WorldWideScience

Sample records for fired plants affaldsforbraendingsmodeller

  1. Waste incineration models for operation optimization. Phase 1: Advanced measurement equipment for improved operation of waste fired plants; Affaldsforbraendingsmodeller til driftsoptimering. Fase 1: Avanceret maeleudstyr til forbedret drift af affaldsfyrede anlaeg

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-01

    This report describes results from the PSO projects ELTRA-5294 and ELTRA-5348: Waste incineration models for operation optimization. Phase 1, and Advanced measurement equipment for improved operation of waste fired plants. Phase 1. The two projects form the first step in a project course build on a long-term vision of a fully automatic system using a wide range of advanced measurement data, advanced dynamic models for prediction of operation and advanced regulation methods for optimization of the operation of waste incinerator plants. (BA)

  2. Fire management and invasive plants- A handbook

    Science.gov (United States)

    Brooks, Matthew L.; Lusk, Michael

    2008-01-01

    Fire management can help maintain natural habitats, increase forage for wildlife, reduce fuel loads that might otherwise lead to catastrophic wildfire, and maintain natural succession. Today, there is an emerging challenge that fire managers need to be aware of: invasive plants. Fire management activities can create ideal opportunities for invasions by nonnative plants, potentially undermining the benefits of fire management actions. This manual provides practical guidelines that fire managers should consider with respect to invasive plants.

  3. A new manufacturing plant for fired color tile

    Institute of Scientific and Technical Information of China (English)

    ZhaoZhoumin

    2005-01-01

    The article describes the new manufacturing plant for fired colour tile designed by Xian Research and Design Institute for Nei Mongolia Yinshan Ceramic Ltd. Company. The plant with an annual capacity of 10million fired color tiles.

  4. Biomass Co-Firing in Suspension-Fired Power Plants

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen; Hvid, Søren Lovmand; Baxter, Larry

    The objective of the project is to investigate critical issues associated with cofiring with low-NOx burners and cofiring in advanced suspension-fired plants with for example high-temperature steam cycles. Experience has been gained using biofuels for cofiring in older power plant units. However...... modelling tool adapted to accommodate biomass cofiring combustion features. The CFD tool will be able to predict deposit accumulation, particle conversion, fly ash composition, temperatures, velocities, and composition of furnace gases, etc. The computer model will primarily be used in the development...... of advanced cofired combustion and potentially gasification systems and secondarily to resolve immediate and critical issues associated with cofired systems. Another essential issue is the assessment of fuel flexibility in cofired plants to help keep biomass use competitive compared to other renewable...

  5. Coal-fired plants worst point sources

    Energy Technology Data Exchange (ETDEWEB)

    Elvingson, P.

    2007-03-15

    Coal-fired power plants dominate the twenty worst emitters, not only of carbon dioxide but also of sulphur dioxide and nitrogen oxides, in the 25 'old' EU member countries. Seven plants are among the 25 worst on all three lists. They are Belchatow, Rybnik and Kozience in Poland, Cottam and Longannet in the UK, Puentes in Spain and Taranto in Italy. All data refer to 2004. German plants are among the worst in respect of carbon dioxide - nine of the 25 biggest point sources are in Germany. Topping the list for sulphur dioxide is the coal-fired Puentes power plant in the northwest of Spain. Second highest as regards sulphur dioxide is the Megalopolis A (I, II, III) complex on the Peloponnesian peninsula in Greece. Close by is Megalopolis B (IV), also on the worst 25 list. All are fired with lignite from local deposits. British plants account for nine of the 25 worst emitters of nitrogen oxides. Figures from tables reproduced in the article are from the European Pollutant Emission Register, EPER which covers 11,500 industrial facilities in the EU25 and Norway and has recently been updated with 2004 figures. 3 tabs., 1 photo.

  6. Advanced coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hebel, G.; Weirich, P.H.

    1988-02-01

    Reconstruction of coal-fired power plants under the aspects of higher economic efficiency and lower emissions has become more interesting as the petroleum and natural gas reserves have become shorter. A number of advanced concepts have been presented in the last few years and tested in experimental facilities, pilot plants and demonstration plants. If construction is envisaged within the next five years, better steam processes and coal gas turbines should be employed. Supercharged steam generators, which will bring about further improvements, will be available by the mid-Nineties.

  7. Advanced coal-fired power plant technology

    Energy Technology Data Exchange (ETDEWEB)

    Klauke, F. [Babcock Borsig Power Energy GmbH (Germany)

    2001-07-01

    This paper presents the joint efforts of a large European group of manufacturers, utilities and institutes co-operating in a phased long-term project named 'Advanced 700{degree}C PF Power Plant'. Net efficiences of more than 50% will be reached through development of a super critical steam cycle operating at maximum steam temperatures in the range of 700{degree}C. The principal efforts are based on development of creep resistent nickel-based materials named super-alloys for the hottest areas of the water/steam cycle. The Advanced 700{degree}C PF Power Plant project will improve the competitiveness of coal-fired power generation. Furthermore, it will provide a major reduction of CO{sub 2} from coal-fired power plants in the range of 15% from the best PF power plants presently and up to 40% from older plants. The demonstration programme will leave the possibility of any plant output between 400 and 1000 MW. The project will run to the end of 2003. 8 figs.

  8. B-Plant canyon fire foam supply

    Energy Technology Data Exchange (ETDEWEB)

    Gainey, T.

    1995-01-01

    A new raw water supply was installed for the B-Plant fire foam system. This document details tests to be performed which will demonstrate that the system can function as designed. The tests include: Verification of the operation of the automatic valves at the cells; Measurement of water flow and pressure downstream of the proportioner; Production of foam, and measurement of foam concentration. Included as an appendix is a copy of the work package resolution (J4 & J4a).

  9. Fire-Dependent Plant Communities (burn_plan_p)

    Data.gov (United States)

    National Park Service, Department of the Interior — The Fire-Dependent Plant Communities (burn_plan_p) data layer was developed in conjunction with the St Croix National Scenic Riverway's Fire Management Plan. It...

  10. Drivers of biomass co-firing in U.S. coal-fired power plants

    Science.gov (United States)

    Michael E. Goerndt; Francisco X. Aguilar; Kenneth Skog

    2013-01-01

    Substantial knowledge has been generated in the U.S. about the resource base for forest and other residue-derived biomass for bioenergy including co-firing in power plants. However, a lack of understanding regarding power plant-level operations and manager perceptions of drivers of biomass co-firing remains. This study gathered information from U.S. power plant...

  11. Cable fire risk of a nuclear power plant; Ydinvoimalaitoksen kaapelipaloriski

    Energy Technology Data Exchange (ETDEWEB)

    Aulamo, H.

    1998-02-01

    The aim of the study is to carry out a comprehensive review of cable fire risk issues of nuclear power plants (NPP) taking into account latest fire and risk assessment research results. A special emphasis is put on considering the fire risk analysis of cable rooms in the framework of TVO Olkiluoto NPP probabilistic safety assessment. The assumptions made in the analysis are assessed. The literature study section considers significant fire events at nuclear power plants, the most severe of which have nearly led to a reactor core damage (Browns Ferry, Greifswald, Armenia, Belojarsk, Narora). Cable fire research results are also examined. 62 refs.

  12. 76 FR 46330 - NUREG-1934, Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG); Second Draft...

    Science.gov (United States)

    2011-08-02

    ... COMMISSION NUREG-1934, Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG); Second Draft... for public comment a document entitled, NUREG-1934 (EPRI 1023259), ``Nuclear Power Plant Fire Modeling... pdr.resource@nrc.gov . NUREG-1934 (EPRI 1023259), ``Nuclear Power Plant Fire Modeling...

  13. Crisis management with applicability on fire fighting plants

    Science.gov (United States)

    Panaitescu, M.; Panaitescu, F. V.; Voicu, I.; Dumitrescu, L. G.

    2017-08-01

    The paper presents a case study for a crisis management analysis which address to fire fighting plants. The procedures include the steps of FTA (Failure tree analysis). The purpose of the present paper is to describe this crisis management plan with tools of FTA. The crisis management procedures have applicability on anticipated and emergency situations and help to describe and planning a worst-case scenario plan. For this issue must calculate the probabilities in different situations for fire fighting plants. In the conclusions of paper is analised the block diagram with components of fire fighting plant and are presented the solutions for each possible risk situations.

  14. US EPA Region 9 Coal-Fired Power Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Approximate locations of active coal-fired power plants located in US EPA's Region 9. Emission counts from the 2005 National Emissions Inventory (NEI) are included...

  15. Corrosion and Materials Performance in biomass fired and co-fired power plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Larsen, OH; Biede, O

    2003-01-01

    not previously encountered in coal-fired power plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. In woodchip boilers, a similar corrosion rate and corrosion mechanism has on some occasions been observed. Co-firing of straw (10....... Results from 100% straw-firing, woodchip and co-firing of straw with coal will be reported. The corrosion mechanisms observed are summarized and the corrosion rates for 18-8 type stainless steels are compared....

  16. Materials Problems and Solutions in Biomass Fired Plants

    DEFF Research Database (Denmark)

    Larsen, Ole Hede; Montgomery, Melanie

    2006-01-01

    Due to Denmark’s pledge to reduce carbon dioxide emissions, biomass is utilised increasingly as a fuel for generating energy. Extensive research and demonstration projects especially in the area of material performance for biomass fired boilers have been undertaken to make biomass a viable fuel...... resource. When straw is combusted, potassium chloride and potassium sulphate are present in ash products, which condense on superheater components. This gives rise to specific chlorine corrosion problems not previously encountered in coal-fired power plants. The type of corrosion attack can be directly....... With both 10 and 20% straw, no chlorine corrosion was seen. This paper will describe the results from in situ investigations undertaken in Denmark on high temperature corrosion in biomass fired plants. Results from 100% straw-firing, woodchip and co-firing of straw with fossil fuels are summarised...

  17. Coal-fired CCS demonstration plants, 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-10-15

    The present report reviews activities taking place focused on the eventual large-scale deployment of carbon capture systems on coal-fired power plants. With this aim in mind, there are three main CO2 capture technology streams currently being developed and tested; these comprise pre-combustion capture, post-combustion capture, and systems based on oxyfuel technology. Although numerous other capture systems have been proposed, these three are currently the focus of most RD&D efforts and this report concentrates on these. More speculative technologies still at early stages in their development are not addressed. The overall aims of this report are to provide an update of recent technological developments in each of the main categories of CO2 capture, and to review the current state of development of each, primarily through an examination of larger-scale development activities taking place or proposed. However, where appropriate, data generated by smaller-scale testing is noted, especially where this is feeding directly into ongoing programmes aimed at developing further, or scaling-up the particular technology. Each is reviewed and the status of individual coal-based projects and proposals described. These are limited mainly to what are generally described as pilot and/or demonstration scale. Where available, learning experiences and operational data being generated by these projects is noted. Technology Readiness Levels (TRLs) of individual projects have been used to provide an indication of technology scale and maturity. For pre-combustion capture, post-combustion capture and oxyfuel systems, an attempt has been made to identify the technological challenges and gaps in the knowledge that remain, and to determine what technology developers are doing in terms of RD&D to address these. However, issues of commercial confidentiality have meant that in some cases, information in the public domain is limited, hence it has only been possible to identify overarching

  18. Materials Problems and Solutions in Biomass fired plants

    DEFF Research Database (Denmark)

    Larsen, Ole Hede; Montgomery, Melanie

    2006-01-01

    Owing to Denmark's pledge to reduce carbon dioxide emissions, biomass is being increasingly utilised as a fuel for generating energy. Extensive research and development projects, especially in the area of material performance for biomass fired boilers, have been undertaken to make biomass a viable...... fuel resource. When straw is combusted, potassium chloride and potassium sulphate are present in ash products, which condense on superheater components. This gives rise to specific chlorine corrosion problems not previously encountered in coal fired power plants. The type of corrosion attack can...... plants. With both 10 and 20% straw, no chlorine corrosion was seen. The present paper will describe the results from in situ investigations undertaken in Denmark on high temperature corrosion in biomass fired plants. Results from 100% straw firing, woodchip and cofiring of straw with fossil fuels...

  19. Operation experience of Suralaya coal-fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    Saragi, M. [PT Indonesia Power (Indonesia). Suralaya Generation Business Unit

    2004-07-01

    Coal utilization for generating electricity at Suralaya coal-fired power plant has been increased from time to time. It has been driven by the growth of electricity demand from industry as well as consumption from the household sector. Generally, boilers for power plant were designed to burn the locally available coals with a limited specification range. Suralaya coal-fired power plant was built based on coal specifications from Bukit Asam (Sumatera Island), which categorized as sub-bituminous coal rank. Nowadays, supply of coal for Suralaya coal-fired power plant not only comes from Bukit Asam coal mine but also from Kalimantan coal mines. The utilization of coal from the other mines has brought other consequences on operating and equipment of the plant. It needs some effort to deal with the effect from different specifications of coal from the originated design of coal. 4 tabs.

  20. Bituminous coal fired USC power plants for the European market

    Energy Technology Data Exchange (ETDEWEB)

    Klebes, J.; Tigges, K.-D.; Klauke, F.; Busekrus, K. [Hitachi Power Europe GmbH (Germany)

    2007-07-01

    The presentation, in slide/viewgraph form, is in sections entitled: Introduction; Steam generator design features; Optimization of plant efficiency; Steam turbine design features (USC material design principles; rotating and stationary blades; last stage blade (LP 48 inch)); and Future developments. The presentation includes a chart of recent highly efficient coal-fired power plants in Japan, China and Germany.

  1. Potential of Co-firing of Woody Biomass in Coal Fired Power Plant

    Science.gov (United States)

    Makino, Yosuke; Kato, Takeyoshi; Suzuoki, Yasuo

    Taking the distributing woody biomass supply into account, this paper assesses the potential of a co-firing of woody biomass in utility's coal power plant from the both energy-saving and economical view points. Sawmill wastes, trimming wastes from fruit farms and streets, and thinning residues from forests in Aichi Prefecture are taken into account. Even though transportation energy is required, almost all of woody biomass can be more efficiently used in co-firing with coal than in a small-scale fuel cell system with gasification as a distributed utilization. When the capital cost of fuel cell system with 25% of total efficiency, including preprocess, gasification and power generation, is higher than 170× 103yen/kW, almost all of thinning residues can be more economically used in co-firing. The cost of woody biomass used in co-firing is also compared with the transaction cost of renewable power in the current RPS scheme. The result suggests the co-firing of woody biomass in coal fired power plant can be feasible measure for effective utilization of woody biomass.

  2. Fire hazard analysis for Plutonium Finishing Plant complex

    Energy Technology Data Exchange (ETDEWEB)

    MCKINNIS, D.L.

    1999-02-23

    A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41, Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards.

  3. Corrosion Investigations in Straw-Fired Power Plants in Denmark

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Frandsen, Flemming; Karlsson, A

    2001-01-01

    In Denmark, straw and other types of biomass are used for generating energy in power plants. Straw has the advantage that it is a "carbon dioxide neutral fuel" and therefore environmentally acceptable. Straw combustion is associated with corrosion problems which are not encountered in coal......-fired plants. During combustion, potassium chloride and SO2 are released in the flue gas and through condensation and deposition processes, they will result in the formation of superheater ash deposits rich in potassium chloride and potassium sulphate. Such ash deposits give rise to varying degrees...... of accelerated corrosion. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. A series of field tests have been undertaken in the various straw-fired power plants in Denmark, namely the Masnedø, Rudkøbing and Ensted CHP plants. Three types...

  4. A novel plant-fungal mutualism associated with fire.

    Science.gov (United States)

    Baynes, Melissa; Newcombe, George; Dixon, Linley; Castlebury, Lisa; O'Donnell, Kerry

    2012-01-01

    Bromus tectorum, or cheatgrass, is native to Eurasia and widely invasive in western North America. By late spring, this annual plant has dispersed its seed and died; its aboveground biomass then becomes fine fuel that burns as frequently as once every 3-5 y in its invaded range. Cheatgrass has proven to be better adapted to fire there than many competing plants, but the contribution of its fungal symbionts to this adaptation had not previously been studied. In sampling cheatgrass endophytes, many fire-associated fungi were found, including Morchella in three western states (New Mexico, Idaho, and Washington). In greenhouse experiments, a New Mexico isolate of Morchella increased both the biomass and fecundity of its local cheatgrass population, thus simultaneously increasing both the probability of fire and survival of that event, via more fuel and a greater, belowground seed bank, respectively. Re-isolation efforts proved that Morchella could infect cheatgrass roots in a non-mycorrhizal manner and then grow up into aboveground tissues. The same Morchella isolate also increased survival of seed exposed to heat typical of that which develops in the seed bank during a cheatgrass fire. Phylogenetic analysis of Eurasian and North American Morchella revealed that this fire-associated mutualism was evolutionarily novel, in that cheatgrass isolates belonged to two phylogenetically distinct species, or phylotypes, designated Mel-6 and Mel-12 whose evolutionary origin appears to be within western North America. Mutualisms with fire-associated fungi may be contributing to the cheatgrass invasion of western North America. Copyright © 2011 British Mycological Society. All rights reserved.

  5. Aerosol nucleation in coal-fired power-plant plumes

    Science.gov (United States)

    Stevens, Robin; Lonsdale, Chantelle; Brock, Charles; Makar, Paul; Knipping, Eladio; Reed, Molly; Crawford, James; Holloway, John; Ryerson, Tim; Huey, L. Greg; Nowak, John; Pierce, Jeffrey

    2013-05-01

    New-particle nucleation within coal-fired power-plant plumes can have large effects on particle number concentrations, particularly near source regions, with implications for human health and climate. In order to resolve the formation and growth of particles in these plumes, we have integrated TwO-Moment Aerosol Sectional (TOMAS) microphysics in the System for Atmospheric Modelling (SAM), a large-eddy simulation/cloud-resolving model (LES/CRM). We have evaluated this model against aircraft observations for three case studies, and the model reproduces well the major features of each case. Using this model, we have shown that meteorology and background aerosol concentrations can have strong effects on new-particle formation and growth in coal-fired power-plant plumes, even if emissions are held constant. We subsequently used the model to evaluate the effects of SO2 and NOx pollution controls on newparticle formation in coal-fired power-plant plumes. We found that strong reductions in NOx emissions without concurrent reductions in SO2 emissions may increase new-particle formation, due to increases in OH formation within the plume. We predicted the change in new-particle formation due to changes in emissions between 1997 and 2010 for 330 coal-fired power plants in the US, and we found a median decrease of 19% in new-particle formation. However, the magnitude and sign of the aerosol changes depend greatly on the relative reductions in NOx and SO2 emissions in each plant. More extensive plume measurements for a range of emissions of SO2 and NOx and in varying background aerosol conditions are needed, however, to better quantify these effects.

  6. Plant functional traits in relation to fire in crown-fire ecosystems

    Science.gov (United States)

    Pausas, Juli G.; Bradstock, Ross A.; Keith, David A.; Keeley, Jon E.

    2004-01-01

    Disturbance is a dominant factor in many ecosystems, and the disturbance regime is likely to change over the next decades in response to land-use changes and global warming. We assume that predictions of vegetation dynamics can be made on the basis of a set of life-history traits that characterize the response of a species to disturbance. For crown-fire ecosystems, the main plant traits related to postfire persistence are the ability to resprout (persistence of individuals) and the ability to retain a persistent seed bank (persistence of populations). In this context, we asked (1) to what extent do different life-history traits co-occur with the ability to resprout and/or the ability to retain a persistent seed bank among differing ecosystems and (2) to what extent do combinations of fire-related traits (fire syndromes) change in a fire regime gradient? We explored these questions by reviewing the literature and analyzing databases compiled from different crown-fire ecosystems (mainly eastern Australia, California, and the Mediterranean basin). The review suggests that the pattern of correlation between the two basic postfire persistent traits and other plant traits varies between continents and ecosystems. From these results we predict, for instance, that not all resprouters respond in a similar way everywhere because the associated plant traits of resprouter species vary in different places. Thus, attempts to generalize predictions on the basis of the resprouting capacity may have limited power at a global scale. An example is presented for Australian heathlands. Considering the combination of persistence at individual (resprouting) and at population (seed bank) level, the predictive power at local scale was significantly increased.

  7. LOCAL IMPACTS OF MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN, T.M.; BOWERMAN, B.; ADAMS, J.; MILIAN, L.; LIPFERT, F.; SUBRAMANIAM, S.; BLAKE, R.

    2005-09-21

    Mercury is a neurotoxin that accumulates in the food chain and is therefore a health concern. The primary human exposure pathway is through fish consumption. Coal-fired power plants emit mercury and there is uncertainty over whether this creates localized hot spots of mercury leading to substantially higher levels of mercury in water bodies and therefore higher exposure. To obtain direct evidence of local deposition patterns, soil and vegetations samples from around three U.S. coal-fired power plants were collected and analyzed for evidence of hot spots and for correlation with model predictions of deposition. At all three sites, there was no correlation between modeled mercury deposition and either soil concentrations or vegetation concentrations. It was estimated that less than 2% of the total mercury emissions from these plants deposited within 15 km of these plants. These small percentages of deposition are consistent with the literature review findings of only minor perturbations in environmental levels, as opposed to hot spots, near the plants. The major objective of the sampling studies was to determine if there was evidence for hot spots of mercury deposition around coal-fired power plants. From a public health perspective, such a hot spot must be large enough to insure that it did not occur by chance, and it must increase mercury concentrations to a level in which health effects are a concern in a water body large enough to support a population of subsistence fishers. The results of this study suggest that neither of these conditions has been met.

  8. Public controversies reveal wood-fired electric power plants

    Energy Technology Data Exchange (ETDEWEB)

    Frankena, F.

    1989-04-01

    This article reviews four critical controversies surrounding proposals to develop wood-fired power plants (WFPP)-two in Michigan and two in California. Three were defeated and one was built, and all were enveloped in controversy. Increased environmental awareness and the social movement it inspired redefined technology as a social problem. The author discusses the Hersey, Michigan proposal for a wood burning power plant and how the public defeated the plan through the local government. He states that if WFPP are to ever be successful, it must be proven that they are environmentally acceptable.

  9. COMPARATIVE RESEARCH ON THE CHARACTERISTICS OF THE FLYASH FROM COAL REFUSE-FIRED AND COAL-FIRED POWER PLANTS

    Institute of Scientific and Technical Information of China (English)

    Yu Jifeng; Han Zuozhen; Wang Xiuying

    2000-01-01

    The physical,chemical and mineral facies properties of the flyash from Xiezhuang Coal Refuse-Fired Power Plant have been studied by means of naked eyes,microscope,chemical composition analysis and XRD analysis,and compared with that of the flyash from Tai'an Coal-Fired Power Plant.The result shows that the flyash from coal refuse-fired power plant is of better quality in making construction items,for being brighter in color,fine and high activity.Some ways of comprehensive utilization of the ash have been suggested in this paper.

  10. Burn Severity Dominates Understory Plant Community Response to Fire in Xeric Jack Pine Forests

    OpenAIRE

    Pinno, Bradley D.; Ruth C. Errington

    2016-01-01

    Fire is the most common disturbance in northern boreal forests, and large fires are often associated with highly variable burn severities across the burnt area. We studied the understory plant community response to a range of burn severities and pre-fire stand age four growing seasons after the 2011 Richardson Fire in xeric jack pine forests of northern Alberta, Canada. Burn severity had the greatest impact on post-fire plant communities, while pre-fire stand age did not have a significant im...

  11. Operating Experience from two new Biomass Fired FBC-Plants

    Energy Technology Data Exchange (ETDEWEB)

    Bolhar-Nordenkampf, M.; Tschanun, I.; Kaiser, S. [Austrian Energy and Environment AG, Vienna (Austria)

    2006-07-15

    The use of renewable fuels in industrial power plants is rising continuously. The driving forces are the Kyoto protocol for CO{sub 2} reduction resulting in government support for green power electricity, substitution of imported primary energy and multi-fuel concepts together with RDF. Biomass fuel exists in various forms, traditionally as wood, bark, harvesting residues sewage sludge and organic waste. A favourable combustion technology is Austrian Energy's 'ECOFLUID' bubbling fluidized bed. Advantageous is the principle of a substoichiometric bed operation which allows bed temperature control in the range between 650 deg C - 850 deg C. Therefore, also fuel with low ash melting temperature can be burned. The applied staged combustion concept results in a homogenous temperature profile in the furnace and first pass of the boiler and thus low NO{sub x} emission. One new plant, owned by Energie AG in Timelkam/Austria has been commissioned in winter 2005. The main fuel of this 57 t/h boiler is bark, wood residues and waste wood up to 30% of the total thermal capacity. Grinding dust and saw dust can be co-fired, too. Optionally, sludge and animal wastes can be fired. The boiler is designed for 42 barg at live steam temperature of 440 deg C. The other new 30 MW{sub th} plant, owned by M-real Hallein AG in Hallein/Austria has been commissioned in winter 2005, too. The boiler is fired with wood chips, bark, rejects and other paper mill residues and furthermore it is able to burn the sludge of the mills own waste water treatment plant. Beside the boiler works as a post combustion system for exhaust gases from a 1 MW Biogas Otto-Engine, or alternatively it is able to burn the biogas directly. The boiler is designed for 61 barg at live steam temperature of 450 deg C.

  12. Water vulnerabilities for existing coal-fired power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.; Kuiper, J.; Environmental Science Division

    2010-08-19

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their cooling systems and related characteristics, provides information to help focus future research and development (R&D) efforts to help ensure that coal-fired generation demands are met in a cost-effective manner that supports sustainable water use. This study identified coal-fired power plants that are considered vulnerable to water demand and supply issues by using a geographical information system (GIS) that facilitated the analysis of plant-specific data for more than 500 plants in the NETL's Coal Power Plant Database (CPPDB) (NETL 2007a) simultaneously with 18 indicators of water demand and supply. Two types of demand indicators were

  13. New Coal-Fired Plants Jeopardise Paris Agreement

    Directory of Open Access Journals (Sweden)

    Mikel González-Eguino

    2017-01-01

    Full Text Available Global greenhouse gas emissions need to peak soon and be reduced practically to zero in the second half of this century in order to not exceed the climate targets adopted in the Paris Agreement. However, there are currently numerous coal-fired power stations around the world at different stages of construction and planning that could be completed in the next decade. If all these plants are actually built, their expected future emissions will make it very difficult to reach these targets, even in an optimistic scenario with the deployment of carbon capture and storage technologies. Policy makers around the world need to react quickly and help to redirect investment plans for new coal-fired power stations towards low-carbon technologies.

  14. Water vulnerabilities for existing coal-fired power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.; Kuiper, J.; Environmental Science Division

    2010-08-19

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their cooling systems and related characteristics, provides information to help focus future research and development (R&D) efforts to help ensure that coal-fired generation demands are met in a cost-effective manner that supports sustainable water use. This study identified coal-fired power plants that are considered vulnerable to water demand and supply issues by using a geographical information system (GIS) that facilitated the analysis of plant-specific data for more than 500 plants in the NETL's Coal Power Plant Database (CPPDB) (NETL 2007a) simultaneously with 18 indicators of water demand and supply. Two types of demand indicators were

  15. Carbon dioxide recovery from gas-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Ricardo Salgado; Barbosa, Joao Roberto [Centro Tecnico Aeroespacial, Sao Jose dos Campos, SP (Brazil). Inst. Tecnologico de Aeronautica. Dept. de Energia]. E-mails: martinsr@epenergy.com; barbosa@mec.ita.br; Prado, Eduardo Lanari [Rice Univ., Houston, TX (United States). Jones Graduate School of Business]. E-mail: pradoe@epenergy.com; Vieira, Adriana de Moura [Instituto Brasileiro de Mercado de Capitais (IBMEC), Rio de Janeiro, RJ (Brazil). Dept. de Financas]. E-mail: vieiraa@epenergy.com

    2000-07-01

    Since 1996 the Brazilian electric sector has undergone a major restructuring. The aim of such change is to reduce the State's participation in the sector, and to induce the growth of private investments. In particular, this event created several opportunities for thermal power plant projects, leading to competition at the generation level. In this scenario of increased competition, the power plant efficiency becomes a key element for determining the feasibility and profitability of the project. Moreover, the utilization of the plant's own effluents as feedstock or as a source of additional revenue will impact positively in its economics. As an example, long term additional revenues could be created by the sale of CO{sub 2} extracted from the combustion products of thermal power plants. The production of CO{sub 2} also contributes to mitigate the environmental impacts of the power plant project by significantly reducing its airborne emissions. This paper shows how a gas-fired power plant can extract and utilize CO{sub 2} to generate additional revenue, contributing to a more competitive power plant. (author)

  16. Combating corrosion in biomass and waste fired plant

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Pamela [Vattenfall AB, Stockholm (Sweden). Research and Development; Hjoernhede, Anders [Vattenfall AB, Gothenburg (Sweden). Power Consultant

    2010-07-01

    Many biomass- or waste-fired plants have problems with high temperature corrosion especially if the steam temperature is greater than 500 C. An increase in the combustion of waste fuels means that an increasing number of boilers have had problems. Therefore, there is great interest in reducing the costs associated with high temperature corrosion and at the same time there exists a desire to improve the electrical efficiency of a plant by the use of higher steam temperatures. Assuming that the fuel is well-mixed and that there is good combustion control, there are in addition a number of other measures which can be used to reduce superheater corrosion in biomass and waste fired plants, and these are described in this paper. These include the use of fuel additives, specifically sulphur-containing ones; design aspects like placing superheaters in less corrosive positions in a boiler, using tube shielding, a wider pitch between the tubes; operational considerations such as more controlled soot-blowing and the use of better materials. (orig.)

  17. LOCAL IMPACTS OF MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN, T.M.; BOWERMAN, B.; ADAMS, J.; LIPFERT, D.D.; MORRIS, S.M.; BANDO, A.; ET AL.

    2004-03-30

    A thorough quantitative understanding of the processes of mercury emissions, deposition, and translocation through the food chain is currently not available. Complex atmospheric chemistry and dispersion models are required to predict concentration and deposition contributions, and aquatic process models are required to predict effects on fish. There are uncertainties in all of these predictions. Therefore, the most reliable method of understanding impacts of coal-fired power plants on Hg deposition is from empirical data. A review of the literature on mercury deposition around sources including coal-fired power plants found studies covering local mercury concentrations in soil, vegetation, and animals (fish and cows (Lopez et al. 2003)). There is strong evidence of enhanced local deposition within 3 km of the chlor-alkali plants, with elevated soil concentrations and estimated deposition rates of 10 times background. For coal-fired power plants, the data show that atmospheric deposition of Hg may be slightly enhanced. On the scale of a few km, modeling suggests that wet deposition may be increased by a factor of two or three over background. The measured data suggest lower increases of 15% or less. The effects of coal-fired plants seem to be less than 10% of total deposition on a national scale, based on emissions and global modeling. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (1) local soil concentration Hg increments of 30%-60%, (2) sediment increments of 18-30%, (3) wet deposition increments of 11-12%, and (4) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg(0) in power plant plumes and the role of water chemistry in the relationship between Hg

  18. Impacts of TMDLs on coal-fired power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Environmental Science Division

    2010-04-30

    The Clean Water Act (CWA) includes as one of its goals restoration and maintenance of the chemical, physical, and biological integrity of the Nation's waters. The CWA established various programs to accomplish that goal. Among the programs is a requirement for states to establish water quality standards that will allow protection of the designated uses assigned to each water body. Once those standards are set, state agencies must sample the water bodies to determine if water quality requirements are being met. For those water bodies that are not achieving the desired water quality, the state agencies are expected to develop total maximum daily loads (TMDLs) that outline the maximum amount of each pollutant that can be discharged to the water body and still maintain acceptable water quality. The total load is then allocated to the existing point and nonpoint sources, with some allocation held in reserve as a margin of safety. Many states have already developed and implemented TMDLs for individual water bodies or regional areas. New and revised TMDLs are anticipated, however, as federal and state regulators continue their examination of water quality across the United States and the need for new or revised standards. This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements its overall research effort by evaluating water issues that could impact power plants. One of the program missions of the DOE's NETL is to develop innovative environmental control technologies that will enable full use of the Nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. Some of the parameters for which TMDLs are being developed are components in discharges

  19. Strategies for preventing invasive plant outbreaks after prescribed fire in ponderosa pine forest

    Science.gov (United States)

    Symstad, Amy J.; Newton, Wesley E.; Swanson, Daniel J.

    2014-01-01

    Land managers use prescribed fire to return a vital process to fire-adapted ecosystems, restore forest structure from a state altered by long-term fire suppression, and reduce wildfire intensity. However, fire often produces favorable conditions for invasive plant species, particularly if it is intense enough to reveal bare mineral soil and open previously closed canopies. Understanding the environmental or fire characteristics that explain post-fire invasive plant abundance would aid managers in efficiently finding and quickly responding to fire-caused infestations. To that end, we used an information-theoretic model-selection approach to assess the relative importance of abiotic environmental characteristics (topoedaphic position, distance from roads), pre-and post-fire biotic environmental characteristics (forest structure, understory vegetation, fuel load), and prescribed fire severity (measured in four different ways) in explaining invasive plant cover in ponderosa pine forest in South Dakota’s Black Hills. Environmental characteristics (distance from roads and post-fire forest structure) alone provided the most explanation of variation (26%) in post-fire cover of Verbascum thapsus (common mullein), but a combination of surface fire severity and environmental characteristics (pre-fire forest structure and distance from roads) explained 36–39% of the variation in post-fire cover of Cirsium arvense (Canada thistle) and all invasives together. For four species and all invasives together, their pre-fire cover explained more variation (26–82%) in post-fire cover than environmental and fire characteristics did, suggesting one strategy for reducing post-fire invasive outbreaks may be to find and control invasives before the fire. Finding them may be difficult, however, since pre-fire environmental characteristics explained only 20% of variation in pre-fire total invasive cover, and less for individual species. Thus, moderating fire intensity or targeting areas

  20. Exergy Analysis of Operating Lignite Fired Thermal Power Plant

    Directory of Open Access Journals (Sweden)

    K. Murugesan

    2009-01-01

    Full Text Available The energy assessment must be made through the energy quantity as well as the quality. But the usual energy analysisevaluates the energy generally on its quantity only. However, the exergy analysis assesses the energy on quantity as well asthe quality. The aim of the exergy analysis is to identify the magnitudes and the locations of real energy losses, in order toimprove the existing systems, processes or components. The present paper deals with an exergy analysis performed on anoperating 50MWe unit of lignite fired steam power plant at Thermal Power Station-I, Neyveli Lignite Corporation Limited,Neyveli, Tamil Nadu, India. The exergy losses occurred in the various subsystems of the plant and their components havebeen calculated using the mass, energy and exergy balance equations. The distribution of the exergy losses in several plantcomponents during the real time plant running conditions has been assessed to locate the process irreversibility. The Firstlaw efficiency (energy efficiency and the Second law efficiency (exergy efficiency of the plant have also been calculated.The comparison between the energy losses and the exergy losses of the individual components of the plant shows that themaximum energy losses of 39% occur in the condenser, whereas the maximum exergy losses of 42.73% occur in the combustor.The real losses of energy which has a scope for the improvement are given as maximum exergy losses that occurredin the combustor.

  1. Experiences with the KEMA Corrosion Probe in waste incineration plants and coal fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Jong, M.P. de; Leferink, R.G.I. [KEMA Nederland B.V. Arnhem, (Netherlands)

    2001-07-01

    Fireside corrosion is still a major cause of concern in coal- fired power plants and municipal waste incineration plants. In a highly competitive electricity market, the demand for a method to determine the quality or protectiveness of the oxide layers on evaporator walls, in boilers of power plants with low-NO{sub x} firing techniques, will increase. Moreover, co-firing of new fuels (RDF, pulverised wood and other residual fractions) has as yet unknown consequences for corrosion in evaporator walls and super heaters in boiler installations and waste incinerators. Corrosion monitoring enables operators of coal fired power plants to measure and act when corrosion problems are likely to occur. If done properly corrosion monitoring allows the plant operator to adjust the (co-) firing conditions to less corrosive conditions with the highest possible plant efficiency. Recently KEMA developed the KEMA Corrosion Probe (KEMCOP) which enables plant owners to determine fireside corrosion in different locations in their boiler. A good example is the 540 MWe E.on Maasvlakte power plant, which was recently fitted for the exposure of 144 probes simultaneously. The probes can also be used for material testing by exposing different materials under actual firing conditions. Aside from corrosion monitoring also slagging behaviour and condensation of heavy metals can be monitored. In the Netherlands KEMCOP probes are used for several purposes and are more and more becoming common practice for coal fired boilers and waste incinerators. Until now almost 300 probes have been mounted in coal fired boilers and waste incineration plants. (orig.)

  2. Water Extraction from Coal-Fired Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

    2006-06-30

    The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or

  3. Fossil fuel-fired power generation. Case studies of recently constructed coal- and gas-fired plants

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, C. [IEA Clean Coal Centre, London (United Kingdom)

    2007-10-23

    To meet future energy demand growth and replace older or inefficient units, a large number of fossil fuel-fired plants will be required to be built worldwide in the next decade. Yet CO{sub 2} emissions from fossil-fired power generation are a major contributor to climate change. As a result, new plants must be designed and operated at highest efficiency both to reduce CO{sub 2} emissions and to facilitate deployment of CO{sub 2} capture and storage in the future. The series of case studies in this report, which respond to a request to the IEA from the G8 Summit in July 2005, were conducted to illustrate what efficiency is achieved now in modern plants in different parts of the world using different grades of fossil fuels. The plants were selected from different geographical areas, because local factors influence attainable efficiency. The case studies include pulverized coal combustion (PCC) with both subcritical and supercritical (very high pressure and temperature) steam turbine cycles, a review of current and future applications of coal-fuelled integrated gasification combined cycle plants (IGCC), and a case study of a natural gas fired combined cycle plant to facilitate comparisons. The results of these analyses show that the technologies for high efficiency (low CO{sub 2} emission) and very low conventional pollutant emissions (particulates, SO{sub 2}, NOx) from fossil fuel-fired power generation are available now through PCC, IGCC or NGCC at commercially acceptable cost. This report contains comprehensive technical and indicative cost information for modern fossil fuel-fired plants that was previously unavailable. It serves as a valuable sourcebook for policy makers and technical decision makers contemplating decisions to build new fossil fuel-fired power generation plants.

  4. Comparative life cycle assessment of biomass co-firing plants with carbon capture and storage

    NARCIS (Netherlands)

    Schakel, Wouter; Meerman, Hans; Talaei, Alireza; Ramírez, Andrea; Faaij, André

    2014-01-01

    Combining co-firing biomass and carbon capture and storage (CCS) in power plants offers attractive potential for net removal of carbon dioxide (CO2) from the atmosphere. In this study, the impact of co-firing biomass (wood pellets and straw pellets) on the emission profile of power plants with carbo

  5. Comparative life cycle assessment of biomass co-firing plants with carbon capture and storage

    NARCIS (Netherlands)

    Schakel, Wouter; Meerman, Hans; Talaei, Alireza; Ramírez, Andrea; Faaij, André

    2014-01-01

    Combining co-firing biomass and carbon capture and storage (CCS) in power plants offers attractive potential for net removal of carbon dioxide (CO2) from the atmosphere. In this study, the impact of co-firing biomass (wood pellets and straw pellets) on the emission profile of power plants with

  6. Forum for fire protection and safety in power plants[Norway

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The conference contains 16 presentations on topics in the fields of fire protection and safety in plants in Western Norway, reorganization and reconstruction of power systems and plants in Norway, various aspects of risk and vulnerability analysis, technological aspects of plant management and construction and problems and risks with particularly transformers. Some views on challenges of the fire departments and the new Norwegian regulations for electrical power supply systems are included. One presentation deals with challenges for Icelandic power production plants.

  7. Responses of prairie arthropod communities to fire and fertilizer: Balancing plant and arthropod conservation

    Science.gov (United States)

    Hartley, M.K.; Rogers, W.E.; Siemann, E.; Grace, J.

    2007-01-01

    Fire is an important tool for limiting woody plant invasions into prairies, but using fire management to maintain grassland plant communities may inadvertently reduce arthropod diversity. To test this, we established twenty-four 100 m2 plots in a tallgrass prairie in Galveston County, Texas, in spring 2000. Plots were assigned a fire (no burn, one time burn [2000], two time burn [2000, 2001]) and fertilization treatment (none, NPK addition) in a full factorial design. Fertilization treatments allowed us to examine the effects of fire at a different level of productivity. We measured plant cover by species and sampled arthropods with sweep nets during the 2001 growing season. Path analysis indicated that fertilization reduced while annual fires increased arthropod diversity via increases and decreases in woody plant abundance, respectively. There was no direct effect of fire on arthropod diversity or abundance. Diptera and Homoptera exhibited particularly strong positive responses to fires. Lepidoptera had a negative response to nutrient enrichment. Overall, the negative effects of fire on the arthropod community were minor in contrast to the strong positive indirect effects of small-scale burning on arthropod diversity if conservation of particular taxa is not a priority. The same fire regime that minimized woody plant invasion also maximized arthropod diversity.

  8. Fire Protection at wind power plants (WEA). Proceedings; Brandschutz bei Windenergieanlagen (WEA). Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Within the VdS meeting of VDS Schadensverhuetung GmbH (Cologne, Federal Republic of Germany) at 13th May, 2009, in Cologne (Federal Republic of Germany) the following lectures were held: (a) Fire Protection at wind power systems - a regulary guide of GDV and German Lloyd (VdS 3523) for the practice (Andreas Pflugradt); (b) Experiences of damage of the insurance companies (Jan Pohl); (c) Fire protectional plants and facilities for wind power plants - Fire detection and fire extinction systems (Heike Siefkes, Horst Berger); (d) Certification of wind power plants and their concepts of fire protection (Volker Riedlinger); (e) Recommendation of insurance companies for maintenance (Mingyi Wang); (f) Condition monitoring as a measure for prevention of damages (Moritz Nuesperling); (g) Emergency information system for wind power plants (WEA-NIS) (Mesut Gezen).

  9. Plant diversity after rain-forest fires in Borneo

    NARCIS (Netherlands)

    Eichhorn, Karl August Otto

    2006-01-01

    In the last two decades El-Niño-induced fires have caused widespread destruction of forests in East Kalimantan. The 1997-98 fires were the most extensive yet. The post-fire situation was studied in detail by field assessments and high-resolution SAR-images. My results show that rain forests are bett

  10. Effects of time since fire on birds in a plant diversity hotspot

    Science.gov (United States)

    Chalmandrier, Loïc; Midgley, Guy F.; Barnard, Phoebe; Sirami, Clélia

    2013-05-01

    Global changes are influencing fire regimes in many parts of the world. In the Fynbos plant diversity hotspot (Cape Floristic Region, South Africa), fire frequency has increased in protected areas where the mean fire interval went from 12-19 to 6-9 years between 1970 and 2000. Fire is one of the main drivers of plant diversity in the Cape Floristic Region. Too frequent fires threaten the persistence of slow-maturing plant species, and such insights have led to the adoption of fire management principles based on plant responses. The effects of fire on Fynbos fauna are much more poorly understood, and have not generally been considered in depth in Fynbos conservation policies, planning or management. We assessed the response of bird communities to long-term fire-induced vegetation changes using space-for-time substitution. We studied bird communities, vegetation structure and plant functional composition in 84 Fynbos plots burnt between two and 18 years before. Ten of the 14 bird species analysed showed a significant change in their abundance with time since fire. We observed a significant species turnover along the post-fire succession due to changes both in vegetation structure and plant functional composition, with a characteristic shift from non-Fynbos specialists and granivorous species to Fynbos specialists and nectarivorous species. If current trends of increasing fire frequency continue, Fynbos endemic birds such as nectarivores may become vulnerable. Conservation management should thus aim more carefully to maintain mosaics of Fynbos patches of different ages. Future research needs to estimate the proportion of vegetation of different ages and patch sizes needed to support dependent fauna, particularly endemics.

  11. Report on Geothermal Power Plant Cost and Comparative Cost of Geothermal and Coal Fired Steam Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-07-01

    This report is to be used by Utah Power and Light Company (UP and L) in making studies of geothermal power plants. The dollars per kilowatt comparison between a geothermal plant and a UP and L coal-fired plant is to be developed. Geothermal gathering system costs and return to owner are to be developed for information.

  12. Landowners' perceptions of risk in grassland management: woody plant encroachment and prescribed fire

    Directory of Open Access Journals (Sweden)

    Ryan N. Harr

    2014-06-01

    Full Text Available Ecologists recognize that fire and herbivory are essential to maintaining habitat quality in grassland ecosystems. Prescribed fire and grazing are typically used on public reserves to increase biodiversity, improve grassland productivity, and control encroachment of woody plants. However, these tools, particularly prescribed fire, have not been widely adopted by private landowners. Fire suppression and prescribed fire are strategies that present competing risks to owners who make management decisions. We explore landowner perceptions of risk associated with (1 eastern redcedar (Juniperus virginiana encroachment, and (2 the use of prescribed fire to control woody species in the Grand River Grasslands of Iowa and Missouri, USA. We found that although mapping data of eastern redcedar in this region showed substantial encroachment over the past three decades, concept mapping of landowner beliefs and in-person interviews of local community leaders revealed that perceived risks associated with prescribed fire often outweighed those associated with loss of forage and grassland habitats.

  13. Numerical simulation methods of fires in nuclear power plants; Ydinvoimalaitosten tulipalojen laskentamenetelmaet

    Energy Technology Data Exchange (ETDEWEB)

    Keski-Rahkonen, O.; Bjoerkman, J.; Heikkilae, L. [Technical Research Centre of Finland, Espoo (Finland). Fire Technology Lab.

    1992-12-31

    Fire is a significant hazard to the safety of nuclear power plants (NPP). Fire may be serious accident as such, but even small fire at a critical point in a NPP may cause an accident much more serious than fire itself. According to risk assessments a fire may be an initial cause or a contributing factor in a large part of reactor accidents. At the Fire Technology and the the Nuclear Engineering Laboratory of the Technical Research Centre of Finland (VTT) fire safety research for NPPs has been carried out in a large extent since 1985. During years 1988-92 a project Advanced Numerical Modelling in Nuclear Power Plants (PALOME) was carried out. In the project the level of numerical modelling for fire research in Finland was improved by acquiring, preparing for use and developing numerical fire simulation programs. Large scale test data of the German experimental program (PHDR Sicherheitsprogramm in Kernforschungscentral Karlsruhe) has been as reference. The large scale tests were simulated by numerical codes and results were compared to calculations carried out by others. Scientific interaction with outstanding foreign laboratories and scientists has been an important part of the project. This report describes the work of PALOME-project carried out at the Fire Technology Laboratory only. A report on the work at the Nuclear Engineering Laboratory will be published separatively. (au).

  14. Correlates of mental health in nuclear and coal-fired power plant workers

    Energy Technology Data Exchange (ETDEWEB)

    Parkinson, D.K.; Bromet, E.J.

    1983-08-01

    The mental health of 104 nuclear workers at the Three Mile Island plant was compared with that of 122 workers from another nuclear plant and 151 workers from two coal-fired generating plants. The coal-fired plant workers were somewhat more symptomatic than the nuclear plant workers. Assessments of work environments showed that the coal-fired plant workers perceived less stress but more problems with workplace exposures than the nuclear plant workers. Negative perceptions of work and marital stress were both strongly and independently related to mental distress. Overall, the results suggest that the Three Mile Island accident did not engender long-term psychological difficulties in workers evaluated 2.5 years after the accident.

  15. Evolution of fire and invasive alien plant management practices in fynbos

    CSIR Research Space (South Africa)

    Van Wilgen, BW

    2009-09-01

    Full Text Available The history and development of fire and invasive alien plant management policies in fynbos during the 20th century are reviewed. Fire was initially condemned outright as a destructive force, but as its vital role became better understood, management...

  16. Shrub removal in reforested post-fire areas increases native plant species richness

    Science.gov (United States)

    Gabrielle N. Bohlman; Malcolm North; Hugh D. Safford

    2016-01-01

    Large, high severity fires are becoming more prevalent in Sierra Nevada mixed-conifer forests, largely due to heavy fuel loading and forest densification caused by past and current management practices. In post-fire areas distant from seed trees, conifers are often planted to re-establish a forest and to prevent a potential type-conversion to shrub fields. Typical...

  17. Regulations and Practice on Flue Gas Denitrification for Coal-Fired Power Plants in China

    Institute of Scientific and Technical Information of China (English)

    Zhu Fahua; Zhao Guohua

    2008-01-01

    @@ In China, according to the relative up-to-date regulations and standards, the maincontrol measure for Nox emission of coal-fired power plants is, in principle, low Noxcombustion. However, in recent years, more and more newly approved coal-fired plantswere required to install flue gas denitrification equipment.

  18. Burn Severity Dominates Understory Plant Community Response to Fire in Xeric Jack Pine Forests

    Directory of Open Access Journals (Sweden)

    Bradley D. Pinno

    2016-04-01

    Full Text Available Fire is the most common disturbance in northern boreal forests, and large fires are often associated with highly variable burn severities across the burnt area. We studied the understory plant community response to a range of burn severities and pre-fire stand age four growing seasons after the 2011 Richardson Fire in xeric jack pine forests of northern Alberta, Canada. Burn severity had the greatest impact on post-fire plant communities, while pre-fire stand age did not have a significant impact. Total plant species richness and cover decreased with disturbance severity, such that the greatest richness was in low severity burns (average 28 species per 1-m2 quadrat and plant cover was lowest in the high severity burns (average 16%. However, the response of individual plant groups differed. Lichens and bryophytes were most common in low severity burns and were effectively eliminated from the regenerating plant community at higher burn severities. In contrast, graminoid cover and richness were positively related to burn severity, while forbs did not respond significantly to burn severity, but were impacted by changes in soil chemistry with increased cover at pH >4.9. Our results indicate the importance of non-vascular plants to the overall plant community in this harsh environment and that the plant community is environmentally limited rather than recruitment or competition limited, as is often the case in more mesic forest types. If fire frequency and severity increase as predicted, we may see a shift in plant communities from stress-tolerant species, such as lichens and ericaceous shrubs, to more colonizing species, such as certain graminoids.

  19. Fire alters ecosystem carbon and nutrients but not plant nutrient stoichiometry or composition in tropical savanna.

    Science.gov (United States)

    Pellegrini, Adam F A; Hedin, Lars O; Staver, A Carla; Govender, Navashni

    2015-05-01

    Fire and nutrients interact to influence the global distribution and dynamics of the savanna biome, but the results of these interactions are both complex and poorly known. A critical but unresolved question is whether short-term losses of carbon and nutrients caused by fire can trigger long-term and potentially compensatory responses in the nutrient stoichiometry of plants, or in the abundance of dinitrogen-fixing trees. There is disagreement in the literature about the potential role of fire on savanna nutrients, and, in turn, on plant stoichiometry and composition. A major limitation has been the lack of fire manipulations over time scales sufficiently long for these interactions to emerge. We use a 58-year, replicated, large-scale, fire manipulation experiment in Kruger National Park (South Africa) in savanna to quantify the effect of fire on (1) distributions of carbon, nitrogen, and phosphorus at the ecosystem scale; (2) carbon: nitrogen: phosphorus stoichiometry of above- and belowground tissues of plant species; and (3) abundance of plant functional groups including nitrogen fixers. Our results show dramatic effects of fire on the relative distribution of nutrients in soils, but that individual plant stoichiometry and plant community composition remained unexpectedly resilient. Moreover, measures of nutrients and carbon stable isotopes allowed us to discount the role of tree cover change in favor of the turnover of herbaceous biomass as the primary mechanism that mediates a transition from low to high 'soil carbon and nutrients in the absence of fire. We conclude that, in contrast to extra-tropical grasslands or closed-canopy forests, vegetation in the savanna biome may be uniquely adapted to nutrient losses caused by recurring fire.

  20. Application of Graph Theory to Cost-Effective Fire Protection of Chemical Plants During Domino Effects.

    Science.gov (United States)

    Khakzad, Nima; Landucci, Gabriele; Reniers, Genserik

    2017-09-01

    In the present study, we have introduced a methodology based on graph theory and multicriteria decision analysis for cost-effective fire protection of chemical plants subject to fire-induced domino effects. By modeling domino effects in chemical plants as a directed graph, the graph centrality measures such as out-closeness and betweenness scores can be used to identify the installations playing a key role in initiating and propagating potential domino effects. It is demonstrated that active fire protection of installations with the highest out-closeness score and passive fire protection of installations with the highest betweenness score are the most effective strategies for reducing the vulnerability of chemical plants to fire-induced domino effects. We have employed a dynamic graph analysis to investigate the impact of both the availability and the degradation of fire protection measures over time on the vulnerability of chemical plants. The results obtained from the graph analysis can further be prioritized using multicriteria decision analysis techniques such as the method of reference point to find the most cost-effective fire protection strategy. © 2016 Society for Risk Analysis.

  1. Is fire exclusion in mountain big sagebrush communities prudent? Soil nutrient, plant diversity, and arthropod response to burning

    Science.gov (United States)

    Fire has largely been excluded from many mountain big sagebrush (Artemisia tridentata Nutt. ssp. vaseyana (Rydb.) Beetle) communities. Land and wildlife managers are especially reluctant to reintroduce fire in mountain big sagebrush plant communities, especially those communities without significan...

  2. Alien plant dynamics following fire in mediterranean-climate California shrublands

    Science.gov (United States)

    Keeley, J.E.; Baer-Keeley, M.; Fotheringham, C.J.

    2005-01-01

    Over 75 species of alien plants were recorded during the first five years after fire in southern California shrublands, most of which were European annuals. Both cover and richness of aliens varied between years and plant association. Alien cover was lowest in the first postfire year in all plant associations and remained low during succession in chaparral but increased in sage scrub. Alien cover and richness were significantly correlated with year (time since disturbance) and with precipitation in both coastal and interior sage scrub associations. Hypothesized factors determining alien dominance were tested with structural equation modeling. Models that included nitrogen deposition and distance from the coast were not significant, but with those variables removed we obtained a significant model that gave an R2 = 0.60 for the response variable of fifth year alien dominance. Factors directly affecting alien dominance were (1) woody canopy closure and (2) alien seed banks. Significant indirect effects were (3) fire intensity, (4) fire history, (5) prefire stand structure, (6) aridity, and (7) community type. According to this model the most critical factor influencing aliens is the rapid return of the shrub and subshrub canopy. Thus, in these communities a single functional type (woody plants) appears to the most critical element controlling alien invasion and persistence. Fire history is an important indirect factor because it affects both prefire stand structure and postfire alien seed banks. Despite being fire-prone ecosystems, these shrublands are not adapted to fire per se, but rather to a particular fire regime. Alterations in the fire regime produce a very different selective environment, and high fire frequency changes the selective regime to favor aliens. This study does not support the widely held belief that prescription burning is a viable management practice for controlling alien species on semiarid landscapes. ?? 2005 by the Ecological Society of

  3. A performance overview about fire risk management in the Brazilian hydroelectric generating plants and transmission network

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Dayse [Universidade Federal de Pernambuco, Dept. de Engenharia de Producao, Recife, PE (Brazil)

    2004-01-01

    Power plants and substations have been around for quite some time, so ample engineering experience exists and the public is familiar with their equipment and structures (i.e. transformer, circuit break, transmission lines, etc). They also have a substantial economic incentive to prevent accidents. In spite of mature technology, good management, and incentives to keep the plant or substation from blowing up, uncontrollable fire rages within them on occasion, killing operators and causing substantial losses. Fire in substations range from those which have a relatively minor impact, in which there is little or no interruption of the operation to the interconnect network to major catastrophe: the blackout in Buenos Aires, Argentina in 1995 being synonymous. While the engineers who design the substation have the knowledge and understanding to recognise the fire hazard throughout the system interactions and take measures, which will reduce the risk of a fire occurring, it is the substation operators who are responsible for its safe operation on a day-to-day basis. They must be aware, not only of the inherent hazard of the process of which they are in charge, but also of what can go wrong and, perhaps more importantly, how it can go wrong. However, professional fire safety practice today is dominated by traditional regulatory codes, standards and insurance considerations that are based on our past experience, i.e. failures. These methods should be suffice in a simple workplace producing simple and unchanging products or services. However, today's power plant or substation are rarely simple and unchanging. Their complexities require a more effective approach to fire safety. A new way of thinking is essential. It should enable us to use the wisdom of past experience and state-of-the-art knowledge in foreseeing fire hazard interactions. The approach to fire and explosion espoused in this paper is based on performance. The performance analysis involves two steps

  4. Laboratory Investigation of High Temperature Corrosion in Straw fired Power Plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie

    1998-01-01

    Corrosion in straw-fired power plants has been studied in the laboratory for Sandvik 8LR30 and Sanicro 28. The influence of HCl and SO2 was investigated at 600C metal temperature for upto 300 hours.In addition the corrosion behaviour of the same materials was examined in ash taken from a straw......-fired boiler. The corrosive potential of the individual components were thus evaluated...

  5. Fire disturbance disrupts an acacia ant-plant mutualism in favor of a subordinate ant species.

    Science.gov (United States)

    Sensenig, Ryan L; Kimuyu, Duncan K; Ruiz Guajardo, Juan C; Veblen, Kari E; Riginos, Corinna; Young, Truman P

    2017-05-01

    Although disturbance theory has been recognized as a useful framework in examining the stability of ant-plant mutualisms, very few studies have examined the effects of fire disturbance on these mutualisms. In myrmecophyte-dominated savannas, fire and herbivory are key drivers that could influence ant-plant mutualisms by causing complete colony mortality and/or decreasing colony size, which potentially could alter dominance hierarchies if subordinate species are more fire resilient. We used a large-scale, replicated fire experiment to examine long-term effects of fire on acacia-ant community composition. To determine if fire shifted ant occupancy from a competitive dominant to a subordinate ant species, we surveyed the acacia-ant community in 6-7 yr old burn sites and examined how the spatial scale of these burns influenced ant community responses. We then used two short-term fire experiments to explore possible mechanisms for the shifts in community patterns observed. Because survival of ant colonies is largely dependent on their ability to detect and escape an approaching fire, we first tested the evacuation response of all four ant species when exposed to smoke (fire signal). Then to better understand how fire and its interaction with large mammal herbivory affect the density of ants per tree, we quantified ant worker density in small prescribed burns within herbivore exclusion plots. We found clear evidence suggesting that fire disturbance favored the subordinate ant Crematogaster nigriceps more than the dominant and strong mutualist ant C. mimosae, whereby C. nigriceps (1) was the only species to occupy a greater proportion of trees in 6-7 yr old burn sites compared to unburned sites, (2) had higher burn/unburn tree ratios with increasing burn size, and (3) evacuated significantly faster than C. mimosae in the presence of smoke. Fire and herbivory had opposite effects on ant density per meter of branch for both C. nigriceps and C. mimosae, with fire

  6. Materials Problems and Solutions in Biomass Fired Plants

    DEFF Research Database (Denmark)

    Larsen, Ole Hede; Montgomery, Melanie

    2006-01-01

    Due to Denmark’s pledge to reduce carbon dioxide emissions, biomass is utilised increasingly as a fuel for generating energy. Extensive research and demonstration projects especially in the area of material performance for biomass fired boilers have been undertaken to make biomass a viable fuel...

  7. Oxygen-Fired CO{sub 2} Recycle for Application to Direct CO{sub 2} Capture form Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Gale

    2010-09-26

    The Southern Research/Southern Company 1 MWth Pilot-Scale Coal-Fired Test Facility was successfully retrofit to fire in either the traditional air-fired mode or with 100% oxygen and recycled flue gas, with a fully integrated feedback and control system, including oxygen and recycled flue gas modulation during startup, transfer, and shutdown, safety and operational interlocks, and data acquisition. A MAXON Staged Oxygen Burner for Oxy-Coal Applications produced a stable flame over a significant range of firing turn-down, staging, and while firing five different U.S. coal types. The MAXON burner design produces lower flame temperatures than for air firing, which will enable (A) Safe operation, (B) Reduction of recycle flow without concern about furnace flame temperatures, and (C) May likely be affective at reducing slagging and fouling in the boiler and super heater at full-scale Power Plants. A CFD model of the Oxy-fired Combustion Research Facility (OCRF) was used to predict the flame geometry and temperatures in the OCRF and make a comparison with the air-fired case. The model predictions were consistent with the experimental data in showing that the MAXON burner fired with oxygen produced lower flame temperatures than the air-fired burner while firing with air.

  8. Rhizosphere effects of PAH-contaminated soil phytoremediation using a special plant named Fire Phoenix.

    Science.gov (United States)

    Liu, Rui; Xiao, Nan; Wei, Shuhe; Zhao, Lixing; An, Jing

    2014-03-01

    The rhizosphere effect of a special phytoremediating species known as Fire Phoenix on the degradation of polycyclic aromatic hydrocarbons (PAHs) was investigated, including changes of the enzymatic activity and microbial communities in rhizosphere soil. The study showed that the degradation rate of Σ8PAHs by Fire Phoenix was up to 99.40% after a 150-day culture. The activity of dehydrogenase (DHO), peroxidase (POD) and catalase (CAT) increased greatly, especially after a 60-day culture, followed by a gradual reduction with an increase in the planting time. The activity of these enzymes was strongly correlated to the higher degradation performance of Fire Phoenix growing in PAH-contaminated soils, although it was also affected by the basic characteristics of the plant species itself, such as the excessive, fibrous root systems, strong disease resistance, drought resistance, heat resistance, and resistance to barren soil. The activity of polyphenoloxidase (PPO) decreased during the whole growing period in this study, and the degradation rate of Σ8PAHs in the rhizosphere soil after having planted Fire Phoenix plants had a significant (R(2)=0.947) negative correlation with the change in the activity of PPO. Using an analysis of the microbial communities, the results indicated that the structure of microorganisms in the rhizosphere soil could be changed by planting Fire Phoenix plants, namely, there was an increase in microbial diversity compared with the unplanted soil. In addition, the primary advantage of Fire Phoenix was to promote the growth of flora genus Gordonia sp. as the major bacteria that can effectively degrade PAHs.

  9. Income risk of EU coal-fired power plants after Kyoto

    Energy Technology Data Exchange (ETDEWEB)

    Abadie, Luis M. [Bilbao Bizkaia Kutxa, Gran Via, 30, 48009 Bilbao (Spain); Chamorro, Jose M. [University of the Basque Country, Departamento de Fundamentos del Analisis Economico I, Av. Lehendakari Aguirre, 83,48015 Bilbao (Spain)

    2009-12-15

    Coal-fired power plants enjoy a significant advantage relative to gas plants in terms of cheaper fuel cost. This advantage may erode (or turn into disadvantage) depending on CO{sub 2} emission allowance price. Financial risks are further reinforced when the price of electricity is determined by natural gas-fired plants' marginal costs. We aim to empirically assess the risks in EU coal plants' margins up to the year 2020. Parameter values are derived from actual market data. Monte Carlo simulation allows compute the expected value and risk profile of coal plants' earnings. Future allowance prices may spell significant risks on utilities' balance sheets. (author)

  10. Dioxin emission from two oil shale fired power plants in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Schleicher, O.; Jensen, A.A. [FORCE Technology, Soborg (Denmark); Herrmann, T. [Estonian Environmental Research Centre (EERC), Tallinn (Estonia); Roots, O. [ERGO Forschungsgesellschaft GmbH, Hamburg (Germany); Tordik, A. [AS Narva Elektrijaamad, Narva (Estonia)

    2004-09-15

    In March 2003, dioxin emissions were measured from four oil shale fired boilers at two power plants located near the city of Narva in Estonia. The two power plants produce more than 90% of the electricity consumption in Estonia by combusting more than 10 million tons of oil shale per year, which is around 85% of the total consumption of oil shale in the country. These power plants are the world's largest thermal power stations burning low-grade oil shale. These measurements of dioxin air emission from oil shale fuelled plants are the first performed in Estonia. The aim of the measurements was to get background data for the estimation of the annual dioxin emission from oil shale power plants in Estonia, in order to improve or qualify the estimation based on emissions factors for large coal fired power stations given in the recent DANCEE Project: Survey of anthropogenic sources of dioxins in the Baltic Region.

  11. Potential of hybrid geothermal/coal fired power plants in Arizona

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.; Goldstone, L.A.

    1982-08-01

    The City of Burbank and the Ralph M. Parsons Company studies showed several advantages for hybrid geothermal/coal fired power plants, as follows: (1) the estimated cost of producing electricity in hybrid plant is about 18.3 mills/kWh, compared to 19.3 mills/kWh in an all-coal fired power plant; (2) the coal requirements for a given plant can be reduced about 12 to 17%; and (3) the geothermal brines can be used for power plant cooling water, and in some cases, as boiler feedwater. The pertinent results of the City of Burbank studies are summarized and applied to the geothermal and coal resources of Arizona for possible future utilization.

  12. Impacts of fire on non-native plant recruitment in black spruce forests of interior Alaska

    Science.gov (United States)

    Conway, Alexandra J.; Jean, Mélanie

    2017-01-01

    Climate change is expected to increase the extent and severity of wildfires throughout the boreal forest. Historically, black spruce (Picea mariana (Mill.) B.S.P.) forests in interior Alaska have been relatively free of non-native species, but the compounding effects of climate change and an altered fire regime could facilitate the expansion of non-native plants. We tested the effects of wildfire on non-native plant colonization by conducting a seeding experiment of non-native plants on different substrate types in a burned black spruce forest, and surveying for non-native plants in recently burned and mature black spruce forests. We found few non-native plants in burned or mature forests, despite their high roadside presence, although invasion of some burned sites by dandelion (Taraxacum officinale) indicated the potential for non-native plants to move into burned forest. Experimental germination rates were significantly higher on mineral soil compared to organic soil, indicating that severe fires that combust much of the organic layer could increase the potential for non-native plant colonization. We conclude that fire disturbances that remove the organic layer could facilitate the invasion of non-native plants providing there is a viable seed source and dispersal vector. PMID:28158284

  13. Water impacts of CO2 emission performance standards for fossil fuel-fired power plants.

    Science.gov (United States)

    Talati, Shuchi; Zhai, Haibo; Morgan, M Granger

    2014-10-21

    We employ an integrated systems modeling tool to assess the water impacts of the new source performance standards recently proposed by the U.S. Environmental Protection Agency for limiting CO2 emissions from coal- and gas-fired power plants. The implementation of amine-based carbon capture and storage (CCS) for 40% CO2 capture to meet the current proposal will increase plant water use by roughly 30% in supercritical pulverized coal-fired power plants. The specific amount of added water use varies with power plant and CCS designs. More stringent emission standards than the current proposal would require CO2 emission reductions for natural gas combined-cycle (NGCC) plants via CCS, which would also increase plant water use. When examined over a range of possible future emission standards from 1100 to 300 lb CO2/MWh gross, new baseload NGCC plants consume roughly 60-70% less water than coal-fired plants. A series of adaptation approaches to secure low-carbon energy production and improve the electric power industry's water management in the face of future policy constraints are discussed both quantitatively and qualitatively.

  14. In-situ corrosion investigation at Masnedø CHP plant - a straw-fired power plant

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Karlsson, Asger

    1999-01-01

    Various austenitic and ferritic steels were exposed on a water-cooled probe in the superheater area of a straw-fired CHP plant. The temperature of the probe ranged from 450-600°C and the period of exposure was 1400 hours. The rate of corrosion was assessed based on unattacked metal remaining...

  15. Co-combustion of solid recovered fuels in coal-fired power plants.

    Science.gov (United States)

    Thiel, Stephanie; Thomé-Kozmiensky, Karl Joachim

    2012-04-01

    Currently, in ten coal-fired power plants in Germany solid recovered fuels from mixed municipal waste and production-specific commercial waste are co-combusted and experiments have been conducted at other locations. Overall, in 2010 approximately 800,000 tonnes of these solid recovered fuels were used. In the coming years up to 2014 a slight decline in the quantity of materials used in co-combustions is expected. The co-combustion activities are in part significantly influenced by increasing power supply from renewable sources of energy and their impact on the regime of coal-fired power plants usage. Moreover, price trends of CO₂ allowances, solid recovered fuels as well as imported coal also have significant influence. In addition to the usage of solid recovered fuels with biogenic content, the co-combustion of pure renewable biofuels has become more important in coal-fired power plants. The power plant operators make high demands on the quality of solid recovered fuels. As the operational experience shows, a set of problems may be posed by co-combustion. The key factors in process engineering are firing technique and corrosion. A significant ecological key factor is the emission of pollutants into the atmosphere. The results of this study derive from research made on the basis of an extensive literature search as well as a survey on power plant operators in Germany. The data from operators was updated in spring 2011.

  16. Assessment of effects of fires on safety of nuclear power plants. Paloturvallisuuden arviointi ydinvoimalassa

    Energy Technology Data Exchange (ETDEWEB)

    Keski-Rahkonen, O.

    1992-01-01

    Experience and probabilistic safety assessments have shown that fires may present a major hazard in a nuclear plant either as initial events or as a factor aggravating the consequences from accidents initiated otherwise. Numerical modelling of fires can be performed in various ways. The oldest approach is based on experimental models where rough correlations are employed. Depending on the type of application more advanced codes are employed in fire analyses. In zone models each compartment is divided into two horizontal layers, which both are at the same temperature. In system models the building to be analyzed is divided into interconnected nodes. The most complicated fire analysis models are field models, which calculate multidimensional fields of temperatures and other quantities by solving numerically the conservation equations for several variables.

  17. 75 FR 5355 - Notice of Extension of Comment Period for NUREG-1934, Nuclear Power Plant Fire Modeling...

    Science.gov (United States)

    2010-02-02

    ... COMMISSION Notice of Extension of Comment Period for NUREG-1934, Nuclear Power Plant Fire Modeling... notice of opportunity for public comment on ``NUREG-1934 (EPRI 1019195), Nuclear Power Plant Fire...) on December 29, 2009. Issues encountered during the holiday season delayed publication of...

  18. The advanced super critical 700{sup o}C pulverized coal-fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kjaer, S.; Klauke, F.; Vanstone, R.; Zeijseink, A.; Weissinger, G.; Kristensen, P.; Meier, J.; Blum, R.; Wieghardt, K. [Tech-Wise A/S, Fredericia (Denmark)

    2001-07-01

    This paper presents the efforts of a large European group of manufacturers, utilities and institutes co-operating in a phased long-term project named 'Advanced 700{sup o}C PF Power Plant'. The first phase started in 1998 based on a grant from the Commission's Thermie programme under the 4th Framework programme. The overall objective of the project is to ensure a role for coal in Europe also in future. The project's targets renewedpublic and political acceptance of coal by improving efficiency and economy of well-proven, super critical pulverised coal-fired technology. Net efficiencies of more than 50% will be reached through development of a super critical steam cycle operating at maximum steam temperatures in the range of 700{sup o}C. Principal efforts are based on development of creep resistant - and expensive - nickel-based materials named super-alloys for the hottest areas of the water/steam cycle. Three benchmarks for theinvestigations have been set up: (i) the net efficiency of the demonstration plant from the present state of the art performance of 44% will be boosted into the range of 50-51% for a plant located inland with a cooling tower and 53-54% for the best seawater-cooled versions. (ii) reductions of investment cost of PF power plant by revising the overall architecture of the plant. (iii) Co-firing of up to 20% biomass with coal. The Advanced 700{sup o}C PF power plant project (or AD700) will improve the competitiveness of coal-fired power generation and give a major reduction of CO{sub 2} from coal-fired power plants in the range of 15% from the best PF power plants presently and up to 40% from older plants. 11 figs., 2 tabs.

  19. Hot windbox repowering of coal-fired thermal power plants

    OpenAIRE

    YILMAZOĞLU, Mustafa Zeki; DURMAZ, Ali

    2014-01-01

    The repowering of thermal power plants could be the fastest way to respond to the energy demand while decreasing the CO2 emissions per kilowatt hour of energy generated. Hot windbox repowering of a thermal power plant was investigated in this study using Thermoflex simulations. The Soma A thermal power plant began operation in 1957 and was in service until 2010. In the current situation, the installed capacity of the power plant is 44 MWel, with 2 units. The boiler was designed to oper...

  20. CHARACTERIZATION AND MODELING OF THE FORMS OF MERCURY FROM COAL-FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Dennis L. Laudal

    2001-08-01

    The 1990 Clean Air Act Amendments (CAAAs) required the U.S. Environmental Protection Agency (EPA) to determine whether the presence of mercury in the stack emissions from fossil fuel-fired electric utility power plants poses an unacceptable public health risk. EPA's conclusions and recommendations were presented in the Mercury Study Report to Congress (1) and the Utility Air Toxics Report to Congress (1). The first report addressed both the human health and environmental effects of anthropogenic mercury emissions, while the second addressed the risk to public health posed by the emission of mercury and other hazardous air pollutants from steam-electric generating units. Given the current state of the art, these reports did not state that mercury controls on coal-fired electric power stations would be required. However, they did indicate that EPA views mercury as a potential threat to human health. In fact, in December 2000, the EPA issued an intent to regulate for mercury from coal-fired boilers. However, it is clear that additional research needs to be done in order to develop economical and effective mercury control strategies. To accomplish this objective, it is necessary to understand mercury behavior in coal-fired power plants. The markedly different chemical and physical properties of the different mercury forms generated during coal combustion appear to impact the effectiveness of various mercury control strategies. The original Characterization and Modeling of the Forms of Mercury from Coal-Fired Power Plants project had two tasks. The first was to collect enough data such that mercury speciation could be predicted based on relatively simple inputs such as coal analyses and plant configuration. The second was to field-validate the Ontario Hydro mercury speciation method (at the time, it had only been validated at the pilot-scale level). However, after sampling at two power plants (the Ontario Hydro method was validated at one of them), the EPA issued

  1. Emissions, Monitoring, and Control of Mercury from Subbituminous Coal-Fired Power Plants - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Alan Bland; Jesse Newcomer; Allen Kephart; Volker Schmidt; Gerald Butcher

    2008-10-31

    Western Research Institute (WRI), in conjunction with Western Farmers Electric Cooperative (WFEC), has teamed with Clean Air Engineering of Pittsburgh PA to conduct a mercury monitoring program at the WEFC Hugo plant in Oklahoma. Sponsored by US Department of Energy Cooperative Agreement DE-FC-26-98FT40323, the program included the following members of the Subbituminous Energy Coalition (SEC) as co-sponsors: Missouri Basin Power Project; DTE Energy; Entergy; Grand River Dam Authority; and Nebraska Public Power District. This research effort had five objectives: (1) determine the mass balance of mercury for subbituminous coal-fired power plant; (2) assess the distribution of mercury species in the flue gas (3) perform a comparison of three different Hg test methods; (4) investigate the long-term (six months) mercury variability at a subbituminous coal-fired power plant; and (5) assess operation and maintenance of the Method 324 and Horiba CEMS utilizing plant personnel.

  2. Historical agriculture alters the effects of fire on understory plant beta diversity.

    Science.gov (United States)

    Mattingly, W Brett; Orrock, John L; Collins, Cathy D; Brudvig, Lars A; Damschen, Ellen I; Veldman, Joseph W; Walker, Joan L

    2015-02-01

    Land-use legacies are known to shape the diversity and distribution of plant communities, but we lack an understanding of whether historical land use influences community responses to contemporary disturbances. Because human-modified landscapes often bear a history of multiple land-use activities, this contingency can challenge our understanding of land-use impacts on plant diversity. We address this contingency by evaluating how beta diversity (the spatial variability of species composition), an important component of regional biodiversity, is shaped by interactions between historical agriculture and prescribed fire, two prominent disturbances that are often coincident in terrestrial ecosystems. At three study locations spanning 450 km in the southeastern United States, we surveyed longleaf pine woodland understory plant communities across 232 remnant and post-agricultural sites with differing prescribed fire regimes. Our results demonstrate that agricultural legacies are a strong predictor of beta diversity, but the direction of this land-use effect differed among the three study locations. Further, although beta diversity increased with prescribed fire frequency at each study location, this effect was influenced by agricultural land-use history, such that positive fire effects were only documented among sites that lacked a history of agriculture at two of our three study locations. Our study not only highlights the role of historical agriculture in shaping beta diversity in a fire-maintained ecosystem but also illustrates how this effect can be contingent upon fire regime and geographic location. We suggest that interactions among historical and contemporary land-use activities may help to explain dissimilarities in plant communities among sites in human-dominated landscapes.

  3. Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants

    Science.gov (United States)

    Li, Rui; Wu, Han; Ding, Jing; Fu, Weimin; Gan, Lijun; Li, Yi

    2017-05-01

    Mercury contamination in food can pose serious health risks to consumers and coal-fired power plants have been identified as the major source of mercury emissions. To assess the current state of mercury pollution in food crops grown near coal-fired power plants, we measured the total mercury concentration in vegetables and grain crops collected from farms located near two coal-fired power plants. We found that 79% of vegetable samples and 67% of grain samples exceeded the PTWI's food safety standards. The mercury concentrations of soil samples were negatively correlated with distances from the studied coal-fired power plants, and the mercury contents in lettuce, amaranth, water spinach, cowpea and rice samples were correlated with the mercury contents in soil samples, respectively. Also, the mercury concentrations in vegetable leaves were much higher than those in roots and the mercury content of vegetable leaves decreased significantly after water rinses. Our calculation suggests that probable weekly intake of mercury for local residents, assuming all of their vegetables and grains are from their own farmland, may exceed the toxicologically tolerable values allowed, and therefore long-term consumptions of these contaminated vegetables and grains may pose serious health risks.

  4. Environmental life cycle assessment of Indian coal-fired power plants

    Institute of Scientific and Technical Information of China (English)

    Udayan Singh; Naushita Sharma; Siba Sankar Mahapatra

    2016-01-01

    Coal is the backbone of the Indian power sector.The coal-fired power plants remain the largest emitters of carbon dioxide,sulfur dioxide and substantial amounts of nitrogen oxides,which are associated with climate and health impacts.Various CO2 mitigation technologies (carbon capture and storage—CCS) and SO2/NOx mitigation technologies (flue gas desulfurization and selective catalytic reduction) have been employed to reduce the environmental impacts of the coal-fired power plants.Therefore,it is imperative to understand the feasibility of various mitigation technologies employed.This paper attempts to perform environmental life cycle assessment (LCA) of Indian coal-fired power plant with and without CO2,SO2 and NOx mitigation controls.The study develops new normalization factors for India in various damage categories,using the Indian emissions and energy consumption data,coupled with the emissions and particulate emission to come up with a final environmental impact of coal-fired electricity.The results show a large degree of dependence on the perspective of assessment used.The impact of sensitivities of individual substances and the effect of plant efficiency on the final LCA results is also studied.

  5. Summary report: Trace substance emissions from a coal-fired gasification plant

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.; Wetherold, B.; Maxwell, D.

    1996-10-16

    The U.S. Department of Energy (DOE), the Electric Power Research Institute (EPRI), and Louisiana Gasification Technology Inc. (LGTI) sponsored field sampling and analyses to characterize emissions of trace substances from LGTI`s integrated gasification combined cycle (IGCC) power plant at Plaquemine, Louisiana. The results indicate that emissions from the LGTI facility were quite low, often in the ppb levels, and comparable to a well-controlled pulverized coal-fired power plant.

  6. Influence of fire history and soil properties on plant species richness and functional diversity in a neotropical savanna

    Directory of Open Access Journals (Sweden)

    Danilo Muniz Silva

    2013-09-01

    Full Text Available Differences in plant species richness and composition are associated with soil properties and disturbances such as fire, which can therefore be key determinants of species occurrence in savanna plant communities. We measured species richness, using nine plant functional traits and abundance to calculate three functional diversity indices. We then used model selection analyses to select the best model for predicting functional diversity and richness based on soil variables at sites with three different fire frequencies. We also calculated the community-weighted mean of each trait and used ordination to examine how traits changed across fire frequencies. We found higher species richness and functional dispersion at sites that were more fertile and where fire was frequent, and the opposite at such sites where fire was infrequent. However, soil properties influenced functional evenness and divergence only where fire was infrequent, with higher values where soils were poorer. Fire can change functional traits directly by hindering development of plants and indirectly by altering competition. Different fire frequencies lead to different plant-soil relationships, which can affect the functioning of tropical savanna communities. Functional diversity components and functional identity of the communities are both affected by fire frequency and soil conditions.

  7. Phytoliths as a tool to track plant community changes after fire regime shift

    Science.gov (United States)

    Kirchholtes, R.; van Mourik, J. M.; Johnson, B. R.

    2016-12-01

    Anthropogenically induced changes to the historical fire regime are excellent analogues to study the dynamics of terrestrial ecosystem responses to present-day environmental changes. Fire suppression and loss of indigenous burning practices in the Willamette Valley, Oregon (USA) has led to near disappearance of the Oregon white oak savanna. The specific goal of this study was to better understand the pace and character with which the Oregon oak savannas are disappearing. Under suppressed fire regimes the shade-intolerant Garry oaks (Quercus garryana) are outcompeted by Douglas-fir (Pseudotsuga menziesii). As a consequence, the Oregon white oak savanna has been reduced to habitat loss and fragmentation of the many savanna-dependent plant and animal species, this system does capture a long-term continuous record of the plant community response to ecological disturbances. Because conventional indicators used in floristic reconstructions (pollen, spores etc.) are seldom preserved in the dry, oxidized sediments of savannas, we used phytoliths to establish the change in plant communities. Phytoliths are small yet robust silica particles produced by most plants. Many phytoliths take on cell shapes diagnostic of specific plant lineages, acting as indicators of their past presence. By reconstructing the vegetation patterns at the Jim's Creek Research Area using phytoliths, we confirm the pattern of rapid tree encroachment. In addition to grasses, the phytolith assemblages which represent the landscape from about 150 years ago, also document the presence of pines and firs. This suggests that (1) the Willamette Valley savannas did not exclusively consist of grass and oaks and (2) it took less than 150 years to change from and open landscape to a densely forested one. Under a warming climate and changing precipitation patterns, reducing fire risk, fire intensity and fuel loading is critical. Combined with increased attention to hydrological impacts of denser forests, an

  8. Iron homeostasis and fire blight susceptibility in transgenic pear plants overexpressing a pea ferritin gene.

    Science.gov (United States)

    Djennane, Samia; Cesbron, Colette; Sourice, Sophie; Cournol, Raphael; Dupuis, Fabrice; Eychenne, Magali; Loridon, Karine; Chevreau, Elisabeth

    2011-05-01

    The bacterial pathogen Erwinia amylovora causes the devastating disease known as fire blight in some rosaceous plants including apple and pear. One of the pathogenicity factors affecting fire blight development is the production of a siderophore, desferrioxamine, which overcomes the limiting conditions in plant tissues and also protects bacteria against active oxygen species. In this paper we examine the effect of an iron chelator protein encoded by the pea ferritin gene on the fire blight susceptibility of pear (Pyrus communis). Transgenic pear clones expressing this gene controlled either by the constitutive promoter CaMV 35S or by the inducible promoter sgd24 promoter were produced. The transgenic clones produced were analysed by Q-RT-PCR to determine the level of expression of the pea transgene. A pathogen-inducible pattern of expression of the pea transgene was observed in sgd24-promoter transformants. Adaptation to iron deficiency in vitro was tested in some transgenic clones and different iron metabolism parameters were measured. No strong effect on iron and chlorophyll content, root reductase activity and fire blight susceptibility was detected in the transgenic lines tested. No transformants showed a significant reduction in susceptibility to fire blight in greenhouse conditions when inoculated with E. amylovora.

  9. Water recovery using waste heat from coal fired power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

    2011-01-01

    The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

  10. Effects of coal-fired thermal power plant discharges on agricultural soil and crop plants.

    Science.gov (United States)

    Ajmal, M; Khan, M A

    1986-04-01

    The physicochemical properties of the upstream and downstream waters from the Upper Ganga canal, discharged cooling tower water, machine washings, and scrubber and bottom ash effluents of a 530 MW Kasimpur coal-fired thermal power plant have been determined, and their effects directly on fertile soil and indirectly on pea (Pisum sativam) and wheat (Triticum aestivum) crops have also been studied. The effluents were found to be alkaline in nature. The scrubber and bottom ash effluent was found to contain large amounts of solids and had high biochemical and chemical oxygen demands. All the effluents were found to be responsible for altering the chemical composition of the soil. The soils irrigated with the different effluents exhibited an increase in pH, organic matter, calcium carbonate, water-soluble salts, cation exchange capacity, electrical conductivity, and nitrogen and phosphorus contents while potassium content decreased, probably due to being leached to the lower layers of the soil. The effects of 100, 50, and 0% (tap water control) dilutions of cooling tower, machine washings, and scrubber and bottom ash effluents on the germination and growth of pea and wheat crops were also monitored. Using the undiluted effluents, there was 100% germination for both the crops when the irrigation was done with cooling tower effluent. The germination was restricted to 90% for the two crops when irrigated with machine washings effluent, and to 80 and 70% for pea and wheat, respectively, when irrigated with scrubber and bottom ash effluent. The samples of upstream and downstream canal water were also used for irrigating soils with and without crop plants in order to ascertain the impact of the effluents on the canal water and its subsequent effect on the crops. The soils irrigated with downstream canal water were found to contain slightly more calcium carbonate, phosphorus, and ammonia-nitrogen than those receiving upstream canal water. Though 100% germination was obtained

  11. Ultra-Low Carbon Emissions from Coal-Fired Power Plants through Bio-Oil Co-Firing and Biochar Sequestration.

    Science.gov (United States)

    Dang, Qi; Mba Wright, Mark; Brown, Robert C

    2015-12-15

    This study investigates a novel strategy of reducing carbon emissions from coal-fired power plants through co-firing bio-oil and sequestering biochar in agricultural lands. The heavy end fraction of bio-oil recovered from corn stover fast pyrolysis is blended and co-fired with bituminous coal to form a bio-oil co-firing fuel (BCF). Life-cycle greenhouse gas (GHG) emissions per kWh electricity produced vary from 1.02 to 0.26 kg CO2-eq among different cases, with BCF heavy end fractions ranging from 10% to 60%, which corresponds to a GHG emissions reduction of 2.9% to 74.9% compared with that from traditional bituminous coal power plants. We found a heavy end fraction between 34.8% and 37.3% is required to meet the Clean Power Plan's emission regulation for new coal-fired power plants. The minimum electricity selling prices are predicted to increase from 8.8 to 14.9 cents/kWh, with heavy end fractions ranging from 30% to 60%. A minimum carbon price of $67.4 ± 13 per metric ton of CO2-eq was estimated to make BCF power commercially viable for the base case. These results suggest that BCF co-firing is an attractive pathway for clean power generation in existing power plants with a potential for significant reductions in carbon emissions.

  12. Physicochemical properties and heavy metals leachability of fly ash from coal-fired power plant

    Institute of Scientific and Technical Information of China (English)

    Xiang Wei; Han Baoping; Zhou Dong; Nzihou Ange

    2012-01-01

    The physicochemical properties of fly ash from two kinds of coal-fired power plants were studied.Three aspects were examined:the micro-morphology,the mineral composition and the content of heavy met als.The results show that the fly ash from plants using a circulating fluidized bed are more irregular particles,while the particles from the plants using a pulverized coal-fired boiler are mainly spherical in shape.Quartz and mullite are the main crystalline phases in the ash.Clearly,both the technology and the coal used by a power plant can influence the mineral composition of the ash.The mineral composition of fly ash from a circulating fluidized bed is more complex than that from a pulverized coal-fired boiler.The quantity of elements found in the fly ash is greater than that found in the bottom ash for the same plant.Heavy metals are likely to be enriched in the fly ash.Heavy metal leachability was studied using two leaching methods.The results indicate that most of the heavy metals that leached during either batch leaching or column leaching experiments did not exceed the related maximum concentration standards.But Ni concentrations in the leachates from both batch and column tests exceed the standard.The highest excess rates in both tests were 572% and 497%,which levels might threaten the environment.

  13. Calorimetric studies and lessons on fires and explosions of a chemical plant producing CHP and DCPO

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Jing-Ming; Su, Mao-Sheng; Huang, Chiao-Ying [Department of Occupational Safety and Health, Chia Nan University of Pharmacy and Science, Tainan, Taiwan, ROC (China); Duh, Yih-Shing, E-mail: yihshingduh@yahoo.com.tw [Department of Safety, Health and Environmental Engineering, National United University, No. 1 Lien-Da, Miaoli, Taiwan, ROC (China)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer We analyzed fire and explosion incidents in a plant producing CHP and DCPO. Black-Right-Pointing-Pointer Data from calorimeters reveal causes and phenomena associated with the incidents. Black-Right-Pointing-Pointer The credible worst scenario was thermal explosion. Black-Right-Pointing-Pointer Incidents may be avoided by implementing DIERS methodology. - Abstract: Cumene hydroperoxide (CHP) has been used in producing phenol, dicumyl peroxide (DCPO) and as an initiator for synthesizing acrylonitrile-butadiene-styrene (ABS) resin by copolymerization in Taiwan. Four incidents of fire and explosion induced by thermal runaway reactions were occurred in a same plant producing CHP, DCPO and bis-(tert-butylperoxy isopropyl) benzene peroxide (BIBP). The fourth fire and explosion occurred in the CHP reactor that resulted in a catastrophic damage in reaction region and even spread throughout storage area. Descriptions on the occurrences of these incidents were assessed by the features of processes, reaction schemes and unexpected side reactions. Calorimetric data on thermokinetics and pressure were used for explaining the practical consequences or which the worst cases encountered in this kind of plant. Acceptable risk associated with emergency relief system design is vital for a plant producing organic peroxide. These basic data for designing an inherently safer plant can be conducted from adiabatic calorimetry. An encouraging deduction has been drawn here, these incidents may be avoided by the implementation of API RP 520, API RP 521, DIERS technology, OSHA 1910.119 and AIChE's CCPS recommended PSM elements.

  14. The Evaluation of Solar Contribution in Solar Aided Coal-Fired Power Plant

    Directory of Open Access Journals (Sweden)

    Rongrong Zhai

    2013-01-01

    Full Text Available Solar aided coal-fired power plants utilize various types of solar thermal energy for coupling coal-fired power plants by using the characteristics of various thermal needs of the plants. In this way, the costly thermal storage system and power generating system will be unnecessary while the intermittent and unsteady way of power generation will be avoided. Moreover, the large-scale utilization of solar thermal power and the energy-saving aim of power plants will be realized. The contribution evaluating system of solar thermal power needs to be explored. This paper deals with the evaluation method of solar contribution based on the second law of thermodynamics and the principle of thermoeconomics with a case of 600 MW solar aided coal-fired power plant. In this study, the feasibility of the method has been carried out. The contribution of this paper is not only to determine the proportion of solar energy in overall electric power, but also to assign the individual cost components involving solar energy. Therefore, this study will supply the theoretical reference for the future research of evaluation methods and new energy resource subsidy.

  15. More efficient operation of coal fired power plants using nonlinear models

    Energy Technology Data Exchange (ETDEWEB)

    Bulsari, A.; Wemberg, A.; Anttila, A.; Multas, A. [Nonlinear Solution Oy, Turku (Finland)

    2010-07-15

    Abstract: Coal fired power plants should be operated in such a way that the emissions are kept clearly below desired limits and the combustion efficiency is as high as can be achieved. This requires a lot of quantitative knowledge of the effects of the process variables and fuel characteristics on the emissions and efficiency. Mathematical models can be developed with different approaches. Physical models are too slow to be used for on-line process guidance, and require too many assumptions and simplifications. It is feasible to develop empirical or semi-empirical models from normal production data of the power plant. This technical communication explains with an example of a coal fired power plant how nonlinear models are an effective means of determining the best operating conditions at any given load for a given type of coal.

  16. Superheater corrosion in biomass-fired power plants: Investigation of Welds

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Carlsen, B; Biede, O

    2002-01-01

    condense on superheater components. This gives rise to specific corrosion problems not previously encountered in coal-fired power plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. A test superheater was built into the straw......-fired Masnedø combined heat and power (CHP) plant to investigate corrosion at temperatures higher than that of the actual plant. The highest steam temperature investigated was 570°C. Various alloys of 12-22% chromium content were welded into this test loop. Their corrosion rates were similar and increased...... which had a similar composition to the tubes did not incur this type of corrosion. It is suggested that high temperature galvanic corrosion occurs due to the formation of molten chloride mixtures which serve as the electrolyte....

  17. Superheater corrosion in biomass-fired power plants: Investigation of Welds

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Carlsen, B; Biede, O

    2002-01-01

    condense on superheater components. This gives rise to specific corrosion problems not previously encountered in coal-fired power plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. A test superheater was built into the straw......-fired Masnedø combined heat and power (CHP) plant to investigate corrosion at temperatures higher than that of the actual plant. The highest steam temperature investigated was 570°C. Various alloys of 12-22% chromium content were welded into this test loop. Their corrosion rates were similar and increased...... with temperature. The mechanism of attack was grain boundary attack as a precursor to selective chromium depletion of the alloy. In addition welds coupling various tubes sections were also investigated. It was seen that there was preferential attack around those welds that had a high nickel content. The welds...

  18. Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D. (Environmental Science Division)

    2011-05-09

    Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and

  19. An option for solar thermal repowering of fossil fuel fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Popov, D. [Technical University of Sofia, Sofia (Bulgaria)

    2011-02-15

    Global climate change urges immediate measures to be taken to limit greenhouse gas emission coming from the fossil fuel fired power plants. Solar thermal energy can be involved in different ways in existing power generation plants in order to replace heat produced by fossil fuels. Solar field feed water preheating is mainly discussed in this paper as an option for fast and feasible RES penetration. Rankine regenerative steam cycled power plant has been modelled with Thermoflow software. The plant model incorporates also a field with solar Fresnel collectors that directly heats boiler's feed water. The proposed plant modification yields substantial fossil fuel input reduction. The best results can be obtained when the group of high pressure heaters is replaced and feed water temperature exceeds its original design value. The solar power generation share can reach up to 23% of the power plant capacity in this case, having efficiency higher than 39% for the best solar hour of the year.

  20. Mercury emission from coal-fired power plants in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Glodek, A.; Pacyna, J.M. [NILU Polska, Katowice (Poland)

    2009-11-15

    The paper reviews the current state of knowledge regarding sources of mercury emission in Poland. Due to the large quantities of coal burned at present, as well as taking into account existing reserves, coal remains the main energy source of energy in Poland. The data on coal consumption in Poland in the past, at present and in the future are discussed in the paper. Information on the content of mercury in Polish coals is presented. Coal combustion processes for electricity and heat production are the main source of anthropogenic mercury emission in Poland. It is expected that the current emissions will decrease in the future due to implementation of efficient control measures. These measures for emission reduction are described in the paper. Results of estimated mercury emission from coal-fired power station situated in the Upper Silesia Region, Poland are investigated. A relationship between mercury emission to the air and the mercury content in the consumed coal in power station equipped with the electrostatic precipitators (ESPs) is discussed.

  1. Local Impacts of Mercury Emissions from the Three Pennsylvania Coal Fired Power Plants.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan,T.; Adams,J.; Bender, M.; Bu, C.; Piccolo, N.; Campbell, C.

    2008-02-01

    The Clean Air Interstate Rule (CAIR) and the Clean Air Mercury Rule (CAMR) as proposed by the U.S. Environmental Protection Agency (EPA) when fully implemented will lead to reduction in mercury emissions from coal-fired power plants by 70 percent to fifteen tons per year by 2018. The EPA estimates that mercury deposition would be reduced 8 percent on average in the Eastern United States. The CAMR permits cap-and-trade approach that requires the nationwide emissions to meet the prescribed level, but do not require controls on each individual power plant. This has led to concerns that there may be hot-spots of mercury contamination near power plants. Partially because of this concern, many states including Pennsylvania have implemented, or are considering, state regulations that are stricter on mercury emissions than those in the CAMR. This study examined the possibility that coal-fired power plants act as local sources leading to mercury 'hot spots'. Soil and oak leaf samples from around three large U.S. coal-fired power plants in Western Pennsylvania were collected and analyzed for evidence of 'hot spots'. These three plants (Conemaugh, Homer City, and Keystone) are separated by a total distance of approximately 30 miles. Each emits over 500 pounds of mercury per year which is well above average for mercury emissions from coal plants in the U.S. Soil and oak leaf sampling programs were performed around each power plant. Sampling rings one-mile apart were used with eight or nine locations on each ring. The prevailing winds in the region are from the west. For this reason, sampling was conducted out to 10 miles from the Conemaugh plant which is southeast of the others. The other plants were sampled to a distance of five miles. The objectives were to determine if local mercury hot spots exist, to determine if they could be attributed to deposition of coal-fired power plant emissions, and to determine if they correlated with wind patterns. The study

  2. Exergetic and Parametric Study of a Solar Aided Coal-Fired Power Plant

    Directory of Open Access Journals (Sweden)

    Eric Hu

    2013-03-01

    Full Text Available A solar-aided coal-fired power plant realizes the integration of a fossil fuel (coal or gas and clean energy (solar. In this paper, a conventional 600 MW coal-fired power plant and a 600 MW solar-aided coal-fired power plant have been taken as the study case to understand the merits of solar-aided power generation (SAPG technology. The plants in the case study have been analyzed by using the First and Second Laws of Thermodynamics principles. The solar irradiation and load ratio have been considered in the analysis. We conclude that if the solar irradiation was 925 W/m2 and load ratio of the SAPG plant was 100%, the exergy efficiency would be 44.54% and the energy efficiency of the plant (46.35%. It was found that in the SAPG plant the largest exergy loss was from the boiler, which accounted for about 76.74% of the total loss. When the load ratio of the unit remains at 100%, and the solar irradiation varies from 500 W/m2 to 1,100 W/m2, the coal savings would be in the range of 8.6 g/kWh to 15.8 g/kWh. If the solar irradiation were kept at 925 W/m2 while the load ratio of the plant changed from 30% to 100%, the coal savings could be in the range of 11.99 g/kWh to 13.75 g/kWh.

  3. Combined gas/steam turbine power plants with coal fired steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, H.J.; Weirich, P.H. [ABB Kraftwerke AG, Mannheim (Germany)

    1994-12-31

    The combination of coal fired steam power plants with natural gas fired gas turbines results in an essential efficiency increase, up to 50%, requiring a portion of around one third of the fuel heat input in form of natural gas. There are two basic types of circuit arrangements in this category: in a topping process the gas turbine is connected to the steam generator on the gas side, and in a compound cycle power plant gas turbine and steam circuit are connected to each other on the water/steam side via a heat recovery steam generator. If comparable design parameters are applied slightly higher plant efficiencies can be obtained with the topping process. With respect to a higher power plant availability it is possible to operate both types of circuit arrangement without gas turbine. The specific investment cost of such combined cycle power plants is lower than that of corresponding steam power plants. Hence, they can represent economical solutions as far as the price ratio between natural gas and coal is not extremely high. In ecological respects, the advantage of this combination is a reduction of the specific CO{sub 2} emission by around 20-25%, compared with pure steam power plants. 1 ref., 9 figs., 2 tabs.

  4. Small, modular, low-cost coal-fired power plants for the international market

    Energy Technology Data Exchange (ETDEWEB)

    Zauderer, B.; Frain, B.; Borck, B. [Coal Tech Corp., Merion Station, PA (United States); Baldwin, A.L. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center

    1997-12-31

    This paper presents recent operating results of Coal Tech`s second generation, air cooled, slagging coal combustor, and its application to power plants in the 1 to 20 MW range. This 20 MMBtu/hour combustor was installed in a new demonstration plant in Philadelphia, PA in 1995. It contains the combustion components of a 1 MWe coal fired power plant, a 17,500 lb/hour steam boiler, coal storage and feed components, and stack gas cleanup components. The plant`s design incorporates improvements resulting from 2,000 hours of testing between 1987 and 1993 on a first generation, commercial scale, air cooled combustor of equal thermal rating. Since operations began in early 1996, a total of 51 days of testing have been successfully completed. Major results include durability of the combustor`s refractory wall, excellent combustion with high ash concentration in the fuel, removal of 95% to 100% of the slag in the combustor, very little ash deposition in the boiler, major reduction of in-plant parasitic power, and simplified power system control through the use of modular designs of sub-systems and computer control. Rapid fuel switching between oil, gas, and coal and turndown of up to a factor of three was accomplished. All these features have been incorporated in advanced coal fired plant designs in the 1 to 20 MWe range. Incremental capital costs are only $100 to $200/kW higher than comparable rated gas or oil fired steam generating systems. Most of its components and subsystems can be factory assembled for very rapid field installation. The low capital, low operating costs, fuel flexibility, and compatibility with very high ash fuels, make this power system very attractive in regions of the world having domestic supplies of these fuels.

  5. Optimum power yield for bio fuel fired combined heat and power plants

    Energy Technology Data Exchange (ETDEWEB)

    Broden, Henrik; Nystroem, Olle; Joensson, Mikael

    2012-05-15

    Plant owners, suppliers, research institutions, industry representatives and (supporting) authorities are continuing to question the viability of what can be expected by increasing the steam data and the efficiency of cogeneration plants. In recent years, the overall conditions for investment in CHP have changed. Today, there is access to new materials that allow for more advanced steam data while maintaining availability. Although the financial environment with rising prices of electricity, heating and fuel along with the introduction of energy certificates and the interest in broadening the base of fuel has changed the situation. At the same time as the increased interest in renewable energy production creates competition among energy enterprises to find suppliers, increased prices for materials and labor costs have also resulted in increased investment and maintenance costs. Research on advanced steam data for biomass-fired power cogeneration plants has mainly emphasized on technical aspects of material selection and corrosion mechanisms based on performance at 100 % load looking at single years. Reporting has rarely been dealing with the overall economic perspective based on profitability of the CHP installations throughout their entire depreciation period. In the present report studies have been performed on how the choice of steam data affects the performance and economy in biomass-fired cogeneration plants with boilers of drum type and capacities at 30, 80 and 160 MWth with varied steam data and different feed water system configurations. Profitability is assessed on the basis of internal rate of return (IRR) throughout the amortization period of the plants. In addition, sensitivity analyses based on the most essential parameters have been carried out. The target group for the project is plant owners, contractors, research institutions, industry representatives, (supporting) authorities and others who are faced with concerns regarding the viability of what

  6. A Study on Total Factor Energy Efficiency of Coal-fired Power Plants Considering Environmental Protection

    Directory of Open Access Journals (Sweden)

    Xi-ping Wang

    2013-05-01

    Full Text Available In this study, we measure the total-factor energy efficiency under the constraint of environment of 13 coal-fired power plants in Hebei province over the period of 2009 to 2011 using the DEA model which based on the environmental production technology and the directional distance function. The results indicate that the total factor energy efficiency of sample power plants is still at sub-optimal level of around 0.84 and the efficiency is over estimated when without looking at environmental impacts. This indicates that undesirable outputs have a significant influence on energy efficiency of power plants. Poor performance of few power plants is due to their ability to manage the undesirable outputs need to be improved. In order to improve energy efficiency and achieve sustainable development, plants should concentrate on both energy saving and emission reduction at the same time.

  7. Influence of grazing and fire frequency on small-scale plant community structure and resource variability in native tallgrass prairie

    NARCIS (Netherlands)

    Veen, G. F. (Ciska); Blair, John M.; Smith, Melinda D.; Collins, Scott L.

    2008-01-01

    In grasslands worldwide, grazing by ungulates and periodic fires are important forces affecting resource availability and plant community structure. It is not clear, however, whether changes in community structure are the direct effects of the disturbance (i.e. fire and grazing) or are mediated indi

  8. Sliding Mode Predictive Control of Main Steam Pressure in Coal-fired Power Plant Boiler

    Institute of Scientific and Technical Information of China (English)

    史元浩; 王景成; 章云锋

    2012-01-01

    Since the combustion system of coal-fired boiler in thermal power plant is characterized as time varying, strongly coupled, and nonlinear, it is hard to achieve a satisfactory performance by the conventional proportional integral derivative (PID) control scheme. For the characteristics of the main steam pressure in coal-fired power plant boiler, the sliding mode control system with Smith predictive structure is proposed to look for performance and robustness improvement. First, internal model control (IMC) and Smith predictor (SP) is used to deal with the time delay, and sliding mode controller (SMCr) is designed to overcome the model mismatch. Simulation results show the effectiveness of the proposed controller compared with conventional ones.

  9. Flue gas condensation in straw fired CHP plants; Roeggaskondensation i halmfyrede kraftvarmeanlaeg

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-15

    The high price of straw and a general demand for increased use of straw in power and heat production are expected to result in an increased need for efficient fuel utilization. The use of flue gas condensation in straw fired CHP plants can contribute to a higher exploitation of energy, and at the same time open of the possibility of utilization of wet (cheaper) fuels without energy loss. Furthermore flue gas condensation can contribute to the flue gas cleaning process through removal of HCl and SO{sub 2} as well as in particle cleaning in wet cleaning processes. With starting point in a straw fired CHP plant the technical and economic consequences of installation of a flue gas condensation system are investigated. Fuel exploitation and power/heat production distribution is included in the investigation. (BA)

  10. Coal-fired power plants and the causes of high temperature corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Oakey, J.E.; Simms, N.J. [British Coal Corporation, Coal Technology Development Div., Cheltenham, Glos (United Kingdom); Tomkings, A.B. [ERA Technology Ltd., Leatherhead, Surrey (United Kingdom)

    1996-12-01

    The heat exchangers in all types of coal-fired power plant operate in aggressive, high temperature environments where high temperature corrosion can severely limit their service lives. The extent of this corrosion is governed by the combined effects of the operating conditions of the heat exchanger and the presence of corrosive species released from the coal during operation. This paper reviews the coal-related factors, such as ash deposition, which influence the operating environments of heat exchangers in three types of coal-fired power plant - conventional pulverized coal boilers, fluidized bed boilers and coal gasification systems. The effects on the performance of the materials used for these heat exchangers are then compared. (au) 35 refs.

  11. 800-MW Supercritical Coal-Fired Boilers in Suizhong Power Plant

    Institute of Scientific and Technical Information of China (English)

    Zou Haifeng; Li Zhishan; Liu Zhongqi; Yan Hongyong; Zhang Yuanliang; Wang Lei

    2005-01-01

    This article reviews the problems of Russia-made 800-MW coal-fired supercritical boilers inSuizhong Power Plant, such as burner burnout, water-wall leakage, slag screen I explosion, crack happenedon the desuperheater outlet of reheater and welding defect of economizer; tells the process of renovating theseunits by modifying the original design and adjusting the operation parameters. After several years' effort, allthe problems have been well solved. The experience may be useful for other imported units in China.

  12. Deactivation of SCR catalysts in biomass fired power plants

    DEFF Research Database (Denmark)

    Olsen, Brian Kjærgaard

    In order to meet national and European targets regarding reduction of the emission of greenhouse gases, fossil fuels are gradually being substituted with biomass, such as straw, wood chips and wood pellets, in Danish combined heat and power plants. The release of inorganic elements, present...... particle size distribution, from an aerodynamic diameter of 0.12 to 2.6 μm, showed no effect on the catalyst deactivation rate. This may be attributed to a continued presence of a significant number of ultrafine KCl particles in the flue gas. The K2SO4 aerosols caused a slower rate of deactivation compared...... to the KCl aerosols. This indicates that potassium bound in K2SO4 deposits, on the catalyst surface, is less mobile than that bound KCl. However, an effect of particle size on the catalyst deactivation cannot be excluded, as the obtained K2SO4 aerosols generally were shifted towards larger particles (mass...

  13. Biotic and physico-chemical conditions in a cooling reservoir of a coal-fired power plant

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Cholla Lake is a cooling reservoir for the coal fired Cholla electrical generating plant. The lake provides recreational fishing and water contact recreation. The...

  14. Fire and drought affect plant communities and the greenhouse gas balance in a Mediterranean shrubland

    Science.gov (United States)

    Moreno, José M.; Parra, Antonio; Dannenmann, Michael; Ramírez, David A.; Diaz-Pines, Eugenio; Tejedor, Javier; Kitzler, Barbara; Karhu, Kristina; Resco, Victor; Povoas, Luciano

    2010-05-01

    Predicted changes in the seasonality and amount of rainfall under a changing climate have the potential to dramatically alter ecosystem function and species composition. Moreover, in fire-prone ecosystems, the joint effects of fire and increasing aridity may create irreversible changes to the services these ecosystems provide. To understand the effects of increasing drought and fire in a Mediterranean shrubland, we implemented an automated rainfall manipulation system, with rain-out shelters which automatically fold and unfold when conditions are rainy and dry, respectively. In January 2009, we implemented five different treatments, where annual precipitation was reduced by diminishing summer rainfall from the long-term historical average, up to a 40% reduction, following IPCC scenarios. In September 2009, we uninstalled all the shelters to burn the different plots, and reinstalled the shelters immediately afterwards. In this talk, we will present the preliminary results of an integrated experiment which aims at understanding the concomitant effects of fire and different drought intensities on the species composition and greenhouse gas balance (CO2, N2O and CH4) of a Mediterranean shrubland. We observed that plant growth was more severely affected by drought in the more shallow-rooted, malacophyllous shrub (from 116 to -7.2 mg/g/d in Cistus ladanifer), than in a deeper-rooted heather (from 5.5 to 66.9 mg/g/day in Erica arborea). This growth response was mediated by species-specific differences in hydraulics, leaf morphology and photosynthetic gas exchange of each species. Analyses of changes in species composition after fire are currently undergoing. The precipitation reduction treatments exerted drought stress on CH4 oxidizing microorganisms and thus reduced the CH4 sink strength of the ecosystem during the pre-fire period. Furthermore, the net CH4 uptake at the soil-atmosphere interface was reduced by the fire for a period of at least one month. Pedosphere

  15. Invasion of alien plants in fire-damaged forests at southern boundary of the taiga zone

    Energy Technology Data Exchange (ETDEWEB)

    Khapugin, A.A.; Vargot, E.V.; Chugunov, G.G.; Shugaev, N.I.

    2016-07-01

    Aim of the study: Biological invasions are one of the most important areas of forest research. In this study, we revealed invasibility of fire-damaged forests at the southern boundary of the taiga zone. Area of study: The Mordovia State Nature Reserve (Central Russia). Material and Methods: Altogether, 11 square plots of each 100 ×100 m were established in different types of fire-damaged forests. To test plant invasion outside the established plots, field researches were carried out by route method in fire-damaged area of the Mordovia Reserve. Main Results: Six alien species (Erigeron canadensis, E. annuus, Oenothera biennis, Lactuca serriola, Sambucus racemosa, Viola arvensis) were registered within the established plots in 2011–2014. In addition, two alien invasive plants (Solidago canadensis and Bidens frondosa) were found outside these plots. No differences were detected in invasibility of the tested forest ecosystems. Research highlights: Among the revealed alien species, Erigeron canadensis, Lactuca serriola and Solidago canadensis are the most invasive plants in forest ecosystems. The first one was observed with a high occurrence frequency and abundance in all forest types tested. The second one has not been differed by abundance, but it characterized by a high competition as well as a large biomass and a large number of seeds. Solidago canadensis penetrated to natural forest ecosystem in a short time period due to closest location of its dispersal centers near the boundary of the Mordovia Reserve. These species are the most probable invaders of the forest ecosystems. (Author)

  16. The influence of fire history, plant species and post-fire management on soil water repellency in a Mediterranean catchment: the Mount Carmel range, Israel

    Science.gov (United States)

    Keesstra, Saskia; Wittenberg, Lea; Maroulis, Jerry; Malkinson, Dan; Cerdà, Artemi; Pereira, Paulo

    2016-04-01

    Fire is a key factor impacting soil hydrology in many Mediterranean catchments. Soil water repellency (SWR) can stimulate land degradation processes by reducing the affinity of soil and water thereby triggering a reduction in soil fertility and increasing soil and water losses (. The effects of two consequent fires (1989 and 2005) on SWR were assessed in the Carmel Mountains, Israel. Fire history, plant recovery and post-fire management were investigated as determining factors in a time dependent system. SWR was highest in the >50 years unburnt plots, where soil under Pinus halepensis is most hydrophobic. In the most disturbed soils (twice burnt), many sites have a low to absent SWR even if the soil is very dry. The dynamics and fluctuations in SWR differ in magnitude under different plant species. The areas treated with CC (chipping of charred trees) showed a much higher SWR than areas left untreated. From these insights, a conceptual model of the reaction of SWR on multiple fires was developed. KEYWORDS: Soil water repellency, WDPT, Wildfires, Vegetation recovery, post-fire management, Mediterranean.

  17. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Steven; Browers, Bruce; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-31

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, a Technical and Economic Feasibility Study was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment developed a process flow diagram, major equipment list, heat balances for the SCPC power plant, capital cost estimate, operating cost estimate, levelized cost of electricity, cost of CO2 capture ($/ton) and three sensitivity cases for the CACHYS™ process.

  18. Model-based Fuel Flow Control for Fossil-fired Power Plants

    DEFF Research Database (Denmark)

    Niemczyk, Piotr

    2010-01-01

    such sources may vary unpredictably meaning that the desired level of generation cannot always be achieved upon request. On-demand production from controllable units, such as thermal power plants, must change quickly in order to ensure balance between consumer demands and electricity generation. Coal......-fired power plants represent the largest reserve of such controllable power sources in several countries. However, their production take-up rates are limited, mainly due to poor fuel flow control. The thesis presents analysis of difficulties and potential improvements in the control of the coal grinding...

  19. Natural radionuclides in soil profiles surrounding the largest coal-fired power plant in Serbia

    Directory of Open Access Journals (Sweden)

    Tanić Milan N.

    2016-01-01

    Full Text Available This study evaluates the influence of the largest Serbian coal-fired power plant on radionuclide concentrations in soil profiles up to 50 cm in depth. Thirty soil profiles were sampled from the plant surroundings (up to 10 km distance and analyzed using standard methods for soil physicochemical properties and gamma ray spectrometry for specific activities of natural radionuclides (40K, 226Ra and 232Th. Spatial and vertical distribution of radionuclides was determined and analyzed to show the relations between the specific activities in the soil and soil properties and the most influential factors of natural radionuclide variability were identified. The radiological indices for surface soil were calculated and radiological risk assessment was performed. The measured specific activities were similar to values of background levels for Serbia. The sampling depth did not show any significant influence on specific activities of natural radionuclides. The strongest predictor of specific activities of the investigated radionuclides was soil granulometry. All parameters of radiological risk assessment were below the recommended values and adopted limits. It appears that the coal-fired power plant does not have a significant impact on the spatial and vertical distribution of natural radionuclides in the area of interest, but technologically enhanced natural radioactivity as a consequence of the plant operations was identified within the first 1.5 km from the power plant. [Projekat Ministarstva nauke Republike Srbije br. III43009 i br. III41005

  20. Analysis of the evaporative towers cooling system of a coal-fired power plant

    Directory of Open Access Journals (Sweden)

    Laković Mirjana S.

    2012-01-01

    Full Text Available The paper presents a theoretical analysis of the cooling system of a 110 MW coal-fired power plant located in central Serbia, where eight evaporative towers cool down the plant. An updated research on the evaporative tower cooling system has been carried out to show the theoretical analysis of the tower heat and mass balance, taking into account the sensible and latent heat exchanged during the processes which occur inside these towers. Power plants which are using wet cooling towers for cooling condenser cooling water have higher design temperature of cooling water, thus the designed condensing pressure is higher compared to plants with a once-through cooling system. Daily and seasonal changes further deteriorate energy efficiency of these plants, so it can be concluded that these plants have up to 5% less efficiency compared to systems with once-through cooling. The whole analysis permitted to evaluate the optimal conditions, as far as the operation of the towers is concerned, and to suggest an improvement of the plant. Since plant energy efficiency improvement has become a quite common issue today, the evaluation of the cooling system operation was conducted under the hypothesis of an increase in the plant overall energy efficiency due to low cost improvement in cooling tower system.

  1. Control strategies of atmospheric mercury emissions from coal-fired power plants in China.

    Science.gov (United States)

    Tian, Hezhong; Wang, Yan; Cheng, Ke; Qu, Yiping; Hao, Jiming; Xue, Zhigang; Chai, Fahe

    2012-05-01

    Atmospheric mercury (Hg) emission from coal is one of the primary sources of anthropogenic discharge and pollution. China is one of the few countries in the world whose coal consumption constitutes about 70% of total primary energy, and over half of coals are burned directly for electricity generation. Atmospheric emissions of Hg and its speciation from coal-fired power plants are of great concern owing to their negative impacts on regional human health and ecosystem risks, as well as long-distance transport. In this paper, recent trends of atmospheric Hg emissions and its species split from coal-fired power plants in China during the period of 2000-2007 are evaluated, by integrating each plant's coal consumption and emission factors, which are classified by different subcategories of boilers, particulate matter (PM) and sulfur dioxide (SO2) control devices. Our results show that the total Hg emissions from coal-fired power plants have begun to decrease from the peak value of 139.19 t in 2005 to 134.55 t in 2007, though coal consumption growing steadily from 1213.8 to 1532.4 Mt, which can be mainly attributed to the co-benefit Hg reduction by electrostatic precipitators/fabric filters (ESPs/FFs) and wet flue gas desulfurization (WFGD), especially the sharp growth in installation of WFGD both in the new and existing power plants since 2005. In the coming 12th five-year-plan, more and more plants will be mandated to install De-NO(x) (nitrogen oxides) systems (mainly selective catalytic reduction [SCR] and selective noncatalytic reduction [SNCR]) for minimizing NO(x) emission, thus the specific Hg emission rate per ton of coal will decline further owing to the much higher co-benefit removal efficiency by the combination of SCR + ESPs/FFs + WFGD systems. Consequently, SCR + ESPs/FFs + WFGD configuration will be the main path to abate Hg discharge from coal-fired power plants in China in the near future. However advanced specific Hg removal technologies are necessary

  2. Effects of fire and three fire-fighting chemicals on main soil properties, plant nutrient content and vegetation growth and cover after 10 years

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Fernández, M., E-mail: mariafernandez@iiag.csic.es; Gómez-Rey, M.X., E-mail: mxgomez@iiag.csic.es; González-Prieto, S.J., E-mail: serafin@iiag.csic.es

    2015-05-15

    The study addresses a knowledge-gap in the long-term ecological consequences of fire and fire-fighting chemicals. Ten years after a prescribed fire and the application of three fire-fighting chemicals, their effects on the soil–plant system were evaluated. Five treatments were established: unburnt soils (US) and burnt soils treated with water alone (BS), foaming agent (BS + Fo), Firesorb (BS + Fi) and ammonium polyphosphate (BS + Ap). Soils (0–2 cm depth) and foliar material of shrubs (Erica umbellata, Pterospartum tridentatum and Ulex micranthus) and trees (Pinus pinaster) were analysed for total N, δ{sup 15}N, and soil-available and plant total macronutrients and trace elements. Soil pH, NH{sub 4}{sup +}–N and NO{sub 3}{sup −}–N; pine basal diameter and height; and shrub cover and height were also measured. Compared with US plots, burnt soils had less nitrates and more Mo. Although differences were not always significant, BS + Ap had the highest levels of soil available P, Na and Al. Plants from BS + Ap plots had higher values of δ{sup 15}N (P. pinaster and E. umbellata), P (all species), Na (P. tridentatum and U. micranthus) and Mg (E. umbellata and P. tridentatum) than other treatments; while K in plants from BS + Ap plots was the highest among treatments for P. pinaster and the lowest for the shrubs. Pines in US plots were higher and wider than in burnt treatments, except for BS + Ap, where the tallest and widest trees were found, although half of them were either dead (the second highest mortality after BS + Fi) or had a distorted trunk. BS + Ap was the treatment with strongest effects on plants, showing E. umbellata the lowest coverage and height, P. tridentatum the highest coverage, U. micranthus one of the lowest coverages and being the only treatment where Genista triacanthos was absent. Consequently, it is concluded that both fire and ammonium polyphosphate application had significant effects on the soil–plant system after 10 years

  3. Inferring differential evolutionary processes of plant persistence traits in Northern Hemisphere Mediterranean fire-prone ecosystems

    Science.gov (United States)

    Pausas, J.G.; Keeley, J.E.; Verdu, M.

    2006-01-01

    1 Resprouting capacity (R) and propagule-persistence (P) are traits that are often considered to have evolved where there are predictable crown fires. Because several indicators suggest a stronger selective pressure for such traits in California than in the Mediterranean Basin, we hypothesize that plant species should have evolved to become R+ and P+ more frequently in California than in the Mediterranean Basin. 2 To test this hypothesis we studied the phylogenetic association between R and P states in both California and the Mediterranean Basin using published molecular phylogenies. 3 The results suggest that R and P evolved differently in the two regions. The occurrence of the states differs significantly between regions for trait P, but not for trait R. The different patterns (towards R+ and P+ in California and towards R+ and P- in the Mediterranean Basin) are reflected in the higher abundance and the wider taxonomic distribution of species with both persistence traits (R+P+ species) in California. 4 The differential acquisition of fire persistence mechanisms at the propagule level (P+) supports the idea that fire selective pressures has been higher in California than in the Mediterranean Basin. 5 Our comparative phylogenetic-informed analysis contributes to an understanding of the differential role of the Quaternary climate in determining fire persistence traits in different Mediterranean-type ecosystems and, thus, to the debate on the evolutionary convergence of traits. ?? 2006 British Ecological Society.

  4. Potential nanotechnology applications for reducing freshwater consumption at coal fired power plants : an early view.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D. (Environmental Science Division)

    2010-09-17

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the overall research effort of the Existing Plants Research Program by evaluating water issues that could impact power plants. A growing challenge to the economic production of electricity from coal-fired power plants is the demand for freshwater, particularly in light of the projected trends for increasing demands and decreasing supplies of freshwater. Nanotechnology uses the unique chemical, physical, and biological properties that are associated with materials at the nanoscale to create and use materials, devices, and systems with new functions and properties. It is possible that nanotechnology may open the door to a variety of potentially interesting ways to reduce freshwater consumption at power plants. This report provides an overview of how applications of nanotechnology could potentially help reduce freshwater use at coal-fired power plants. It was developed by (1) identifying areas within a coal-fired power plant's operations where freshwater use occurs and could possibly be reduced, (2) conducting a literature review to identify potential applications of nanotechnology for facilitating such reductions, and (3) collecting additional information on potential applications from researchers and companies to clarify or expand on information obtained from the literature. Opportunities, areas, and processes for reducing freshwater use in coal-fired power plants considered in this report include the use of nontraditional waters in process and cooling water systems, carbon capture alternatives, more efficient processes for removing sulfur dioxide and nitrogen oxides, coolants that have higher thermal conductivities than water alone, energy storage options, and a variety of plant inefficiencies, which

  5. Non-greenhouse gas emissions from coal-fired power plants in China

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-04-15

    Within the Twelth Five-Year Plan, the Chinese Government has made addressing air quality problems a key environmental priority, with an intention to accelerate the development of systems, institutions and a technical knowledge base for sustained improvement. A major focus is on the coal power sector for which standards have been introduced that require the installation of modern, very high efficiency SO2, NOx and particulates emissions control systems. Nine key regions, which are facing very significant air quality challenges, are the three major economic zones around the cities of Beijing, Shanghai (Yangtze River Delta) and Guangzhou (Pearl River Delta), together with six areas around the cities of Shenyang, Changsha, Wuhan, Chengdu Chongqing, the Shandong peninsula, and the coastal area west of the Taiwan strait. These regions comprise the population and economic centres of the country, accounting for 64% of national GDP, 43% of total energy use, and 39% of the population. In these locations, all existing and new coal-fired power plants will have to achieve particulate, SO2 and NOx emissions limits of 20, 50 and 100 mg/m3 respectively, with new plants expected to meet the standards from 1 January 2012 and existing plants by 1 July 2014. At the same time, there will be an increasing emphasis on limiting any new coal-fired power plants in these regions. For the rest of the country, the standards are not quite so strict and the SO2 limits for existing plants are less severe than for new plants. The new pollutant that will be regulated on coal-fired power plants is mercury and its compounds, for which the limit has been set at a level that represents a core control. This means that providing the power plant operator meets the new particulate, SO2 and NOx standards then the mercury standard should be met without the need to introduce an additional capture device, although the emissions level will have to be measured on a regular basis. From a global perspective, this

  6. Characteristics of NOx emission from Chinese coal-fired power plants equipped with new technologies

    Science.gov (United States)

    Ma, Zizhen; Deng, Jianguo; Li, Zhen; Li, Qing; Zhao, Ping; Wang, Liguo; Sun, Yezhu; Zheng, Hongxian; Pan, Li; Zhao, Shun; Jiang, Jingkun; Wang, Shuxiao; Duan, Lei

    2016-04-01

    Coal combustion in coal-fired power plants is one of the important anthropogenic NOx sources, especially in China. Many policies and methods aiming at reducing pollutants, such as increasing installed capacity and installing air pollution control devices (APCDs), especially selective catalytic reduction (SCR) units, could alter NOx emission characteristics (NOx concentration, NO2/NOx ratio, and NOx emission factor). This study reported the NOx characteristics of eight new coal-fired power-generating units with different boiler patterns, installed capacities, operating loads, and coal types. The results showed that larger units produced less NOx, and anthracite combustion generated more NOx than bitumite and lignite combustion. During formation, the NOx emission factors varied from 1.81 to 6.14 g/kg, much lower than those of older units at similar scales. This implies that NOx emissions of current and future units could be overestimated if they are based on outdated emission factors. In addition, APCDs, especially SCR, greatly decreased NOx emissions, but increased NO2/NOx ratios. Regardless, the NO2/NOx ratios were lower than 5%, in accordance with the guidelines and supporting the current method for calculating NOx emissions from coal-fired power plants that ignore NO2.

  7. Calorimetric studies and lessons on fires and explosions of a chemical plant producing CHP and DCPO.

    Science.gov (United States)

    Hsu, Jing-Ming; Su, Mao-Sheng; Huang, Chiao-Ying; Duh, Yih-Shing

    2012-05-30

    Cumene hydroperoxide (CHP) has been used in producing phenol, dicumyl peroxide (DCPO) and as an initiator for synthesizing acrylonitrile-butadiene-styrene (ABS) resin by copolymerization in Taiwan. Four incidents of fire and explosion induced by thermal runaway reactions were occurred in a same plant producing CHP, DCPO and bis-(tert-butylperoxy isopropyl) benzene peroxide (BIBP). The fourth fire and explosion occurred in the CHP reactor that resulted in a catastrophic damage in reaction region and even spread throughout storage area. Descriptions on the occurrences of these incidents were assessed by the features of processes, reaction schemes and unexpected side reactions. Calorimetric data on thermokinetics and pressure were used for explaining the practical consequences or which the worst cases encountered in this kind of plant. Acceptable risk associated with emergency relief system design is vital for a plant producing organic peroxide. These basic data for designing an inherently safer plant can be conducted from adiabatic calorimetry. An encouraging deduction has been drawn here, these incidents may be avoided by the implementation of API RP 520, API RP 521, DIERS technology, OSHA 1910.119 and AIChE's CCPS recommended PSM elements. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  8. Effects of Three Fire-Suppressant Foams on the Germination and Physiological Responses of Plants

    Science.gov (United States)

    Song, Uhram; Mun, Saeromi; Waldman, Bruce; Lee, Eun Ju

    2014-10-01

    Suppressant foams used to fight forest fires may leave residual effects on surviving biota that managers need to consider prior to using them. We examined how three fire-suppressant foams (FSFs) (Forexpan S, Phos-Chek-WD881, and Silv-ex) affected seed germination and physiological responses of three plant species. Exposure to FSFs, whether in diluted concentrations or those typical in the field, reduced final germination percentages of seeds grown in petri dishes and within growth chambers. However, the FSFs did not cause total germination failure in any treatment. Inhibition of germination increased with longer exposure times, but only to diluted FSF solutions. Unlike in the laboratory experiments, none of the three FSFs affected seedling emergence when tested in field conditions. Further, we found no evidence of long-term phytotoxic effects on antioxidant enzyme activity nor chlorophyll content of the plant saplings. Therefore, although the three FSFs showed evidence of phytotoxicity to plants in laboratory tests, their actual impact on terrestrial ecosystems may be minimal. We suggest that the benefits of using these FSFs to protect plants in threatened forest ecosystems outweigh their minor risks.

  9. Solar-Augment Potential of U.S. Fossil-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C.; Langle, N.; Bedilion, R.; Libby, C.

    2011-02-01

    Concentrating Solar Power (CSP) systems utilize solar thermal energy for the generation of electric power. This attribute makes it relatively easy to integrate CSP systems with fossil-fired power plants. The 'solar-augment' of fossil power plants offers a lower cost and lower risk alternative to stand-alone solar plant construction. This study ranked the potential to add solar thermal energy to coal-fired and natural gas combined cycle (NGCC) plants found throughout 16 states in the southeast and southwest United States. Each generating unit was ranked in six categories to create an overall score ranging from Excellent to Not Considered. Separate analysis was performed for parabolic trough and power tower technologies due to the difference in the steam temperatures that each can generate. The study found a potential for over 11 GWe of parabolic trough and over 21 GWe of power tower capacity. Power towers offer more capacity and higher quality integration due to the greater steam temperatures that can be achieved. The best sites were in the sunny southwest, but all states had at least one site that ranked Good for augmentation.

  10. Emission characteristics of volatile organic compounds from coal-, coal gangue-, and biomass-fired power plants in China

    Science.gov (United States)

    Yan, Yulong; Yang, Chao; Peng, Lin; Li, Rumei; Bai, Huiling

    2016-10-01

    Face the large electricity demand, thermal power generation still derives the main way of electricity supply in China, account for 78.19% of total electricity production in 2013. Three types of thermal power plants, including coal-fired power plant, coal gangue-fired power plant and biomass-fired power plant, were chosen to survey the source profile, chemical reactivity and emission factor of VOCs during the thermal power generation. The most abundant compounds generated during coal- and coal gangue-fired power generation were 1-Butene, Styrene, n-Hexane and Ethylene, while biomass-fired power generation were Propene, 1-Butenen, Ethyne and Ethylene. The ratios of B/T during thermal power generation in this study was 0.8-2.6, which could be consider as the characteristics of coal and biomass burning. The field tested VOCs emission factor from coal-, coal gangue- and biomass-fired power plant was determined to be 0.88, 0.38 and 3.49 g/GJ, or showed as 0.023, 0.005 and 0.057 g/kg, with the amount of VOCs emission was 44.07, 0.08, 0.45 Gg in 2013, respectively. The statistical results of previous emission inventory, which calculated the VOCs emission used previous emission factor, may overestimate the emission amount of VOCs from thermal power generation in China.

  11. ATMOSPHERIC AEROSOL SOURCE-RECEPTOR RELATIONSHIPS: THE ROLE OF COAL-FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

    2004-12-01

    This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of March 2004 through August 2004. Significant progress was made this project period on the analysis of ambient data, source apportionment, and deterministic modeling activities. Results highlighted in this report include evaluation of the performance of PMCAMx+ for an air pollution episode in the Eastern US, an emission profile for a coke production facility, ultrafine particle composition during a nucleation event, and a new hybrid approach for source apportionment. An agreement was reached with a utility to characterize fine particle and mercury emissions from a commercial coal fired power. Research in the next project period will include source testing of a coal fired power plant, source apportionment analysis, emission scenario modeling with PMCAMx+, and writing up results for submission as journal articles.

  12. Interactions of wildland fire emissions with power plant and traffic emissions in Southeastern US

    Science.gov (United States)

    Odman, M. T.; Hu, Y.; Russell, A. G.

    2015-12-01

    Emissions from wildland fires are a significant source of air pollutants and in certain parts of the world where air quality is already stressed by anthropogenic emissions they can lead to major health and environmental problems. The harmful effects can come simply from the increase of the preexisting primary pollutants in the region by the wildland fire emissions. Moreover, secondary pollutants can also form when wildland fire emissions coexist with emissions from other sources such as power plants and highways. In Southeastern US, where prescribed burning is routinely practiced both for ecosystem health and reduction of wildfire risk, smoke plumes from wildland fires frequently encroach urban areas where there is an abundance of other emissions. Up till now, assessments of the impacts of prescribed burning mostly focused on the primary pollutants and the interactions of wildland fire emissions with anthropogenic emissions has not been studied in detail.Since November 2014, we have been forecasting the individual air quality impacts of two anthropogenic emission categories, namely electric generation and vehicular traffic, as well as prescribed burning using the Decoupled Direct Method (DDM) available in CMAQ version 5.0.2. We use special techniques to provide accurate emissions inputs to our forecasts, including a new weather-based prescribed burn forecasting system that mines a burn permit database for geographic burning patterns. We also use surface and satellite observations along with simulated concentrations and their sensitivities to emissions in an inverse modeling framework to continuously adjust input emissions. The impact forecasts include the interactions between emissions from different sources but do not distinguish their magnitudes. In this study, using our forecasting system we simulated the impacts of power plants and on-road vehicles on ozone and PM2.5 concentrations first with and then without the prescribed burn emissions. Then, we attributed

  13. Could plant extracts have enabled hominins to acquire honey before the control of fire?

    Science.gov (United States)

    Kraft, Thomas S; Venkataraman, Vivek V

    2015-08-01

    Honey is increasingly recognized as an important food item in human evolution, but it remains unclear whether extinct hominins could have overcome the formidable collective stinging defenses of honey bees during honey acquisition. The utility of smoke for this purpose is widely recognized, but little research has explored alternative methods of sting deterrence such as the use of plant secondary compounds. To consider whether hominins could have used plant extracts as a precursor or alternative to smoke, we review the ethnographic, ethnobotanical, and plant chemical ecology literature to examine how humans use plants in combination with, and independently of, smoke during honey collection. Plant secondary compounds are diverse in their physiological and behavioral effects on bees and differ fundamentally from those of smoke. Plants containing these chemicals are widespread and prove to be remarkably effective in facilitating honey collection by honey hunters and beekeepers worldwide. While smoke may be superior as a deterrent to bees, plant extracts represent a plausible precursor or alternative to the use of smoke during honey collection by hominins. Smoke is a sufficient but not necessary condition for acquiring honey in amounts exceeding those typically obtained by chimpanzees, suggesting that significant honey consumption could have predated the control of fire. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Utilization of fly ash from coal-fired power plants in China

    Institute of Scientific and Technical Information of China (English)

    Da-zuo CAO; Eva SELIC; Jan-Dirk HERBELL

    2008-01-01

    The rapidly increasing demand for energy in China leads to the construction of new power plants all over the country. Coal, as the main fuel resource of those power plants, results in increasing problems with the disposal of solid residues from combustion and off gas cleaning. This investigation describes chances for the utilization of fly ash from coal-fired power plants in China. After briefly comparing the situation in China and Germany, the status of aluminum recycling from fly ash and the advantages for using fly ash in concrete products are introduced. Chemical and physical analyses of Chinese fly ash samples, e.g., X-ray diffraction (XRD), ICP (Inductive Coupled Plasma) and particle size analysis, water requirement, etc. are presented. Reasonable amounts of aluminum were detected in the samples under investigation, but for recovery only sophisticated procedures are available up to now. Therefore, simpler techniques are suggested for the first steps in the utilization of Chinese fly ash.

  15. Rock magnetic finger-printing of soil from a coal-fired thermal power plant.

    Science.gov (United States)

    Gune, Minal; Harshavardhana, B G; Balakrishna, K; Udayashankar, H N; Shankar, R; Manjunatha, B R

    2016-05-01

    We present seasonal rock magnetic data for 48 surficial soil samples collected seasonally around a coal-fired thermal power plant on the southwest coast of India to demonstrate how fly ash from the power plant is transported both spatially and seasonally. Sampling was carried out during pre-monsoon (March), early-monsoon (June), monsoon (September) and post-monsoon (December) seasons. Low- and high-frequency magnetic susceptibility (χlf and χhf), frequency-dependent magnetic susceptibility (χfd), χfd %, isothermal remanent magnetization (IRM), "hard" IRM (HIRM), saturation IRM (SIRM) and inter-parametric ratios were determined for the samples. Scanning electron microscopy (SEM) was used on limited number of samples. NOAA HYSPLIT MODEL backward trajectory analysis and principal component analysis were carried out on the data. Fly ash samples exhibit an average HIRM value (400.07 × 10(-5) Am(2) kg(-1)) that is comparable to that of soil samples. The pre- and post-monsoon samples show a consistent reduction in the concentration of magnetically "hard" minerals with increasing distance from the power plant. These data suggest that fly ash has indeed been transported from the power plant to the sampling locations. Hence, HIRM may perhaps be used as a proxy for tracking fly ash from coal-fired thermal power plants. Seasonal data show that the distribution of fly ash to the surrounding areas is minimum during monsoons. They also point to the dominance of SP magnetite in early-monsoon season, whereas magnetic depletion is documented in the monsoon season. This seasonal difference is attributable to both pedogenesis and anthropogenic activity i.e. operation of the thermal power plant.

  16. Factors affecting plant diversity during post-fire recovery and succession of mediterranean-climate shrublands in California, USA

    Science.gov (United States)

    Keeley, J.E.; Fotheringham, C.J.; Baer-Keeley, M.

    2005-01-01

    Plant community diversity, measured as species richness, is typically highest in the early post-fire years in California shrublands. However, this generalization is overly simplistic and the present study demonstrates that diversity is determined by a complex of temporal and spatial effects. Ninety sites distributed across southern California were studied for 5 years after a series of fires. Characteristics of the disturbance event, in this case fire severity, can alter post-fire diversity, both decreasing and increasing diversity, depending on life form. Spatial variability in resource availability is an important factor explaining patterns of diversity, and there is a complex interaction between landscape features and life form. Temporal variability in resource availability affects diversity, and the diversity peak in the immediate post-fire year (or two) appears to be driven by factors different from subsequent diversity peaks. Early post-fire diversity is influenced by life-history specialization, illustrated by species that spend the bulk of their life cycle as a dormant seed bank, which is then triggered to germinate by fire. Resource fluctuations, precipitation in particular, may be associated with subsequent post-fire diversity peaks. These later peaks in diversity comprise a flora that is compositionally different from the immediate post-fire flora, and their presence may be due to mass effects from population expansion of local populations in adjacent burned areas. ?? 2005 Blackwell Publishing Ltd.

  17. Life cycle assessment of coal-fired power plants and sensitivity analysis of CO2 emissions from power generation side

    Science.gov (United States)

    Yin, Libao; Liao, Yanfen; Zhou, Lianjie; Wang, Zhao; Ma, Xiaoqian

    2017-05-01

    The life cycle assessment and environmental impacts of a 1000MW coal-fired power plant were carried out in this paper. The results showed that the operation energy consumption and pollutant emission of the power plant are the highest in all sub-process, which accounts for 93.93% of the total energy consumption and 92.20% of the total emission. Compared to other pollutant emissions from the coal-fired power plant, CO2 reached up to 99.28%. Therefore, the control of CO2 emission from the coal-fired power plants was very important. Based on the BP neural network, the amount of CO2 emission from the generation side of coal-fired power plants was calculated via carbon balance method. The results showed that unit capacity, coal quality and unit operation load had great influence on the CO2 emission from coal-fired power plants in Guangdong Province. The use of high volatile and high heat value of coal also can reduce the CO2 emissions. What’s more, under higher operation load condition, the CO2 emissions of 1 kWh electric energy was less.

  18. Effect of post-fire resprouting on leaf fluctuating asymmetry, extrafloral nectar quality, and ant-plant-herbivore interactions

    Science.gov (United States)

    Alves-Silva, Estevão; Del-Claro, Kleber

    2013-06-01

    Fires in the Cerrado savanna are a severe form of disturbance, but some species are capable of resprouting afterwards. It is unknown, however, how and whether post-fire resprouting represents a stressful condition to plants and how their rapid re-growth influences both the production of biochemical compounds, and interactions with mutualistic ants. In this study, we examined the influence of post-fire resprouting on biotic interactions (ant-plant-herbivore relationships) and on plant stress. The study was performed on two groups of the extrafloral nectaried shrub Banisteriopsis campestris (Malpighiaceae); one group was recovering from fire while the other acted as control. With respect to biotic interactions, we examined whether resprouting influenced extrafloral nectar concentration (milligrams per microliter), the abundance of the ant Camponotus crassus and leaf herbivory rates. Plant stress was assessed via fluctuating asymmetry (FA) analysis, which refers to deviations from perfect symmetry in bilaterally symmetrical traits (e.g., leaves) and indicates whether species are under stress. Results revealed that FA, sugar concentration, and ant abundance were 51.7 %, 35.7 % and 21.7 % higher in resprouting plants. Furthermore, C. crassus was significantly associated with low herbivory rates, but only in resprouting plants. This study showed that post-fire resprouting induced high levels of plant stress and influenced extrafloral nectar quality and ant-herbivore relationships in B. campestris. Therefore, despite being a stressful condition to the plant, post-fire resprouting individuals had concentrated extrafloral nectar and sustained more ants, thus strengthening the outcomes of ant-plant mutualism.

  19. Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D. (Environmental Science Division)

    2011-05-09

    Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and

  20. Post-fire environments are favourable for plant functioning of seeder and resprouter Mediterranean shrubs, even under drought.

    Science.gov (United States)

    Parra, Antonio; Moreno, José M

    2017-05-01

    Understanding how drought affects seeder and resprouter plants during post-fire regeneration is important for the anticipation of Mediterranean vegetation vulnerability in a context of increasing drought and fire caused by climate change. A Mediterranean shrubland was subjected to various drought treatments (including 45% rainfall reduction, 7 months drought yr(-1) ), before and after experimental burning, by means of a rainout-shelter system with an irrigation facility. Predawn shoot water potential (Ψpd ), relative growth rate (RGR), specific leaf area (SLA) and bulk leaf carbon isotopic composition (δ(13) C) were monitored in the main woody species during the first 3 yr after fire. Cistus ladanifer seedlings showed higher Ψpd , RGR and SLA, and lower δ(13) C, than unburned plants during the first two post-fire years. Seedlings under drought maintained relatively high Ψpd , but suffered a decrease in Ψpd and RGR, and an increase in δ(13) C, relative to control treatments. Erica arborea, E. scoparia and Phillyrea angustifolia resprouts had higher Ψpd and RGR than unburned plants during the first post-fire year. Resprouters were largely unaffected by drought. Overall, despite marked differences between the two functional groups, post-fire environments were favourable for plant functioning of both seeder and resprouter shrubs, even under the most severe drought conditions implemented. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  1. Synergistic mercury removal by conventional pollutant control strategies for coal-fired power plants in China.

    Science.gov (United States)

    Wang, Shuxiao; Zhang, Lei; Wu, Ye; Ancora, Maria Pia; Zhao, Yu; Hao, Jiming

    2010-06-01

    China's 11th 5-yr plan has regulated total sulfur dioxide (SO2) emissions by installing flue gas desulfurization (FGD) devices and shutting down small thermal power units. These control measures will not only significantly reduce the emission of conventional pollutants but also benefit the reduction of mercury emissions from coal-fired power plants. This paper uses the emission factor method to estimate the efficiencies of these measures on mercury emission abatement. From 2005 to 2010, coal consumption in power plants will increase by 59%; however, the mercury emission will only rise from 141 to 155 t, with an increase of 10%. The average emission rate of mercury from coal burning will decrease from 126 mg Hg/t of coal to 87 mg Hg/t of coal. The effects of the three desulfurization measures were assessed and show that wet FGD will play an important role in mercury removal. Mercury emissions in 2015 and 2020 are also projected under different policy scenarios. Under the most probable scenario, the total mercury emission in coal-fired power plants in China will decrease to 130 t by 2020, which will benefit from the rapid installation of fabric filters and selective catalytic reduction.

  2. CO2 post-combustion capture in coal-fired power plants integrated with solar systems

    Science.gov (United States)

    Carapellucci, R.; Giordano, L.; Vaccarelli, M.

    2015-11-01

    The majority of the World's primary energy consumption is still based on fossil fuels, representing the largest source of global CO2 emissions. According to the Intergovernmental Panel on Climate Change (IPCC), such emissions must be significantly reduced in order to avoid the dramatic consequences of global warming. A potential way to achieve this ambitious goal is represented by the implementation of CCS (Carbon Capture and Storage) technologies. However, the significant amount of energy required by the CCS systems still represents one the major barriers for their deployment. Focusing on post-combustion capture based on amine absorption, several interesting options have been investigated to compensate the energy losses due to solvent regeneration, also using renewable energy sources. One of the most promising is based on the use of concentrating solar power (CSP), providing a part of the energy requirement of the capture island. In this study the integration of a CSP system into a coal-fired power plant with CO2 postcombustion capture is investigated. Basically, a CSP system is used to support the heat requirement for amine regeneration, by producing saturated steam at low temperature. This allows to reduce or even eliminate the conventional steam extraction from the main power plant, affecting positively net power production and efficiency. The energy analysis of the whole system is carried out using the GateCycle software to simulate the coal-fired power plant and ChemCad platform for the CO2 capture process based on amine absorption.

  3. Fossil-fired steam/electric gypsum plant + wallboard plant + powerplant = win-win-win

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-01

    The Tennessee Valley Authority has invested in a wall board plant adjacent to its Cumberland power plant to process gypsum slurry. Synmat built the gypsum processing plant to dewater and concentrate the slurry to produce gypsum cake; Temple-Inland build a wallboard plant on 124 acres nearby, the two facilities being linked by conveyor. A 20-ft-high hill of gypsum that had accumulated since 1994 and 1999 when the wallboard plant was built is utilized to meet shortfalls in raw material. The slurry is retrieved from a 10-ft deep water-filled pit that was dug into the stockpile to accept an unmanned floating pump dredge and then pumped through a 6-in line to the Synmat plant. 3 photos.

  4. The net climate impact of coal-fired power plant emissions

    Directory of Open Access Journals (Sweden)

    D. T. Shindell

    2009-10-01

    Full Text Available Coal-fired power plants influence climate via both the emissions of long-lived carbon dioxide (CO2 and short-lived ozone and aerosol precursors. For steadily increasing emissions without substantial pollution controls, we find that the net global mean climate forcing ranges from near zero to a substantial negative value, depending on the magnitude of aerosol indirect effects, due to aerosol masking of the effects of CO2. Imposition of pollution controls on sulfur dioxide and nitrogen oxides leads to a rapid realization of the full positive forcing from CO2, however. The long-term forcing from stable (constant emissions is positive regardless of pollution controls, with larger values in the case of pollutant controls. The results imply that historical emissions from coal-fired power plants until ~1970, including roughly 1/3 of total anthropogenic carbon dioxide emissions, likely contributed little net global mean climate forcing during that period. Those emissions likely led to weak cooling at Northern Hemisphere mid-latitudes and warming in the Southern Hemisphere, however. Subsequent imposition of pollution controls and the switch to low-sulfur coal in some areas kept global SO2 emissions roughly level from 1970 to 2000. Hence during that period, RF due to emissions during those decades and CO2 emitted previously was strongly positive and likely contributed to rapid global and regional warming. Most recently, construction of coal-fired power plants in China and India has been increasing rapidly with minimal application of pollution controls. Continuation of high-growth rates for another 30 years would lead to near zero to negative global mean climate forcing in the absence of expanded pollution controls, but severely degraded air quality. However, following the Western pattern of high coal usage followed by imposition of pollution controls could lead to accelerated global warming in the

  5. MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS LOCAL IMPACTS ON HUMAN HEALTH RISK.

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN, T.M.; BOWERMAN, B.; ADAMS, J.; LIPFERT, F.; MORRIS, S.M.; BANDO, A.; PENA, R.; BLAKE, R.

    2005-12-01

    A thorough quantitative understanding of the processes of mercury emissions, deposition, and translocation through the food chain is currently not available. Complex atmospheric chemistry and dispersion models are required to predict concentration and deposition contributions, and aquatic process models are required to predict effects on fish. However, there are uncertainties in all of these predictions. Therefore, the most reliable method of understanding impacts of coal-fired power plants on Hg deposition is from empirical data. A review of the literature on mercury deposition around sources including coal-fired power plants found studies covering local mercury concentrations in soil, vegetation, and animals (fish and cows). There is strong evidence of enhanced local deposition within 3 km of the chlor-alkali plants, with elevated soil concentrations and estimated deposition rates of 10 times background. For coal-fired power plants, the data show that atmospheric deposition of Hg may be slightly enhanced. On the scale of a few km, modeling suggests that wet deposition may be increased by a factor of two or three over background. The measured data suggest lower increases of 15% or less. The effects of coal-fired plants seem to be less than 10% of total deposition on a national scale, based on emissions and global modeling. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (1) local soil concentration Hg increments of 30%-60%, (2) sediment increments of 18-30%, (3) wet deposition increments of 11-12%, and (4) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg{sub 0} in power plant plumes and the role of water chemistry in the relationship between Hg

  6. MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS LOCAL IMPACTS ON HUMAN HEALTH RISK.

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN, T.M.; BOWERMAN, B.; ADAMS, J.; LIPFERT, F.; MORRIS, S.M.; BANDO, A.; PENA, R.; BLAKE, R.

    2005-12-01

    A thorough quantitative understanding of the processes of mercury emissions, deposition, and translocation through the food chain is currently not available. Complex atmospheric chemistry and dispersion models are required to predict concentration and deposition contributions, and aquatic process models are required to predict effects on fish. However, there are uncertainties in all of these predictions. Therefore, the most reliable method of understanding impacts of coal-fired power plants on Hg deposition is from empirical data. A review of the literature on mercury deposition around sources including coal-fired power plants found studies covering local mercury concentrations in soil, vegetation, and animals (fish and cows). There is strong evidence of enhanced local deposition within 3 km of the chlor-alkali plants, with elevated soil concentrations and estimated deposition rates of 10 times background. For coal-fired power plants, the data show that atmospheric deposition of Hg may be slightly enhanced. On the scale of a few km, modeling suggests that wet deposition may be increased by a factor of two or three over background. The measured data suggest lower increases of 15% or less. The effects of coal-fired plants seem to be less than 10% of total deposition on a national scale, based on emissions and global modeling. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (1) local soil concentration Hg increments of 30%-60%, (2) sediment increments of 18-30%, (3) wet deposition increments of 11-12%, and (4) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg{sub 0} in power plant plumes and the role of water chemistry in the relationship between Hg

  7. Numerical thermodynamic optimization of supercritical coal fired power plant with support of IPSEpro software

    Science.gov (United States)

    Elsner, Witold; Kowalczyk, Łukasz; Marek, Maciej

    2012-09-01

    The paper presents a thermodynamic optimization of supercritical coal fired power plant. The aim of the study was to optimize part of the thermal cycle consisted of high-pressure turbine and two chosen highpressure feed water heaters. Calculations were carried out using IPSEpro software combined with MATLAB, where thermal efficiency and gross power generation efficiency were chosen as objective functions. It was shown that the optimization with newly developed framework is sufficiently precise and its main advantage is the reduction of computation time on comparison to the classical method. The calculations have shown the tendency of the increase in efficiency, with the rise of a number of function variables.

  8. CO sub 2 emissions from coal-fired and solar electric power plants

    Energy Technology Data Exchange (ETDEWEB)

    Keith, F.; Norton, P.; Brown, D.

    1990-05-01

    This report presents estimates of the lifetime carbon dioxide emissions from coal-fired, photovoltaic, and solar thermal electric power plants in the United States. These CO{sub 2} estimates are based on a net energy analysis derived from both operational systems and detailed design studies. It appears that energy conservation measures and shifting from fossil to renewable energy sources have significant long-term potential to reduce carbon dioxide production caused by energy generation and thus mitigate global warming. The implications of these results for a national energy policy are discussed. 40 refs., 8 figs., 23 tabs.

  9. Corrosion monitoring in a straw-fired power plant using an electrochemical noise probe

    DEFF Research Database (Denmark)

    Cappeln, Frederik Vilhelm; Bjerrum, Niels; Petrushina, Irina

    2007-01-01

    Electrochemical Noise Measurements have been carried out in situ in a straw-fired power plant using an experimental probe constructed from alumina and AlSl 347 steel. Based on a framework of controlled laboratory experiments it has been found that electrochemical noise has the unique ability...... to provide in-situ monitoring of intergranular corrosion in progress. The probe had a lifetime of two months. It was shown that down-time corrosion in the boiler was negligible. Electrochemical noise data indicated that metal temperatures around 590 degrees C should be avoided as the intergranular corrosion...

  10. Recovery of South African fynbos vegetation following alien woody plant clearing and fire: implications for restoration

    CSIR Research Space (South Africa)

    Holmes, PM

    2000-12-01

    Full Text Available , because recovery mostly results from surviving plants in the area, soil-stored seed banks and medium-distance wind dispersal (Holmes & Richardson 1999). However, the ‘fell and burn’ clear- ing treatment carries the risk of unplanned fires, which may... to their growth form, leaf size, dispersal mode, seed storage and regeneration mode, and nutrient acquisition mode (Table 2). The categorization of species was based on data in Bond and Slingsby (1983), Bond and Goldblatt (1984), Van Wilgen and Forsyth (1992...

  11. Gain-Scheduled Control of a Fossil-Fired Power Plant Boiler

    DEFF Research Database (Denmark)

    Hangstrup, M.; Stoustrup, Jakob; Andersen, Palle;

    1999-01-01

    In this paper the objective is to optimize the control of a coal fired 250 MW power plant boiler. The conventional control system is supplemented with a multivariable optimizing controller operating in parallel with the conventional control system. Due to the strong dependence of the gains...... and dynamics upon the load, it is beneficial to consider a gain-scheduling control approach. Optimization using complex mu synthesis results in unstable LTI controllers in some operating points of the boiler. A recent gain-scheduling approach allowing for unstable fixed LTI controllers is applied. Gain...

  12. Co-combustion of gasified contaminated waste wood in a coal fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This project demonstrates the technical and economical feasibility of the producing and cofiring of product gas from demolition waste wood. For this purpose LCV product gas is generated in an atmospheric circulating fluidized bed (CFB) gasification plant, cooled and cleaned and transported to the boiler of a 600 MWe pulverized coal fired power plant. Gas cooling and cleaning takes place in a waste heat boiler and a multi stage wet gas cleaning train. Steam raised in the waste heat boiler is exported to the power plant. On an annual basis 70,000 tons of steam coal are substituted by 150,000 tons of contaminated demolition waste wood (50,000 tons oil equivalent), resulting in a net CO2 emission reduction of 170,000 tons per year, while concurrently generating 205 GWh of electrical power. The wood gasification plant was built by NV EPZ (now incorporated in Essent Energi BV) for Amergas BV, now a 100% subsidiary of Essent Energie BV. The gasification plant is located at the Amer Power Station of NV EPZ Production (now Essent Generation) at Geertruidenberg, The Netherlands. Demonstrating several important design features in wood gasification, the plant started hot service in the Spring of 2000, with first gasification accomplished in the Summer of 2000 and is currently being optimized. (au)

  13. Emissions, Monitoring and Control of Mercury from Subbituminous Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Alan Bland; Kumar Sellakumar; Craig Cormylo

    2007-08-01

    The Subbituminous Energy Coalition (SEC) identified a need to re-test stack gas emissions from power plants that burn subbituminous coal relative to compliance with the EPA mercury control regulations for coal-fired plants. In addition, the SEC has also identified the specialized monitoring needs associated with mercury continuous emissions monitors (CEM). The overall objectives of the program were to develop and demonstrate solutions for the unique emission characteristics found when burning subbituminous coals. The program was executed in two phases; Phase I of the project covered mercury emission testing programs at ten subbituminous coal-fired plants. Phase II compared the performance of continuous emission monitors for mercury at subbituminous coal-fired power plants and is reported separately. Western Research Institute and a number of SEC members have partnered with Eta Energy and Air Pollution Testing to assess the Phase I objective. Results of the mercury (Hg) source sampling at ten power plants burning subbituminous coal concluded Hg emissions measurements from Powder River Basin (PBR) coal-fired units showed large variations during both ICR and SEC testing. Mercury captures across the Air Pollution Control Devices (APCDs) present much more reliable numbers (i.e., the mercury captures across the APCDs are positive numbers as one would expect compared to negative removal across the APCDs for the ICR data). Three of the seven units tested in the SEC study had previously shown negative removals in the ICR testing. The average emission rate is 6.08 lb/TBtu for seven ICR units compared to 5.18 lb/TBtu for ten units in the SEC testing. Out of the ten (10) SEC units, Nelson Dewey Unit 1, burned a subbituminous coal and petcoke blend thus lowering the total emission rate by generating less elemental mercury. The major difference between the ICR and SEC data is in the APCD performance and the mercury closure around the APCD. The average mercury removal values

  14. ECONOMICS AND FEASIBILITY OF RANKINE CYCLE IMPROVEMENTS FOR COAL FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Richard E. Waryasz; Gregory N. Liljedahl

    2004-09-08

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL), American Electric Company (AEP) and Parsons Energy and Chemical Group to conduct a comprehensive study evaluating coal fired steam power plants, known as Rankine Cycles, equipped with three different combustion systems: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}). Five steam cycles utilizing a wide range of steam conditions were used with these combustion systems. The motivation for this study was to establish through engineering analysis, the most cost-effective performance potential available through improvement in the Rankine Cycle steam conditions and combustion systems while at the same time ensuring that the most stringent emission performance based on CURC (Coal Utilization Research Council) 2010 targets are met: > 98% sulfur removal; < 0.05 lbm/MM-Btu NO{sub x}; < 0.01 lbm/MM-Btu Particulate Matter; and > 90% Hg removal. The final report discusses the results of a coal fired steam power plant project, which is comprised of two parts. The main part of the study is the analysis of ten (10) Greenfield steam power plants employing three different coal combustion technologies: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}) integrated with five different steam cycles. The study explores the technical feasibility, thermal performance, environmental performance, and economic viability of ten power plants that could be deployed currently, in the near, intermediate, and long-term time frame. For the five steam cycles, main steam temperatures vary from 1,000 F to 1,292 F and pressures from 2,400 psi to 5,075 psi. Reheat steam temperatures vary from 1,000 F to 1,328 F. The number of feedwater heaters varies from 7 to 9 and the associated feedwater temperature varies from 500 F to 626 F. The main part of the

  15. Trait space of rare plants in a fire-dependent ecosystem.

    Science.gov (United States)

    Ames, Gregory M; Wall, Wade A; Hohmann, Matthew G; Wright, Justin P

    2017-08-01

    The causes of species rarity are of critical concern because of the high extinction risk associated with rarity. Studies examining individual rare species have limited generality, whereas trait-based approaches offer a means to identify functional causes of rarity that can be applied to communities with disparate species pools. Differences in functional traits between rare and common species may be indicative of the functional causes of species rarity and may therefore be useful in crafting species conservation strategies. However, there is a conspicuous lack of studies comparing the functional traits of rare species and co-occurring common species. We measured 18 important functional traits for 19 rare and 134 common understory plant species from North Carolina's Sandhills region and compared their trait distributions to determine whether there are significant functional differences that may explain species rarity. Flowering, fire, and tissue-chemistry traits differed significantly between rare and common, co-occurring species. Differences in specific traits suggest that fire suppression has driven rarity in this system and that changes to the timing and severity of prescribed fire may improve conservation success. Our method provides a useful tool to prioritize conservation efforts in other systems based on the likelihood that rare species are functionally capable of persisting. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  16. Simulating Fire Disturbance and Plant Mortality Using Antecedent Eco-hydrological Conditions to Inform a Physically Based Combustion Model

    Science.gov (United States)

    Atchley, A. L.; Linn, R.; Middleton, R. S.; Runde, I.; Coon, E.; Michaletz, S. T.

    2016-12-01

    Wildfire is a complex agent of change that both affects and depends on eco-hydrological systems, thereby constituting a tightly linked system of disturbances and eco-hydrological conditions. For example, structure, build-up, and moisture content of fuel are dependent on eco-hydrological regimes, which impacts fire spread and intensity. Fire behavior, on the other hand, determines the severity and extent of eco-hydrological disturbance, often resulting in a mosaic of untouched, stressed, damaged, or completely destroyed vegetation within the fire perimeter. This in turn drives new eco-hydrological system behavior. The cycles of disturbance and recovery present a complex evolving system with many unknowns especially in the face of climate change that has implications for fire risk, water supply, and forest composition. Physically-based numerical experiments that attempt to capture the complex linkages between eco-hydrological regimes that affect fire behavior and the echo-hydrological response from those fire disturbances help build the understanding required to project how fire disturbance and eco-hydrological conditions coevolve over time. Here we explore the use of FIRETEC—a physically-based 3D combustion model that solves conservation of mass, momentum, energy, and chemical species—to resolve fire spread over complex terrain and fuel structures. Uniquely, we couple a physically-based plant mortality model with FIRETEC and examine the resultant hydrologic impact. In this proof of concept demonstration we spatially distribute fuel structure and moisture content based on the eco-hydrological condition to use as input for FIRETEC. The fire behavior simulation then produces localized burn severity and heat injures which are used as input to a spatially-informed plant mortality model. Ultimately we demonstrate the applicability of physically-based models to explore integrated disturbance and eco-hydrologic response to wildfire behavior and specifically map how fire

  17. Gasification in a CFB reactor : a simple and economic way of co-firing renewable fuels in existing power plants

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, H.; Zotter, T. [AE Energietechnik, Graz (Austria)

    2002-07-01

    The use of biomass for power generation offers many environmental advantages and shorter carbon dioxide cycles compared to fossil fuels. However, biomass is not suitable as the principal fuel in large biomass-fired power plants because of its low specific volumetric energy density and the high transport and handling volume. Biomass is suitable for decentralized, small power plants but these often require high investment and operational costs. This paper discussed the suitability of biomass for co-firing in existing coal-fired thermal power plants. AE Energietechnik and partners, implemented a pilot biomass gasifier in Zeltweg, Austria in 1997. The plant operates a circulating fluidized bed reactor with a hot, low-calorific product gas produced and transported into an existing coal-fired boiler. The thermal capacity is up to 20 MW compared to the thermal capacity of 344 MW for the PC-boiler. This represents a coal substitution of 5 per cent. Commercial production began in December 1997 following gasification tests with alternative fuels such as wood wastes and plastics. The demonstration program has increased the awareness for the potential to use renewable fuels in fossil-fired power plants not originally designed to accept such fuels. 2 tabs., 6 figs.

  18. Macromycetes diversity of pine-tree plantings on a post-fire forest site in Notecka Forest (NW Poland

    Directory of Open Access Journals (Sweden)

    Stefan Friedrich

    2014-08-01

    Full Text Available The article presents the results of a study on fungi in pine-tree plantings after the last great fire in Notecka Forest. The occurrence of 134 species of fungi and 3 species of myxomycetes was recorded in 25 permanent study areas investigated between 1993 and 1998. The particpalion of bio-ecological of macromycetes was described in the context of vegetation changes in the years following the fire.

  19. Evaluation of radioactive emissions of lignite-fired power plants in Turkey using the Analytic Hierarchy Process

    Energy Technology Data Exchange (ETDEWEB)

    Bueke, Tayfun [Mugla Sitki Kocman Univ., Mugla (Turkey). Dept. of Energy Systems Engineering

    2013-11-15

    Radioactive emissions of 13 lignite-fired power plants in Turkey are of great concern to the public and to scientists alike. The purpose of this study is to evaluate these power plants, according to their radioactive emissions by using the Analytic Hierarchy Process. Control criteria are in particular {sup 226}Ra, {sup 232}Th, {sup 40}K and {sup 238}U emissions from the power plants. These control criteria are weighted according to the objective assessment. The calculations are repeated for three different objective assessments of control criteria namely the mortality risk coefficients for inhalation, ingestion, external exposure of {sup 226}Ra, {sup 232}Th, {sup 40}K and {sup 238}U. It has been calculated that the Can lignite-fired power plant is ranking first while the Soma-B plant is ranking last according to the radioactive emissions of the power plants when the average of three different objective control criteria are used in the calculations. (orig.)

  20. Environmental policy instruments towards lignite-fired power plants in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    A proposition is made that Turkey considers a pilot emission trading system for SO{sub 2}, Nox and/or PM emissions from its coal and lignite fired power plant in the efforts to comply with the EU Integrated Pollution Prevention Control (IPPC), the Large Combustion Plant (LCP) and the National Emissions Ceiling (NEC) Directives. Model calculations indicate that this could yield substantial cost savings compared to a traditional command and control approach. However, requirements in the IPPC Directive would be a major obstacle against emissions trading. The Turkish emission permitting system needs a major overhaul, including improving monitoring and enforcement practices to comply with the directives and to be able to implement and operate an emission trading system.

  1. Metal biomonitoring with mosses in the surroundings of an oil-fired power plant in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Genoni, P.; Parco, V. [Presidio Multizonale di Igiene e Prevenzione, Parabiago, MI (Italy); Santagostino, A. [Unversita degli Studi di Milano-Bicocca, Milan (Italy). Dip. di Scienze dell' Ambiente e del Territorio

    2000-09-01

    Levels of 12 trace elements were measured in samples of the bryophyte Hypnum cupressiforme Hedw. and in soil collected in the surroundings of an oil-fired power plant in Northern Italy. Metal bioaccumulation in moss was estimated after soil correction in order to obtain deposition patterns and individuate potentially toxic metals emitted from the plant. V and Ni, occurring together in fuel oil, showed highest bioaccumulation values near the stacks. Mean contamination of the study area for these elements is 5.5 (V) and 3.3 (Ni) times the background levels of the reference site. Other elements showed only limited alterations of bioaccumulation values, in relation to agricultural and industrial activity in the study area. (Author)

  2. Should a coal-fired power plant be replaced or retrofitted?

    Science.gov (United States)

    Patiño-Echeverri, Dalia; Morel, Benoit; Apt, Jay; Chen, Chao

    2007-12-01

    In a cap-and-trade system, a power plant operator can choose to operate while paying for the necessary emissions allowances, retrofit emissions controls to the plant, or replace the unit with a new plant. Allowance prices are uncertain, as are the timing and stringency of requirements for control of mercury and carbon emissions. We model the evolution of allowance prices for SO2, NOx, Hg, and CO2 using geometric Brownian motion with drift, volatility, and jumps, and use an options-based analysis to find the value of the alternatives. In the absence of a carbon price, only if the owners have a planning horizon longer than 30 years would they replace a conventional coal-fired plant with a high-performance unit such as a supercritical plant; otherwise, they would install SO2 and NOx, controls on the existing unit. An expectation that the CO2 price will reach $50/t in 2020 makes the installation of an IGCC with carbon capture and sequestration attractive today, even for planning horizons as short as 20 years. A carbon price below $40/t is unlikely to produce investments in carbon capture for electric power.

  3. Design for the 145MW blast furnance gas firing gas turbine combined cycle plant

    Energy Technology Data Exchange (ETDEWEB)

    Takano, H. (Kawasaki Steel Corp., Chiba (Japan). Technical Research Lab.); Kitauchi, Y.; Hiura, H. (Mitsubishi Heavy Industries Ltd., Takasago, Hyogo (Japan). Takasago Works)

    1988-01-01

    A 145 MW blast furnance gas firing gas turbine combined cycle plant was designed and installed in a steel works of Japan as a repowering unit. A 124 MW large scale gas turbine with turbine inlet temperature 1150{sup {degrees}}C (1423 K) was adopted as a core engine for the combined cycle plant. The fuel of this gas turbine is blast furnace gas mixed with coke oven gas which are byproducts in steel works, and the calorific value of the mixed gas to be controlled is about 1000 kcal/Nm{sup 3} (4187 kJ/Nm{sup 3}). A specially designed multi-cannular type combustor was developed to burn such a low BTV fuel. The gas turbine, generator, steam turbine and fuel gas compressor are connected to make a single shaft configuration. As a result of this introducing the gas turbine combined cycle plant, the plant thermal efficiency was achieved above 45% (at NET) and the total electricity generation in the works is increased from 243 MW to 317 MW. This paper describes the design features of this combined cycle plant.

  4. Naturally occurring radioactive materials (NORMs) generated from lignite-fired power plants in Kosovo.

    Science.gov (United States)

    Hasani, F; Shala, F; Xhixha, G; Xhixha, M K; Hodolli, G; Kadiri, S; Bylyku, E; Cfarku, F

    2014-12-01

    The energy production in Kosovo depends primarily on lignite-fired power plants. During coal combustion, huge amounts of fly ash and bottom ash are generated, which may result in enriched natural radionuclides; therefore, these radionuclides need to be investigated to identify the possible processes that may lead to the radiological exposure of workers and the local population. Lignite samples and NORMs of fly ash and bottom ash generated in lignite-fired power plants in Kosovo are analyzed using a gamma-ray spectrometry method for the activity concentration of natural radionuclides. The average activity concentrations of (40)K, (226)Ra and (232)Th in lignite are found to be 36 ± 8 Bq kg(-1), 9 ± 1 Bq kg(-1) and 9 ± 3 Bq kg(-1), respectively. Indications on the occurrence and geochemical behavior of uranium in the lignite matrix are suggested. The activity concentrations of natural radionuclides in fly ash and bottom ash samples are found to be concentrated from 3 to 5 times that of the feeding lignite. The external gamma-ray absorbed dose rate and the activity concentration index are calculated to assess the radiological hazard arising from ash disposal and recycling in the cement industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Producing fired bricks using coal slag from a gasification plant in indiana

    Science.gov (United States)

    Chen, L.-M.; Chou, I.-Ming; Chou, S.-F.J.; Stucki, J.W.

    2009-01-01

    Integrated gasification combined cycle (IGCC) is a promising power generation technology which increases the efficiency of coal-to-power conversion and enhances carbon dioxide concentration in exhaust emissions for better greenhouse gas capture. Two major byproducts from IGCC plants are bottom slag and sulfur. The sulfur can be processed into commercially viable products, but high value applications need to be developed for the slag material in order to improve economics of the process. The purpose of this study was to evaluate the technical feasibility of incorporating coal slag generated by the Wabash River IGCC plant in Indiana as a raw material for the production of fired bricks. Full-size bricks containing up to 20 wt% of the coal slag were successfully produced at a bench-scale facility. These bricks have color and texture similar to those of regular fired bricks and their water absorption properties met the ASTM specifications for a severe weathering grade. Other engineering properties tests, including compressive strength tests, are in progress.

  6. Strategic planning on carbon capture from coal fired plants in Malaysia and Indonesia: A review

    Energy Technology Data Exchange (ETDEWEB)

    Othman, M.R. [School of Chemical Engineering, Universiti Sains Malaysia 14300 Nibong Tebal, Penang (Malaysia)], E-mail: chroslee@eng.usm.my; Martunus [School of Chemical Engineering, Universiti Sains Malaysia 14300 Nibong Tebal, Penang (Malaysia); Department of Chemical Engineering, Riau University Pekanbaru 28293 (Indonesia); Zakaria, R.; Fernando, W.J.N. [School of Chemical Engineering, Universiti Sains Malaysia 14300 Nibong Tebal, Penang (Malaysia)

    2009-05-15

    Malaysia and Indonesia benefit in various ways by participating in CDM and from investments in the GHG emission reduction projects, inter alia, technology transfer such as carbon capture (CC) technology for the existing and future coal fired power plants. Among the fossil fuel resources for energy generation, coal is offering an attractive solution to the increasing fuel cost. The consumption of coal in Malaysia and Indonesia is growing at the fastest rate of 9.7% and 4.7%, respectively, per year since 2002. The total coal consumption for electricity generation in Malaysia is projected to increase from 12.4 million tons in 2005 to 36 million tons in 2020. In Indonesia, the coal consumption for the same cause is projected to increase from 29.4 million tons in 2005 to 75 million tons in 2020. CO{sub 2} emission from coal fired power plants are forecasted to grow at 4.1% per year, reaching 98 million tons and 171 million tons in Malaysia and Indonesia, respectively.

  7. Strategic planning on carbon capture from coal fired plants in Malaysia and Indonesia. A review

    Energy Technology Data Exchange (ETDEWEB)

    Othman, M.R.; Zakaria, R.; Fernando, W.J.N. [School of Chemical Engineering, Universiti Sains Malaysia 14300 Nibong Tebal, Penang (Malaysia); Martunus [School of Chemical Engineering, Universiti Sains Malaysia 14300 Nibong Tebal, Penang (Malaysia); Department of Chemical Engineering, Riau University Pekanbaru 28293 (Indonesia)

    2009-05-15

    Malaysia and Indonesia benefit in various ways by participating in CDM and from investments in the GHG emission reduction projects, inter alia, technology transfer such as carbon capture (CC) technology for the existing and future coal fired power plants. Among the fossil fuel resources for energy generation, coal is offering an attractive solution to the increasing fuel cost. The consumption of coal in Malaysia and Indonesia is growing at the fastest rate of 9.7% and 4.7%, respectively, per year since 2002. The total coal consumption for electricity generation in Malaysia is projected to increase from 12.4 million tons in 2005 to 36 million tons in 2020. In Indonesia, the coal consumption for the same cause is projected to increase from 29.4 million tons in 2005 to 75 million tons in 2020. CO{sub 2} emission from coal fired power plants are forecasted to grow at 4.1% per year, reaching 98 million tons and 171 million tons in Malaysia and Indonesia, respectively. (author)

  8. Effects of fire and three fire-fighting chemicals on main soil properties, plant nutrient content and vegetation growth and cover after 10 years.

    Science.gov (United States)

    Fernández-Fernández, M; Gómez-Rey, M X; González-Prieto, S J

    2015-05-15

    The study addresses a knowledge-gap in the long-term ecological consequences of fire and fire-fighting chemicals. Ten years after a prescribed fire and the application of three fire-fighting chemicals, their effects on the soil-plant system were evaluated. Five treatments were established: unburnt soils (US) and burnt soils treated with water alone (BS), foaming agent (BS+Fo), Firesorb (BS+Fi) and ammonium polyphosphate (BS+Ap). Soils (0-2 cm depth) and foliar material of shrubs (Erica umbellata, Pterospartum tridentatum and Ulex micranthus) and trees (Pinus pinaster) were analysed for total N, δ(15)N, and soil-available and plant total macronutrients and trace elements. Soil pH, NH₄(+)-N and NO₃(-)-N; pine basal diameter and height; and shrub cover and height were also measured. Compared with US plots, burnt soils had less nitrates and more Mo. Although differences were not always significant, BS+Ap had the highest levels of soil available P, Na and Al. Plants from BS+Ap plots had higher values of δ(15)N (P. pinaster and E. umbellata), P (all species), Na (P. tridentatum and U. micranthus) and Mg (E. umbellata and P. tridentatum) than other treatments; while K in plants from BS+Ap plots was the highest among treatments for P. pinaster and the lowest for the shrubs. Pines in US plots were higher and wider than in burnt treatments, except for BS+Ap, where the tallest and widest trees were found, although half of them were either dead (the second highest mortality after BS+Fi) or had a distorted trunk. BS+Ap was the treatment with strongest effects on plants, showing E. umbellata the lowest coverage and height, P. tridentatum the highest coverage, U. micranthus one of the lowest coverages and being the only treatment where Genista triacanthos was absent. Consequently, it is concluded that both fire and ammonium polyphosphate application had significant effects on the soil-plant system after 10 years.

  9. Torrevaldaliga Nord power plant: one of the cleanest and most efficient coal-fired power stations worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Arrighi, L.; Dentini, A. [Enel Generation, Rome (Italy); Pasini, S.; Toschi, M. [Enel Generation, Pisa (Italy); Guardiani, G.M. [Enel Generaton, Piacenza (Italy)

    2008-07-01

    In the light of market liberalisation Enel decided to switch the Torrevaldaliga Nord Power Plant from oil to coal firing. The new plant comprises three coal-fired units with a total capacity of about 1980 MW. Also in international comparison the project is among the most ambitious and advanced projects of its kind, both in terms of its technical and environmental characteristics. Construction activity started in March 2004 and the first unit will be in commercial operation at the end of 2008. (orig.)

  10. Performance enhancement in coal fired thermal power plants. Part IV: overall system

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, M.S.; Mandi, R.P.; Jothibasu, S.; Rajkumar, N. [Central Power Research Institute, Trivandrum (India). Energy Research Centre

    1999-11-01

    An analysis is presented of the overall performance of 22 coal-fired power plants. The net overall efficiency is in the range 19.23-30.69%. The effects of ash in coal, contaminations in feed water, leakage, incondensables, etc., have been quantified. Ways of minimizing secondary oil consumption have been provided. The techniques for performance improvement, low cost as well as capital intensive, have been described. The role of overhauling the plant and associated opportunities for performance improvement are also discussed. It is concluded that achieving a high annual plant load factor will bring about all round improvement in the unit performance. Unless the pressing in problems of high ash in coal, inadequate contaminant control and leakage/ingress are solved, mere repowering by equipment of higher-efficiency may not yield the desired results. Design margins of 10-20% are essential for both repowered and new units. In the long term, it is economical to de-commission all units below 210 MW and only three sizes need be retained: 210, 500 and 1000 MW. Automation of the DM water plant provides maximum economic advantage. Considerable opportunity exists for energy conservation through introduction of information technology and variable frequency drives in all units. 15 refs., 12 figs., 16 tabs.

  11. Natural radionuclides in waste water discharged from coal-fired power plants in Serbia.

    Science.gov (United States)

    Janković, Marija M; Todorović, Dragana J; Sarap, Nataša B; Krneta Nikolić, Jelena D; Rajačić, Milica M; Pantelić, Gordana K

    2016-12-01

    Investigation of the natural radioactivity levels in water around power plants, as well as in plants, coal, ash, slag and soil, and to assess the associated radiation hazard is becoming an emerging and interesting topic. This paper is focused on the results of the radioactivity analysis in waste water samples from five coal-fired power plants in Serbia (Nikola Tesla A, Nikola Tesla B, Kolubara, Morava and Kostolac), which were analyzed in the period 2003-2015. River water samples taken upstream and downstream from the power plants, drain water and overflow water were analyzed. In the water samples gamma spectrometry analysis was performed as well as determination of gross alpha and beta activity. Natural radionuclide (40)K was detected by gamma spectrometry, while the concentrations of other radionuclides, (226)Ra, (235)U and (238)U, usually were below the minimum detection activity (MDA). (232)Th and artificial radionuclide (137)Cs were not detected in these samples. Gross alpha and beta activities were determined by the α/β low level proportional counter Thermo Eberline FHT 770 T. In the analyzed samples, gross alpha activity ranged from MDA to 0.47 Bq L(-)(1), while the gross beta activity ranged from MDA to 1.55 Bq L(-)(1).

  12. Experiences with high temperature corrosion at straw‐firing power plants in Denmark

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Jensen, S. A.; Borg, U.;

    2011-01-01

    temperature is measured on the specific tube loops where there are test tube sections. Thus a corrosion rate can be coupled to a temperature histogram. This is important since although a superheater has a defined steam outlet temperature, there is variation in the tube bundle due to variations of heat flux...... from the flue gas. This paper will describe the corrosion investigations for tube sections removed from Maribo Sakskøbing and Avedøre 2 biomass boiler which have been exposed for up to 30 000 h. In addition to monitoring the corrosion rates of actual components, there is a need to measure corrosion......By the end of 2009, there will be eight biomass and five biomass co‐firing plants in Denmark. Due to the steep increase of corrosion rate with respect to temperature in biomass plants, it is not viable to have similar steam data as fossil fuel plants. Thus for the newer plants, Maribo Sakskøbing...

  13. The Net Climate Impact of Coal-Fired Power Plant Emissions

    Science.gov (United States)

    Shindell, D.; Faluvegi, G.

    2010-01-01

    Coal-fired power plants influence climate via both the emission of long-lived carbon dioxide (CO2) and short-lived ozone and aerosol precursors. Using a climate model, we perform the first study of the spatial and temporal pattern of radiative forcing specifically for coal plant emissions. Without substantial pollution controls, we find that near-term net global mean climate forcing is negative due to the well-known aerosol masking of the effects of CO2. Imposition of pollution controls on sulfur dioxide and nitrogen oxides leads to a rapid realization of the full positive forcing from CO2, however. Long-term global mean forcing from stable (constant) emissions is positive regardless of pollution controls. Emissions from coal-fired power plants until 1970, including roughly 1/3 of total anthropogenic CO2 emissions, likely contributed little net global mean climate forcing during that period though they may have induce weak Northern Hemisphere mid-latitude (NHml) cooling. After that time many areas imposed pollution controls or switched to low sulfur coal. Hence forcing due to emissions from 1970 to 2000 and CO2 emitted previously was strongly positive and contributed to rapid global and especially NHml warming. Most recently, new construction in China and India has increased rapidly with minimal application of pollution controls. Continuation of this trend would add negative near-term global mean climate forcing but severely degrade air quality. Conversely, following the Western and Japanese pattern of imposing air quality pollution controls at a later time could accelerate future warming rates, especially at NHmls. More broadly, our results indicate that due to spatial and temporal inhomogeneities in forcing, climate impacts of multi-pollutant emissions can vary strongly from region to region and can include substantial effects on maximum rate-of-change, neither of which are captured by commonly used global metrics. The method we introduce here to estimate

  14. The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants.

    Science.gov (United States)

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-12-01

    The oil shale industry is the largest producer of NORM (Naturally Occurring Radioactive Material) waste in Estonia. Approximately 11-12 million tons of oil shale containing various amounts of natural radionuclides is burned annually in the Narva oil shale-fired power plants, which accounts for approximately 90% of Estonian electricity production. The radionuclide behavior characteristics change during the fuel combustion process, which redistributes the radionuclides between different ash fractions. Out of 24 operational boilers in the power plants, four use circulating fluidized bed (CFB) technology and twenty use pulverized fuel (PF) technology. Over the past decade, the PF boilers have been renovated, with the main objective to increase the efficiency of the filter systems. Between 2009 and 2012, electrostatic precipitators (ESP) in four PF energy blocks were replaced with novel integrated desulphurization technology (NID) for the efficient removal of fly ash and SO2 from flue gases. Using gamma spectrometry, activity concentrations and enrichment factors for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides as well as (40)K were measured and analyzed in different PF boiler ash fractions. The radionuclide activity concentrations in the ash samples increased from the furnace toward the back end of the flue gas duct. The highest values in different PF boiler ash fractions were in the last field of the ESP and in the NID ash, where radionuclide enrichment factors were up to 4.2 and 3.3, respectively. The acquired and analyzed data on radionuclide activity concentrations in different PF boiler ashes (operating with an ESP and a NID system) compared to CFB boiler ashes provides an indication that changes in the fuel (oil shale) composition and boiler working parameters, as well as technological enhancements in Estonian oil shale fired power plants, have had a combined effect on the distribution patterns of natural radionuclides

  15. The net climate impact of coal-fired power plant emissions

    Science.gov (United States)

    Shindell, D.; Faluvegi, G.

    2010-04-01

    Coal-fired power plants influence climate via both the emission of long-lived carbon dioxide (CO2) and short-lived ozone and aerosol precursors. Using a climate model, we perform the first study of the spatial and temporal pattern of radiative forcing specifically for coal plant emissions. Without substantial pollution controls, we find that near-term net global mean climate forcing is negative due to the well-known aerosol masking of the effects of CO2. Imposition of pollution controls on sulfur dioxide and nitrogen oxides leads to a rapid realization of the full positive forcing from CO2, however. Long-term global mean forcing from stable (constant) emissions is positive regardless of pollution controls. Emissions from coal-fired power plants until ~1970, including roughly 1/3 of total anthropogenic CO2 emissions, likely contributed little net global mean climate forcing during that period though they may have induce weak Northern Hemisphere mid-latitude (NHml) cooling. After that time many areas imposed pollution controls or switched to low-sulfur coal. Hence forcing due to emissions from 1970 to 2000 and CO2 emitted previously was strongly positive and contributed to rapid global and especially NHml warming. Most recently, new construction in China and India has increased rapidly with minimal application of pollution controls. Continuation of this trend would add negative near-term global mean climate forcing but severely degrade air quality. Conversely, following the Western and Japanese pattern of imposing air quality pollution controls at a later time could accelerate future warming rates, especially at NHmls. More broadly, our results indicate that due to spatial and temporal inhomogenaities in forcing, climate impacts of multi-pollutant emissions can vary strongly from region to region and can include substantial effects on maximum rate-of-change, neither of which are captured by commonly used global metrics. The method we introduce here to estimate

  16. Are post-fire silvicultural treatments a useful tool to fight the climate change threat in terms of plant diversity?

    Science.gov (United States)

    Hedo de Santiago, Javier; Esteban Lucasr Borja, Manuel; de las Heras, Jorge

    2016-04-01

    Adaptative forest management demands a huge scientific knowledge about post-fire vegetation dynamics, taking into account the current context of global change. We hypothesized that management practices should be carry out taking into account the climate change effect, to obtain better results in the biodiversity maintenance across time. All of this with respect to diversity and species composition of the post-fire naturally regenerated Aleppo pine forests understory. The study was carried out in two post-fire naturally regenerated Aleppo pine forests in the Southeastern of the Iberian Peninsula, under contrasting climatic conditions: Yeste (Albacete) shows a dry climate and Calasparra (Murcia) shows a semiarid climate. Thinning as post-fire silvicultural treatment was carried out five years after the wildfire event, in the year 1999. An experiment of artificial drought was designed to evacuate 15% of the natural rainfall in both sites, Yeste and Calasparra, to simulate climate change. Taking into account all the variables (site, silvicultural treatment and artificial drought), alpha diversity indices including species richness, Shannon and Simpson diversity indices, and plant cover, were analyzed as a measure of vegetation abundance. The results showed that plant species were affected by thinning, whereas induced drought affected total cover and species, with lower values at Yeste. Significant site variation was also observed in soil properties, species richness and total plant cover, conversely to the plant species diversity indices. We conclude that the plant community shows different responses to a simulated environment of climate change depending on the experimental site.

  17. Review of the coal-fired, over-supercritical and ultra-supercritical steam power plants

    Science.gov (United States)

    Tumanovskii, A. G.; Shvarts, A. L.; Somova, E. V.; Verbovetskii, E. Kh.; Avrutskii, G. D.; Ermakova, S. V.; Kalugin, R. N.; Lazarev, M. V.

    2017-02-01

    The article presents a review of developments of modern high-capacity coal-fired over-supercritical (OSC) and ultra-supercritical (USC) steam power plants and their implementation. The basic engineering solutions are reported that ensure the reliability, economic performance, and low atmospheric pollution levels. The net efficiency of the power plants is increased by optimizing the heat balance, improving the primary and auxiliary equipment, and, which is the main thing, by increasing the throttle conditions. As a result of the enhanced efficiency, emissions of hazardous substances into the atmosphere, including carbon dioxide, the "greenhouse" gas, are reduced. To date, the exhaust steam conditions in the world power industry are p 0 ≈ 30 MPa and t 0 = 610/620°C. The efficiency of such power plants reaches 47%. The OSC plants are being operated in Germany, Denmark, Japan, China, and Korea; pilot plants are being developed in Russia. Currently, a project of a power plant for the ultra-supercritical steam conditions p 0 ≈ 35 MPa and t 0 = 700/720°C with efficiency of approximately 50% is being studied in the EU within the framework of the Thermie AD700 program, project AD 700PF. Investigations in this field have also been launched in the United States, Japan, and China. Engineering solutions are also being sought in Russia by the All-Russia Thermal Engineering Research Institute (VTI) and the Moscow Power Engineering Institute. The stated steam parameter level necessitates application of new materials, namely, nickel-base alloys. Taking into consideration high costs of nickel-base alloys and the absence in Russia of technologies for their production and manufacture of products from these materials for steam-turbine power plants, the development of power plants for steam parameters of 32 MPa and 650/650°C should be considered to be the first stage in creating the USC plants as, to achieve the above parameters, no expensive alloys are require. To develop and

  18. Disturbance gradient shows logging affects plant functional groups more than fire.

    Science.gov (United States)

    Blair, David P; McBurney, Lachlan M; Blanchard, Wade; Banks, Sam C; Lindenmayer, David B

    2016-10-01

    Understanding the impacts of natural and human disturbances on forest biota is critical for improving forest management. Many studies have examined the separate impacts on fauna and flora of wildfire, conventional logging, and salvage logging, but empirical comparisons across a broad gradient of simultaneous disturbances are lacking. We quantified species richness and frequency of occurrence of vascular plants, and functional group responses, across a gradient of disturbances that occurred concurrently in 2009 in the mountain ash forests of southeastern Australia. Our study encompassed replicated sites in undisturbed forest (~70 yr post fire), forest burned at low severity, forest burned at high severity, unburned forest that was clearcut logged, and forest burned at high severity that was clearcut salvage logged post-fire. All sites were sampled 2 and 3 yr post fire. Mean species richness decreased across the disturbance gradient from 30.1 species/site on low-severity burned sites and 28.9 species/site on high-severity burned sites, to 25.1 species/site on clearcut sites and 21.7 species/site on salvage logged sites. Low-severity burned sites were significantly more species-rich than clearcut sites and salvage logged sites; high-severity burned sites supported greater species richness than salvage logged sites. Specific traits influenced species' sensitivity to disturbance. Resprouting species dominated undisturbed mountain ash forests, but declined significantly across the gradient. Fern and midstory trees decreased significantly in frequency of occurrence across the gradient. Ferns (excluding bracken) decreased from 34% of plants in undisturbed forest to 3% on salvage logged sites. High-severity burned sites supported a greater frequency of occurrence and species richness of midstory trees compared to clearcut and salvage logged sites. Salvage logging supported fewer midstory trees than any other disturbance category, and were distinctly different from

  19. Control of plant defense mechanisms and fire blight pathogenesis through the regulation of 6-thioguanine biosynthesis in Erwinia amylovora.

    Science.gov (United States)

    Coyne, Sébastien; Litomska, Agnieszka; Chizzali, Cornelia; Khalil, Mohammed N A; Richter, Klaus; Beerhues, Ludger; Hertweck, Christian

    2014-02-10

    Fire blight is a devastating disease of Rosaceae plants, such as apple and pear trees. It is characterized by necrosis of plant tissue, caused by the phytopathogenic bacterium Erwinia amylovora. The plant pathogen produces the well-known antimetabolite 6-thioguanine (6TG), which plays a key role in fire blight pathogenesis. Here we report that YcfR, a member of the LTTR family, is a major regulator of 6TG biosynthesis in E. amylovora. Inactivation of the regulator gene (ycfR) led to dramatically decreased 6TG production. Infection assays with apple plants (Malus domestica cultivar Holsteiner Cox) and cell cultures of Sorbus aucuparia (mountain ash, rowan) revealed abortive fire blight pathogenesis and reduced plant response (biphenyl and dibenzofuran phytoalexin production). In the presence of the ΔycfR mutant, apple trees were capable of activating the abscission machinery to remove infected tissue. In addition to unveiling the regulation of 6TG biosynthesis in a major plant pathogen, we demonstrate for the first time that this antimetabolite plays a pivotal role in dysregulating the plant response to infection.

  20. Interactive effects of grazing, drought, and fire on grassland plant communities in North America and South Africa.

    Science.gov (United States)

    Koerner, Sally E; Collins, Scott L

    2014-01-01

    Grazing, fire, and climate shape mesic grassland communities. With global change altering all three factors, understanding how grasslands respond to changes in these combined drivers may aid in projecting future changes in grassland ecosystems. We manipulated rainfall and simulated grazing (clipping) in two long-term fire experiments in mesic grasslands in North America (NA) and South Africa (SA). Despite their common drivers, grasslands in NA and SA differ in evolutionary history. Therefore, we expected community structure and production in NA and SA to respond differently to fire, grazing, and drought. Specifically, we hypothesized that NA plant community composition and production would be more responsive than the SA plant communities to changes in the drivers and their interactions, and that despite this expected stability of SA grasslands, drought would be the dominant factor controlling production, but grazing would play the primary role in determining community composition at both sites. Contrary to our hypothesis, NA and SA grasslands generally responded similarly to grazing, drought, and fire. Grazing increased diversity, decreased grass cover and production, and decreased belowground biomass at both sites. Drought alone minimally impacted plant community structure, and we saw similar treatment interactions at the two sites. Drought was not the primary driver of grassland productivity, but instead drought effects were similar to or less than grazing and fire. Even though these grasslands differed in evolutionary history, they responded similarly to our fire, grazing, and climate manipulations. Overall, we found community and ecosystem convergence in NA and SA grasslands. Grazing and fire are as important as climate in controlling mesic grassland ecosystems on both continents.

  1. Evaluating the Thermal Pollution Caused by Wastewaters Discharged from a Chain of Coal-Fired Power Plants along a River

    Directory of Open Access Journals (Sweden)

    Marc A. Rosen

    2015-05-01

    Full Text Available Reliable and safe operation of a coal-fired power plant is strongly linked to freshwater resources, and environmental problems related to water sources and wastewater discharge are challenges for power station operation. In this study, an evaluation on the basis of a wastewater thermal pollution vector is reported for the environmental impact of residual water generated and discharged in the Jiu River during the operation of thermoelectric units of the Rovinari, Turceni and Craiova coal-fired power plants in Romania. Wastewater thermal pollutant vector Plane Projection is applied for assessing the water temperature evolution in the water flow lane created downstream of each power plant wastewater outlet channel. Simulation on the basis of an Electricity of France model, and testing validation of the results for thermoelectric units of 330 MW of these power plants are presented.

  2. Gas fired combined cycle plant in Singapore: energy use, GWP and cost-a life cycle approach

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, R. [School of Mechanical and Production Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)]. E-mail: kannan@pmail.ntu.edu.sg; Leong, K.C. [School of Mechanical and Production Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)]. E-mail: mkcleong@ntu.edu.sg; Osman, Ramli [School of Mechanical and Production Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Ho, H.K. [School of Mechanical and Production Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Tso, C.P. [Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, 75450 Melaka (Malaysia)

    2005-08-15

    A life cycle assessment was performed to quantify the non-renewable (fossil) energy use and global warming potential (GWP) in electricity generation from a typical gas fired combined cycle power plant in Singapore. The cost of electricity generation was estimated using a life cycle cost analysis (LCCA) tool. The life cycle assessment (LCA) of a 367.5 MW gas fired combined cycle power plant operating in Singapore revealed that hidden processes consume about 8% additional energy in addition to the fuel embedded energy, and the hidden GWP is about 18%. The natural gas consumed during the operational phase accounted for 82% of the life cycle cost of electricity generation. An empirical relation between plant efficiency and life cycle energy use and GWP in addition to a scenario for electricity cost with varying gas prices and plant efficiency have been established.

  3. Radiological Impact Study of the Coal-Fired Power Plant of Narcea

    Energy Technology Data Exchange (ETDEWEB)

    Robles, B.; Baeza, A.; Mora, J. a.; Corbacho, J. a.; Trueba, C.; Guillen, J.; Rodriguez, Miralles, Y.

    2014-04-01

    Coal, fuel used in thermal power plants for electricity production, contains variable concentrations of naturally occurring radionuclides from natural disintegration series of {sup 2}38U, {sup 2}35U, {sup 2}32Th and also the 40K, which are enhanced in the wastes and coproducts due to the industrial process. For this reason, natural radionuclides which are part of the noncombustible fraction of coal, except those volatiles which incorporate directly to the flue gases, concentrates and are partitioned between fly ashes and bottom ashes. This enhancement could cause, to the workers of the installation and to members of the public around the plant, an increase in the exposure which should be assessed under the radiation protection point of view. Present report collect the results obtained from a screening assessment of the radiological impact derived from the normal operation of the Narcea coal-fired power plant. The project where this assessment was performed is part of a bigger project which is jointly developed by the Unit of Radiation Protection of the Public and the Environment (UPRPYMA) of CIEMAT and the Environmental Radioactivity Laboratory of the Extremadura University (LARUEX) in agreement with the Spanish Association of the Electrical Industry (ENUSA). (Author)

  4. An assessment of mercury emissions and health risks from a coal-fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    Fthenakis, V.M.; Lipfert, F.; Moskowitz, P. [Brookhaven National Lab., Upton, NY (United States). Analytical Sciences Div.

    1994-12-01

    Title 3 of the 1990 Clean Air Act Amendments (CAAA) mandated that the US Environmental Protection Agency (EPA) evaluate the need to regulate mercury emissions from electric utilities. In support of this forthcoming regulatory analysis the U.S. DOE, sponsored a risk assessment project at Brookhaven (BNL) to evaluate methylmercury (MeHg) hazards independently. In the US MeHg is the predominant way of exposure to mercury originated in the atmosphere. In the BNL study, health risks to adults resulting from Hg emissions from a hypothetical 1,000 MW coal-fired power plant were estimated using probabilistic risk assessment techniques. This study showed that the effects of emissions of a single power plant may double the background exposures to MeHg resulting from consuming fish obtained from a localized area near the power plant. Even at these more elevated exposure levels, the attributable incidence in mild neurological symptoms was estimated to be quite small, especially when compared with the estimated background incidence in the population. The current paper summarizes the basic conclusions of this assessment and highlights issues dealing with emissions control and environmental transport.

  5. An assessment of mercury emissions and health risks from a coal-fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    Fthenakis, V.M.; Lipfert, F.W.; Moskowitz, P.D.; Saroff, L. [Brookhaven National Laboratory, Upton, NY (United States)

    1995-12-01

    Title III of the 1990 Clean Air Act Amendments (CAAA) directed the US Environmental Protection Agency (EPA) to evaluate the rate and effect of mercury emissions in the atmosphere and technologies to control the emissions. The US DOE sponsored a risk assessment project at Brookhaven (BNL) to evaluate health risks of mercury emissions from coal combustion. Methylmercury (MeHg) is the compound predominantly responsible for human exposure to atmospheric mercury in the United States, through fish ingestion. In the BNL study, health risks to adults resulting from Hg emissions from a hypothetical coal-fired power plant were estimated using probabilistic risk assessment techniques. This study showed that the effects of emissions of a single large power plant may double the background exposures to MeHg resulting from consuming fish obtained from a localized are near the power plant. Even at these more elevated exposure levels, the attributable incidence in mild neurological symptoms (paresthesia) was estimated to be quite small, especially when compared with the estimated background incidence in the population. 29 refs., 5 figs., 2 tabs.

  6. New steels for advanced coal fired plant up to 620{degree}C

    Energy Technology Data Exchange (ETDEWEB)

    Metcalfe, E.; Bakker, W.T.; Blum, R.; Bygate, R.P.; Gibbons, T.B.; Hald, J.; Matsuyama, F.; Naoi, H.; Price, S.; Sawaragi, Y. [National Power, Leatherhead (United Kingdom)

    1997-09-01

    There are strong environmental and economic incentives to increase the thermal efficiency of fossil fired power stations, and this has led to a steady increase in steam temperatures and pressures. In addition, the economics of power generation are driving down the price of plant so that advanced technology must be available at reduced installed cost. The key to securing these conditions is the development of high temperature materials, available at an acceptable price, particularly for thick section components in the boiler and turbine. These considerations led to the establishment of a four year EPRI project with partners from Japan, UK, USA and Denmark whose objective was to establish strong 9Cr and 12Cr steels as practical, validated materials for thick section boiler components such as headers and main steam lines. This successful project has developed three strong steels for thick section components for plant operating in the temperature range 565-620{degree}C and two of them, P92 (NF616) and P122(HCM12A), have received ASME Code approval. This project has now entered its second phase with the fabrication of full sized headers which have been installed in the NJV power plant in Denmark. In addition, there is further work on the long term microstructural stability of the steels, and a full sized pressure vessel test under accelerated conditions is about to start. 6 refs., 7 figs., 2 tabs.

  7. A study of toxic emissions from a coal-fired gasification plant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Under the Fine Particulate Control/Air Toxics Program, the US Department of Energy (DOE) has been performing comprehensive assessments of toxic substance emissions from coal-fired electric utility units. An objective of this program is to provide information to the US Environmental Protection Agency (EPA) for use in evaluating hazardous air pollutant emissions as required by the Clean Air Act Amendments (CAAA) of 1990. The Electric Power Research Institute (EPRI) has also performed comprehensive assessments of emissions from many power plants and provided the information to the EPA. The DOE program was implemented in two. Phase 1 involved the characterization of eight utility units, with options to sample additional units in Phase 2. Radian was one of five contractors selected to perform these toxic emission assessments.Radian`s Phase 1 test site was at southern Company Service`s Plant Yates, Unit 1, which, as part of the DOE`s Clean Coal Technology Program, was demonstrating the CT-121 flue gas desulfurization technology. A commercial-scale prototype integrated gasification-combined cycle (IGCC) power plant was selected by DOE for Phase 2 testing. Funding for the Phase 2 effort was provided by DOE, with assistance from EPRI and the host site, the Louisiana Gasification Technology, Inc. (LGTI) project This document presents the results of that effort.

  8. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Constance Senior

    2004-04-30

    This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, the available data from laboratory, pilot and full-scale SCR units was reviewed, leading to hypotheses about the mechanism for mercury oxidation by SCR catalysts.

  9. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Steven; Palo, Daniel; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-01

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, an Environmental Health and Safety (EH&S) Assessment was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment addressed air and particulate emissions as well as solid and liquid waste streams. The magnitude of the emissions and waste streams was estimated for evaluation purposes. EH&S characteristics of materials used in the system are also described. This document contains data based on the mass balances from both the 40 kJ/mol CO2 and 80 kJ/mol CO2 desorption energy cases evaluated in the Final Technical and Economic Feasibility study also conducted by Barr Engineering.

  10. Polychlorinated biphenyls in fly ashes collected from five coal-fired power plants in North China

    Science.gov (United States)

    Li, Zhiyong; Li, Xu; Ma, Huiqiao; Fan, Lin

    2017-01-01

    The 5 coal fly ash samples (CFA) were systematically collected from 5 coal-fired power plants (CFPPs) in North China for analysis of 86 PCB congeners. The predominant PCB congeners were PCB-6, -4/10, -28, -18, -19 and -16/32, which belonged to lighter molecular weight (LMW) congeners. The Σ86PCBs for 5 CFPPs ranged from 10.93 to 32.06 ng/g with the mean value as 16.01 ng/g. The PCBs in CFA were dominated by LMW-PCBs with 2-, 3- and 4-Cl PCBs contributed 34.80%, 39.18% and 9.21% to the Σ86PCBs. The TEQ concentrations for 5 CFPPs was 42.54 pg/g higher than 4 pg/g designed by Canada for soil quality, indicated the using of CFA as soil amendment should be cautioned.

  11. Optimized CO2-flue gas separation model for a coal fired power plant

    Directory of Open Access Journals (Sweden)

    Udara S. P. R. Arachchige, Muhammad Mohsin, Morten C. Melaaen

    2013-01-01

    Full Text Available The detailed description of the CO2 removal process using mono-ethylamine (MEA as a solvent for coal-fired power plant is present in this paper. The rate based Electrolyte NRTL activity coefficient model was used in the Aspen Plus. The complete removal process with re-circulating solvent back to the absorber was implemented with the sequential modular method in Aspen Plus. The most significant cost related to CO2 capture is the energy requirement for re-generating solvent, i.e. re-boiler duty. Parameters’ effects on re-boiler duty were studied, resulting decreased re-boiler duty with the packing height and absorber packing diameter, absorber pressure, solvent temperature, stripper packing height and diameter. On the other hand, with the flue gas temperature, re-boiler duty is increased. The temperature profiles and CO2 loading profiles were used to check the model behavior.

  12. General conditions for gas-fired power plants in Europe; Rahmenbedingungen fuer Gaskraftwerke in Europa

    Energy Technology Data Exchange (ETDEWEB)

    Hugi, Ch.; Fuessler, J.; Sommerhalder, M.

    2006-11-15

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) takes a look at the general conditions for the installation of gas-fired power plants in Europe. Combined cycle power stations are characterised and the associated power production costs are discussed. Also, the prices resulting from the internalisation of external costs are noted. The problems associated with carbon dioxide emissions are discussed and the trading of emission certificates is looked at. Also, nitrogen oxide emissions are examined and discussed. The use of waste heat from the combined cycle power stations is also examined. Further topics include subsidies and special credits for the gas industry in Europe and the granting of permission for the planning, construction, operation and dismantling of the power station facilities. The situation in various European countries is examined and the associated market distortion is commented on

  13. Modeling of integrated environmental control systems for coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E.S.

    1989-10-01

    The general goal of this research project is to enhance, and transfer to DOE, a new computer simulation model for analyzing the performance and cost of environmental control systems for coal-fired power plants. Systems utilizing pre-combustion, combustion, or post-combustion control methods, individually or in combination, may be considered. A unique capability of this model is the probabilistic representation of uncertainty in model input parameters. This stochastic simulation capability allows the performance and cost of environmental control systems to be quantified probabilistically, accounting for the interactions among all uncertain process and economic parameters. This method facilitates more rigorous comparisons between conventional and advanced clean coal technologies promising improved cost and/or effectiveness for SO{sub 2} and NO{sub x} removal. Detailed modeling of several pre-combustion and post-combustion processes of interest to DOE/PETC have been selected for analysis as part of this project.

  14. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Constance Senior

    2004-10-29

    This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, a model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

  15. Modeling of integrated environmental control systems for coal-fired power plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

    1991-05-01

    The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to ``conventional`` technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

  16. Modeling of integrated environmental control systems for coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

    1991-05-01

    The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to conventional'' technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

  17. Mercury emissions of a coal-fired power plant in Germany

    Science.gov (United States)

    Weigelt, Andreas; Slemr, Franz; Ebinghaus, Ralf; Pirrone, Nicola; Bieser, Johannes; Bödewadt, Jan; Esposito, Giulio; van Velthoven, Peter F. J.

    2016-11-01

    Hg / SO2, Hg / CO, NOx / SO2 (NOx being the sum of NO and NO2) emission ratios (ERs) in the plume of the coal-fired power plant (CFPP), Lippendorf, near Leipzig, Germany, were determined within the European Tropospheric Mercury Experiment (ETMEP) aircraft campaign in August 2013. The gaseous oxidized mercury (GOM) fraction of mercury emissions was also assessed. Measured Hg / SO2 and Hg / CO ERs were within the measurement uncertainties consistent with the ratios calculated from annual emissions in 2013 reported by the CFPP operator, while the NOx / SO2 ER was somewhat lower. The GOM fraction of total mercury emissions, estimated using three independent methods, was below ˜ 25 %. This result is consistent with other findings and suggests that GOM fractions of ˜ 40 % of CFPP mercury emissions in current emission inventories are overestimated.

  18. Optimized CO2-flue gas separation model for a coal fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    Arachchige, Udara S.P.R. [Telemark University College, Porsgrunn (Norway); Mohsin, Muhammad [Telemark University College, Porsgrunn (Norway); Melaaen, Morten C. [Telemark University College, Porsgrunn (Norway); Tel-Tek, Porsgrunn (Norway)

    2013-07-01

    The detailed description of the CO2 removal process using mono-ethylamine (MEA) as a solvent for coal-fired power plant is present in this paper. The rate based Electrolyte NRTL activity coefficient model was used in the Aspen Plus. The complete removal process with re-circulating solvent back to the absorber was implemented with the sequential modular method in Aspen Plus. The most significant cost related to CO2 capture is the energy requirement for re-generating solvent, i.e. re-boiler duty. Parameters’ effects on re-boiler duty were studied, resulting decreased re-boiler duty with the packing height and absorber packing diameter, absorber pressure, solvent temperature, stripper packing height and diameter. On the other hand, with the flue gas temperature, re-boiler duty is increased. The temperature profiles and CO2 loading profiles were used to check the model behavior.

  19. A study of toxic emissions from a coal-fired gasification plant

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.; Behrens, G. [Radian Corporation, Austin, TX (United States)

    1995-11-01

    Toxic emissions were measured in the gaseous, solid and aqueous effluent streams in a coal-fired gasification plant. Several internal process streams were also characterized to assess pollution control device effectiveness. The program, consisted of three major phases. Phase I was the toxics emission characterization program described above. phase II included the design, construction and shakedown testing of a high-temperature, high-pressure probe for collecting representative trace composition analysis of hot (1200{degrees}F) syngas. Phase III consisted of the collection of hot syngas samples utilizing the high-temperature probe. Preliminary results are presented which show the emission factors and removal efficiencies for several metals that are on the list of compounds defined by the Clean Air Act Amendments of 1990.

  20. Comprehensive assessment of toxic emissions from coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T D; Schmidt, C E [USDOE Pittsburgh Energy Technology Center, PA (United States); Radziwon, A S [Burns and Roe Services Corp., Pittsburgh, PA (United States)

    1991-01-01

    The Pittsburgh Energy Technology Center (PETC) of the US Department of Energy (DOE) has two current investigations, initiated before passage of the Clean Air Act Amendment (CAAA), that will determine the air toxic emissions from coal-fired electric utilities. DOE has contracted with Battelle Memorial Institute and Radian corporation to conduct studies focusing on the potential air toxics, both organic and inorganic, associated with different size fractions of fine particulate matter emitted from power plant stacks. Table 2 indicates the selected analytes to be investigated during these studies. PETC is also developing guidance on the monitoring of Hazardous Air Pollutants (HAPS) to be incorporated in the Environmental Monitoring plans for the demonstration projects in its Clean Coal Technology Program.

  1. Mercury emission and speciation of coal-fired power plants in China

    Directory of Open Access Journals (Sweden)

    S. X. Wang

    2010-02-01

    Full Text Available Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of Selective Catalytic Reduction (SCR, electrostatic precipitators (ESP, and flue gas desulfurization (FGD using the Ontario Hydro Method (OHM. The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92–27.15 μg/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66–94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.

  2. Mercury emission and speciation of coal-fired power plants in China

    Directory of Open Access Journals (Sweden)

    M. P. Ancora

    2009-11-01

    Full Text Available Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of selective catalyst reduction (SCR, electrostatic precipitators (ESP, and flue gas desulfurization (FGD using the Ontario Hydro Method (OHM. The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92–27.15 μg/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66–94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.

  3. The influence of fire history, plant species and post-fire management on soil water repellency in a Mediterranean catchment

    NARCIS (Netherlands)

    Keesstra, Saskia; Wittenberg, Lea; Maroulis, Jerry; Sambalino, Francesco; Malkinson, Dan; Cerdà, Artemi; Pereira, Paulo

    2017-01-01

    Fire is a key factor impacting soil hydrology in many Mediterranean catchments. Soil water repellency (SWR) can stimulate land degradation processes by reducing the affinity of soil and water thereby triggering a reduction in soil fertility and increasing soil and water losses. The effects of two

  4. Novel Functionally Graded Thermal Barrier Coatings in Coal-Fired Power Plant Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing [Indiana Univ., Indianapolis, IN (United States)

    2016-11-01

    This project presents a detailed investigation of a novel functionally graded coating material, pyrochlore oxide, for thermal barrier coating (TBC) in gas turbines used in coal-fired power plants. Thermal barrier coatings are refractory materials deposited on gas turbine components, which provide thermal protection for metallic components at operating conditions. The ultimate goal of this research is to develop a manufacturing process to produce the novel low thermal conductivity and high thermal stability pyrochlore oxide based coatings with improved high-temperature durability. The current standard TBC, yttria stabilized zirconia (YSZ), has service temperatures limited to <1200°C, due to sintering and phase transition at higher temperatures. In contrast, pyrochlore oxide, e.g., lanthanum zirconate (La2Zr2O7, LZ), has demonstrated lower thermal conductivity and better thermal stability, which are crucial to high temperature applications, such as gas turbines used in coal-fired power plants. Indiana University – Purdue University Indianapolis (IUPUI) has collaborated with Praxair Surface Technologies (PST), and Changwon National University in South Korea to perform the proposed research. The research findings are critical to the extension of current TBCs to a broader range of high-temperature materials and applications. Several tasks were originally proposed and accomplished, with additional new opportunities identified during the course of the project. In this report, a description of the project tasks, the main findings and conclusions are given. A list of publications and presentations resulted from this research is listed in the Appendix at the end of the report.

  5. An intelligent emissions controller for fuel lean gas reburn in coal-fired power plants.

    Science.gov (United States)

    Reifman, J; Feldman, E E; Wei, T Y; Glickert, R W

    2000-02-01

    The application of artificial intelligence techniques for performance optimization of the fuel lean gas reburn (FLGR) system is investigated. A multilayer, feedforward artificial neural network is applied to model static nonlinear relationships between the distribution of injected natural gas into the upper region of the furnace of a coal-fired boiler and the corresponding oxides of nitrogen (NOx) emissions exiting the furnace. Based on this model, optimal distributions of injected gas are determined such that the largest NOx reduction is achieved for each value of total injected gas. This optimization is accomplished through the development of a new optimization method based on neural networks. This new optimal control algorithm, which can be used as an alternative generic tool for solving multidimensional nonlinear constrained optimization problems, is described and its results are successfully validated against an off-the-shelf tool for solving mathematical programming problems. Encouraging results obtained using plant data from one of Commonwealth Edison's coal-fired electric power plants demonstrate the feasibility of the overall approach. Preliminary results show that the use of this intelligent controller will also enable the determination of the most cost-effective operating conditions of the FLGR system by considering, along with the optimal distribution of the injected gas, the cost differential between natural gas and coal and the open-market price of NOx emission credits. Further study, however, is necessary, including the construction of a more comprehensive database, needed to develop high-fidelity process models and to add carbon monoxide (CO) emissions to the model of the gas reburn system.

  6. Post-fire seeding of great basin native plants using conventional and minimum-till rangeland drills

    Science.gov (United States)

    Objectives of post-fire seeding in the Great Basin include reestablishment of perennial cover, suppression of exotic annual weeds, and increasingly restoration of diverse plant communities. Non-conventional seeding techniques may be required when seeding mixes of grasses, forbs and shrubs containing...

  7. Study of flue gas condensing for biofuel fired heat and power plants; Studie av roekgaskondensering foer biobraensleeldade kraftvaermeanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Axby, Fredrik; Gustafsson, J.O.; Nystroem, Johan; Johansson, Kent

    2000-11-01

    This report considers questions regarding flue gas condensing plants connected to bio-fuelled heat and power plants. The report consists of two parts, one where nine existing plants are described regarding technical issues and regarding the experience from the different plants. Part two is a theoretical study where heat balance calculations are made to show the technical and economical performance in different plant configurations and operating conditions. Initially the different parts in the flue gas condensing plant are described. Tube, plate and scrubber condensers are described briefly. The different types of humidifiers are also described, rotor, cross-stream plate heat exchanger and scrubber. Nine flue gas-condensing plants have been visited. The plants where chosen considering it should be bio-fuel fired plant primarily heat and power plants. Furthermore we tried to get a good dissemination considering plant configuration, supplier, geographical position, operating situation and plant size. The description of the different plants focuses on the flue gas condenser and the belonging components. The fuel, flue gas and condensate composition is described as well as which materials are used in the different parts of the plant. The experience from operating the plants and the reasons of why they decided to chose the actual condenser supplier are reported.

  8. Updates of the fire protection system of the Juzbado Nuclear Fuel Fabrication Plant; Actualizaciones del Sistema de Proteccion Contra Incendios de la Fabrica de Combustible Nuclear de Juzbado

    Energy Technology Data Exchange (ETDEWEB)

    Dorado, P.; Palomo, J. J.; Romano, A.

    2015-07-01

    The Juzbado Nuclear Fuel Fabrication Plant fire protection system is one of the most important safety system of the plant. Every year, a large part of the annual investment is employed to improve this system, to update its technology, in order to improve detection and extinction capability to minimize fire risk. Over the last few years, several improvement projects have been carried out that focused on fire detection technology update and on optimization of local detectors integration with a centralized control system, as well as on an advanced public address system, which used clear and unambiguous messages improving personnel response to a plant evacuation. Planned projects and those, which are currently under development, focus on improving passive fire protection means as well as fire protection of key emergency response equipment s such as emergency diesel generators and fire extinguishing bombs. (Author)

  9. Pilot plant development of a new catalytic process for improved electrostatic separation of fly-ash in coal fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Olivares del Valle, J.; Salvador Martinez, L.; Muniz Baum, B.; Cortes Galeano, V. [University of Seville, Seville (Spain). Chemical and Environmental Engineering Dept.

    1996-12-31

    A new catalytic process for flue gas conditioning in pulverized coal fired power plants is outlined. Vanadium and platinum catalysts specifically prepared on ceramic honeycomb monoliths to oxidize SO{sub 2} into SO{sub 3} have been tested and evaluated at pilot scale. 10 refs., 3 figs., 2 tabs.

  10. Fires, ecological effects of

    Science.gov (United States)

    W. J. Bond; Robert Keane

    2017-01-01

    Fire is both a natural and anthropogenic disturbance influencing the distribution, structure, and functioning of terrestrial ecosystems around the world. Many plants and animals depend on fire for their continued existence. Others species, such as rainforest plants species, are extremely intolerant of burning and need protection from fire. The properties of a fire...

  11. Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD

    Energy Technology Data Exchange (ETDEWEB)

    Katherine Dombrowski

    2009-12-31

    This report presents the results of a multi-year test program conducted as part of Cooperative Agreement DE-FC26-06NT42779, 'Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD.' The objective of this program was to determine the level of mercury removal achievable using sorbent injection for a plant firing Texas lignite fuel and equipped with an ESP and wet FGD. The project was primarily funded by the U.S. DOE National Energy Technology Laboratory. EPRI, NRG Texas, Luminant (formerly TXU), and AEP were project co-funders. URS Group was the prime contractor, and Apogee Scientific and ADA-ES were subcontractors. The host site for this program was NRG Texas Limestone Electric Generating Station (LMS) Units 1 and 2, located in Jewett, Texas. The plant fires a blend of Texas lignite and Powder River Basin (PRB) coal. Full-scale tests were conducted to evaluate the mercury removal performance of powdered sorbents injected into the flue gas upstream of the ESP (traditional configuration), upstream of the air preheater, and/or between electric fields within the ESP (Toxecon{trademark} II configuration). Phases I through III of the test program, conducted on Unit 1 in 2006-2007, consisted of three short-term parametric test phases followed by a 60-day continuous operation test. Selected mercury sorbents were injected to treat one quarter of the flue gas (e.g., approximately 225 MW equivalence) produced by Limestone Unit 1. Six sorbents and three injection configurations were evaluated and results were used to select the best combination of sorbent (Norit Americas DARCO Hg-LH at 2 lb/Macf) and injection location (upstream of the ESP) for a two-month performance evaluation. A mercury removal rate of 50-70% was targeted for the long-term test. During this continuous-injection test, mercury removal performance and variability were evaluated as the plant operated under normal conditions. Additional evaluations were made to determine any

  12. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire.

    Science.gov (United States)

    Simon, Marcelo F; Grether, Rosaura; de Queiroz, Luciano P; Skema, Cynthia; Pennington, R Toby; Hughes, Colin E

    2009-12-01

    The relative importance of local ecological and larger-scale historical processes in causing differences in species richness across the globe remains keenly debated. To gain insight into these questions, we investigated the assembly of plant diversity in the Cerrado in South America, the world's most species-rich tropical savanna. Time-calibrated phylogenies suggest that Cerrado lineages started to diversify less than 10 Mya, with most lineages diversifying at 4 Mya or less, coinciding with the rise to dominance of flammable C4 grasses and expansion of the savanna biome worldwide. These plant phylogenies show that Cerrado lineages are strongly associated with adaptations to fire and have sister groups in largely fire-free nearby wet forest, seasonally dry forest, subtropical grassland, or wetland vegetation. These findings imply that the Cerrado formed in situ via recent and frequent adaptive shifts to resist fire, rather than via dispersal of lineages already adapted to fire. The location of the Cerrado surrounded by a diverse array of species-rich biomes, and the apparently modest adaptive barrier posed by fire, are likely to have contributed to its striking species richness. These findings add to growing evidence that the origins and historical assembly of species-rich biomes have been idiosyncratic, driven in large part by unique features of regional- and continental-scale geohistory and that different historical processes can lead to similar levels of modern species richness.

  13. Prediction and validation of pool fire development in enclosures by means of CFD Models for risk assessment of nuclear power plants (Poolfire) - Report year 2

    Energy Technology Data Exchange (ETDEWEB)

    van Hees, P.; Wahlqvist, J.; Kong, D. [Lund Univ., Lund (Sweden); Hostikka, S.; Sikanen, T. [VTT Technical Research Centre of Finland (Finland); Husted, B. [Haugesund Univ. College, Stord (Norway); Magnusson, T. [Ringhals AB, Vaeroebacka (Sweden); Joerud, F. [European Spallation Source (ESS), Lund (Sweden)

    2013-05-15

    Fires in nuclear power plants can be an important hazard for the overall safety of the facility. One of the typical fire sources is a pool fire. It is therefore important to have good knowledge on the fire behaviour of pool fire and be able to predict the heat release rate by prediction of the mass loss rate. This project envisages developing a pyrolysis model to be used in CFD models. In this report the activities for second year are reported, which is an overview of the experiments conducted, further development and validation of models and cases study to be selected in year 3. (Author)

  14. Atmospheric emissions and pollution from the coal-fired thermal power plants in India

    Science.gov (United States)

    Guttikunda, Sarath K.; Jawahar, Puja

    2014-08-01

    In India, of the 210 GW electricity generation capacity, 66% is derived from coal, with planned additions of 76 GW and 93 GW during the 12th and the 13th five year plans, respectively. Atmospheric emissions from the coal-fired power plants are responsible for a large burden on human health. In 2010-11, 111 plants with an installed capacity of 121 GW, consumed 503 million tons of coal, and generated an estimated 580 ktons of particulates with diameter less than 2.5 μm (PM2.5), 2100 ktons of sulfur dioxides, 2000 ktons of nitrogen oxides, 1100 ktons of carbon monoxide, 100 ktons of volatile organic compounds, and 665 million tons of carbon dioxide. These emissions resulted in an estimated 80,000 to 115,000 premature deaths and 20.0 million asthma cases from exposure to PM2.5 pollution, which cost the public and the government an estimated INR 16,000 to 23,000 crores (USD 3.2 to 4.6 billion). The emissions were estimated for the individual plants and the atmospheric modeling was conducted using CAMx chemical transport model, coupled with plume rise functions and hourly meteorology. The analysis shows that aggressive pollution control regulations such as mandating flue gas desulfurization, introduction and tightening of emission standards for all criteria pollutants, and updating procedures for environment impact assessments, are imperative for regional clean air and to reduce health impacts. For example, a mandate for installation of flue gas desulfurization systems for the operational 111 plants could reduce the PM2.5 concentrations by 30-40% by eliminating the formation of the secondary sulfates and nitrates.

  15. Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, Tim; Wei, Xiaotong; Firat, Bilgen; He, Jenny; Amo, Karl; Pande, Saurabh; Baker, Richard; Wijmans, Hans; Bhown, Abhoyjit

    2012-03-31

    This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE). Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris? membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests showed no

  16. Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, Tim; Wei, Xiaotong; Firat, Bilgen; He, Jenny; Amo, Karl; Pande, Saurabh; Baker, Richard; Wijmans, Hans; Bhown, Abhoyjit

    2012-03-31

    This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE). Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris? membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests showed no

  17. Fire blight disease reactome: RNA-seq transcriptional profile of apple host plant defense responses to Erwinia amylovora pathogen infection.

    Science.gov (United States)

    Kamber, Tim; Buchmann, Jan P; Pothier, Joël F; Smits, Theo H M; Wicker, Thomas; Duffy, Brion

    2016-02-17

    The molecular basis of resistance and susceptibility of host plants to fire blight, a major disease threat to pome fruit production globally, is largely unknown. RNA-sequencing data from challenged and mock-inoculated flowers were analyzed to assess the susceptible response of apple to the fire blight pathogen Erwinia amylovora. In presence of the pathogen 1,080 transcripts were differentially expressed at 48 h post inoculation. These included putative disease resistance, stress, pathogen related, general metabolic, and phytohormone related genes. Reads, mapped to regions on the apple genome where no genes were assigned, were used to identify potential novel genes and open reading frames. To identify transcripts specifically expressed in response to E. amylovora, RT-PCRs were conducted and compared to the expression patterns of the fire blight biocontrol agent Pantoea vagans strain C9-1, another apple pathogen Pseudomonas syringae pv. papulans, and mock inoculated apple flowers. This led to the identification of a peroxidase superfamily gene that was lower expressed in response to E. amylovora suggesting a potential role in the susceptibility response. Overall, this study provides the first transcriptional profile by RNA-seq of the host plant during fire blight disease and insights into the response of susceptible apple plants to E. amylovora.

  18. The net climate impact of coal-fired power plant emissions

    Directory of Open Access Journals (Sweden)

    D. Shindell

    2010-04-01

    Full Text Available Coal-fired power plants influence climate via both the emission of long-lived carbon dioxide (CO2 and short-lived ozone and aerosol precursors. Using a climate model, we perform the first study of the spatial and temporal pattern of radiative forcing specifically for coal plant emissions. Without substantial pollution controls, we find that near-term net global mean climate forcing is negative due to the well-known aerosol masking of the effects of CO2. Imposition of pollution controls on sulfur dioxide and nitrogen oxides leads to a rapid realization of the full positive forcing from CO2, however. Long-term global mean forcing from stable (constant emissions is positive regardless of pollution controls. Emissions from coal-fired power plants until ~1970, including roughly 1/3 of total anthropogenic CO2 emissions, likely contributed little net global mean climate forcing during that period though they may have induce weak Northern Hemisphere mid-latitude (NHml cooling. After that time many areas imposed pollution controls or switched to low-sulfur coal. Hence forcing due to emissions from 1970 to 2000 and CO2 emitted previously was strongly positive and contributed to rapid global and especially NHml warming. Most recently, new construction in China and India has increased rapidly with minimal application of pollution controls. Continuation of this trend would add negative near-term global mean climate forcing but severely degrade air quality. Conversely, following the Western and Japanese pattern of imposing air quality pollution controls at a later time could accelerate future warming rates, especially at NHmls. More broadly, our results indicate that due to spatial and temporal inhomogenaities in forcing, climate impacts of multi-pollutant emissions can vary strongly from region to region and can include substantial effects on maximum rate-of-change, neither of which are captured by

  19. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURING LOW RANK FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Constance Senior

    2004-07-30

    This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, a review of the available data on mercury oxidation across SCR catalysts from small, laboratory-scale experiments, pilot-scale slipstream reactors and full-scale power plants was carried out. Data from small-scale reactors obtained with both simulated flue gas and actual coal combustion flue gas demonstrated the importance of temperature, ammonia, space velocity and chlorine on mercury oxidation across SCR catalyst. SCR catalysts are, under certain circumstances, capable of driving mercury speciation toward the gas-phase equilibrium values at SCR temperatures. Evidence suggests that mercury does not always reach equilibrium at the outlet. There may be other factors that become apparent as more data become available.

  20. [Major Air Pollutant Emissions of Coal-Fired Power Plant in Yangtze River Delta].

    Science.gov (United States)

    Ding, Qing-qing; Wei, Wei; Shen, Qun; Sun, Yu-han

    2015-07-01

    The emission factor method was used to estimate major air pollutant emissions of coal-fired power plant in the Yangtze River Delta (YRD) region of the year 2012. Results showed that emissions of SO2, NOx, dust, PM10, PM2.5 were respectively 473 238, 1 566 195, 587 713, 348 773 and 179 820 t. For SO2 and NOx, 300 MW and above class units made contributions of 85% and 82% in emission; while in the respect of dust, PM10 and PM2.5 contribution rates of 100 MW and below class units were respectively 81%, 53% and 40%. Considering the regional distribution, Jiangsu discharged the most, followed by Zhejiang, Shanghai. According to discharge data of several local power plants, we also calculated and made a comparative analysis of emission factors in different unit levels in Shanghai, which indicated a lower emission level. Assuming an equal level was reached in whole YRD, SO2 emission would cut down 55. 8% - 65. 3%; for NOx and dust emissions were 50. 5% - 64. 1% and 3. 4% - 11. 3%, respectively. If technologies and pollution control of lower class units were improved, the emission cuts would improve. However, according to the pollution realities of YRD, we suggested to make a multiple-cuts plan, which could effectively improve the reaional atmospheric environment.

  1. Corrosion Testing of Thermal Spray Coatings in a Biomass Co-Firing Power Plant

    Directory of Open Access Journals (Sweden)

    Maria Oksa

    2016-11-01

    Full Text Available Large-scale use of biomass and recycled fuel is increasing in energy production due to climate and energy targets. A 40% cut in greenhouse gas emission compared to 1990 levels and at least a 27% share of renewable energy consumption are set in EU Energy Strategy 2030. Burning fuels with high content of corrosive species such as chlorine and heavy metals causes deterioration of boiler components, shortened lifetime, limited availability of a plant and hence higher maintenance and investment costs and lower thermal and economic efficiency. Coatings can be applied to protect the critical boiler components against high temperature corrosion. In this study, five thermal spray coatings were tested in an actual biomass co-firing boiler for 1300 h with a measurement probe. The coatings were analyzed after the exposure by metallographic means and scanning electron microscope/energy-dispersive X-ray spectroscope (SEM/EDX. The deposits formed on the specimens were analyzed by X-ray fluorescence. At 550 °C, the coatings showed excellent corrosion performance compared to reference material ferritic steel T92. At 750 °C, tube material A263 together with NiCr and NiCrTi had the highest corrosion resistance. To conclude, thermal spray coatings can offer substantial corrosion protection in biomass and recycled fuel burning power plants.

  2. Use of numerical simulation computer codes to fire problems in nuclear power plants in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Keski-Rahkonen, O.; Eloranta, E. (Valtion Teknillinen Tutkimuskeskus, Espoo (Finland). Fire Technology Lab.); Huhtanen, R. (Valtion Teknillinen Tutkimuskeskus, Helsinki (Finland). Nuclear Engineering Lab.)

    1991-03-01

    Zone and field model codes are used for fire simulations, including nuclear facilities, in Finland. Here two examples are described: (a) calculation of evaporation rate of a pool fire (8 MW) in a compartment using FIRST, and calculation of an oil spill fire (180 MW) in a turbine hall using PHOENICS. (orig.).

  3. Assessment of the US EPA's determination of the role for CO2 capture and storage in new fossil fuel-fired power plants.

    Science.gov (United States)

    Clark, Victoria R; Herzog, Howard J

    2014-07-15

    On September 20, 2013, the US Environmental and Protection Agency (EPA) proposed a revised rule for "Standards of Performance for Greenhouse Gas Emissions from New Stationary Sources: Electric Utility Generating Units". These performance standards set limits on the amount of carbon dioxide (CO2) that can be emitted per megawatt-hour (MWh) of electricity generation from new coal-fired and natural gas-fired power plants built in the US. These limits were based on determinations of "best system of emission reduction (BSER) adequately demonstrated". Central in this determination was evaluating whether Carbon Dioxide Capture and Storage (CCS) qualified as BSER. The proposed rule states that CCS qualifies as BSER for coal-fired generation but not for natural gas-fired generation. In this paper, we assess the EPA's analysis that resulted in this determination. We are not trying to judge what the absolute criteria are for CCS as the BSER but only the relative differences as related to coal- vs natural gas-fired technologies. We conclude that there are not enough differences between "base load" coal-fired and natural gas-fired power plants to justify the EPA's determination that CCS is the BSER for coal-fired power plants but not for natural gas-fired power plants.

  4. Characterization and inventory of PCDD/F emissions from coal-fired power plants and other sources in Taiwan.

    Science.gov (United States)

    Lin, Long-Full; Lee, Wen-Jhy; Li, Hsing-Wang; Wang, Mao-Sung; Chang-Chien, Guo-Ping

    2007-08-01

    The objectives of the present study were to quantify (1) the emission factors of a variety of dioxin emission sources; (2) the overall dioxin emission inventory in Taiwan as well as in a major metropolitan (KC area); and (3) the contribution of power plants to the overall PCDD/F emission. To achieve these goals, a total of 95 flue gas samples were collected and analyzed for 17 PCDD/Fs from 20 sources to develop emission factors. The emission factor of PCDD/Fs from coal-fired power plants (0.62 microgI-TEQton(-1)) obtained in this study is considerably higher than the values reported from different countries including UK, USA, and Spain by a factor of 2-265. It means that the air pollution control devices in certain power plants need to be more efficient. The emission data showed that there is a total annual release to air of 6.1 and 95gI-TEQ from major sources in the KC area and Taiwan, respectively. The dominant sources of PCDD/Fs in the KC area are the coal-fired power plants, secondary aluminum smelting, electric arc furnaces, and open burning of rice straw, which contributed for 56%, 17%, 13%, and 3.3% to the total, respectively. However, in Taiwan, the dominant sources of PCDD/Fs are the iron ore sintering, coal-fired power plants, electric arc furnaces, and open burning of rice straw, which contributed for 32%, 28%, 23%, and 8.1% to the total, respectively. The results of this study showed that coal-fired power plants are very significant sources of PCDD/Fs and also provide an important database to assist the decision makers for formulating policies to alleviate dioxin concerns.

  5. Flexibility requirements for fossil-fired power plants to support the growth of the share of renewable energies

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, Lars; Fruth, Mathias [E.ON Kraftwerke GmbH, Hannover (Germany); Pfaff, Imo [E.ON New Build and Technology GmbH, Gelsenkirchen (Germany)

    2013-09-01

    The planned increase of renewable generation in Germany to more than 100,000 MW of installed capacity within the next decade will result in significant changes to the existing electrical energy system. Fossil-fired power plants will remain inevitable to guarantee supply security. The maximum, securely available power plant capacity probably has to correspond to current level. This power plant park has to meet more stringent requirements in order to support the further extension of renewables-based generation. However, economic incentives, like e.g. necessary reward of flexible operation, are being missing. (orig.)

  6. Economic analysis of atmospheric mercury emission control for coal-fired power plants in China.

    Science.gov (United States)

    Ancora, Maria Pia; Zhang, Lei; Wang, Shuxiao; Schreifels, Jeremy; Hao, Jiming

    2015-07-01

    Coal combustion and mercury pollution are closely linked, and this relationship is particularly relevant in China, the world's largest coal consumer. This paper begins with a summary of recent China-specific studies on mercury removal by air pollution control technologies and then provides an economic analysis of mercury abatement from these emission control technologies at coal-fired power plants in China. This includes a cost-effectiveness analysis at the enterprise and sector level in China using 2010 as a baseline and projecting out to 2020 and 2030. Of the control technologies evaluated, the most cost-effective is a fabric filter installed upstream of the wet flue gas desulfurization system (FF+WFGD). Halogen injection (HI) is also a cost-effective mercury-specific control strategy, although it has not yet reached commercial maturity. The sector-level analysis shows that 193 tons of mercury was removed in 2010 in China's coal-fired power sector, with annualized mercury emission control costs of 2.7 billion Chinese Yuan. Under a projected 2030 Emission Control (EC) scenario with stringent mercury limits compared to Business As Usual (BAU) scenario, the increase of selective catalytic reduction systems (SCR) and the use of HI could contribute to 39 tons of mercury removal at a cost of 3.8 billion CNY. The economic analysis presented in this paper offers insights on air pollution control technologies and practices for enhancing atmospheric mercury control that can aid decision-making in policy design and private-sector investments.

  7. Effects of a coal-fired power plant on the rock lichen Rhizoplaca melanophthalma: chlorophyll degradation and electrolyte leakage

    Science.gov (United States)

    Belnap, Jayne; Harper, Kimball T.

    1990-01-01

    Chlorophyll degradation and electrolyte leakage were measured for the umbilicate desert lichen Rhizoplaca melanophthalma (Ram.) Leuck. & Poelt in the vicinity of a coal-fired power plant near Page, Arizona. Patterns of lichen damage indicated by chlorophyll degradation were similar to those indicated by electrolyte leakage. Regression analyses of chlorophyll degradation as well as electrolyte leakage on distance from the power plant were significant (p lichen damage decreased with increasing distance from the power plant. Mean values for both variables at the two sites closest to the power plant (7 and 12 km) differed significantly from values for the two sites farthest from the plant (21 and 42 km; p < 0.001). Mean values within each group (7 and 12 km; 21 and 42 km) do not differ significantly for either parameter. It is suggested that effluents from the power plant combine with local weather factors to produce the observed levels of damage.

  8. Mercury removals by existing pollutants control devices of four coal-fired power plants in China

    Institute of Scientific and Technical Information of China (English)

    Juan Wang; WenhuaWang; Wei Xu; Xiaohao Wang; Song Zhao

    2011-01-01

    The mercury removals by existing pollution control devices and the mass balances of mercury in four coal-fired power plants of China were carried out based on a measurement method with the aluminum matrix sorbent.All the plants are equipped with a cold-side electrostatic precipitator (ESP) and a wet flue gas desulfurization (FGD) in series.During the course of coal stream,the samples,such as coal,bottom ash,fly ash,gypsum and fiue gas,were collected.The Hg concentrations in coals were measured by CVAAS after appropriate preparation and acid digestion.Other solid samples were measured by the RA-915+ Zeeman Mercury Spectrometer.The vapor phase Hg was collected by a sorbent trap from flue gas and then measured using CVAAS followed by acid leaching.The mercury mass balances were estimated in this study were 91.6%,77.1%,118% and 85.8% for the four power plants,respectively.The total Hg concentrations in the stack gas were ranged from 1.56-5.95 μg/m3.The relative distribution of Hg in bottom ash,ESP,WFGD and stack discharged were ranged between 0.110%-2.50%,2.17%-23.4%,2.21%-87.1%,and 21.8%-72.7%,respectively.The distribution profiles were varied with the coal type and the operation conditions.The Hg in flue gas could be removed by ESP and FGD systems with an average removal efficiency of 51.8%.The calculated average emission factor was 0.066 g/ton and much lower than the results obtained ten years ago.

  9. Post-fire salvage logging alters species composition and reduces cover, richness, and diversity in Mediterranean plant communities.

    Science.gov (United States)

    Leverkus, Alexandro B; Lorite, Juan; Navarro, Francisco B; Sánchez-Cañete, Enrique P; Castro, Jorge

    2014-01-15

    An intense debate exists on the effects of post-fire salvage logging on plant community regeneration, but scant data are available derived from experimental studies. We analyzed the effects of salvage logging on plant community regeneration in terms of species richness, diversity, cover, and composition by experimentally managing a burnt forest on a Mediterranean mountain (Sierra Nevada, S Spain). In each of three plots located at different elevations, three replicates of three treatments were implemented seven months after the fire, differing in the degree of intervention: "Non-Intervention" (all trees left standing), "Partial Cut plus Lopping" (felling 90% of the trees, cutting the main branches, and leaving all the biomass in situ), and "Salvage Logging" (felling and piling the logs, and masticating the woody debris). Plant composition in each treatment was monitored two years after the fire in linear point transects. Post-fire salvage logging was associated with reduced species richness, Shannon diversity, and total plant cover. Moreover, salvaged sites hosted different species assemblages and 25% lower cover of seeder species (but equal cover of resprouters) compared to the other treatments. Cover of trees and shrubs was also lowest in Salvage Logging, which could suggest a potential slow-down of forest regeneration. Most of these results were consistent among the three plots despite plots hosting different plant communities. Concluding, our study suggests that salvage logging may reduce species richness and diversity, as well as the recruitment of woody species, which could delay the natural regeneration of the ecosystem. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Effects of Post-Fire Plant Cover in the Performance of Two Cordilleran Cypress ( Austrocedrus chilensis) Seedling Stocktypes Planted in Burned Forests of Northeastern Patagonia, Argentina

    Science.gov (United States)

    Urretavizcaya, María F.; Gonda, Héctor E.; Defossé, Guillermo E.

    2017-03-01

    Cordilleran cypress ( Austrocedrus chilensis [D.Don] Pic. Serm. et Bizarri) forests occupy 140,000 ha along a sharp environmental gradient of central Andean-Patagonia in Argentina. Every summer, about 3200 ha of these forests are affected by wildfires, taking thereafter long time to recover. To accelerate forest recovery, we determined in xeric and mesic cypress stands burned 5 and 2 year before whether survival and growth of two planted cypress seedling stocktypes are affected by plant cover and contrasting precipitation conditions. Two experiments were conducted on each site, involving 100 replicates of two seedling stocktypes, having each significantly different morphological attributes. The experiments comprised a dry and humid growing season on each site. Both stocktypes performed similarly within stands, but differently between stands. In the xeric stand, plant cover had neutral effects on seedling survival, favored seedling height growth in the dry season, and was negative on collar diameter and stem growth. In the mesic site, high plant cover favored survival and height growth, but was inconsequential for collar diameter and stem growth. In this short-term post-fire period, and independent of precipitation received during both seasons (dry or humid), plant cover appears as playing a facilitative role, having neutral or even positive effects on survival and growth of planted seedlings. During the early post-fire successional stages, and besides seedling stocktype, there was a synergistic balance between light and soil moisture that seems to benefit planted seedling performance in burned cypress forests, and especially in mesic sites.

  11. Response of plant functional types to changes in the fire regime in Mediterranean ecosystems: A simulation approach

    Energy Technology Data Exchange (ETDEWEB)

    Pausas, J.G. [Centro de Estudios Ambientales del Mediterraneo (CEAM), Valencia (Spain)

    1999-10-01

    In the Mediterranean basin, the climate is predicted to be warmer and effectively drier, leading to changes in fuel conditions and fire regime. Land abandonment in the Mediterranean basin is also changing the fire regime through the increase in fuel loads. In the present study, two simulation models of vegetation dynamics were tested in order to predict changes in plant functional types due to changes in fire recurrence in eastern Spain. The two modelling approaches are the FATE-model (based on vital attributes) and the gap model BROLLA (based on the gap-phase theory). The models were arranged to simulate four functional types, based mainly on their regenerative strategies after disturbance: Quercus (resprouter), Pinus (non-resprouter with serotinous cones), Erica (resprouter), and Cistus (non-resprouter with germination stimulated by fire). The simulation results suggested a decrease in Quercus abundance, an increase in Cistus and Erica, and a maximum of Pinus at intermediate recurrence scenarios. Despite their different approaches, both models predicted a similar response to increased fire recurrence, and the results were consistent with field observations.

  12. The effects of seed ingestion by livestock, dung fertilization, trampling, grass competition and fire on seedling establishment of two woody plant species

    CSIR Research Space (South Africa)

    Tjelele, J

    2015-02-01

    Full Text Available ) trampling and control (no trampling). The interaction of animal species, grass and fire had an effect on seedling recruitment (P < 0.0052). Seeds retrieved from goats and planted with no grass and with fire (6.81% ± 0.33) had a significant effect on seedling...

  13. Development of a PF fired high efficiency power plant (AD700)

    Energy Technology Data Exchange (ETDEWEB)

    Blum, R.; Kjaer, S.; Bugge, J. [DONG Energy Generation, Fredericia (Denmark)

    2007-05-15

    European efforts to start substantial improvements of the performance of well established supercritical coal-fired power technology named the AD700 project began in 1998. Major targets were development of austenitic materials and nickel-based superalloys for the hottest sections of boilers, steam lines and turbines. Other targets were development of boiler and turbine designs for the more advanced conditions and finally economic viability of the AD700 technology has been investigated. The project has been very successful and 40 partners from the European power industry have worked together in several projects co-funded by the European Commission for nearly years. Procurement of mature and commercially optimised AD700 plant could take place around 2015. The investigated nickel-based materials have shown very high creep strengths but they have also shown to be very hard to manufacture, and more efforts to define new machining lines are being started. Ongoing tests indicate that the developed austenitic material will fulfil its creep strength target and is now ready for commercialisation. Development works on boiler and turbine designs for the advanced steam conditions have also been successfully completed but they also clearly indicate that further development work on improved ferritic steel for furnace walls is important. Conventional development of the steam cycles is based on new improved materials, which open for higher steam temperatures and efficiencies whereas other thermodynamic tools are only slowly being accepted. However, in the present paper a proposal for steam cycle improvements not based on higher steam temperatures is presented. The improved cycle is named the Master Cycle (MC) and it is based on a revision of the double reheat steam cycle where the bleeds of the IP turbines have been moved to a feed pump turbine bleeding on the first cold reheat line. Elsam has established protection of a patent for the MC in a number of countries. At constant main

  14. Valuation of CCS-ready coal-fired power plants: a multi-dimensional real options approach

    Energy Technology Data Exchange (ETDEWEB)

    Rohlfs, Wilko [RWTH Aachen University, Institute of Heat and Mass Transfer, School of Mechanical Engineering, Aachen (Germany); Madlener, Reinhard [RWTH Aachen University, Institute for Future Energy Consumer Needs and Behavior (FCN), School of Business and Economics/E.ON Energy Research Center, Aachen (Germany)

    2011-11-15

    In this paper, we develop a multi-factor real options model for a two-stage investment problem, where a coal-fired power plant is later retrofitted with carbon capture and storage (CCS). A capture-ready power plant with lower retrofit costs is compared with a conventional one and higher CCS retrofit costs. The stochastic variables considered are the price of electricity, the price of CO{sub 2} permits, the costs of CO{sub 2} capture, transporting and storage (CTS), and CCS retrofit investment costs. Fuel costs are disregarded due to the constant boiler size in the case of a retrofit, resulting in constant fuel consumption but lower electricity output of the retrofitted plant. Two retrofit options that reduce the power plant's net efficiency from 46% to 30% and 35%, respectively, and an integrated CCS power plant with an efficiency of 38.5% are investigated. In a numerical simulation with realistic parameterization, we find a low probability for a retrofit even after fifteen to twenty years, caused by the high uncertainty and the adverse impact of the electricity price and the CO{sub 2} permit price. This renders the capture-ready option unattractive, and calls for investments in conventional coal-fired power plants with later CCS investments at higher costs than in the case of a capture-ready pre-installation. (orig.)

  15. Exergetic analysis of a steam power plant using coal and rice straw in a co-firing process

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, Alvaro; Miyake, Raphael Guardini; Bazzo, Edson [Federal University of Santa Catarina (UFSC), Dept. of Mechanical Engineering, Florianopolis, SC (Brazil)], e-mails: arestrep@labcet.ufsc.br, miyake@labcet.ufsc.br, ebazzo@emc.ufsc.br; Bzuneck, Marcelo [Tractebel Energia S.A., Capivari de Baixo, SC (Brazil). U.O. Usina Termeletrica Jorge Lacerda C.], e-mail: marcelob@tractebelenergia.com.br

    2010-07-01

    This paper presents an exergetic analysis concerning an existing 50 M We steam power plant, which operates with pulverized coal from Santa Catarina- Brazil. In this power plant, a co-firing rice straw is proposed, replacing up to 10% of the pulverized coal in energy basis required for the boiler. Rice straw has been widely regarded as an important source for bio-ethanol, animal feedstock and organic chemicals. The use of rice straw as energy source for electricity generation in a co-firing process with low rank coal represents a new application as well as a new challenge to overcome. Considering both scenarios, the change in the second law efficiency, exergy destruction, influence of the auxiliary equipment and the greenhouse gases emissions such as CO{sub 2} and SO{sub 2} were considered for analysis. (author)

  16. Mercury Speciation in Coal-Fired Power Plant Flue Gas-Experimental Studies and Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Radisav Vidic; Joseph Flora; Eric Borguet

    2008-12-31

    The overall goal of the project was to obtain a fundamental understanding of the catalytic reactions that are promoted by solid surfaces present in coal combustion systems and develop a mathematical model that described key phenomena responsible for the fate of mercury in coal-combustion systems. This objective was achieved by carefully combining laboratory studies under realistic process conditions using simulated flue gas with mathematical modeling efforts. Laboratory-scale studies were performed to understand the fundamental aspects of chemical reactions between flue gas constituents and solid surfaces present in the fly ash and their impact on mercury speciation. Process models were developed to account for heterogeneous reactions because of the presence of fly ash as well as the deliberate addition of particles to promote Hg oxidation and adsorption. Quantum modeling was used to obtain estimates of the kinetics of heterogeneous reactions. Based on the initial findings of this study, additional work was performed to ascertain the potential of using inexpensive inorganic sorbents to control mercury emissions from coal-fired power plants without adverse impact on the salability fly ash, which is one of the major drawbacks of current control technologies based on activated carbon.

  17. Evaluating the fate of metals in air pollution control residues from coal-fired power plants.

    Science.gov (United States)

    Thorneloe, Susan A; Kosson, David S; Sanchez, Florence; Garrabrants, Andrew C; Helms, Gregory

    2010-10-01

    Changes in emissions control at U.S. coal-fired power plants will shift metals content from the flue gas to the air pollution control (APC) residues. To determine the potential fate of metals that are captured through use of enhanced APC practices, the leaching behavior of 73 APC residues was characterized following the approach of the Leaching Environmental Assessment Framework. Materials were tested over pH conditions and liquid-solid ratios expected during management via land disposal or beneficial use. Leachate concentrations for most metals were highly variable over a range of coal rank, facility configurations, and APC residue types. Liquid-solid partitioning (equilibrium) as a function of pH showed significantly different leaching behavior for similar residue types and facility configurations. Within a facility, the leaching behavior of blended residues was shown to follow one of four characteristic patterns. Variability in metals leaching was greater than the variability in totals concentrations by several orders of magnitude, inferring that total content is not predictive of leaching behavior. The complex leaching behavior and lack of correlation to total contents indicates that release evaluation under likely field conditions is a better descriptor of environmental performance than totals content or linear partitioning approaches.

  18. Analysis of natural radioactivity in Yatağan coal – fired power plant in Turkey

    Directory of Open Access Journals (Sweden)

    Altıkulaç Aydan

    2017-01-01

    Full Text Available Use of the coal in order to generate electricity increases the exposure of people to radiation. In this paper, the activity concentrations of nuclides 226Ra, 232Th and 40K in samples of coal and bottom ash from the Yatagan Coal–Fired thermal power plant determined using gamma ray spectrometer with a NaI(Tl scintillation detector. The mean activity concentrations of 226Ra, 232Th, and 40K in the coal were found to be 37.2±2.8 Bqkg-1, 51.8±3.4 Bqkg-1 and 166.7±11.1 Bqkg-1, respectively. Whereas in the bottom ashes, the concentrations of the corresponding radionuclides were found to be 62.2±5.6 Bqkg-1, 87.4±5.9 Bqkg-1 and 221.0 ±12.5 Bqkg-1, respectively. The findings show that bottom ashes show higher activity concentrations of related radionuclide to coal samples. The absorbed gamma dose rate in outdoor air DROUT and annual effective dose rate (AED from coal were calculated to define radıologıcal rısk. The average findings of annual effective doses were detected as 68.6±5.1 μSvy-1 and 110.3±11.2 μSvy-1, respectively.

  19. Releases of natural radionuclides from oil-shale-fired power plants in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Realo, E.; Realo, K.; Jogi, J. [AN Ehstonskoj SSR, Tartu (Estonia). Inst. Fiziki

    1996-11-01

    In the vicinity of two large oil-shale-fired power plants in northeast Estonia, depth-dependent activity concentrations of natural radionuclides in soil were determined by gamma spectrometry. In the surface soil considerably higher (or lower) concentrations of {sup 40}k, {sup 226}Ra and {sup 232}Th were found than in deeper soil layers. The observed increase or decrease of the enrichment of radionuclides for different sampling sites was dependent on the relative concentrations of radionuclides in fly-ash and in deep soil layers. The fraction of the radionuclides deposited onto the ground was characterized by a mean {sup 226}Ra/{sup 232}Th activity concentration ratio of 2.2, approximately equal to the one (2.1) found for oil-shale filter ash. The atmospheric deposition rates of fly-ash radionuclides onto the ground were estimated and compared to other relevant published data. The migration of the deposited fly-ash radionuclides into soil was satisfactorily described assuming an exponential depth distribution with the relaxation length value, {alpha}{sup -1} = 2.9 {+-} 0.6 cm, for both {sup 226}Ra and {sup 232}Th. (Author).

  20. Burden of Disease from Rising Coal-Fired Power Plant Emissions in Southeast Asia.

    Science.gov (United States)

    Koplitz, Shannon N; Jacob, Daniel J; Sulprizio, Melissa P; Myllyvirta, Lauri; Reid, Colleen

    2017-02-07

    Southeast Asia has a very high population density and is on a fast track to economic development, with most of the growth in electricity demand currently projected to be met by coal. From a detailed analysis of coal-fired power plants presently planned or under construction in Southeast Asia, we project in a business-as-usual scenario that emissions from coal in the region will triple to 2.6 Tg a(-1) SO2 and 2.6 Tg a(-1) NOx by 2030, with the largest increases occurring in Indonesia and Vietnam. Simulations with the GEOS-Chem chemical transport model show large resulting increases in surface air pollution, up to 11 μg m(-3) for annual mean fine particulate matter (PM2.5) in northern Vietnam and up to 15 ppb for seasonal maximum 1 h ozone in Indonesia. We estimate 19 880 (11 400-28 400) excess deaths per year from Southeast Asian coal emissions at present, increasing to 69 660 (40 080-126 710) by 2030. 9000 of these excess deaths in 2030 are in China. As Chinese emissions from coal decline in coming decades, transboundary pollution influence from rising coal emissions in Southeast Asia may become an increasing issue.

  1. Characterizing mercury emissions from a coal-fired power plant utilizing a venturi wet FGD system

    Energy Technology Data Exchange (ETDEWEB)

    Vann Bush, P.; Dismukes, E.B.; Fowler, W.K.

    1995-11-01

    Southern Research Institute (SRI) conducted a test program at a coal-fired utility plant from October 24 to October 29, 1994. The test schedule was chosen to permit us to collect samples during a period of consecutive days with a constant coal source. SRI collected the samples required to measured concentrations of anions and trace elements around two scrubber modules and in the stack. Anions of interest were CI{sup -}, F{sup -}, and SO{sub 4}{sup =}. We analyzed samples for five major elements (Al, Ca, Fe, Mg, and Ti) and 16 trace elements (As, B, Ba, Be, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Se, and V). SRI made measurements across two scrubber modules, each treating nominally 20% of the total effluent from the boiler. Across one module we examined the effects of changes in the liquid-to-gas ratio (L/G) on the efficiency with which the scrubber removes trace elements and anions from the flue gas. Across another module we examined the effects of slurry pH on the removal of trace elements and anions from the flue gas. Measurements in the stack quantified emissions rates of anions and trace elements.

  2. Mercury capture by native fly ash carbons in coal-fired power plants

    Science.gov (United States)

    Hower, James C.; Senior, Constance L.; Suuberg, Eric M.; Hurt, Robert H.; Wilcox, Jennifer L.; Olson, Edwin S.

    2013-01-01

    The control of mercury in the air emissions from coal-fired power plants is an on-going challenge. The native unburned carbons in fly ash can capture varying amounts of Hg depending upon the temperature and composition of the flue gas at the air pollution control device, with Hg capture increasing with a decrease in temperature; the amount of carbon in the fly ash, with Hg capture increasing with an increase in carbon; and the form of the carbon and the consequent surface area of the carbon, with Hg capture increasing with an increase in surface area. The latter is influenced by the rank of the feed coal, with carbons derived from the combustion of low-rank coals having a greater surface area than carbons from bituminous- and anthracite-rank coals. The chemistry of the feed coal and the resulting composition of the flue gas enhances Hg capture by fly ash carbons. This is particularly evident in the correlation of feed coal Cl content to Hg oxidation to HgCl2, enhancing Hg capture. Acid gases, including HCl and H2SO4 and the combination of HCl and NO2, in the flue gas can enhance the oxidation of Hg. In this presentation, we discuss the transport of Hg through the boiler and pollution control systems, the mechanisms of Hg oxidation, and the parameters controlling Hg capture by coal-derived fly ash carbons. PMID:24223466

  3. Simultaneous collection of particles and acidic gases for tracing emission from coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kitto, M.E.; Anderson, D.L.

    1986-04-01

    In this study, the authors employed the simultaneous collection of atmospheric particles and gases followed by multielement analysis as an approach for the determination of source-receptor relationships. A number of particulate tracer elements have previously been linked to sources (e.g., V to identify oil-fired power plant emissions, Na for marine aerosols, and Pb for motor vehicle contribution). Receptor methods commonly used to assess the interregional impact of such emissions include chemical mass balances (CMBs) and factor analysis (FA), the latter often including wind trajectories. With CMBs, source-strengths are determined from the relative concentrations of ''marker elements'' measured at emission sources. One usually applies FA to the data set to identify groups of elements which vary similarly. The source composition patterns are not necessary, as the elemental concentrations in each sample are normalized to the mean value of the element. In this study, the authors try to extend tracer techniques for coal-burning utility emissions to include gas-phase elements, and to relate receptor measurements to the hybrid receptor model.

  4. The impact of three recent coal-fired power plant closings on Pittsburgh air quality: A natural experiment.

    Science.gov (United States)

    Russell, Marie C; Belle, Jessica H; Liu, Yang

    2017-01-01

    Relative to the rest of the United States, the region of southwestern Pennsylvania, including metropolitan Pittsburgh, experiences high ambient concentrations of fine particulate matter (PM2.5), which is known to be associated with adverse respiratory and cardiovascular health impacts. This study evaluates whether the closing of three coal-fired power plants within the southwestern Pennsylvania region resulted in a significant decrease in PM2.5 concentration. Both PM2.5 data obtained from EPA ground stations in the study region and aerosol optical depth (AOD) data retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard the Terra and Aqua satellites were used to investigate regional air quality from January 2011 through December 2014. The impact of the plant closings on PM2.5 concentration and AOD was evaluated using a series of generalized additive models. The model results show that monthly fuel consumption of the Elrama plant, which closed in October of 2012, and monthly fuel consumption of both the Mitchell and Hatfield's Ferry plants, which closed in October of 2013, were significant predictors of both PM2.5 concentration and AOD at EPA ground stations in the study region, after controlling for multiple meteorological factors and long-term, region-wide air quality improvements. The model's power to predict PM2.5 concentration increased from an adjusted R(2) of 0.61 to 0.68 after excluding data from ground stations with higher uncertainty due to recent increases in unconventional natural gas extraction activities. After preliminary analyses of mean PM2.5 concentration and AOD showed a downward trend following each power plant shutdown, results from a series of generalized additive models confirmed that the activity of the three plants that closed, measured by monthly fuel consumption, was highly significant in predicting both AOD and PM2.5 at 12 EPA ground stations; further research on PM2.5 emissions from unconventional

  5. Efficiency improvement of coal-fired power plants by means of gas turbines; Gasturbines maken kolencentrales rendabel

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, A. [ed.

    1998-02-01

    The results of a study project, carried out by energy technology students of the `Hogeschool Rotterdam en Omstreken`, on the title subject (the EZH power plant Maasvlakte) are briefly discussed. Two concepts were compared: the gas turbine-fired boiler concept and the high-efficiency-coal and gas concept (HE-C&G). In the HE-C&G concept an extra steam boiler uses heat from the turbine off-gases

  6. Risk Management and Portfolio Optimization for Gas- and Coal-fired Power Plants in Germany: A Multivariate GARCH Approach

    OpenAIRE

    Charalampous, Georgios; Madlener, Reinhard

    2013-01-01

    This study revisits risk management in the German power market, specifically focusing on conventional thermal power generation. The subsidizing and prioritizing of electricity produced from renewable energy sources (RES) by means of the Renewable Energy Sources Act (EEG) has changed the market’s structure. Specifically, it has led to an erosion of the revenues gained by coal- and natural-gas-fired power plants and, therefore, undermined the competitiveness of traditional power generation. Thi...

  7. Airborne arsenic and urinary excretion of arsenic metabolites during boiler cleaning operations in a Slovak coal-fired power plant.

    OpenAIRE

    Yager, J W; Hicks, J B; Fabianova, E

    1997-01-01

    Little information is available on the relationship between occupational exposure to inorganic arsenic in coal fly ash and urinary excretion of arsenic metabolites. This study ws undertaken in a coal-fired power plant in Slovakia during a routine maintenance outage. Arsenic was measured in the breathing zone of workers during 5 consecutive workdays, and urine samples were obtained for analysis of arsenic metabolites--inorganic arsenic (Asi), monomethylarsonic acid (MMA), and dimethylarsinic a...

  8. POTENTIAL HEALTH RISK REDUCTION ARISING FROM REDUCED MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T. M.; Lipfert, F. W.; Morris, S. C.; Moskowitz, P. D.

    2001-09-01

    The U.S. Environmental Protection Agency (EPA) has announced plans to regulate mercury (Hg) emissions from coal-fired power plants. EPA has not prepared a quantitative assessment of the reduction in risk that could be achieved through reduction in coal plant emissions of Hg. To address this issue, Brookhaven National Laboratory (BNL) with support from the U.S. Department of Energy Office of Fossil Energy (DOE FE) prepared a quantitative assessment of the reduction in human health risk that could be achieved through reduction in coal plant emissions of Hg. The primary pathway for Hg exposure is through consumption of fish. The most susceptible population to Hg exposure is the fetus. Therefore the risk assessment focused on consumption of fish by women of child-bearing age. Dose response factors were generated from studies on loss of cognitive abilities (language skills, motor skills, etc.) by young children whose mothers consumed large amounts of fish with high Hg levels. Population risks were estimated for the general population in three regions of the country, (the Midwest, Northeast, and Southeast) that were identified by EPA as being heavily impacted by coal emissions. Three scenarios for reducing Hg emissions from coal plants were considered: (1) A base case using current conditions; (2) A 50% reduction; and, (3) A 90% reduction. These reductions in emissions were assumed to translate linearly into a reduction in fish Hg levels of 8.6% and 15.5%, respectively. Population risk estimates were also calculated for two subsistence fisher populations. These groups of people consume substantially more fish than the general public and, depending on location, the fish may contain higher Hg levels than average. Risk estimates for these groups were calculated for the three Hg levels used for the general population analyses. Analysis shows that the general population risks for exposure of the fetus to Hg are small. Estimated risks under current conditions (i.e., no

  9. Water repellency, plants, agriculture abandonment and fire in citrus plantations. The Canyoles river watershed study site

    Science.gov (United States)

    Cerdà, Artemi; Jordán, Antonio; Doerr, Stefan Helmut

    2017-04-01

    Soil water repellency (SWR) is a key soil property that determine the soil and water losses, soil fertility and plant development. Although until the 90's the soil water repellency was seeing as an uncommon soil characteristic, now is considered a key soil property to understand the soil hydrology (Alanís et al., 2016; Hewelke et al., 2016; Keesstra et al., 2016; Jiménez-Morillo et al., 2016). The inspiring research of Leonard DeBano and Stefan H Doerr changed the fate of the science (DeBano, 2000; Doerr et al. 2000). Soil water repellency was associated to forest fire affected land due to the pioneer contribution of professor DeBano in the 70's and Professor Doerr in the 90's. The research during the last two decades demonstrate that fire affects the reallocation of the hydrophobic substances and can reduce or increase the severity of the soil water repellence at different soil depths and horizons. The SWR is usually measured by sampling to show the influence of key soil properties (texture, structure, plant cover, litter, season…) on the degree of soil water repellency. The sampling is applied usually with a few drops when the Water Drop Penetration Time method is applied, and this inform of the time of penetration, but few researches focussed in the spatial distribution of the water repellency, which is a key factor of the runoff generation, the water infiltration and the water redistribution such as demonstrate the wetting fronts. Our approach research the spatial distribution of the water repellency by means of an intense sampling of soil surface water repellency. One thousand drops were distributed in a square meter (100 lines separated 1 cm and 100 drops per each line of 100 cm, with a total od 1000 drops in 1m2) on 10 sampling points on 4 land managements: ploughing and herbicide agriculture fields treatment), abandoned 10 years, and burnt. The research was carried out in citrus plantations of the Canyoles river watershed. The results show that the

  10. Variation in the outcomes of an ant-plant system: fire and leaf fungus infection reduce benefits to plants with extrafloral nectaries.

    Science.gov (United States)

    Pires, L P; Del-Claro, K

    2014-01-01

    Interactions between species are evolutionary malleable and may suffer changes in small timescales. Environmental disturbances, such as fire, can deeply affect species interactions, but how they influence the outcome of a mutualistic interaction has yet to be studied. In order to test the hypothesis that an environmental disturbance, in this case fire, may produce differences in the outcome of the association of ants with the extrafloral-nectaries-bearing plant Qualea multiflora Mart. (Myrtales: Vochysiaceae), a previous study was replicated, but this time after fire incidence, at the same study site and with the same plant species. Eight ant species visited Q. multiflora, and the most abundant genera were Crematogaster, Cephalotes, and Camponotus. Herbivores were found in branches with and without ants with no statistical difference, but foliar herbivory was always higher in branchs where ants were absent. Leaves were infested by fungi, and fungi spots were higher in branches where ants were present. Compared to the previous study, it was clearly observed that ant benefits to Q. multiflora varied over time. The most common ant species still protected leaves against chewing herbivores, but a new kind of leaf damage appeared, namely fungi spots. Data also support that ants may be acting as vectors of fungi spores on plants, as ant visited branches had higher fungus incidence than non-visited branches. Fire is a major source of disturbance in tropical savannas, and we suggest that it can cause strong variation in the outcomes of interactions between ants and plants with extrafloral nectaries in the Brazilian tropical savanna. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.

  11. The exploitation of sludge from aggregate plants in the manufacture of porous fired clay bricks

    Directory of Open Access Journals (Sweden)

    Chamorro-Trenado, M. A.

    2016-09-01

    Full Text Available Aggregates (gravel and sand are, after water, the Earth’s second most used natural resource, representing about 50% of all consumed mineral resources. Aggregate production generates a large quantity of waste from the aggregate washing process. This waste is made up of suspended solids – sludge – which has a great environmental impact. It is deposited in huge troughs because of the impossibility of discharging it directly into rivers. Many plants have incorporated decanters and filter presses to separate the solid from the liquid fraction. This paper evaluates the possibility of exploiting the solid fraction (i.e. sludge in the manufacture of fired clay bricks. The added value of these bricks is, on the one hand, the exploitation of sludge as a currently useless waste product, and on the other, the use of this sludge to enhance the physical and mechanical properties of conventional fired clay bricks.Los áridos son la segunda materia prima más consumida en la Tierra después del agua, representando alrededor del 50% de todos los recursos minerales consumidos. El proceso de elaboración de estos áridos genera una gran cantidad de residuos procedentes de su lavado. Se trata de partículas sólidas en suspensión – lodos – de gran impacto ambiental, que se depositan en grandes charcas ante la imposibilidad de verterlos directamente al rio. Muchas empresas han incorporado decantadores y filtros de prensa para separar la fracción solida de la líquida. El presente trabajo evalúa la posibilidad de utilizar la fracción sólida, es decir el barro, para la fabricación de piezas cerámicas. El valor añadido de estas piezas es por un lado el aprovechamiento del barro como producto residual, que en estos momentos es desechable, y por otro, conseguir que este barro mejore las propiedades físico-mecánicas de la cerámica convencional.

  12. Elemental composition of fly ash from a coal-fired thermal power plant: a study using PIXE and EDXRF

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, V.; Behera, S.N.; Ramamurthy, V.S.; Puri, S.; Shahi, J.S.; Singh, N. [Institute of Physics, Bhubaneswar (India)

    1997-03-01

    Fly ash samples collected in an electrostatic precipitator from a coal-fired power plant at Talcher in India were characterized using particle-induced x-ray emission (PIXE) and energy-dispersive x-ray fluorescence (EDXRF) techniques. Sixteen elements, namely K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, As, Rb, Sr, Y and Ph, were quantified. These concentration values can be helpful in developing a pollution abatement approach for various applications of fly ash such as cement manufacture and ceramics, and as a source of major and micro-nutrient elements for healthy plant growth.

  13. A systematic approach to assessing measurement uncertainty for CO2 emissions from coal-fired power plants

    DEFF Research Database (Denmark)

    Wagner, Claas; Esbensen, Kim

    2011-01-01

    , from which a general matrix scheme is developed that includes all factors and stages needed for total CO2 determination, which is applied to the monitoring plan of a representative medium-sized coal-fired power plant. In particular sampling involved significant potential errors, as identified...... on extensive empirical sampling experiments, a fully comprehensive uncertainty estimate procedure has been devised. Even though uncertainties increased (indeed one particular factor is substantially higher, the so-called “emission factor”), the revised CO2 emission budget for the case plant complies...

  14. The ADESORB Process for Economical Production of Sorbents for Mercury Removal from Coal Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Robin Stewart

    2008-03-12

    The DOE's National Energy Technology Laboratory (NETL) currently manages the largest research program in the country for controlling coal-based mercury emissions. NETL has shown through various field test programs that the determination of cost-effective mercury control strategies is complex and highly coal- and plant-specific. However, one particular technology has the potential for widespread application: the injection of activated carbon upstream of either an electrostatic precipitator (ESP) or a fabric filter baghouse. This technology has potential application to the control of mercury emissions on all coal-fired power plants, even those with wet and dry scrubbers. This is a low capital cost technology in which the largest cost element is the cost of sorbents. Therefore, the obvious solutions for reducing the costs of mercury control must focus on either reducing the amount of sorbent needed or decreasing the cost of sorbent production. NETL has researched the economics and performance of novel sorbents and determined that there are alternatives to the commercial standard (NORIT DARCO{reg_sign} Hg) and that this is an area where significant technical improvements can still be made. In addition, a key barrier to the application of sorbent injection technology to the power industry is the availability of activated carbon production. Currently, about 450 million pounds ($250 million per year) of activated carbon is produced and used in the U.S. each year - primarily for purification of drinking water, food, and beverages. If activated carbon technology were to be applied to all 1,100 power plants, EPA and DOE estimate that it would require an additional $1-$2 billion per year, which would require increasing current capacity by a factor of two to eight. A new facility to produce activated carbon would cost approximately $250 million, would increase current U.S. production by nearly 25%, and could take four to five years to build. This means that there could be

  15. China's coal-fired power plants impose pressure on water resources

    NARCIS (Netherlands)

    Zhang, Xinxin; Liu, Junguo; Tang, Yu; Zhao, Xu; Yang, Hong; Gerbens-Leenes, P.W.; Vliet, van Michelle T.H.; Yan, Jinyue

    2017-01-01

    Coal is the dominant fuel for electricity generation around the world. This type of electricity generation uses large amounts of water, increasing pressure on water resources. This calls for an in-depth investigation in the water-energy nexus of coal-fired electricity generation. In China, coal-fire

  16. Wild fire impact on copper, zinc, lead and cadmium distribution in soil and relation with abundance in selected plants of Lamiaceae family from Vidlic Mountain (Serbia).

    Science.gov (United States)

    Stankov Jovanovic, V P; Ilic, M D; Markovic, M S; Mitic, V D; Nikolic Mandic, S D; Stojanovic, G S

    2011-09-01

    Fire has been considered as an improving factor in soil quality, but only if it is controlled. Severe wild fire occurred in the summer 2007 on the Vidlic Mountain (Serbia) overspreading a huge area of meadows and forests. Main soil characteristics and content of heavy metals (Cu, Pb, Cd, Zn) in different fractions obtained after sequential extraction of soil from post-fire areas and from fire non disturbed areas were studied. In four plant species of Lamiaceae family (Ajuga genevensis L., Lamium galeobdolon (L.) L., Teucrium chamaedrys L., Acinos alpinus (L.) Moench.), that grow in typical habitats of the mountain, distribution of heavy metals in aerial parts and roots was investigated too. For all samples from post-fire area cation exchange capacity and soil organic matter content are increased while rH is decreased. Fire caused slightly increased bioavailability of the observed metals but more significant rise happened in metal amounts bound to oxides and organics. The plants showed variable behavior. T. chamaedrys collected on the post-fire area contained elevated concentrations of all analyzed metals. A. alpinus showed higher phytoaccumulation for Zn and Cd, while the other two plant species for Pb and Cd in the post-fire areas.

  17. Understanding selected trace elements behavior in a coal-fired power plant in Malaysia for assessment of abatement technologies.

    Science.gov (United States)

    Mokhtar, Mutahharah M; Taib, Rozainee M; Hassim, Mimi H

    2014-08-01

    The Proposed New Environmental Quality (Clean Air) Regulation 201X (Draft), which replaces the Malaysia Environmental Quality (Clean Air) 1978, specifies limits to additional pollutants from power generation using fossil fuel. The new pollutants include Hg, HCl, and HF with limits of 0.03, 100, and 15 mg/N-m3 at 6% O2, respectively. These pollutants are normally present in very small concentrations (known as trace elements [TEs]), and hence are often neglected in environmental air quality monitoring in Malaysia. Following the enactment of the new regulation, it is now imperative to understand the TEs behavior and to assess the capability of the existing abatement technologies to comply with the new emission limits. This paper presents the comparison of TEs behavior of the most volatile (Hg, Cl, F) and less volatile (As, Be, Cd, Cr, Ni, Se, Pb) elements in subbituminous and bituminous coal and coal combustion products (CCP) (i.e., fly ash and bottom ash) from separate firing of subbituminous and bituminous coal in a coal-fired power plant in Malaysia. The effect of air pollution control devices configuration in removal of TEs was also investigated to evaluate the effectiveness of abatement technologies used in the plant. This study showed that subbituminous and bituminous coals and their CCPs have different TEs behavior. It is speculated that ash content could be a factor for such diverse behavior In addition, the type of coal and the concentrations of TEs in feed coal were to some extent influenced by the emission of TEs in flue gas. The electrostatic precipitator (ESP) and seawater flue gas desulfurization (FGD) used in the studied coal-fired power plant were found effective in removing TEs in particulate and vapor form, respectively, as well as complying with the new specified emission limits. Implications: Coals used by power plants in Peninsular Malaysia come from the same supplier (Tenaga Nasional Berhad Fuel Services), which is a subsidiary of the Malaysia

  18. Land-use legacies and present fire regimes interact to mediate herbivory by altering the neighboring plant community.

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Philip G. [University of Wisconsin; Orrock, John L. [University of Wisconsin

    2015-04-01

    Past and present human activities, such as historic agriculture and fire suppression, are widespread and can create depauperate plant communities. Although many studies show that herbivory on focal plants depends on the density of herbivores or the composition of the surrounding plant community, it is unclear whether anthropogenic changes to plant communities alter herbivory. We tested the hypothesis that human activities that alter the plant community lead to subsequent changes in herbivory. At 20 sites distributed across 80 300 hectares, we conducted a field experiment that manipulated insect herbivore access (full exclosures and pseudo-exclosures) to four focal plant species in longleaf pine woodlands with diff erent land-use histories (post-agricultural sites or non-agricultural sites) and degrees of fi re frequency (frequent and infrequent). Plant cover, particularly herbaceous cover, was lower in post-agricultural and fi re suppressed woodlands. Density of the dominant insect herbivore at our site (grasshoppers) was positively related to plant cover. Herbivore access reduced biomass of the palatable forb Solidago odora in frequently burned post-agricultural sites and in infrequently burned non-agricultural woodlands and increased mortality of another forb (Pityopsis graminifolia ), but did not aff ect two other less palatable species ( Schizachyrium scoparium and Tephrosia virginiana ). Herbivory on S. odora exhibited a hump-shaped response to plant cover, with low herbivory at low and high levels of plant cover. Herbivore density had a weak negative effect on herbivory. These findings suggest that changes in plant cover related to past and present human activities can modify damage rates on focal S. odora plants by altering grasshopper foraging behavior rather than by altering local grasshopper density. The resulting changes in herbivory may have the potential to limit natural recovery or restoration eff orts by reducing the establishment or performance of

  19. Opportunities for Decarbonizing Existing U.S. Coal-Fired Power Plants via CO2 Capture, Utilization and Storage.

    Science.gov (United States)

    Zhai, Haibo; Ou, Yang; Rubin, Edward S

    2015-07-07

    This study employs a power plant modeling tool to explore the feasibility of reducing unit-level emission rates of CO2 by 30% by retrofitting carbon capture, utilization, and storage (CCUS) to existing U.S. coal-fired electric generating units (EGUs). Our goal is to identify feasible EGUs and their key attributes. The results indicate that for about 60 gigawatts of the existing coal-fired capacity, the implementation of partial CO2 capture appears feasible, though its cost is highly dependent on the unit characteristics and fuel prices. Auxiliary gas-fired boilers can be employed to power a carbon capture process without significant increases in the cost of electricity generation. A complementary CO2 emission trading program can provide additional economic incentives for the deployment of CCS with 90% CO2 capture. Selling and utilizing the captured CO2 product for enhanced oil recovery can further accelerate CCUS deployment and also help reinforce a CO2 emission trading market. These efforts would allow existing coal-fired EGUs to continue to provide a significant share of the U.S. electricity demand.

  20. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Constance Senior; Temi Linjewile

    2003-10-31

    This is the third Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, the second set of mercury measurements was made after the catalysts had been exposed to flue gas for about 2,000 hours. There was good agreement between the Ontario Hydro measurements and the SCEM measurements. Carbon trap measurements of total mercury agreed fairly well with the SCEM. There did appear to be some loss of mercury in the sampling system toward the end of the sampling campaign. NO{sub x} reductions across the catalysts ranged from 60% to 88%. Loss of total mercury across the commercial catalysts was not observed, as it had been in the March/April test series. It is not clear whether this was due to aging of the catalyst or to changes in the sampling system made between March/April and August. In the presence of ammonia, the blank monolith showed no oxidation. Two of the commercial catalysts showed mercury oxidation that was comparable to that in the March/April series. The other three commercial catalysts showed a decrease in mercury oxidation relative to the March/April series. Oxidation of mercury increased without ammonia present. Transient experiments showed that when ammonia was turned on, mercury appeared to desorb from the catalyst, suggesting displacement of adsorbed mercury by the ammonia.

  1. Assessing the Methane Emissions from Natural Gas-Fired Power Plants and Oil Refineries.

    Science.gov (United States)

    Lavoie, Tegan N; Shepson, Paul B; Gore, Chloe A; Stirm, Brian H; Kaeser, Robert; Wulle, Bernard; Lyon, David; Rudek, Joseph

    2017-03-21

    Presently, there is high uncertainty in estimates of methane (CH4) emissions from natural gas-fired power plants (NGPP) and oil refineries, two major end users of natural gas. Therefore, we measured CH4 and CO2 emissions at three NGPPs and three refineries using an aircraft-based mass balance technique. Average CH4 emission rates (NGPPs: 140 ± 70 kg/h; refineries: 580 ± 220 kg/h, 95% CL) were larger than facility-reported estimates by factors of 21-120 (NGPPs) and 11-90 (refineries). At NGPPs, the percentage of unburned CH4 emitted from stacks (0.01-0.14%) was much lower than respective facility-scale losses (0.10-0.42%), and CH4 emissions from both NGPPs and refineries were more strongly correlated with enhanced H2O concentrations (R(2)avg = 0.65) than with CO2 (R(2)avg = 0.21), suggesting noncombustion-related equipment as potential CH4 sources. Additionally, calculated throughput-based emission factors (EF) derived from the NGPP measurements made in this study were, on average, a factor of 4.4 (stacks) and 42 (facility-scale) larger than industry-used EFs. Subsequently, throughput-based EFs for both the NGPPs and refineries were used to estimate total U.S. emissions from these facility-types. Results indicate that NGPPs and oil refineries may be large sources of CH4 emissions and could contribute significantly (0.61 ± 0.18 Tg CH4/yr, 95% CL) to U.S. emissions.

  2. Atmospheric Aerosol Source-Receptor Relationships: The Role of Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

    2005-12-01

    This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of March 2005 through August 2005. Significant progress was made this project period on the source characterization, source apportionment, and deterministic modeling activities. This report highlights new data on road dust, vegetative detritus and motor vehicle emissions. For example, the results show significant differences in the composition in urban and rural road dust. A comparison of the organic of the fine particulate matter in the tunnel with the ambient provides clear evidence of the significant contribution of vehicle emissions to ambient PM. The source profiles developed from this work are being used by the source-receptor modeling activities. The report presents results on the spatial distribution of PMF-factors. The results can be grouped into three different categories: regional sources, local sources, or potentially both regional and local sources. Examples of the regional sources are the sulfate and selenium PMF-factors which most likely-represent coal fired power plants. Examples of local sources are the specialty steel and lead factors. There is reasonable correspondence between these apportionments and data from the EPA TRI and AIRS emission inventories. Detailed comparisons between PMCAMx predictions and measurements by the STN and IMPROVE measurements in the Eastern US are presented. Comparisons were made for the major aerosol components and PM{sub 2.5} mass in July 2001, October 2001, January 2002, and April 2002. The results are encouraging with average fraction biases for most species less than 0.25. The improvement of the model performance during the last two years was mainly due to the comparison of the model predictions with the continuous measurements in the Pittsburgh Supersite. Major improvements have included the descriptions: of ammonia emissions (CMU inventory), night time nitrate chemistry, EC emissions and their diurnal

  3. The Nuclear Safety Council's Instruction IS-30 on program requirements of fire protection at nuclear power plants; La instruccion IS-30 del consejo de Seguridad Nuclear sobre requisitos del programa de proteccion contraincendios en centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Peco, J.

    2015-07-01

    The Nuclear Safety Councils Instrumentation IS-30 is the standard that establishes the fire protection program requirements for the Spanish nuclear power plants with operating license in order to satisfy the two fire protection objectives, which are the adoption of the defense-in-depth principle for fire protection and, by fire area confinement, to ensure that one train of components needed to achieve and maintain the safe shutdown conditions is free of fire damage, and that radioactive liberation is minimized. (Author)

  4. Mercury transportation in soil via using gypsum from flue gas desulfurization unit in coal-fired power plant.

    Science.gov (United States)

    Wang, Kelin; Orndorff, William; Cao, Yan; Pan, Weiping

    2013-09-01

    The mercury flux in soils was investigated, which were amended by gypsums from flue gas desulphurization (FGD) units of coal-fired power plants. Studies have been carried out in confined greenhouses using FGD gypsum treated soils. Major research focus is uptakes of mercury by plants, and emission of mercury into the atmosphere under varying application rates of FGD gypsum, simulating rainfall irrigations, soils, and plants types. Higher FGD gypsum application rates generally led to higher mercury concentrations in the soils, the increased mercury emissions into the atmosphere, and the increased mercury contents in plants (especially in roots and leaves). Soil properties and plant species can play important roles in mercury transports. Some plants, such as tall fescue, were able to prevent mercury from atmospheric emission and infiltration in the soil. Mercury concentration in the stem of plants was found to be increased and then leveled off upon increasing FGD gypsum application. However, mercury in roots and leaves was generally increased upon increasing FGD gypsum application rates. Some mercury was likely absorbed by leaves of plants from emitted mercury in the atmosphere.

  5. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Constance Senior

    2004-12-31

    The objectives of this program were to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel and to develop a greater understanding of mercury oxidation across SCR catalysts in the form of a simple model. The Electric Power Research Institute (EPRI) and Argillon GmbH provided co-funding for this program. REI used a multicatalyst slipstream reactor to determine oxidation of mercury across five commercial SCR catalysts at a power plant that burned a blend of 87% subbituminous coal and 13% bituminous coal. The chlorine content of the blend was 100 to 240 {micro}g/g on a dry basis. Mercury measurements were carried out when the catalysts were relatively new, corresponding to about 300 hours of operation and again after 2,200 hours of operation. NO{sub x}, O{sub 2} and gaseous mercury speciation at the inlet and at the outlet of each catalyst chamber were measured. In general, the catalysts all appeared capable of achieving about 90% NO{sub x} reduction at a space velocity of 3,000 hr{sup -1} when new, which is typical of full-scale installations; after 2,200 hours exposure to flue gas, some of the catalysts appeared to lose NO{sub x} activity. For the fresh commercial catalysts, oxidation of mercury was in the range of 25% to 65% at typical full-scale space velocities. A blank monolith showed no oxidation of mercury under any conditions. All catalysts showed higher mercury oxidation without ammonia, consistent with full-scale measurements. After exposure to flue gas for 2,200 hours, some of the catalysts showed reduced levels of mercury oxidation relative to the initial levels of oxidation. A model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

  6. The assessment of health impacts and external costs of natural gas-fired power plant of Qom.

    Science.gov (United States)

    Fouladi Fard, Reza; Naddafi, Kazem; Yunesian, Masud; Nabizadeh Nodehi, Ramin; Dehghani, Mohammad Hadi; Hassanvand, Mohammad Sadegh

    2016-10-01

    The external health damage costs of the combined cycle natural gas-fired power plant of Qom were investigated via the simplified impact pathway approach. Emitted particulate matter (PM10) and gaseous pollutants (NO x , CO, and SO2) from the power plant stack were measured The health effects and related costs were estimated by QUERI model from AirPacts according to the emissions, source and stack parameters, pollutant depletion velocities, exposure-response functions, local and regional population density, and detailed meteorological data. The results showed that the main health effect was assigned to the nitrate as restricted activity days (RAD) with 25,240 days/year. For all pollutants, the maximum health damage costs were related to the long-term mortality (49 %), restricted activity days (27 %), and chronic bronchitis (21 %). The annual health damage costs were approximately 4.76 million US$, with the cost being 0.096 US per kWh of generating electricity. Although the health damage costs of gas-fired power plant were lower than those of other heavy fuels, it seems essential to consider the health and environmental damages and focus on the emission control strategies, particularly in site selection for the new power plants and expanding the current ones.

  7. Recovery of aboveground plant biomass and productivity after fire in mesic and dry black spruce forests of interior Alaska

    Science.gov (United States)

    Mack, M.C.; Treseder, K.K.; Manies, K.L.; Harden, J.W.; Schuur, E.A.G.; Vogel, J.G.; Randerson, J.T.; Chapin, F. S.

    2008-01-01

    Plant biomass accumulation and productivity are important determinants of ecosystem carbon (C) balance during post-fire succession. In boreal black spruce (Picea mariana) forests near Delta Junction, Alaska, we quantified aboveground plant biomass and net primary productivity (ANPP) for 4 years after a 1999 wildfire in a well-drained (dry) site, and also across a dry and a moderately well-drained (mesic) chronosequence of sites that varied in time since fire (2 to ???116 years). Four years after fire, total biomass at the 1999 burn site had increased exponentially to 160 ?? 21 g m-2 (mean ?? 1SE) and vascular ANPP had recovered to 138 ?? 32 g m-2 y -1, which was not different than that of a nearby unburned stand (160 ?? 48 g m-2 y-1) that had similar pre-fire stand structure and understory composition. Production in the young site was dominated by re-sprouting graminoids, whereas production in the unburned site was dominated by black spruce. On the dry and mesic chronosequences, total biomass pools, including overstory and understory vascular and non-vascular plants, and lichens, increased logarithmically (dry) or linearly (mesic) with increasing site age, reaching a maximum of 2469 ?? 180 (dry) and 4008 ?? 233 g m-2 (mesic) in mature stands. Biomass differences were primarily due to higher tree density in the mesic sites because mass per tree was similar between sites. ANPP of vascular and non-vascular plants increased linearly over time in the mesic chronosequence to 335 ?? 68 g m-2 y -1 in the mature site, but in the dry chronosequence it peaked at 410 ?? 43 g m-2 y-1 in a 15-year-old stand dominated by deciduous trees and shrubs. Key factors regulating biomass accumulation and production in these ecosystems appear to be the abundance and composition of re-sprouting species early in succession, the abundance of deciduous trees and shrubs in intermediate aged stands, and the density of black spruce across all stand ages. A better understanding of the controls

  8. Biological carbon fixation: A study of Isochrysis sp. growth under actual coal-fired power plant's flue gas

    Science.gov (United States)

    >Liyana Yahya, Muhammad Nazry Chik, Mohd Asyraf Mohd Azmir Pang,

    2013-06-01

    Preliminary study on the growth of marine microalgae Isochrysis sp. was carried out using actual flue gas from a coal-fired power station. The species was cultured using a 2×10-L customized bubble column photobioreactor skid under specified culture conditions. With an initial culture density of 0.459 Abs (optical density at 560 nm wavelength), the species was found able to survive - observed by increases in optical densities, number of cells and weights - in the presence of actual coal-fired flue gas containing on average 4.08 % O2, 200.21 mg/m3 SO2, 212.29 mg/m3 NOx, 4.73 % CO2 and 50.72 mg/m3 CO. Results thus add value to the potential and capability of microalgae, especially for Isochrysis sp., to be the biological carbon fixer in neutralizing carbon emissions from power plants.

  9. Fire modeling for Building 221-T - T Plant Canyon Deck and Railroad Tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Oar, D.L.

    1994-09-29

    This report was prepared by Hughes Associates, Inc. to document the results of fire models for building 221-T Canyon Deck and Railroad Tunnel. Backup data is contained in document No. WHC-SD-CP-ANAL-010, Rev. 0.

  10. Pre-germination temperature and the survivorship and onward growth of Mediterranean fire-following plant species

    Science.gov (United States)

    Hanley, Mick E.; Fenner, Michael

    1998-04-01

    The role of heat shock in the induction of seed germination for numerous Mediterranean fire-following plant species is well documented. However, the influence of pre-germination heating of seeds upon seedling survivorship and onward growth has not been studied. The aim of the experiments described here was to investigate how a range of heat treatments affects seedling survivorship and onward growth for six common fire-following Mediterranean plant species ( Anthyllis vulneraria, Cistus creticus, C. salvifolius, Hippocrepis unisiliquosa, Pinus brutia and P. halepensis). In the first experiment, seeds of five species were heated to temperatures ranging between 80°C and 120°C (at 10°C intervals) for 10 min and subsequent seedling growth monitored over 8 weeks. Survivorship for two pine species ( Pinus halepensis and Pinus brutia) was reduced after seeds were heated above 90°C. Onward growth for Pinus halepensis and the legume, Anthyllis vulneraria, was negatively affected by increasing pre-germination temperature. Survivorship and growth for both Cistus species was unaffected by heating seeds up to 110°C. The second experiment examined more closely seedling performance of Hippocrepis unisiliquosa seedlings when seeds were heated to temperatures ranging between 50°C and 90°C (at 10°C intervals) for 5, 10, 15 and 20 mins. Increasing pre-germination temperature and the length of time seeds were exposed to heating significantly reduced seedling growth rates in this species. The effect of fire on seedling emergence, growth and survivorship in the field is discussed with reference to the adaptation of the six species to post-fire regeneration and the patterns of seedling regeneration observed in the field.

  11. Evaluating Potential Changes in Fire Risk from Eucalyptus Plantings in the Southern United States

    Directory of Open Access Journals (Sweden)

    Scott L. Goodrick

    2012-01-01

    Full Text Available Renewed interest in short-rotation woody crops for bioenergy and bioproducts has prompted a reevaluation of the Eucalyptus species for the southern United States. One question that arises about the potential effects of introducing a nonnative species is what effect will there be on fire behavior. Our approximate answer based on modeling fire behavior using the Fuel Characteristic Classification System is that surface fire behavior in young stands differs little from surface fires common to pine plantations in the southern Coastal Plain. By the age of 9, the absence of a shrub layer, along with an increased height to live crown, reduced initiation potential despite increased bark shedding. When a shrub layer was introduced in the model, the initiation potential became equivalent to common Pinus fuelbeds. If a crown is ignited, however, the potentials for transmissivity and spread are very high, and the potential for crown fire behavior is more severe. Our modeling effort suggests that fire behavior at the stand level differs little from current conditions and points to the importance of avoiding the development of a shrub layer. Stands managed on short rotation (less than 10 years will likely be harvested before bark shedding presents a significant spotting problem.

  12. Fire and fire ecology: Concepts and principles

    Science.gov (United States)

    Mark A. Cochrane; Kevin C. Ryan

    2009-01-01

    Fire has been central to terrestrial life ever since early anaerobic microorganisms poisoned the atmosphere with oxygen and multicellular plant life moved onto land. The combination of fuels, oxygen, and heat gave birth to fire on Earth. Fire is not just another evolutionary challenge that life needed to overcome, it is, in fact, a core ecological process across much...

  13. Uncertainty and variability in health-related damages from coal-fired power plants in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Levy, J.I.; Baxter, L.K.; Schwartz, J. [Harvard University, Cambridge, MA (United States). Harvard School of Public Health

    2009-07-15

    The health-related damages associated with emissions from coal-fired power plants can vary greatly across facilities as a function of plant, site, and population characteristics, but the degree of variability and the contributing factors have not been formally evaluated. In this study, we modeled the monetized damages associated with 407 coal-fired power plants in the United States, focusing on premature mortality from fine particulate matter (PM2.5). We applied a reduced-form chemistry-transport model accounting for primary PM2.5 emissions and the influence of sulfur dioxide (SO{sub 2}) and nitrogen oxide (NOx) emissions on secondary particulate formation. Outputs were linked with a concentration-response function for PM2.5-related mortality that incorporated nonlinearities and model uncertainty. We valued mortality with a value of statistical life approach, characterizing and propagating uncertainties in all model elements. At the median of the plant-specific uncertainty distributions, damages across plants ranged from $30,000 to $500,000 per ton of PM2.5, $6,000 to $50,000 per ton of SO{sub 2}, $500 to $15,000 per ton of NOx, and $0.02 to $1.57 per kilowatt-hour of electricity generated. Variability in damages per ton of emissions was almost entirely explained by population exposure per unit emissions (intake fraction), which itself was related to atmospheric conditions and the population size at various distances from the power plant. Variability in damages per kilowatt-hour was highly correlated with SO{sub 2} emissions, related to fuel and control technology characteristics, but was also correlated with atmospheric conditions and population size at various distances.

  14. Sustainability Assessment of Coal-Fired Power Plants with Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Butner, R. Scott; Elliott, Michael L.; Freeman, Charles J.

    2011-11-30

    Carbon capture and sequestration (CCS) has the ability to dramatically reduce carbon dioxide (CO2) emissions from power production. Most studies find the potential for 70 to 80 percent reductions in CO2 emissions on a life-cycle basis, depending on the technology. Because of this potential, utilities and policymakers are considering the wide-spread implementation of CCS technology on new and existing coal plants to dramatically curb greenhouse gas (GHG) emissions from the power generation sector. However, the implementation of CCS systems will have many other social, economic, and environmental impacts beyond curbing GHG emissions that must be considered to achieve sustainable energy generation. For example, emissions of nitrogen oxides (NOx), sulfur oxides (SOx), and particulate matter (PM) are also important environmental concerns for coal-fired power plants. For example, several studies have shown that eutrophication is expected to double and acidification would increase due to increases in NOx emissions for a coal plant with CCS provided by monoethanolamine (MEA) scrubbing. Potential for human health risks is also expected to increase due to increased heavy metals in water from increased coal mining and MEA hazardous waste, although there is currently not enough information to relate this potential to actual realized health impacts. In addition to environmental and human health impacts, supply chain impacts and other social, economic, or strategic impacts will be important to consider. A thorough review of the literature for life-cycle analyses of power generation processes using CCS technology via the MEA absorption process, and other energy generation technologies as applicable, yielded large variability in methods and core metrics. Nonetheless, a few key areas of impact for CCS were developed from the studies that we reviewed. These are: the impact of MEA generation on increased eutrophication and acidification from ammonia emissions and increased toxicity

  15. The level of air pollution in the impact zone of coal-fired power plant (Karaganda City) using the data of geochemical snow survey (Republic of Kazakhstan)

    Science.gov (United States)

    Adil'bayeva, T. E.; Talovskaya, A. V.; Yazikov, Ye G.; Matveenko, I. A.

    2016-09-01

    Coal-fired power plants emissions impact the air quality and human health. Of great significance is assessment of solid airborne particles emissions from those plants and distance of their transportation. The article presents the results of air pollution assessment in the zone of coal-fired power plant (Karaganda City) using snow survey. Based on the mass of solid airborne particles deposited in snow, time of their deposition on snow at the distance from 0.5 to 4.5 km a value of dust load has been determined. It is stated that very high level of pollution is observed at the distance from 0.5 to 1 km. there is a trend in decrease of dust burden value with the distance from the stacks of coal-fired power plant that may be conditioned by the particle size and washing out smaller ash particles by ice pellets forming at freezing water vapour in stacks of the coal-fired power plant. Study in composition of solid airborne particles deposited in snow has shown that they mainly contain particulates of underburnt coal, Al-Si- rich spheres, Fe-rich spheres, and coal dust. The content of the particles in samples decreases with the distance from the stacks of the coal-fired power plant.

  16. PILOT-AND FULL-SCALE DEMONSTRATION OF ADVANCED MERCURY CONTROL TECHNOLOGIES FOR LIGNITE-FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Steven A. Benson; Charlene R. Crocker; Kevin C. Galbreath; Jay R. Gunderson; Michael J. Holmes; Jason D. Laumb; Jill M. Mackenzie; Michelle R. Olderbak; John H. Pavlish; Li Yan; Ye Zhuang

    2005-02-01

    The overall objective of the project was to develop advanced innovative mercury control technologies to reduce mercury emissions by 50%-90% in flue gases typically found in North Dakota lignite-fired power plants at costs from one-half to three-quarters of current estimated costs. Power plants firing North Dakota lignite produce flue gases that contain >85% elemental mercury, which is difficult to collect. The specific objectives were focused on determining the feasibility of the following technologies: Hg oxidation for increased Hg capture in dry scrubbers, incorporation of additives and technologies that enhance Hg sorbent effectiveness in electrostatic precipitators (ESPs) and baghouses, the use of amended silicates in lignite-derived flue gases for Hg capture, and the use of Hg adsorbents within a baghouse. The approach to developing Hg control technologies for North Dakota lignites involved examining the feasibility of the following technologies: Hg capture upstream of an ESP using sorbent enhancement, Hg oxidation and control using dry scrubbers, enhanced oxidation at a full-scale power plant using tire-derived fuel and oxidizing catalysts, and testing of Hg control technologies in the Advanced Hybrid{trademark} filter.

  17. Proposed Partial Repowering of a Coal-Fired Power Plant Using Low-Grade Solar Thermal Energy

    Directory of Open Access Journals (Sweden)

    Hongguang Jin

    2011-02-01

    Full Text Available

    In this paper, a hybrid power-generation system with integration of solar heat at approximately 300 ⁰C was proposed for a coal-fired power plant. The system was investigated with the aid of energy-utilization diagram methodology (EUD methodology. In this research, instead of steam, low-grade solar heat was utilized to heat the feed water, leading to an improvement in the plant thermodynamic performance. The net annual solar-to-electric efficiency was recorded as over 15%. Solar feed-water heaters can operate in line with previously used feed-water heaters during the solar off-design period. A preliminary economic evaluation demonstrated that the increased capital cost of the solar collectors may be approximately $2,007/kWe. The promising results indicated that the proposed thermal cycle offers an approach that integrates mid-temperature solar heat to partially repower existing coal-fired power plants.


  18. Acidity of vapor plume from cooling tower mixed with flue gases emitted from coal-fired power plant.

    Science.gov (United States)

    Hlawiczka, Stanislaw; Korszun, Katarzyna; Fudala, Janina

    2016-06-01

    Acidity of products resulting from the reaction of flue gas components emitted from a coal-fired power plant with water contained in a vapor plume from a wet cooling tower was analyzed in a close vicinity of a power plant (710 m from the stack and 315 m from the cooling tower). Samples of this mixture were collected using a precipitation funnel where components of the mixed plumes were discharged from the atmosphere with the rainfall. To identify situations when the precipitation occurred at the same time as the wind directed the mixed vapor and flue gas plumes above the precipitation funnel, an ultrasound anemometer designed for 3D measurements of the wind field located near the funnel was used. Precipitation samples of extremely high acidity were identified - about 5% of samples collected during 12 months showed the acidity below pH=3 and the lowest recorded pH was 1.4. During the measurement period the value of pH characterizing the background acidity of the precipitation was about 6. The main outcome of this study was to demonstrate a very high, and so far completely underestimated, potential of occurrence of episodes of extremely acid depositions in the immediate vicinity of a coal-fired power plant.

  19. Benefit-cost framework for analysis of trace element emissions from coal-fired power plants. [103 references

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    The major conclusions of this report may be summarized in the following four points: (1) It is probable that atmospheric emissions of trace elements from Southwestern coal-fired power plants will not cause major problems over the next 20 years. But monitoring for trace element build-up (especially mercury, selenium, and arsenic) in the mountains of southern Colorado, Navajo Reservoir, and other local hot spots would be an important and desirable step. (2) It appears that damage from trace elements in disposed ash is more likely than damage from atmospheric trace element emissions. But whether damage from disposed ash will actually occur is highly uncertain. We recommend that additional research be conducted on the entire range of issues surrounding ash disposal. (3) In the area of legislation and regulation, there may be some need for review of regulations concerning trace element atmospheric emissions. Present regulation of ash disposal is very likely to need revision and extension. (4) Future research on the environmental problems of coal-fired power plants should place emphasis on atmospheric emissions of sulfur and nitrogen oxides; consequent problems of acid precipitation also need exploration. Environmental research on coal-fired power plants does not need to exclude other problems. But issues surrounding sulfur emissions, nitrogen emissions, sulfate transformations, and acid precipitation appear to merit major emphasis. Perhaps the most important aspect of the preceding list of conclusions is that more questions are raised than are answered. As work on the subject proceeded, it became apparent that an important task was to point future research in the right direction.

  20. Mathematical optimization techniques for managing selective catalytic reduction for a fleet of coal-fired power plants

    Science.gov (United States)

    Alanis Pena, Antonio Alejandro

    Major commercial electricity generation is done by burning fossil fuels out of which coal-fired power plants produce a substantial quantity of electricity worldwide. The United States has large reserves of coal, and it is cheaply available, making it a good choice for the generation of electricity on a large scale. However, one major problem associated with using coal for combustion is that it produces a group of pollutants known as nitrogen oxides (NO x). NOx are strong oxidizers and contribute to ozone formation and respiratory illness. The Environmental Protection Agency (EPA) regulates the quantity of NOx emitted to the atmosphere in the United States. One technique coal-fired power plants use to reduce NOx emissions is Selective Catalytic Reduction (SCR). SCR uses layers of catalyst that need to be added or changed to maintain the required performance. Power plants do add or change catalyst layers during temporary shutdowns, but it is expensive. However, many companies do not have only one power plant, but instead they can have a fleet of coal-fired power plants. A fleet of power plants can use EPA cap and trade programs to have an outlet NOx emission below the allowances for the fleet. For that reason, the main aim of this research is to develop an SCR management mathematical optimization methods that, with a given set of scheduled outages for a fleet of power plants, minimizes the total cost of the entire fleet of power plants and also maintain outlet NO x below the desired target for the entire fleet. We use a multi commodity network flow problem (MCFP) that creates edges that represent all the SCR catalyst layers for each plant. This MCFP is relaxed because it does not consider average daily NOx constraint, and it is solved by a binary integer program. After that, we add the average daily NOx constraint to the model with a schedule elimination constraint (MCFPwSEC). The MCFPwSEC eliminates, one by one, the solutions that do not satisfy the average daily

  1. Proposed Partial Repowering of a Coal-Fired Power Plant Using Low-Grade Solar Thermal Energy

    OpenAIRE

    Hongguang Jin; Yawen Zhao; Hui Hong

    2011-01-01

    In this paper, a hybrid power-generation system with integration of solar heat at approximately 300 ⁰C was proposed for a coal-fired power plant. The system was investigated with the aid of energy-utilization diagram methodology (EUD methodology). In this research, in...

  2. Environmental impact report for the natural gas-fired electric power plant Eemshaven, Netherlands; Milieueffectrapport aardgasgestookte elektriciteitscentrale Eemshaven

    Energy Technology Data Exchange (ETDEWEB)

    Swinkels, G.H.; Verlinde, Y.A.; Schultz, S. [Arcadis Nederland, Arnhem (Netherlands)

    2009-08-17

    Eemshaven Energie BV aims to realize a new gas-fired CCGT plant (Combined Cycle Gas Turbine) in the Eemshaven (Netherlands) of net 1050 to 1300 MWe. An Environmental Impact Report needs to be drawn up before a decision can be made about granting the environmental permit. This report is the environmental impact report of the intended initiative. [Dutch] Eemsmond Energie BV heeft het voornemen een nieuwe aardgasgestookte STEG centrale (Stoom En Gasturbine) tussen 1050 en 1300 MWe netto te realiseren in de Eemshaven. Er dient een milieueffectrapport (MER) te worden opgesteld voordat over verlening van de milieuvergunning een besluit kan worden genomen. Het voorliggende rapport is het milieueffectrapport van het voorgenomen initiatief.

  3. Energy and Ecological Effects of the Primary Gas-Turbine Supplementing a Coal-Fired Power Plant

    Directory of Open Access Journals (Sweden)

    Jan T. Szargut

    1999-03-01

    Full Text Available Gas turbine fed with natural gas, introduced as a primary link of the coal-fired power plant for preheating the feed water, ensures positive energy and ecological effects. The energy effect has been expressed by means of the incremental energy efficiency, defined as the ratio of the increase of power to the chemical energy of the consumed gas. The reduction of CO2 emission has been also characterized by means of the incremental index. Formulae have been derived and numerical examples included.

  4. Karrikins Identified in Biochars Indicate Post-Fire Chemical Cues Can Influence Community Diversity and Plant Development

    Science.gov (United States)

    Kochanek, Jitka; Flematti, Gavin R.

    2016-01-01

    Background Karrikins are smoke-derived compounds that provide strong chemical cues to stimulate seed germination and seedling growth. The recent discovery in Arabidopsis that the karrikin perception system may be present throughout angiosperms implies a fundamental plant function. Here, we identify the most potent karrikin, karrikinolide (KAR1), in biochars and determine its role in species unique plant responses. Methods Biochars were prepared by three distinct commercial-scale pyrolysis technologies using systematically selected source material and their chemical properties, including karrikinolide, were quantified. Dose-response assays determined the effects of biochar on seed germination for two model species that require karrikinolide to break dormancy (Solanum orbiculatum, Brassica tourneforttii) and on seedling growth using two species that display plasticity to karrikins, biochar and phytotoxins (Lactuca sativa, Lycopersicon esculentum). Multivariate analysis examined relationships between biochar properties and the plant phenotype. Findings and Conclusions Results showed that karrikin abundant biochars stimulated dormant seed germination and seedling growth via mechanisms analogous to post-fire chemical cues. The individual species response was associated with its sensitivity to karrikinolide and inhibitory compounds within the biochars. These findings are critical for understanding why biochar influences community composition and plant physiology uniquely for different species and reaffirms that future pyrolysis technologies promise by-products that concomitantly sequester carbon and enhance plant growth for ecological and broader plant related applications. PMID:27536995

  5. [Characteristics of Water-Soluble Inorganic Ions in PM2.5 Emitted from Coal-Fired Power Plants].

    Science.gov (United States)

    Ma, Zi-zhen; Li, Zhen; Jiang, Jing-kun; Ye, Zhi-xiang; Deng, Jian-guo; Duan, Lei

    2015-07-01

    To characterize the primary PM2.5 emission from coal-fired power plants in China, and to quantitatively evaluate the effects of flue gas denitrification and desulfurization on PM2.5 emission, a pulverized coal fired (PC) power plant and a circulating fluidized bed (CFB) plant were selected for measuring the mass concentration and water-soluble ion composition of PM2.5 in flue gas. The results showed that the mass concentration of PM2.5 generated from the CFB was much higher than that from the PC, while the mass concentrations of PM2.5 emitted from these two plants were very similar, because the CFB was equipped with an electrostatic-bag precipitator (EBP) with higher PM2.5 removal efficiency than the common electrostatic precipitator (ESP). Although the total concentration of water-soluble ions in PM2.5 generated from the PC was lower than that from the CFB, the total concentration of water-soluble ions in PM2.5 emitted from the PC was much higher than that from the CFB, which implied that PM2.5 emission from the PC was greatly affected by the flue gas treatment installations. For example, the flue gas denitrification system produced H2SO4 mist, part of which reacted with the excessive NH3 in the flue gas to form NH4HSO4 in PM2.5 and to increase the acidity of PM2.5. In addition, the escaping of desulfurization solution during the flue gas desulfurization process could also introduce NH4+ and SO2- into PM2.5. Therefore, although the main water-soluble ions in PM2.5 generated from both of the plants were Ca2+ and SO(4)2-, the major cation was changed to NH4+ when emitted from PC.

  6. Are fire, soil fertility and toxicity, water availability, plant functional diversity, and litter decomposition related in a Neotropical savanna?

    Science.gov (United States)

    Carvalho, Gustavo Henrique; Batalha, Marco Antônio; Silva, Igor Aurélio; Cianciaruso, Marcus Vinicius; Petchey, Owen L

    2014-07-01

    Understanding how biodiversity and ecosystem functioning respond to changes in the environment is fundamental to the maintenance of ecosystem function. In realistic scenarios, the biodiversity-ecosystem functioning path may account for only a small share of all factors determining ecosystem function. Here, we investigated the strength to which variations in environmental characteristics in a Neotropical savanna affected functional diversity and decomposition. We sought an integrative approach, testing a number of pairwise hypotheses about how the environment, biodiversity, and functioning were linked. We used structural equation modelling to connect fire frequency, soil fertility, exchangeable Al, water availability, functional diversity of woody plants, tree density, tree height, and litter decomposition rates in a causal chain. We found significant effects of soil nutrients, water availability, and Al on functional diversity and litter decomposition. Fire did not have a significant direct effect on functional diversity or litter decomposition. However, fire was connected to both variables through soil fertility. Functional diversity did not influence rates of litter decomposition. The mediated effects that emerged from pairwise interactions are encouraging not only for predicting the functional consequences of changes in environmental variables and biodiversity, but also to caution against predictions based on only environmental or only biodiversity change.

  7. Energy penalty analysis of possible cooling water intake structurerequirements on existing coal-fired power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Littleton, D. J.; Gross, R. W.; Smith, D. N.; Parsons, E.L., Jr.; Shelton, W. W.; Feeley, T. J.; McGurl, G. V.

    2006-11-27

    from converting plants with once-through cooling to wet towers or indirect-dry towers. Five locations--Delaware River Basin (Philadelphia), Michigan/Great Lakes (Detroit), Ohio River Valley (Indianapolis), South (Atlanta), and Southwest (Yuma)--were modeled using an ASPEN simulator model. The model evaluated the performance and energy penalty for hypothetical 400-MW coal-fired plants that were retrofitted from using once-through cooling systems to wet- and dry-recirculating systems. The modeling was initially done to simulate the hottest time of the year using temperature input values that are exceeded only 1 percent of the time between June through September at each modeled location. These are the same temperature inputs commonly used by cooling tower designers to ensure that towers perform properly under most climatic conditions.

  8. Fire safety

    Energy Technology Data Exchange (ETDEWEB)

    Keski-Rahkonen, O.; Bjoerkman, J.; Hostikka, S.; Mangs, J. [VTT Building Technology, Espoo (Finland); Huhtanen, R. [VTT Energy, Espoo (Finland); Palmen, H.; Salminen, A.; Turtola, A. [VTT Automation, Espoo (Finland)

    1998-07-01

    According to experience and probabilistic risk assessments, fires present a significant hazard in a nuclear power plant. Fires may be initial events for accidents or affect safety systems planned to prevent accidents and to mitigate their consequences. The project consists of theoretical work, experiments and simulations aiming to increase the fire safety at nuclear power plants. The project has four target areas: (1) to produce validated models for numerical simulation programmes, (2) to produce new information on the behavior of equipment in case of fire, (3) to study applicability of new active fire protecting systems in nuclear power plants, and (4) to obtain quantitative knowledge of ignitions induced by important electric devices in nuclear power plants. These topics have been solved mainly experimentally, but modelling at different level is used to interpret experimental data, and to allow easy generalisation and engineering use of the obtained data. Numerical fire simulation has concentrated in comparison of CFD modelling of room fires, and fire spreading on cables on experimental data. So far the success has been good to fair. A simple analytical and numerical model has been developed for fire effluents spreading beyond the room of origin in mechanically strongly ventilated compartments. For behaviour of equipment in fire several full scale and scaled down calorimetric experiments were carried out on electronic cabinets, as well as on horizontal and vertical cable trays. These were carried out to supply material for CFD numerical simulation code validation. Several analytical models were developed and validated against obtained experimental results to allow quick calculations for PSA estimates as well as inter- and extrapolations to slightly different objects. Response times of different commercial fire detectors were determined for different types of smoke, especially emanating from smoldering and flaming cables to facilitate selection of proper detector

  9. Physical disturbance shapes vascular plant diversity more profoundly than fire in the sagebrush steppe of southeastern Idaho, U.S.A.

    Science.gov (United States)

    Lavin, Matt; Brummer, Tyler J; Quire, Ryan; Maxwell, Bruce D; Rew, Lisa J

    2013-06-01

    Fire is thought to profoundly change the ecology of the sagebrush steppe. The Idaho National Laboratory provides an ideal setting to compare the effects of fire and physical disturbance on plant diversity in high-native-cover sagebrush steppe. Seventy-eight 1-hectare transects were established along paved, green-striped, gravel, and two-track roads, in overgrazed rangeland, and within sagebrush steppe involving different fire histories. Transects were sampled for the diversity and abundance of all vascular plants. Alpha, beta, and phylogenetic beta diversity were analyzed as a response to fire and physical disturbance. Postfire vegetation readily rebounds to prefire levels of alpha plant diversity. Physical disturbance, in contrast, strongly shapes patterns of alpha, beta, and especially phylogenetic beta diversity much more profoundly than fire disturbance. If fire is a concern in the sagebrush steppe then the degree of physical-disturbance should be more so. This finding is probably not specific to the study area but applicable to the northern and eastern portions of the sagebrush biome, which is characterized by a pulse of spring moisture and cold mean minimum winter temperatures. The distinction of sagebrush steppe from Great Basin sagebrush should be revised especially with regard to reseeding efforts and the control of annual grasses.

  10. Economic Analysis for Rebuilding of an Aged Pulverized Coal-Fired Boiler with a New Boiler in an Aged Thermal Power Plant

    Directory of Open Access Journals (Sweden)

    Burhanettin Cetin

    2013-01-01

    Full Text Available Fossil-fired thermal power plants (TPP produce a significant part of electricity in the world. Because of the aging TPPs and so their equipment (especially boiler, thermal power plants also produce less power than their installed capacities, and there has been power loss in time. This situation affects the supply and demand balance of countries. For this reason, aging equipments such as pulverized coal-fired boiler (PCB must be renewed and power loss must be recovered, instead of building new TPPs. In this study, economic analysis of rebuilding an aged pulverized coal-fired boiler with a new pulverized coal-fired boiler including flue gas desulfurization (FGD unit and a circulating fluidized bed boiler (FBB are investigated in an existing old TPP. Emission costs are also added to model, and the developed model is applied to a 200 MWe pulverized coal-fired thermal power plant in Turkey. As a result, the payback period and the net present value are calculated for different technical and economic parameters such as power loss, load factor, electricity price, discount rate, and escalation rate by using the annual value method. The outcomes of this study show that rebuilding of a pulverized coal-fired boiler with a new one is amortized itself in a very short time.

  11. Analysis of natural radionuclides in coal, slag and ash in coal-fired power plants in Serbia

    Directory of Open Access Journals (Sweden)

    Janković M.M.

    2011-01-01

    Full Text Available The radioactivity monitoring in the “Nikola Tesla”, “Kolubara”, “Morava” and “Kostolac” coal-fired power plants was performed by the Radiation and Environmental Protection Laboratory, Vinča Institute of nuclear sciences in the period 2003-2010. Monitoring included the analysis of soil, water, flying ash, slag, coal and plants. This paper presents the results of the radioactivity analysis of coal, ash and slag samples. Naturally occurring radionuclides 226Ra, 232Th, 40K, 235U, 238U, and 210Pb as well as the man-made radionuclide 137Cs were determined by gamma spectrometry using HPGe detector. The concentrations of pairs of radionuclides were statistically tested to determine the correlation between them. Based on the obtained results, health effect due to the activity of these radionuclides was estimated via radium equivalent (Raeq, external hazard index (Hex, external gamma absorbed dose rate ( and annual effective dose.

  12. Integration of a Gas Fired Steam Power Plant with a Total Site Utility Using a New Cogeneration Targeting Procedure

    Institute of Scientific and Technical Information of China (English)

    Sajad Khamis Abadi; Mohammad Hasan Khoshgoftar Manesh; Marc A.Rosen; Majid Amidpour; Mohammad Hosein Hamedi

    2014-01-01

    A steam power plant can work as a dual purpose plant for simultaneous production of steam and elec-trical power. In this paper we seek the optimum integration of a steam power plant as a source and a site utility sys-tem as a sink of steam and power. Estimation for the cogeneration potential prior to the design of a central utility system for site utility systems is vital to the targets for site fuel demand as well as heat and power production. In this regard, a new cogeneration targeting procedure is proposed for integration of a steam power plant and a site utility consisting of a process plant. The new methodology seeks the optimal integration based on a new cogenera-tion targeting scheme. In addition, a modified site utility grand composite curve (SUGCC) diagram is proposed and compared to the original SUGCC. A gas fired steam power plant and a process site utility is considered in a case study. The applicability of the developed procedure is tested against other design methods (STAR® and Thermoflex software) through a case study. The proposed method gives comparable results, and the targeting method is used for optimal integration of steam levels. Identifying optimal conditions of steam levels for integration is important in the design of utility systems, as the selection of steam levels in a steam power plant and site utility for integration greatly influences the potential for cogeneration and energy recovery. The integration of steam levels of the steam power plant and the site utility system in the case study demonstrates the usefulness of the method for reducing the overall energy consumption for the site.

  13. Prescribed Fire, Soil, and Plants: Burn Effects and Interactions in the Central Great Basin

    Science.gov (United States)

    Pinyon and juniper expansion into sagebrush ecosystems results in decreased cover and biomass of perennial grasses and forbs. We examine the effectiveness of spring prescribed fire on restoration of sagebrush ecosystems by documenting burn effects on soil nutrients, herbaceous aboveground biomass, a...

  14. China's coal-fired power plants impose pressure on water resources

    NARCIS (Netherlands)

    Zhang, Xinxin; Liu, Junguo; Tang, Yu; Zhao, Xu; Yang, Hong; Gerbens-Leenes, P.W.; Vliet, van Michelle T.H.; Yan, Jinyue

    2017-01-01

    Coal is the dominant fuel for electricity generation around the world. This type of electricity generation uses large amounts of water, increasing pressure on water resources. This calls for an in-depth investigation in the water-energy nexus of coal-fired electricity generation. In China,

  15. Forest fire propagation simulations for a risk assessment methodology development for a nuclear power plant

    Directory of Open Access Journals (Sweden)

    Yasushi Okano

    2015-10-01

    Given that this study shows that the maximum height of a flame on a canopy top is close to the range of power line height, a loss of offsite power is recognized as a possible subsequent event during a forest fire.

  16. Proposals on Gas Fired Power Plants in Shanxi Province%山西省燃气发电建议

    Institute of Scientific and Technical Information of China (English)

    王皑; 许涌平; 宋述勇

    2014-01-01

    Based on the analysis of coal bed methane in Shanxi,and combining with load characteristics of power system,the operating characteristics of gas fired power plant,the development trend of new energy for power generation and power grid peak regulation demand,the requirements of power grid on gas-fired power plant's development are proposed. Besides,corresponding suggestions and measures to coordinate the development of new energy and power generation are put forward.%在分析山西省煤层气资源情况的基础上,结合电力系统负荷特性,燃气电厂的运行特点,新能源发电的发展和电网调峰需求,提出了电网对燃气电厂发展的相关要求,围绕新能源发电的协调发展提出相应建议和措施。

  17. Indoor radon measurements in a Greek city located in the vicinity of lignite-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Manousakas, M.; Fouskas, A.; Papaefthymiou, H.; Koukouliou, V.; Siavalas, G.; Kritidis, P. [University of Patras, Patras (Greece). Dept. of Chemistry

    2010-10-15

    This work presents indoor radon measurements in 42 dwellings in the city of Megalopolis, Southern Greece, located in the vicinity of 2 lignite-fired power plants and examines the effect of season, floor level and age of the dwellings on indoor radon concentration. The radon measurements have been carried out using the LR-115, type II and CR-39 alpha track detectors in 'closed-can' geometry. The average annual indoor radon concentration (GM) was found to be 52 Bq m{sup -3}, which is well below the recommended action level of the European Union. This value corresponds to an annual effective dose to the population of 1.3 {+-} 0.4 mSv. Season and age of the examined dwellings represent factors that affected significantly the indoor radon in Megalopolis, while the effect of floor level appeared to be not significant. Radium activity concentration values, measured by gamma-ray spectrometry in 20 sub-samples of six soil cores (60-135 cm depth), collected from the surrounding area of the city, were found to be consistent with the Greek and world average values. Based on the results of this study, it is concluded that the effect of the lignite-fired power plants on indoor radon concentration in Megalopolis' dwellings was not significant.

  18. Enhancing mercury removal across air pollution control devices for coal-fired power plants by desulfurization wastewater evaporation.

    Science.gov (United States)

    Bin, Hu; Yang, Yi; Cai, Liang; Linjun, Yang; Roszak, Szczepan

    2017-09-15

    Desulfurization wastewater evaporation technology is used to enhance the removal of gaseous mercury (Hg) in conventional air pollution control devices (APCDs) for coal-fired power plants. It had been studied that gaseous Hg is oxidized and removed by selective catalytic reduction (SCR), an electrostatic precipitator (ESP) and a wet flue gas desulfurization (WFGD) in coal-fired thermal experiment platform with WFGD wastewater evaporation. Effects of desulfurization wastewater evaporation position, evaporation temperature, and chlorine ion concentration on Hg oxidation were studied as well. The Hg(0) oxidation efficiency improved significantly over SCR after improving the flue gas temperature and concentration of chlorine ion in the wastewater. The Hg(0) oxidation efficiency was increased ranging from 30% to 60%, and the gaseous Hg removal efficiency was 62.16% in APCDs when wastewater evaporated before SCR. However, the Hg(0) oxidation efficiency was 18.99% and the gaseous Hg removal efficiency was 40.19% in APCDs when wastewater evaporated before ESP. The results show that WFGD wastewater evaporation before SCR is beneficial to improve Hg oxidized and removed efficiency in APCDs. The function of WFGD wastewater evaporation on Hg oxidation is due to reasons: active chlorine species generated through the evaporation process and promoted the Hg oxidation. Because Hg(2+) can be easily removed in ACPDs and chlorine ion is enriched in WFGD wastewater in power plants, this method realizes WFGD wastewater zero discharge and simultaneously enhances Hg removal in APCDs.

  19. Viability of Carbon Capture and Sequestration Retrofits for Existing Coal-Fired Power Plants under an Emission Trading Scheme.

    Science.gov (United States)

    Talati, Shuchi; Zhai, Haibo; Morgan, M Granger

    2016-12-06

    Using data on the coal-fired electric generating units (EGUs) in Texas we assess the economic feasibility of retrofitting existing units with carbon capture and sequestration (CCS) in order to comply with the Clean Power Plan's rate-based emission standards under an emission trading scheme. CCS with 90% capture is shown to be more economically attractive for a range of existing units than purchasing emission rate credits (ERCs) from a trading market at an average credit price above $28 per MWh under the final state standard and $35 per MWh under the final national standard. The breakeven ERC trading prices would decrease significantly if the captured CO2 were sold for use in enhanced oil recovery, making CCS retrofits viable at lower trading prices. The combination of ERC trading and CO2 use can greatly reinforce economic incentives and market demands for CCS and hence accelerate large-scale deployment, even under scenarios with high retrofit costs. Comparing the levelized costs of electricity generation between CCS retrofits and new renewable plants under the ERC trading scheme, retrofitting coal-fired EGUs with CCS may be significantly cheaper than new solar plants under some market conditions.

  20. Radiological Impact Associated to Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM) from Coal-Fired Power Plants Emissions - 13436

    Energy Technology Data Exchange (ETDEWEB)

    Dinis, Maria de Lurdes; Fiuza, Antonio; Soeiro de Carvalho, Jose; Gois, Joaquim [Geo-Environment and Resources Research Centre (CIGAR), Porto University, Faculty of Engineering - FEUP, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Meira Castro, Ana Cristina [School of Engineering Polytechnic of Porto - ISEP, Rua Dr. Antonio Bernardino de Almeida, 431, 4200-072, Porto (Portugal)

    2013-07-01

    Certain materials used and produced in a wide range of non-nuclear industries contain enhanced activity concentrations of natural radionuclides. In particular, electricity production from coal is one of the major sources of increased human exposure to naturally occurring radioactive materials. A methodology was developed to assess the radiological impact due to natural radiation background. The developed research was applied to a specific case study, the Sines coal-fired power plant, located in the southwest coastline of Portugal. Gamma radiation measurements were carried out with two different instruments: a sodium iodide scintillation detector counter (SPP2 NF, Saphymo) and a gamma ray spectrometer with energy discrimination (Falcon 5000, Canberra). Two circular survey areas were defined within 20 km of the power plant. Forty relevant measurements points were established within the sampling area: 15 urban and 25 suburban locations. Additionally, ten more measurements points were defined, mostly at the 20-km area. The registered gamma radiation varies from 20 to 98.33 counts per seconds (c.p.s.) corresponding to an external gamma exposure rate variable between 87.70 and 431.19 nGy/h. The highest values were measured at locations near the power plant and those located in an area within the 6 and 20 km from the stacks. In situ gamma radiation measurements with energy discrimination identified natural emitting nuclides as well as their decay products (Pb-212, Pb-2142, Ra-226, Th-232, Ac-228, Th-234, Pa-234, U- 235, etc.). According to the results, an influence from the stacks emissions has been identified both qualitatively and quantitatively. The developed methodology accomplished the lack of data in what concerns to radiation rate in the vicinity of Sines coal-fired power plant and consequently the resulting exposure to the nearby population. (authors)

  1. Pilot plant development of a new catalytic process for improved electrostatic separation of fly ash in coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Olivares del Valle, J.; Martinez, L.S.; Baum, B.M.; Galeano, V.C. [Universidad de Sevilla (Spain)

    1995-12-31

    The design and operation of pulverized-coal-fired power plants (PCFPP) are usually regarded as fuel range in terms of sulphur and ash contents. These units may give severe environmental problems of fly ash emissions as a result of lower SO{sub 3} contents in the flue gas (FG) because the electrical resistivity of the solid particles is correspondingly lower, with consequent adverse effects on electrostatic precipitator (ESP) efficiency. More stringent air pollution laws cause many power companies to burn lower sulphur coal under boilers in plants that formerly burned higher S coal or ran with abnormal operational conditions (only remediable by shutdown and repairs). This presentation of the GASOX process is a contribution to the improvement of existing technology for flue gas conditioning (FGC), which is defined as a control system for (ESP) efficiency in PCFPP.

  2. The influence of coal-fired power plants operations on environmental radioactivity and assessment of the associated radiation hazard

    Energy Technology Data Exchange (ETDEWEB)

    Dinis, Maria de Lurdes; Fiuza, Antonio; Gois, Joaquim; Carvalho, Jose S. de [Geo-Environment and Resources Research Centre (CIGAR), Engineering Faculty, Porto University, Rua Dr. Roberto Frias, Porto 4200-465 (Portugal); Centre for Natural Resources and the Environment (CERENA), Instituto Superior Tecnico - IST, Av. Rovisco Pais, Lisboa 1049-001 (Portugal); Castro, Ana Cristina M. [Geo-Environment and Resources Research Centre (CIGAR), Engineering Faculty, Porto University, Rua Dr. Roberto Frias, Porto 4200-465 (Portugal); Centre for Natural Resources and the Environment (CERENA), Instituto Superior Tecnico - IST, Av. Rovisco Pais, Lisboa 1049-001 (Portugal); School of Engineering Polytechnic of Porto (ISEP), Rua Dr. Bernardino de Almeida, 431, Porto 4200-07 (Portugal)

    2014-07-01

    The natural radioactivity of coal and by-products from coal-fired power plants has been reported in many countries. Most of these studies focus on the radioactivity levels of airborne discharges with enhanced concentration in fly ashes. However, the distribution of natural radionuclides in the environment is crucial to estimate the radiological impact and the resulting risk to the exposed nearby population. At national level, data from coal-fired power plants is not available as radionuclides measurements are not compulsory; regulations are only restricted to airborne discharges of SO{sub 2}, NO{sub x} and suspended particles. The consequent radiological impact is rather difficult to estimate as there is no data concerning the radiological elements released. This study aims to evaluate the influence of a coal-fired power plant operation on the environmental radioactivity and assessment of the associated radiation hazard. The spatial distribution of the radionuclides found in the surroundings of a coal plant, and the hazard index, were investigated by statistic and geo-statistics tools. The current research was applied to a coal plant located in the southwest coastline of Portugal. This power plant started working in 1985; it has two operational stacks, both with 225 m height, and is fueled by bituminous coal. The environmental activity concentrations of natural radionuclides were determined using gamma ray spectrometry with energy discrimination. A total of 40 relevant measurement locations were established at distances within 6 and 20 km from the coal plant. In situ gamma radiation measurements identified natural emitting nuclides as well as their decay products ({sup 40}K, {sup 208}Tl, {sup 212}Bi, {sup 214}Bi, {sup 212}Pb, {sup 214}Pb, {sup 224}Ra, {sup 226}Ra, {sup 228}Th, {sup 232}Th, {sup 228}Ac, {sup 234}Th, {sup 234}Pa and {sup 235}U). The highest activity concentrations were registered at locations near to the stacks (500.94, 41.30 and 40.55 Bq/kg for {sup

  3. The effects of seed ingestion by livestock, dung fertilization, trampling, grass competition and fire on seedling establishment of two woody plant species.

    Science.gov (United States)

    Tjelele, Julius; Ward, David; Dziba, Luthando

    2015-01-01

    The increasing rate of woody plant encroachment in grasslands or savannas remains a challenge to livestock farmers. The causes and control measures of woody plant encroachment are of common interest, especially where it negatively affects the objectives of an agricultural enterprise. The objectives of this study were to determine the effects of gut passage (goats, cattle), dung (nutrients), fire, grass competition and trampling on establishment of A. nilotica and D. cinerea seedlings. Germination trials were subjected to the following treatments: 1) seed passage through the gut of cattle and goats and unpassed/ untreated seeds (i.e. not ingested), 2) dung and control (no dung), 3) grass and control (mowed grass), 4) fire and control (no fire), 5) trampling and control (no trampling). The interaction of animal species, grass and fire had an effect on seedling recruitment (P effect on seedling recruitment than seeds retrieved from goats and planted with grass and no fire (2.98% ± 0.33). Significantly more D. cinerea and A. nilotica seeds germinated following seed ingestion by goats (3.59% ± 0.16) than cattle (1.93% ± 0.09) and control or untreated seeds (1.69% ± 0.11). Less dense grass cover, which resulted in reduced grass competition with tree seedlings for light, space and water, and improved seed scarification due to gut passage were vital for emergence and recruitment of Acacia seedlings. These results will contribute considerably to the understanding of the recruitment phase of woody plant encroachment.

  4. IC-engine co-generation plant Fenne. Electricity and heat from coal-fired methane; Motorenheizkraftwerk Fenne. Strom und Waerme aus Grubengas

    Energy Technology Data Exchange (ETDEWEB)

    Marx, F.J. [Kompetenzzentrum Instandhaltung und Technologie, SaarEnergie, Saarbruecken (Germany); Knuth, E. [Motorenheizkraftwerk Fenne, SaarEnergie, Saarbruecken (Germany)

    2005-07-01

    Within the scope of the ''Erneuerbare-Energien-Gesetz'' (EEG, act on renewables) the conversion of mine gas (methane) is supported. SaarEnergie AG has erected a co-generation plant with IC-engine at their power plant site in Voelklingen Fenne to make use of mine gas. The co-generation plant comprises 14 mine gas-fired engines with an electrical and thermal capacity of 3 MW each, summarising to a electrical capacity of 42 MW. The planning, plant configuration and technical data as well as first operating experience with the engine co-generation plant are described. (orig.)

  5. Thermal Integration of CO{sub 2} Compression Processes with Coal-Fired Power Plants Equipped with Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy

    2012-06-29

    Coal-fired power plants, equipped either with oxycombustion or post-combustion CO{sub 2} capture, will require a CO{sub 2} compression system to increase the pressure of the CO{sub 2} to the level needed for sequestration. Most analyses show that CO{sub 2} compression will have a significant effect on parasitic load, will be a major capital cost, and will contribute significantly to reduced unit efficiency. This project used first principle engineering analyses and computer simulations to determine the effects of utilizing compressor waste heat to improve power plant efficiency and increase net power output of coal-fired power plants with carbon capture. This was done for units with post combustion solvent-based CO{sub 2} capture systems and for oxyfired power plants, firing bituminous, PRB and lignite coals. The thermal integration opportunities analyzed for oxycombustion capture are use of compressor waste heat to reheat recirculated flue gas, preheat boiler feedwater and predry high-moisture coals prior to pulverizing the coal. Among the thermal integration opportunities analyzed for post combustion capture systems are use of compressor waste heat and heat recovered from the stripper condenser to regenerate post-combustion CO{sub 2} capture solvent, preheat boiler feedwater and predry high-moisture coals. The overall conclusion from the oxyfuel simulations is that thermal integration of compressor heat has the potential to improve net unit heat rate by up to 8.4 percent, but the actual magnitude of the improvement will depend on the type of heat sink used and to a lesser extent, compressor design and coal rank. The simulations of a unit with a MEA post combustion capture system showed that thermal integration of either compressor heat or stripper condenser heat to preheat boiler feedwater would result in heat rate improvements from 1.20 percent to 4.19 percent. The MEA capture simulations further showed that partial drying of low rank coals, done in combination

  6. Using a data-assimilation system to assess the influence of fire on simulated carbon fluxes and plant traits for the Australian continent

    Science.gov (United States)

    Exbrayat, Jean-François; Smallman, T. Luke; Bloom, A. Anthony; Williams, Mathew

    2015-04-01

    Natural disturbances, such as fire, play an important role in the carbon balance of terrestrial ecosystems. Both burned emissions and the impact of fire on plant growth must be considered to quantify the magnitude of the current and future terrestrial carbon sink. However, fire is rarely represented in Earth System Models, and the usual classification of ecosystems in a limited number of global plant functional types does not take into account local adaptations to fire regimes that enable resilience of ecosystems. We show the importance of these mechanisms with a terrestrial model-data fusion scheme applied to the fire-prone Australian continent. We use the CARbon DAta-MOdel fraMework (CARDAMOM) to assimilate time series of MODIS LAI and GFED burned area and use the Harmonized World Soil Database and remote-sensing based estimates of Above-Ground Biomass as prior knowledge for initial conditions. In each pixel, a Markov Chain Monte-Carlo algorithm is used to optimise parameters according to observations. Meanwhile, ecological and dynamical constraints representative of real world processes constrain parameter inter-dependencies and long-term pool dynamics. CARDAMOM outputs maps of ecosystem carbon fluxes and parameters as well as their uncertainty sampled from the posterior distribution provided by the MCMC. We perform two data-assimilations over Australia. The first experiment is a control run that includes fire drivers while the second experiment does not consider the occurrence of fires. Results of the first experiment are comparable to previous estimates and show that Australian ecosystems have most likely been acting as a carbon sink since the year 2000 with a large fire-driven inter-annual variability (best estimate of 264 ± 172 Tg C yr-1). However, our results indicate that the most intense fire seasons may temporarily turn the continent into a net source of carbon offsetting the natural carbon sink of the same year. Comparing the parameter maps generated

  7. Occupational exposure at a contemplated Belarussian power plant fired with contaminated biomass

    DEFF Research Database (Denmark)

    Andersson, Kasper Grann; Fogh, C.L.; Roed, Jørn

    1999-01-01

    focuses on the radiation doses that may be received by workers at such a power plant. By Monte Carlo modelling based on a Danish biofuel power plant design it was found that the highest dose rates within the power plant would be those to people standing near the fly ash silo, bottom ash containers and so...

  8. Development of the CELVA-1D code to evaluate the safety of an air-ventilation system during postulated fire and explosion in the reprocessing plant. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Gunji; Watanabe, Kouji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kouno, Kouji; Yamazaki, Noboru; Mukaide, Shigeo; Yoshioka, Itsuo

    1998-03-01

    The CELVA-1D computer code was developed to evaluate the confinement of radioactive materials during postulated fire and explosion in a cell of nuclear fuel reprocessing plants. The CELVA-1D code calculates a response of temperature, pressure, flow velocity of fluid in an air-ventilation system of the plants by one-dimensional thermofluid analysis and calculates an ability to confine radioactive aerosol particles by transport, deposition, and HEPA filtration. The mathematical models in CELVA-1D were verified by comparison of the calculation with the result of JAERI`s demonstration tests simulating hypothetical fire and explosion accidents in the cell. (author)

  9. Evaluation of Carbon Dioxide Capture From Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Steven [Univ. of North Dakota, Grand Forks, ND (United States); Srinivasachar, Srivats [Envergex LLC, Sturbridge, MA (United States); Laudal, Daniel [Univ. of North Dakota, Grand Forks, ND (United States); Browers, Bruce [Barr Engineering, Minneapolis, MN (United States)

    2014-12-31

    A novel hybrid solid sorbent technology for CO₂ capture and separation from coal combustion-derived flue gas was evaluated. The technology – Capture of CO₂ by Hybrid Sorption (CACHYS™) – is a solid sorbent technology based on the following ideas: 1) reduction of energy for sorbent regeneration, 2) utilization of novel process chemistry, 3) contactor conditions that minimize sorbent-CO₂ heat of reaction and promote fast CO₂ capture, and 4) low-cost method of heat management. This report provides key information developed during the course of the project that includes sorbent performance, energy for sorbent regeneration, physical properties of the sorbent, the integration of process components, sizing of equipment, and overall capital and operational cost of the integrated CACHYS™ system. Seven sorbent formulations were prepared and evaluated at the lab-scale for energy requirements and CO₂ capture performance. Sorbent heat of regeneration ranged from 30-80 kJ/mol CO₂ and was found to be dependent on process conditions. Two sorbent formulations (designated HCK-4 & HCK-7) were down-selected for additional fixed-bed testing. Additional testing involved subjecting the sorbents to 100 continuous cycles in the fixed-bed reactor to determine performance as a function of time. The working capacity achieved for HCK-4 sorbent ranged from 5.5-8.0 g CO₂/100 g sorbent, while the HCK-7 typically ranged from 8.0-10.0 g CO₂/100 g sorbent. Overall, there was no deterioration in capacity with continuous cycling for either sorbent. The CACHYS™ bench-scale testing system designed and fabricated under this award consists of a dual circulating fluidized-bed adsorber and a moving-bed regenerator. The system takes a flue gas slipstream from the University of North Dakota’s coal-fired steam plant. Prior to being sent to the adsorber, the flue gas is scrubbed to remove SO₂ and particulate. During parametric testing of the adsorber, CO₂ capture achieved using

  10. Evaluation of Carbon Dioxide Capture From Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Steven [Univ. of North Dakota, Grand Forks, ND (United States); Srinivasachar, Srivats [Envergex LLC, Sturbridge, MA (United States); Laudal, Daniel [Univ. of North Dakota, Grand Forks, ND (United States); Browers, Bruce [Barr Engineering, Minneapolis, MN (United States)

    2014-12-31

    A novel hybrid solid sorbent technology for CO₂ capture and separation from coal combustion-derived flue gas was evaluated. The technology – Capture of CO₂ by Hybrid Sorption (CACHYS™) – is a solid sorbent technology based on the following ideas: 1) reduction of energy for sorbent regeneration, 2) utilization of novel process chemistry, 3) contactor conditions that minimize sorbent-CO₂ heat of reaction and promote fast CO₂ capture, and 4) low-cost method of heat management. This report provides key information developed during the course of the project that includes sorbent performance, energy for sorbent regeneration, physical properties of the sorbent, the integration of process components, sizing of equipment, and overall capital and operational cost of the integrated CACHYS™ system. Seven sorbent formulations were prepared and evaluated at the lab-scale for energy requirements and CO₂ capture performance. Sorbent heat of regeneration ranged from 30-80 kJ/mol CO₂ and was found to be dependent on process conditions. Two sorbent formulations (designated HCK-4 & HCK-7) were down-selected for additional fixed-bed testing. Additional testing involved subjecting the sorbents to 100 continuous cycles in the fixed-bed reactor to determine performance as a function of time. The working capacity achieved for HCK-4 sorbent ranged from 5.5-8.0 g CO₂/100 g sorbent, while the HCK-7 typically ranged from 8.0-10.0 g CO₂/100 g sorbent. Overall, there was no deterioration in capacity with continuous cycling for either sorbent. The CACHYS™ bench-scale testing system designed and fabricated under this award consists of a dual circulating fluidized-bed adsorber and a moving-bed regenerator. The system takes a flue gas slipstream from the University of North Dakota’s coal-fired steam plant. Prior to being sent to the adsorber, the flue gas is scrubbed to remove SO₂ and particulate. During parametric testing of the adsorber, CO₂ capture achieved using

  11. Distribution and potential sources of polycyclic aromatic hydrocarbons in soils around coal-fired power plants in South Africa.

    Science.gov (United States)

    Okedeyi, Olumuyiwa O; Nindi, Mathew M; Dube, Simiso; Awofolu, O R

    2013-03-01

    The distribution and potential sources of 15 polycyclic aromatic hydrocarbons (PAHs) in soils in the vicinity of three South African coal-fired power plants were determined by gas chromatography-mass spectrometry. PAH compound ratios such as phenanthrene/phenanthrene + anthracene (Phen/Phen + Anth) were used to provide reliable estimation of emission sources. The total PAH concentration in the soils around three power plants ranged from 9.73 to 61.24 μg g(-1), a range above the Agency for Toxic Substances and Disease Registry levels of 1.0 μg g(-1) for significantly contaminated site. Calculated values of Phen/Phen + Anth ratio were 0.48 ± 0.08, 0.44 ± 0.05, and 0.38 + 0.04 for Matla, Lethabo, and Rooiwal, respectively. Flouranthene/fluoranthene + pyrene (Flan/Flan + Pyr) were found to be 0.49 ± 0.03 for Matla, 0.44 ± 0.05 for Lethabo, and 0.53 ± 0.08 for Rooiwal. Such values indicate a pyrolytic source of PAHs. Higher molecular weight PAHs (five to six rings) were predominant, suggesting coal combustion sources. A good correlation existed between most of the PAHs implying that these compounds were emitted from similar sources. The carcinogenic potency B[a]P equivalent concentration (B[a] Peq) at the three power plants ranged from 3.61 to 25.25 indicating a high carcinogenic burden. The highest (B[a] Peq) was found in samples collected around Matla power station. It can therefore be concluded that the soils were contaminated with PAHs originating from coal-fired power stations.

  12. Development of an exposure system for the toxicological evaluation of particles derived from coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Pablo A. Ruiz; Tarun Gupta; Choong-Min Kang; Joy E. Lawrence; Stephen T. Ferguson; Jack M. Wolfson; Annette C. Rohr; Petros Koutrakis [Harvard School of Public Health, Boston, MA (United States). Exposure, Epidemiology, and Risk Program, Department of Environmental Health

    2007-06-15

    To investigate the toxicity of particles originating from coal-fired power plants it is necessary to consider the effects of both primary particles and secondary components formed in the air through atmospheric reactions. This report describes a new exposure system that can be used to expose animals to both directly emitted particles and to secondary particles. The system consists of three main components. The first is a sampling system to continuously collect and dilute power plant stack emissions. The second is a reaction laboratory that contains reaction chambers to simulate atmospheric reactions. The following atmospheric reactions were simulated: (1) the oxidation of sulfur dioxide to form sulfuric acid, (2) the neutralization of sulfuric acid by ammonia, and (3) the reaction of -pinene with ozone to form secondary organic aerosol. Using these chambers with the diluted emissions, different typical atmospheric scenarios can be simulated. The final component is a mobile toxicology laboratory where animals are exposed to the resulting test aerosols. We report here the characteristics of the test aerosol exposures obtained at a coal-fired electric power plant. Particle exposures were characterized for concentrations of mass, elements, elemental carbon, organic species, inorganic ions, strong acidity, particle number, and size distributions. Mass concentrations ranged from a few micrograms per cubic meter for a scenario of primary emissions only, to about 250 {mu}g m{sup 3} for the most complex scenario. We show that the different scenarios produced a large variation in the composition of the test aerosol, thus potentially changing the toxicity of the emissions.

  13. Development and evaluation of a photochemical chamber to examine the toxicity of coal-fired power plant emissions

    Energy Technology Data Exchange (ETDEWEB)

    Pablo A. Ruiz; Joy E. Lawrence; Jack M. Wolfson; Stephen T. Ferguson; Tarun Gupta; Choong-Min Kang; Petros Koutrakis [Harvard School of Public Health, Boston, MA (United States). Exposure, Epidemiology, and Risk Program, Department of Environmental Health

    2007-06-15

    When investigating the toxicity of individual particle sources, it is important to consider the contribution of both primary and secondary particles. In this article, we present the design of a new photochemical chamber that can be used to form secondary sulfuric acid particles from diluted coal-fired power plant emissions. The chamber is a relatively small, well-mixed flow reactor that can fit in a mobile reaction laboratory. It produces high concentrations of hydroxyl radical (OH) from the photolysis of ozone (O{sub 3}) in the presence of water vapor. Two chambers were built and tested. A pilot chamber was tested in the laboratory, using mixtures of NO and SO{sub 2} in air, at concentrations that are approximately 100 times lower than those in power plant stack emissions. This chamber was able to oxidize about 20% of the SO{sub 2}, thereby producing 1350 {mu}g m{sup -3} of H{sub 2}SO{sub 4} particles. Further tests showed that increasing O{sub 3} concentrations and residence time increased the H{sub 2}SO{sub 4} production. A field chamber was built subsequently and used in a toxicological study. Diluted coal-fired power plant emissions were introduced in the chamber. Over 19 days of exposure, the chamber, on average, converted 17% of the supplied SO{sub 2} emissions and produced an average of 350 {mu}g m{sup -3} of H{sub 2}SO{sub 4} particles. Particle losses were determined for the pilot chamber, using artificial particles whose size ranged from 50 to 1000 nm. The determined losses ranged from 21 to 42%, with no trend between the amount of particle loss and particle size. Losses for the field chamber, estimated using model calculations, were found to be similar to those of the pilot chamber.

  14. Competitive abilities of three narrowly endemic plant species in experimental neighborhoods along a fire gradient.

    Science.gov (United States)

    Quintana-Ascencio, P F; Menges, E S

    2000-05-01

    We conducted field experiments manipulating lichens, shrubs, and herbs along a time-since-fire gradient and assessing effects on three endemic herbaceous species of Florida scrub: Eryngium cuneifolium, Hypericum cumulicola, and Polygonella basiramia. Responses included seed germination, survival, biomass, and fecundity. Transplants into recently burned patches generally had higher survival, larger biomass, and greater reproductive output than transplants into long-unburned patches. Open areas and sites near oaks frequently were more favorable than sites near Florida rosemary. Ground lichens did not affect germination but increased mortality rate of seedlings. Neighboring small shrubby and herbaceous species did not affect the performance of these species. Of the three species, naturally occurring E. cuneifolium were farthest from large shrubs, and their microhabitats had the least ground lichens and shrubs. Eryngium cuneifolium and H. cumulicola are capable of forming persistent seed banks and their recruitment after fire depends mostly on these dormant seeds. Polygonella basiramia relies on seed dispersal and immediate seed germination to colonize recently burned patches. Management for these species should involve variable fire regimes to allow all three species to persist along with many other scrub endemics.

  15. Fire Area Design of Advanced Pressurized Water Reactor Nuclear Plant%先进压水堆核电厂防火分区设计

    Institute of Scientific and Technical Information of China (English)

    陈闽烽; 张海波

    2014-01-01

    本文主要对先进压水堆核电厂防火分区设计的背景、目标、范围、原则及不同防火空间的特点进行了介绍,列举了重要厂房相关防火分区的设计情况。通过防火分区设计有助于火灾情况下保证安全相关设备的功能和人员的安全,提高了核电厂的总体防火安全水平。%This paper introduces the fire area design of advanced pressurized water reactor nuclear plant about background, objectives, scope, principles and characteristics of different fire area, and cites the fire area design of some important buildings. Through the design of fire area to help ensure the safety related equipment and personnel under fire and raise the overal level of fire safety in nuclear power plants.

  16. Methodology for developing and implementing alternative temperature-time curves for testing the fire resistance of barriers for nuclear power plant applications

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, L.Y.; Steckler, K.D.

    1996-08-01

    Advances in fire science over the past 40 years have offered the potential for developing technically sound alternative temperature-time curves for use in evaluating fire barriers for areas where fire exposures can be expected to be significantly different than the ASTM E-119 standard temperature-time exposure. This report summarizes the development of the ASTM E-119, standard temperature-time curve, and the efforts by the federal government and the petrochemical industry to develop alternative fire endurance curves for specific applications. The report also provides a framework for the development of alternative curves for application at nuclear power plants. The staff has concluded that in view of the effort necessary for the development of nuclear power plant specific temperature-time curves, such curves are not a viable approach for resolving the issues concerning Thermo-Lag fire barriers. However, the approach may be useful to licensees in the development of performance-based fire protection methods in the future.

  17. The effects of seed ingestion by livestock, dung fertilization, trampling, grass competition and fire on seedling establishment of two woody plant species.

    Directory of Open Access Journals (Sweden)

    Julius Tjelele

    Full Text Available The increasing rate of woody plant encroachment in grasslands or savannas remains a challenge to livestock farmers. The causes and control measures of woody plant encroachment are of common interest, especially where it negatively affects the objectives of an agricultural enterprise. The objectives of this study were to determine the effects of gut passage (goats, cattle, dung (nutrients, fire, grass competition and trampling on establishment of A. nilotica and D. cinerea seedlings. Germination trials were subjected to the following treatments: 1 seed passage through the gut of cattle and goats and unpassed/ untreated seeds (i.e. not ingested, 2 dung and control (no dung, 3 grass and control (mowed grass, 4 fire and control (no fire, 5 trampling and control (no trampling. The interaction of animal species, grass and fire had an effect on seedling recruitment (P < 0.0052. Seeds retrieved from goats and planted with no grass and with fire (6.81% ± 0.33 had a significant effect on seedling recruitment than seeds retrieved from goats and planted with grass and no fire (2.98% ± 0.33. Significantly more D. cinerea and A. nilotica seeds germinated following seed ingestion by goats (3.59% ± 0.16 than cattle (1.93% ± 0.09 and control or untreated seeds (1.69% ± 0.11. Less dense grass cover, which resulted in reduced grass competition with tree seedlings for light, space and water, and improved seed scarification due to gut passage were vital for emergence and recruitment of Acacia seedlings. These results will contribute considerably to the understanding of the recruitment phase of woody plant encroachment.

  18. Pertinence of tests used for conformity assessments of fire resistance of nuclear power plant components. Opinion of several institutions in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Bruynooghe, Christiane [European Commission, DG-JRC, Petten (Netherlands). Inst. for Energy - Nuclear Operation Safety; Hostikka, Simo [VTT Technical Research Centre of Finland (Finland); Maillet, Eric [SUEZ-TRACTEBEL Engineering (GDF SUEZ), Brussels (Belgium); Neugebauer, Wilfried [AREVA NP GmbH, Erlangen (Germany); Richard, Jerome [IRSN, 92 - Fontenay-aux-Roses (France); Roewekamp, Marina [GRS mbH, Koeln (Germany); Zdenek, Tipek [State Office for Nuclear Safety (SUJB), Prague (Czech Republic)

    2010-04-15

    Fire resistance of structures, systems and components (SSC) is widely identified as a fundamental issue for fire risk assessment at nuclear power plants (NPP). It is currently supported by several national or international ambitious experimental programs. Fire risk assessment at NPPs is performed under a series of hypothesis, e.g. the fire load. A problem will arise if tests used for conformity assessment do not appropriately represent the hypothesis selected during the fire risk analysis. In this case, SSCs may possibly be not meeting the expectations related to their fire resistance capacity supposed by the fire risk analysis. Ways of tackling this issue involve a regulatory approach and adapted requirements for components. While the widespread regulatory approach consists in seeking enveloping scenarios and conservative assumptions, a better knowledge of SSCs behaviour under for NPPs typical situations may be also desirable. The Institute for Energy of the European Commission's Joint Research Centre (JRC) at Petten (NL) launched a questionnaire with the aim of gathering opinions of regulatory bodies and their technical support organisations and manufacturers in Europe on this topic. Major goal was to estimate the relevance of the issue according to the perception of the specialists. The present paper collects the answers given by seven entities (AREVA, GRS, iBMB, IRSN, SJUB, SUEZ-TRACTEBEL, and VTT) and makes suggestions for addressing the issues identified by the participants. (orig.)

  19. Occupational Exposure at a Contemplated Belarussian Power Plant Fired with Contaminated Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, K.G.; Fogh, C.L.; Roed, J

    1999-07-01

    To meet the current demand in Belarus for remediation of the vast forest areas that were contaminated by the Chernobyl accident and at the same time establish a much needed energy production, applying contaminated forest biomass as fuel in special power plants is being considered. This paper focuses on the radiation doses that may be received by workers at such a power plant. By Monte Carlo modelling based on a Danish biofuel power plant design it was found that the highest dose rates within the power plant would be those to people standing near the fly ash silo, bottom ash containers and so-called 'big bags' filled with fly ash waste. Inhalation doses were estimated to be low. External doses received while working at the power plant do not appear to be highly significant compared with the doses from environmental contamination in the area where the power plant is expected to be constructed. (author)

  20. GNOCIS - an on-line NO{sub X} emission and plant performance optimizer for fossil fuel-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Sorge, J.N.; Stallings, J.W.; Smouse, S.M. [Southern Company Services, Inc., Birmingham, AL (United States)

    1997-12-31

    The Generic NO{sub x} Control Intelligent System (GNOCIS) is an on-line enhancement to existing digital control systems (DCS) designed to reduce NO{sub x} emissions from fossil fuel-fired boilers while meeting other operational constraints on the unit (principally heat rate and other regulated emissions). Using artificial intelligence techniques, GNOCIS utilizes a model of the combustion characteristics of the boiler that includes NO{sub x} emissions and boiler efficiency. The software applies an optimizing procedure to identify the best set points for the plant, which can be implemented automatically without operator intervention in a closed-loop mode, or at the plant`s discretion, conveyed to the plant operators for implementation in an open-loop mode. GNOCIS can be viewed as a low-cost long-term means to maintain short-term optimized plant performance. Development of GNOCIS was funded by a consortium consisting of the Electric Power Research Institute, PowerGen, Radian International, Southern Company, U.K. Department of Trade and Industry, and U.S. Department of Energy. The first commercial installation of GNOCIS was at Georgia Power`s Hammond Unit 4, a 500 MW opposed wallfired boiler. Hammond Unit 4 serves as the host site of a U.S. Department of Energy Clean Coal Technology (CCT) Program project, wherein a stepwise long-term evaluation of three technologies to reduce NO{sub x} emissions was conducted: (1) Advanced Overfire Air (AOFA), (2) Low NO{sub x} Burners (LNB), and (3) LNB + AOFA. A general overview of the CCT project and GNOCIS technology is presented along with performance results from Plant Hammond. Preliminary GNOCIS data from Hammond Unit 4 show an efficiency gain of 0.5 percent, a reduction in fly ash loss-on-ignition of 1-3 percentage points, and NO{sub x} reduction of 10-15 percent at full load. 7 refs., 10 figs., 5 tabs.

  1. Plasma coatings against corrosion and abrasion on pipes and panels at coal-fired power plants, biomass- and waste incinerating plants; Plasmaspritzschichten gegen Korrosion und Verschleiss auf Dampferzeugerrohren in Kohlekraftwerken, Biomasse- und Muellheizkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Balting, U. [Ingenieurbuero co.balt, Emmerich (Germany); Haeuser, B. [Haeuser und Co. GmbH, Duisburg (Germany); Weber, T. [Wall Colmonoy Ltd., Swansea (United Kingdom)

    2006-07-01

    In today's steam generators which are applied in conventionally fired coal power plants, as well as in waste incineration plants, wear and corrosion are of major concern. These problems are successfully combated by enhancing the steam parameters. Applied material solutions lead to higher plant efficiencies. Protective layers on heat exchanger surfaces which proved to be successful are deposited by APS (atmospheric plasma spraying). (orig.)

  2. Humid Air Turbine as a Primary Link of a Coal-Fired Steam Power Plant

    Directory of Open Access Journals (Sweden)

    Jan T. Szargut

    2000-06-01

    Full Text Available Outlet gases of the humid air turbine (having a temperature of about 125 oC and great content of steam can be used for the preheating of feed water of the steam power plant fueled with coal. So the efficiency of the plant can be increased and its ecological indices can be improved. The attainable incremental efficiency of the humid air turbine and the increased efficiency of the combined plant has been determined for three variants of the repowering of an existing steam power plant. The variant presented in Figure 4 is recommended for practical application.

  3. Distribution and Fate of Mercury in Pulverized Bituminous Coal-Fired Power Plants in Coal Energy-Dominant Huainan City, China.

    Science.gov (United States)

    Chen, Bingyu; Liu, Guijian; Sun, Ruoyu

    2016-05-01

    A better understanding on the partitioning behavior of mercury (Hg) during coal combustion in large-scale coal-fired power plants is fundamental for drafting Hg-emission control regulations. Two large coal-fired utility boilers, equipped with electrostatic precipitators (ESPs) and a wet flue gas desulfurization (WFGD) system, respectively, in coal energy-dominant Huainan City, China, were selected to investigate the distribution and fate of Hg during coal combustion. In three sampling campaigns, we found that Hg in bottom ash was severely depleted with a relative enrichment (RE) index coal. We estimated that Hg emissions in all Huainan coal-fired power plants varied from 1.8 Mg in 2003 to 7.3 Mg in 2010.

  4. Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants.

    Science.gov (United States)

    Supekar, Sarang D; Skerlos, Steven J

    2015-10-20

    This paper examines thermal efficiency penalties and greenhouse gas as well as other pollutant emissions associated with pulverized coal (PC) power plants equipped with postcombustion CO2 capture for carbon sequestration. We find that, depending on the source of heat used to meet the steam requirements in the capture unit, retrofitting a PC power plant that maintains its gross power output (compared to a PC power plant without a capture unit) can cause a drop in plant thermal efficiency of 11.3-22.9%-points. This estimate for efficiency penalty is significantly higher than literature values and corresponds to an increase of about 5.3-7.7 US¢/kWh in the levelized cost of electricity (COE) over the 8.4 US¢/kWh COE value for PC plants without CO2 capture. The results follow from the inclusion of mass and energy feedbacks in PC power plants with CO2 capture into previous analyses, as well as including potential quality considerations for safe and reliable transportation and sequestration of CO2. We conclude that PC power plants with CO2 capture are likely to remain less competitive than natural gas combined cycle (without CO2 capture) and on-shore wind power plants, both from a levelized and marginal COE point of view.

  5. Mercury speciation and its emissions from a 220 MW pulverized coal-fired boiler power plant in flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.H.; Zhuo, Y.Q.; Duan, Y.F.; Chen, L.; Yang, L.G.; Zhang, L.A.; Jiang, Y.M.; Xu, X.C. [Southeast University, Nanjing (China). Thermoenergy Engineering Research Institute

    2007-07-15

    Distributions of mercury speciation of Hg{sup 0}, Hg{sup 2+} and Hg{sup P} in flue gas and fly ash were sampled by using the Ontario Hydro Method in a 220 MW pulverized coal-fired boiler power plant in China. The mercury speciation was varied greatly when flue gas going through the electrostatic precipitator (ESP). The mercury adsorbed on fly ashes was found strongly dependent on unburnt carbon content in fly ash and slightly on the particle sizes, which implies that the physical and chemical features of some elemental substances enriched to fly ash surface also have a non-ignored effect on the mercury adsorption. The concentration of chlorine in coal, oxygen and NOx in flue gas has a positive correlation with the formation of the oxidized mercury, but the sulfur in coal has a positive influence on the formation of elemental mercury.

  6. Occupational exposure to gases, polycyclic aromatic hydrocarbons and volatile organic compounds in biomass-fired power plants.

    Science.gov (United States)

    Jumpponen, M; Rönkkömäki, H; Pasanen, P; Laitinen, J

    2013-01-01

    The combustion of fuels produces air pollutants in the form of gases, organic compounds, and particulate matter. However, although the environmental aspect of these agents has been examined, workers' exposure to them is still a neglected issue. The purpose of this study was to measure maintenance and ash removal workers' multiple exposures to gases, volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) during their work tasks in biomass-fired power plants. Our hygienic measurements revealed that carbon monoxide, nitric oxide, ammonia and sulfur dioxide were the most common gases that the workers were exposed to during their tasks. Their average concentrations were 0.45 ppm, 0.06 ppm, 0.11 ppm and 0.42 ppm, respectively. Phenanthrene and naphthalene were the most prominent PAHs. At the same sampling points, the most commonly found VOCs were aromatic and aliphatic hydrocarbons and turpentines. The calculated total PAH concentrations were less than 7% of benzo[a]pyrene's eight-hour occupational exposure limit, and the total VOC concentrations were below the Finnish reference value for the normal industrial level in all measured work tasks. The most evident health effect caused by multiple exposures to gases was upper respiratory track irritation, followed by the disruption of oxygen transport, and finally central nervous system disorders. We recommend powered air respirators with ABEK+P3 cartridges and carbon monoxide gas detectors as the minimum requirement for those working inside biomass-fired power plant boilers, and compressed air breathing apparatus as the best form of protection.

  7. Fireside Corrosion Behavior of HVOF and Plasma-Sprayed Coatings in Advanced Coal/Biomass Co-Fired Power Plants

    Science.gov (United States)

    Hussain, T.; Dudziak, T.; Simms, N. J.; Nicholls, J. R.

    2013-06-01

    This article presents a systematic evaluation of coatings for advanced fossil fuel plants and addresses fireside corrosion in coal/biomass-derived flue gases. A selection of four candidate coatings: alloy 625, NiCr, FeCrAl and NiCrAlY were deposited onto superheaters/reheaters alloy (T91) using high-velocity oxy-fuel (HVOF) and plasma spraying. A series of laboratory-based fireside corrosion exposures were carried out on these coated samples in furnaces under controlled atmosphere for 1000 h at 650 °C. The tests were carried out using the "deposit-recoat" test method to simulate the environment that was anticipated from air-firing 20 wt.% cereal co-product mixed with a UK coal. The exposures were carried out using a deposit containing Na2SO4, K2SO4, and Fe2O3 to produce alkali-iron tri-sulfates, which had been identified as the principal cause of fireside corrosion on superheaters/reheaters in pulverized coal-fired power plants. The exposed samples were examined in an ESEM with EDX analysis to characterize the damage. Pre- and post-exposure dimensional metrologies were used to quantify the metal damage in terms of metal loss distributions. The thermally sprayed coatings suffered significant corrosion attack from a combination of aggressive combustion gases and deposit mixtures. In this study, all the four plasma-sprayed coatings studied performed better than the HVOF-sprayed coatings because of a lower level of porosity. NiCr was found to be the best performing coating material with a median metal loss of ~87 μm (HVOF sprayed) and ~13 μm (plasma sprayed). In general, the median metal damage for coatings had the following ranking (in the descending order: most to the least damage): NiCrAlY > alloy 625 > FeCrAl > NiCr.

  8. On design of fire-fighting water-supply system in coal preparation plants%选煤厂消防给水系统设计探讨

    Institute of Scientific and Technical Information of China (English)

    宋晓娟; 王俊

    2012-01-01

    根据《煤规》《选规》及《建规》中对选煤厂消防给水系统的有关规定,通过对选煤厂室内和室外消防用水量、选煤厂消防体制及管网布置进行了分析,针对选煤厂消防给水系统设计中存在的问题,提出了个人见解,以期指导实践。%According to the relative regulation on the fire-fighting water-supply system in the coal preparation plants in the Regulation for Coal,the Regulation for Coal Preparation and the Regulation for the Construction,the paper analyzes the volumes of the outdoor and indoor fire-fighting water in the coal preparation plants,the fire-fighting system for the coal selection plants,and the allocation for the pipe network,and points out own opinions for the problems in the design for the fire-fighting water-supply system in the coal preparation plants,so as to direct the practice.

  9. Ozone Monitoring Instrument Observations of Interannual Increases in SO2 Emissions from Indian Coal-fired Power Plants During 2005-2012

    Science.gov (United States)

    Lu, Zifeng; Streets, David D.; de Foy, Benjamin; Krotkov, Nickolay A.

    2014-01-01

    Due to the rapid growth of electricity demand and the absence of regulations, sulfur dioxide (SO2) emissions from coal-fired power plants in India have increased notably in the past decade. In this study, we present the first interannual comparison of SO2 emissions and the satellite SO2 observations from the Ozone Monitoring Instrument (OMI) for Indian coal-fired power plants during the OMI era of 2005-2012. A detailed unit-based inventory is developed for the Indian coal-fired power sector, and results show that its SO2 emissions increased dramatically by 71 percent during 2005-2012. Using the oversampling technique, yearly high-resolution OMI maps for the whole domain of India are created, and they reveal a continuous increase in SO2 columns over India. Power plant regions with annual SO2 emissions greater than 50 Gg year-1 produce statistically significant OMI signals, and a high correlation (R equals 0.93) is found between SO2 emissions and OMI-observed SO2 burdens. Contrary to the decreasing trend of national mean SO2 concentrations reported by the Indian Government, both the total OMI-observed SO2 and average SO2 concentrations in coal-fired power plant regions increased by greater than 60 percent during 2005-2012, implying the air quality monitoring network needs to be optimized to reflect the true SO2 situation in India.

  10. Deactivation of V2O5-WO3-TiO2 SCR catalyst at a biomass-fired combined heat and power plant

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Anker; Johnsson, Jan Erik

    2005-01-01

    The deactivation of a commercial type V2O5-WO3-TiO2 monolith catalyst under biomass combustion was studied at a full-scale grate-fired power plant burning straw/wood using a slip stream pilot scale reactor. The aerosols in the flue gas consisted of a mixture of potassium chloride and sulphate. Th...

  11. Renew, reduce or become more efficient? The climate contribution of biomass co-combustion in a coal-fired power plant

    NARCIS (Netherlands)

    Miedema, Jan H.; Benders, Rene M. J.; Moll, Henri C.; Pierie, Frank

    2017-01-01

    Within this paper, biomass supply chains, with different shares of biomass co-combustion in coal fired power plants, are analysed on energy efficiency, energy consumption, renewable energy production, and greenhouse gas (GHG) emissions and compared with the performance of a 100% coal supply chain

  12. A study of toxic emissions from a coal-fired power plant utilizing an ESP/wet FGD system. Final report, Volume 2 of 2 - appendices

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This volume contains the appendices for a coal-fired power plant toxic emissions study. Included are Process data log sheets from Coal Creek, Auditing information, Sampling protocol, Field sampling data sheets, Quality assurance/quality control, Analytical protocol, and Uncertainty analyses.

  13. Renew, reduce or become more efficient? The climate contribution of biomass co-combustion in a coal-fired power plant

    NARCIS (Netherlands)

    Miedema, Jan H.; Benders, Rene M. J.; Moll, Henri C.; Pierie, Frank

    2017-01-01

    Within this paper, biomass supply chains, with different shares of biomass co-combustion in coal fired power plants, are analysed on energy efficiency, energy consumption, renewable energy production, and greenhouse gas (GHG) emissions and compared with the performance of a 100% coal supply chain sc

  14. Life assessment and emissions monitoring of Indian coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    At the request of the Pittsburgh Energy Technology Center (PETC) of the United States Department of Energy (USDOE), the traveler, along with Dr. R. P. Krishnan, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee spent three weeks in India planning and performing emissions monitoring at the coal-fired Vijayawada Thermal Power Station (VTPS). The coordination for the Indian participants was provided by BHEL, Trichy and CPRI, Bangalore. The trip was sponsored by the PETC under the United States Agency for International Development (USAID)/Government of India (GOI)P Alternate Energy Resources Development (AERD) Project. The AERD Project is managed by PETC, and ORNL is providing the technical coordination and support for four coal projects that are being implemented with BHEL, Trichy. The traveler, after briefing the USAID mission in New Delhi visited BHEL, Trichy and CPRI, Bangalore to coordinate and plan the emissions test program. The site selection was made by BHEL, CPRI, TVA, and PETC. Monitoring was performed for 4 days on one of the 4 existing 210 MW coal-fired boilers at the VTPS, 400 km north of Madras, India.

  15. Life assessment and emissions monitoring of Indian coal-fired power plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    At the request of the Pittsburgh Energy Technology Center (PETC) of the United States Department of Energy (USDOE), the traveler, along with Dr. R. P. Krishnan, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee spent three weeks in India planning and performing emissions monitoring at the coal-fired Vijayawada Thermal Power Station (VTPS). The coordination for the Indian participants was provided by BHEL, Trichy and CPRI, Bangalore. The trip was sponsored by the PETC under the United States Agency for International Development (USAID)/Government of India (GOI)P Alternate Energy Resources Development (AERD) Project. The AERD Project is managed by PETC, and ORNL is providing the technical coordination and support for four coal projects that are being implemented with BHEL, Trichy. The traveler, after briefing the USAID mission in New Delhi visited BHEL, Trichy and CPRI, Bangalore to coordinate and plan the emissions test program. The site selection was made by BHEL, CPRI, TVA, and PETC. Monitoring was performed for 4 days on one of the 4 existing 210 MW coal-fired boilers at the VTPS, 400 km north of Madras, India.

  16. An 800-year fire history

    Science.gov (United States)

    Stanley G. Kitchen

    2010-01-01

    "Fire in the woods!" The words are a real heart stopper. Yet in spite of its capacity to destroy, fire plays an essential role in shaping plant communities. Knowledge of the patterns of fire over long time periods is critical for understanding this role. Trees often retain evidence of nonlethal fires in the form of injuries or scars in the annual growth rings...

  17. Technical and economical optimisation potential for FGD plants in coal-fired power stations

    Energy Technology Data Exchange (ETDEWEB)

    Hensel, Christian; Brueggendick, Hermann [Evonik Energy Services GmbH, Essen (Germany). Dept. Plant and Process Engineering

    2011-07-01

    Evonic Steag's flue gas desulphurisation plants (FGD) are being operated differently in the Ruhr area and Saarland. While the Ruhrgebiet FGDs run with quicklime, the Saar plants use limestone. The higher CO{sub 2} emissions caused by quicklime might have to be taken into economic consideration if the lime industry will be involved into the European CO{sub 2} emission trading scheme as of 2013. Therefore, it is asked whether it was worth for the Ruhrgebiet plants to switch from quicklime to limestone as sorbent in FGD and whether such a step would be technically feasible. (orig.)

  18. The influence of plant extracts on growth of Erwinia amylovora - the causal agent of fire blight

    Directory of Open Access Journals (Sweden)

    Grzegorz Krupiński

    2013-12-01

    Full Text Available Ethanol and water extracts obtained on Soxhlet apparatus from various organs and parts (leaves, flowers, shoots, onion, bark, fruit of 30 herbal and woody plants species were tested for growth inhibition of Erwinia amylovora using agar diffusion method. Active extracts were found in 23 plant species but in 13 ofthem it was found for the first time. The highest diameter of growth inhibition zone of this bacterium was caused by extracts from Aloe arborescens, Juglans regia, Rhus typhina, Salvia offici nalis and Satureja hortensis. In almost all cases ethanol appeared to be a better solvent of active plant substances against E.amylovora than water.

  19. Application of simulation codes in the optimization of the design of fire protection at nuclear power plants; Aplicacion de codigos de simulacion en la optimizacion del diseno de la proteccion contra incendios en centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Amezcua, V.

    2011-07-01

    The evolution of fire protection codes and standards has permitted the use of fire simulation tools for design and optimization of fire protection solution, as an alternative to the traditional deterministic approach. This alternative results in a more flexible design, suiting the solution to the real conditions and risks. In this context, Empresarios Agrupados (EEAA) is carrying out a project jointly with the CSN (the Spanish Nuclear Safety Council), in the area of fire modelling and simulation, aimed for developing a method for the reliable application of the fire simulation models to nuclear power plants scenarios. (Author)

  20. High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010

    Science.gov (United States)

    Liu, F.; Zhang, Q.; Tong, D.; Zheng, B.; Li, M.; Huo, H.; He, K. B.

    2015-12-01

    This paper, which focuses on emissions from China's coal-fired power plants during 1990-2010, is the second in a series of papers that aims to develop a high-resolution emission inventory for China. This is the first time that emissions from China's coal-fired power plants were estimated at unit level for a 20-year period. This inventory is constructed from a unit-based database compiled in this study, named the China coal-fired Power plant Emissions Database (CPED), which includes detailed information on the technologies, activity data, operation situation, emission factors, and locations of individual units and supplements with aggregated data where unit-based information is not available. Between 1990 and 2010, compared to a 479 % growth in coal consumption, emissions from China's coal-fired power plants increased by 56, 335, and 442 % for SO2, NOx, and CO2, respectively, and decreased by 23 and 27 % for PM2.5 and PM10 respectively. Driven by the accelerated economic growth, large power plants were constructed throughout the country after 2000, resulting in a dramatic growth in emissions. The growth trend of emissions has been effectively curbed since 2005 due to strengthened emission control measures including the installation of flue gas desulfurization (FGD) systems and the optimization of the generation fleet mix by promoting large units and decommissioning small ones. Compared to previous emission inventories, CPED significantly improved the spatial resolution and temporal profile of the power plant emission inventory in China by extensive use of underlying data at unit level. The new inventory developed in this study will enable a close examination of temporal and spatial variations of power plant emissions in China and will help to improve the performances of chemical transport models by providing more accurate emission data.

  1. The 2016 Al-Mishraq sulphur plant fire: source and risk area estimation

    CERN Document Server

    Björnham, Oscar; von Schoenberg, Pontus; Waleij, Annica; Liljedahl, Birgitta; Brännström, Niklas

    2016-01-01

    On October 20:th 2016, Daesh (Islamic State) set fire to the sulphur production site Al-Mishraq as the battle of Mosul became more intense. A huge plume of toxic sulphur dioxide and hydrogen sulphide caused comprising casualties. The intensity of the release was reaching levels of minor volcanic eruptions which was observed by several satellites. By investigation of the measurement data from the MetOp-A, MetOp-B, Aura, and Meteosat-10 satellites we have estimated the time-dependent source term for sulphur dioxide which in total amounted to 271 kton released into the atmosphere during six days. The long-range dispersion model PELLO was utilized to simulate the atmospheric transport over the Middle East. The ground-level concentrations predicted by the simulation were validated against observation from the Turkey National Air Quality Monitoring Network. Finally, the simulation data provided an estimate of the risk area using a probit analysis.

  2. Analysis of the behaviour of biofuel-fired gas turbine power plants

    Directory of Open Access Journals (Sweden)

    Escudero Marcos

    2012-01-01

    Full Text Available The utilisation of biofuels in gas turbines is a promising alternative to fossil fuels for power generation. It would lead to a significant reduction of CO2 emissions using an existing combustion technology, although considerable changes appear to be required and further technological development is necessary. The goal of this work is to conduct energy and exergy analyses of the behaviour of gas turbines fired with biogas, ethanol and synthesis gas (bio-syngas, compared with natural gas. The global energy transformation process (i.e., from biomass to electricity also has been studied. Furthermore, the potential reduction of CO2 emissions attained by the use of biofuels has been determined, after considering the restrictions regarding biomass availability. Two different simulation tools have been used to accomplish this work. The results suggest a high interest in, and the technical viability of, the use of Biomass Integrated Gasification Combined Cycle (BioIGCC systems for large scale power generation.

  3. Suppression of dust explosions and ignition spots in biomass-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Rautalin, A.

    1995-12-31

    Dust explosion characteristics of forest residue dust both at normal pressure and at elevated initial pressure have been determined in previous studies. These indices give a good base for evaluating the usability of suppression systems to obtain a sufficient level of peritoneal safety in biomass fuel handling equipment. The objectives of this project were to evaluate the usability of suppression systems and to demonstrate dust explosion suppression at elevated initial pressure. Suppression tests at 1 - 20 bar pressure will be carried out in co-operation with CTDD of British Coal, Kiddy Fire Protection and Health and Safety Executive. The tests with coal and biomass dust are scheduled to be started in March 1996 in Great Britain. In the second task of the project, self-ignition properties of forest residue dust and straw dust have been measured in a flow-through system simulating slow drying of the fuel

  4. Sub-atmospheric disk generators for coal-fired MHD/steam combined cycle power plant

    Energy Technology Data Exchange (ETDEWEB)

    Messerle, H.K.; Fang, Y.; Simpson, S.W.; Marty, S.M. (Sydney Univ. (Australia). School of Electrical Engineering)

    1989-01-01

    A coal fired MHD disk generator in a combined cycle MHD/steam power generation system with a diffuser operating at sub-atmospheric pressure is proposed. The effects of pressure on the performance of a radial outflow MHD disk generator and other system components are analysed. Using a previous study as a reference case, preliminary calculations show that, in such a sub-atmospheric system, improved power station efficiency can be achieved. In addition, operation at reduced values of magnetic field strength would be feasible. Calculations have also been carried out for a 30 MW{sub th} experimental disk generator operating at reduced pressure with a magnetic field strength of 2 T. Flow conditions at sub-atmospheric pressure would provide an improved simulation of a full-scale generator operating at normal pressures. (author).

  5. Comprehensive assessment of toxic emissions from coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The 1990 Clean Air Act Amendments (CAAA) have two primary goals: pollution prevention and a market-based least-cost approach to emission control. To address air quality issues as well as permitting and enforcement, the 1990 CAAA contain 11 sections or titles. The individual amendment titles are as follows: Title I - National Ambient Air Quality Standards Title II - Mobile Sources Title III - Hazardous Air Pollutants Title IV - Acid Deposition Control Title V - Permits Title VI - Stratospheric Ozone Protection Chemicals Title VII - Enforcement Title VIII - Miscellaneous Provisions Title IX - Clean Air Research Title X - Disadvantaged Business Concerns Title XI - Clean Air Employment Transition Assistance Titles I, III, IV, and V will change or have the potential to change how operators of coal-fired utility boilers control, monitor, and report emissions. For the purpose of this discussion, Title III is the primary focus.

  6. Suppression of dust explosions and ignition spots in biomass- fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Rautalin, A. [VTT Energy, Espoo (Finland)

    1997-12-01

    Dust explosion characteristics of forest residue dust both at normal pressure and at elevated initial pressure have been determined in previous studies. These indices give a good base for evaluating the usability of suppression systems to obtain a sufficient level of operational safety in biomass fuel handling equipment. The objectives of this project were to evaluate the usability of suppression systems and to demonstrate dust explosion suppression at elevated initial pressure. Suppression tests at 1 - 20 bar pressure will be carried out in co-operation with CTDD of British Coal, Kiddy Fire Protection and Health and Safety Executive. The tests with coal and biomass dust are scheduled to be started in March 1996 in Great Britain. In the second task of the project, self-ignition properties of forest residue dust and straw dust have been measured in a flow-through system simulating slow drying of the fuel

  7. ASSESSMENT OF LOW COST NOVEL SORBENTS FOR COAL-FIRED POWER PLANT MERCURY CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Sharon Sjostrom

    2004-03-01

    The injection of sorbents upstream of a particulate control device is one of the most promising methods for controlling mercury emissions from coal-fired utility boilers with electrostatic precipitators and fabric filters. Studies carried out at the bench-, pilot-, and full-scale have shown that a wide variety of factors may influence sorbent mercury removal effectiveness. These factors include mercury species, flue gas composition, process conditions, existing pollution control equipment design, and sorbent characteristics. The objective of the program is to obtain the necessary information to assess the viability of lower cost alternatives to commercially available activated carbon for mercury control in coal-fired utilities. Prior to injection testing, a number of sorbents were tested in a slipstream fixed-bed device both in the laboratory and at two field sites. Based upon the performance of the sorbents in a fixed-bed device and the estimated cost of mercury control using each sorbent, seventeen sorbents were chosen for screening in a slipstream injection system at a site burning a Western bituminous coal/petcoke blend, five were chosen for screening at a site burning a subbituminous Powder River Basin (PRB) coal, and nineteen sorbents were evaluated at a third site burning a PRB coal. Sorbents evaluated during the program were of various materials, including: activated carbons, treated carbons, other non-activated carbons, and non-carbon material. The economics and performance of the novel sorbents evaluated demonstrate that there are alternatives to the commercial standard. Smaller enterprises may have the opportunity to provide lower price mercury sorbents to power generation customers under the right set of circumstances.

  8. Low Cost Sorbent for Capturing CO2 Emissions Generated by Existing Coal-fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Jeannine [TDA Research, Inc., Wheat Ridge, CO (United States)

    2013-08-31

    TDA Research, Inc. has developed a novel sorbent based post-combustion CO2 removal technology. This low cost sorbent can be regenerated with low-pressure (ca. 1 atm) superheated steam without temperature swing or pressure-swing. The isothermal and isobaric operation is a unique and advantageous feature of this process. The objective of this project was to demonstrate the technical and economic merit of this sorbent based CO2 capture approach. Through laboratory, bench-scale and field testing we demonstrated that this technology can effectively and efficiently capture CO2 produced at an existing pulverized coal power plants. TDA Research, Inc is developing both the solid sorbent and the process designed around that material. This project addresses the DOE Program Goal to develop a capture technology that can be added to an existing or new coal fired power plant, and can capture 90% of the CO2 produced with the lowest possible increase in the cost of energy. .

  9. The impact of flue gas cleaning technologies in coal-fired power plants on the CCN distribution and cloud properties in Germany

    Science.gov (United States)

    Bangert, M.; Vogel, B.; Junkermann, W.; Brachert, L.; Schaber, K.

    2013-05-01

    Gas-cleaning technologies used in modern coal-fired power plants cause an unintended nucleation of H2SO4 aerosol droplets during the cleaning process. As a result, high concentrations of ultra-fine aerosol droplets are emitted into the atmosphere. In this study, the impact of these emissions on the atmospheric aerosol distribution, on the cloud condensation nuclei number concentration, and consequently on cloud properties is investigated. Therefore, a sophisticated modeling framework is used combining regional simulations of the atmospheric aerosol distribution and its impact on cloud properties with detailed process simulations of the nucleation during the cleaning process inside the power plant. Furthermore, the simulated aerosol size distributions downwind of the coal-fired power plants are compared with airborne aerosol measurements performed inside the plumes.

  10. An evaluation of the impact of Melaleuca quinquenervia invasion and managment on plant community structure after fire.

    Science.gov (United States)

    The successful management of invasive species can be particularly difficult in natural areas that depend on disturbances such as fire to maintain community structure and function. In these systems, fire-adapted invasive species may disproportionally benefit from post-fire resource availability, inc...

  11. Dioxin emissions from biomass fired energy plants and other sources in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Schleicher, O.; Jensen, A.A.; Blinksbjerg, P.; Thomsen, E.; Schilling, B.

    2003-07-01

    This paper presents results from a new Danish investigation of emissions of dioxins (PCDD) and furans (PCDF) from various sources carried out for the Danish EPA. The purpose was to investigate smaller sources (in size or emission), for which the knowledge of the PCDD/F emissions was low or missing. The sources were: Five biomass plants (> 1 MW) using straw, wood and chip board residue, a farm size boiler (> 1 MW) using straw, a wood stove during wood pellets, and three district heating plants (> 1 MW) using waste oil. In addition, measurements were made of emissions from barbecuing, and cremation of corpses in two crematories. (Author) 5 refs.

  12. Biomass co-firing

    DEFF Research Database (Denmark)

    Yin, Chungen

    2013-01-01

    Co-firing biomass with fossil fuels in existing power plants is an attractive option for significantly increasing renewable energy resource utilization and reducing CO2 emissions. This chapter mainly discusses three direct co-firing technologies: pulverized-fuel (PF) boilers, fluidized-bed combus......Co-firing biomass with fossil fuels in existing power plants is an attractive option for significantly increasing renewable energy resource utilization and reducing CO2 emissions. This chapter mainly discusses three direct co-firing technologies: pulverized-fuel (PF) boilers, fluidized......-bed combustion (FBC) systems, and grate-firing systems, which are employed in about 50%, 40% and 10% of all the co-firing plants, respectively. Their basic principles, process technologies, advantages, and limitations are presented, followed by a brief comparison of these technologies when applied to biomass co...

  13. Biomass co-firing

    DEFF Research Database (Denmark)

    Yin, Chungen

    2013-01-01

    Co-firing biomass with fossil fuels in existing power plants is an attractive option for significantly increasing renewable energy resource utilization and reducing CO2 emissions. This chapter mainly discusses three direct co-firing technologies: pulverized-fuel (PF) boilers, fluidized-bed combus......Co-firing biomass with fossil fuels in existing power plants is an attractive option for significantly increasing renewable energy resource utilization and reducing CO2 emissions. This chapter mainly discusses three direct co-firing technologies: pulverized-fuel (PF) boilers, fluidized......-bed combustion (FBC) systems, and grate-firing systems, which are employed in about 50%, 40% and 10% of all the co-firing plants, respectively. Their basic principles, process technologies, advantages, and limitations are presented, followed by a brief comparison of these technologies when applied to biomass co...

  14. Growth responses of selected freshwater algae to trace elements and scrubber ash slurry generated by coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Vocke, R.W.

    1979-01-01

    The development and implementation of standard toxicity tests is a necessity if consistent and reliable data are to be obtained for water quality criteria. The adapted EPA AAPBT is an ideal static algal toxicity test system. The algal test medium has a chemical composition similar to natural unpolluted waters of low ionic strength. It is appropriate to use MATC water quality criteria when assessing the potential impact of pollutants generated by coal-fired power stations because these energy-generated pollutants typically enter aquatic systems in small quantities over long periods. The MATC water quality criteria are estimates of trace element and SASE levels, based on the most sensitive alga investigated, that will not cause significant changes in naturally-functioning algal populations. These levels are 0.016f mg L/sup -1/ As(V), 0.001 mg L/sup -1/ Cd(II), 0.004 mg L/sup -1/ Hg(II), 0.006 mg L/sup -1/ Se(VI), and 0.344% SASE. To provide viable working water quality criteria, an extrapolation from the laboratory to the natural environment must be made. Therefore, those oxidation states of the trace elements were selected which are the dominant states occurring in natural, unpolluted, slightly alkaline freshwaters. It must be pointed out that these MATC values are based on algal responses to single toxicants and no allowance is made for synergistic, additive, or antagonistic relationships which could occur in natural aquatic systems. Additionally, natural chelation may influence toxicity. The highly toxic nature of potential pollutants from coal-fired generating plants emphasizes the need for minimizing stack effluent pollutants and retaining scrubber ash slurry for proper disposal in an effort to maintain trace elements in concentration ranges compatible with naturally-functioning ecosystems.

  15. Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163T and comparative genomic insights into plant pathogenicity

    Directory of Open Access Journals (Sweden)

    Frey Jürg E

    2010-01-01

    Full Text Available Abstract Background Erwinia pyrifoliae is a newly described necrotrophic pathogen, which causes fire blight on Asian (Nashi pear and is geographically restricted to Eastern Asia. Relatively little is known about its genetics compared to the closely related main fire blight pathogen E. amylovora. Results The genome of the type strain of E. pyrifoliae strain DSM 12163T, was sequenced using both 454 and Solexa pyrosequencing and annotated. The genome contains a circular chromosome of 4.026 Mb and four small plasmids. Based on their respective role in virulence in E. amylovora or related organisms, we identified several putative virulence factors, including type III and type VI secretion systems and their effectors, flagellar genes, sorbitol metabolism, iron uptake determinants, and quorum-sensing components. A deletion in the rpoS gene covering the most conserved region of the protein was identified which may contribute to the difference in virulence/host-range compared to E. amylovora. Comparative genomics with the pome fruit epiphyte Erwinia tasmaniensis Et1/99 showed that both species are overall highly similar, although specific differences were identified, for example the presence of some phage gene-containing regions and a high number of putative genomic islands containing transposases in the E. pyrifoliae DSM 12163T genome. Conclusions The E. pyrifoliae genome is an important addition to the published genome of E. tasmaniensis and the unfinished genome of E. amylovora providing a foundation for re-sequencing additional strains that may shed light on the evolution of the host-range and virulence/pathogenicity of this important group of plant-associated bacteria.

  16. 78 FR 45573 - Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN...

    Science.gov (United States)

    2013-07-29

    ... report also explores technologies that did not exist when the current plants were licensed such as video... comment submissions into ADAMS. The NRC does not routinely edit comment submissions to remove identifying... that the NRC does not routinely edit comment submissions to remove such information before making the...

  17. 78 FR 55765 - Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN...

    Science.gov (United States)

    2013-09-11

    ... technologies that did not exist when the current plants were licensed such as video-based detection, temporary... NRC does not routinely edit comment submissions to remove identifying or contact information. If you... edit comment submissions to remove such information before making the comment submissions available to...

  18. Influence of Wildland Fire on the Recovery of Endangered Plant Species Study Project.

    Science.gov (United States)

    1995-10-01

    mint family ( Lamiaceae ). It is the last remaining extant member of the genus and is only found at PTA and the Parker Ranch. Shaw (1995) estimated that...and stoloniferous perennial plant. It also belongs to the mint family ( Lamiaceae ) and is found over much of the west side of PTA and at several

  19. Response of smooth rock skullcap (Scutellaria saxatilis), a globally rare plant, to fire

    Science.gov (United States)

    Cynthia D. Huebner; Kent. Karriker

    2015-01-01

    Scutellaria saxatilis Riddell (smooth rock skullcap or rock skullcap, hereafter abbreviated as SRS), a herbaceous perennial in the mint family, is a globally rare (G3) plant. In West Virginia, SRS is categorized as an S2 species (imperiled and at high risk of extinction due to a very restricted range, very few [

  20. Preliminary perspectives gaines from individual plant examination of external events (IPEEE) seismic and fire submittal review

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.T.; Connell, E.; Chokshi, N. [NRC, Washington, DC (United States)] [and others

    1997-02-01

    As a result of the U.S. Nuclear Regulatory Commission (USNRC) initiated Individual plant Examination of External Events (IPEEE) program, every operating nuclear power reactor in the United States has performed an assessment of severe accident due to external events. This paper provides a summary of the preliminary insights gained through the review of 24 IPEEE submittals.

  1. Measurement of Hydrogen Chloride in Coal-Fired Power Plant Emissions Using Tunable Diode Laser Spectrometry

    Science.gov (United States)

    Mackay, K. L.; Chanda, A.; Mackay, G.; Pisano, J. T.; Durbin, T. D.; Crabbe, K.; Smith, T.

    2016-09-01

    In this paper, we report on TDL HCl measurements obtained at a coal-fi red power plant which indicate that there is a significant perturbation of the HCl absorption feature. A methodology was also developed to remediate this effect and provide accurate measurement that will meet the EPA precision and detection limits currently being developed for HCl measurements of process gas emissions.

  2. Assessment of Greenhouse Gas Retrofit Issues for Coal Fired Power Plants

    Science.gov (United States)

    Several studies have been published on carbon capture technology as an independent island. In contrast, this evaluation considered the impact on the existing plant and the potential improvements to ease the retrofit of a carbon capture process. This paper will provide insight i...

  3. Combustion aerosols from co-firing of coal and solid recovered fuel in a 400 mw pf-fired power plant

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Wu, Hao; Jappe Frandsen, Flemming;

    2010-01-01

    to be bi-modal, with an ultrafine (vaporization) mode centered around 0.1 μm, and a coarser (finefragmentation) mode above 2 μm. Co-firing of SRF tended to increase the formation of ultrafine particles as compared with dedicated coal combustion, while the coarse mode tended to decrease. The increased...... formation of ultrafine particles was probably caused by a relatively higher volatility (and subsequent enhanced homogeneous condensation) of Ca, P and K during co-firing of SRF. The influence of SRF type, thermal fraction, particle size and injection position was however not evident from our data, probably...... due to the inhomogeneous characteristics of SRF. S was found to be a special case. While the concentration of S was decreased in the ultrafine particles from co-firing (in consistence with a low initial concentration in SRF), the concentration of S in the electrostatic precipitator ash was higher...

  4. Failure analysis of fire resistant fluid (FRF piping used in hydraulic control system at oil-fired thermal power generation plant

    Directory of Open Access Journals (Sweden)

    Muhammad Akram

    2017-04-01

    Full Text Available This is a case study regarding frequent forced outages in an oil-fired power generating station due to failure of fire resistant fluid (FRF piping of material ASTM A-304. This analysis was done to find out the most probable cause of failure and to rectify the problem. Methods for finding and analyzing the cracks include nondestructive testing techniques such as visual testing (VT and dye penetrant testing (PT along with that periodic monitoring after rectification of problem. The study revealed that pitting and pit to crack transitions were formed in stainless steel piping containing high pressure (system pressure 115 bars fire resistant fluid. However, after replacement of piping the pitting and cracking reoccurred. It was observed that due to possible exposure to chlorinated moisture in surrounding environment pitting was formed which then transformed into cracks. The research work discussed in this paper illustrates the procedure used in detection of the problem and measures taken to solve the problem.

  5. Zinc Isotope Variability in Three Coal-Fired Power Plants: A Predictive Model for Determining Isotopic Fractionation during Combustion.

    Science.gov (United States)

    Ochoa Gonzalez, R; Weiss, D

    2015-10-20

    The zinc (Zn) isotope compositions of feed materials and combustion byproducts were investigated in three different coal-fired power plants, and the results were used to develop a generalized model that can account for Zn isotopic fractionation during coal combustion. The isotope signatures in the coal (δ(66)ZnIRMM) ranged between +0.73 and +1.18‰, values that fall well within those previously determined for peat (+0.6 ±2.0‰). We therefore propose that the speciation of Zn in peat determines the isotope fingerprint in coal. All of the bottom ashes collected in these power plants were isotopically depleted in the heavy isotopes relative to the coals, with δ(66)ZnIRMM values ranging between +0.26‰ and +0.64‰. This suggests that the heavy isotopes, possibly associated with the organic matter of the coal, may be preferentially released into the vapor phase. The fly ash in all of these power plants was, in contrast, enriched in the heavy isotopes relative to coal. The signatures in the fly ash can be accounted for using a simple unidirectional fractionation model with isotope fractionation factors (αsolid-vapor) ranging between 1.0003 and 1.0007, and we suggest that condensation is the controlling process. The model proposed allows, once the isotope composition of the feed coal is known, the constraining of the Zn signatures in the byproducts. This will now enable the integration of Zn isotopes as a quantitative tool for the source apportionment of this metal from coal combustion in the atmosphere.

  6. Performance enhancement in coal fired thermal power plants. Part II: steam turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, M.S.; Rajkumar, N. [Central Power Research Institute, Trivandrum (India). Energy Research Centre

    1999-05-01

    The paper presents the results of the performance enhancement study on 22 coal fired thermal power stations in India with capacities 30-500 MW. The oldest units (30 MW) have served for 33 yr and the newer units (500 MW) have been in operation for 7 years. The turbine efficiencies are in the range 31.00-41.90% as compared to the design range of 34.80-43.98%. The isentropic efficiencies are in the range 74.13-86.40% as compared to design values of 83.20-89.10%. Considerable scope for efficiency improvement through low cost solutions: operational optimization, capital overhaul, simple modifications, etc., exists for all classes of units. The efficiencies can be restored to their design values. The developments in turbines over the last quarter of this century which have led to improved isentropic and thermal efficiencies must be adopted for existing units through retrofits, upgrades and revamps. The turbine efficiencies can be improved to 38.0% for 30 MW units and to 47% for 500 MW units. The maximum potential is for improvement in 210 and 500 MW units followed by 110 and 120 MW units. The potential for 30 and 62.5 MW units is rather limited because of their low capacity share, lack of interest in manufacturers to sell spares (because of the low volume of requirement) and large pay back periods for modernisation schemes. 19 refs., 2 figs., 18 tabs.

  7. The advanced supercritical 700 C pulverised coal-fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kjaer, S.; Kristensen, P. [Tech-wise A/S, Fredericia (Denmark); Klauke, F. [Babcock Borsig Power Energy, Oberhausen (Germany); Vanstone, R. [ALSTOM Power UK Ltd., Rugby (United Kingdom); Zeijseink, A. [KEMA Nederland B.V., Arnhem (Netherlands); Weissinger, G. [ALSTOM Power Boilers GmbH, Stuttgart (Germany); Meier, J. [ALSTOM Power Ltd., Baden (Switzerland); Blum, R. [Elsam A/S, Fredericia (Denmark); Wieghardt, K. [Siemens, Muelheim (Germany)

    2002-07-01

    This paper presents the joint efforts of a large European group of manufacturers, utilities and institutes co-operating in a phased long-term project named 'Advanced 700 C PF Power Plant'. Net efficiencies of more than 50% will be reached through development of a super critical steam cycle operating at maximum steam temperatures in the range of 700 C. The principal efforts are based on development of creep resistant - and expensive - Nickel-based materials. (orig.) [German] Der Beitrag beschreibt die gemeinsamen Anstrengungen einer grossen Gruppe europaeischer Kraftwerksbauer, Kraftwerksbetreiber und Institute, die in einem gestuften langfristigen Projekt mit dem Titel 'Advanced 700 C PF Power Plant' zusammenarbeiten. Nettowirkungsgrade von mehr als 50% sollen durch die Entwicklung eines ueberkritischen Dampfkreislaufs erreicht werden, der mit maximalen Dampftemperaturen in der Groessenordnung von 700 C arbeitet. Die Hauptbemuehungen gelten der Entwicklung von kriechfesten und aufwaendigen Werkstoffen auf Nickelbasis, die als Superlegierungen bezeichnet werden. (orig.)

  8. 林火对植物的影响与森林养护%The Effect of Fire on Plants and Forest Conservation

    Institute of Scientific and Technical Information of China (English)

    陆岚; 董新姣

    2013-01-01

    林火是森林生态系统中重要的生态因子,火对于植物的影响用取决于火的大小和强度,与火灾的周期和频度。火对与植物的种子、植株、群落和生态系统都有不同程度的影响,植物在营养阶段和繁殖阶段会采取不同的措施来适应火的侵入。火既可以烧毁森林,严重破坏森林的结构和功能,也可以作为营林的工具和手段,合理利用林火可以改善森林环境,有利于维持和促进森林生态系统的平衡。%Forest fire is one of the most important ecological factors in the forest ecological system. The effect of fire on plants depends on its size and strength, and the period and frequency as well. There are different degrees of influence of fire on seeds, individuals, communities and ecosystems. And plants would take different measures to fit fire during vegetative stage and reproductive stage. Fire can burn forests or damage the structure and function of forests seriously. However, it could also be used as a tool and mean to run forests. So rational utilization of forest fire can improve the forest environment and promote the balance of forest ecosystem.

  9. Invasive Plants, Fire Succession, and Restoration of Creosote Bush Scrub in Southern California

    OpenAIRE

    Steers, Robert Jeremy

    2008-01-01

    Exotic annual plant species have invaded large regions of southern California deserts. Certain areas have been especially impacted, such as the western edge of the Colorado Desert adjacent to Mt. San Gorgonio, Banning Pass, and Mt. San Jacinto. This landscape is highly invaded due to relatively high winter rainfall compared to interior desert locales and elevated anthropogenic nitrogen deposition from urban areas to the west. Invasive annual grasses, in particular, are abundant here and ha...

  10. Erosion in Steam General Tubes in Boiler and ID Fans in Coal Fired FBC Power Plant

    Directory of Open Access Journals (Sweden)

    Shaheen Aziz

    2012-01-01

    Full Text Available The FBC (Fluidized Bed Combustion is a technique used to make solid particles behave like fluid and grow very fast for the power generation using low grade coal. Due to its merits, first time this technology has been introduced in Pakistan by installing 3x50 MW power plants at Khanote. Fluidized beds have long been used for the combustion of low-quality, difficult fuels and have become a rapidly developing technology for the clean burning of coal. The FBC Power Plant at Khanote has been facing operational and technical problems, resulting frequently shut down of generation units, consequently facing heavy financial losses. This study reveals that due to the presence of high percentage of silica in the lime stone that are further distributed in the bottom ash, fly ash and re-injection material, the generation tubes in the boiler and wings/blades of ID (Induced Draft fans were eroded. In addition, filter bags were also ruptured; resulting frequent shut down of power plant units.

  11. The adsorption behavior of mercury on the hematite (1-102) surface from coal-fired power plant emissions

    Science.gov (United States)

    Jung, J. E.; Jew, A. D.; Rupp, E.; Aboud, S.; Brown, G. E.; Wilcox, J.

    2014-12-01

    One of the biggest environmental concerns caused by coal-fired power plants is the emission of mercury (Hg). Worldwide, 475 tons of Hg are released from coal-burning processes annually, comprising 24% of total anthropogenic Hg emissions. Because of the high toxicity of Hg species, US Environmental Protection Agency (EPA) proposed a standard on Hg and air toxic pollutants (Mercury and Air Toxics Standards, MATS) for new and existing coal-fired power plants in order to eliminate Hg in flue gas prior to release through the stack. To control the emission of Hg from coal-derived flue gas, it is important to understand the behavior, speciation of Hg as well as the interaction between Hg and solid materials, such as fly ash or metal oxides, in the flue gas stream. In this study, theoretical investigations using density functional theory (DFT) were carried out in conjunction with experiments to investigate the adsorption behavior of oxidized Hg on hematite (α-Fe2O3), an important mineral component of fly ash which readily sorbes Hg from flue gas. For DFT calculation, the two α-Fe2O3 (1-102) surfaces modeled consisted of two different surface terminations: (1) M2-clean, which corresponds to the oxygen-terminated surface with the first layer of cations removed and with no hydroxyl groups and (2) M2-OH2-OH, which has bihydroxylated top oxygen atoms and a second layer of hydroxylated oxygen atoms. These surface terminations were selected because both surfaces are highly stable in the temperature range of flue gases. The most probable adsorption sites of Hg, Cl and HgCl on the two α-Fe2O3 surface terminations were suggested based on calculated adsorption energies. Additionally, Bader charge and projected density of states (PDOS) analyses were conducted to characterize the oxidation state of adsorbates and their bonding interactions with the surfaces. Results indicate that oxidized Hg physically adsorbs on the M2-clean surface with a binding energy of -0.103 eV and that

  12. Biomonitoring of metals in the vicinity of Soma coal-fired power plant in western Anatolia, Turkey using the epiphytic lichen, Xanthoria parietina.

    Science.gov (United States)

    Gür, Filiz; Yaprak, Günseli

    2011-01-01

    In this study, epiphytic lichen Xanthoria parietina was applied as the biomonitor of air pollution to determine the environmental influence in the vicinity of Soma coal-fired power plant. Thalli of lichen Xanthoria parietina growing on olive, oak and poplar trees were collected with their substrate in 2004-2006. They were taken from 44 different stations located in 3×3 km grids within an area of 30 km in diameter around the Soma power plant near the town of Soma. Lichen samples were analyzed by using the ICP-MS for As, Cd, Co, Cr, Cu, Fe, Hg, Ni, Pb, Se, Th, U, V and Zn elements and their concentrations were mapped. The sample analyses results were evaluated by using the statistical software (SPSS 11). Average element contents of samples were, in descending order, Fe > Zn > V > Pb > Cr > Cu > Ni > As > Co > U > Th > Se > Cd > Hg. Results obtained in the current study were generally found to be higher than the data reported in literature although some lower values exist for Cd, Co, Hg, Ni, Pb elements. The most polluted areas were found to be those in the vicinity of the coal-fired power plant, particularly along the direction of predominant wind and in the corridor which runs from west to southeast direction due to topographic conditions. We believe that this research which is conducted around a coal-fired power plant will shed light on future research on pollution.

  13. The local impact of a coal-fired power plant on inorganic mercury and methyl-mercury distribution in rice (Oryza sativa L.).

    Science.gov (United States)

    Xu, Xiaohang; Meng, Bo; Zhang, Chao; Feng, Xinbin; Gu, Chunhao; Guo, Jianyang; Bishop, Kevin; Xu, Zhidong; Zhang, Sensen; Qiu, Guangle

    2017-04-01

    Emission from coal-fired power plants is one of the major anthropogenic sources of mercury (Hg) in the environment, because emitted Hg can be quickly deposited nearby the source, attention is paid to the effects of coal-burning facilities on levels of toxic methyl-mercury (MeHg) in biota near such sources. Since rice is an agricultural crop that can bio-accumulate MeHg, the potential effects of a large Hg-emitting coal-fired power plant in Hunan Province, China on both inorganic Hg (Hg(II)) and MeHg distributions in rice was investigated. Relatively high MeHg (up to 3.8 μg kg(-1)) and Hg(II) (up to 22 μg kg(-1)) concentrations were observed in rice samples collected adjacent to the plant, suggesting a potential impact of Hg emission from the coal fired power plant on the accumulation of Hg in rice in the area. Concentrations of MeHg in rice were positively correlated with soil MeHg, soil S, and gaseous elemental Hg (GEM) in ambient air. Soil MeHg was the most important factor controlling MeHg concentrations in rice. The methylation of Hg in soils may be controlled by factors such as the chemical speciation of inorganic Hg, soil S, and ambient GEM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. CHALLENGES AND OPPORTUNITIES FOR EMISSION REDUCTIONS FROM THE COAL-FIRED POWER SECTOR IN GROWING ECONOMIES: THE CASE OF COAL-FIRED ELECTRIC UTILITY PLANTS IN RUSSIA

    Science.gov (United States)

    China, Russia and India together contribute over one-fourth of the total global greenhouse gas emissions from the combustion of fossil-fuels. This paper focuses on the Russian coal-fired power sector, and identifies potential opportunities for reducing emissions. The Russian powe...

  15. Relationships between annual plant productivity, nitrogen deposition and fire size in low-elevation California desert scrub

    Science.gov (United States)

    Rao, Leela E.; Matchett, John R.; Brooks, Matthew L.; Johns, Robert; Minnich, Richard A.; Allen, Edith B.

    2014-01-01

    Although precipitation is correlated with fire size in desert ecosystems and is typically used as an indirect surrogate for fine fuel load, a direct link between fine fuel biomass and fire size has not been established. In addition, nitrogen (N) deposition can affect fire risk through its fertilisation effect on fine fuel production. In this study, we examine the relationships between fire size and precipitation, N deposition and biomass with emphasis on identifying biomass and N deposition thresholds associated with fire spreading across the landscape. We used a 28-year fire record of 582 burns from low-elevation desert scrub to evaluate the relationship of precipitation, N deposition and biomass with the distribution of fire sizes using quantile regression. We found that models using annual biomass have similar predictive ability to those using precipitation and N deposition at the lower to intermediate portions of the fire size distribution. No distinct biomass threshold was found, although within the 99th percentile of the distribution fire size increased with greater than 125 g m–2 of winter fine fuel production. The study did not produce an N deposition threshold, but did validate the value of 125 g m–2 of fine fuel for spread of fires.

  16. Straw quality for its combustion in a straw-fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Allica, J.; Blanco, F.; Garbisu, C. [NEIKER, Instituto Vasco de Investigacion y Desarrollo Agrario, Derio (Spain); Mitre, A.J.; Gonzalez Bustamante, J.A. [IBERDROLA Ingenieria y Consultoria, Bilbao (Spain); Itoiz, C. [Energia Hidroelectrica de Navarra, Pamplona (Spain); Alkorta, I. [Universidad del Pais Vasco, Bilbao (Spain). Facultad de Ciencias

    2001-07-01

    ENERGIA HIDROELECTRICA DE NAVARRA, S.A. (Navarra, Spain) is erecting a 25 MW power generation plant using straw for electricity generation. Cereal straws have proved to be difficult to burn in most existing combustion systems. During the last two years, a study has been carried out in Navarra to investigate the possibilities of improving the fuel quality of straw by a reduction in its K{sup +} and Cl{sup -} contents. The simple leaching of K{sup +} and Cl{sup -} with water by exposure to natural rainfall in the field resulted in considerable reductions of these two elements. A reduction in the K{sup +} content of the cereal plants caused by exposure to natural rainfall has been observed during plant ripening (before crop harvesting). Some varieties of straw show lower initial K{sup +} contents, making them more suitable for this purpose. There seems to be no clear correlation between the relative decrease in K{sup +} content and the amount of accumulated rainfall. Our results have also shown a very close correlation between K{sup +} content and electrical conductivity. The simplicity of this latter measurement makes this parameter a very interesting option to test the straw quality directly in the field. Structural components of the straw were not decomposed during the time when we left the straw in the field. Finally, the Cl{sup -} content in straw was increased when the Cl{sup -} dose from the fertiliser was increased. On the other hand, the content of K{sup +} was not influenced by the applied amount of K{sup +} fertiliser. (Author)

  17. Ash problem at wood fired fluidized bed plants; Askproblem vid skogsbraensleeldning i fluidbaedd

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Soeren; Nystroem, Olle; Axby, Fredrik [Sycon Energikonsult AB, Malmoe (Sweden); Andersson, Christer; Kling, Aasa [Vattenfall Utveckling AB, Aelvkarleby (Sweden)

    2001-03-01

    Several ash related problems occurs during conversion from fossil fuels to bio fuels. The most frequent and expensive problem is agglomeration of bed material (in fluidized beds) and fouling on superheating surfaces. The last problem leads to corrosion problem and decreased transfer of heat. This project is the first part of a proposed project focussed on fluidized bed combustion (FB), because FB have become the dominating technology for combustion of biofuels. The project includes this first update of what has been done by different research institutes since 1997 and results of questionnaire on operating problems to owners of fluidized bed plants. A couple of pilot studies and different thermodynamical studies of bed agglomeration with biofuel combustion have been done during the latest years. There are no published reports where the results from agglomeration tests in pilot scale are verified in full scale plants. No project was found which deals with the fouling problem in the cyclone in a circulating fluidized bed. The knowledge of the mechanisms of deposits growth on heat surfaces is incomplete and more research has to be done of what can prevent the deposit growth. Experience from full scale plants shows that the deposits on heat surfaces grows during a period and after that it falls of the heating surface. There is little knowledge of which ash and flue gas conditions that affects these conditions for bio fuel. The operational experience with wood fuels in circulating fluidized beds is that the main problem with bed material is in the inlet and outlet of the cyclone. A total desulfonated of the bed occurs only when there has been other disturbances or because of operator mistakes. There are a number of things which seem to influence on the deposit problems: (1) Boilers with long residence time have less problem than boilers with short residence time. (2) Fuel size. No plant owner have continuos analysis of the fuel size, but combustion with problem have a

  18. ED handles 30 burn patients after plant fire and explosion in Georgia.

    Science.gov (United States)

    2008-04-01

    Dealing with a mass casualty event involving a high number of burn victims requires strategic use of ED resources. The ED at Memorial University Medical Center in Savannah, GA, was praised by the receiving burn center for the care it gave victims of a recent plant disaster. Here are some of their key strategies: After making your primary concern the patient's airway, turn to fluid resuscitation and pain management. Be certain burn victims are placed in warm rooms and are covered with blankets. Have a pre-plan with a regional burn center, then establish contact with that center in multiple-burn patient incidents.

  19. Fire in the Earth system

    Science.gov (United States)

    Bowman, David M.J.S.; Balch, Jennifer; Artaxo, Paulo; Bond, William J.; Carlson, Jean M.; Cochrane, Mark A.; D'Antonio, Carla M.; DeFries, Ruth S.; Doyle, John C.; Harrison, Sandy P.; Johnston, Fay H.; Keeley, Jon E.; Krawchuk, Meg A.; Kull, Christian A.; Marston, J. Brad; Moritz, Max A.; Prentice, I. Colin; Roos, Christopher I.; Scott, Andrew C.; Swetnam, Thomas W.; van der Werf, Guido R.; Pyne, Stephen

    2009-01-01

    Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.

  20. Fire in the Earth system.

    Science.gov (United States)

    Bowman, David M J S; Balch, Jennifer K; Artaxo, Paulo; Bond, William J; Carlson, Jean M; Cochrane, Mark A; D'Antonio, Carla M; Defries, Ruth S; Doyle, John C; Harrison, Sandy P; Johnston, Fay H; Keeley, Jon E; Krawchuk, Meg A; Kull, Christian A; Marston, J Brad; Moritz, Max A; Prentice, I Colin; Roos, Christopher I; Scott, Andrew C; Swetnam, Thomas W; van der Werf, Guido R; Pyne, Stephen J

    2009-04-24

    Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.

  1. Impacts of nuclear plant shutdown on coal-fired power generation and infant health in the Tennessee Valley in the 1980s

    Science.gov (United States)

    Severnini, Edson

    2017-04-01

    The Fukushima nuclear accident in March 2011 generated deep public anxiety and uncertainty about the future of nuclear energy. However, differently to fossil fuel plants, nuclear plants produce virtually no greenhouse gas emissions or air pollutants during power generation. Here we show the effect on air pollution and infant health in the context of the temporary closure of nuclear plants by the Tennessee Valley Authority (TVA) in the 1980s. After the Three Mile Island accident in 1979, the US Nuclear Regulatory Commission intensified inspections throughout the nation, leading to the shutdown of two large nuclear power plants in the TVA area. In response to that shutdown, electricity generation shifted one to one to coal-fired power plants within TVA, increasing particle pollution in counties where they were located. Consequently, infant health may have deteriorated in the most affected places, indicating deleterious effects to public health.

  2. Transgenic apple plants overexpressing the Lc gene of maize show an altered growth habit and increased resistance to apple scab and fire blight.

    Science.gov (United States)

    Flachowsky, Henryk; Szankowski, Iris; Fischer, Thilo C; Richter, Klaus; Peil, Andreas; Höfer, Monika; Dörschel, Claudia; Schmoock, Sylvia; Gau, Achim E; Halbwirth, Heidrun; Hanke, Magda-Viola

    2010-02-01

    Transgenic apple plants (Malus x domestica cv. 'Holsteiner Cox') overexpressing the Leaf Colour (Lc) gene from maize (Zea mays) exhibit strongly increased production of anthocyanins and flavan-3-ols (catechins, proanthocyanidins). Greenhouse plants investigated in this study exhibit altered phenotypes with regard to growth habit and resistance traits. Lc-transgenic plants show reduced size, transversal gravitropism of lateral shoots, reduced trichome development, and frequently reduced shoot diameter and abnormal leaf development with fused leaves. Such phenotypes seem to be in accordance with a direct or an indirect effect on polar-auxin-transport in the transgenic plants. Furthermore, leaves often develop necrotic lesions resembling hypersensitive response lesions. In tests, higher resistance against fire blight (caused by the bacterium Erwinia amylovora) and against scab (caused by the fungus Venturia inaequalis) is observed. These phenotypes are discussed with respect to the underlying altered physiology of the Lc-transgenic plants. The results are expected to be considered in apple breeding strategies.

  3. Low Cost, High Capacity Regenerable Sorbent for Carbon Dioxide Capture from Existing Coal-fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gokhan [TDA Research, Inc., Wheat Ridge, CO (United States); Jayaraman, Ambalavanan [TDA Research, Inc., Wheat Ridge, CO (United States); Dietz, Steven [TDA Research, Inc., Wheat Ridge, CO (United States)

    2016-03-03

    In this project TDA Research, Inc (TDA) has developed a new post combustion carbon capture technology based on a vacuum swing adsorption system that uses a steam purge and demonstrated its technical feasibility and economic viability in laboratory-scale tests and tests in actual coal derived flue gas. TDA uses an advanced physical adsorbent to selectively remove CO2 from the flue gas. The sorbent exhibits a much higher affinity for CO2 than N2, H2O or O2, enabling effective CO2 separation from the flue gas. We also carried out a detailed process design and analysis of the new system as part of both sub-critical and super-critical pulverized coal fired power plants. The new technology uses a low cost, high capacity adsorbent that selectively removes CO2 in the presence of moisture at the flue gas temperature without a need for significant cooling of the flue gas or moisture removal. The sorbent is based on a TDA proprietary mesoporous carbon that consists of surface functionalized groups that remove CO2 via physical adsorption. The high surface area and favorable porosity of the sorbent also provides a unique platform to introduce additional functionality, such as active groups to remove trace metals (e.g., Hg, As). In collaboration with the Advanced Power and Energy Program of the University of California, Irvine (UCI), TDA developed system simulation models using Aspen PlusTM simulation software to assess the economic viability of TDA’s VSA-based post-combustion carbon capture technology. The levelized cost of electricity including the TS&M costs for CO2 is calculated as $116.71/MWh and $113.76/MWh for TDA system integrated with sub-critical and super-critical pulverized coal fired power plants; much lower than the $153.03/MWhand $147.44/MWh calculated for the corresponding amine based systems. The cost of CO2 captured for TDA’s VSA based system is $38

  4. Subtask 4.27 - Evaluation of the Multielement Sorbent Trap (MEST) Method at an Illinois Coal-Fired Plant

    Energy Technology Data Exchange (ETDEWEB)

    Pavlish, John; Thompson, Jeffrey; Dunham, Grant

    2014-09-30

    Owners of fossil fuel-fired power plants face the challenge of measuring stack emissions of trace metals and acid gases at much lower levels than in the past as a result of increasingly stringent regulations. In the United States, the current reference methods for trace metals and halogens are wet-chemistry methods, U.S. Environmental Protection Agency (EPA) Methods 29 and 26 or 26A, respectively. As a possible alternative to the EPA methods, the Energy & Environmental Research Center (EERC) has developed a novel multielement sorbent trap (MEST) method to be used to sample for trace elements and/or halogens. Sorbent traps offer a potentially advantageous alternative to the existing sampling methods, as they are simpler to use and do not require expensive, breakable glassware or handling and shipping of hazardous reagents. Field tests comparing two sorbent trap applications (MEST-H for hydrochloric acid and MEST-M for trace metals) with the reference methods were conducted at two power plant units fueled by Illinois Basin bituminous coal. For hydrochloric acid, MEST measured concentrations comparable to EPA Method 26A at two power plant units, one with and one without a wet flue gas desulfurization scrubber. MEST-H provided lower detection limits for hydrochloric acid than the reference method. Results from a dry stack unit had better comparability between methods than results from a wet stack unit. This result was attributed to the very low emissions in the latter unit, as well as the difficulty of sampling in a saturated flue gas. Based on these results, the MEST-H sorbent traps appear to be a good candidate to serve as an alternative to Method 26A (or 26). For metals, the MEST trap gave lower detection limits compared to EPA Method 29 and produced comparable data for antimony, arsenic, beryllium, cobalt, manganese, selenium, and mercury for most test runs. However, the sorbent material produced elevated blanks for cadmium, nickel, lead, and chromium at levels

  5. Mercury species in seawater and sediment of Xiamen western sea area adjacent to a coal-fired power plant.

    Science.gov (United States)

    Liang, Ying; Liu, Xiyao; Yuan, Dongxing; Gong, Zhebin; Zhang, Zhen

    2010-04-01

    The purpose of this study was to investigate the concentrations and spatial distributions of mercury (Hg) species in seawater (including dissolved, particle, and total Hg) and sediment (including total and methyl Hg) of the Xiamen western sea area adjacent to a coal-fired power plant. The influence of the wastewater discharged from the seawater desulphurization (De-SO2) system of the power plant is discussed. Concentration of the three species of mercury in seawater from 18 sampling sites varied: dissolved ranged from 0.70 to 4.65 ng/L (mean 1.47 ng/L; median 1.12 ng/L); particulate ranged from not detected to 90.52 ng/L (mean 10.47 ng/L; median 1.26 ng/L); and total was 1.51 to 92.88 ng/L (mean 11.94 ng/L; median 2.84 ng/L). High concentrations of total Hg and particulate Hg, more than 70 ng/L, were observed in the area adjacent to the outfalls of the power plant. The Hg from the waste seawater of the power plant might be re-emitted to the atmosphere because it exists in seawater mainly in particulate attached form. The sediment total Hg concentrations ranged from 0.055 to 0.201 microg/g, with a mean of 0.126 microg/g and a median of 0.125 microg/g. Low methyl Hg concentrations in the sediment were observed in the study area, ranging from 0.017 to 0.256 ng/g as Hg, with a mean of 0.087 ng/g and a median of 0.081 ng/g. The ratios of methyl Hg to total Hg in the sediment were low, with a mean and median of 0.069%. Both total and methyl Hg were significantly linked to the sediment organic carbon (SOC).

  6. Radioactivity of size fractionated fly-ash emissions from a peat- and oil-fired power plant.

    Science.gov (United States)

    Mustonen, R; Jantunen, M

    1985-12-01

    Concentrations of gamma-emitting natural radionuclides and 137Cs were analyzed in the size fractionated fly-ash emissions from a 100-MWt peat- and oil-fired power plant. The emitted fly ash was separated into five size fractions with a high-volume impactor with cut sizes of 1.3 micron, 2.1 micron, 4.2 micron and 10 micron. The greatest activity emissions were associated with the smallest size fraction, below 1.3 micron. The mass median aerodynamic diameter (MMAD) of the fly-ash particles after the electrostatic precipitator was 1.9 micron with a geometric standard deviation of 3.0 and the median of the 32 fly-ash emission samples was 8.73 mg MJ-1 with a geometric standard deviation of 1.3. Lead-210 gave the greatest particulate activity emission per input fuel energy, 18.7 mBq MJ-1, and showed a strong enrichment onto small fly-ash particles.

  7. Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China

    Science.gov (United States)

    Li, Zhen; Jiang, Jingkun; Ma, Zizhen; Wang, Shuxiao; Duan, Lei

    2015-11-01

    Nitrogen oxides (NOx) emission abatement of coal-fired power plants (CFPPs) requires large-scaled installation of selective catalytic reduction (SCR), which would reduce secondary fine particulate matter (PM2.5) (by reducing nitrate aerosol) in the atmosphere. However, our field measurement of two CFPPs equipped with SCR indicates a significant increase of SO42- and NH4+ emission in primary PM2.5, due to catalytic enhancement of SO2 oxidation to SO3 and introducing of NH3 as reducing agent. The subsequent formation of (NH4)2SO4 or NH4HSO4 aerosol is commonly concentrated in sub-micrometer particulate matter (PM1) with a bimodal pattern. The measurement at the inlet of stack also showed doubled primary PM2.5 emission by SCR operation. This effect should therefore be considered when updating emission inventory of CFPPs. By rough estimation, the enhanced primary PM2.5 emission from CFPPs by SCR operation would offset 12% of the ambient PM2.5 concentration reduction in cities as the benefit of national NOx emission abatement, which should draw attention of policy-makers for air pollution control.

  8. Kleiber's Law: How the Fire of Life ignited debate, fueled theory, and neglected plants as model organisms

    Science.gov (United States)

    Niklas, Karl J; Kutschera, Ulrich

    2015-01-01

    Size is a key feature of any organism since it influences the rate at which resources are consumed and thus affects metabolic rates. In the 1930s, size-dependent relationships were codified as “allometry” and it was shown that most of these could be quantified using the slopes of log-log plots of any 2 variables of interest. During the decades that followed, physiologists explored how animal respiration rates varied as a function of body size across taxa. The expectation was that rates would scale as the 2/3 power of body size as a reflection of the Euclidean relationship between surface area and volume. However, the work of Max Kleiber (1893–1976) and others revealed that animal respiration rates apparently scale more closely as the 3/4 power of body size. This phenomenology, which is called “Kleiber's Law,” has been described for a broad range of organisms, including some algae and plants. It has also been severely criticized on theoretical and empirical grounds. Here, we review the history of the analysis of metabolism, which originated with the works of Antoine L. Lavoisier (1743–1794) and Julius Sachs (1832–1897), and culminated in Kleiber's book The Fire of Life (1961; 2. ed. 1975). We then evaluate some of the criticisms that have been leveled against Kleiber's Law and some examples of the theories that have tried to explain it. We revive the speculation that intracellular exo- and endocytotic processes are resource delivery-systems, analogous to the supercellular systems in multicellular organisms. Finally, we present data that cast doubt on the existence of a single scaling relationship between growth and body size in plants. PMID:26156204

  9. Natural radioactivity of ground waters and soil in the vicinity of the ash repository of the coal-fired power plant. Nikola Tesla A in Obrenovac, Yugoslavia

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, Z.; Madic, M.; Vukovic, D. [Institute of Nuclear Sciences Vinca, Belgrade (Yugoslavia)

    1996-11-01

    Radioactivity of U, Th and {sup 40}K has been investigated in the vicinity of the ash repository of coal-fired Nikola Tesla A power plant in Obrenovac (Yugoslavia). Using alpha and gamma spectrometry, luminescence spectrophotometry, it was found that the ash repository is a source of radionuclides of the uranium and thorium series; and these radionuclides were found in the ground water up to a distance of several hundred metres. The influence of the repository on the soil radioactivity was minimal.

  10. Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes.

    Science.gov (United States)

    Hoffmann, William A; Geiger, Erika L; Gotsch, Sybil G; Rossatto, Davi R; Silva, Lucas C R; Lau, On Lee; Haridasan, M; Franco, Augusto C

    2012-07-01

    Fire shapes the distribution of savanna and forest through complex interactions involving climate, resources and species traits. Based on data from central Brazil, we propose that these interactions are governed by two critical thresholds. The fire-resistance threshold is reached when individual trees have accumulated sufficient bark to avoid stem death, whereas the fire-suppression threshold is reached when an ecosystem has sufficient canopy cover to suppress fire by excluding grasses. Surpassing either threshold is dependent upon long fire-free intervals, which are rare in mesic savanna. On high-resource sites, the thresholds are reached quickly, increasing the probability that savanna switches to forest, whereas low-resource sites are likely to remain as savanna even if fire is infrequent. Species traits influence both thresholds; saplings of savanna trees accumulate bark thickness more quickly than forest trees, and are more likely to become fire resistant during fire-free intervals. Forest trees accumulate leaf area more rapidly than savanna trees, thereby accelerating the transition to forest. Thus, multiple factors interact with fire to determine the distribution of savanna and forest by influencing the time needed to reach these thresholds. Future work should decipher multiple environmental controls over the rates of tree growth and canopy closure in savanna. © 2012 Blackwell Publishing Ltd/CNRS.

  11. Clean coal reference plants: Pulverized encoal PDF fired boiler. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The Clean Coal Technology Demonstration Program (CCT) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of full-scale facilities. The goal of the program is to provide the U.S. energy marketplace with a number of advanced, more efficient, and environmentally responsive coal-using technologies. To achieve this goal, a multiphased effort consisting of five separate solicitations has been completed. The Morgantown Energy Technology Center (METC) has the responsibility for monitoring the CCT Projects within certain technology categories, which, in general, correspond to the center`s areas of technology development. Primarily the categories of METC CCT projects are: atmospheric fluid bed combustion, pressurized fluidized bed combustion, integrated gasification combined cycle, mild gasification, and industrial applications. This report describes the plant design.

  12. Comprehensive analysis of a straw-fired power plant in Vojvodina

    Directory of Open Access Journals (Sweden)

    Urošević Dragan M.

    2012-01-01

    Full Text Available In recent years, renewable energy sources have played an increasingly important role in potential energy production. The integration of renewable energy technologies into existing national energy system has therefore become a major challenge for many countries. Due to the importance of this matter, this paper deals with the comprehensive analysis for implementation of a power plant on biomass (straw. The analysis is conducted regarding several key indicators: availability of biomass, regulation, reduction of greenhouse gas emissions, location, land use, electricity price and social impacts. The analysis also includes favorable price for electricity produced from biomass relevant to national feed in tariffs. In order to demonstrate all above mentioned indicators, the region in Serbia (Province of Vojvodina with significant potential in biomass, especially in straw, is selected. The results of the analysis are validated trough environmental and social aspects. Special attention is given to identifying risks for this application.

  13. Auditing of sampling methods for air toxics at coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Agbede, R.O.; Clements, J.L.; Grunebach, M.G. [Advanced Technology Systems, Inc., Monroeville, PA (United States)] [and others

    1995-11-01

    Advanced Technology Systems, Inc. (ATS) with subcontract assistance from international Technology Corporation (IT) has provided external audit activities for Phase II of the Department of Energy-Pittsburgh Energy Technology Center`s air emission test program. The objective of the audits is to help ensure that the data obtained from the emission tests are precise, accurate, representative, scientifically sound and legally defensible. This paper presents the criteria that were used to perform the external audits of the emission test program. It also describes the approach used by ATS and It in performing their audits. Examples of findings of the audits along with the actions take to correct problems and the subsequent effect of those actions on the test data are presented. The results of audit spikes performed at the Plant 1 test site are also discussed.

  14. Corrosion in the Flue Gas Cleaning System of a Biomass-Fired Power Plant

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Olesen, R. E.; Gensmann, P.

    2017-01-01

    After only a few years operation, corrosiondamage was observed in the flue gas cleaning system of abiomass power plant. The corrosion was on the lower partof the gas/gas heat exchanger fabricated from A242weathering steel, where UNS S31600 bolts were used toattach sealing strips to the rotor. Thick...... iron oxides (up to5 mm) had formed on the weathering steel, and theseoxides also contained chlorine and sulfur. In this area of theheat exchanger, weathering steel has not had the optimalwet/dry cycles required to achieve a protective oxide. Dueto the thick growing oxide on the rotor, the UNS S31600......bolts were under stress and this together with the presenceof accumulated chlorine between the sealing strips andbolts resulted in stress corrosion cracking and rupture. Inaddition, Zn-K-Cl deposits were agglomerated in the ductafter the DeNOx unit. Zn was also a constituent of corrosionproducts...

  15. Technology Analysis of CO2 Capture and Storage in Firing Power Plant%火电厂CO2 CCS技术分析

    Institute of Scientific and Technical Information of China (English)

    胡月红

    2012-01-01

    After introducing the CO2 emission characteristics from firing power plant,this paper discussed two parts in both CO2 capture and storage,and put forward four main technological lines for CO2 capture in firing power plants.The paper also analyzed and compared the features and appliances of every capture measures,and pointed out some problems needed to be solved for using the existing capture methods to firing power plant in China.Finally it analyzed and summarized CO2 storage technology and comprehensive utilization.%介绍了火电厂CO2排放特点,将CO2减排技术分为捕集与封存两个部分进行讨论,提出了火电厂CO2捕集的4种主要技术路线;比较分析了几种主要捕集方法的技术特点和火力发电适用性,CO2应用于我国火电厂需解决的问题;综述了CO2的封存技术和综合利用。

  16. Pb-210 and Po-210 atmospheric releases via fly ash from oil shale-fired power plants.

    Science.gov (United States)

    Vaasma, Taavi; Loosaar, Jüri; Gyakwaa, Francis; Kiisk, Madis; Özden, Banu; Tkaczyk, Alan H

    2017-03-01

    During high temperature processes in the furnace volatile and semi-volatile elements and radionuclides are partially emitted to the environment, depending on their chemical form in the original fuel, the technological set-up of the combustion system, and the prevailing combustion conditions. Two of the world's largest oil shale-fired power plants (PPs) have been operational in Estonia from the 1960s, during which time creation of significant environmental emissions and waste containing naturally occurring radionuclides has occurred. Pb-210 and (210)Po are considered natural radionuclides with the highest emission rates from PPs and possess elevated potential radiation exposure risks to humans and the environment. These radionuclides have the highest activity concentration values in fine ash fractions, especially in fractions remaining below 2.5 μm. To determine the activity concentrations of (210)Pb and (210)Po in the PPs' outlet, sampling was conducted from boilers operating on pulverized fuel (PF) technology with novel integrated desulphurization (NID) system and bag filters as well as with electrostatic precipitators (ESPs). The (210)Pb and (210)Po activity concentrations remained around 300 Bq kg(-1) for the NID system compared to 60-80 Bq kg(-1) in the ESP system. The dominant ash fraction in both systems was PM2.5, constituting over 50% of the fly ash mass collected from the outlet. The authors estimate that the total atmospherically emitted activity for the modernized PPs remains dominantly below 1% of the activity that is inserted via fuel. The implementation of higher efficiency purifications systems has significantly reduced the negative effect of these PPs. Based on annually emitted fly ash and boilers' working hours, the (210)Pb and (210)Po activity released relative to energy production were up to 68.3 kBq GWhel(-1) for (210)Pb and 64.6 kBq GWhel(-1) for (210)Po. These values are 1 to 2 orders of magnitude lower compared to the situation in the 1980s

  17. Fire History

    Data.gov (United States)

    California Department of Resources — The Fire Perimeters data consists of CDF fires 300 acres and greater in size and USFS fires 10 acres and greater throughout California from 1950 to 2002. Some fires...

  18. Fire Perimeters

    Data.gov (United States)

    California Department of Resources — The Fire Perimeters data consists of CDF fires 300 acres and greater in size and USFS fires 10 acres and greater throughout California from 1950 to 2003. Some fires...

  19. Combining mechanical-biological residual waste treatment plants with grate firing; Kombination MBA mit Rostfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Fleck, E. [ABB Umwelttechnik GmbH, Butzbach (Germany)

    1998-09-01

    The promulgation of the Technical Code on Household Waste obliges the local authorities responsible for waste disposal to review existing and prepare new waste management plans. Given the present state of the art the Code`s limit value for loss due to burning of 5% makes thermal treatment of the residual waste practically compulsory. In preparation of these developments and in order to lower costs in general and be able respond flexibly to customer demands ABB is currently undertaking great efforts to provide thermal residual waste treatment plants with a modular design. [Deutsch] Mit Veroeffentlichung der TASi wurden die entsorgungspflichtigen Gebietskoerperschaften gezwungen, bereits vorhandene Abfall-Wirtschaftsplaene zu ueberarbeiten bzw. neue zu erstellen. Technisch laeuft nach derzeitigem Wissensstand der in der TASi vorgegebene maximale Gluehverlust von 5% darauf hinaus, dass eine thermische Behandlung des Restabfalls zwingend vorgegeben ist. Um hierfuer geruestet zu sein, aber auch um generell Kosten zu senken unf flexibel auf Kundenwuensche eingehen zu koennen, unternimmt ABB grosse Abstrengungen, den Aufbau von Anlagen zur thermischen Restabfallbehandlung modular zu gestalten. (orig./SR)

  20. Characteristics and composition of particulate matter from coal-fired power plants

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Measurements of the characteristics of particulate matter(PM)were performed at the inlet and outlet of the electrostatic precipitators(ESP)of four boilers in two full-scale pulverized coal power plants.PM was collected with a 13-stages low-pressure-impactor(LPI)having aerodynamic cut-off diameter ranging from 10.0 to 0.03μm for a size-segregated collection.The properties of PM including its con-centration,mass size distribution,emission characteristics,percent penetration of PM through ESP and elemental composition were investigated.The experimental results indicate that,in all the cases the mass size distribution of PM10 had typical bimodal.PM1 contained up to 1.15wt% of the total particle(TP)generated in the boilers.PM2.5 contained about 2wt%―7wt% of the TP and PM10 contained about 4wt%―19wt% of the TP.When additive limestone used for desulphurization as sorbent besides PM generated from coal combustion,there was new PM generated from limestone.Penetration as a func-tion of particle diameter had a clear peak in particle size ranging from 0.2 to 0.6μm.Particles in the submicrometer size range were much more difficult to be collected with ESP than larger particles.Dis-tributions of individual elements within PM10 were different.

  1. Autoinducer-2 of the fire blight pathogen Erwinia amylovora and other plant-associated bacteria.

    Science.gov (United States)

    Mohammadi, Mojtaba; Geider, Klaus

    2007-01-01

    Autoinducers are important for cellular communication of bacteria. The luxS gene has a central role in the synthesis of autoinducer-2 (AI-2). The gene was identified in a shotgun library of Erwinia amylovora and primers designed for PCR amplification from bacterial DNA. Supernatants of several Erwinia amylovora strains were assayed for AI-2 activity with a Vibrio harveyi mutant and were positive. Many other plant-associated bacteria also showed AI-2 activity such as Erwinia pyrifoliae and Erwinia tasmaniensis. The luxS genes of several bacteria were cloned, sequenced, and complemented Escherichia coli strain DH5alpha and a Salmonella typhimurium mutant, both defective in luxS, for synthesis of AI-2. Assays to detect AI-2 activity in culture supernatants of several Pseudomonas syringae pathovars failed, which may indicate the absence of AI-2 or synthesis of another type. Several reporter strains did not detect synthesis of an acyl homoserine lactone (AHL, AI-1) by Erwinia amylovora, but confirmed AHL-synthesis for Erwinia carotovora ssp. atroseptica and Pantoea stewartii.

  2. Post-fire interactions between soil water repellency, soil fertility and plant growth in soil collected from a burned piñon-juniper woodland

    Science.gov (United States)

    Fernelius, Kaitlynn J.; Madsen, Matthew D.; Hopkins, Bryan G.; Bansal, Sheel; Anderson, Val J.; Eggett, Dennis L.; Roundy, Bruce A.

    2017-01-01

    Woody plant encroachment can increase nutrient resources in the plant-mound zone. After a fire, this zone is often found to be water repellent. This study aimed to understand the effects of post-fire water repellency on soil water and inorganic nitrogen and their effects on plant growth of the introduced annual Bromus tectorum and native bunchgrass Pseudoroegneria spicata. Plots centered on burned Juniperus osteosperma trees were either left untreated or treated with surfactant to ameliorate water repellency. After two years, we excavated soil from the untreated and treated plots and placed it in zerotension lysimeter pots. In the greenhouse, half of the pots received an additional surfactant treatment. Pots were seeded separately with B. tectorum or P. spicata. Untreated soils had high runoff, decreased soilwater content, and elevated NO3eN in comparison to surfactant treated soils. The two plant species typically responded similar to the treatments. Above-ground biomass and microbial activity (estimated through soil CO2 gas emissions) was 16.8-fold and 9.5-fold higher in the surfactant-treated soils than repellent soils, respectably. This study demonstrates that water repellency can influence site recovery by decreasing soil water content, promoting inorganic N retention, and impairing plant growth and microbial activity.

  3. The hybrid MPC-MINLP algorithm for optimal operation of coal-fired power plants with solvent based post-combustion CO2 capture

    Directory of Open Access Journals (Sweden)

    Norhuda Abdul Manaf

    2017-03-01

    Full Text Available This paper presents an algorithm that combines model predictive control (MPC with MINLP optimization and demonstrates its application for coal-fired power plants retrofitted with solvent based post-combustion CO2 capture (PCC plant. The objective function of the optimization algorithm works at a primary level to maximize plant economic revenue while considering an optimal carbon capture profile. At a secondary level, the MPC algorithm is used to control the performance of the PCC plant. Two techno-economic scenarios based on fixed (capture rate is constant and flexible (capture rate is variable operation modes are developed using actual electricity prices (2011 with fixed carbon prices ($AUD 5, 25, 50/tonne-CO2 for 24 h periods. Results show that fixed operation mode can bring about a ratio of net operating revenue deficit at an average of 6% against the superior flexible operation mode.

  4. Mercury Removal with Activated Carbon in Coal-Fired Power Plants

    Science.gov (United States)

    Rapperport, J.; Sasmaz, E.; Wilcox, J.

    2010-12-01

    Coal is both the most abundant and the dirtiest combustible energy source on earth. In the United States, about half of the country’s electricity comes from coal combustion and the industry is rapidly expanding all over the world. Among many of coal’s flaws, its combustion annually produces roughly 50 tones in the U.S. and 5000 tons worldwide of mercury, a carcinogen and highly toxic pollutant. Certain sorbents and processes are used to try to limit the amount of mercury that reaches the atmosphere, a key aspect of reducing the energy source’s harmful environmental impact. This experiment’s goal is to discover what process occurs on a sorbent surface during mercury’s capture while also determining sorbent effectiveness. Bench-scale experiments are difficult to carry out since the focus of the experiment is to simulate mercury capture in a power plant flue gas stream, where mercury is in its elemental form. The process involves injecting air, elemental mercury and other components to simulate a coal exhaust environment, and then running the stream through a packed-bed reactor with an in-tact sorbent. While carrying out the reactor tests, the gas-phase is monitored for changes in mercury oxidation and following these gas-phase studies, the mercury-laden sorbent is analyzed using x-ray photoelectron spectroscopy. Conclusions that can be drawn thus far are that brominated activated carbon shows very high mercury capture and that mercury is found in its oxidized form on the surface of the sorbent. The speciation, or conclusions drawn on the process and bonding sites on the surface, cannot be determined at this point simply using the current spectroscopic analysis.

  5. Fire forum 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The conference contains 18 presentations on various aspects of fire prevention and protection within the power production plants and industry, safety of building constructions, cable and transformer problems, risk and safety evaluation methods, management aspects, relevant Norwegian and Icelandic laws and regulations and oil analysis. Some examples of fires and explosions are also presented. (tk)

  6. Sparrow nest survival in relation to prescribed fire and woody plant invasion in a northern mixed-grass prairie

    Science.gov (United States)

    Murphy, Robert K.; Shaffer, Terry L.; Grant, Todd A.; Derrig, James L.; Rubin, Cory S.; Kerns, Courtney K.

    2017-01-01

    Prescribed fire is used to reverse invasion by woody vegetation on grasslands, but managers often are uncertain whether influences of shrub and tree reduction outweigh potential effects of fire on nest survival of grassland birds. During the 2001–2003 breeding seasons, we examined relationships of prescribed fire and woody vegetation to nest survival of clay-colored sparrow (Spizella pallida) and Savannah sparrow (Passerculus sandwichensis) in mixed-grass prairie at Des Lacs National Wildlife Refuge in northwestern North Dakota, USA. We assessed relationships of nest survival to 1) recent fire history, in terms of number of breeding seasons (2, 3, or 4–5) since the last prescribed fire, and 2) prevalence of trees and tall (>1.5 m) shrubs in the landscape and of low (≤1.5 m) shrubs within 5 m of nests. Nest survival of both species exhibited distinct patterns related to age of the nest and day of year, but bore no relationship to fire history. Survival of clay-colored sparrow nests declined as the amount of trees and tall shrubs within 100 m increased, but we found no relationship to suggest nest parasitism by brown-headed cowbirds (Molothrus ater) as an underlying mechanism. We found little evidence linking nest survival of Savannah sparrow to woody vegetation. Our results suggest that fire can be used to restore northern mixed-grass prairies without adversely affecting nest survival of ≥2 widespread passerine species. Survival of nests of clay-colored sparrow may increase when tall woody cover is reduced by fire. Our data lend support to the use of fire for reducing scattered patches of tall woody cover to enhance survival of nests of ≥1 grassland bird species in northern mixed-grass prairies, but further study is needed that incorporates experimental approaches and assessments of shorter term effects of fire on survival of nests of grassland passerines.

  7. The distribution and sea-air transfer of volatile mercury in waste post-desulfurization seawater discharged from a coal-fired power plant.

    Science.gov (United States)

    Sun, Lumin; Lin, Shanshan; Feng, Lifeng; Huang, Shuyuan; Yuan, Dongxing

    2013-09-01

    The waste seawater discharged in coastal areas from coal-fired power plants equipped with a seawater desulfurization system might carry pollutants such as mercury from the flue gas into the adjacent seas. However, only very limited impact studies have been carried out. Taking a typical plant in Xiamen as an example, the present study targeted the distribution and sea-air transfer flux of volatile mercury in seawater, in order to trace the fate of the discharged mercury other than into the sediments. Samples from 28 sampling sites were collected in the sea area around two discharge outlets of the plant, daily and seasonally. Total mercury, dissolved gaseous mercury and dissolved total mercury in the seawater, as well as gaseous elemental mercury above the sea surface, were investigated. Mean concentrations of dissolved gaseous mercury and gaseous elemental mercury in the area were 183 and 4.48 ng m(-3) in summer and 116 and 3.92 ng m(-3) in winter, which were significantly higher than those at a reference site. Based on the flux calculation, the transfer of volatile mercury was from the sea surface into the atmosphere, and more than 4.4 kg mercury, accounting for at least 2.2 % of the total discharge amount of the coal-fired power plant in the sampling area (1 km(2)), was emitted to the air annually. This study strongly suggested that besides being deposited into the sediment and diluted with seawater, emission into the atmosphere was an important fate for the mercury from the waste seawater from coal-fired power plants.

  8. URBAN WOOD/COAL CO-FIRING IN THE NIOSH BOILER PLANT

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb Jr.

    2005-02-10

    Phase I of this project began by obtaining R&D variances for permits at the NIOSH boilerplant (NBP), Emery Tree Service (ETS) and the J. A. Rutter Company (JARC) for their portions of the project. Wood for the test burn was obtained from the JARC inventory (pallets), Thompson Properties and Seven D Corporation (construction wood), and the Arlington Heights Housing Project (demolition wood). The wood was ground at ETS and JARC, delivered to the Three Rivers Terminal and blended with coal. Three one-day tests using wood/coal blends of 33% wood by volume (both construction wood and demolition wood) were conducted at the NBP. Blends using hammermilled wood were operationally successful. Emissions of SO{sub 2} and NOx decreased and that of CO increased when compared with combusting coal alone. Mercury emissions were measured and evaluated. During the first year of Phase II the principal work focused upon searching for a replacement boilerplant and developing a commercial supply of demolition wood. The NBP withdrew from the project and a search began for another stoker boilerplant in Pennsylvania to replace it on the project. Three potential commercial demolition wood providers were contacted. Two were not be able to supply wood. At the end of the first year of Phase II, discussions were continuing with the third one, a commercial demolition wood provider from northern New Jersey. During the two-and-a-third years of the contract extension it was determined that the demolition wood from northern New Jersey was impractical for use in Pittsburgh, in another power plant in central New Jersey, and in a new wood gasifier being planned in Philadelphia. However, the project team did identify sufficient wood from other sources for the gasifier project. The Principal Investigator of this project assisted a feasibility study of wood gasification in Clarion County, Pennsylvania. As a result of the study, an independent power producer in the county has initiated a small wood

  9. Demonstration of natural gas reburn for NO{sub x} emissions reduction at Ohio Edison Company`s cyclone-fired Niles Plant Unit Number 1

    Energy Technology Data Exchange (ETDEWEB)

    Borio, R.W.; Lewis, R.D.; Koucky, R.W. [ABB Power Plant Labs., Windsor, CT (United States); Lookman, A.A. [Energy Systems Associates, Pittsburgh, PA (United States); Manos, M.G.; Corfman, D.W.; Waddingham, A.L. [Ohio Edison, Akron, OH (United States); Johnson, S.A. [Quinapoxet Engineering Solutions, Inc., Windham, NH (United States)

    1996-04-01

    Electric utility power plants account for about one-third of the NO{sub x} and two-thirds of the SO{sub 2} emissions in the US cyclone-fired boilers, while representing about 9% of the US coal-fired generating capacity, emit about 14% of the NO{sub x} produced by coal-fired utility boilers. Given this background, the Environmental Protection Agency, the Gas Research Institute, the Electric Power Research Institute, the Pittsburgh Energy Technology Center, and the Ohio Coal Development Office sponsored a program led by ABB Combustion Engineering, Inc. (ABB-CE) to demonstrate reburning on a cyclone-fired boiler. Ohio Edison provided Unit No. 1 at their Niles Station for the reburn demonstration along with financial assistance. The Niles Unit No. 1 reburn system was started up in September 1990. This reburn program was the first full-scale reburn system demonstration in the US. This report describes work performed during the program. The work included a review of reburn technology, aerodynamic flow model testing of reburn system design concepts, design and construction of the reburn system, parametric performance testing, long-term load dispatch testing, and boiler tube wall thickness monitoring. The report also contains a description of the Niles No. 1 host unit, a discussion of conclusions and recommendations derived from the program, tabulation of data from parametric and long-term tests, and appendices which contain additional tabulated test results.

  10. Airborne arsenic and urinary excretion of arsenic metabolites during boiler cleaning operations in a Slovak coal-fired power plant.

    Science.gov (United States)

    Yager, J W; Hicks, J B; Fabianova, E

    1997-01-01

    Little information is available on the relationship between occupational exposure to inorganic arsenic in coal fly ash and urinary excretion of arsenic metabolites. This study ws undertaken in a coal-fired power plant in Slovakia during a routine maintenance outage. Arsenic was measured in the breathing zone of workers during 5 consecutive workdays, and urine samples were obtained for analysis of arsenic metabolites--inorganic arsenic (Asi), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA)--prior to the start of each shift. Results from a small number of cascade impactor air samples indicated that approximately 90% of total particle mass and arsenic was present in particle size fractions >/= 3.5 micron. The 8-hr time-weighted average (TWA) mean arsenic air concentration was 48.3 microg/m3 (range 0.17-375.2) and the mean sum of urinary arsenic (SigmaAs) metabolites was 16.9 microg As/g creatinine (range 2.6-50.8). For an 8-hr TWA of 10 microg/m3 arsenic from coal fly ash, the predicted mean concentration of the SigmaAs urinary metabolites was 13.2 microg As/G creatinine [95% confidence interval (CI), 10.1-16.3). Comparisons with previously published studies of exposure to arsenic trioxide vapors and dusts in copper smelters suggest that bioavailability of arsenic from airborne coal fly ash (as indicated by urinary excretion) is about one-third that seen in smelters and similar settings. Arsenic compound characteristics, matrix composition, and particle size distribution probably play major roles in determining actual uptake of airborne arsenic. Images Figure 1. A Figure 1. B Figure 2. PMID:9347899

  11. Post-disturbance plant community dynamics following a rare natural-origin fire in a Tsuga canadensis forest.

    Directory of Open Access Journals (Sweden)

    Bryan D Murray

    Full Text Available Opportunities to directly study infrequent forest disturbance events often lead to valuable information about vegetation dynamics. In mesic temperate forests of North America, stand-replacing crown fire occurs infrequently, with a return interval of 2000-3000 years. Rare chance events, however, may have profound impacts on the developmental trajectories of forest ecosystems. For example, it has been postulated that stand-replacing fire may have been an important factor in the establishment of eastern hemlock (Tsuga canadensis stands in the northern Great Lakes region. Nevertheless, experimental evidence linking hemlock regeneration to non-anthropogenic fire is limited. To clarify this potential relationship, we monitored vegetation dynamics following a rare lightning-origin crown fire in a Wisconsin hemlock-hardwood forest. We also studied vegetation in bulldozer-created fire breaks and adjacent undisturbed forest. Our results indicate that hemlock establishment was rare in the burned area but moderately common in the scarified bulldozer lines compared to the reference area. Early-successional, non-arboreal species including Rubus spp., Vaccinium angustifolium, sedges (Carex spp., grasses, Epilobium ciliatum, and Pteridium aquilinium were the most abundant post-fire species. Collectively, our results suggest that competing vegetation and moisture stress resulting from drought may reduce the efficacy of scarification treatments as well as the usefulness of fire for preparing a suitable seedbed for hemlock. The increasing prevalence of growing-season drought suggests that silvicultural strategies based on historic disturbance regimes may need to be reevaluated for mesic species.

  12. How to address data gaps in life cycle inventories: a case study on estimating CO2 emissions from coal-fired electricity plants on a global scale.

    Science.gov (United States)

    Steinmann, Zoran J N; Venkatesh, Aranya; Hauck, Mara; Schipper, Aafke M; Karuppiah, Ramkumar; Laurenzi, Ian J; Huijbregts, Mark A J

    2014-05-06

    One of the major challenges in life cycle assessment (LCA) is the availability and quality of data used to develop models and to make appropriate recommendations. Approximations and assumptions are often made if appropriate data are not readily available. However, these proxies may introduce uncertainty into the results. A regression model framework may be employed to assess missing data in LCAs of products and processes. In this study, we develop such a regression-based framework to estimate CO2 emission factors associated with coal power plants in the absence of reported data. Our framework hypothesizes that emissions from coal power plants can be explained by plant-specific factors (predictors) that include steam pressure, total capacity, plant age, fuel type, and gross domestic product (GDP) per capita of the resident nations of those plants. Using reported emission data for 444 plants worldwide, plant level CO2 emission factors were fitted to the selected predictors by a multiple linear regression model and a local linear regression model. The validated models were then applied to 764 coal power plants worldwide, for which no reported data were available. Cumulatively, available reported data and our predictions together account for 74% of the total world's coal-fired power generation capacity.

  13. Fire effects on noxious weeds

    Science.gov (United States)

    Robin Innes

    2012-01-01

    The Fire Effects Information System (FEIS, www.fs.fed.us/database/feis/) has been providing reviews of scientific knowledge about fire effects since 1986. FEIS is an online collection of literature reviews on more than 1,100 species and their relationships with fire. Reviews cover plants and animals throughout the United States, providing a wealth of information for...

  14. Geochemistry of the recent sediments from lake in the vicinity of the coal-fired power plants in Central Alberta, Canada

    Energy Technology Data Exchange (ETDEWEB)

    H. Sanei; F. Goodarzi; K. Telmer [Geological Survey of Canada, Calgary, AB (Canada). Environmental Study Group

    2005-07-01

    This study investigates the geochemical characteristics of recent sediments and their porewaters from the Wabamun Lake in central Alberta (Canada) to elucidate the possible impact from coal utilization in this region. A multi-elemental analysis of recent sediments in conjunction with other inorganic and organic geochemical approaches are applied to determine the sources, quantity, and processes involved in the distribution of trace elements in the sediments. Concentration versus depth profiles in the sediments and the associated porewaters suggest that geochemical processes impact the mobility and vertical distribution of trace elements in these sediments. Although inputs of trace elements to ecosystems have clearly been elevated by emissions from the coal-fired power plants, diagenetic processes and natural inputs cannot be ignored in the distribution of lake sediments. A combination of various biogeochemical processes may control the distribution of elements in sediment and porewater. However, because of the alkalinity and eutrophic conditions of the studied lake, the Ca-OM fraction plays the most important role as substrate for trace elements. The higher input of calcareous fly ash in the Wabamun Lake, adjacent to the power plants, may cause scavenging of trace metals. The size of fly ash particles tends to decrease towards the more recent part of the sediment profile indicating the effect of particle emission control measures adopted by the power plants. There is no evidence of fly ash particles in the sediments deposited prior to the commencement of coal-fired power plants in the study area (before 1956).

  15. 核电站地震次生火灾的扑救与防护%Fighting and preventing post-earthquake fires in nuclear power plant

    Institute of Scientific and Technical Information of China (English)

    吕雪峰; 张鑫

    2011-01-01

    核电站地震次生火灾除了会造成人员伤亡、经济损失严重外,还可能造成放射性污染。目前我国核电处于快速发展时期,考虑我国地震多发的特性,研究核电站地震次生火灾具有重要的工程价值。本文详细分析了核电站地震次生火灾的起火原因、影响因素和发展特点等火灾特性,系统总结了核电站地震次生火灾扑灭应遵循"先重点,后一般"、"先隔离,后扑灭"、"急检修,勤巡逻"等三个原则,并提出了扑救和预防核电站地震次生火灾时应注意的三个事项。%Nuclear power plant post-earthquake fires will cause not only personnel injury,severe economic loss,but also serious environmental pollution.For the moment,nuclear power is in a position of rapid development in China.Considering the earthquake-prone characteristics of our country,it is of great engineering importance to investigate the nuclear power plant post-earthquake fires.This article analyzes the cause,influential factors and development characteristics of nuclear power plant post-earthquake fires in details,and summarizes the three principles should be followed in fighting and preventing nuclear power plant post-earthquake fires,such as solving problems in order of importance and urgency,isolation prior to prevention,immediate repair and regular patrol.Three aspects were pointed out that should be paid attention in fighting and preventing post-earthquake fires.

  16. Optical Thin Films for Gas Sensing in Advanced Coal Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ohodnicki, Paul; Brown, Thomas; Baltrus John; Chorpening, Benjamin

    2012-08-09

    Even for existing coal based plants, the opportunity for sensors and controls to improve efficiency is great. A wide range of gas species are of interest for relevant applications. Functional sensor layers for embedded sensing must be compatible with extreme conditions (temperature, pressure, corrosive). Au incorporated metal oxides have been looked at by a number of other authors previously for gas sensing, but have often focused on temperatures below 500{degree}C. Au nanoparticle incorporated metal oxide thin films have shown enhanced gas sensing response. In prior work, we have demonstrated that material systems such as Au nanoparticle incorporated TiO{sub 2} films exhibit a potentially useful optical response to changing gas atmospheres at temperatures up to ~800-850{degree}C. Current work is focused on sputter-deposited Au/TiO{sub 2} films. Au and Ti are multi-layered sputter deposited, followed by a 950{degree}C oxidation step. Increasing Au layer thickness yields larger particles. Interband electronic transitions significantly modify the optical constants of Au as compared to the damped free electron theory. A high temperature oxidation (20%O{sub 2}/N{sub 2}) treatment was performed at 700{degree}C followed by a reduction (4%H{sub 2}/N{sub 2}) treatment to illustrate the shift in both absorption and scattering with exposure to reducing gases. Shift of localized surface plasmon resonance (LSPR) absorption peak in changing gas atmospheres is well documented, but shift in the peak associated with diffuse scattering is a new observation. Increasing Au layer-thickness results in an increase in LSPR absorption and a shift to longer wavelengths. Diffuse scattering associated with the LSPR resonance of Au shows a similar trend with increasing Au thickness. To model the temperature dependence of LSPR, the modification to the plasmon frequency, the damping frequency, and the dielectric constant of the oxide matrix must be accounted for. Thermal expansion of Au causes

  17. High temperature corrosion in straw-fired power plants: Influence of steam/metal temperature on corrosion rates for TP347H

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Biede, O; Larsen, OH

    2002-01-01

    The corrosion in straw-fired boilers has been investigated at various straw-fired power plants in Denmark. Water/air-cooled probes, a test superheater and test sections removed from the actual superheater have been utilised to characterise corrosion and corrosion rates. This paper describes...... the corrosion rates measured for the TP347H type steel. The corrosion morphology at high temperature consists of grain boundary attack and selective attack of chromium. The corrosion rate increases with calculated metal temperature (based on steam temperature), however there is great variation within...... these results. In individual superheaters, there are significant temperature variations i.e. higher temperature in middle banks compared to the outer banks, higher temperature in leading tubes, which have a high impact on corrosion. In a single loop the assumption that heat uptake (and heat flux) is linear...

  18. 肉类加工厂防火设计浅析%Analyses on the fire protection design of meat packing plant

    Institute of Scientific and Technical Information of China (English)

    张扬; 岳佳超

    2012-01-01

    According to the characteristics of meat processing industry, this article analyses the protection design of General Layout and monomer workshop in design on building fire protection and prevention》,and also noticed in my view. meat packing plant , based on 《Code put forward some key points should fire of be%根据肉类加工产业的特点,结合《建筑设计防火规范》对肉类加工厂的总平面及单体车间的防火设计进行分析,提出一些个人认为应该引起注意的关键点。

  19. High temperature corrosion in straw-fired power plants: Influence of steam/metal temperature on corrosion rates for TP347H

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Biede, O; Larsen, OH

    2002-01-01

    The corrosion in straw-fired boilers has been investigated at various straw-fired power plants in Denmark. Water/air-cooled probes, a test superheater and test sections removed from the actual superheater have been utilised to characterise corrosion and corrosion rates. This paper describes...... the corrosion rates measured for the TP347H type steel. The corrosion morphology at high temperature consists of grain boundary attack and selective attack of chromium. The corrosion rate increases with calculated metal temperature (based on steam temperature), however there is great variation within...... these results. In individual superheaters, there are significant temperature variations i.e. higher temperature in middle banks compared to the outer banks, higher temperature in leading tubes, which have a high impact on corrosion. In a single loop the assumption that heat uptake (and heat flux) is linear...

  20. Respiratory complaints and spirometric parameters of the villagers living around the Seyitomer coal-fired thermal power plant in Kutahya, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Karavus, M.; Aker, A.; Cebeci, D.; Tasdemir, M.; Bayram, N.; Cali, S. [University of Marmara, Istanbul (Turkey). School of Medicine, Dept. of Public Health

    2002-07-01

    The respiratory effects of the stack emissions of the Seyitomer coal-fired thermal power plant in the Kutahya Province of Turkey were investigated. Three villages within 5 km of the power plant were investigated as 'Villages around Power Plant.' Two similar villages more than 30 km away were investigated as 'Control Villages.' The study compared respiratory complaints and the spirometric parameters of the individuals living in the two groups of villages. It was carried out on individuals of 15 years of age and above living in these villages (277 of 302 individuals living in the Villages around Power Plant and 225 of 264 living in the Control Villages). Among the ones living in the Villages around Power Plant, 46.2% had complaints of chest tightness and 29.2% repeated coughing attacks present for more than one year, whereas these percentages were 28.0 and 20.4% in the Control Villages. The means of the spirometric parameters of FEV1 and FEF25-75% were found to be statistically significantly lower in the individuals of the Villages around Power Plant compared to the individuals of the Control Villages. The spirometric parameters revealed statistically significant adverse health effects of the Power Plant. This was particularly apparent for the nonsmokers. More specific tests to confirm the diagnosis of acute and chronic lung diseases could be carried out.

  1. Simulation analysis of the spread of fire through the program Fire Dynamics Simulator FDS in areas of fire of nuclear power plants; Analisis de simulacion de la propagacion de incendios mediante el programa Fire Dynamics Simulator FDS en areas de fuego de Centrales Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Salellas, J.; Zamora, I.; Fabbri, M.; Colomer, C.; Castillo, R.; Fradera, J.

    2014-07-01

    The objective of the analysis of the spread of fire through Computational Fluid Dynamics simulation with the Fire Dynamics Simulator program is to determine the identification of the affected computers and determine the livability in the areas of fire as fire postulates. The simulation with Fire Dynamics Simulator allows the evolution and spread of flame and smoke behavior in an instant in time, determining the exact moment that damage is caused by radiation or temperature to equipment and operation according to the level of toxicity and temperature of the fire area. (Author)

  2. Slipstream pilot-scale demonstration of a novel amine-based post-combustion technology for carbon dioxide capture from coal-fired power plant flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamurthy, Krish R. [Linde LLC, Murray Hill, NJ (United States)

    2017-02-03

    Post-combustion CO2 capture (PCC) technology offers flexibility to treat the flue gas from both existing and new coal-fired power plants and can be applied to treat all or a portion of the flue gas. Solvent-based technologies are today the leading option for PCC from commercial coal-fired power plants as they have been applied in large-scale in other applications. Linde and BASF have been working together to develop and further improve a PCC process incorporating BASF’s novel aqueous amine-based solvent technology. This technology offers significant benefits compared to other solvent-based processes as it aims to reduce the regeneration energy requirements using novel solvents that are very stable under the coal-fired power plant feed gas conditions. BASF has developed the desired solvent based on the evaluation of a large number of candidates. In addition, long-term small pilot-scale testing of the BASF solvent has been performed on a lignite-fired flue gas. In coordination with BASF, Linde has evaluated a number of options for capital cost reduction in large engineered systems for solvent-based PCC technology. This report provides a summary of the work performed and results from a project supported by the US DOE (DE-FE0007453) for the pilot-scale demonstration of a Linde-BASF PCC technology using coal-fired power plant flue gas at a 1-1.5 MWe scale in Wilsonville, AL at the National Carbon Capture Center (NCCC). Following a project kick-off meeting in November 2011 and the conclusion of pilot plant design and engineering in February 2013, mechanical completion of the pilot plant was achieved in July 2014, and final commissioning activities were completed to enable start-up of operations in January 2015. Parametric tests were performed from January to December 2015 to determine optimal test conditions and evaluate process performance over a variety of operation parameters. A long-duration 1500-hour continuous test campaign was performed from May to

  3. Internet Based, GIS Catalog of Non-Traditional Sources of Cooling Water for Use at America's Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    J. Daniel Arthur

    2011-09-30

    In recent years, rising populations and regional droughts have caused coal-fired power plants to temporarily curtail or cease production due to a lack of available water for cooling. In addition, concerns about the availability of adequate supplies of cooling water have resulted in cancellation of plans to build much-needed new power plants. These issues, coupled with concern over the possible impacts of global climate change, have caused industry and community planners to seek alternate sources of water to supplement or replace existing supplies. The Department of Energy, through the National Energy Technology Laboratory (NETL) is researching ways to reduce the water demands of coal-fired power plants. As part of the NETL Program, ALL Consulting developed an internet-based Catalog of potential alternative sources of cooling water. The Catalog identifies alternative sources of water, such as mine discharge water, oil and gas produced water, saline aquifers, and publicly owned treatment works (POTWs), which could be used to supplement or replace existing surface water sources. This report provides an overview of the Catalog, and examines the benefits and challenges of using these alternative water sources for cooling water.

  4. Modes of Occurrence of Fluorine by Extraction and SEM Method in a Coal-Fired Power Plant from Inner Mongolia, China

    Directory of Open Access Journals (Sweden)

    Guangmeng Wang

    2015-12-01

    Full Text Available In this study, an extraction method and environmental scanning electron microscopy (SEM are employed to reveal the changes in the occurrence mode of fluorine in a coal-fired power plant in Inner Mongolia, China. The different occurrence states of fluorine during coal combustion and emission show that fluorine in coal mainly assumes insoluble inorganic mineral forms. The results illustrate that the three typical occurrence modes in coal are CaF2, MgF2 and AlF3. The fluorine in fly ash can be captured by an electrostatic precipitator (EPS or a bag filter. In contrast, the gaseous fluorine content in flue gas is only in the range of several parts per million; thus, it cannot be used in this study. The occurrence mode of fluorine in bottom ash and slag is inorganic villiaumite (e.g., soluble NaF, KF and insoluble CaF2 which is difficult to break down even at high temperatures. The occurrence mode of fluorine with the highest content in fly ash is physically adsorbed fluorine along the direction of the flue gas flow. The insoluble inorganic mineral fluoride content in fly ash is also high, but the gradually increasing fluorine content in fly ash is mainly caused by physical adsorption. Fluorine in the coal-fired power plant discharges mostly as solid products; however, very little fluorine emitted into the environment as gas products (HF, SiF4 cannot be captured. The parameters used in this study may provide useful references in developing a monitoring and control system for fluorine in coal-fired power plants.

  5. Effects of a coal-fired power plant and other sources on southwestern visibility (interim summary of EPA'S project VISTTA)

    Science.gov (United States)

    Blumenthal, D. L.; Richards, L. W.; Macias, E. S.; Bergstrom, R. W.; Wilson, W. E.; Bhardwaja, P. S.

    VISTTA (Visibility impairment due to Sulfur Transport and Transformation in the Atmosphere) is a cooperative program involving numerous government agencies, private companies, and universities. This paper summarizes the measurements and the results to date of the summer and winter, 1979, VISTTA plume measurement programs conducted near the Navajo Generating Station (NGS), Page, Arizona. During the program, ground and airborne measurements of aerosol size distribution, chemistry and optical properties, as well as gaseous reactant concentrations were made in the plume and in background air. Extensive regional and plume telephotometer measurements, airborne measurements along telephotometer site paths, background meteorological measurements, and source aerosol and chemistry measurements were also made. Various types of visibility measurements were compared with one another and with calculations of light extinction made using aerosol and NO 2 data. The measured plume optical effects were compared to those predicted using the EPA-SAI plume visibility model (PLUVUE). The results of the study to date indicate that: For the NGS plume, under most lighting and viewing conditions, NO 2 dominates the blue light extinction and brown coloration due to the plume. For distances up to 100 km or more for power plants like NGS, secondary aerosol formation can be ignored in visibility models under the dry conditions studied. Widespread areas of elevated aerosol concentrations were documented in the southwest due to long range transport from the southern California area, and to wild fires. Other causes of regional haze are known to exist but were not documented in this study. Evaluation of the chemistry, aerosol growth, and optics components of the PLUVUE plume visibility model showed predictions to be in reasonable agreement with the measurements. More uncertainty was encountered with the diffusion component. A set of nine reactions among NO, NO 2, O 3, O 2, SO 2, OH, H 2O, and O

  6. Biogeochemistry and plant physiological traits interact to reinforce patterns of post-fire dominance in boreal forests

    Science.gov (United States)

    Shenoy, A.; Kielland, K.; Johnstone, J. F.

    2011-12-01

    Increases in the frequency, extent, and severity of fire in the North American boreal region are projected to continue under a warming climate and are likely to be associated with changes in future vegetation composition. In interior Alaska, fire severity is linked to the relative dominance of deciduous versus coniferous canopy species. Severely burned areas have high levels of deciduous recruitment and subsequent stand dominance, while lightly burned areas exhibit black spruce self-replacement. To elucidate potential mechanisms by which differential fire severity results in differential post-fire vegetation development, we examined changes in soil nitrogen (N) supply (NO3- and NH4+) and in situ 15N uptake by young aspen (Populus tremuloides) and black spruce (Picea mariana) trees growing in lightly and severely burned areas. We hypothesized that (a) soil nitrate supply would be higher in severely burned sites and (b) since conifers have been shown to have a reduced physiological capacity for NO3- uptake, aspen would display greater rates of NO3- uptake than spruce in severely burned sites. Our results suggested that the composition and magnitude of inorganic N supply 14 years after the fire was nearly identical in high-severity and low-severity sites, and nitrate represented nearly 50% of the supply. However, both aspen and spruce took up substantially more NH4+-N than NO3- -N regardless of fire severity. Surprisingly, spruce exhibited only a moderately lower rate of NO3- uptake (μg N/g root-1h-1) than aspen. At the stand level, aspen took up nearly an order-of-magnitude more N per hectare in severely burned sites compared to lightly burned sites, while spruce exhibited the opposite pattern of N uptake with respect to fire severity. Whereas ammonium appeared to be preferred by both species, nitrate represented a larger component of N uptake (based on the NO3-:NH4+ uptake ratio) in aspen (0.7) than in spruce (0.4). We suggest that these species

  7. A study of toxic emissions from a coal-fired power plant utilizing an ESP while demonstrating the ICCT CT-121 FGD Project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-16

    The US Department of Energy is performing comprehensive assessments of toxic emissions from eight selected coal-fired electric utility units. This program responds to the Clean Air Act Amendments of 1990, which require the US Environmental Protection Agency (EPA) to evaluate emissions of hazardous air pollutants (HAPs) from electric utility power plants for Potential health risks. The resulting data will be furnished to EPA utility power plants and health risk determinations. The assessment of emissions involves the collection and analysis of samples from the major input, process, and output streams of each of the eight power plants for selected hazardous Pollutants identified in Title III of the Clean Air Act. Additional goals are to determine the removal efficiencies of pollution control subsystems for these selected pollutants and the Concentrations associated with the particulate fraction of the flue gas stream as a function of particle size. Material balances are being performed for selected pollutants around the entire power plant and several subsystems to identify the fate of hazardous substances in each utility system. Radian Corporation was selected to perform a toxics assessment at a plant demonstrating an Innovative Clean Coal Technology (ICCT) Project. The site selected is Plant Yates Unit No. 1 of Georgia Power Company, which includes a Chiyoda Thoroughbred-121 demonstration project.

  8. 谈某核电厂附加柴油发电机厂房防火设计%Discussion on the fire protection design of the nuclear power plant adding diesel generator workshop

    Institute of Scientific and Technical Information of China (English)

    赵月

    2016-01-01

    Through analyzing building fire protection design problems of the nuclear power plant adding diesel generator workshop,starting from aspects of fire protection layout,fire protection distribution,safety evacuation and oil tank design,the paper carries out the building fire protec-tion design,which reduces the fire hazards and improves the nuclear power safety performance.%通过分析某核电厂附加柴油发电机厂房建筑防火设计中存在的问题,从防火布置、防火分区、安全疏散、油罐间设计等方面,进行了建筑防火优化设计,降低了火灾危害的发生,提高了核电厂的安全性能。

  9. Application of PMF and CMB receptor models for the evaluation of the contribution of a large coal-fired power plant to PM10 concentrations.

    Science.gov (United States)

    Contini, Daniele; Cesari, Daniela; Conte, Marianna; Donateo, Antonio

    2016-08-01

    The evaluation of the contribution of coal-fired thermo-electrical power plants to particulate matter (PM) is important for environmental management, for evaluation of health risks, and for its potential influence on climate. The application of receptor models, based on chemical composition of PM, is not straightforward because the chemical profile of this source is loaded with Si and Al and it is collinear with the profile of crustal particles. In this work, a new methodology, based on Positive Matrix Factorization (PMF) receptor model and Si/Al diagnostic ratio, specifically developed to discriminate the coal-fired power plant contribution from the crustal contribution is discussed. The methodology was applied to daily PM10 samples collected in central Italy in proximity of a large coal-fired power plant. Samples were simultaneously collected at three sites between 2.8 and 5.8km from the power plant: an urban site, an urban background site, and a rural site. Chemical characterization included OC/EC concentrations, by thermo-optical method, ions concentrations (NH4(+), Ca(2+), Mg(2+), Na(+), K(+), Mg(2+), SO4(2-), NO3(-), Cl(-)), by high performances ion chromatography, and metals concentrations (Si, Al, Ti, V, Mn, Fe, Ni, Cu, Zn, Br), by Energy dispersive X-ray Fluorescence (ED-XRF). Results showed an average primary contribution of the power plant of 2% (±1%) in the area studied, with limited differences between the sites. Robustness of the methodology was tested inter-comparing the results with two independent evaluations: the first obtained using the Chemical Mass Balance (CMB) receptor model and the second correlating the Si-Al factor/source contribution of PMF with wind directions and Calpuff/Calmet dispersion model results. The contribution of the power plant to secondary ammonium sulphate was investigated using an approach that integrates dispersion model results and the receptor models (PMF and CMB), a sulphate contribution of 1.5% of PM10 (±0.3%) as

  10. Enhanced Fire Events Database to Support Fire PRA

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Baranowsky; Ken Canavan; Shawn St. Germain

    2010-06-01

    Abstract: This paper provides a description of the updated and enhanced Fire Events Data Base (FEDB) developed by the Electric Power Research Institute (EPRI) in cooperation with the U.S. Nuclear Regulatory Commission (NRC). The FEDB is the principal source of fire incident operational data for use in fire PRAs. It provides a comprehensive and consolidated source of fire incident information for nuclear power plants operating in the U.S. The database classification scheme identifies important attributes of fire incidents to characterize their nature, causal factors, and severity consistent with available data. The database provides sufficient detail to delineate important plant specific attributes of the incidents to the extent practical. A significant enhancement to the updated FEDB is the reorganization and refinement of the database structure and data fields and fire characterization details added to more rigorously capture the nature and magnitude of the fire and damage to the ignition source and nearby equipment and structures

  11. The effect of coal-fired power-plant SO2 and NOx control technologies on aerosol nucleation in the source plumes

    Directory of Open Access Journals (Sweden)

    E. M. Knipping

    2012-12-01

    Full Text Available Nucleation in coal-fired power-plant plumes can greatly contribute to particle number concentrations near source regions. The changing emissions rates of SO2 and NOx due to pollution-control technologies over recent decades may have had a significant effect on aerosol formation and growth in the plumes with ultimate implications for climate and human health. We use the System for Atmospheric Modeling (SAM large-eddy simulation model with the TwO-Moment Aerosol Sectional (TOMAS microphysics algorithm to model the nucleation in plumes of coal-fired plants. We test a range of cases with varying emissions to simulate the implementation of emissions-control technologies between 1997 and 2010. We start by simulating the W. A. Parish power plant (near Houston, TX during this time period, when NOx emissions were reduced by ~90% and SO2 emissions decreased by ~30%. Increases in plume OH (due to the reduced NOx produced enhanced SO2 oxidation and an order-of-magnitude increase in particle nucleation in the plume despite the reduction in SO2 emissions. These results suggest that NOx emissions could strongly regulate particle nucleation and growth in power-plant plumes. Next, we test a range of cases with varying emissions to simulate the implementation of SO2 and NOx emissions-control technologies. Particle formation generally increases with SO2 emission, while NOx shows two different regimes: increasing particle formation with increasing NOx under low-NOx emissions and decreasing particle formation with increasing NOx under high-NOx emissions. Next, we compare model results with airborne measurements made in the W. A. Parish power-plant plume in 2000 and 2006, confirming the importance of NOx emissions on new particle formation and highlighting the substantial effect of background aerosol loadings on this process (the more polluted background of the 2006 case caused more than an order-of-magnitude reduction in particle formation in the plume compared to

  12. Interactive firing and control station simulation of a waste incineration plant with grate firing; Interaktive Feuerungsbetriebs- und Leitstandssimulation einer Abfallverbrennungsanlage mit Rostfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Boller, M.; Urban, A.I. [Kassel Univ. (Gesamthochschule) (Germany). Fachgebiet Abfalltechnik

    1998-09-01

    In the course of several years` work in the area of waste engineering a model was developed which maps the dynamic behaviour of the plant from waste delivery to deslagging, crude gas output, and steam generation, thus providing a unique solution in terms of function and scope. This was made possible by the use of the semi-empirical approach of ``System Dynamics``. The approach presupposes that the model has already been adapted to reality by means of comparative studies. Expensive as it is, this procedure is necessary for waste incineration plants because theoretical analyses can never model the behaviour of the plant as a whole but only individual stages. [Deutsch] Durch mehrjaehrige Arbeiten ist im Fachgebiet Abfalltechnik ein Modell einer Abfallverbrennungsanlage enstanden, welches das dynamische Verhalten der Anlage von der Abfallaufgabe bis zur Entschlackung, dem Rohgasausgang und der Dampfproduktion abbildet und damit vom Umfang und der Funktion einmalig ist. Dies war moeglich, da der halbempirische Ansatz `System Dynamics` gewaehlt wurde, der das Anpassen des Modells an die Realitaet durch vergleichende Untersuchungen voraussetzt. Eine solche Vorgehensweise ist zwar aufwendig, im Bereich der MVA aber notwendig, da sich mit theoretischen Analysen nie das gesamte Anlagenverhalten erfassen laesst, sondern immer nur einzelne Ausschnitte. (orig.)

  13. International seminar on biomass and fossil fuels co-firing in power plants and heating plants in Europe; Seminaire international sur la cocombustion de biomasse et d'energies fossiles dans les centrales electriques et les chaufferies en Europe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The aim of the European commission which has fixed to 12% the share of renewable energies in the total energy consumption up to 2010, is to develop the biomass sector. Co-firing is a solution that allows to increase significantly the use of biomass because it does not require important investments. Today, about 150 power plants in Europe use co-firing. An Altener project named 'Cofiring' has ben settled in order to bring together and analyze the European experience in this domain and to sustain and rationalize the design of future projects. The conclusions of this study, coordinated by VTT Energy and which involves CARMEN (Germany), CBE (Portugal), the Danish centre for landscape and planning, ITEBE (France), KOBA (Italy), SLU (Sweden), and EVA (Austria), were presented during this international seminar. (J.S.)

  14. A simplified approach to analyze the effectiveness of NO2 and SO2 emission reduction of coal-fired power plant from OMI retrievals

    Science.gov (United States)

    Bai, Yang; Wu, Lixin; Zhou, Yuan; Li, Ding

    2017-04-01

    Nitrogen oxides (NOX) and sulfur dioxide (SO2) emissions from coal combustion, which is oxidized quickly in the atmosphere resulting in secondary aerosol formation and acid deposition, are the main resource causing China's regional fog-haze pollution. Extensive literature has estimated quantitatively the lifetimes and emissions of NO2 and SO2 for large point sources such as coal-fired power plants and cities using satellite measurements. However, rare of these methods is suitable for sources located in a heterogeneously polluted background. In this work, we present a simplified emission effective radius extraction model for point source to study the NO2 and SO2 reduction trend in China with complex polluted sources. First, to find out the time range during which actual emissions could be derived from satellite observations, the spatial distribution characteristics of mean daily, monthly, seasonal and annual concentration of OMI NO2 and SO2 around a single power plant were analyzed and compared. Then, a 100 km × 100 km geographical grid with a 1 km step was established around the source and the mean concentration of all satellite pixels covered in each grid point is calculated by the area weight pixel-averaging approach. The emission effective radius is defined by the concentration gradient values near the power plant. Finally, the developed model is employed to investigate the characteristic and evolution of NO2 and SO2 emissions and verify the effectiveness of flue gas desulfurization (FGD) and selective catalytic reduction (SCR) devices applied in coal-fired power plants during the period of 10 years from 2006 to 2015. It can be observed that the the spatial distribution pattern of NO2 and SO2 concentration in the vicinity of large coal-burning source was not only affected by the emission of coal-burning itself, but also closely related to the process of pollutant transmission and diffusion caused by meteorological factors in different seasons. Our proposed

  15. Full-scale ash deposition measurements at Avedøre Power Plant unit 2 during suspension-firing of wood with and without coal ash addition

    DEFF Research Database (Denmark)

    Wu, Hao; Shafique Bashir, Muhammad; Jensen, Peter Arendt

    The formation of deposits during suspension-firing of wood at Avedøre Power Plant unit 2 (AVV2) was studied by using an advanced deposit probe system. The tests were conducted both with and without coal ash addition, and at two different locations with flue gas temperatures of 1250-1300 oC and 750......-800 oC respectively. The deposit formation process was studied quantitatively though the mass uptake data from the load-cell of the probe, while camera pictures were used to qualitatively verify the obtained mass uptake data and to explain the deposit buildup/shedding mechanisms. The collected deposits...... along with the fly ash and bottom ash from the plant were characterized extensively by SEM-EDS, ICP-OES/IC and XRD. Based on the results from the present work, the deposit formation and shedding mechanisms under different operational conditions were proposed and discussed. The influence of coal ash...

  16. A Techno-Economic Assessment of Hybrid Cooling Systems for Coal- and Natural-Gas-Fired Power Plants with and without Carbon Capture and Storage.

    Science.gov (United States)

    Zhai, Haibo; Rubin, Edward S

    2016-04-05

    Advanced cooling systems can be deployed to enhance the resilience of thermoelectric power generation systems. This study developed and applied a new power plant modeling option for a hybrid cooling system at coal- or natural-gas-fired power plants with and without amine-based carbon capture and storage (CCS) systems. The results of the plant-level analyses show that the performance and cost of hybrid cooling systems are affected by a range of environmental, technical, and economic parameters. In general, when hot periods last the entire summer, the wet unit of a hybrid cooling system needs to share about 30% of the total plant cooling load in order to minimize the overall system cost. CCS deployment can lead to a significant increase in the water use of hybrid cooling systems, depending on the level of CO2 capture. Compared to wet cooling systems, widespread applications of hybrid cooling systems can substantially reduce water use in the electric power sector with only a moderate increase in the plant-level cost of electricity generation.

  17. Effects of heavy metals/metalloids present in fly ash from coal fired thermal power plant on photosynthetic parameters of Mangifera indica

    Directory of Open Access Journals (Sweden)

    Neelima Meravi

    2014-12-01

    Full Text Available In the present work heavy metals/metalloids present in the fly ash emitted from a coal fired thermal power plant was estimated. The effects of heavy metals/metalloids present in the ash on various photosynthetic parameters (fluorescence, Fv/Fm, fluorescence quenching coefficients, relative electron transport rate, photosynthetic active radiation, ETR-Factor absorptance of photons by photosynthetic pigments etc. were estimated. Heavy metals/metalloids were estimated using atomic absorption spectrophotometer (AAS, 7000 Shimadzu for Fe, Zn, Pb, Cd, Mo, Cu, Cr, Co and Ni and the standard solution was prepared using standard metal solution of Inorganic Ventures. Various photosynthetic parameters were estimated using JUNIOR-PAM, Chlorophyll Fluorometer, Heinz Walz GmbH, Germany. It was clear from the observed value of Fv/Fm (0.717 that the heavy metals/metalloids present in the fly have negative effects on plants because for a healthy plant Fv/Fm should not be less than 0.75. Similarly other parameters were also adversely affected by the presence of heavy metals/metalloids present in the fly ash that were deposited on the plants leaves. Therefore, the issue of fly ash emitted from thermal power plants need to be addressed in a proper way.

  18. A study of toxic emissions from a coal-fired power plant utilizing an ESP/Wet FGD system. Volume 1, Sampling, results, and special topics: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This was one of a group of assessments of toxic emissions from coal-fired power plants, conducted for DOE-PETC in 1993 as mandated by the 1990 Clean Air Act. It is organized into 2 volumes; Volume 1 describes the sampling effort, presents the concentration data on toxic chemicals in several power plant streams, and reports the results of evaluations and calculations. The study involved solid, liquid, and gaseous samples from input, output, and process streams at Coal Creek Station Unit No. 1, Underwood, North Dakota (1100 MW mine-mouth plant burning lignite from the Falkirk mine located adjacent to the plant). This plant had an electrostatic precipitator and a wet scrubber flue gas desulfurization unit. Measurements were conducted on June 21--24, 26, and 27, 1993; chemicals measured were 6 major and 16 trace elements (including Hg, Cr, Cd, Pb, Se, As, Be, Ni), acids and corresponding anions (HCl, HF, chloride, fluoride, phosphate, sulfate), ammonia and cyanide, elemental C, radionuclides, VOCs, semivolatiles (incl. PAH, polychlorinated dioxins, furans), and aldehydes. Volume 2: Appendices includes process data log sheets, field sampling data sheets, uncertainty calculations, and quality assurance results.

  19. Concentration of heavy metals and trace elements in soils, waters and vegetables and assessment of health risk in the vicinity of a lignite-fired power plant.

    Science.gov (United States)

    Noli, Fotini; Tsamos, Panagiotis

    2016-09-01

    The pollution of agricultural soils, waters and products in the regions of lignite mines and fired power plants is of great importance. The concentration of As, Βa, Co, Cr, Sr, Sc, Th, U, Zn in soils and waters in the vicinity of a lignite-fired power plant in Northern Greece was determined using Instrumental Neutron Activation Analysis. The determination frequency was every three months during a period of one year in order to evaluate the seasonal impact of the pollution to the environment. Measurements were performed in three locations around the lignite mine as well as in one reference location at a certain distance from the mine. The results, which exhibited a slight seasonal variation, were compared, where possible, with literature values from other countries. The obtained data in most of the cases did not exceed the normal levels and indicated that the investigated area was only slightly contaminated. The concentration of heavy and trace metals was also measured in three common garden crops (tomato, cucumber and parsley) grown in this area. The calculated transfer factors (TF) from soil to vegetables and health risk quotients (HQ) do not denote a health risk.

  20. 城市给水厂污泥建材资源化利用试验研究%Utilization of water plant sludge in hollow fired brick

    Institute of Scientific and Technical Information of China (English)

    程雪莉; 熊家晴

    2014-01-01

    A kind of small hollow brick is prepared by water plant sludge, clay and slag after mixing, extruding, drying and firing. Test is carried out on the compressive strength, lime blowing, efflorescence, thermal propertie and radioactive of hollow brick. The parameters accord with the national standard, so that use of the water plant sludge in hollow fired brick is feasible.%以给水厂污泥、基坑外运土、炉渣为原料,经过混合搅拌、挤出成型、干燥、焙烧等工序,试验烧制成小型空心砖。对成品试样进行抗压强度、石灰爆裂、泛霜、热工性能、放射性等方面的性能测试,各项检测结果均符合国家标准规定要求,由此表明城市给水厂污泥生产烧结空心砖是可行的。

  1. Concentration of heavy metals and trace elements in soils, waters and vegetables and assessment of health risk in the vicinity of a lignite-fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    Noli, Fotini, E-mail: noli@chem.auth.gr; Tsamos, Panagiotis, E-mail: pktsamos@chem.auth.gr

    2016-09-01

    The pollution of agricultural soils, waters and products in the regions of lignite mines and fired power plants is of great importance. The concentration of As, Βa, Co, Cr, Sr, Sc, Th, U, Zn in soils and waters in the vicinity of a lignite-fired power plant in Northern Greece was determined using Instrumental Neutron Activation Analysis. The determination frequency was every three months during a period of one year in order to evaluate the seasonal impact of the pollution to the environment. Measurements were performed in three locations around the lignite mine as well as in one reference location at a certain distance from the mine. The results, which exhibited a slight seasonal variation, were compared, where possible, with literature values from other countries. The obtained data in most of the cases did not exceed the normal levels and indicated that the investigated area was only slightly contaminated. The concentration of heavy and trace metals was also measured in three common garden crops (tomato, cucumber and parsley) grown in this area. The calculated transfer factors (TF) from soil to vegetables and health risk quotients (HQ) do not denote a health risk. - Highlights: • Seasonal variation of heavy metals concentrations in soils and waters in a lignite mining area. • The elevated concentrations detected by NAA indicating minor contamination of the studied area. • Determination of minor and trace elements in vegetables. • The transfer factors and health risk quotients indicating a possible slight contamination in the area.

  2. Export of reactive nitrogen from coal-fired power plants in the U.S.: Estimates from a plume-in-grid modeling study - article no. D04308

    Energy Technology Data Exchange (ETDEWEB)

    Vijayaraghavan, K.; Zhang, Y.; Seigneur, C.; Karamchandani, P.; Snell, H.E.

    2009-02-15

    The export of reactive nitrogen (nitrogen oxides and their oxidation products, collectively referred to as NOy) from coal-fired power plants in the U.S. to the rest of the world could have a significant global contribution to ozone. Traditional Eulerian gridded air quality models cannot characterize accurately the chemistry and transport of plumes from elevated point sources such as power plant stacks. A state-of-the-science plume-in-grid (PinG) air quality model, a reactive plume model embedded in an Eulerian gridded model, is used to estimate the export of NOy from 25 large coal-fired power plants in the U. S. (in terms of NOx and SO{sub 2} emissions) in July 2001 to the global atmosphere. The PinG model used is the Community Multiscale Air Quality Model with Advanced Plume Treatment (CMAQ-APT). A benchmark simulation with only the gridded model, CMAQ, is also conducted for comparison purposes. The simulations with and without advanced plume treatment show differences in the calculated export of NOy from the 25 plants considered reflecting the effect of using a detailed and explicit treatment of plume transport and chemistry. The advanced plume treatment results in 31% greater simulated export of NOy compared to the purely grid-based modeling approach. The export efficiency of NOy (the fraction of NOy emitted that is exported) is predicted to be 21% without APT and 27% with APT. When considering only export through the eastern boundary across the Atlantic, CMAQ-APT predicts that the export efficiency is 24% and that 2% of NOy is exported as NOx, 49% as inorganic nitrate, and 25% as PAN. These results are in reasonably good agreement with an analysis reported in the literature of aircraft measurements over the North Atlantic.

  3. Alstom's Chemical Looping Combustion Prototype for CO2 Capture from Existing Pulverized Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Andrus, Jr., Herbert E. [Alstom Power Inc., Windsor, CT (United States); Chiu, John H. [Alstom Power Inc., Windsor, CT (United States); Edberg, Carl D. [Alstom Power Inc., Windsor, CT (United States); Thibeault, Paul R. [Alstom Power Inc., Windsor, CT (United States); Turek, David G. [Alstom Power Inc., Windsor, CT (United States)

    2012-09-30

    Alstom’s Limestone Chemical Looping (LCL™) process has the potential to capture CO2 from new and existing coal-fired power plants while maintaining high plant power generation efficiency. This new power plant concept is based on a hybrid combustion- gasification process utilizing high temperature chemical and thermal looping technology. This process could also be potentially configured as a hybrid combustion-gasification process producing a syngas or hydrogen for various applications while also producing a separate stream of CO2 for use or sequestration. The targets set for this technology is to capture over 90% of the total carbon in the coal at cost of electricity which is less than 20% greater than Conventional PC or CFB units. Previous work with bench scale test and a 65 kWt Process Development Unit Development (PDU) has validated the chemistry required for the chemical looping process and provided for the investigation of the solids transport mechanisms and design requirements. The objective of this project is to continue development of the combustion option of chemical looping (LCL-C™) by designing, building and testing a 3 MWt prototype facility. The prototype includes all of the equipment that is required to operate the chemical looping plant in a fully integrated manner with all major systems in service. Data from the design, construction, and testing will be used to characterize environmental performance, identify and address technical risks, reassess commercial plant economics, and develop design information for a demonstration plant planned to follow the proposed Prototype. A cold flow model of the prototype will be used to predict operating conditions for the prototype and help in operator training. Operation of the prototype will provide operator experience with this new technology and performance data of the LCL-C™ process, which will be applied to the commercial design and economics and plan for a future demonstration

  4. Long-term effect of different planting proportions on forest landscape in Great Xing'an Mountains, Northeast China after the catastrophic fire in 1987

    Institute of Scientific and Technical Information of China (English)

    WANG Xugao; LI Xiuzhen; HE Hongshi; XIE Fuju

    2007-01-01

    A landscape model(LANDIS)was used to study the long-term forest dynamics under five planting types (100% larch(P1);70% larch and 30% Mongolian Scotch pine(Pinus sylvestris var.mongolica)(P2);50% larch and 50% Mongolian Scotch pine(P3);30% larch and 70% Mongolian Scotch pine(P4),100% Mongolian Scotch pine (P5)),which were also employed in severely burned area under current planting intensity,and under natural regeneration(as a comparison)in Tuqiang Forest Bureau in the northern slopes of Great Xing'an Mountains after the catastrophic fire in 1987.Results showed that different planting types had a significant influence on the abundance of larch,Mongolian Scotch pine and white birch.The abundance of larch increased with time,whereas the abundance of Mongolian Scotch pine was in a converse way.The abundance of larch and Mongolian Scotch pine under these planting scenarios was higher than that under natural regeneration.Under these planting scenarios,the abundance of larch increased with the increasing proportion of larch,and the abundance of Mongolian Scotch pine was in a similar way.Contrary to larch and Mongolian Scotch pine,white birch had higher abundance under natural regeneration than that under these planting scenarios.Also,the different proportions of larch and Mongolian Scotch pine had an influence on the abundance of white birch.White birch had higher abundance with the increasing proportion of Mongolian Scotch pine.As for the total abundance of larch and Mongolian Scotch pine,the difference was not significant under P2,P3 and P4 scenarios,but was higher than that under P1 and P5 scenarios,which indicated that individual-species planting should not be used in the forest landscape.

  5. Alstom's Chemical Looping Combustion Prototype for CO{sub 2} Capture from Existing Pulverized Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Andrus, Herbert; Chiu, John; Edberg, Carl; Thibeault, Paul; Turek, David

    2012-09-30

    Alstom’s Limestone Chemical Looping (LCL™) process has the potential to capture CO{sub 2} from new and existing coal-fired power plants while maintaining high plant power generation efficiency. This new power plant concept is based on a hybrid combustion- gasification process utilizing high temperature chemical and thermal looping technology. This process could also be potentially configured as a hybrid combustion-gasification process producing a syngas or hydrogen for various applications while also producing a separate stream of CO{sub 2} for use or sequestration. The targets set for this technology is to capture over 90% of the total carbon in the coal at cost of electricity which is less than 20% greater than Conventional PC or CFB units. Previous work with bench scale test and a 65 kWt Process Development Unit Development (PDU) has validated the chemistry required for the chemical looping process and provided for the investigation of the solids transport mechanisms and design requirements. The objective of this project is to continue development of the combustion option of chemical looping (LCL-C™) by designing, building and testing a 3 MWt prototype facility. The prototype includes all of the equipment that is required to operate the chemical looping plant in a fully integrated manner with all major systems in service. Data from the design, construction, and testing will be used to characterize environmental performance, identify and address technical risks, reassess commercial plant economics, and develop design information for a demonstration plant planned to follow the proposed Prototype. A cold flow model of the prototype will be used to predict operating conditions for the prototype and help in operator training. Operation of the prototype will provide operator experience with this new technology and performance data of the LCL-C™ process, which will be applied to the commercial design and economics and plan for a future demonstration plant.

  6. Regulations Perfection Accelerates Development of Desulfurization Industry——The 11th Five-Year Plan on SO2 emission control in existing coal-fired power plants constituted

    Institute of Scientific and Technical Information of China (English)

    Staff Editors of China Electric Power News; Ye Qing

    2007-01-01

    @@ The "Outline of National Economic and Social Development of the 11th Five-Year Plan" has set forth the target of cutting SO2 emissions by 10% to the year 2010. To realize the target, the National Development and Reform Commission and the State Environmental Protection Administration of China jointly constituted "The 11th Five-Year Plan on SO2Emission Control in Existing Coal-Fired Power Plants" which is not only a completing document for implementing the outline but also an important basis for the state to administer preferential policies to existing coal-fired power plants to equip desulfurization installations.

  7. Mercury accumulation in sediment cores from three Washington state lakes: evidence for local deposition from a coal-fired power plant.

    Science.gov (United States)

    Furl, Chad V; Meredith, Callie A

    2011-01-01

    Mercury accumulation rates measured in age-dated sediment cores were compared at three Washington state lakes. Offutt Lake and Lake St. Clair are located immediately downwind (18 and 28 km, respectively) of a coal-fired power plant and Lake Sammamish is located outside of the immediate area of the plant (110 km). The sites immediately downwind of the power plant were expected to receive increased mercury deposition from particulate and reactive mercury not deposited at Lake Sammamish. Mercury accumulation in cores was corrected for variable sedimentation, background, and sediment focusing to estimate the anthropogenic contribution (Hg(A,F)). Results indicated lakes immediately downwind of the power plant contained elevated Hg(A,F) levels with respect to the reference lake. Estimated fluxes to Lake Sammamish were compared to measured values from a nearby mercury wet deposition collector to gauge the efficacy of the core deconstruction techniques. Total deposition calculated through the sediment core (20.7 μg/m²/year) fell just outside of the upper estimate (18.9 μg/m²/year) of total deposition approximated from the wet deposition collector.

  8. Evaluating impacts of fire management strategies on native and invasive plants using an individual-based model

    Science.gov (United States)

    Gangur, Alexander N.; Fill, Jennifer M.; Northfield, Tobin D.; van de Wiel, Marco

    2017-04-01

    The capacity for species to coexist and potentially exclude one another can broadly be attributed to drivers that influence fitness differences (such as competitive ability) and niche differences (such as environmental change). These drivers, and thus the determinants of coexistence they influence, can interact and fluctuate both spatially and temporally. Understanding the spatiotemporal variation in niche and fitness differences in systems prone to fluctuating drivers, such as fire, can help to inform the management of invasive species. In the Cape floristic region of South Africa, invasive Pinus pinaster seedlings are strong competitors in the post-burn environment of the fire-driven Fynbos vegetation. In this, system native Protea spp. are especially vulnerable to unseasonal burns, but seasonal prescribed (Summer) burns are thought to present a high safety risk. Together, these issues have limited the appeal of prescribed burn management as an alternative to costly manual eradication of P. pinaster. Using a spatially-explicit field-of-neighbourhood individual-based model, we represent the drivers of spatiotemporal variation in niche differences (driven by fire regimes) and fitness differences (driven by competitive ability). In doing so, we evaluate optimal fire management strategies to a) control invasive P. pinaster in the Cape floristic region of South Africa, while b) minimizing deleterious effects of management on native Protea spp. The scarcity of appropriate data for model calibration has been problematic for models in invasion biology, but we use recent advances in Approximate Bayesian Computing techniques to overcome this limitation. We present early conclusions on the viability of prescribed burn management to control P. pinaster in South Africa.

  9. Avian community responses to post-fire forest structure: implications for fire management in mixed conifer forests

    Science.gov (United States)

    Angela White; Patricia Manley; Gina Tarbill; T. W. Richardson; R. E. Russell; H. D. Safford; S. Z. Dobrowski

    2016-01-01

    Fire is a natural process and the dominant disturbance shaping plant and animal communities in many coniferous forests of the western US. Given that fire size and severity are predicted to increase in the future, it has become increasingly important to understand how wildlife responds to fire and post-fire management. The Angora Fire...

  10. Coal-fired Power Plants with Flexible Amine-based CCS and Co-located Wind Power: Environmental, Economic and Reliability Outcomes

    Science.gov (United States)

    Bandyopadhyay, Rubenka

    Carbon Capture and Storage (CCS) technologies provide a means to significantly reduce carbon emissions from the existing fleet of fossil-fired plants, and hence can facilitate a gradual transition from conventional to more sustainable sources of electric power. This is especially relevant for coal plants that have a CO2 emission rate that is roughly two times higher than that of natural gas plants. Of the different kinds of CCS technology available, post-combustion amine based CCS is the best developed and hence more suitable for retrofitting an existing coal plant. The high costs from operating CCS could be reduced by enabling flexible operation through amine storage or allowing partial capture of CO2 during high electricity prices. This flexibility is also found to improve the power plant's ramp capability, enabling it to offset the intermittency of renewable power sources. This thesis proposes a solution to problems associated with two promising technologies for decarbonizing the electric power system: the high costs of the energy penalty of CCS, and the intermittency and non-dispatchability of wind power. It explores the economic and technical feasibility of a hybrid system consisting of a coal plant retrofitted with a post-combustion-amine based CCS system equipped with the option to perform partial capture or amine storage, and a co-located wind farm. A techno-economic assessment of the performance of the hybrid system is carried out both from the perspective of the stakeholders (utility owners, investors, etc.) as well as that of the power system operator. (Abstract shortened by ProQuest.).

  11. Fire risk evaluation on nuclear power plant based on the method of analytic hierarchy process%基于层次分析方法的核电火灾风险评估研究

    Institute of Scientific and Technical Information of China (English)

    王孔森

    2012-01-01

    核电火灾是现代消防安全的重要部分.依据核电厂的实际组成构造对其进行了层次划分,建立了由堆本体、一次冷却系统、化容控式系统堆安全系统、汽轮发电机组和燃料操作系统为中间层的核电火灾危险性评价指标体系.结合收集到的相关核电事故数据资料,运用层次分析法对核电厂各系统部位引发火灾造成的核电安全风险进行了评估,确定了各组分的统计权重,得到了针对核电厂各构造部位的火灾危险性层次评价模型.并利用评价打分的方法对核电厂进行调查模拟评价,计算出核电厂各组成部分消防安全状况的危险指数,所得结果比较符合核电火灾实际统计.%The fire of nuclear power plant is an important part of our modem fire safety. At first, the hierarchical classification of the nuclear power plant was conducted based on its actual structure, and the fire risk evaluation index system was established. Then, combining with nuclear accidents data collected, the fire risk assessment of nuclear power safety was presented using analytical hierarchy process. The statistical weight of each index was determined, and fire risk assessment model for the nuclear power plant was obtained. Finally, the nuclear power plant was evaluated using scoring assessment method, and the risk indexes of nuclear power plants were calculated. The risk assessment results showed that the fire prevention of nuclear power plant should be focused on such parts as the fuel operating system, the cooling system and the turbine generators, which are much more in line with the actual statistics of the nuclear fires. At last some suggestions were given, which is of great importance for the work of fire prevention in nuclear power plant.

  12. Enrichment of {sup 210}Po and {sup 210}Pb in ash samples from oil shale-fired power plants in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Ozden, B. [University of Tartu, Institute of Physics/Ege University, Institute of Nuclear Sciences (Estonia); Vaasma, T.; Kiisk, M.; Suursoo, S.; Tkaczyk, A.H. [University of Tartu,Institute of Physics (Estonia)

    2014-07-01

    Energy production in Estonia is largely dependent on the oil shale industry. Oil shale is a fossil fuel typically characterized by relatively high mineral composition, modest organic fraction (varying between 10 and 65%), high ash content (usually 45% to 50%), and average lower heating value of 8.4 MJ/kg{sup -1}. Oil shale-fired power plants account for 85% of Estonian electricity production and produce up to 6 million tons of oil shale ash annually. This ash contains elevated amounts of natural radionuclides (from the {sup 238}U and {sup 232}Th series and {sup 40}K), which were bound to oil shale during its formation. These radionuclides become enriched in ash fractions during the combustion process and are partially emitted to the atmosphere via fly ash and flue gases. Oil shale-fired electricity production is foreseen to remain a dominant trend in Estonia, suggesting that the radionuclide emissions to the atmosphere will continue in the future. The natural radionuclides {sup 210}Po and {sup 210}Pb, with half-lives of 138 days and 22.3 years respectively, originate from the radioactive decay of radionuclides of {sup 238}U series present in the earth's crust. These radionuclides are also built up artificially in the environment due to waste discharge from phosphate, oil, and gas industries, combustion of fossil fuels and other energy production as technically enhanced natural radionuclides. There are few studies on oil shale power plants influence on the levels of natural radioactivity in the surrounding areas. Realo, et al. reported that the annual doses from fly ash depositions over a 30 year period are in the range 90 - 200 μSv a{sup -1}. A study previously initiated by the University of Tartu, Institute of Physics (IPh) evaluated enrichment in the activity concentrations of {sup 238}U, {sup 226}Ra, {sup 210}Pb, {sup 232}Th, {sup 228}Ra and {sup 40}K in ash samples collected from Eesti Power Plant's circulating fluidized bed (CFB) boiler. According

  13. Comparing post-combustion CO2 capture operation at retrofitted coal-fired power plants in the Texas and Great Britain electric grids

    Science.gov (United States)

    Cohen, Stuart M.; Chalmers, Hannah L.; Webber, Michael E.; King, Carey W.

    2011-04-01

    This work analyses the carbon dioxide (CO2) capture system operation within the Electric Reliability Council of Texas (ERCOT) and Great Britain (GB) electric grids using a previously developed first-order hourly electricity dispatch and pricing model. The grids are compared in their 2006 configuration with the addition of coal-based CO2 capture retrofits and emissions penalties from 0 to 100 US dollars per metric ton of CO2 (USD/tCO2). CO2 capture flexibility is investigated by comparing inflexible CO2 capture systems to flexible ones that can choose between full- and zero-load CO2 capture depending on which operating mode has lower costs or higher profits. Comparing these two grids is interesting because they have similar installed capacity and peak demand, and both are isolated electricity systems with competitive wholesale electricity markets. However, differences in capacity mix, demand patterns, and fuel markets produce diverging behaviours of CO2 capture at coal-fired power plants. Coal-fired facilities are primarily base load in ERCOT for a large range of CO2 prices but are comparably later in the dispatch order in GB and consequently often supply intermediate load. As a result, the ability to capture CO2 is more important for ensuring dispatch of coal-fired facilities in GB than in ERCOT when CO2 prices are high. In GB, higher overall coal prices mean that CO2 prices must be slightly higher than in ERCOT before the emissions savings of CO2 capture offset capture energy costs. However, once CO2 capture is economical, operating CO2 capture on half the coal fleet in each grid achieves greater emissions reductions in GB because the total coal-based capacity is 6 GW greater than in ERCOT. The market characteristics studied suggest greater opportunity for flexible CO2 capture to improve operating profits in ERCOT, but profit improvements can be offset by a flexibility cost penalty.

  14. Heantos-4, a natural plant extract used in the treatment of drug addiction, modulates T-type calcium channels and thalamocortical burst-firing.

    Science.gov (United States)

    Cain, Stuart M; Ahn, Soyon; Garcia, Esperanza; Zhang, Yiming; Waheed, Zeina; Tyson, John R; Yang, Yi; Van Sung, Tran; Phillips, Anthony G; Snutch, Terrance P

    2016-12-05

    Heantos-4 is a refined combination of plant extracts currently approved to treat opiate addiction in Vietnam. In addition to its beneficial effects on withdrawal and prevention of relapse, reports of sedation during clinical treatment suggest that arousal networks in the brain may be recruited during Heantos administration. T-type calcium channels are implicated in the generation of sleep rhythms and in this study we examined whether a Heantos-4 extraction modulates T-type calcium channel currents generated by the Cav3.1, Cav3.2 and Ca3.3 subtypes. Utilizing whole-cell voltage clamp on exogenously expressed T-type calcium channels we find that Heantos inhibits Cav3.1 and Cav3.3 currents, while selectively potentiating Cav3.2 currents. We further examined the effects of Heantos-4 extract on low-threshold burst-firing in thalamic neurons which contribute to sleep oscillations. Using whole-cell current clamp in acute thalamic brain slices Heantos-4 suppressed rebound burst-firing in ventrobasal thalamocortical neurons, which express primarily Cav3.1 channels. Conversely, Heantos-4 had no significant effect on the burst-firing properties of thalamic reticular neurons, which express a mixed population of Cav3.2 and Cav3.3 channels. Examining Heantos-4 effects following oral administration in a model of absence epilepsy revealed the potential to exacerbate seizure activity. Together, the findings indicate that Heantos-4 has selective effects both on specific T-type calcium channel isoforms and distinct populations of thalamic neurons providing a putative mechanism underlying its effects on sedation and on the thalamocortical network.

  15. Evaluation of Solid Sorbents As A Retrofit Technology for CO{sub 2} Capture from Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Krutka, Holly; Sjostrom, Sharon

    2011-07-31

    conceptual sorbent-based capture options yielded significant energy penalty and cost savings versus an aqueous amine system. Specifically, the estimated levelized cost of electricity (LCOE) for final concept design without a CO{sub 2} laden/lean sorbent heat exchanger or any other integration, was over 30% lower than that of the MEA capture process. However, this cost savings was not enough to meet the DOE’s target of ≤35% increase in LCOE. In order to reach this target, the incremental LCOE due to the CO{sub 2} capture can be no higher than 2.10 ¢/kWh above the LCOE of the non-capture equivalent power plant (6.0 ¢/kWh). Although results of the 1 kWe pilot evaluations suggest that the initial full-scale concept design must be revisited to address the technical targets, the cost assessment still provides a valuable high-level estimate of the potential costs of a solids-based system. A sensitivity analysis was conducted to determine the cost drivers and the results of the sensitivity analysis will be used to direct future technology development efforts. The overall project objective was to assess the viability and accelerate development of a solid-based post-combustion CO{sub 2} capture technology that can be retrofit to the existing fleet of coal-fired power plants. This objective was successfully completed during the project along with several specific budget period goals. Based on sorbent screening and a full-scale equipment evaluation, it was determined that solid sorbents for post-combustion capture is promising and warrants continued development efforts. Specifically, the lower sensible heat could result in a significant reduction in the energy penalty versus solvent based capture systems, if the sorbents can be paired with a process and equipment that takes advantage of the beneficial sorbent properties. It was also determined that a design using a circulating fluidized bed adsorber with rotary kilns for heating during regeneration, cooling, and conveying

  16. Study and practice on condition-based maintenance of induced fans in coal-fired power plants

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Reducing the enormous maintenance cost is essential to enhance the competitiveness for power plants.An overall design scheme for condition-based maintenance of induced fans is proposed for large thermal power plants.The interface of the above framework is simple and convenient;the optimum maintenance strategy is given by condition monitoring and risk evaluating.The decisionsupported system was used in Guangdong Shajiao C Power Plant.The results show that it is a feasible maintenance optimization scheme for power plants.

  17. Effects of Environmental Temperature Change on the Efficiency of Coal- and Natural Gas-Fired Power Plants.

    Science.gov (United States)

    Henry, Candise L; Pratson, Lincoln F

    2016-09-06

    Modeling studies predict that droughts and hotter water and air temperatures caused by climate warming will reduce the efficiency (η) of thermoelectric plants by 0.12-0.45% for each 1 °C of warming. We evaluate these predictions using historical performance data for 39 open- and closed-loop coal and natural gas plants from across the U.S., which operated under daily and seasonal temperature fluctuations multiples greater than future average warming projections. Seven to 14 years of hourly water (Tw), dry-bulb air (Ta), and wet-bulb air (Twb) temperature recordings collected near each plant are regressed against efficiency to attain estimates of Δη per 1 °C increase. We find reductions in η with increased Tw (for open-loop plants) up to 1 order of magnitude less than previous estimates. We also find that changes in η associated with changes in Ta (open-loop plants) or Twb (closed-loop plants) are not only smaller than previous estimates but also variable; i.e., η rises with Ta or Twb for some plants and falls for others. Our findings suggest that thermoelectric plants, particularly closed-loop plants, should be more resilient to climate warming than previously expected.

  18. Calculation of Fire Severity Factors and Fire Non-Suppression Probabilities For A DOE Facility Fire PRA

    Energy Technology Data Exchange (ETDEWEB)

    Tom Elicson; Bentley Harwood; Jim Bouchard; Heather Lucek

    2011-03-01

    Over a 12 month period, a fire PRA was developed for a DOE facility using the NUREG/CR-6850 EPRI/NRC fire PRA methodology. The fire PRA modeling included calculation of fire severity factors (SFs) and fire non-suppression probabilities (PNS) for each safe shutdown (SSD) component considered in the fire PRA model. The SFs were developed by performing detailed fire modeling through a combination of CFAST fire zone model calculations and Latin Hypercube Sampling (LHS). Component damage times and automatic fire suppression system actuation times calculated in the CFAST LHS analyses were then input to a time-dependent model of fire non-suppression probability. The fire non-suppression probability model is based on the modeling approach outlined in NUREG/CR-6850 and is supplemented with plant specific data. This paper presents the methodology used in the DOE facility fire PRA for modeling fire-induced SSD component failures and includes discussions of modeling techniques for: • Development of time-dependent fire heat release rate profiles (required as input to CFAST), • Calculation of fire severity factors based on CFAST detailed fire modeling, and • Calculation of fire non-suppression probabilities.

  19. Feasibility study for an advanced coal fired heat exchanger/gas turbine topping cycle for a high efficiency power plant. Technical report, January 1, 1993--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Zhao, Y.; Buggeln, R.C.; Shamroth, S.J.

    1993-04-01

    The overall objective of this project is to prove the feasibility of AFR`s concepts for a high efficiency coal-fired generating plant using the REACH/Exchanger concept to power an externally fired gas turbine. The computational REACH reactor was modeled with PCGC-2. The reactor geometry, inlet flow rates and configurations were investigated via modeling in order to get an optimum operation condition, with which a thorough coal and gas mixture and a required coal particle dispersion can both be achieved. This is to ensure the efficiencies of both coal combustion and aerodynamic cleaning. The aerodynamic cleaning effect of the tertiary air injection was modeled with CELMINT. Various injection schemes investigated show the dramatic impact of the tertiary air and the injection positions on the overall air flow pattern in the reactor which is one of the major influencing factors on the particle dispersion. It is clearly demonstrated that an optimum tertiary injection scheme with a reasonable flow rate is able to keep the heat exchange tubes from particle fouling.

  20. Radiological Impact Study of the Coal-Fired Power Plant of Velilla; Estudio del Impacto Radiologico de la Central Termica de Carbon de Velilla

    Energy Technology Data Exchange (ETDEWEB)

    Robles, B.; Mora, J. c.; Trueba, C.; Rodriguez, J.; Baeza, A.; Corbacho, J. a.; Guillen, J.; Miralles, Y.

    2013-10-01

    Coal, fuel used in thermal power plants for electricity production, contains variable concentrations of naturally occurring radionuclides from natural disintegration series of 238U, 235U, 232Th and also the 40K, which are enhanced in the wastes and coproducts due to the industrial process. For this reason, natural radionuclides which are part of the non-combustible fraction of coal, except those volatiles which incorporate directly to the flue gases, concentrates and are partitioned between fly ashes and bottom ashes. This enhancement could cause, to the workers of the installation and to members of the public around the plant, an increase in the exposure which should be assessed under the radiation protection point of view. Present report collect the results obtained from a screening assessment of the radiological impact derived from the normal operation of the Velilla coal-fired power plant. The project where this assessment was performed is part of a bigger project which is jointly developed by the Unit of Radiation Protection of the Public and the Environment (UPRPYMA) of CIEMAT and the Environmental Radioactivity Laboratory of the Extremadura University (LARUEX) in agreement with the Spanish Association of the Electrical Industry (ENUSA). (Author)

  1. Radiological Impact Study of the Coal-Fired Power Plant of La Robla; Estudio del Impacto Radiologico de la Central Termica de Carbon de La Robla

    Energy Technology Data Exchange (ETDEWEB)

    Robles, B.; Mora, J. C.; Trueba, C.; Rodriguez, J.; Baeza, A.; Corbacho, J. A.; Guillen, J.; Miralles, Y.

    2013-07-01

    Coal, fuel used in thermal power plants for electricity production, contains variable concentrations of naturally occurring radionuclides from natural disintegration series of 238{sup U}, 235{sup U}, 232{sup T}h and also the 40{sup K}, which are enhanced in the wastes and coproducts due to the industrial process. For this reason, natural radionuclides which are part of the non-combustible fraction of coal, except those volatiles which incorporate directly to the flue gases, concentrates and are partitioned between fly ashes and bottom ashes. This enhancement could cause, to the workers of the installation and to members of the public around the plant, an increase in the exposure which should be assessed under the radiation protection point of view. Present report collect the results obtained from a screening assessment of the radiological impact derived from the normal operation of the La Robla coal-fired power plant. The project where this assessment was performed is part of a bigger project which is jointly developed by the Unit of Radiation Protection of the Public and the Environment (UPRPYMA) of CIEMAT and the Environmental Radioactivity Laboratory of the Extremadura University (LARUEX) in agreement with the Spanish Association of the Electrical Industry (ENUSA). (Author)

  2. Radiological Impact Study of the Coal-Fired Power Plant of Lada; Estudio del Impacto Radiologico de la Central Termica de Carbon de Lada

    Energy Technology Data Exchange (ETDEWEB)

    Robles, B.; Baeza, A.; Mora, J. C.; Corbacho, J. A.; Trueba, C.; Guillen, J.; Rodriguez, J.; Miralles, Y.

    2014-02-01

    Coal, fuel used in thermal power plants for electricity production, contains variable concentrations of naturally occurring radionuclides from natural disintegration series of 238{sup U}, 235{sup U}, 232{sup T}h and also the 40K, which are enhanced in the wastes and coproducts due to the industrial process. For this reason, natural radionuclides which are part of the noncombustible fraction of coal, except those volatiles which incorporate directly to the flue gases, concentrates and are partitioned between fly ashes and bottom ashes. This enhancement could cause, to the workers of the installation and to members of the public around the plant, an increase in the exposure which should be assessed under the radiation protection point of view. Present report collect the results obtained from a screening assessment of the radiological impact derived from the normal operation of the Lada coal-fired power plant. The project where this assessment was performed is part of a bigger project which is jointly developed by the Unit of Radiation Protection of the Public and the Environment (UPRPYMA) of CIEMAT and the Environmental Radioactivity Laboratory of the Extremadura University (LARUEX) in agreement with the Spanish Association of the Electrical Industry (ENUSA). (Author)

  3. Radiological Impact Study of the Coal-Fired Power Plant of La Robla; Estudio del Impacto Radiologico de la Central Termica de Carbon de La Robla

    Energy Technology Data Exchange (ETDEWEB)

    Robles, B.; Baeza, A.; Mora, J. C.; Corbacho, J. A.; Trueba, C.; Guillen, J.; Rodriguez, J.; Miralles, Y.

    2014-04-01

    Coal, fuel used in thermal power plants for electricity production, contains variable concentrations of naturally occurring radionuclides from natural disintegration series of {sup 2}38U, {sup 2}35U, {sup 2}32Th and also the 40K, which are enhanced in the wastes and coproducts due to the industrial process. For this reason, natural radionuclides which are part of the noncombustible fraction of coal, except those volatiles which incorporate directly to the flue gases, concentrates and are partitioned between fly ashes and bottom ashes. This enhancement could cause, to the workers of the installation and to members of the public around the plant, an increase in the exposure which should be assessed under the radiation protection point of view. Present report collect the results obtained from a screening assessment of the radiological impact derived from the normal operation of the La Robla coal-fired power plant. The project where this assessment was performed is part of a bigger project which is jointly developed by the Unit of Radiation Protection of the Public and the Environment (UPRPYMA) of CIEMAT and the Environmental Radioactivity Laboratory of the Extremadura University (LARUEX) in agreement with the Spanish Association of the Electrical Industry (ENUSA). (Author)

  4. Radiological Impact Study of the Coal-Fired Power Plant of Meirama; Estudio del Impacto Radiologico de la Central Termica de Carbon de Meirama

    Energy Technology Data Exchange (ETDEWEB)

    Robles, B.; Baeza, A.; Mora, J. C.; Corbacho, J. A.; Trueba, C.; Guillen, J.; Rodriguez, J.; Miralles, Y.

    2014-04-01

    Coal, fuel used in thermal power plants for electricity production, contains variable concentrations of naturally occurring radionuclides from natural disintegration series of {sup 2}38U, {sup 2}35U, {sup 2}32Th and also the 40K, which are enhanced in the wastes and coproducts due to the industrial process. For this reason, natural radionuclides which are part of the noncombustible fraction of coal, except those volatiles which incorporate directly to the flue gases, concentrates and are partitioned between fly ashes and bottom ashes. This enhancement could cause, to the workers of the installation and to members of the public around the plant, an increase in the exposure which should be assessed under the radiation protection point of view. Present report collect the results obtained from a screening assessment of the radiological impact derived from the normal operation of the Meirama coal-fired power plant. The project where this assessment was performed is part of a bigger project which is jointly developed by the Unit of Radiation Protection of the Public and the Environment (UPRPYMA) of CIEMAT and the Environmental Radioactivity Laboratory of the Extremadura University (LARUEX) in agreement with the Spanish Association of the Electrical Industry (ENUSA). (Author)

  5. Radiological Impact Study of the Coal-Fired Power Plant of Anllares; Estudio del Impacto Radiologico de la Central Termica de Carbon de Anllares

    Energy Technology Data Exchange (ETDEWEB)

    Robles, B.; Baeza, A.; Mora, J. C.; Corbacho, J. A.; Trueba, C.; Guillen, J.; Rodriguez, J.; Miralles, Y.

    2014-04-01

    Coal, fuel used in thermal power plants for electricity production, contains variable concentrations of naturally occurring radionuclides from natural disintegration series of {sup 2}38U, {sup 2}35U, {sup 2}32Th and also the 40K, which are enhanced in the wastes and coproducts due to the industrial process. For this reason, natural radionuclides which are part of the noncombustible fraction of coal, except those volatiles which incorporate directly to the flue gases, concentrates and are partitioned between fly ashes and bottom ashes. This enhancement could cause, to the workers of the installation and to members of the public around the plant, an increase in the exposure which should be assessed under the radiation protection point of view. Present report collect the results obtained from a screening assessment of the radiological impact derived from the normal operation of the Anllares coal-fired power plant. The project where this assessment was performed is part of a bigger project which is jointly developed by the Unit of Radiation Protection of the Public and the Environment (UPRPYMA) of CIEMAT and the Environmental Radioactivity Laboratory of the Extremadura University (LARUEX) in agreement with the Spanish Association of the Electrical Industry (ENUSA). (Author)

  6. Radiological Impact Study of the Coal-Fired Power Plant of Abono; Estudio del Impacto Radiologico de la Central Termica de Carbon de Abono

    Energy Technology Data Exchange (ETDEWEB)

    Robles, B.; Baeza, A.; Mora, J. C.; Corbacho, J. A.; Trueba, C.; Guillen, J.; Rodriguez, J.; Miralles, Y.

    2014-04-01

    Coal, fuel used in thermal power plants for electricity production, contains variable concentrations of naturally occurring radionuclides from natural disintegration series of {sup 2}38U, {sup 2}35U, {sup 2}32Th and also the {sup 4}0K, which are enhanced in the wastes and coproducts due to the industrial process. For this reason, natural radionuclides which are part of the noncombustible fraction of coal, except those volatiles which incorporate directly to the flue gases, concentrates and are partitioned between fly ashes and bottom ashes. This enhancement could cause, to the workers of the installation and to members of the public around the plant, an increase in the exposure which should be assessed under the radiation protection point of view. Present report collect the results obtained from a screening assessment of the radiological impact derived from the normal operation of the Abono coal-fired power plant. The project where this assessment was performed is part of a bigger project which is jointly developed by the Unit of Radiation Protection of the Public and the Environment (UPRPYMA) of CIEMAT and the Environmental Radioactivity Laboratory of the Extremadura University (LARUEX) in agreement with the Spanish Association of the Electrical Industry (ENUSA). (Author)

  7. The Carnol System for methanol production and CO{sub 2} mitigation from coal fired power plants and the transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, M.

    1996-11-01

    The Carnol System consists of methanol production by CO{sub 2} recovered from coal fired power plants and natural gas and the use of the methanol as an alternative automotive fuel. The Carnol Process produces hydrogen by the thermal decomposition of natural gas and reacting the hydrogen with CO{sub 2} recovered from the power plant. The carbon produced can be stored or used as a materials commodity. A design and economic evaluation of the Carnol System is presented and compared to gasoline as an automotive fuel. An evaluation of the CO{sub 2} emission reduction of the process and system is made and compared to other conventional methanol production processes is including the use of biomass feedstock and methanol fuel cell vehicles. The CO{sub 2} for the entire Carnol System using methanol in automotive IC engines can be reduced by 56% compared to conventional system of coal plants and gasoline engines and by as much as 77% CO{sub 2} emission reduction when methanol is used in fuel cells in automotive engines. The Carnol System is shown to be an environmentally attractive and economically viable system connecting the power generation sector with the transportation sector which should warrant further development.

  8. The Carnol System for methanol production and CO{sub 2} mitigation from coal fired power plants and the transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, M.

    1996-02-01

    The Carnol System consists of methanol production by C0{sub 2} recovered from coal fired power plants and natural gas and the use of the methanol as an alternative automotive fuel. The Carnol process produces hydrogen by the thermal decomposition of natural gas and reacting the hydrogen with C0{sub 2} recovered from the power plant. The carbon produced can be stored or used as a materials commodity. A design and economic evaluation of the process is presented and compared to gasoline as an automotive fuel. An evaluation of the C0{sub 2} emission reduction of the process and system is made and compared to other conventional methanol production processes is including the use of biomass feedstock and methanol fuel cell vehicles. The C0{sub 2} for the entire Carnol System using methanol in automotive IC engines can be reduced by 56% compared to conventional system of coal plants and gasoline engines and by as much as 77% C0{sub 2} emission reduction when methanol is used in fuel cells in automotive engines. The Carnol System is shown to be an environmentally attractive and economically viable system connecting the power generation sector with the transportation sector which should warrant further development.

  9. Does seeding after severe forest fires in western USA mitigate negative impacts on soils and plant communities?

    Science.gov (United States)

    D. Peppin; P. Fule; J. Beyers; C. Sieg; M. Hunter

    2011-01-01

    Broadcast seeding is one of the most widely used post-wildfire emergency response treatments intended to reduce soil erosion, increase vegetative ground cover, and minimize establishment and spread of non-native plant species. However, seeding treatments can also have negative effects such as competition with recovering native plant communities and inadvertent...

  10. Mercury transportation in soil via using gypsum from flue gas desulfurization unit in coal-fired power plant

    Institute of Scientific and Technical Information of China (English)

    Kelin Wang; William Orndorff; Yan Cao; Weiping Pan

    2013-01-01

    The mercury flux in soils was investigated,which were amended by gypsums from flue gas desulphurization (FGD) units of coalfired power plants.Studies have been carried out in confined greenhouses using FGD gypsum treated soils.Major research focus is uptakes of mercury by plants,and emission of mercury into the atmosphere under varying application rates of FGD gypsum,simulating rainfall irrigations,soils,and plants types.Higher FGD gypsum application rates generally led to higher mercury concentrations in the soils,the increased mercury emissions into the atmosphere,and the increased mercury contents in plants (especially in roots and leaves).Soil properties and plant species can play important roles in mercury transports.Some plants,such as tall fescue,were able to prevent mercury from atmospheric emission and infiltration in the soil.Mercury concentration in the stem of plants was found to be increased and then leveled off upon increasing FGD gypsum application.However,mercury in roots and leaves was generally increased upon increasing FGD gypsum application rates.Some mercury was likely absorbed by leaves of plants from emitted mercury in the atmosphere.

  11. Modeling of integrated environmental control systems for coal-fired power plants. Technical progress report, [June 1, 1989--September 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E.S.

    1989-10-01

    The general goal of this research project is to enhance, and transfer to DOE, a new computer simulation model for analyzing the performance and cost of environmental control systems for coal-fired power plants. Systems utilizing pre-combustion, combustion, or post-combustion control methods, individually or in combination, may be considered. A unique capability of this model is the probabilistic representation of uncertainty in model input parameters. This stochastic simulation capability allows the performance and cost of environmental control systems to be quantified probabilistically, accounting for the interactions among all uncertain process and economic parameters. This method facilitates more rigorous comparisons between conventional and advanced clean coal technologies promising improved cost and/or effectiveness for SO{sub 2} and NO{sub x} removal. Detailed modeling of several pre-combustion and post-combustion processes of interest to DOE/PETC have been selected for analysis as part of this project.

  12. A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 1, Executive summary: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This study identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. Specific conclusions are as follows: (1) To implement CO{sub 2} capture and sequestration on a national scale will decrease power plant net efficiencies and significantly increase the cost of electricity. To make responsible societal decisions, accurate and consistent economic and environmental analysis of all alternatives for atmospheric CO{sub 2} mitigation are required. (2) Commercial CO{sub 2} capture technology, though expensive and energy intensive, exists today. (3) The most promising approach to more economical CO{sub 2} capture is to develop power plant systems that facilitate efficient CO{sub 2} capture. (4) While CO{sub 2} disposal in depleted oil and gas reservoirs is feasible today, the ability to dispose of large quantities Of CO{sub 2} is highly uncertain because of both technical and institutional issues. Disposal into the deep ocean or confined aquifers offers the potential for large quantity disposal, but there are technical, safety, liability, and environmental issues to resolve. Therefore, the highest priority research should focus on establishing the feasibility of large scale disposal options.

  13. 太阳能辅助燃煤发电技术经济分析%Techno-economic Analysis of Solar Thermal Aided Coal-fired Power Plants

    Institute of Scientific and Technical Information of China (English)

    毛剑; 杨勇平; 侯宏娟; 张楠

    2015-01-01

    ABSTRACT:The solar aided coal-fired power generation system is one of the trends of the solar thermal applications on a large scale recently. The performance of a solar trough collector aided 330MW plant with part of extraction steam in high-pressure (HP) heaters replaced was analyzed as an example. The design point and typical annual performance of solar aided coal-fired power generation in fuel-saving operation mode was analyzed. The results show that the performance of solar aided coal-fired power generation system is superior to trough solar thermal power unit and the solar to power efficiency can reach 20.41%. On this basis, the economic benefits of the solar aided coal-fired power generation system was analyzed with internal rate of return (IRR) as index by using the fundamental theories of techno-economy, and the main factors which affect the project economy were evaluated quantitatively. The influences of electricity prices, collector prices, fuel prices on IRR were gained.%太阳能与燃煤互补发电方式是近年来大规模太阳能热利用的发展方向之一。以槽式太阳能集热系统辅助某330MW燃煤机组替代高加回热抽汽加热给水的互补发电系统为例,对功率不变型互补发电系统的设计点热力性能及年热力性能进行了分析。结果表明,太阳能辅助发电系统的年光电转换效率可达到20.41%,高于单纯槽式太阳能热发电方式。在此基础上,以内部收益率(internal rate of return,IRR)作为评价指标,运用技术经济的基本原理对太阳能辅助燃煤机组互补发电系统的经济性能及其主要影响因素进行了定量的分析评价,得到了太阳能上网电价、集热器造价、燃料成本等关键因素对内部收益率的影响。

  14. 燃煤电厂清洁生产审核应用探讨%Application and Discussion of Cleaner Production Audit in Coal-fired Power Plant

    Institute of Scientific and Technical Information of China (English)

    柴瑜

    2014-01-01

    As one of the industries required explicitly to carry out cleaner production audit by China’ s Govern-ment,coal-fired power plants need to implement cleaner production from eight aspects including raw materials and energy,technology,processcontrol,equipment,management,employees,products,and wastes according to the audit guideline.The audit has to follow a seven-steps procedure of preparing for the audit,pre-auditing,audi-ting,forming the draft of audit proposal,completing the audit final proposal,implementing the audit,and sustain-able cleaner production.A coal-fired power plant as a case applied the whole process of cleaner production.The cleaner production goals have been reached after the audit was done.Furthermore,obvious environmental and eco-nomic benefits have been achieved as well.%作为国家明确要求开展清洁生产审核行业之一,某燃煤电厂依据清洁生产审核思路,从原辅料和能源、技术工艺、过程控制、设备、管理、员工、产品、废物生产过程的八个方面,按照审核准备、预审核、审核、方案产生和筛选、方案确定、方案实施、持续清洁生产七个实施阶段在企业内部开展清洁生产审核工作,实现了本轮清洁生产目标,并取得了显著的环境效益和经济效益。

  15. Linking sources to early effects by profiling urine metabolome of residents living near oil refineries and coal-fired power plants.

    Science.gov (United States)

    Chen, Chi-Hsin Sally; Yuan, Tzu-Hsuen; Shie, Ruei-Hao; Wu, Kuen-Yuh; Chan, Chang-Chuan

    2017-05-01

    This study aims at identifying metabolic changes linking external exposure to industrial air toxics with oxidative stress biomarkers. We classified 252 study subjects as 111 high vs. 141 low exposure subjects by the distance from their homes to the two main emission sources, oil refineries and coal-fired power plants. We estimated individual's external exposure to heavy metals and polycyclic aromatic hydrocarbons (PAHs) by dispersion and kriging models, respectively. We measured urinary levels of heavy metals and 1-hydroxypyrene (1-OHP) as biomarkers of internal exposure, and 8-OHdG, HNE-MA, 8-isoPGF2α, and 8-NO2Gua as biomarkers of early health effects. We used two-dimensional gas chromatography time-of-flight mass spectrometry to identify urine metabolomics. We applied "meet-in-the-middle" approach to identify potential metabolites as putative intermediate biomarkers linking multiple air toxics exposures to oxidative stress with plausible exposures-related pathways. High exposure subjects showed elevated ambient concentrations of vanadium and PAHs, increased urine concentrations of 1-OHP, vanadium, nickel, copper, arsenic, strontium, cadmium, mercury, and thallium, and higher urine concentrations of all four urine oxidative stress biomarkers compared to low exposure subjects. We identified a profile of putative intermediate biomarkers that were associated with both exposures and oxidative stress biomarkers in participants. Urine metabolomics identified age-dependent biological pathways, including tryptophan metabolism and phenylalanine metabolism in children subjects (aged 9-11), and glycine, serine, and threonine metabolism in elderly subjects (aged>55), that could associate multiple exposures with oxidative stress. By profiling urine biomarkers and metabolomics in children and elderly residents living near a petrochemical complex, we can link their internal exposure to oxidative stress biomarkers through biological pathways associated with common complex

  16. Variations of emission characterization of PAHs emitted from different utility boilers of coal-fired power plants and risk assessment related to atmospheric PAHs

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruwei [CAS Key Laboratory of Crust-Mantle and the Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui (China); State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi' an 710075, Shanxi (China); Liu, Guijian, E-mail: lgj@ustc.edu.cn [CAS Key Laboratory of Crust-Mantle and the Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui (China); State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi' an 710075, Shanxi (China); Zhang, Jiamei [CAS Key Laboratory of Crust-Mantle and the Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui (China)

    2015-12-15

    Coal-fired power plants (CFPPs) represent important source of atmospheric PAHs, however, their emission characterization are still largely unknown. In this work, the concentration, distribution and gas-particle partitioning of PM{sub 10}- and gas-phase PAHs in flue gas emitted from different coal-fired utility boilers were investigated. Moreover, concentration and distribution in airborne PAHs from different functional areas of power plants were studied. People's inhalatory and dermal exposures to airborne PAHs at these sites were estimated and their resultant lung cancer and skin cancer risks were assessed. Results indicated that the boiler capacity and operation conditions have significant effect on PAH concentrations in both PM{sub 10} and gas phases due to the variation of combustion efficiency, whereas they take neglected effect on PAH distributions. The wet flue gas desulphurization (WFGD) takes significant effect on the scavenging of PAH in both PM{sub 10} and gas phases, higher scavenging efficiency were found for less volatile PAHs. PAH partitioning is dominated by absorption into organic matter and accompanied by adsorption onto PM{sub 10} surface. In addition, different partitioning mechanism is observed for individual PAHs, which is assumed arising from their chemical affinity and vapor pressure. Risk assessment indicates that both inhalation and dermal contact greatly contribute to the cancer risk for CFPP workers and nearby residents. People working in workshop are exposed to greater inhalation and dermal exposure risk than people living in nearby vicinity and working office. - Highlights: • PAH distribution in PM{sub 10} and gas phases primarily depend on the vapor pressure. • Combustion conditions and WFGD show typical effects on PAH level and profile. • PAH partitioning is dominated by absorption and also accompanied by adsorption. • Individual PAHs show different partitioning mechanisms in PM{sub 10}- and gas-phases. • People in

  17. Preparation, transport and disposal of ash from coal-fired power plant Kosovo B in the form of dense hydromixture; Priprema, transport i deponovanje pepela termoelektrane Kosovo B u vidu guste hidromesavine

    Energy Technology Data Exchange (ETDEWEB)

    Drazovic, D.; Markovic, Z.; Stjepanovic, P.; Todorovtc, D. [Rudarski Institute, Beograd (Yugoslavia)

    1999-07-01

    The transportation of ash and slag from coal-fired power plants is mainly hydraulic. Until the eighties the most frequently applied technology was the transportation of ash and slag in the form of diluted hydromixture (concentration of solids below 10%). This method of ash and slag transportation became a rule in Yugoslavia's coal-fired power plants. It was not until 1988 that the transportation of dense hydromixture was introduced in the coal-fired power plant Gacko. This technology was not applied on account of its transportation advantages, but due to specific ash features that determine the conditions of disposal. Namely, the density of hydromixture is important for the solidification of disposed material. Considering the chemical and mineralogical properties of ash the same system was applied in the coal-fired power plant Kosovo B. In this paper two technological lines were installed and put to use in actual industrial conditions, and the results obtained indicate that all the designed parameters have been confirmed in practice and that the application of this technology has proven to be profitable in many ways. 7 refs., 8 figs., 13 tabs.

  18. A quantitative assessment of the BSE risk associated with fly ash and slag from the incineration of meat-and-bone meal in a gas-fired power plant in Denmark

    DEFF Research Database (Denmark)

    Paisley, Larry; Hostrup-Pedersen, J.

    2005-01-01

    in controlied landfills and the feasibility of use of the ash by the phosphate and fertilizer industries. We assumed that all specified risk material (SRM) and MBM produced in Denmark would be incinerated in this gas-fired power plant. Based on observations in 2001, we assumed that, on average, six (range: 0...

  19. Mercury Emissions Capture Efficiency with Activated Carbon Injection at a Russian Coal-Fired Thermal Power Plant

    Science.gov (United States)

    This EPA-led project, conducted in collaboration with UNEP, the Swedish Environmental Institute and various Russian Institutes, that demonstrates that the mercury emission control efficiencies of activated carbon injection technologies applied at a Russian power plant burning Rus...