not derived from vegetable oil, obtained either from Fischer-Tropsch synthesis or through pyrolysis of biomass. Dimethyl ether has potential as a high quality fuel for diesel engines and is produced by converting syngas into methanol followed by dehydration of methanol to dimethyl ether. P-Series fuel is a mixture of ethanol, methyltetrahydrofuran, pentanes and higher alkanes, and butane. Methyltetrahydrofuran may be produced from dehydration of pentose and glucose sugars to form furfural and levulinic acid respectively, which when hydrogenated result in methyltetrahydrofuran. Common denominators in gaps for these different fuels and the biochemical or thermochemical processes used to produce them are given by three main areas. These are: catalysts and biocatalysts; feedstock preparation and bioprocessing; and systems integration. In the biocatalyst (or catalyst) area research is needed to achieve more robust, versatile, and cost-effective catalysts. The catalytic systems must be less subject to inhibition and more stable in the presence of chemically complex feedstocks derived from biomass materials. With bioprocessing, the gaps lie in economic enzyme production, reduction of enzyme inhibition, development of pentose utilising and cellulase producing micro-organisms, feedstock preparation (pre-treatment), and inhibitor removal. For thermochemical systems, the list is analogous except the term 'catalyst' replaces 'enzyme' or 'microorganism'. Gaps were identified in feedstock preparation, with this term being broadly defined. Feedstocks are defined as biomass materials entering the process, as well as gases derived

  5. Acidic ionic liquids for n-alkane isomerization in a liquid-liquid or slurry-phase reaction mode

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, C.; Hager, V.; Geburtig, D.; Kohr, C.; Wasserscheid, P. [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer Chemische Reaktionstechnik; Haumann, M. [Chemical Reaction Engineering, FAU Busan Campus, Korea (Korea, Republic of)

    2011-07-01

    Highly acidic ionic liquid (IL) catalysts offer the opportunity to convert n-alkanes at very low reaction temperatures. The results of IL catalyzed isomerization and cracking reactions of pure n-octane are presented. Influence of IL composition, [C{sub 4}C{sub 1}Im]Cl / AlCl{sub 3} / H{sub 2}SO{sub 4} and [C{sub 4}C{sub 1}Im]Cl / AlCl{sub 3} / 1-chlorooctane, on catalyst activity and selectivities to branched alkanes was investigated. Acidic chloroaluminate IL catalysts form liquid-liquid biphasic systems with unpolar organic product mixtures. Thus, recycling of the acidic IL is enabled by simple phase separation in the liquid-liquid biphasic reaction mode or the IL can be immobilized on an inorganic support with a large specific surface area. These supported ionic liquid phase (SILP) catalysts offer the advantage to get a macroscopically heterogeneous system while still preserving all benefits of the homogeneous catalyst which can be used for the slurry-phase n-alkane isomerization. The interaction of the solid support and acidic IL influences strongly the catalytic activity. (orig.)

  6. Dry reforming of methane with CO{sub 2} at elevated pressures

    Energy Technology Data Exchange (ETDEWEB)

    Milanov, A.; Schwab, E.; Wasserschaff, G. [BASF SE, Ludwigshafen (Germany); Schunk, S. [hte AG, Heidelberg (Germany)

    2013-11-01

    The indirect conversion of natural gas into higher value chemicals and fuels via syngas is superior with regard to efficiency compared to the currently available direct conversion technologies and remains the industrially preferred route. Typically the syngas production route is generally dictated by the H{sub 2}/CO ratio requirements of the downstream synthesis process. Processes such as direct DME synthesis, high-temperature Fischer-Tropsch and acetic acid synthesis require CO rich syngas that is not readily accessible by established technologies like steam methane reforming (SMR) and autothermal reforming of methane (ATR). The CO{sub 2} reforming of methane, also known as dry reforming (DRM), is an attractive alternative technology for the production of CO-rich syngas. This paper gives an overview of the current joint research activities at BASF and hte AG aiming to develop suitable catalysts for CO{sub 2} reforming of methane at elevated pressures with minimized input of process steam. The performance profiles of two newly developed base metal catalysts are presented and discussed. The catalysts exhibit high degrees of methane and CO{sub 2} conversion in combination with an extraordinary coking resistance under high severity process conditions. (orig.)

  7. Yosemite Waters Vehicle Evaluation Report: Final Results

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, L.; Barnitt, R.; Alleman, T. L.

    2005-08-01

    Document details the evaluation of Fischer-Tropsch diesel, a gas-to-liquid fuel, in medium-duty delivery vehicles at Yosemite Waters. The study was conducted by NREL at the company's Fullerton, California, bottling headquarters.

  8. Catalyst for reduction of nitrogen oxides

    Science.gov (United States)

    Ott, Kevin C.

    2010-04-06

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  9. Comparison and analysis of organic components of biogas slurry from eichhornia crassipes solms and corn straw biogas slurry

    Science.gov (United States)

    Li, Q.; Li, Y. B.; Liu, Z. H.; Min, J.; Cui, Y.; Gao, X. H.

    2017-11-01

    Biogas slurry is one of anaerobic fermentations, and biomass fermentation biogas slurries with different compositions are different. This paper mainly presents through the anaerobic fermentation of Eichhornia crassipes solms biogas slurry and biogas slurry of corn straw, the organic components of two kinds of biogas slurry after extraction were compared by TLC, HPLC and spectrophotometric determination of nucleic acid and protein of two kinds of biogas slurry organic components, and analyzes the result of comparison.

  10. The effects of a spray slurry nozzle on copper CMP for reduction in slurry consumption

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Da Sol; Jeong, Hae Do [Pusan National University, Busan (Korea, Republic of); Lee, Hyun Seop [Tongmyong University, Busan (Korea, Republic of)

    2015-12-15

    The environmental impact of semiconductor manufacturing has been a big social problem, like greenhouse gas emission. Chemical mechanical planarization (CMP), a wet process which consumes chemical slurries, seriously impacts environmental sustain ability and cost-effectiveness. This paper demonstrates the superiority of a full-cone spray slurry nozzle to the conventional tube-type slurry nozzle in Cu CMP. It was observed that the spray nozzle made a weak slurry wave at the retaining ring unlike a conventional nozzle, because the slurry was supplied uniformly in broader areas. Experiments were implemented with different slurry flow rates and spray nozzle heights. Spray nozzle performance is controlled by the spray angle and spray height. The process temperature was obtained with an infrared (IR) sensor and an IR thermal imaging camera to investigate the cooling effect of the spray. The results show that the spray nozzle provides a higher Material removal rate (MRR), lower non-uniformity (NU), and lower temperature than the conventional nozzle. Computational fluid dynamics techniques show that the turbulence kinetic energy and slurry velocity of the spray nozzle are much higher than those of the conventional nozzle. Finally, it can be summarized that the spray nozzle plays a significant role in slurry efficiency by theory of Minimum quantity lubrication (MQL).

  11. The effects of a spray slurry nozzle on copper CMP for reduction in slurry consumption

    International Nuclear Information System (INIS)

    Lee, Da Sol; Jeong, Hae Do; Lee, Hyun Seop

    2015-01-01

    The environmental impact of semiconductor manufacturing has been a big social problem, like greenhouse gas emission. Chemical mechanical planarization (CMP), a wet process which consumes chemical slurries, seriously impacts environmental sustain ability and cost-effectiveness. This paper demonstrates the superiority of a full-cone spray slurry nozzle to the conventional tube-type slurry nozzle in Cu CMP. It was observed that the spray nozzle made a weak slurry wave at the retaining ring unlike a conventional nozzle, because the slurry was supplied uniformly in broader areas. Experiments were implemented with different slurry flow rates and spray nozzle heights. Spray nozzle performance is controlled by the spray angle and spray height. The process temperature was obtained with an infrared (IR) sensor and an IR thermal imaging camera to investigate the cooling effect of the spray. The results show that the spray nozzle provides a higher Material removal rate (MRR), lower non-uniformity (NU), and lower temperature than the conventional nozzle. Computational fluid dynamics techniques show that the turbulence kinetic energy and slurry velocity of the spray nozzle are much higher than those of the conventional nozzle. Finally, it can be summarized that the spray nozzle plays a significant role in slurry efficiency by theory of Minimum quantity lubrication (MQL).

  12. Slurry discharge management-beach profile prediction

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, R.; Nawrot, J.R. [Southern Illinois University at Carbondale, Carbondale, IL (United States). Dept. of Civil Engineering

    1996-11-01

    Mine tailings dams are embankments used by the mining industry to retain the tailings products after the mineral preparation process. Based on the acid-waste stereotype that all coal slurry is acid producing, current reclamation requires a four foot soil cover for inactive slurry disposal areas. Compliance with this requirement is both difficult and costly and in some case unnecessary, as not all the slurry, or portions of slurry impoundments are acid producing. Reduced costs and recent popularity of wetland development has prompted many operators to request reclamation variances for slurry impoundments. Waiting to address slurry reclamation until after the impoundment is full, limits the flexibility of reclamation opportunities. This paper outlines a general methodology to predict the formation of the beach profile for mine tailings dams, by the discharge volume and location of the slurry into the impoundment. The review is presented under the perspective of geotechnical engineering and waste disposal management emphasizing the importance of pre-planning slurry disposal land reclamation. 4 refs., 5 figs.

  13. Hydrodynamic models for slurry bubble column reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gidaspow, D. [IIT Center, Chicago, IL (United States)

    1995-12-31

    The objective of this investigation is to convert a {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. This model is capable of predicting local gas, liquid and solids hold-ups and the basic flow regimes: the uniform bubbling, the industrially practical churn-turbulent (bubble coalescence) and the slugging regimes. Current reactor models incorrectly assume that the gas and the particle hold-ups (volume fractions) are uniform in the reactor. They must be given in terms of empirical correlations determined under conditions that radically differ from reactor operation. In the proposed hydrodynamic approach these hold-ups are computed from separate phase momentum balances. Furthermore, the kinetic theory approach computes the high slurry viscosities from collisions of the catalyst particles. Thus particle rheology is not an input into the model.

  14. Rheology of tetraphenylborate precipitate slurry

    International Nuclear Information System (INIS)

    Goren, I.D.; Martin, H.D.; McLain, M.A.

    1985-01-01

    The rheological properties of tetraphenylborate precipitate slurry were determined. This nonradioactive slurry simulates the radioactive tetraphenylborate precipitate generated at the Savannah River Plant by the In-Tank Precipitation Process. The data obtained in this study was applied in the design of slurry pumps, transfer pumps, transfer lines, and vessel agitation for the Defense Waste Processing Facility and other High Level Waste treatment projects. The precipitate slurry behaves as a Bingham plastic. The yield stress is directly proportional to the concentration of insoluble solids over the range of concentrations studied. The consistency is also a linear function of insoluble solids over the same concentration range. Neither the yield stress nor the consistency was observed to be affected by the presence of the soluble solids. Temperature effects on flow properties of the slurry were also examined: the yield stress is inversely proportional to temperature, but the consistency of the slurry is independent of temperature. No significant time-dependent effects were found. 4 refs., 4 figs., 3 tabs

  15. Iron Contamination Mechanism and Reaction Performance Research on FCC Catalyst

    Directory of Open Access Journals (Sweden)

    Zhaoyong Liu

    2015-01-01

    Full Text Available FCC (Fluid Catalytic Cracking catalyst iron poisoning would not only influence units’ product slate; when the poisoning is serious, it could also jeopardize FCC catalysts’ fluidization in reaction-regeneration system and further cause bad influences on units’ stable operation. Under catalytic cracking reaction conditions, large amount of iron nanonodules is formed on the seriously iron contaminated catalyst due to exothermic reaction. These nodules intensify the attrition between catalyst particles and generate plenty of fines which severely influence units’ smooth running. A dense layer could be formed on the catalysts’ surface after iron contamination and the dense layer stops reactants to diffuse to inner structures of catalyst. This causes extremely negative effects on catalyst’s heavy oil conversion ability and could greatly cut down gasoline yield while increasing yields of dry gas, coke, and slurry largely. Research shows that catalyst’s reaction performance would be severely deteriorated when iron content in E-cat (equilibrium catalyst exceeds 8000 μg/g.

  16. Overview of slurry pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Gandhi, R L

    1982-01-01

    Slurry pipelines have proven to be a technically feasible, environmentally attractive and economic method of transporting finely divided particles over long distances. A pipeline system normally consists of preparation, pipeline and utilization facilities and requires optimization of all three components taken together. A considerable amount of research work has been done to develop hydraulic design of a slurry pipeline. Equipment selection and estimation of corrosion-erosion are considered to be as important as the hydraulic design. Future applications are expected to be for the large-scale transport of coal and for the exploitation of remotely located mineral deposits such as iron ore and copper. Application of slurry pipelines for the exploitation of remotely located mineral deposits is illustrated by the Kudremukh iron concentrate slurry pipeline in India.

  17. Fiscal 1999 research report. Survey on development trends of natural gas conversion technologies into liquefied fuel in Russia; 1999 nendo Roshia ni okeru tennen gas no ekitai nenryoka gijutsu no kaihtsu doko nado ni kansuru chosa kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Russia having world-largest natural gas resources is promoting the forefront basic research on liquefaction technology of natural gas, in particular, Fischer-Tropsch (FT) synthetic process positively. For 3 years from fiscal 1998, this project surveys the trend of R and D on catalytic technology for liquefaction of natural gas in Russia, and fabricates the prototype FT catalyst effective for liquefaction of natural gas at a Russian research institute to evaluate its practical applicability experimentally. In fiscal 1999, based on the research result in fiscal 1998, the project carried out continuous survey on the research activity of research institutes in Russia, the research trend of liquefaction technology and the concrete results of contract researches on catalyst, and summarized the evaluation result of research results. In addition, continuous world-wide document survey on FT synthetic process was made to confirm R and D trends based on the trend of liquefaction research projects in the world, and to collect basic information on catalytic reactors for FT synthetic process by document survey. (NEDO)

  18. Medical ice slurry production device

    Science.gov (United States)

    Kasza, Kenneth E [Palos Park, IL; Oras, John [Des Plaines, IL; Son, HyunJin [Naperville, IL

    2008-06-24

    The present invention relates to an apparatus for producing sterile ice slurries for medical cooling applications. The apparatus is capable of producing highly loaded slurries suitable for delivery to targeted internal organs of a patient, such as the brain, heart, lungs, stomach, kidneys, pancreas, and others, through medical size diameter tubing. The ice slurry production apparatus includes a slurry production reservoir adapted to contain a volume of a saline solution. A flexible membrane crystallization surface is provided within the slurry production reservoir. The crystallization surface is chilled to a temperature below a freezing point of the saline solution within the reservoir such that ice particles form on the crystallization surface. A deflector in the form of a reciprocating member is provided for periodically distorting the crystallization surface and dislodging the ice particles which form on the crystallization surface. Using reservoir mixing the slurry is conditioned for easy pumping directly out of the production reservoir via medical tubing or delivery through other means such as squeeze bottles, squeeze bags, hypodermic syringes, manual hand delivery, and the like.

  19. 75 FR 68350 - Fischer, Thomas J.; Notice of Filing

    Science.gov (United States)

    2010-11-05

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ID-6422-000] Fischer, Thomas J.; Notice of Filing October 29, 2010. Take notice that on October 29, 2010, Thomas J. Fischer filed an Application for Authorization to Hold Interlocking Positions as Director of Wisconsin Electric...

  20. Rheology of oil sands slurries

    Energy Technology Data Exchange (ETDEWEB)

    Chow, R.; Zhou, J. [Alberta Research Council, Edmonton, AB (Canada). Mineral Oil Sands Unit; Wallace, D. [Dean Wallace Consulting Inc., Beaumont, AB (Canada)

    2006-07-01

    This study focused on integrating rheology and colloid science to improve recovery of bitumen in surface mined oil sands. Factors that influence recovery, such as conditions of particle interaction, solids concentration and shear rate, were reviewed. In an effort to understand the rheological behaviour of clay-in-water suspensions, an elaborate procedure was developed to separate an inter-bedded clay layer from a site at Albian Sands Energy Inc. The variables were water chemistry, solids concentration, and shear rate. The research study was conducted at the Alberta Research Council with the support of the CONRAD Extraction Group. A controlled stress rheometer was used to provide the quantitative evaluations of the clay slurry properties. The research results indicate that the viscoelastic properties of the slurry are highly influenced by the shear history of the slurry, solids content, calcium concentration, and sample aging. Shear thinning behaviour was observed in all slurry samples, but the slurry viscosity increased with test time for a given shear rate. In order to classify the slurries, a method was developed to distinguish the gel strength. The slurries were then classified into 3 distinct patterns, including no gel, weak gel and strong gel. The evolution of the experimental protocols were described along with the current stability maps that correlate the domains of the gel strength according to the solids concentration, calcium ion content, and shear rate. It was concluded that the rheological properties of oil sands slurries influence bitumen recovery in commercial surface-mined oil sands operations. tabs., figs.

  1. Project Independence: Construction of an Integrated Biorefinery for Production of Renewable Biofuels at an Existing Pulp and Paper Mill

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Douglas

    2012-06-01

    Project Independence proposed to construct a demonstration biomass-to-liquids (BTL) biorefinery in Wisconsin Rapids, isconsin. The biorefinery was to be co-located at the existing pulp and paper mill, NewPage Wisconsin System Incorporated’s Wisconsin Rapids Mill, and when in full operation would both generate renewable energy for Wisconsin Rapids Mill and produce liquid fuels from abundant and renewable lignocellulosic biomass. The biorefinery would serve to validate the thermochemical pathway and economic models for BTL production using forest residuals and wood waste, providing a basis for proliferating BTL conversion technologies throughout the United States. It was a project goal to create a compelling new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. NewPage Corporation planned to replicate this facility at other NewPage Corporation mills after this first demonstration scale plant was operational and had proven technical and economic feasibility. An overview of the process begins with biomass being harvested, sized, conditioned and fed into a ThermoChem Recovery International (TRI) steam reformer where it is converted to high quality synthetic gas (syngas). The syngas is then cleaned, compressed, scrubbed, polished and fed into the Fischer-Tropsch (F-T) catalytic reactors where the gas is converted into two, sulfur-free, clean crude products which will be marketed as revenue generating streams. Additionally, the Fischer-Tropsch products could be upgraded for use in automotive, aviation and chemical industries as valuable products, if desired. As the Project Independence project set out to prove forest products could be used to commercially produce biofuels, they planned to address and mitigate issues as they arose. In the early days of the Project Independence project, the plant was sized to process 500 dry tons of biomass per day but would

  2. Gas-to-liquids : who cares?

    International Nuclear Information System (INIS)

    Yakobson, D.L.

    1999-01-01

    An overview of gas-to-liquids (GTL) technology was presented along with its capital costs, economics and market niche. GTL technology is a process developed by Fischer-Tropsch in the 1920s, in which carbonaceous feedstock is catalytically converted into synthetic oil. The feedstock can be natural gas, coal, or refinery bottoms, bitumen, Orimulsion TM or biomass. The process involves the making of a gaseous mixture of hydrogen and carbon monoxide and then feeding that mixture into a reactor containing a catalyst. The last step involves the processing of the synthetic oil into fractions for sale. The issue of whether GTL will compete with refinery production or supplement it was also raised. The potential for GTL projects in North America were reviewed. The five companies which have matured GTL technologies are Exxon, Rentech, Sasol, Shell and Syntroleum

  3. Size Control of Iron Oxide Nanoparticles Using Reverse Microemulsion Method: Morphology, Reduction, and Catalytic Activity in CO Hydrogenation

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Housaindokht

    2013-01-01

    Full Text Available Iron oxide nanoparticles were prepared by microemulsion method and evaluated in Fischer-Tropsch synthesis. The precipitation process was performed in a single-phase microemulsion operating region. Different HLB values of surfactant were prepared by mixing of sodium dodecyl sulfate (SDS and Triton X-100. Transmission electron microscopy (TEM, surface area, pore volume, average pore diameter, pore size distribution, and XRD patterns were used to analyze size distribution, shape, and structure of precipitated hematite nanoparticles. Furthermore, temperature programmed reduction (TPR and catalytic activity in CO hydrogenation were implemented to assess the performance of the samples. It was found that methane and CO2 selectivity and also the syngas conversion increased as the HLB value of surfactant decreased. In addition, the selectivity to heavy hydrocarbons and chain growth probability (α decreased by decreasing the catalyst crystal size.

  4. Thermodynamic analysis of combined Solid Oxide Electrolyzer and Fischer–Tropsch processes

    International Nuclear Information System (INIS)

    Stempien, Jan Pawel; Ni, Meng; Sun, Qiang; Chan, Siew Hwa

    2015-01-01

    In this paper a thermodynamic analysis and simple optimization of a combined Solid Oxide Electrolyzer Cell and Fisher–Tropsch Synthesis processes for sustainable hydrocarbons fuel production is reported. Comprehensive models are employed to describe effects of temperature, pressure, reactant composition and molar flux and flow on the system efficiency and final production distribution. The electrolyzer model was developed in-house and validated with experimental data of a typical Solid Oxide Electrolyzer. The Fischer–Tropsch Synthesis model employed lumped kinetics of syngas utilization, which includes inhibiting effect of water content and kinetics of Water–Gas Shift reaction. Product distribution model incorporated olefin re-adsorption and varying physisorption and solubility of hydrocarbons with their carbon number. The results were compared with those reported by Becker et al. with simplified analysis of such process. In the present study an opposite effect of operation at elevated pressure was observed. Proposed optimized system achieved overall efficiency of 66.67% and almost equal spread of light- (31%wt), mid-(36%wt) and heavy-hydrocarbons (33%wt). Paraffins contributed the majority of the yield. - Highlights: • Analysis of Solid Oxide Electrolyzer combined with Fisher Tropsch process. • Efficiency of converting water and carbon dioxide into synthetic fuels above 66%. • Effects of process temperature, pressure, gas flux and compositions were analyzed

  5. Municipal solid waste conversion to transportation fuels: a life-cycle estimation of global warming potential and energy consumption

    DEFF Research Database (Denmark)

    Pressley, Phillip N.; Aziz, Tarek N.; DeCarolis, Joseph F.

    2014-01-01

    This paper utilizes life cycle assessment (LCA) methodology to evaluate the conversion of U.S. municipal solid waste (MSW) to liquid transportation fuels via gasification and Fischer-Tropsch (FT). The model estimates the cumulative energy demand and global warming potential (GWP) associated...

  6. Slurry pipeline design approach

    Energy Technology Data Exchange (ETDEWEB)

    Betinol, Roy; Navarro R, Luis [Brass Chile S.A., Santiago (Chile)

    2009-12-19

    Compared to other engineering technologies, the design of a commercial long distance Slurry Pipeline design is a relatively new engineering concept which gained more recognition in the mid 1960 's. Slurry pipeline was first introduced to reduce cost in transporting coal to power generating units. Since then this technology has caught-up worldwide to transport other minerals such as limestone, copper, zinc and iron. In South America, the use of pipeline is commonly practiced in the transport of Copper (Chile, Peru and Argentina), Iron (Chile and Brazil), Zinc (Peru) and Bauxite (Brazil). As more mining operations expand and new mine facilities are opened, the design of the long distance slurry pipeline will continuously present a commercially viable option. The intent of this paper is to present the design process and discuss any new techniques and approach used today to ensure a better, safer and economical slurry pipeline. (author)

  7. Conversion of associated natural gas to liquid hydrocarbons. Final report, June 1, 1995--January 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The original concept envisioned for the use of Fischer-Tropsch processing (FTP) of United States associated natural gas in this study was to provide a way of utilizing gas which could not be brought to market because a pipeline was not available or for which there was no local use. Conversion of gas by FTP could provide a means of utilizing offshore associated gas which would not require installation of a pipeline or re-injection. The premium quality F-T hydrocarbons produced by conversion of the gas can be transported in the same way as the crude oil or in combination (blended) with it, eliminating the need for a separate gas transport system. FTP will produce a synthetic crude oil, thus increasing the effective size of the resource. The two conventional approaches currently used in US territory for handling of natural gas associated with crude petroleum production are re-injection and pipelining. Conversion of natural gas to a liquid product which can be transported to shore by tanker can be accomplished by FTP to produce hydrocarbons, or by conversion to chemical products such as methanol or ammonia, or by cryogenic liquefaction (LNG). This study considers FTP and briefly compares it to methanol and LNG. The Energy International Corporation cobalt catalyst, ratio adjusted, slurry bubble column F-T process was used as the basis for the study and the comparisons. An offshore F-T plant can best be accommodated by an FPSO (Floating Production, Storage, Offloading vessel) based on a converted surplus tanker, such as have been frequently used around the world recently. Other structure types used in deep water (platforms) are more expensive and cannot handle the required load.

  8. Predicting transport requirements for radioactive-waste slurries

    International Nuclear Information System (INIS)

    Motyka, T.; Randall, C.T.

    1983-01-01

    A method for predicting the transport requirements of radioactive waste slurries was developed. This method involved preparing nonradioactive sludge slurries chemically similar to the actual high-level waste. The rheological and settling characteristics of these synthetic waste slurries were measured and found to compare favorably with data on actual defense waste slurries. Pressure drop versus flow rate data obtained fom a 2-in. slurry test loop confirmed the Bingham plastic behavior of the slurry observed during viscometry measurements. The pipeline tests, however, yielded friction factors 30 percent lower than those predicted from viscometry data. Differences between the sets of data were attributed to inherent problems in interpreting accurate yield-stress values of slurry suspensions with Couette-type viscometers. Equivalent lengths of fittings were also determined and found to be less than that of water at a specified flow rate

  9. Catalyst and method for reduction of nitrogen oxides

    Science.gov (United States)

    Ott, Kevin C [Los Alamos, NM

    2008-05-27

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  10. Manufacture of highly loaded silica-supported cobalt Fischer–Tropsch catalysts from a metal organic framework

    KAUST Repository

    Sun, Xiaohui; Suarez, Alma I. Olivos; Meijerink, Mark; van Deelen, Tom; Ould-Chikh, Samy; Zečević, Jovana; de Jong, Krijn P.; Kapteijn, Freek; Gascon, Jorge

    2017-01-01

    The development of synthetic protocols for the preparation of highly loaded metal nanoparticle-supported catalysts has received a great deal of attention over the last few decades. Independently controlling metal loading, nanoparticle size

  11. An oilwell cement slurry additivated with bisphenol diglycidil ether/isophoronediamine-Kinetic analysis and multivariate modelings at slurry/HCl interfaces

    International Nuclear Information System (INIS)

    Cestari, Antonio R.; Vieira, Eunice F.S.; Tavares, Andrea M.G.; Andrade, Marcos A.S.

    2009-01-01

    Loss of zonal isolation in oilwell cementing operations leads to safety and environmental problems. The use of new cement slurries can help to solve this problem. In this paper, an epoxy-modified cement slurry was synthesized and characterized. The features of the modified slurries were evaluated in relation to a standard cement slurry (w/c = 0.50). A kinetic study of HCl interaction with the slurries was carried out using cubic molds. The Avrami kinetic model appears to be the most efficient in describing kinetic isotherms obtained from 25 to 55 deg. C. Type of slurry, HCl concentration and temperature effects were also evaluated in HCl adsorption onto cement slurries considering a 2 3 full factorial design. From the statistical analysis, it is inferred that the factor 'HCl concentration' has shown a profound influence on the numerical values of the Avrami kinetic constants. However, the best statistical fits were found using binary and tertiary interactive effects. It was found that the epoxy-modified cement slurry presents a good potential to be used in environmental-friendly oilwell operations.

  12. Thermodynamic efficiency of biomass gasification and biofuels conversion

    NARCIS (Netherlands)

    Ptasinski, K.J.

    2008-01-01

    Biomass has great potential as a clean renewable feedstock for producing biofuels such as Fischer-Tropsch biodiesel, methanol, and hydrogen. The use of biomass is accompanied by possible ecological drawbacks, however, such as limitation of land or water and competition with food production. For

  13. Continuous bench-scale slurry catalyst testing direct coal liquefaction rawhide sub-bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, R.F.; Coless, L.A.; Davis, S.M. [and others

    1995-12-31

    In 1992, the Department of Energy (DOE) sponsored research to demonstrate a dispersed catalyst system using a combination of molybdenum and iron precursors for direct coal liquefaction. This dispersed catalyst system was successfully demonstrated using Black Thunder sub-bituminous coal at Wilsonville, Alabama by Southern Electric International, Inc. The DOE sponsored research continues at Exxon Research and Development Laboratories (ERDL). A six month continuous bench-scale program using ERDL`s Recycle Coal Liquefaction Unit (RCLU) is planned, three months in 1994 and three months in 1995. The initial conditions in RCLU reflect experience gained from the Wilsonville facility in their Test Run 263. Rawhide sub-bituminous coal which is similar to the Black Thunder coal tested at Wilsonville was used as the feed coal. A slate of five dispersed catalysts for direct coal liquefaction of Rawhide sub-bituminous coal has been tested. Throughout the experiments, the molybdenum addition rate was held constant at 100 wppm while the iron oxide addition rate was varied from 0.25 to 1.0 weight percent (dry coal basis). This report covers the 1994 operations and accomplishments.

  14. Synthesis of Organics in the Early Solar Nebula

    Science.gov (United States)

    Johnson, Natasha M.; Manning, S.; Nuth, J. A., III

    2007-10-01

    It is unknown what process or processes made the organics that are found or detected in extraterrestrial materials. One process that forms organics are Fischer-Tropsch type (FTT) reactions. Fischer-Tropsch type synthesis produces complex hydrocarbons by hydrogenating carbon monoxide via surface mediated reactions. The products of these reactions have been well-studied using `natural’ catalysts [1] and calculations of the efficiency of FTT synthesis in the Solar Nebula suggest that these types of reactions could make significant contributions to material near three AU [2]. We use FTT synthesis to coat Fe-silicate amorphous grains with organic material to simulate the chemistry in the early Solar Nebula. These coatings are composed of macromolecular organic phases [3]. Previous work also showed that as the grains became coated, Haber-Bosch type reactions took place resulting in nitrogen-bearing organics [4]. Our experiments consist of circulating CO, N2, and H2 gas through Fe- amorphous silicate grains that are maintained at a specific temperature in a closed system. The gases are passed through an FTIR spectrometer and are measured to monitor the reaction progress. Samples are analyzed using FTIR, and GCMS (including pyrolysis) and extraction techniques are used to analyze the organic coatings. These experiments show that these types of reactions are an effective means to produce complex hydrocarbons. We present the analysis of the produced organics (solid and gas phase) and the change in the production rate of several compounds as the grains become coated. Organics generated by this technique could represent the carbonaceous material incorporated in comets and meteorites. References: [1] Hayatsu and Anders 1981. Topics in Current Chemistry 99:1-37. [2] Kress and Tielens 2001. MAPS 36:75-91. [3] Johnson et al. 2004. #1876. 35th LPSC. [4] Hill and Nuth 2003. Astrobiology 3:291-304. This work was supported by a grant from NASA.

  15. Heating and Efficiency Comparison of a Fischer-Tropsch (FT) Fuel, JP-8+100, and Blends in a Three-Cup Combustor Sector

    Science.gov (United States)

    Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry; Saxena, Nikita T.; Hendricks, Robert C.

    2012-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MIL-DTL-83133F(2008) or ASTM D 7566-Annex standards and are classified as drop-in fuel replacements. This paper provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fisher-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 aF (533 K), 125 psia (0.86 MPa) at 625 aF (603 K), 175 psia (1.21 MPa) at 725 aF (658 K), and 225 psia (1.55 MPa) at 790 aF (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3%, 4%, and 5% combustor pressure drop (% P) for fuel:air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade/vane life. In general, 100% SPK-FT fuel and blends with JP-8+100 produce less particulates and less smoke and have lower thermal impact on combustor hardware.

  16. Near polygons and Fischer spaces

    NARCIS (Netherlands)

    Brouwer, A.E.; Cohen, A.M.; Hall, J.I.; Wilbrink, H.A.

    1994-01-01

    In this paper we exploit the relations between near polygons with lines of size 3 and Fischer spaces to classify near hexagons with quads and with lines of size three. We also construct some infinite families of near polygons.

  17. Bio-slurry as fertilizer : is bio-slurry from household digesters a better fertilizer than manure? : a literature review

    NARCIS (Netherlands)

    Bonten, L.T.C.; Zwart, K.B.; Rietra, R.P.J.J.; Postma, R.; Haas, de M.J.G.; Nysingh, S.L.

    2014-01-01

    In many developing countries manure is anaerobically digested to produce biogas. The residue of manure digestion, bio-slurry, can be used as fertilizer for crop production and aquaculture. This study compared bio-slurry and manure as fertilizers. Nutrients in bio-slurry, especially nitrogen, are

  18. Zeolites as Catalysts for Fuels Refining after Indirect Liquefaction Processes

    Directory of Open Access Journals (Sweden)

    Arno de Klerk

    2018-01-01

    Full Text Available The use of zeolite catalysts for the refining of products from methanol synthesis and Fisher–Tropsch synthesis was reviewed. The focus was on fuels refining processes and differences in the application to indirect liquefaction products was compared to petroleum, which is often a case of managing different molecules. Processes covered were skeletal isomerisation of n-butenes, hydroisomerisation of n-butane, aliphatic alkylation, alkene oligomerisation, methanol to hydrocarbons, ethanol and heavier alcohols to hydrocarbons, carbonyls to hydrocarbons, etherification of alkenes with alcohols, light naphtha hydroisomerisation, catalytic naphtha reforming, hydroisomerisation of distillate, hydrocracking and fluid catalytic cracking. The zeolite types that are already industrially used were pointed out, as well as zeolite types that have future promise for specific conversion processes.

  19. Development of a novel reactor concept for the partial oxidation of methane to syngas

    NARCIS (Netherlands)

    Smit, J.; van Sint Annaland, M.; Kuipers, J.A.M.

    2004-01-01

    The gas-to-liquid process, consisting of the partial oxidation of methane (POM) followed by the Fischer-Tropsch reaction, is a promising alternative to conventional oil processing for the production of liquid fuels. The cost of a conventional POM process is mainly determined by cryogenic air

  20. Modelling of a reverse flow catalytic membrane reactor for the partial oxidation of methane

    NARCIS (Netherlands)

    Smit, J.; van Sint Annaland, M.; Kuipers, J.A.M.

    2003-01-01

    Gas-To-Liquid (GTL) processes have great potential as alternative to conventional oil and coal processing for the production of liquid fuels. In GTL-processes the partial oxidation of methane (POM) is combined with the Fischer-Tropsch reaction. An important part of the investment costs of a

  1. Impact of fuel composition on emissions and performance of GTL kerosene blends in a Cessna Citation II

    NARCIS (Netherlands)

    Snijders, T.A.; Melkert, J.A.; Bogers, P.F.; Bauldreay, J.; Wahl, C.R.M.; Kapernaum, M.G.

    2011-01-01

    International jet fuel specifications permit up to 50% volume Fischer-Tropsch synthetic paraffinic kerosines (FT-SPKs), such as Gas-to-Liquids (GTL) Kerosine, in Jet A-1. Higher SPK-content fuels could, however, produce desirable fuels: lower density, higher SPK-content fuels may have benefits for

  2. Real-time elucidation of catalytic pathways in CO hydrogenation on Ru

    Czech Academy of Sciences Publication Activity Database

    LaRue, J.; Krejčí, Ondřej; Yu, L.; Beye, M.; Ng, M.L.; Oberg, H.; Xin, H.; Mercurio, G.; Moeller, S.; Turner, J.J.; Nordlund, D.; Coffee, R.; Minitti, M.P.; Wurth, W.; Petersson, L.G.M.; Ostrom, H.; Nilsson, A.; Abild-Pedersen, F.; Ogasawara, H.

    2017-01-01

    Roč. 8, č. 16 (2017), s. 3820-3825 ISSN 1948-7185 Institutional support: RVO:68378271 Keywords : Fischer-Tropsch synthesis * carbone-monoxide * metal-oxide * surface * dissociation * methanol * copper * laser * electroreduction * femtochemistry Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 9.353, year: 2016

  3. Two-Dimensional Zeolites: Current Status and Perspectives

    Czech Academy of Sciences Publication Activity Database

    Roth, Wieslaw Jerzy; Nachtigall, P.; Morris, R. E.; Čejka, Jiří

    2014-01-01

    Roč. 114, č. 9 (2014), s. 4807-4837 ISSN 0009-2665 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : zeolites * mesoporous molecular sieves * Fischer-Tropsch synthesis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 46.568, year: 2014

  4. ONLINE SINGLE-COLUMN CAPILLARY GAS-CHROMATOGRAPHIC ANALYSIS OF ALL REACTANTS AND PRODUCTS IN THE SYNTHESIS OF FUEL METHANOL FROM HYDROGEN AND OXIDES OF CARBON

    NARCIS (Netherlands)

    MARSMAN, JH; BREMAN, BB; BEENACKERS, AACM

    The main problems with complete analysis of the components of fuel methanol, or in Fischer-Tropsch studies, are the several classes of compound present in the sample (permanent gases, water, alcohols, hydrocarbons), its wide range of components, its boiling point range, and the wide range of

  5. Technical Development of Slurry Three-Dimensional Printer

    Science.gov (United States)

    Jiang, Cho-Pei; Hsu, Huang-Jan; Lee, Shyh-Yuan

    2017-09-01

    The aim of this paper is to review the technical development of slurry three-dimensional printer (3DP) which based on photo-polymerization and constrained surface method. Basically, slurry consists of ceramic powder, resin and photo-initiator. The light engines for solidifying the photo-curable slurry can be classified as laser, liquid crystal panel (LCD), digital light processing (DLP). The slurry can be reacted and solidified by selective ray according to the reaction spectrum of photo-initiator. Ceramic powder used in this study is zirconia oxide. Experimental results show that ceramic particle size affects the viscosity of slurry severely resulting in low accuracy and the occurrence of micro crack in the layer casting procedure. Therefore, the effect of particle size on the curability and accuracy of built green part is discussed. A single dental crown is proposed to be fabricated by these three light engines as a benchmark for comparison. In addition, the cost and the limitation are compared in the aspect of dental crown fabrication. Consequently, the lowest cost is LCD-type slurry 3DP system. DLP-type slurry 3DP can produce green body with the fastest fabrication time. The volumetric error of sintered part that made by these three fabrication methods is similar because the composition of slurry is the same.

  6. Synthetic fuel production using Texas lignite and a very high temperature reactor for process heat

    International Nuclear Information System (INIS)

    Ross, M.A.; Klein, D.E.

    1982-01-01

    Two approaches for synthetic fuel production from coal are studied using Texas lignite as the feedstock. First, the gasification and liquefaction of coal are accomplished using Lurgi gasifiers and Fischer-Tropsch synthesis. A 50 000 barrel/day facility, consuming 13.7 million tonne/yr (15.1 million ton/yr) of lignite, is considered. Second, a nuclear-assisted coal conversion approach is studied using a very high temperature gas-cooled reactor with a modified Lurgi gasifier and Fischer-Tropsch synthesis. The nuclear-assisted approach resulted in a 35% reduction in coal consumption. In addition, process steam consumption was reduced by one-half and the oxygen plants were eliminated in the nuclear assisted process. Both approaches resulted in a synthetic oil price higher than the March 1980 imported price of $29.65 per barrel: $36.15 for the lignite-only process and $35.16 for the nuclear-assisted process. No tax advantage was assumed for either process and the utility financing method was used for both economic calculations

  7. Comparative testing of slurry monitors

    International Nuclear Information System (INIS)

    Hylton, T.D.; Bayne, C.K.; Anderson, M.S.; Van Essen, D.C.

    1998-05-01

    The US Department of Energy (DOE) has millions of gallons of radioactive liquid and sludge wastes that must be retrieved from underground storage tanks, transferred to treatment facilities, and processed to a final waste form. The wastes will be removed from the current storage tanks by mobilizing the sludge wastes and mixing them with the liquid wastes to create slurries. Each slurry would then be transferred by pipeline to the desired destination. To reduce the risk of plugging a pipeline, the transport properties (e.g., density, suspended solids concentration, viscosity, particle size range) of the slurry should be determined to be within acceptable limits prior to transfer. These properties should also be monitored and controlled within specified limits while the slurry transfer is in progress. The DOE issued a call for proposals for developing on-line instrumentation to measure the transport properties of slurries. In response to the call for proposals, several researchers submitted proposals and were funded to develop slurry monitoring instruments. These newly developed DOE instruments are currently in the prototype stage. Before the instruments were installed in a radioactive application, the DOE wanted to evaluate them under nonradioactive conditions to determine if they were accurate, reliable, and dependable. The goal of this project was to test the performance of the newly developed DOE instruments along with several commercially available instruments. The baseline method for comparison utilized the results from grab-sample analyses

  8. Gas-to-liquids synthetic fuels for use in fuel cells : reformability, energy density, and infrastructure compatibility.

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, S.; Kopasz, J. P.; Russell, B. J.; Tomlinson, H. L.

    1999-09-08

    The fuel cell has many potential applications, from power sources for electric hybrid vehicles to small power plants for commercial buildings. The choice of fuel will be critical to the pace of its commercialization. This paper reviews the various liquid fuels being considered as an alternative to direct hydrogen gas for the fuel cell application, presents calculations of the hydrogen and carbon dioxide yields from autothermal reforming of candidate liquid fuels, and reports the product gas composition measured from the autothermal reforming of a synthetic fuel in a micro-reactor. The hydrogen yield for a synthetic paraffin fuel produced by a cobalt-based Fischer-Tropsch process was found to be similar to that of retail gasoline. The advantages of the synthetic fuel are that it contains no contaminants that would poison the fuel cell catalyst, is relatively benign to the environment, and could be transported in the existing fuel distribution system.

  9. Dual Layer Monolith ATR of Pyrolysis Oil for Distributed Synthesis Gas Production

    Energy Technology Data Exchange (ETDEWEB)

    Lawal, Adeniyi [Stevens Institute of Technology, Castle Point Hoboken NJ 07030

    2012-09-29

    We have successfully demonstrated a novel reactor technology, based on BASF dual layer monolith catalyst, for miniaturizing the autothermal reforming of pyrolysis oil to syngas, the second and most critical of the three steps for thermochemically converting biomass waste to liquid transportation fuel. The technology was applied to aged as well as fresh samples of pyrolysis oil derived from five different biomass feedstocks, namely switch-grass, sawdust, hardwood/softwood, golden rod and maple. Optimization of process conditions in conjunction with innovative reactor system design enabled the minimization of carbon deposit and control of the H2/CO ratio of the product gas. A comprehensive techno-economic analysis of the integrated process using in part, experimental data from the project, indicates (1) net energy recovery of 49% accounting for all losses and external energy input, (2) weight of diesel oil produced as a percent of the biomass to be ~14%, and (3) for a demonstration size biomass to Fischer-Tropsch liquid plant of ~ 2000 daily barrels of diesel, the price of the diesel produced is ~$3.30 per gallon, ex. tax. However, the extension of catalyst life is critical to the realization of the projected economics. Catalyst deactivation was observed and the modes of deactivation, both reversible and irreversible were identified. An effective catalyst regeneration strategy was successfully demonstrated for reversible catalyst deactivation while a catalyst preservation strategy was proposed for preventing irreversible catalyst deactivation. Future work should therefore be focused on extending the catalyst life, and a successful demonstration of an extended (> 500 on-stream hours) catalyst life would affirm the commercial viability of the process.

  10. Perspectiva sobre una Personalidad Senera: Carmen Fischer Ramirez (Perspective on a Singular Personality: Carmen Fischer Ramirez).

    Science.gov (United States)

    Quezeda, Dina Alarcon

    1992-01-01

    Traces the career of Carmen Fischer Ramirez, focusing on her work in improving early childhood education in Chile. Reviews her university career, work with the World Organization for Early Childhood Education, and major publications. (AC)

  11. Slurry flow principles and practice

    CERN Document Server

    Shook, C A; Brenner, Howard

    2015-01-01

    Slurry Flow: Principles and Practice describes the basic concepts and methods for understanding and designing slurry flow systems, in-plan installations, and long-distance transportation systems. The goal of this book is to enable the design or plant engineer to derive the maximum benefit from a limited amount of test data and to generalize operating experience to new situations. Design procedures are described in detail and are accompanied by illustrative examples needed by engineers with little or no previous experience in slurry transport.The technical literature in this field is extensive:

  12. Proxy-based accelerated discovery of Fischer–Tropsch catalysts† †Electronic supplementary information (ESI) available: Details of synthesis, analysis and testing, validation experiments for high-throughput XRD and gas treatment, details of statistical analysis and calculations, tabulation of synthesis parameters and XRD results, alternatives to Fig. 3 highlighting different data points, FTS testing results displayed graphically. See DOI: 10.1039/c4sc02116a Click here for additional data file.

    Science.gov (United States)

    Boldrin, Paul; Gallagher, James R.; Combes, Gary B.; Enache, Dan I.; James, David; Ellis, Peter R.; Kelly, Gordon; Claridge, John B.

    2015-01-01

    Development of heterogeneous catalysts for complex reactions such as Fischer–Tropsch synthesis of fuels is hampered by difficult reaction conditions, slow characterisation techniques such as chemisorption and temperature-programmed reduction and the need for long term stability. High-throughput (HT) methods may help, but their use has until now focused on bespoke micro-reactors for direct measurements of activity and selectivity. These are specific to individual reactions and do not provide more fundamental information on the materials. Here we report using simpler HT characterisation techniques (XRD and TGA) along with ageing under Fischer–Tropsch reaction conditions to provide information analogous to metal surface area, degree of reduction and thousands of hours of stability testing time for hundreds of samples per month. The use of this method allowed the identification of a series of highly stable, high surface area catalysts promoted by Mg and Ru. In an advance over traditional multichannel HT reactors, the chemical and structural information we obtain on the materials allows us to identify the structural effects of the promoters and their effects on the modes of deactivation observed. PMID:29560180

  13. A facile method for the preparation of Covalent Triazine Framework coated monoliths as catalyst support - applications in C1 catalysis

    KAUST Repository

    Bavykina, Anastasiya V.

    2017-07-17

    A quasi Chemical Vapour Deposition method for the manufacturing of well-defined Covalent Triazine Framework (CTF) coatings on cordierite monoliths is reported. The resulting supported porous organic polymer is an excellent support for the immobilisation of two different homogeneous catalysts: 1) an IrIIICp*-based catalyst for the hydrogen production from formic acid, and 2) a PtII-based for the direct activation of methane via Periana chemistry. The immobilised catalysts display a much higher activity in comparison with the unsupported CTF operated in slurry because of improved mass transport. Our results demonstrate that CTF based catalysts can be further optimised by engineering at different length-scales.

  14. A facile method for the preparation of Covalent Triazine Framework coated monoliths as catalyst support - applications in C1 catalysis

    KAUST Repository

    Bavykina, Anastasiya V.; Olivos Suarez, Alma Itzel; Osadchii, Dmitrii; Valecha, Rahul; Franz, Robert; Makkee, Michiel; Kapteijn, Freek; Gascon, Jorge

    2017-01-01

    A quasi Chemical Vapour Deposition method for the manufacturing of well-defined Covalent Triazine Framework (CTF) coatings on cordierite monoliths is reported. The resulting supported porous organic polymer is an excellent support for the immobilisation of two different homogeneous catalysts: 1) an IrIIICp*-based catalyst for the hydrogen production from formic acid, and 2) a PtII-based for the direct activation of methane via Periana chemistry. The immobilised catalysts display a much higher activity in comparison with the unsupported CTF operated in slurry because of improved mass transport. Our results demonstrate that CTF based catalysts can be further optimised by engineering at different length-scales.

  15. Potential of the technology gas to liquids -GTL in Colombia

    International Nuclear Information System (INIS)

    Perez Angulo, Julio Cesar; Cabarcas Simancas, Manuel E; Archila Castro, Jesus; Tobias, Yamil Yubran

    2005-01-01

    Natural gas has a great potential because of the large reserves that currently exist at a worldwide level and because it is a cleaner source of energy than petroleum, but having the disadvantage of requiring high costs for its transportation. For this reason many alternatives have loomed for the development of reserves. Among these is the conversion of natural gas into synthetic ultra-clean fuels, called GTL, or gas-to-liquids. Through this process, Fischer-Tropsch for the production of diesel, naphtha and specialized products, which are used not only to effectively utilize natural gas reserves, but also, to cover at the need of more environmentally friendly fuels. This article will shed light on GTL technologies, presenting on a first instance an analysis of the different stages of the Fischer-Tropsch process, then the current status of this technology, afterwards the costs of investment and the necessary conditions for a project of this kind to be carried out and finally, and analysis of the applicability or projection for this technology in Colombia. Based on recent studies, it has been observed that is technology has surpassed its demonstrations stage and it is now at a maximum point of interest where companies like Sasol (the largest worldwide company in the area of synthetic carbon-based fuels), Chevron Texaco, Syntroleum, Exxon Mobil, Conoco Phillips, BP Rentech and shell. These companies have performed successful studies for the applicability of the Fischer-Tropsch technology at a large scale, and they will begin to build a number of large plants within the next few years, principally motivated by the low costs of gas and high prices of crude oil

  16. Study of Syngas Conversion to Light Olefins by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Hossein Atashi

    2013-01-01

    Full Text Available The effect of adding MgO to a precipitated iron-cobalt-manganese based Fischer-Tropsch synthesis (FTS catalyst was investigated via response surface methodology. The catalytic performance of the catalysts was examined in a fixed bed microreactor at a total pressure of 1–7 bar, temperature of 280–380°C, MgO content of 5–25% and using a syngas having a H2 to CO ratio equal to 2.The dependence of the activity and product distribution on MgO content, temperature, and pressure was successfully correlated via full quadratic second-order polynomial equations. The statistical analysis and response surface demonstrations indicated that MgO significantly influences the CO conversion and chain growth probability as well as ethane, propane, propylene, butylene selectivity, and alkene/alkane ratio. A strong interaction between variables was also evidenced in some cases. The decreasing effect of pressure on alkene to alkane ratio is investigated through olefin readsorption effects and CO hydrogenation kinetics. Finally, a multiobjective optimization procedure was employed to calculate the best amount of MgO content in different reactor conditions.

  17. Synthesis of Stacked-Cup Carbon Nanotubes in a Metal Free Low Temperature System

    Science.gov (United States)

    Kimura, Yuki; Nuth, Joseph A.; Johnson, Natasha M.; Farmer, Kevin D.; Roberts, Kenneth P.; Hussaini, Syed R.

    2011-01-01

    Stacked-cup carbon nanotubes were formed by either Fischer-Tropsch type or Haber Bosch type reactions in a metal free system. Graphite particles were used as the catalyst. The samples were heated at 600 C in a gas mixture of CO 75 Torr, N2 75 Torr and H2 550 Torr for three days. Trans mission electron microscope analysis of the catalyst surface at the completion of the experiment recognized the growth of nanotubes. They were 10-50 nm in diameter and approximately 1 micrometer in length. They had a hollow channel of 5-20 nm in the center. The nanotubes may have grown on graphite surfaces by the CO disproportionation reaction and the surface tension of the carbon nucleus may have determined the diameter. Although, generally, the diameter of a carbon nanotube depends on the size of the cataly1ic particles, the diameter of the nanotubes on graphite particles was independent of the particle size and significantly confined within a narrow range compared with that produced using catalytic amorphous iron-silicate nanoparticles. Therefore, they must have an unknown formation process that is different than the generally accepted mechanism.

  18. Process for heating coal-oil slurries

    Science.gov (United States)

    Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

    1984-01-03

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

  19. Biogas slurry pricing method based on nutrient content

    Science.gov (United States)

    Zhang, Chang-ai; Guo, Honghai; Yang, Zhengtao; Xin, Shurong

    2017-11-01

    In order to promote biogas-slurry commercialization, A method was put forward to valuate biogas slurry based on its nutrient contents. Firstly, element contents of biogas slurry was measured; Secondly, each element was valuated based on its market price, and then traffic cost, using cost and market effect were taken into account, the pricing method of biogas slurry were obtained lastly. This method could be useful in practical production. Taking cattle manure raw meterial biogas slurry and con stalk raw material biogas slurry for example, their price were 38.50 yuan RMB per ton and 28.80 yuan RMB per ton. This paper will be useful for recognizing the value of biogas projects, ensuring biogas project running, and instructing the cyclic utilization of biomass resources in China.

  20. Holistic analysis of thermochemical processes by using solid biomass for fuel production in Germany

    International Nuclear Information System (INIS)

    Henssler, Martin

    2015-01-01

    According to the German act ''Biokraftstoff-Nachhaltigkeitsverordnung'', biofuels must show a CO 2eq -reduction compared to the fossil reference fuel (83.8 g CO 2eq /MJ fuel /Richtlinie 98/70/EG/) of 35 % beginning with 2011. In new plants, which go into operation after the 31.12.2016 the CO 2eq -savings must be higher than 50 % in 2017 and higher than 60 % in 2018 /Biokraft-NachV/. The biofuels (methyl ester of rapeseed, bioethanol and biomethane) considered in this study do not meet these requirements for new plants. To comply with these rules new processes must be deployed. Alternative thermochemical generated fuels could be an option. The aim of this work is to evaluate through a technical, ecological and economic analysis (Well-to-Wheel) whether and under what conditions the thermochemical production of Fischer-Tropsch-diesel or -gasoline, hydrogen (H 2 ) and Substitute Natural Gas (SNG) complies with the targets. Four different processes are considered (fast pyrolysis and torrefaction with entrained flow gasifier, CHOREN Carbo-V registered -gasifier, Absorption Enhanced Reforming (AER-) gasifier). Beside residues such as winter wheat straw and residual forest wood, wood from short-rotation plantations is taken into account. The technical analysis showed that at present status (2010) two and in 2050 six plants can be operated energy-self-sufficient. The overall efficiency of the processes is in the range of 41.5 (Fischer-Tropsch-diesel or -gasoline) and 59.4 % (H 2 ). Furthermore, it was found that for 2010, all thermochemical produced fuels except the H 2 -production from wood from short-rotation plantations in decentralised or central fast pyrolysis and in decentralised torrefactions with entrained flow gasifier keep the required CO 2eq -saving of 60 %. In 2050, all thermochemical produced fuels will reach these limits. The CO 2eq -saving is between 72 (H 2 ) and 95 % (Fischer-Tropsch-diesel or -gasoline). When the production costs of the

  1. Holistic analysis of thermochemical processes by using solid biomass for fuel production in Germany; Ganzheitliche Analyse thermochemischer Verfahren bei der Nutzung fester Biomasse zur Kraftstoffproduktion in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Henssler, Martin

    2015-04-28

    According to the German act ''Biokraftstoff-Nachhaltigkeitsverordnung'', biofuels must show a CO{sub 2eq}-reduction compared to the fossil reference fuel (83.8 g CO{sub 2eq}/MJ{sub fuel} /Richtlinie 98/70/EG/) of 35 % beginning with 2011. In new plants, which go into operation after the 31.12.2016 the CO{sub 2eq}-savings must be higher than 50 % in 2017 and higher than 60 % in 2018 /Biokraft-NachV/. The biofuels (methyl ester of rapeseed, bioethanol and biomethane) considered in this study do not meet these requirements for new plants. To comply with these rules new processes must be deployed. Alternative thermochemical generated fuels could be an option. The aim of this work is to evaluate through a technical, ecological and economic analysis (Well-to-Wheel) whether and under what conditions the thermochemical production of Fischer-Tropsch-diesel or -gasoline, hydrogen (H{sub 2}) and Substitute Natural Gas (SNG) complies with the targets. Four different processes are considered (fast pyrolysis and torrefaction with entrained flow gasifier, CHOREN Carbo-V {sup registered} -gasifier, Absorption Enhanced Reforming (AER-) gasifier). Beside residues such as winter wheat straw and residual forest wood, wood from short-rotation plantations is taken into account. The technical analysis showed that at present status (2010) two and in 2050 six plants can be operated energy-self-sufficient. The overall efficiency of the processes is in the range of 41.5 (Fischer-Tropsch-diesel or -gasoline) and 59.4 % (H{sub 2}). Furthermore, it was found that for 2010, all thermochemical produced fuels except the H{sub 2}-production from wood from short-rotation plantations in decentralised or central fast pyrolysis and in decentralised torrefactions with entrained flow gasifier keep the required CO{sub 2eq}-saving of 60 %. In 2050, all thermochemical produced fuels will reach these limits. The CO{sub 2eq}-saving is between 72 (H{sub 2}) and 95 % (Fischer-Tropsch

  2. [Urs Fischer: faux amis : documentation d'exposition

    OpenAIRE

    2016-01-01

    Tiré du site internet des Musées d'art et d'histoire (www.ville-geneve.ch/mah): "Urs Fischer - Faux Amis propose une sélection inédite d'œuvres de la collection Dakis Joannou, présentée pour la première fois au Musée d'art et d'histoire de Genève. Conçue par le commissaire Massimiliano Gioni comme une synthèse inhabituelle entre une présentation monographique et une exposition de groupe, Faux Amis réunit un ensemble d'œuvres signées Urs Fischer (né en 1973), l'un des artistes suisses les plus...

  3. Slurry pipeline technology: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Jay P. [Pipeline Systems Incorporated (PSI), Belo Horizonte, MG (Brazil); Lima, Rafael; Pinto, Daniel; Vidal, Alisson [Ausenco do Brasil Engenharia Ltda., Nova Lima, MG (Brazil). PSI Div.

    2009-12-19

    Slurry pipelines represent an economical and environmentally friendly transportation means for many solid materials. This paper provides an over-view of the technology, its evolution and current Brazilian activity. Mineral resources are increasingly moving farther away from ports, processing plants and end use points, and slurry pipelines are an important mode of solids transport. Application guidelines are discussed. State-of-the-Art technical solutions such as pipeline system simulation, pipe materials, pumps, valves, automation, telecommunications, and construction techniques that have made the technology successful are presented. A discussion of where long distant slurry pipelines fit in a picture that also includes thickened and paste materials pipe lining is included. (author)

  4. Physico-chemical principles of slurries

    Energy Technology Data Exchange (ETDEWEB)

    Leiber, C.O.

    1984-12-01

    Spectacular accidents have occurred in mining with products considered non-explosive. In view of the disastrous consequences of these accidents, the old 'Anfo' idea has been revived (= ammonium nitrate and fuel oil). Experiments in wet wells have led to the development of a new type of non-explosive blasting agents, i.e. the so-called slurries. Detonation of these slurries is divided into an energy release process and an energy conversion process. The basic mechanisms are described with a view to practical problems, e.g. detonation control, temperature dependence of the blasting characteristics, pressure dependence of the ignition process, critical diameter, slurry state problems, and sensitivity.

  5. Ammonia abatement by slurry acidification

    DEFF Research Database (Denmark)

    Petersen, Søren O.; Hutchings, Nicholas John; Hafner, Sasha D.

    2016-01-01

    sections with 30-32 pigs with or without daily adjustment of slurry pH to below 6. Ammonia losses from reference sections with untreated slurry were between 9.5 and 12.4% of N excreted, and from sections with acidified slurry between 3.1 and 6.2%. Acidification reduced total emissions of NH3 by 66 and 71......% in spring and autumn experiments, and by 44% in the summer experiment. Regression models were used to investigate sources and controls of NH3 emissions. There was a strong relationship between NH3 emissions and ventilation rate during spring and autumn, but less so during summer where ventilation rates were...

  6. Comparative study of Fischer–Tropsch production and post-combustion CO2 capture at an oil refinery: Economic evaluation and GHG (greenhouse gas emissions) balances

    International Nuclear Information System (INIS)

    Johansson, Daniella; Franck, Per-Åke; Pettersson, Karin; Berntsson, Thore

    2013-01-01

    The impact on CO 2 emissions of integrating new technologies (a biomass-to-Fischer–Tropsch fuel plant and a post-combustion CO 2 capture plant) with a complex refinery has previously been investigated separately by the authors. In the present study these designs are integrated with a refinery and evaluated from the point-of-view of economics and GHG (greenhouse gas emissions) emissions and are compared to a reference refinery. Stand-alone Fischer–Tropsch fuel production is included for comparison. To account for uncertainties in the future energy market, the assessment has been conducted for different future energy market conditions. For the post-combustion CO 2 capture process to be profitable, the present study stresses the importance of a high charge for CO 2 emission. A policy support for biofuels is essential for the biomass-to-Fischer–Tropsch fuel production to be profitable. The level of the support, however, differs depending on scenario. In general, a high charge for CO 2 economically favours Fischer–Tropsch fuel production, while a low charge for CO 2 economically favours Fischer–Tropsch fuel production. Integrated Fischer–Tropsch fuel production is most profitable in scenarios with a low wood fuel price. The stand-alone alternative shows no profitability in any of the studied scenarios. Moreover, the high investment costs make all the studied cases sensitive to variations in capital costs. - Highlights: • Comparison of Fischer–Tropsch (FT) fuel production and CO 2 capture at a refinery. • Subsidies for renewable fuels are essential for FT fuel production to be profitable. • A high charge for CO 2 is essential for post-combustion CO 2 capture to be profitable. • A low charge for CO 2 economically favours FT fuel production. • Of the studied cases, CO 2 capture shows the greatest reduction in GHG emissions

  7. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  8. Low frequency aeration of pig slurry affects slurry characteristics and emissions of greenhouse gases and ammonia.

    Science.gov (United States)

    Calvet, Salvador; Hunt, John; Misselbrook, Tom H

    2017-07-01

    Low frequency aeration of slurries may reduce ammonia (NH 3 ) and methane (CH 4 ) emissions without increasing nitrous oxide (N 2 O) emissions. The aim of this study was to quantify this potential reduction and to establish the underlying mechanisms. A batch experiment was designed with 6 tanks with 1 m 3 of pig slurry each. After an initial phase of 7 days when none of the tanks were aerated, a second phase of 4 weeks subjected three of the tanks to aeration (2 min every 6 h, airflow 10 m 3  h -1 ), whereas the other three tanks remained as a control. A final phase of 9 days was established with no aeration in any tank. Emissions of NH 3 , CH 4 , carbon dioxide (CO 2 ) and N 2 O were measured. In the initial phase no differences in emissions were detected, but during the second phase aeration increased NH 3 emissions by 20% with respect to the controls (8.48 vs. 7.07 g m -3  [slurry] d -1 , P emissions were 40% lower in the aerated tanks (2.04 vs. 3.39 g m -3  [slurry] d -1 , P emissions remained after the aeration phase had finished. No effect was detected for CO 2 , and no relevant N 2 O emissions were detected during the experiment. Our results demonstrate that low frequency aeration of stored pig slurry increases slurry pH and increases NH 3 emissions.

  9. Modern bioenergy from agricultural and forestry residues in Cameroon: Potential, challenges and the way forward

    DEFF Research Database (Denmark)

    Ackom, Emmanuel; Alemagi, Dieudonne; Ackom, Nana B.

    2013-01-01

    liters of ethanol annually to displace 18–48% of the national consumption of gasoline. Alternatively, the residues could provide 0.08–0.22 billion liters of biomass to Fischer Tropsch diesel annually to offset 17–45% of diesel fuel use. For the generation of bioelectricity, the residues could supply 0...

  10. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1994-12-01

    Full Text Available During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production, pipe corrosion and expensive well repairs. Cementing temperature conditions are important because bot-tomhole circulating temperatures affect slurry thickening time, arheology, set time and compressive strength development. Knowing the actual temperature which cement encounters during placement allows the selection of proper cementing materials for a specific application. Slurry design is affected by well depth, bottom hole circulating temperature and static temperature, type or drilling fluid, slurry density, pumping time, quality of mix water, fluid loss control, flow regime, settling and free water, quality of cement, dry or liquid additives, strength development, and quality of the lab cement testing and equipment. Most Portland cements and Class J cement have shown suitable performances in geot-hermal wells. Cement system designs for geothermal wells differ from those for conventional high temperature oil and gas wells in the exclusive use of silica flour instead of silica sand, and the avoidance of fly ash as an extender. In this paper, Portland cement behaviour at high temperatures is described. Cement slurry and set cement properties are also described. Published in literature, the composition of cement slurries which were tested in geothermal conditions and which obtained required compressive strength and water permeability are listed. As a case of our practice geothermal wells Velika Ciglena-1 and Velika Ciglena-la are described.

  11. Radio-frequency slurry-density measurement for dredging pipelines

    NARCIS (Netherlands)

    van Eeten, M.J.C.

    2011-01-01

    Hydraulic dredgers make use of a density meter to measure the instantaneous density in the slurry transport pipeline, primarily for process control and production calculation. the current ‘golden’ standard for slurry density measurement is the radioactive density meter. It is based on a slurry

  12. Non-aqueous slurries used as thickeners

    Energy Technology Data Exchange (ETDEWEB)

    Hatfield, J C

    1982-04-07

    A non-aqueous slurry is described that is suitable for use as a thickener or viscosifier in oil or gas drilling, fracturing, flow diversion completion or workover fluids. The slurry comprises a water-soluble cellulose ether polymer, a water-insoluble liquid hydrocarbon, a non-ionic surfactant having an HLB of from 7 to 14, and an organo modified clay. There also is described a process for thickening or viscosifying a drilling, fracturing, flow diversion, completion or workover fluid. The use of the slurry prevents bumping during addition to aqueous fluids. (27 claims)

  13. CO Reduction to CH3OSiMe3: Electrophile-Promoted Hydride Migration at a Single Fe Site.

    Science.gov (United States)

    Deegan, Meaghan M; Peters, Jonas C

    2017-02-22

    One of the major challenges associated with developing molecular Fischer-Tropsch catalysts is the design of systems that promote the formation of C-H bonds from H 2 and CO while also facilitating the release of the resulting CO-derived organic products. To this end, we describe the synthesis of reduced iron-hydride/carbonyl complexes that enable an electrophile-promoted hydride migration process, resulting in the reduction of coordinated CO to a siloxymethyl (L n Fe-CH 2 OSiMe 3 ) group. Intramolecular hydride-to-CO migrations are extremely rare, and to our knowledge the system described herein is the first example where such a process can be accessed from a thermally stable M(CO)(H) complex. Further addition of H 2 to L n Fe-CH 2 OSiMe 3 releases CH 3 OSiMe 3 , demonstrating net four-electron reduction of CO to CH 3 OSiMe 3 at a single Fe site.

  14. Sorption of 17b-Estradiol to Pig Slurry Separates and Soil in the Soil-Slurry Environment

    DEFF Research Database (Denmark)

    Amin, Mostofa; Petersen, Søren O; Lægdsmand, Mette

    2012-01-01

    to agricultural soils, to different size fractions of pig slurry separates, and to soils amended with each size fraction to simulate conditions in the soil–slurry environment. A crude fiber fraction (SS1) was prepared by sieving (solids removed by an on-farm separation process. Three other size...... fractions (SS2 > SS3 > SS4) were prepared from the liquid fraction of the separated slurry by sedimentation and centrifugation. Sorption experiments were conducted in 0.01 mol L−1 CaCl2 and in natural pig urine matrix. Sorption in 0.01 mol L−1 CaCl2 was higher than that in pig urine for all solids used....... Sorption of E2 to soil increased with its organic carbon content for both liquid phases. The solid–liquid partition coefficients of slurry separates were 10 to 30 times higher than those of soils, but the organoic carbon normalized partition coefficient values, reflecting sorption per unit organic carbon...

  15. Method of transporting radioactive slurry-like wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, K; Yusa, H; Sugimoto, Y

    1975-06-30

    The object is to prevent blockage of a transporting tube to positively and effectively transport radioactive slurry wastes. A method of transporting radioactive slurry-like wastes produced in an atomic power plant, wherein liquid wastes produced in the power plant are diluted to form into a driving liquid, by which said radioactive slurry-like wastes are transported within the pipe, and said driving liquid is recovered as the liquid waste.

  16. State of the art on phase change material slurries

    International Nuclear Information System (INIS)

    Youssef, Ziad; Delahaye, Anthony; Huang Li; Trinquet, François; Fournaison, Laurence; Pollerberg, Clemens; Doetsch, Christian

    2013-01-01

    Highlights: ► A bibliographic study on PCM slurries. ► Clathrate Hydrate slurry, Microencapsulated PCM Slurry, shape-stabilized PCM slurries and Phase Change Material Emulsions. ► Formation, thermo-physical, rheological, heat transfers properties and applications of these four PCS systems. ► The use of thermal energy storage and distribution based on PCM slurries can improve the refrigerating machine performances. - Abstract: The interest in using phase change slurry (PCS) media as thermal storage and heat transfer fluids is increasing and thus leading to an enhancement in the number of articles on the subject. In air-conditioning and refrigeration applications, PCS systems represent a pure benefit resulting in the increase of thermal energy storage capacity, high heat transfer characteristics and positive phase change temperatures which can occur under low pressures. Hence, they allow the increase of energy efficiency and reduce the quantity of thermal fluids. This review describes the formation, thermo-physical, rheological, heat transfer properties and applications of four PCS systems: Clathrate hydrate slurry (CHS), Microencapsulated Phase Change Materials Slurry (MPCMS), shape-stabilized PCM slurries (SPCMSs) and Phase Change Material Emulsions (PCMEs). It regroups a bibliographic summary of important information that can be very helpful when such systems are used. It also gives interesting and valuable insights on the choice of the most suitable PCS media for laboratory and industrial applications.

  17. Multi-metallic oxides as catalysts for light alcohols and hydrocarbons from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Miguel [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Diaz, L; Galindo, H de J; Dominguez, J. M; Salmon, Manuel [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    1999-08-01

    A series of Cu-Co-Cr oxides doped with alkaline metals (M), were prepared by the coprecipitation method with metal nitrates (Cu{sup I}I, CO{sup I}I, CR{sup I}II) and (M{sub 2})CO{sub 3} in aqueous solution. The calcined products were used as catalysts for the Fisher-Tropsch synthesis in a stainless-steel fixed bed microreactor. The material was characterized by x-ray diffraction, and the specific surface area, pore size and nitrogen adsorption-desorption properties were also determined. The alkaline metals favored the methanol synthesis and prevent the dehydration reactions whereas the hydrocarbon formation is independent to these metals. [Spanish] Una serie de oxidos Cu-Co-Cr soportados con metales alcalinos (M), fueron preparados por el metodo con nitratos metalicos (Cu{sup I}I, CO{sup I}I, CR{sup I}II) y (M{sub 2})CO{sub 3} en soluciones acuosas. Los productos calcinados fueron usados como catalizadores para la sintesis de Fisher-tropsch en la superficie fija de un microreactor de acero inoxidable. El material fue caracterizado por difraccion de rayos X y el area de superficie especifica, el tamano de poro y propiedades de absorcion-desorcion de nitrogeno fueron determinadas. Los metales alcalinos favorecieron la sintesis de metanol y previnieron las reacciones de deshidratacion, mientras que la formacion de hidrocarburos es independiente de estos metales.

  18. Influence of Cobalt Precursor on Efficient Production of Commercial Fuels over FTS Co/SiC Catalyst

    Directory of Open Access Journals (Sweden)

    Ana Raquel de la Osa

    2016-07-01

    Full Text Available β-SiC-supported cobalt catalysts have been prepared from nitrate, acetate, chloride and citrate salts to study the dependence of Fischer–Tropsch synthesis (FTS on the type of precursor. Com/SiC catalysts were synthetized by vacuum-assisted impregnation while N2 adsorption/desorption, XRD, TEM, TPR, O2 pulses and acid/base titrations were used as characterization techniques. FTS catalytic performance was carried out at 220 °C and 250 °C while keeping constant the pressure (20 bar, space velocity (6000 Ncm3/g·h and syngas composition (H2/CO:2. The nature of cobalt precursor was found to influence basic behavior, extent of reduction and metallic particle size. For β-SiC-supported catalysts, the use of cobalt nitrate resulted in big Co crystallites, an enhanced degree of reduction and higher basicity compared to acetate, chloride and citrate-based catalysts. Consequently, cobalt nitrate provided a better activity and selectivity to C5+ (less than 10% methane was formed, which was centered in kerosene-diesel fraction (α = 0.90. On the contrary, catalyst from cobalt citrate, characterized by the highest viscosity and acidity values, presented a highly dispersed distribution of Co nanoparticles leading to a lower reducibility. Therefore, a lower FTS activity was obtained and chain growth probability was shortened as observed from methane and gasoline-kerosene (α = 0.76 production when using cobalt citrate.

  19. Testing of In-Line Slurry Monitors and Pulsair Mixers with Radioactive Slurries

    Energy Technology Data Exchange (ETDEWEB)

    Hylton, T.D.; Bayne, C.K.

    1999-08-01

    Three in-line slurry monitoring instruments were demonstrated, tested, and evaluated for their capability to determine the transport properties of radioactive slurries. The instruments included the Endress + Hauser Promass 63M Coriolis meter for measuring density, the Lasentec M600P for measuring particle size distribution, and a prototype ultrasonic monitor that was developed by Argonne National Laboratory for measuring suspended solids concentration. In addition, the power consumption of the recirculation pump was monitored to determine whether this parameter could be used as a tool for in-line slurry monitoring. The Promass 63M and the M600P were also evaluated as potential indicators of suspended solids concentration. In order to use the Promass 63M as a suspended solids monitor, the densities of the fluid phase and the dry solid particle phase must be known. In addition, the fluid phase density and the dry solids density must remain constant, as any change will affect the correlation between the slurry density and the suspended solids concentration. For the M600P, the particle size distribution would need to remain relatively constant. These instruments were demonstrated and tested at the Gunite and Associated Tanks Remediation Project at the Oak Ridge National Laboratory. The testing of the instruments was conducted in parallel with the testing of a Pulsair mixing system, which was used to mix the contents of the selected tank. A total of six tests were performed. A submersible pump was positioned at two depths, while the Pulsair system was operated at three mixing rates.

  20. Veronica sublobata M. Fischer in Nederland?

    NARCIS (Netherlands)

    Jongh, de S.E.

    1968-01-01

    A form of Veronica hederifolia L. s. lat., clearly distinguishable from the well-known form of arable land and occurring in the Netherlands in woods, thickets or sometimes along roads is most possibly identical with V. sublobata M. Fischer. Knowledge of the chromosome number of the Dutch material is

  1. Heterogeneous ice slurry flow and concentration distribution in horizontal pipes

    International Nuclear Information System (INIS)

    Wang, Jihong; Zhang, Tengfei; Wang, Shugang

    2013-01-01

    Highlights: • A Mixture CFD model is applied to describe heterogeneous ice slurry flow. • The ice slurry rheological behavior is considered piecewise. • The coupled flow and concentration profiles in heterogeneous slurry flow is acquired. • The current numerical model achieves good balance between precision and universality. -- Abstract: Ice slurry is an energy-intensive solid–liquid mixture fluid which may play an important role in various cooling purposes. Knowing detailed flow information is important from the system design point of view. However, the heterogeneous ice slurry flow makes it difficult to be quantified due to the complex two phase flow characteristic. The present study applies a Mixture computational fluid dynamics (CFD) model based on different rheological behavior to characterize the heterogeneous ice slurry flow. The Mixture CFD model was firstly validated by three different experiments. Then the validated Mixture CFD model was applied to solve the ice slurry isothermal flow by considering the rheological behavior piecewise. Finally, the numerical solutions have displayed the coupled flow information, such as slurry velocity, ice particle concentration and pressure drop distribution. The results show that, the ice slurry flow distribution will appear varying degree of asymmetry under different operating conditions. The rheological behavior will be affected by the asymmetric flow distributions. When mean flow velocity is high, Thomas equation can be appropriate for describing ice slurry viscosity. While with the decreasing of mean flow velocity, the ice slurry behaves Bingham rheology. As compared with experimental pressure drop results, the relative errors of numerical computation are almost within ±15%. The Mixture CFD model is validated to be an effective model for describing heterogeneous ice slurry flow and could supply plentiful flow information

  2. CO dissociation on Ni: The effect of steps and of nickel carbonyl

    DEFF Research Database (Denmark)

    Engbæk, Jakob; Lytken, Ole; Nielsen, Jane Hvolbæk

    2008-01-01

    The dissociation of CO was investigated on a stepped Ni(141313) crystal. The experiments show that the monoatomic steps completely dominate the dissociation of CO on the nickel surface. The activation energy for dissociation of CO along the steps is measured at 500 K to be 150 kJ/mol in the press...... and in the Fischer-Tropsch synthesis....

  3. Protozoan predation in soil slurries compromises determination of contaminant mineralization potential

    International Nuclear Information System (INIS)

    Badawi, Nora; Johnsen, Anders R.; Brandt, Kristian K.; Sørensen, Jan; Aamand, Jens

    2012-01-01

    Soil suspensions (slurries) are commonly used to estimate the potential of soil microbial communities to mineralize organic contaminants. The preparation of soil slurries disrupts soil structure, however, potentially affecting both the bacterial populations and their protozoan predators. We studied the importance of this “slurry effect” on mineralization of the herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA, 14 C-labelled), focussing on the effects of protozoan predation. Mineralization of MCPA was studied in “intact” soil and soil slurries differing in soil:water ratio, both in the presence and absence of the protozoan activity inhibitor cycloheximide. Protozoan predation inhibited mineralization in dense slurry of subsoil (soil:water ratio 1:3), but only in the most dilute slurry of topsoil (soil:water ratio 1:100). Our results demonstrate that protozoan predation in soil slurries may compromise quantification of contaminant mineralization potential, especially when the initial density of degrader bacteria is low and their growth is controlled by predation during the incubation period. - Highlights: ► We studied the protozoan impact on MCPA mineralization in soil slurries. ► Cycloheximide was used as protozoan inhibitor. ► Protozoa inhibited MCPA mineralization in dilute topsoil slurry and subsoil slurry. ► Mineralization potentials may be underestimated when using soil slurries. - Protozoan predation may strongly bias the quantification of mineralization potential when performed in soil slurries, especially when the initial density of degrader bacteria is low such as in subsoil or very dilute topsoil slurries.

  4. The international symposium on 'chemical engineering of gas-liquid-solid catalyst reactions'

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, H

    1978-06-01

    A report on the International Symposium on ''Chemical Engineering of Gas-Liquid-Solid Catalyst Reactions'', sponsored by the University of Liege (3/2-3/78), covers papers on the hydrodynamics, modeling and simulation, operating behavior, and chemical kinetics of trickle-bed reactors; scale-up of a trickle-bed reactor for hydrotreating Kuwait vacuum distillate; experimental results obtained in trickle-bed reactors for hydroprocessing atmospheric residua, hydrogenation of methylstyrene, hydrogenation of butanone, and hydrodemetallization of petroleum residua; advantages and disadvantages of various three-phase reactor types (e.g., for the liquid-phase hydrogenation of carbon monoxide to benzene, SNG, or methanol) and hydrodynamics, mass and heat transfer, and modeling of bubble columns with suspended catalysts (slurry reactors), and their applications (e.g., in SNG and fermentation processes).

  5. New Cu-based catalysts supported on TiO2 films for Ullmann SnAr-type C-O coupling reactions

    NARCIS (Netherlands)

    Benaskar, F.; Engels, V.; Rebrov, E.; Patil, N.G.; Meuldijk, J.; Thuene, P.C.; Magusin, P.C.M.M.; Mezari, B.; Hessel, V.; Hulshof, L.A.; Hensen, E.J.M.; Wheatley, A.E.H.; Schouten, J.C.

    2012-01-01

    New routes for the preparation of highly active TiO2-supported Cu and CuZn catalysts have been developed for CO coupling reactions. Slurries of a titania precursor were dip-coated onto glass beads to obtain either structured mesoporous or non-porous titania thin films. The Cu and CuZn nanoparticles,

  6. On the origin of the cobalt particle size effects in Fischer−Tropsch catalysis

    NARCIS (Netherlands)

    den Breejen, J.P.|info:eu-repo/dai/nl/304837318; Radstake, P.B.|info:eu-repo/dai/nl/304829587; Bezemer, G.L.; Bitter, J.H.|info:eu-repo/dai/nl/160581435; Froseth, V.; Holmen, A.; de Jong, K.P.|info:eu-repo/dai/nl/06885580X

    2009-01-01

    The effects of metal particle size in catalysis are of prime scientific and industrial importance and call for a better understanding. In this paper the origin of the cobalt particle size effects in Fischer−Tropsch (FT) catalysis was studied. Steady-State Isotopic Transient Kinetic Analysis (SSITKA)

  7. Investigation of aqueous slurries as fusion reactor blankets

    International Nuclear Information System (INIS)

    Schuller, M.J.

    1985-01-01

    Numerical and experimental studies were carried out to assess the feasibility of using an aqueous slurry, with lithium in its solid component, to meet the tritium breeding, cooling, and shielding requirements of a controlled thermonuclear reactor (CTR). The numerical studies were designed to demonstrate the theoretical ability of a conceptual slurry blanket to breed adequate tritium to sustain the CTR. The experimental studies were designed to show that the tritium retention characteristics of likely solid components for the slurry were conducive to adequate tritium recovery without the need for isotopic separation. The numerical portion of this work consisted in part of using ANISN, a one-dimensional finite difference neutron transport code, to model the neutronic performance of the slurry blanket concept. The parameters governing tritium production and retention in a slurry were computed and used to modify the results of the ANISN computer runs. The numerical work demonstrated that the slurry blanket was only marginally capable of breeding sufficient tritium without the aid of a neutron multiplying region. The experimental portion of this work consisted of several neutron irradiation experiments, which were designed to determine the retention abilities of LiF particles

  8. Life Cycle Assessment of Slurry Management Technologies

    DEFF Research Database (Denmark)

    Wesnæs, Marianne; Wenzel, Henrik; Petersen, Bjørn Molt

    This report contains the results of Life Cycle Assessments of two slurry management technologies - acidification and decentred incineration. The LCA foundation can be used by the contributing companies for evaluating the environmental sustainability of a specific technology from a holistic Life...... Cycle perspective. Through this the companies can evaluate the environmental benefits and disadvantages of introducing a specific technology for slurry management. From a societal perspective the results can contribute to a clarification of which slurry management technologies (or combination...... of technologies) having the largest potential for reducing the overall environmental impacts....

  9. Availability of phosphorus in cow slurry using isotopic labelling technique

    International Nuclear Information System (INIS)

    Pongsakul, P.; Bertelsen, F.; Gissel-Nielsen, G.

    1988-01-01

    A pot experiment was conducted to evaluate the influence of cow slurry on P uptake by corn and to estimate the readily available P in the slurry by using an isotopic labelling techique. Water-soluble P in soil was increased and isotopic equilibrium of available P was attained after labelled slurry was mixed thoroughly throughout the soil. Labelled slurry applied at planting increased the P uptake by corn, whereas the same amount applied one week before harvest did not affect the P uptake. It was estimated that 46-54% of the total P uptake in plants is derived from the slurry. The readily available P (the L-value) in the slurry was at least 26 mg/kg which equals 3.7% of the total P. (author)

  10. Rheological properties of defense waste slurries

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    The major objective of this two-year project has been to obtain refined and reliable experimental data about the rheological properties of melter feeds. The research has involved both experimental studies and model development. Two experimental facilities have been set up to measure viscosity and pressure drop. Mathematical models have been developed as a result of experimental observation and fundamental rheological theory. The model has the capability to predict the viscosity of melter slurries in a range of experimental conditions. The final results of the investigation could be used to enhance the current design base for slurry transportation systems and improve the performance of the slurry mixing process. If successful, the cost of this waste treatment will be reduced, and disposal safety will be increased. The specific objectives for this project included: (1) the design, implementation, and validation of the experimental facility in both batch and continuous operating modes; (2) the identification and preparation of melter feed samples of both the SRS and Hanford waste slurries at multiple solids concentration levels; (3) the measurement and analysis of the melter feeds to determine the effects of the solids concentration, pH value, and other factors on the rheological properties of the slurries; (4) the correlation of the rheological properties as a function of the measured physical and chemical parameters; and (5) transmission of the experimental data and resulting correlation to the DOE site user to guide melter feed preparation and transport equipment design

  11. Rheological Characterization of Unusual DWPF Slurry Samples

    International Nuclear Information System (INIS)

    Koopman, D. C.

    2005-01-01

    A study was undertaken to identify and clarify examples of unusual rheological behavior in Defense Waste Processing Facility (DWPF) simulant slurry samples. Identification was accomplished by reviewing sludge, Sludge Receipt and Adjustment Tank (SRAT) product, and Slurry Mix Evaporator (SME) product simulant rheological results from the prior year. Clarification of unusual rheological behavior was achieved by developing and implementing new measurement techniques. Development of these new methods is covered in a separate report, WSRC-TR-2004-00334. This report includes a review of recent literature on unusual rheological behavior, followed by a summary of the rheological measurement results obtained on a set of unusual simulant samples. Shifts in rheological behavior of slurries as the wt. % total solids changed have been observed in numerous systems. The main finding of the experimental work was that the various unusual DWPF simulant slurry samples exhibit some degree of time dependent behavior. When a given shear rate is applied to a sample, the apparent viscosity of the slurry changes with time rather than remaining constant. These unusual simulant samples are more rheologically complex than Newtonian liquids or more simple slurries, neither of which shows significant time dependence. The study concludes that the unusual rheological behavior that has been observed is being caused by time dependent rheological properties in the slurries being measured. Most of the changes are due to the effect of time under shear, but SB3 SME products were also changing properties while stored in sample bottles. The most likely source of this shear-related time dependence for sludge is in the simulant preparation. More than a single source of time dependence was inferred for the simulant SME product slurries based on the range of phenomena observed. Rheological property changes were observed on the time-scale of a single measurement (minutes) as well as on a time scale of hours

  12. Strain differences of cadmium-induced hepatotoxicity in Wistar-Imamichi and Fischer 344 rats: involvement of cadmium accumulation

    International Nuclear Information System (INIS)

    Shimada, Hideaki; Takamure, Yasutaka; Shimada, Akinori; Yasutake, Akira; Waalkes, Michael P.; Imamura, Yorishige

    2004-01-01

    We previously reported that Wistar-Imamichi (WI) rats have a strong resistance to cadmium (Cd)-induced lethality compared to other strains such as Fischer 344 (Fischer) rats. The present study was designed to establish biochemical and histological differences in Cd toxicity in WI and Fischer rats, and to clarify the mechanistic basis of these strain differences. A single Cd (4.5 mg/kg, s.c.) treatment caused a significant increase in serum alanine aminotransferase activity, indicative of hepatotoxicity, in Fischer rats, but did not in WI rats. This difference in hepatotoxic response to Cd was supported by pathological analysis. After treatment with Cd at doses of 3.0, 3.5 and 4.5 mg/kg, the hepatic and renal accumulation of Cd was significantly lower in the WI rats than in the Fischer rats, indicating a kinetic mechanism for the observed strain differences in Cd toxicity. Thus, the remarkable resistance to Cd-induced hepatotoxicity in WI rats is associated, at least in part, with a lower tissue accumulation of the metal. Hepatic and renal zinc (Zn) contents after administration were similarly lower in WI than in Fischer rats. When Zn was administered in combination with Cd to Fischer rats, it decreased Cd contents in the liver and kidney, and exhibited a significant protective effect against the toxicity of Cd. We propose the possibility that Zn transporter plays an important role in the strain difference of Cd toxicity in WI and Fischer rats

  13. System and method for continuous solids slurry depressurization

    Science.gov (United States)

    Leininger, Thomas Frederick; Steele, Raymond Douglas; Cordes, Stephen Michael

    2017-07-11

    A system includes a first pump having a first outlet and a first inlet, and a controller. The first pump is configured to continuously receive a flow of a slurry into the first outlet at a first pressure and to continuously discharge the flow of the slurry from the first inlet at a second pressure less than the first pressure. The controller is configured to control a first speed of the first pump against the flow of the slurry based at least in part on the first pressure, wherein the first speed of the first pump is configured to resist a backflow of the slurry from the first outlet to the first inlet.

  14. The CO{sub 2} hydrate slurry; Le coulis de glace

    Energy Technology Data Exchange (ETDEWEB)

    Sari, O.; Hu, J.; Eicher, S.; Brun, F. [Institute of Thermal Engineering, University of Applied Sciences of Western Switzerland, Yverdon-les-Bains (Switzerland); Sari, O.; Hu, J. [Clean Cooling Solutions, spin off of University of Applied Sciences of Western Switzerland, Yverdon-les-Bains (Switzerland); Homsy, P. [Nestec Ltd, Vevey (Switzerland); Logel, J.-C. [Axima Refrigeration, Bischheim (France)

    2007-12-15

    A new, very promising refrigerant was developed, which could be used in industrial processes as well as air conditioners: the CO{sub 2} hydrate slurry. Replacing hydrochlorofluorocarbon HCFC refrigerants has a high priority, due to the strong negative environmental impact of these fluids. New refrigerants have to be environment friendly, non-inflammable, cheap and made of natural materials. CO{sub 2} hydrate slurries and/or a mixture of ice slurry and CO{sub 2} hydrate slurry meet these requirements. The University of Applied Sciences of Western Switzerland in Yverdon, together with industrial partners, investigated the properties of such slurries. The slurries were created using the Coldeco process: the refrigerating fluid is directly injected into the liquid brine. The evaporation of the refrigerating fluid cools the liquid down to its freezing point and homogeneously distributed small crystals appear in the liquid. A test rig was built to measure the physical and chemical properties of the slurries obtained in this way. CO{sub 2} hydrate slurries have a higher energy storage capacitance (500 kJ/kg) than ice slurries (333 kJ/kg). The production of CO{sub 2} hydrate slurries in large quantities in a continuous process was demonstrated. The solid particle concentration was 10%, the pressure amounted to 30 bar and the temperature 2 to 4 {sup o}C. Such slurries can be pumped and circulated in pipe networks. Stainless steel is the appropriate material for such networks. However, the main advantage of the new refrigerant will be, according to the authors, a reduced energy consumption compared to traditional refrigerating cycles: the difference between the temperature required by the user and the refrigerant temperature is reduced, thanks to the use of the latent heat in the new process.

  15. Viability of Ascaris suum eggs in stored raw and separated liquid slurry

    DEFF Research Database (Denmark)

    Katakam, Kiran Kumar; Roepstorff, Allan Knud; Popovic, Olga

    2013-01-01

    SUMMARY Separation of pig slurry into solid and liquid fractions is gaining importance as a way to manage increasing volumes of slurry. In contrast to solid manure and slurry, little is known about pathogen survival in separated liquid slurry. The viability of Ascaris suum eggs, a conservative...... indicator of fecal pollution, and its association with ammonia was investigated in separated liquid slurry in comparison with raw slurry. For this purpose nylon bags with 6000 eggs each were placed in 1 litre bottles containing one of the two fractions for 308 days at 5 °C or 25 °C. Initial analysis...... of helminth eggs in the separated liquid slurry revealed 47 Ascaris eggs per gramme. At 25 °C, egg viability declined to zero with a similar trend in both raw slurry and the separated liquid slurry by day 308, a time when at 5 °C 88% and 42% of the eggs were still viable in separated liquid slurry and raw...

  16. First report of the genus Coeliniaspis Fischer (Hymenoptera, Braconidae, Alysiinae) from China and Russia

    NARCIS (Netherlands)

    Zheng, M.-L.; Chen, J.-H.; Achterberg, van C.

    2017-01-01

    Coeliniaspis Fischer, 2010 (Braconidae, Alysiinae, Dacnusini) is recorded from China and Russia for the first time. Coeliniaspis insularis (Tobias, 1998) is reported from China (Fujian), redescribed and illustrated. A key to the species of the genus Coeliniaspis Fischer is added. Coeliniaspis

  17. Bench-scale production of liquid fuel from woody biomass via gasification

    Energy Technology Data Exchange (ETDEWEB)

    Hanaoka, Toshiaki; Liu, Yanyong; Matsunaga, Kotetsu; Miyazawa, Tomohisa; Hirata, Satoshi; Sakanishi, Kinya [Biomass Technology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Suehiro 2-2-2, Hiro, Kure, Hiroshima 737-0197 (Japan)

    2010-08-15

    The bench-scale production of hydrocarbon liquid fuel was achieved from woody biomass via gasification. The daily production capacity of the biomass-to-liquid (BTL) plant used in this study was 7.8 L of hydrocarbon liquid from 48 kg of woody biomass (on a dry basis), corresponding to 0.05 barrels. The BTL process involved the following steps: oxygen-enriched air gasification of the woody biomass, wet and dry gas cleaning, gas compression, carbon dioxide removal, and the Fischer-Tropsch (FT) synthesis reaction. In the gasification step, oxygen-enriched air gasification was carried out using a downdraft fixed-bed gasifier. The content of oxygen, which acts as the gasifying agent, was increased from 21.0 to 56.7 vol%; maximum values of the conversion to gas on a carbon basis and cold gas efficiency-approximately 96 C-mol% and 87.8%, respectively-were obtained at an oxygen content of around 30 vol%. With the increased oxygen content, the concentrations of CO, H{sub 2}, and CO{sub 2} increased from 22.8 to 36.5 vol%, from 16.8 to 28.1 vol%, and from 9.8 to 14.8 vol%, respectively, while that of N{sub 2} decreased from 48.8 to 16.0 vol%. The feed gas for the FT synthesis reaction was obtained by passing the product gas from the gasification step through a scrubber, carbon dioxide removal tower, and desulfurization tower; its composition was 30.8 vol% CO, 25.2 vol% H{sub 2}, 0.9 vol% CO{sub 2}, 2.5 vol% CH{sub 4}, 40.6 vol% N{sub 2}, < 5 ppb H{sub 2}S, and < 5 ppb COS. The hydrocarbon fuel was synthesized in a slurry bed reactor using hexadecane as the solvent and a Co/SiO{sub 2} catalyst. For hydrocarbons with carbon chain lengths of more than 5 carbon atoms (collectively referred to as C{sub 5+}) in the liquid fuel, a selectivity of 87.5% was obtained along with a chain growth probability of 0.84 under the following conditions: 4 MPa, 280 to 340 C, and a ratio of catalyst weight to feed gas rate (W/F) of 9.3 g.h/mol. (author)

  18. Development of a phenomenological model for coal slurry atomization

    Energy Technology Data Exchange (ETDEWEB)

    Dooher, J.P. [Adelphi Univ., Garden City, NY (United States)

    1995-11-01

    Highly concentrated suspensions of coal particles in water or alternate fluids appear to have a wide range of applications for energy production. For enhanced implementation of coal slurry fuel technology, an understanding of coal slurry atomization as a function coal and slurry properties for specific mechanical configurations of nozzle atomizers should be developed.

  19. Rotary drum dryers for coal slurries

    Energy Technology Data Exchange (ETDEWEB)

    Baunack, F

    1983-04-01

    The suitability, sizing and internal equipment of rotary drum dryers for high-ash coal slurries are discussed. Rotary dryers will handle also difficult slurries; by suitable drum sizes, lifter blades and chains not only high specific evaporation capacities can be achieved but also very high throughputs of up to 400 tons/h of finished product and high evaporation capacities of 60 tons/h.

  20. The National Nanotechnology Initiative: Research and Development Leading to a Revolution in Technology and Industry. Supplement to the President’s 2012 Budget

    Science.gov (United States)

    2011-02-01

    waste heat recuperation/fuel efficiency, and electronic device/systems cooling. • The first discrete quaternary nanocrystal based on silver, lead...Fischer-Tropsch based conversion of natural gas to infrastructure-compatible liquid transportation fuels; (c) low-cost and high-performance nanostructured...on a new cathode with 100-nm cesium iodide coating that reduces HPM system size, weight, and power consumption; (2) nanocomposite space system

  1. Slurry growth: the characterization of a unique phenomenon at the Hanford Site

    International Nuclear Information System (INIS)

    Jansky, M.T.

    1985-01-01

    Slurry growth, unique to the Hanford Site, is a significant increase in the volume of waste contained in a waste storage tank without the addition of new waste. Slurry growth is caused by gas entrapment within waste slurries which causes the slurry to swell, like bread dough. The surface of the slurry rises until either gas pressure is great enough or the weight of the slurry over the gases is great enough to cause the surface of the slurry to collapse. The gases causing slurry growth are generated from decomposition of organics present in high-level nuclear waste (HEDTA, EDTA, GLY). Predominant gases are H 2 , N 2 , N 2 O, NO/sub x/, and CO 2 . More gas is generated, and at a faster rate, as the temperature increases. Slurry growth, although not completely eliminated, is being safely and effectively controlled. The parameters affecting slurry growth have been defined, and predictive equations have been established. The knowledge gained through laboratory experiments contributes to continued safe and efficient high-level waste management practices at the Hanford Site

  2. Physical properties, fuel characteristics and P-fertilizer production related to animal slurry and products from separation of animal slurry

    DEFF Research Database (Denmark)

    Thygesen, Ole; Johnsen, Tina; Triolo, Jin Mi

    The purpose of this study was twofold: firstly to examine the relationship between dry matter content (DM) and specific gravity (SG) and viscosity in slurry and the liquid fraction from slurry separation, and secondly to investigate the potential of energy production from combustion of manure fibre...... from slurry separation and phosphorus (P) fertilizer production from recycling of the ash. Manure fibre has a positive calorific value and may be used as a CO2-neutral fuel for combustion. The ashes from combustion are rich in P, an essential fertilizer compound. The study is based on samples of animal...

  3. Plesiophysa guadeloupensis ("Fischer" Mazé, 1883

    Directory of Open Access Journals (Sweden)

    W Lobato Paraense

    2003-06-01

    Full Text Available A description is presented of the shell and anatomic characters of the planorbid mollusk Plesiophysa guadeloupensis ("Fischer" Mazé, 1883, based on topotypic specimens from a pond in Borricaud (Grande Terre, Guadeloupe. Comparison with previous descriptions of nominal species of Plesiophysa points to its identity with P. ornata (Haas, 1938, of which it is a senior synonym.

  4. Nonsmooth Newton method for Fischer function reformulation of contact force problems for interactive rigid body simulation

    DEFF Research Database (Denmark)

    Silcowitz, Morten; Niebe, Sarah Maria; Erleben, Kenny

    2009-01-01

    contact response. In this paper, we present a new approach to contact force determination. We reformulate the contact force problem as a nonlinear root search problem, using a Fischer function. We solve this problem using a generalized Newton method. Our new Fischer - Newton method shows improved...... qualities for specific configurations where the most widespread alternative, the Projected Gauss-Seidel method, fails. Experiments show superior convergence properties of the exact Fischer - Newton method....

  5. Technical Report on NETL's Non Newtonian Multiphase Slurry Workshop: A path forward to understanding non-Newtonian multiphase slurry flows

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Chris [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Garg, Rahul [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2013-08-19

    The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETL’s Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP project and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EM’s tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.

  6. Biovailability of copper and zinc in pig and cattle slurries

    NARCIS (Netherlands)

    Jakubus, M.; Dach, J.; Starmans, D.A.J.

    2013-01-01

    Slurry is an important source of macronutrients, micro-nutrients and organic matter. Despite the considerable fertilizer value of slurry, it may be abundant in amounts of copper and zinc originating from dietary. The study presents quantitative changes in copper and zinc in individual slurries (pig

  7. Vitrification of SRP waste by a slurry-fed ceramic melter

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1980-01-01

    Savannah River Plant (SRP) high-level waste (HLW) can be vitrified by feeding a slurry, instead of a calcine, to a joule-heated ceramic melter. Potential advantages of slurry feeding include (1) use of simpler equipment, (2) elimination of handling easily dispersed radioactive powder, (3) simpler process control, (4) effective mixing, (5) reduced off-gas volume, and (6) cost savings. Assessment of advantages and disadvantages of slurry feeding along with experimental studies indicate that slurry feeding is a promising way of vitrifying waste

  8. Structure and Reactivity of Zeolite- and Carbon-Supported Catalysts for the Oxidative Carbonylation of Alcohols

    OpenAIRE

    Briggs, Daniel Neal

    2010-01-01

    AbstractStructure and Reactivity of Zeolite- and Carbon-Supported Catalysts for the Oxidative Carbonylation of AlcoholsbyDaniel Neal BriggsDoctor of Philosophy in Chemical EngineeringUniversity of California, BerkeleyProfessor Alexis T. Bell, Chair The oxidative carbonylation of alcohols to produce dialkyl carbonates is a process that takes place commercially in a slurry of cuprous chloride in the appropriate alcohol. While this process is chemically efficient, it incurs costs in terms of ene...

  9. Evaluation of mechanical properties in metal wire mesh supported selective catalytic reduction (SCR) catalyst structures

    Science.gov (United States)

    Rajath, S.; Siddaraju, C.; Nandakishora, Y.; Roy, Sukumar

    2018-04-01

    The objective of this research is to evaluate certain specific mechanical properties of certain stainless steel wire mesh supported Selective catalytic reduction catalysts structures wherein the physical properties of the metal wire mesh and also its surface treatments played vital role thereby influencing the mechanical properties. As the adhesion between the stainless steel wire mesh and the catalyst material determines the bond strength and the erosion resistance of catalyst structures, surface modifications of the metal- wire mesh structure in order to facilitate the interface bonding is therefore very important to realize enhanced level of mechanical properties. One way to enhance such adhesion properties, the stainless steel wire mesh is treated with the various acids, i.e., chromic acid, phosphoric acid including certain mineral acids and combination of all those in various molar ratios that could generate surface active groups on metal surface that promotes good interface structure between the metal- wire mesh and metal oxide-based catalyst material and then the stainless steel wire mesh is dipped in the glass powder slurry containing some amount of organic binder. As a result of which the said catalyst material adheres to the metal-wire mesh surface more effectively that improves the erosion profile of supported catalysts structure including bond strength.

  10. Drag reduction of dense fine-grained slurries

    Czech Academy of Sciences Publication Activity Database

    Vlasák, Pavel; Chára, Zdeněk; Štern, Petr

    2010-01-01

    Roč. 58, č. 4 (2010), s. 261-270 ISSN 0042-790X R&D Projects: GA ČR(CZ) GAP105/10/1574 Institutional research plan: CEZ:AV0Z20600510 Keywords : kaolin slurry * drag reduction * experimental investigation * peptization * slurry rheology Subject RIV: BK - Fluid Dynamics Impact factor: 0.553, year: 2010

  11. Anaerobic digestion as a slurry management strategy : a consequential life cycle assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hamelin, L.; Wesnaes, M.; Wenzel, H.; Petersen, B.M. [Southern Denmark Univ. (Denmark). Inst. of Chemical Engineering, Biotechnology and Environmental Technology

    2010-07-01

    Anaerobic digestion of slurry represents an environmental opportunity for both slurry management and renewable energy production in countries with high animal density. This study evaluated the environmental impacts of 4 biogas production alternatives in which slurry was the only input in the process, without supplementary addition of easily degradable carbon. This was achieved by exposing the slurry to different separation technologies. The biomass mixture input for biogas production included solid fraction from slurry separation as well as raw slurry, proportioned in order to achieve economical methane yield. The separation processes considered in this study were mechanical separation; mechanical separation combined with the addition of flocculants; and mechanical separation combined with a thermal treatment. Four biogas alternatives were compared to a reference slurry management scenario, notably to use the slurry as a fertilizer without prior treatment. The modelling was based on Danish conditions and used the consequential life cycle assessment methodology. The produced biogas was used for production of heat and power and the degassed slurry was used as an organic fertilizer.

  12. A comprehensive small and pilot-scale fixed-bed reactor approach for testing Fischer–Tropsch catalyst activity and performance on a BTL route

    Directory of Open Access Journals (Sweden)

    Piyapong Hunpinyo

    2017-05-01

    Full Text Available Ruthenium (Ru-based catalysts were prepared by the sol–gel technique for biomass-to-liquid (BTL operation and had their performance tested under different conditions. The catalytic study was carried out in two steps using a simple and reliable method. In the first step, the effects of reaction temperatures and inlet H2/CO molar feed ratios obtained from biomass gasification were investigated on the catalyst performance. A set of experimental results obtained in a laboratory fixed bed reactor was described and summarized. Moreover, a simplified Langmuir–Hinshelwood–Hougen–Watson (LHHW kinetic model was proposed with two promising models, where the surface decomposition of carbon monoxide was assumed as the rate determining step (RDS. In the second step, a FT pilot plant was conducted to validate the catalyst performance, especially the conversion efficiency, heat and mass transfer effects, and system controllability. The results indicated that our catalyst performances under mild conditions were not significantly different in many regards from those previously reported for a severe condition, as especially Ru-based catalyst can be performed to vary over a wide range of conditions to yield specific liquid productivity. The results in terms of the hydrocarbon product distribution obtained from the pilot scale operations were similar with that obtained from the related lab scale experiments.

  13. Heavy cement slurries; Pastas pesadas de cimento

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Francisco Avelar da; Conceicao, Antonio C. Farias [PETROBRAS, XX (Brazil). Distrito de Perfuracao do Nordeste. Div. de Tecnicas de Perfuracao; Marins, Carlos Cesar Silva [PETROBRAS, XX (Brazil). Dept. de Perfuracao. Div. de Revestimento e Cimentacao

    1990-12-31

    When going deeper in a high pressure well, the only way to successfully cement your casing or linear is through the use of heavy cement slurry. In 1987 PETROBRAS geologists presented to the Drilling Department a series of deep, hot and high pressure wells to be drilled. The Casing and Cement Division of this department then started a program to face this new challenge. This paper introduces the first part of this program and shows how PETROBRAS is dealing with heavy weight slurries. We present the slurry formulations tested in laboratory, the difficulties found in mixing them in the field, rheology measurements, API free water and API fluid loss from both laboratory and field samples. (author) 3 tabs.

  14. Ultra-Clean Fischer-Tropsch Fuels Production and Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Steve Bergin

    2005-10-14

    The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: Dynamometer Durability Testing, the Denali Bus Fleet Demonstration, Bus Fleet Demonstrations Emissions Analysis, Impact of SFP Fuel on Engine Performance, Emissions Analysis, Feasibility Study of SFPs for Rural Alaska, and Cold Weather Testing of Ultra Clean Fuel.

  15. A simple biofilter for treatment of pig slurry in Malaysia.

    Science.gov (United States)

    Sommer, S G; Mathanpaal, G; Dass, G T

    2005-03-01

    On commercial pig production farms in South East (SE) Asia, the liquid effluent is often discharged into rivers. The discharge is a hazard to the environment and to the health of people using water from the river either for consumption or for irrigation. Therefore, a simple percolation biofilter for treatment of the liquid effluent was developed. Pig slurry was treated in test-biofilters packed with different biomass for the purpose of selecting the most efficient material, thereafter the efficiency of the biofilter was examined at farm scale with demo biofilters using the most efficient material. The effect of using "Effective Microorganisms" (EM) added to slurry that was treated with biofilter material mixed with Glenor KR+ was examined. Slurry treatment in the test-biofilters indicated that rice straw was better than coconut husks, wood shavings, rattan strips and oil palm fronds in reducing BOD. Addition of EM and Glenor KR+ to slurry and biofilter material, respectively, had no effect on the temperature of the biofilter material or on the concentrations of organic and inorganic components of the treated slurry. The BOD of slurry treated in test biofilters is reduced to between 80 and 637 mg O2 I(-1) and in the demo biofilter to between 3094 and 3376 mg O2 l(-1). The concentration of BOD in the effluent is related to the BOD in the slurry being treated and the BOD concentration in slurry treated in test biofilters was lower than BOD of slurry treated in demo biofilters. The demo biofilter can reduce BOD to between 52 an 56% of the original value, and TSS, COD (chemical oxygen demand) and ammonium (NH4+) to 41-55% of the original slurry. The treated effluent could not meet the standards for discharge to rivers. The composted biofilter material has a high content of nitrogen and phosphorus; consequently, the fertilizer value of the compost is high. The investments costs were 123 US dollar per SPP which has to be reduced if this method should be a treatment option

  16. Effect of alkaline slurry on the electric character of the pattern Cu wafer

    International Nuclear Information System (INIS)

    Hu Yi; Liu Yuling; Liu Xiaoyan; He Yangang; Wang Liran; Zhang Baoguo

    2011-01-01

    For process integration considerations, we will investigate the impact of chemical mechanical polishing (CMP) on the electrical characteristics of the pattern Cu wafer. In this paper, we investigate the impacts of the CMP process with two kinds of slurry, one of which is acid slurry of SVTC and the other is FA/O alkaline slurry purchased from Tianjin Jingling Microelectronic Material Limited. Three aspects were investigated: resistance, capacitance and leakage current. The result shows that after polishing by the slurry of FA/O, the resistance is lower than the SVTC. After polishing by the acid slurry and FA/O alkaline slurry, the difference in capacitance is not very large. The values are 0.1 nF and 0.12 nF, respectively. The leakage current of the film polished by the slurry of FA/O is 0.01 nA, which is lower than the slurry of SVTC. The results show that the slurry of FA/O produced less dishing and oxide loss than the slurry of SVTC. (semiconductor technology)

  17. Rheological properties of concentrated alumina slurries: influence of ph and dispersant agent

    International Nuclear Information System (INIS)

    Ewais, E.M.M.

    2004-01-01

    The relationship between the ph, the electrolyte concentrations and the rheological properties of high concentrated alumina slurries in aqueous medium is of great importance because it is considered to be the key to control the stability of the slurries from flocculation. Zeta potential of alumina slurries with and without Duramax C (dispersant agent) as a function of ph was studied. Two ph around the zero point of charge of alumina slurries were selected for the investigation of rheological properties. The rheological properties of aqueous alumina slurries with respect to different parameters, e.g.: viscosity, elastic modulus (storage modulus G) and viscous modulus (loss modulus G), were investigated. Viscosity measurements of the slurries as a function of Duramax C content at both ph 8.4 and 9.4) were used to determine the state of slurries. Three states of slurries, termed flocculated, partially de flocculated and fully de flocculated, were selected for further investigation. The viscosity of the three slurries at both ph as a function of shear rate was determined. Fully de flocculated slurry shows Newtonian behavior at all shear rates at both tested ph compared by the partial de flocculated and flocculated system. Results of investigation of G and G at ph of 9.4 as a function of applied stress explored the critical stress

  18. Single stage high pressure centrifugal slurry pump

    Science.gov (United States)

    Meyer, John W.; Bonin, John H.; Daniel, Arnold D.

    1984-03-27

    Apparatus is shown for feeding a slurry to a pressurized housing. An impeller that includes radial passages is mounted in the loose fitting housing. The impeller hub is connected to a drive means and a slurry supply means which extends through the housing. Pressured gas is fed into the housing for substantially enveloping the impeller in a bubble of gas.

  19. Use of radiation-induced polymers in cement slurries

    International Nuclear Information System (INIS)

    Knight, B.L.; Rhudy, J.S.; Gogarty, W.B.

    1976-01-01

    Water loss from cement slurries is reduced by incorporating within a cement slurry a polymer obtained as a product of radiation-induced polymerization of acrylamide and/or methacrylamide and acrylic acid, methacrylic acid, and/or alkali metal salts thereof. The polymerization is preferably carried out in 10-60 percent aqueous monomer solution with gamma radiation. The aqueous monomer solution preferably contains 25-99 percent acrylamide and 75-1 percent sodium acrylate. The polymer can be present in concentration of about 0.001 to about 3.0 weight percent, based on the aqueous phase of the slurry

  20. Methane Fermentation of Slurry with Chemical and Biological Additive

    Directory of Open Access Journals (Sweden)

    Anna Smurzyńska

    2017-12-01

    Full Text Available The problem of proper slurry management is primarily present in intensive livestock production. Industrialized livestock farms generate enormous quantities of manure droppings in a livestock-litter-free system. The traditional management of slurry is made by using it as a fertilizer. Alternative techniques used for neutralizing the detrimental effect of slurry are based on the use of chemical and biological additives, as well as by introducing aerobic environment through aerobic or anaerobic digestion, leading to methane fermentation. In the experiment, cattle manure was used, which came from the Przybroda farm belonging to the University of Life Sciences in Poznan. The aim of the study was to determine the biogas yield of slurry using the chemical and biological additive available on the Polish market. Mesophilic and thermophilic fermentation was used for the indication of the effectiveness of the employed fermentation process. The slurry was supplemented by a biological and chemical additive, i.e. effective microorganisms and – PRP, respectively. The experiment allowed to achieve a higher biogas yield during the use of effective microorganisms.