WorldWideScience

Sample records for fired energy systems

  1. Reliability estimation for multiunit nuclear and fossil-fired industrial energy systems

    International Nuclear Information System (INIS)

    Sullivan, W.G.; Wilson, J.V.; Klepper, O.H.

    1977-01-01

    As petroleum-based fuels grow increasingly scarce and costly, nuclear energy may become an important alternative source of industrial energy. Initial applications would most likely include a mix of fossil-fired and nuclear sources of process energy. A means for determining the overall reliability of these mixed systems is a fundamental aspect of demonstrating their feasibility to potential industrial users. Reliability data from nuclear and fossil-fired plants are presented, and several methods of applying these data for calculating the reliability of reasonably complex industrial energy supply systems are given. Reliability estimates made under a number of simplifying assumptions indicate that multiple nuclear units or a combination of nuclear and fossil-fired plants could provide adequate reliability to meet industrial requirements for continuity of service

  2. Electronic firing systems and methods for firing a device

    Science.gov (United States)

    Frickey, Steven J [Boise, ID; Svoboda, John M [Idaho Falls, ID

    2012-04-24

    An electronic firing system comprising a control system, a charging system, an electrical energy storage device, a shock tube firing circuit, a shock tube connector, a blasting cap firing circuit, and a blasting cap connector. The control system controls the charging system, which charges the electrical energy storage device. The control system also controls the shock tube firing circuit and the blasting cap firing circuit. When desired, the control system signals the shock tube firing circuit or blasting cap firing circuit to electrically connect the electrical energy storage device to the shock tube connector or the blasting cap connector respectively.

  3. Fire hazard analysis for fusion energy experiments

    International Nuclear Information System (INIS)

    Alvares, N.J.; Hasegawa, H.K.

    1979-01-01

    The 2XIIB mirror fusion facility at Lawrence Livermore Laboratory (LLL) was used to evaluate the fire safety of state-of-the-art fusion energy experiments. The primary objective of this evaluation was to ensure the parallel development of fire safety and fusion energy technology. Through fault-tree analysis, we obtained a detailed engineering description of the 2XIIB fire protection system. This information helped us establish an optimum level of fire protection for experimental fusion energy facilities as well as evaluate the level of protection provided by various systems. Concurrently, we analyzed the fire hazard inherent to the facility using techniques that relate the probability of ignition to the flame spread and heat-release potential of construction materials, electrical and thermal insulations, and dielectric fluids. A comparison of the results of both analyses revealed that the existing fire protection system should be modified to accommodate the range of fire hazards inherent to the 2XIIB facility

  4. Computerized information system on the impacts of coal-fired energy development in the Southwest

    International Nuclear Information System (INIS)

    Layton, D.W.

    1975-01-01

    An important part of the process of assessing the environmental impacts of coal-fired energy development in the Southwest is the transfer of information between electric utilities, federal agencies, and the interested public. There are, however, several problems associated with the transfer of information among the different groups. The acquisition of factual material on power projects by the interested public, for example, is adversely affected by the sufficiency, convenience, and credibility of present sources. Efforts of electric utilities and federal agencies to effectively communicate impact information are hindered by the inability of existing sources to selectively transfer information and to rapidly transmit information on the cumulative impacts of many combinations of power plants. This research concerns the development and evaluation of a computerized information system designed to selectively transfer information on both the cumulative and individual impacts of several electric generating facilities located in the southwestern United States. The information system incorporates features of management information systems, environmental information systems, and an issue-oriented system developed at The University of Illinois, making it a hybrid system capable of communicating impact information derived from a variety of sources

  5. An overview of the political, technical and economical aspects of gas-fired distributed energy system in China

    International Nuclear Information System (INIS)

    Chen, Qiaohui; Wang, Weilong; Lu, Jianfeng; Ding, Jing

    2013-01-01

    The interest in distributed energy system has been increasing in China in recent years due to the environmental and energy policy concerns. The distributed energy system generates power, heating and cooling to residential, commercial and industrial facilities. Due to cascade utilization of energy, it can make good use of energy to improve energy efficiency and to increase energy savings. Furthermore, it consumes less energy and reduces carbon emissions. This paper reviews existing and newly-built gas-fired distributed energy projects in China. The techno-economic assessment of the selected projects has also been discussed and reported. The results show that in Xiamen Jimei DE project, the primary energy ratio of the DES can be as high as 92.9%, and energy-saving rate is 35.5%. Moreover, exergy efficiency reaches 54.3%, and the system can reduce 0.52 million tons of CO 2 annually. -- Highlights: ► The political, technical and economical aspects of gas-fired DES are analyzed. ► The techno-economic assessment of two selected projects is conducted. ► Primary energy ratio can be as high as 92.9% and energy-saving rate is 35.5%. ► Exergy efficiency is 54.3% and the system can reduce a large amount of CO 2 emissions

  6. Advanced fire information system

    CSIR Research Space (South Africa)

    Frost, PE

    2007-01-01

    Full Text Available The South African Advanced Fire Information System (AFIS) is the first near real-time satellite-based fire monitoring system in Africa. It was originally developed for, and funded by, the electrical power utility Eskom, to reduce the impact of wild...

  7. FIRE PROTECTION SYSTEMS AND TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Aristov Denis Ivanovich

    2016-03-01

    Full Text Available The All-Russian Congress “Fire Stop Moscow” was de-voted to the analysis of the four segments of the industry of fire protection systems and technologies: the design of fire protec-tion systems, the latest developments and technologies of active and passive fire protection of buildings, the state and the devel-opment of the legal framework, the practice of fire protection of buildings and structures. The forum brought together the repre-sentatives of the industry of fire protection systems, scientists, leading experts, specialists in fire protection and representatives of construction companies from different regions of Russia. In parallel with the Congress Industrial Exhibition of fire protection systems, materials and technology was held, where manufacturers presented their products. The urgency of the “Fire Stop Moscow” Congress in 2015 organized by the Congress Bureau ODF Events lies primarily in the fact that it considered the full range of issues related to the fire protection of building and construction projects; studied the state of the regulatory framework for fire safety and efficiency of public services, research centers, private companies and busi-nesses in the area of fire safety. The main practical significance of the event which was widely covered in the media space, was the opportunity to share the views and information between management, science, and practice of business on implementing fire protection systems in the conditions of modern economic relations and market realities. : congress, fire protection, systems, technologies, fire protection systems, exhibition

  8. Fire in the Earth system.

    Science.gov (United States)

    Bowman, David M J S; Balch, Jennifer K; Artaxo, Paulo; Bond, William J; Carlson, Jean M; Cochrane, Mark A; D'Antonio, Carla M; Defries, Ruth S; Doyle, John C; Harrison, Sandy P; Johnston, Fay H; Keeley, Jon E; Krawchuk, Meg A; Kull, Christian A; Marston, J Brad; Moritz, Max A; Prentice, I Colin; Roos, Christopher I; Scott, Andrew C; Swetnam, Thomas W; van der Werf, Guido R; Pyne, Stephen J

    2009-04-24

    Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.

  9. Energy consumption and energy-saving potential analysis of pollutant abatement systems in a 1000MW coal-fired power plant.

    Science.gov (United States)

    Yang, Hang; Zhang, Yongxin; Zheng, Chenghang; Wu, Xuecheng; Chen, Linghong; Gao, Xiang; Fu, Joshua S

    2018-05-10

    The pollutant abatement systems are widely applied in the coal-fired power sector and the energy consumption was considered an important part of the auxiliary power. An energy consumption analysis and assessment model of pollutant abatement systems in a power unit was developed based on the dynamic parameters and technology. The energy consumption of pollutant abatement systems in a 1000 MW coal-fired power unit which meet the ultra-low emission limits and the factors of operating parameters including unit load and inlet concentration of pollutants on the operating power were analyzed. The results show that the total power consumption of the pollutant abatement systems accounted for 1.27% of the gross power generation during the monitoring period. The WFGD system consumed 67% of the rate while the SCR and ESP systems consumed 8.9% and 24.1%. The power consumption rate of pollutant abatement systems decreased with the increase of unit load and increased with the increase of the inlet concentration of pollutants. The operation adjustment was also an effective method to increase the energy efficiency. For example, the operation adjustment of slurry circulation pumps could promote the energy-saving operation of WFGD system. Implication Statement The application of pollutant abatement technologies increases the internal energy consumption of the power plant, which will lead to an increase of power generation costs. The real-time energy consumption of the different pollutant abatement systems in a typical power unit is analyzed based on the dynamic operating data. Further, the influence of different operating parameters on the operating power of the system and the possible energy-saving potential are analyzed.

  10. FIRES: Fire Information Retrieval and Evaluation System - A program for fire danger rating analysis

    Science.gov (United States)

    Patricia L. Andrews; Larry S. Bradshaw

    1997-01-01

    A computer program, FIRES: Fire Information Retrieval and Evaluation System, provides methods for evaluating the performance of fire danger rating indexes. The relationship between fire danger indexes and historical fire occurrence and size is examined through logistic regression and percentiles. Historical seasonal trends of fire danger and fire occurrence can be...

  11. Fire analog: a comparison between fire plumes and energy center cooling tower plumes

    Energy Technology Data Exchange (ETDEWEB)

    Orgill, M.M.

    1977-10-01

    Thermal plumes or convection columns associated with large fires are compared to thermal plumes from cooling towers and proposed energy centers to evaluate the fire analog concept. Energy release rates of mass fires are generally larger than for single or small groups of cooling towers but are comparable to proposed large energy centers. However, significant physical differences exist between cooling tower plumes and fire plumes. Cooling tower plumes are generally dominated by ambient wind, stability and turbulence conditions. Fire plumes, depending on burning rates and other factors, can transform into convective columns which may cause the fire behavior to become more violent. This transformation can cause strong inflow winds and updrafts, turbulence and concentrated vortices. Intense convective columns may interact with ambient winds to create significant downwind effects such as wakes and Karman vortex streets. These characteristics have not been observed with cooling tower plumes to date. The differences in physical characteristics between cooling tower and fire plumes makes the fire analog concept very questionable even though the approximate energy requirements appear to be satisfied in case of large energy centers. Additional research is suggested in studying the upper-level plume characteristics of small experimental fires so this information can be correlated with similar data from cooling towers. Numerical simulation of fires and proposed multiple cooling tower systems could also provide comparative data.

  12. Design optimization and sensitivity analysis of a biomass-fired combined cooling, heating and power system with thermal energy storage systems

    International Nuclear Information System (INIS)

    Caliano, Martina; Bianco, Nicola; Graditi, Giorgio; Mongibello, Luigi

    2017-01-01

    Highlights: • A novel operation strategy for biomass-fired combined cooling, heating and power system is presented. • A design optimization of the system is conducted. • The effects of variation of the incentive for the electricity generation are evaluated. • The effects of the variation of the absorption chiller size and the thermal energy storage system one are evaluated. • The inclusion of a cold storage system into the combined cooling, heating and power system is also analyzed. - Abstract: In this work, an operation strategy for a biomass-fired combined cooling, heating and power system, composed of a cogeneration unit, an absorption chiller, and a thermal energy storage system, is formulated in order to satisfy time-varying energy demands of an Italian cluster of residential multi-apartment buildings. This operation strategy is adopted for performing the economical optimization of the design of two of the devices composing the combined cooling, heating and power system, namely the absorption chiller and the storage system. A sensitivity analysis is carried out in order to evaluate the impact of the incentive for the electricity generation on the optimized results, and also to evaluate, separately, the effects of the variation of the absorption chiller size, and the effects of the variation of the thermal energy storage system size on the system performance. In addition, the inclusion into the system of a cold thermal energy storage system is analyzed, as well, assuming different possible values for the cold storage system cost. The results of the sensitivity analysis indicate that the most influencing factors from the economical point of view are represented by the incentive for the electricity generation and the absorption chiller power. Results also show that the combined use of a thermal energy storage and of a cold thermal energy storage during the hot season could represent a viable solution from the economical point of view.

  13. Standpipe systems for fire protection

    CERN Document Server

    Isman, Kenneth E

    2017-01-01

    This important new manual goes beyond the published NFPA standards on installation of standpipe systems to include the rules in the International Building Code, municipal fire codes, the National Fire Code of Canada, and information on inspection, testing, and maintenance of standpipe systems. Also covered are the interactions between standpipe and sprinkler systems, since these important fire protection systems are so frequently installed together. Illustrated with design examples and practical applications to reinforce the learning experience, this is the go-to reference for engineers, architects, design technicians, building inspectors, fire inspectors, and anyone that inspects, tests or maintains fire protection systems. Fire marshals and plan review authorities that have the responsibility for reviewing and accepting plans and hydraulic calculations for standpipe systems are also an important audience, as are firefighters who actually use standpipe systems. As a member of the committees responsible for s...

  14. Biomass direct-fired power generation system in China: An integrated energy, GHG emissions, and economic evaluation for Salix

    International Nuclear Information System (INIS)

    Wang, Changbo; Zhang, Lixiao; Chang, Yuan; Pang, Mingyue

    2015-01-01

    To gain a better understanding of the options of biomass power generation in China, this study presented an integrated energy, environmental, and economic evaluation for Salix in China, and a typical Salix direct-fired power generation system (SDPGS) in Inner Mongolia was selected for case study. A tiered hybrid life cycle assessment (LCA) model was developed to calculate the “planting-to-wire” (PTW) energy consumption, greenhouse gas (GHG) emissions, and economic cost and profit of the SDPGS, including feedstock cultivation, power plant construction and operation, and on-grid price with/without government subsidies. The results show that the PTW energy consumption and GHG emissions of Salix are 0.8 MJ/kWh and 114 g CO 2 -eq/kWh, respectively, indicating an energy payback time (EPBT) of 3.2 years. The SDPGS is not economically feasible without government subsidies. The PTW costs are dominated by feedstock cultivation. The energy saving and GHG mitigation benefits are still robust, even when the power plant runs at only 60% design capacity. For future development of biomass power in China, scientific planning is necessary to guarantee a sufficient feedstock supply. In addition, technology progress, mature industrial chains, and reasonable price setting policy are required to enable potential energy and environmental advantages of biomass power moving forward. -- Highlights: •A hybrid LCA model was used to evaluate overall performance of the SDPGS. •On-site processes dominate the “planting-to-wire” footprints. •The energy saving and GHG mitigation benefits of the SDPGS are robust. •The economic profit of the SDPGS is feeble without government subsidies. •Generating efficiency promotion has a comprehensive positive effect on the system

  15. Ventilation system in fire modelization

    International Nuclear Information System (INIS)

    Cordero Garcia, S.

    2012-01-01

    There is a model of fire in an enclosure formed by two rooms. In one of them, it will cause the fire and check how the system of ventilation in different configurations responds. In addition, the behavior of selected targets, which will be a configuration of cables similar to those found in nuclear power stations will be analyzed.

  16. Moderate Image Spectrometer (MODIS) Fire Radiative Energy: Physics and Applications

    Science.gov (United States)

    Kaufman, Y.

    2004-01-01

    MODIS fire channel does not saturate in the presence of fires. The fire channel therefore is used to estimate the fire radiative energy, a measure of the rate of biomass consumption in the fire. We found correlation between the fire radiative energy, the rate of formation of burn scars and the rate of emission of aerosol from the fires. Others found correlations between the fire radiative energy and the rate of biomass consumption. This relationships can be used to estimates the emissions from the fires and to estimate the fire hazards.

  17. Climate data system supports FIRE

    Science.gov (United States)

    Olsen, Lola M.; Iascone, Dominick; Reph, Mary G.

    1990-01-01

    The NASA Climate Data System (NCDS) at Goddard Space Flight Center is serving as the FIRE Central Archive, providing a centralized data holding and data cataloging service for the FIRE project. NCDS members are carrying out their responsibilities by holding all reduced observations and data analysis products submitted by individual principal investigators in the agreed upon format, by holding all satellite data sets required for FIRE, by providing copies of any of these data sets to FIRE investigators, and by producing and updating a catalog with information about the FIRE holdings. FIRE researchers were requested to provide their reduced data sets in the Standard Data Format (SDF) to the FIRE Central Archive. This standard format is proving to be of value. An improved SDF document is now available. The document provides an example from an actual FIRE SDF data set and clearly states the guidelines for formatting data in SDF. NCDS has received SDF tapes from a number of investigators. These tapes were analyzed and comments provided to the producers. One product which is now available is William J. Syrett's sodar data product from the Stratocumulus Intensive Field Observation. Sample plots from all SDF tapes submitted to the archive will be available to FSET members. Related cloud products are also available through NCDS. Entries describing the FIRE data sets are being provided for the NCDS on-line catalog. Detailed information for the Extended Time Observations is available in the general FIRE catalog entry. Separate catalog entries are being written for the Cirrus Intensive Field Observation (IFO) and for the Marine Stratocumulus IFO. Short descriptions of each FIRE data set will be installed into the NCDS Summary Catalog.

  18. A portable system for characterizing wildland fire behavior

    Science.gov (United States)

    Bret Butler; D. Jimenez; J. Forthofer; K. Shannon; Paul Sopko

    2010-01-01

    A field deployable system for quantifying energy and mass transport in wildland fires is described. The system consists of two enclosures: The first is a sensor/data logger combination package that allows characterization of convective/radiant energy transport in fires. This package contains batteries, a programmable data logger, sensors, and other electronics. The...

  19. Fire protection in ventilation systems and in case of fire operating ventilation systems

    International Nuclear Information System (INIS)

    Zitzelsberger, J.

    1983-01-01

    The fire risks in ventilation systems are discussed. It follows a survey of regulations on fire prevention and fire protection in ventilation systems and smoke and heat exhaust systems applicable to nuclear installations in the Federal Republic of Germany. Fire protection concepts for normal systems and for systems operating also in case of fire will be given. Several structural elements for fire protection in those systems will be illustrated with regard to recent research findings

  20. Using the Large Fire Simulator System to map wildland fire potential for the conterminous United States

    Science.gov (United States)

    LaWen Hollingsworth; James Menakis

    2010-01-01

    This project mapped wildland fire potential (WFP) for the conterminous United States by using the large fire simulation system developed for Fire Program Analysis (FPA) System. The large fire simulation system, referred to here as LFSim, consists of modules for weather generation, fire occurrence, fire suppression, and fire growth modeling. Weather was generated with...

  1. Modern tools to evaluate and optimize fire protection systems

    International Nuclear Information System (INIS)

    Alvares, N.J.; Hasegawa, H.K.

    1980-01-01

    Modern techniques, such as fault tree analysis, can be used to obtain engineering descriptions of specific fire protection systems. The analysis allows establishment of an optimum level of fire protection, and evaluates the level of protection provided by various systems. A prime example: the application to fusion energy experiments

  2. Arming and firing system for DISTANT RUNNER

    International Nuclear Information System (INIS)

    Skenandore, L.H.; Johnson, J.P.

    1982-01-01

    Sandia A and F systems Division 1132 provided arming and firing support for the DISTANT RUNNER Test Program at White Sands Missile Range. This report describes the field support and the firing system that was used

  3. New fire diurnal cycle characterizations to improve fire radiative energy assessments made from MODIS observations

    NARCIS (Netherlands)

    Andela, N.; Kaiser, J.; van der Werf, G.R.

    2015-01-01

    Accurate near real time fire emissions estimates are required for air quality forecasts. To date, most approaches are based on satellite-derived estimates of fire radiative power (FRP), which can be converted to fire radiative energy (FRE) which is directly related to fire emissions. Uncertainties

  4. Biological and geophysical feedbacks with fire in the Earth system

    Science.gov (United States)

    Archibald, S.; Lehmann, C. E. R.; Belcher, C. M.; Bond, W. J.; Bradstock, R. A.; Daniau, A.-L.; Dexter, K. G.; Forrestel, E. J.; Greve, M.; He, T.; Higgins, S. I.; Hoffmann, W. A.; Lamont, B. B.; McGlinn, D. J.; Moncrieff, G. R.; Osborne, C. P.; Pausas, J. G.; Price, O.; Ripley, B. S.; Rogers, B. M.; Schwilk, D. W.; Simon, M. F.; Turetsky, M. R.; Van der Werf, G. R.; Zanne, A. E.

    2018-03-01

    Roughly 3% of the Earth’s land surface burns annually, representing a critical exchange of energy and matter between the land and atmosphere via combustion. Fires range from slow smouldering peat fires, to low-intensity surface fires, to intense crown fires, depending on vegetation structure, fuel moisture, prevailing climate, and weather conditions. While the links between biogeochemistry, climate and fire are widely studied within Earth system science, these relationships are also mediated by fuels—namely plants and their litter—that are the product of evolutionary and ecological processes. Fire is a powerful selective force and, over their evolutionary history, plants have evolved traits that both tolerate and promote fire numerous times and across diverse clades. Here we outline a conceptual framework of how plant traits determine the flammability of ecosystems and interact with climate and weather to influence fire regimes. We explore how these evolutionary and ecological processes scale to impact biogeochemical and Earth system processes. Finally, we outline several research challenges that, when resolved, will improve our understanding of the role of plant evolution in mediating the fire feedbacks driving Earth system processes. Understanding current patterns of fire and vegetation, as well as patterns of fire over geological time, requires research that incorporates evolutionary biology, ecology, biogeography, and the biogeosciences.

  5. Energy requirement for firing porcelain | M. de O. Madivate | Bulletin ...

    African Journals Online (AJOL)

    Results from studies on the ternary system Ribaué kaolin–Carapira feldspar– Marracuene quartz sands were used to test a procedure that we developed for calculation of the energy requirement for firing porcelain. Results obtained vary between 1300 and 1800 kJ/kg porcelain. These results differ largely from the ones ...

  6. National Fire Incident Reporting System (NFIRS)

    Data.gov (United States)

    Department of Homeland Security — The National Fire Incident Reporting System (NFIRS) is a reporting standard that fire departments use to uniformly report on the full range of their activities, from...

  7. Aging assessment for active fire protection systems

    International Nuclear Information System (INIS)

    Ross, S.B.; Nowlen, S.P.; Tanaka, T.

    1995-06-01

    This study assessed the impact of aging on the performance and reliability of active fire protection systems including both fixed fire suppression and fixed fire detection systems. The experience base shows that most nuclear power plants have an aggressive maintenance and testing program and are finding degraded fire protection system components before a failure occurs. Also, from the data reviewed it is clear that the risk impact of fire protection system aging is low. However, it is assumed that a more aggressive maintenance and testing program involving preventive diagnostics may reduce the risk impact even further

  8. FIRE

    International Nuclear Information System (INIS)

    Brtis, J.S.; Hausheer, T.G.

    1990-01-01

    FIRE, a microcomputer based program to assist engineers in reviewing and documenting the fire protection impact of design changes has been developed. Acting as an electronic consultant, FIRE is designed to work with an experienced nuclear system engineer, who may not have any detailed fire protection expertise. FIRE helps the engineer to decide if a modification might adversely affect the fire protection design of the station. Since its first development, FIRE has been customized to reflect the fire protection philosophy of the Commonwealth Edison Company. That program is in early production use. This paper discusses the FIRE program in light of its being a useful application of expert system technologies in the power industry

  9. Fire auto alarm system intelligent trend

    International Nuclear Information System (INIS)

    Du Chengbao

    1997-01-01

    The author gives the course and trend of the fire alarm system going to more computerized and more intelligent. It is described that only the system applied artificial intelligent and confusion control is the true intelligent fire alarm system. The author gives the detailed analysis on the signal treatment of artificial intelligent applied to analogue fire alarm system as well as the alarm system controlled by confusion technology and artificial nervous net

  10. Southern African advanced fire information system

    CSIR Research Space (South Africa)

    McFerren, G

    2009-05-01

    Full Text Available of ecosystems, yet fires threaten natural systems, infrastructure and life. Spatio-temporal awareness of fire likelihood, occurrence and behaviour is key to appropriate prevention, response and management. This paper focuses on wildfire risk to infrastructure... to pinpoint the location and possibly information on fire temperature and size. Previously, Eskom line managers depended on local residents for necessary information about fire occurrences and locations. Eskom and CSIR, a South African research institute...

  11. Smouldering Fires in the Earth System

    Science.gov (United States)

    Rein, G.

    2012-04-01

    Smouldering fires, the slow, low-temperature, flameless burning, represent the most persistent type of combustion phenomena and the longest continuously fires on Earth system. Indeed, smouldering mega-fires of peatlands occur with some frequency during the dry session in, for example, Indonesia, Canada, Russia, UK and USA. Smouldering fires propagate slowly through organic layers of the ground and can reach depth >5 m if large cracks, natural piping or channel systems exist. It threatens to release sequestered carbon deep into the soil. Once ignited, they are particularly difficult to extinguish despite extensive rains, weather changes or fire-fighting attempts, and can persist for long periods of time (months, years) spreading deep and over extensive areas. Recent figures at the global scale estimate that average annual greenhouse gas emissions from smouldering fires are equivalent to 15% of man-made emissions. These fires are difficult or impossible to detect with current remote sensing methods because the chemistry is significantly different, their thermal radiation signature is much smaller, and the plume is much less buoyant. These wildfires burn fossil fuels and thus are a carbon-positive fire phenomena. This creates feedbacks in the climate system because soil moisture deficit and self-heating are enchanted under warmer climate scenarios and lead to more frequent fires. Warmer temperatures at high latitudes are resulting in more frequent Artic fires. Unprecedented permafrost thaw is leaving large soil carbon pools exposed to smouldering fires for the fist time since millennia. Although interactions between flaming fires and the Earth system have been a central focus, smouldering fires are as important but have received very little attention. DBut differences with flaming fires are important. This paper reviews the current knowledge on smouldering fires in the Earth system regarding combustion dynamics, damage to the soil, emissions, remote sensing and

  12. PG BN 1600 sodium fire protection system

    International Nuclear Information System (INIS)

    Bar, J.; Urbancik, L.

    1978-12-01

    A design was developed of a fire protection system for steam generator of a 1600 MW sodium cooled fast reactor (BN-1600). Chemical reactions are described of liquid sodium with atmospheric components and solid materials coming into contact with sodium in its release from the steam generator, and in safeguarding protection against sodium fires. The requirements for the purity of nitrogen as an atmosphere inert to liquid sodium are given. Characteristics and basic parameters are shown of level and spray fires, elementary terms are explained concerning the properties of aerosols formed during fires, the methods and means of release signalling and fire alarm are described as are fire precautions using fire-fighting equipment, modifying the support tank and the cell bottom and building sewage pits. The design of the system comprises an alarm system for liquid sodium using point and line electric contact sensors and flame photometer based aerosol sensors as well as a fire-fighting system based on the system of channelling liquid sodium into emergency discharge tanks filled with an inert gas, a set of fire extinguishers and other fire fighting material, and measures for the elimination of sodium fire consequences. (J.B.)

  13. Energy economics of nuclear and coal fired power plant

    International Nuclear Information System (INIS)

    Lee, Kee Won; Cho, Joo Hyun; Kim, Sung Rae; Choi, Hae Yoon

    1995-01-01

    The upturn of Korean nuclear power program can be considered to have started in early 70's while future plants for the construction of new nuclear power plants virtually came to a halt in United States. It is projected that power plant systems from combination of nuclear and coal fired types might shift to all coal fired type, considering the current trend of construction on the new plants in the United States. However, with the depletion of natural resources, it is desirable to understand the utilization of two competitive utility technologies in terms of of invested energy. Presented in this paper is a comparison between two systems, nuclear power plant and coal fired steam power plant in terms of energy investment. The method of comparison is Net Energy Analysis (NEA). In doing so, Input-Output Analysis (IOA) among industries and commodities is done. Using these information, net energy ratios are calculated and compared. NEA is conducted for power plants in U.S. because the availability of necessary data are limited in Korea. Although NEA does not offer conclusive solution, this method can work as a screening process in decision making. When considering energy systems, results from such analysis can be used as a general guideline. 2 figs., 12 tabs., 5 refs. (Author)

  14. 30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...

  15. Fire in the Earth System

    NARCIS (Netherlands)

    Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D'Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; Johnston, F.H.; Keeley, J.E.; Krawchuk, M.A.; Kull, C.A.; Marston, J.B.; Moritz, M.A.; Prentice, I.C.; Roos, C.I.; Scott, A.C.; Swetnam, T.W.; van der Werf, G.R.; Pyne, S.J.

    2009-01-01

    Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always

  16. Early Forest Fire Detection Using Low Energy Hydrogen Sensors

    Directory of Open Access Journals (Sweden)

    Jürgen Müller

    2016-08-01

    Full Text Available The North-east German Lowlands is a region with one of the highest forest fire risks in Europe. In order to keep damage levels as low as possible, it is important to have an effective early warning system. Such a system is being developed on the basis of a hydrogen sensor, which makes it possible to detect a smouldering forest fire before the development of open flames. The prototype hydrogen sensor produced at the Humboldt University Berlin has a metal/ solid electrolyte/insulator/ semiconductor (MEIS structure, which allows cost-effective production. Due to the low energy consumption, an autarchic working unit could be installed in the forest. Field trials have shown that it is possible to identify a forest fire in its early stages when hydrogen concentrations are still low. A significant change in the signal due to a fire was measured at a distance of about 100m. In view of the potential impacts of climate change, the innovative pre-ignition warning system is an important early diagnosis and monitoring module for the protection of the forests.

  17. Cold Climate Structural Fire Danger Rating System?

    Directory of Open Access Journals (Sweden)

    Maria-Monika Metallinou

    2018-03-01

    Full Text Available Worldwide, fires kill 300,000 people every year. The fire season is usually recognized to be in the warmer periods of the year. Recent research has, however, demonstrated that the colder season also has major challenges regarding severe fires, especially in inhabited (heated wood-based structures in cold-climate areas. Knowledge about the effect of dry cellulose-based materials on fire development, indoor and outdoor, is a motivation for monitoring possible changes in potential fire behavior and associated fire risk. The effect of wind in spreading fires to neighboring structures points towards using weather forecasts as information on potential fire spread behavior. As modern weather forecasts include temperature and relative humidity predictions, there may already be sufficient information available to develop a structural fire danger rating system. Such a system may include the following steps: (1 Record weather forecasts and actual temperature and relative humidity inside and outside selected structures; (2 Develop a meteorology-data-based model to predict indoor relative humidity levels; (3 Perform controlled drying chamber experiments involving typical hygroscopic fire fuel; (4 Compare the results to the recorded values in selected structures; and (5 Develop the risk model involving the results from drying chamber experiments, weather forecasts, and separation between structures. Knowledge about the structures at risk and their use is also important. The benefits of an automated fire danger rating system would be that the society can better plan for potentially severe cold-climate fires and thereby limit the negative impacts of such fires.

  18. Smouldering Subsurface Fires in the Earth System

    Science.gov (United States)

    Rein, Guillermo

    2010-05-01

    Smouldering fires, the slow, low-temperature, flameless form of combustion, are an important phenomena in the Earth system. These fires propagate slowly through organic layers of the forest ground and are responsible for 50% or more of the total biomass consumed during wildfires. Only after the 2002 study of the 1997 extreme haze event in South-East Asia, the scientific community recognised the environmental and economic threats posed by subsurface fires. This was caused by the spread of vast biomass fires in Indonesia, burning below the surface for months during the El Niño climate event. It has been calculated that these fires released between 0.81 and 2.57 Gton of carbon gases (13-40% of global emissions). Large smouldering fires are rare events at the local scale but occur regularly at a global scale. Once ignited, they are particularly difficult to extinguish despite extensive rains or fire-fighting attempts and can persist for long periods of time (months, years) spreading over very extensive areas of forest and deep into the soil. Indeed, these are the oldest continuously burning fires on Earth. Earth scientists are interested in smouldering fires because they destroy large amounts of biomass and cause greater damage to the soil ecosystem than flaming fires do. Moreover, these fires cannot be detected with current satellite remote sensing technologies causing inconsistencies between emission inventories and model predictions. Organic soils sustain smouldering fire (hummus, duff, peat and coal) which total carbon pool exceeds that of the world's forests or the atmosphere. This have important implications for climate change. Warmer temperatures at high latitudes are resulting in unprecedented permafrost thaw that is leaving large soil carbon pools exposed to fires. Because the CO2 flux from peat fires has been measured to be about 3000 times larger that the natural degradation flux, permafrost thaw is a risk for greater carbon release by fire and subsequently

  19. Introduction of Sodium Fire Extinguishing System for STELLA-1

    International Nuclear Information System (INIS)

    Gam, Dayoung; Kim, Jong-Man; Jung, Min-Hwan; Eoh, Jae-Hyuk; Jeong, Eoh Jiyoung

    2015-01-01

    This characteristic is a big advantage as a thermal transfer fluid. However, the high reactivity of sodium, especially with water and oxygen, and white aerosol in the event of fire can cause serious accidents. Thus, large sodium facility needs a specific-developed fire extinguishing system for a safe experiment. Korea Atomic Energy Research Institute (KAERI) has conducted sodium heat transfer experiments using the facility named the Sodium Integral Effect Test Loop for Safety Simulation and Assessment (STELLA-1). STELLA-1 fully equipped a sodium fire extinguishing system for the safe experiment and fire spread prevention. In this paper, a preparation of the fire extinguishing system of STELLA-1 facility is introduced. This paper can provide an example of how to design a sodium fire extinguishing system for a large sodium experiment facility. In this paper, a preparation of the fire extinguishment system for STELLA-1 as a large sodium experiment facility was introduced and explained. For safe operation of the liquid sodium utility, it is important to equip specific-developed fire extinguishing system because of the chemical characteristics of sodium. Operators should know the process and operating manual before conducting an experiment to prevent hazardous situation. Though the dry chemical extinguishing agent put out the fire target, removing agent at high temperature state can cause re-combustion. Thus, extinguishment confirmation work should be conducted after sufficient cooling time to stabilize the surface. And in case of fire at a sealed room, a method making the percentage of oxygen low(injecting nitrogen gas or argon gas) is effective

  20. Introduction of Sodium Fire Extinguishing System for STELLA-1

    Energy Technology Data Exchange (ETDEWEB)

    Gam, Dayoung; Kim, Jong-Man; Jung, Min-Hwan; Eoh, Jae-Hyuk; Jeong, Eoh Jiyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    This characteristic is a big advantage as a thermal transfer fluid. However, the high reactivity of sodium, especially with water and oxygen, and white aerosol in the event of fire can cause serious accidents. Thus, large sodium facility needs a specific-developed fire extinguishing system for a safe experiment. Korea Atomic Energy Research Institute (KAERI) has conducted sodium heat transfer experiments using the facility named the Sodium Integral Effect Test Loop for Safety Simulation and Assessment (STELLA-1). STELLA-1 fully equipped a sodium fire extinguishing system for the safe experiment and fire spread prevention. In this paper, a preparation of the fire extinguishing system of STELLA-1 facility is introduced. This paper can provide an example of how to design a sodium fire extinguishing system for a large sodium experiment facility. In this paper, a preparation of the fire extinguishment system for STELLA-1 as a large sodium experiment facility was introduced and explained. For safe operation of the liquid sodium utility, it is important to equip specific-developed fire extinguishing system because of the chemical characteristics of sodium. Operators should know the process and operating manual before conducting an experiment to prevent hazardous situation. Though the dry chemical extinguishing agent put out the fire target, removing agent at high temperature state can cause re-combustion. Thus, extinguishment confirmation work should be conducted after sufficient cooling time to stabilize the surface. And in case of fire at a sealed room, a method making the percentage of oxygen low(injecting nitrogen gas or argon gas) is effective.

  1. Fire danger and fire behavior modeling systems in Australia, Europe, and North America

    Science.gov (United States)

    Francis M. Fujioka; A. Malcolm Gill; Domingos X. Viegas; B. Mike Wotton

    2009-01-01

    Wildland fire occurrence and behavior are complex phenomena involving essentially fuel (vegetation), topography, and weather. Fire managers around the world use a variety of systems to track and predict fire danger and fire behavior, at spatial scales that span from local to global extents, and temporal scales ranging from minutes to seasons. The fire management...

  2. Fire protection versus energy conservation? Smoke escape systems for elevator shafts; Brandschutz kontra EnEV? Aufzugsschachtentrauchung

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, K. [BTR Brandschutz-Technik und Rauchabzug GmbH, Hamburg (Germany)

    2003-11-01

    Most casualties in case of a fire are caused by smoke inhalation. Next to other combustion products, the carbon monoxide concentration in the air available for breathing is the most important parameter for survival in a burning room. Even very low concentrations of carbon monoxide in breathing air will cause severe irritations, lasting health effects, and death. Further, there is the problem of panic in elevators. [German] ''Brandtote sind Rauchtote'', diese Aussage ist nicht erst seit dem Duesseldorfer Flughafenbrand in aller Munde. Neben anderen Verbrennungsprodukten ist der Kohlenmonoxidgehalt in der Atemluft wohl die wichtigste Kenngroesse fuer die Ueberlebensmoeglichkeit in einem Brandraum. Bereits geringe Anteile in der Atemluft fuehren zu schwersten Irritationen, bleibenden Gesundheitsschaeden oder zum Tode. Hinzu kommt fuer den Benutzer eines Aufzuges die nie auszuschliessende Panik im Brandfall. (orig.)

  3. Gas fired advanced turbine system

    Science.gov (United States)

    Lecren, R. T.; White, D. J.

    The basic concept thus derived from the Ericsson cycle is an intercooled, recuperated, and reheated gas turbine. Theoretical performance analyses, however, showed that reheat at high turbine rotor inlet temperatures (TRIT) did not provide significant efficiency gains and that the 50 percent efficiency goal could be met without reheat. Based upon these findings, the engine concept adopted as a starting point for the gas-fired advanced turbine system is an intercooled, recuperated (ICR) gas turbine. It was found that, at inlet temperatures greater than 2450 F, the thermal efficiency could be maintained above 50%, provided that the turbine cooling flows could be reduced to 7% of the main air flow or lower. This dual and conflicting requirement of increased temperatures and reduced cooling will probably force the abandonment of traditional air cooled turbine parts. Thus, the use of either ceramic materials or non-air cooling fluids has to be considered for the turbine nozzle guide vanes and turbine blades. The use of ceramic components for the proposed engine system is generally preferred because of the potential growth to higher temperatures that is available with such materials.

  4. PLCs for nuclear fire control system

    International Nuclear Information System (INIS)

    McArthur, Neil

    1990-01-01

    The new Thermal Oxide Reprocessing Plant (THORP) at British Nuclear Fuel's Sellafield site is a very large and complex system. This article describes the computerized control system used for fire damage control in the two main production areas, the head end and the chemical separation segments. Over one thousand fire dampers are controlled by an interlinking system of small computers linked to a main system in the central control room. The choice of hardware and software is also described. (UK)

  5. Fire-protection research for energy technology: Fy 80 year end report

    Science.gov (United States)

    Hasegawa, H. K.; Alvares, N. J.; Lipska, A. E.; Ford, H.; Priante, S.; Beason, D. G.

    1981-05-01

    This continuing research program was initiated in order to advance fire protection strategies for Fusion Energy Experiments (FEE). The program expanded to encompass other forms of energy research. Accomplishments for fiscal year 1980 were: finalization of the fault-free analysis of the Shiva fire management system; development of a second-generation, fire-growth analysis using an alternate model and new LLNL combustion dynamics data; improvements of techniques for chemical smoke aerosol analysis; development and test of a simple method to assess the corrosive potential of smoke aerosols; development of an initial aerosol dilution system; completion of primary small-scale tests for measurements of the dynamics of cable fires; finalization of primary survey format for non-LLNL energy technology facilities; and studies of fire dynamics and aerosol production from electrical insulation and computer tape cassettes.

  6. Fire-protection research for energy technology: FY 80 year-end report

    International Nuclear Information System (INIS)

    Hasegawa, H.K.; Alvares, N.J.; Lipska, A.E.; Ford, H.; Priante, S.; Beason, D.G.

    1981-01-01

    This continuing research program was initiated in 1977 in order to advance fire protection strategies for Fusion Energy Experiments (FEE). The program has since been expanded to encompass other forms of energy research. Accomplishments for fiscal year 1980 were: finalization of the fault-tree analysis of the Shiva fire management system; development of a second-generation, fire-growth analysis using an alternate moel and new LLNL combustion dynamics data; improvements of techniques for chemical smoke aerosol analysis; development and test of a simple method to assess the corrosive potential of smoke aerosols; development of an initial aerosol dilution system; completion of primary small-scale tests for measurements of the dynamics of cable fires; finalization of primary survey format for non-LLNL energy technology facilities; and studies of fire dynamics and aerosol production from electrical insulation and computer tape cassettes

  7. Fire Behavior System for the Full Range of Fire Management Needs

    Science.gov (United States)

    Richard C. Rothermel; Patricia L. Andrews

    1987-01-01

    An "integrated fire behavior/fire danger rating system" should be "seamless" to avoid requiring choices among alternate, independent systems. Descriptions of fuel moisture, fuels, and fire behavior should be standardized, permitting information to flow easily through the spectrum of fire management needs. The level of resolution depends on the...

  8. Energy systems

    International Nuclear Information System (INIS)

    Haefele, W.

    1974-01-01

    Up to the present the production, transmission and distribution of energy has been considered mostly as a fragmented problem; at best only subsystems have been considered. Today the scale of energy utilization is increasing rapidly, and correspondingly, the reliance of societies on energy. Such strong quantitative increases influence the qualitative nature of energy utilization in most of its aspects. Resources, reserves, reliability and environment are among the key words that may characterize the change in the nature of the energy utilization problem. Energy can no longer be considered an isolated technical and economical problem, rather it is embedded in the ecosphere and the society-technology complex. Restraints and boundary conditions have to be taken into account with the same degree of attention as in traditional technical problems, for example a steam turbine. This results in a strong degree of interweaving. Further, the purpose of providing energy becomes more visible, that is, to make survival possible in a civilized and highly populated world on a finite globe. Because of such interweaving and finiteness it is felt that energy should be considered as a system and therefore the term 'energy systems' is used. The production of energy is only one component of such a system; the handling of energy and the embedding of energy into the global and social complex in terms of ecology, economy, risks and resources are of similar importance. he systems approach to the energy problem needs more explanation. This paper is meant to give an outline of the underlying problems and it is hoped that by so doing the wide range of sometimes confusing voices about energy can be better understood. Such confusion starts already with the term 'energy crisis'. Is there an energy crisis or not? Much future work is required to tackle the problems of energy systems. This paper can only marginally help in that respect. But it is hoped that it will help understand the scope of the

  9. Energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Haefele, W [Nuclear Research Centre, Applied Systems Analysis and Reactor Physics, Karlsruhe (Germany); International Institute for Applied Systems Analysis, Laxenburg (Austria)

    1974-07-01

    Up to the present the production, transmission and distribution of energy has been considered mostly as a fragmented problem; at best only subsystems have been considered. Today the scale of energy utilization is increasing rapidly, and correspondingly, the reliance of societies on energy. Such strong quantitative increases influence the qualitative nature of energy utilization in most of its aspects. Resources, reserves, reliability and environment are among the key words that may characterize the change in the nature of the energy utilization problem. Energy can no longer be considered an isolated technical and economical problem, rather it is embedded in the ecosphere and the society-technology complex. Restraints and boundary conditions have to be taken into account with the same degree of attention as in traditional technical problems, for example a steam turbine. This results in a strong degree of interweaving. Further, the purpose of providing energy becomes more visible, that is, to make survival possible in a civilized and highly populated world on a finite globe. Because of such interweaving and finiteness it is felt that energy should be considered as a system and therefore the term 'energy systems' is used. The production of energy is only one component of such a system; the handling of energy and the embedding of energy into the global and social complex in terms of ecology, economy, risks and resources are of similar importance. he systems approach to the energy problem needs more explanation. This paper is meant to give an outline of the underlying problems and it is hoped that by so doing the wide range of sometimes confusing voices about energy can be better understood. Such confusion starts already with the term 'energy crisis'. Is there an energy crisis or not? Much future work is required to tackle the problems of energy systems. This paper can only marginally help in that respect. But it is hoped that it will help understand the scope of the

  10. Fire extinguishing system in large underground garages

    Directory of Open Access Journals (Sweden)

    Ivan Antonov

    2017-04-01

    Full Text Available In the work is considered an acceptable constructive scheme from a practical point of view at fire extinguishing in underground garages. The garage space is divided into quadrants which covering, for example, 2 cars. In case of ignition on one of them, a sprinkler nozzle system is triggered by the effect of the vertical convective jet. A protective curtain preventing the spread of fire to adjacent vehicles is realized. The solution is based on an integrated method which allows the calculation from hydrodynamic point of view on extinguishing time of the fire extinguishing system.

  11. A fire danger rating system for Hawaii

    Science.gov (United States)

    Robert E. Burgan; Francis M. Fujioka; George H. Hirata

    1974-01-01

    Extremes in rainfall on the Hawaiian Islands make it difficult to judge forest fire danger conditions. The use of an automatic data collection and computer processing system helps to monitor the problem.

  12. 46 CFR 108.405 - Fire detection system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fire detection system. 108.405 Section 108.405 Shipping... EQUIPMENT Fire Extinguishing Systems § 108.405 Fire detection system. (a) Each fire detection system and each smoke detection system on a unit must— (1) Be approved by the Commandant; and (2) Have a visual...

  13. 46 CFR 108.413 - Fusible element fire detection system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fusible element fire detection system. 108.413 Section... UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.413 Fusible element fire detection system. (a) A fusible element fire detection system may be installed. (b) The arrangements for the system...

  14. Energy poverty, shack fires and childhood burns

    African Journals Online (AJOL)

    sufficient choice in accessing adequate, affordable, reliable, high- quality, safe and ... The impact of informal settlement shack fires on individuals and communities has ... often the loss of lives. Fires kill thousands of people every year, with many more disabled .... self-extinguishing mechanism, which ensures that the flame is ...

  15. Advanced Fire Information System - A real time fire information system for Africa

    Science.gov (United States)

    Frost, P. E.; Roy, D. P.

    2012-12-01

    The Council for Scientific and Industrial Research (CSIR) lead by the Meraka Institute and supported by the South African National Space Agency (SANSA) developed the Advanced Fire Information System (AFIS) to provide near real time fire information to a variety of operational and science fire users including disaster managers, fire fighters, farmers and forest managers located across Southern and Eastern Africa. The AFIS combines satellite data with ground based observations and statistics and distributes the information via mobile phone technology. The system was launched in 2004, and Eskom (South Africa' and Africa's largest power utility) quickly became the biggest user and today more than 300 Eskom line managers and support staff receive cell phone and email fire alert messages whenever a wildfire is within 2km of any of the 28 000km of Eskom electricity transmission lines. The AFIS uses Earth observation satellites from NASA and Europe to detect possible actively burning fires and their fire radiative power (FRP). The polar orbiting MODIS Terra and Aqua satellites provide data at around 10am, 15pm, 22am and 3am daily, while the European Geostationary MSG satellite provides 15 minute updates at lower spatial resolution. The AFIS processing system ingests the raw satellite data and within minutes of the satellite overpass generates fire location and FRP based fire intensity information. The AFIS and new functionality are presented including an incident report and permiting system that can be used to differentiate between prescribed burns and uncontrolled wild fires, and the provision of other information including 5-day fire danger forecasts, vegetation curing information and historical burned area maps. A new AFIS mobile application for IOS and Android devices as well as a fire reporting tool are showcased that enable both the dissemination and alerting of fire information and enable user upload of geo tagged photographs and on the fly creation of fire reports

  16. WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Bigbee

    2000-06-21

    The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status.

  17. WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    J. D. Bigbee

    2000-01-01

    The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status

  18. Early forest fire detection using low-energy hydrogen sensors

    Directory of Open Access Journals (Sweden)

    K. Nörthemann

    2013-11-01

    Full Text Available Most huge forest fires start in partial combustion. In the beginning of a smouldering fire, emission of hydrogen in low concentration occurs. Therefore, hydrogen can be used to detect forest fires before open flames are visible and high temperatures are generated. We have developed a hydrogen sensor comprising of a metal/solid electrolyte/insulator/semiconductor (MEIS structure which allows an economical production. Due to the low energy consumption, an autarkic working unit in the forest was established. In this contribution, first experiments are shown demonstrating the possibility to detect forest fires at a very early stage using the hydrogen sensor.

  19. 46 CFR 108.404 - Selection of fire detection system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Selection of fire detection system. 108.404 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.404 Selection of fire detection system. (a) If a... space. (b) The fire detection system must be designed to minimize false alarms. ...

  20. Remote sensing of vegetation fires and its contribution to a fire management information system

    Science.gov (United States)

    Stephane P. Flasse; Simon N. Trigg; Pietro N. Ceccato; Anita H. Perryman; Andrew T. Hudak; Mark W. Thompson; Bruce H. Brockett; Moussa Drame; Tim Ntabeni; Philip E. Frost; Tobias Landmann; Johan L. le Roux

    2004-01-01

    In the last decade, research has proven that remote sensing can provide very useful support to fire managers. This chapter provides an overview of the types of information remote sensing can provide to the fire community. First, it considers fire management information needs in the context of a fire management information system. An introduction to remote sensing then...

  1. Technological Improvements for Digital Fire Control Systems

    Science.gov (United States)

    2017-09-30

    Final Technical Status Report For DOTC-12-01-INIT061 Technological Improvements for Digital Fire Control Systems Reporting Period: 30 Sep...accuracy and responsiveness to call for fire. These prototypes shall be more cost effective, sustainable , use a higher percentage of alternative...of the quad charts and provide DOTC with sufficient initiative information, the Quarterly Report must be supplemented with data described below

  2. New tendencies in wildland fire simulation for understanding fire phenomena: An overview of the WFDS system capabilities in Mediterranean ecosystems

    Science.gov (United States)

    Pastor, E.; Tarragó, D.; Planas, E.

    2012-04-01

    Wildfire theoretical modeling endeavors predicting fire behavior characteristics, such as the rate of spread, the flames geometry and the energy released by the fire front by applying the physics and the chemistry laws that govern fire phenomena. Its ultimate aim is to help fire managers to improve fire prevention and suppression and hence reducing damage to population and protecting ecosystems. WFDS is a 3D computational fluid dynamics (CFD) model of a fire-driven flow. It is particularly appropriate for predicting the fire behaviour burning through the wildland-urban interface, since it is able to predict the fire behaviour in the intermix of vegetative and structural fuels that comprise the wildland urban interface. This model is not suitable for operational fire management yet due to computational costs constrains, but given the fact that it is open-source and that it has a detailed description of the fuels and of the combustion and heat transfer mechanisms it is currently a suitable system for research purposes. In this paper we present the most important characteristics of the WFDS simulation tool in terms of the models implemented, the input information required and the outputs that the simulator gives useful for understanding fire phenomena. We briefly discuss its advantages and opportunities through some simulation exercises of Mediterranean ecosystems.

  3. Development of a Smart Residential Fire Protection System

    Directory of Open Access Journals (Sweden)

    Juhwan Oh

    2013-01-01

    Full Text Available Embedded system is applied for the development of smart residential fire detection and extinguishing system. Wireless communication capability is integrated into various fire sensors and alarm devices. The system activates the fire alarm to warn occupants, executes emergency and rescue calls to remote residents and fire-fighting facility in an intelligent way. The effective location of extra-sprinklers within the space of interest for the fire extinguishing system is also investigated. Actual fire test suggests that the developed wireless system for the smart residential fire protection system is reliable in terms of sensors and their communication linkage.

  4. Fires in large scale ventilation systems

    International Nuclear Information System (INIS)

    Gregory, W.S.; Martin, R.A.; White, B.W.; Nichols, B.D.; Smith, P.R.; Leslie, I.H.; Fenton, D.L.; Gunaji, M.V.; Blythe, J.P.

    1991-01-01

    This paper summarizes the experience gained simulating fires in large scale ventilation systems patterned after ventilation systems found in nuclear fuel cycle facilities. The series of experiments discussed included: (1) combustion aerosol loading of 0.61x0.61 m HEPA filters with the combustion products of two organic fuels, polystyrene and polymethylemethacrylate; (2) gas dynamic and heat transport through a large scale ventilation system consisting of a 0.61x0.61 m duct 90 m in length, with dampers, HEPA filters, blowers, etc.; (3) gas dynamic and simultaneous transport of heat and solid particulate (consisting of glass beads with a mean aerodynamic diameter of 10μ) through the large scale ventilation system; and (4) the transport of heat and soot, generated by kerosene pool fires, through the large scale ventilation system. The FIRAC computer code, designed to predict fire-induced transients in nuclear fuel cycle facility ventilation systems, was used to predict the results of experiments (2) through (4). In general, the results of the predictions were satisfactory. The code predictions for the gas dynamics, heat transport, and particulate transport and deposition were within 10% of the experimentally measured values. However, the code was less successful in predicting the amount of soot generation from kerosene pool fires, probably due to the fire module of the code being a one-dimensional zone model. The experiments revealed a complicated three-dimensional combustion pattern within the fire room of the ventilation system. Further refinement of the fire module within FIRAC is needed. (orig.)

  5. The vulcain N expert fire system

    International Nuclear Information System (INIS)

    Roche, A.

    1989-03-01

    The Institute for Nuclear Safety and Protection (IPSN) has begun work on an expert system to aid in the diagnosis of fire hazards in nuclear installations. This system is called Vulcain N and is designed as a support tool for the analyses carried out by the IPSN. Vulcain N, is based on the Vulcain expert system already developed by Bertin for its own needs and incorporates the specific rules and know-how of the IPSN experts. The development of Vulcain N began in October 1986 with the drawing up of the technical specifications, and should be completed by the end of 1988. Vulcain N brings together knowledge from a number of different domains: the locations of the combustible materials, the thermal characteristics of the combustible materials and of the walls of the room, the ventilation conditions and, finally, knowledge of fire experts concerning the development of fire. The latter covers four levels of expert knowledge: standards and their associated calculations, the simplified physics of the fire enabling more precise values to be obtained for the figures given by the standards, the rules and knowledge which enables a certain number of deductions to be made concerning the development of the fire, and a numerical simulation code which can be used to monitor the variation of certain characteristic parameters with time. For a given fire out-break scenario, Vulcain N performs diagnosis of different aspects: development of fire, effect of ventilation, emergency action possibilities, propagation hazards, etc. Owing to its flexibility, it can be used in the analysis of fire hazards to simulate a number of possible scenarios and to very rapidly deduce the essential, predominant factors. It will also be used to assist in drafting emergency procedures for application in facilities with nuclear hazards

  6. Development of a Smart Residential Fire Protection System

    OpenAIRE

    Juhwan Oh; Zhongwei Jiang; Henry Panganiban

    2013-01-01

    Embedded system is applied for the development of smart residential fire detection and extinguishing system. Wireless communication capability is integrated into various fire sensors and alarm devices. The system activates the fire alarm to warn occupants, executes emergency and rescue calls to remote residents and fire-fighting facility in an intelligent way. The effective location of extra-sprinklers within the space of interest for the fire extinguishing system is also investigated. Actual...

  7. Measurements relating fire radiative energy density and surface fuel consumption - RxCADRE 2011 and 2012

    Science.gov (United States)

    Andrew T. Hudak; Matthew B. Dickinson; Benjamin C. Bright; Robert L. Kremens; E. Louise Loudermilk; Joseph J. O' Brien; Benjamin S. Hornsby; Roger D. Ottmar

    2016-01-01

    Small-scale experiments have demonstrated that fire radiative energy is linearly related to fuel combusted but such a relationship has not been shown at the landscape level of prescribed fires. This paper presents field and remotely sensed measures of pre-fire fuel loads, consumption, fire radiative energy density (FRED) and fire radiative power flux density (FRFD),...

  8. Preliminary fire hazards analysis for W-211, Initial Tank Retrieval Systems

    International Nuclear Information System (INIS)

    Huckfeldt, R.A.

    1995-01-01

    A fire hazards analysis (FHA) was performed for Project W-211, Initial Tank Retrieval System (ITRS), at the Department of Energy (DOE) Hanford site. The objectives of this FHA was to determine (1) the fire hazards that expose the Initial Tank Retrieval System or are inherent in the process, (2) the adequacy of the fire-safety features planned, and (3) the degree of compliance of the project with specific fire safety provisions in DOE orders and related engineering codes and standards. The scope included the construction, the process hazards, building fire protection, and site wide fire protection. The results are presented in terms of the fire hazards present, the potential extent of fire damage, and the impact on employees and public safety. This study evaluated the ITRS with respect to its use at Tank 241-SY-101 only

  9. Impacts of fire, fire-fighting chemicals and post-fire stabilization techniques on the soil-plant system

    OpenAIRE

    Fernández Fernández, María

    2017-01-01

    Forest fires, as well as fire-fighting chemicals, greatly affect the soil-plant system causing vegetation loss, alterations of soil properties and nutrient losses through volatilization, leaching and erosion. Soil recovery after fires depends on the regeneration of the vegetation cover, which protects the soil and prevents erosion. Fire-fighting chemicals contain compounds potentially toxic for plants and soil organisms, and thus their use might hamper the regeneration of burnt ecosystems. In...

  10. FOCUS: a fire management planning system -- final report

    Science.gov (United States)

    Frederick W. Bratten; James B. Davis; George T. Flatman; Jerold W. Keith; Stanley R. Rapp; Theodore G. Storey

    1981-01-01

    FOCUS (Fire Operational Characteristics Using Simulation) is a computer simulation model for evaluating alternative fire management plans. This final report provides a broad overview of the FOCUS system, describes two major modules-fire suppression and cost, explains the role in the system of gaming large fires, and outlines the support programs and ways of...

  11. Fire Effects, Education, and Expert Systems

    Science.gov (United States)

    Robert E. Martin

    1987-01-01

    Predicting the effects of fires in the year 2000 and beyond will be enhanced by the use of expert systems. Although our predictions may have broad confidence limits, expert systems should help us to improve the predictions and to focus on the areas where improved knowledge is most needed. The knowledge of experts can be incorporated into previously existing knowledge...

  12. Fire protection countermeasures for containment ventilation systems

    International Nuclear Information System (INIS)

    Alvares, N.J.; Beason, D.G.; Bergman, W.; Ford, H.W.; Lipska, A.E.

    1980-01-01

    The goal of this project is to find countermeasures to protect HEPA filters in exit ventilation ducts from the heat and smoke generated by fire. Several methods for partially mitigating the smoke exposure to the HEPA filters were identified through testing and analysis. These independently involve controlling the fuel, controlling the fire, and intercepting the smoke aerosol prior to its sorption on the HEPA filter. Exit duct treatment of aerosols is not unusual in industrial applications and involves the use of scrubbers, prefilters, and inertial impaction, depending on the size, distribution, and concentration of the subject aerosol. However, when these unmodified techniques were applied to smoke aerosols from fires on materials, common to experimental laboratories of LLNL, it was found they offered minimal protection to the HEPA filters. Ultimately, a continuous, movable, high-efficiency prefilter using modified commercial equipment was designed. This technique is capable of protecting HEPA filters over the total duration of the test fires. The reason for success involved the modificaton of the prefiltration media. Commercially available filter media has a particle sorption efficiency that is inversely proportional to media strength. To achieve properties of both efficiency and strength, we laminated rolling filter media with the desired properties. It is not true that the use of rolling prefilters solely to protect HEPA filters from fire-generated smoke aerosols is cost effective in every type of containment system, especially if standard fire-protection systems are available in the space. But in areas of high fire risk, where the potential fuel load is large and ignition sources are plentiful, the complication of a rolling prefilter in exit ventilation ducts to protect HEPA filters from smoke aerosols is definitely justified

  13. Intelligent buildings, automatic fire alarm and fire-protection control system

    International Nuclear Information System (INIS)

    Tian Deyuan

    1999-01-01

    The author describes in brief the intelligent buildings, and the automatic fire alarm and fire-protection control system. On the basis of the four-bus, three-bus and two-bus, a new transfer technique was developed

  14. Live Fire Evaluation of the Expeditionary Fire Suppression System (EFSS); Phase I

    National Research Council Canada - National Science Library

    Kalberer, Jennifer

    2004-01-01

    .... The system uses AFFF-based compressed air foam and PKP dry chemical. Phase I evaluated the effectiveness of the modified-commercially available EFSS on live fires on static pool and running fuel fires...

  15. Assessment of fire hazards in buildings housing fusion energy experiments

    International Nuclear Information System (INIS)

    Alvares, N.; Lipska, A.

    1978-01-01

    A number of materials in and within the proximity of buildings housing fusion energy experiments (FEE) were analyzed for their potential fire hazard. The materials used in this study were mostly: electrical and thermal insulations. The fire hazard of these materials was assessed in terms of their ease of ignition, heat release rate, generation of smoke, and the effect of thermal environment on the combustion behavior. Several fire protection measures for buildings housing the (FEE) projects are analyzed and as a result of this study are found to be adequate for the near term

  16. Review of fire protection in the nuclear facilities of the Atomic Energy Commission, 1947--1975

    International Nuclear Information System (INIS)

    Maybee, W.W.

    1979-01-01

    In the 28 years in which it grew from a temporary wartime bomb development program to a federal agency with over $30 billion worth of facilities housing much of the nation's advanced research efforts, the Atomic Energy Commission set many records for safety. Among the best was a cumulative fire loss ratio of 12 cents per $100 of value. A 1969 fire--one of four in its history that exceeded $1 million in loss--incurred damages totaling $26 million and prompted major additions to its fire protection programs. The added programs, encompassing additional fire protection engineers, new protection systems, independent inspection programs, and new performance-based goals, resulted in an order-of-magnitude improvement. The cumulative fire loss ratio after 1969 was 0.06 cents per $100 of value, a record few industries have ever achieved

  17. Fire protection countermeasures for containment ventilation systems

    International Nuclear Information System (INIS)

    Alvares, N.; Beason, D.; Bergman, V.; Creighton, J.; Ford, H.; Lipska, A.

    1980-01-01

    The goal of this project is to find countermeasures to protect High Efficiency Particulate Air (HEPA) filters, in exit ventilation ducts, from the heat and smoke generated by fire. Initially, methods were developed to cool fire-heated air by fine water spray upstream of the filters. It was recognized that smoke aerosol exposure to HEPA filters could also cause disruption of the containment system. Through testing and analysis, several methods to partially mitigate the smoke exposure to the HEPA filters were identified. A continuous, movable, high-efficiency prefilter using modified commercial equipment was designed. The technique is capable of protecting HEPA filters over the total time duration of the test fires. The reason for success involved the modification of the prefiltration media. Commercially available filter media has particle sorption efficiency that is inversely proportional to media strength. To achieve properties of both efficiency and strength, rolling filter media were laminated with the desired properties. The approach was Edisonian, but truncation in short order to a combination of prefilters was effective. The application of this technique was qualified, since it is of use only to protect HEPA filters from fire-generated smoke aerosols. It is not believed that this technique is cost effective in the total spectrum of containment systems, especially if standard fire protection systems are available in the space. But in areas of high-fire risk, where the potential fuel load is large and ignition sources are plentiful, the complication of a rolling prefilter in exit ventilation ducts to protect HEPA filters from smoke aerosols is definitely justified

  18. An Expert System for Designing Fire Prescriptions

    Science.gov (United States)

    Elizabeth Reinhardt

    1987-01-01

    Managers use prescribed fire to accomplish a variety of resource objectives. The knowledge needed to design successful prescriptions is both quantitative and qualitative. Some of it is available through publications and computer programs, but much of the knowledge of expert practitioners has never been collected or published. An expert system being developed at the,...

  19. Proceedings of the advanced coal-fired power systems `95 review meeting, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, H.M.; Mollot, D.J.; Venkataraman, V.K.

    1995-06-01

    This document contains papers presented at The advanced Coal-Fired Power Systems 1995 Review Meeting. Research was described in the areas of: integrated gasification combined cycle technology; pressurized fluidized-bed combustion; externally fired combined cycles; a summary stauts of clean coal technologies; advanced turbine systems and hot gas cleanup. Individual projects were processed separately for the United States Department of Energy databases.

  20. Modeling regional-scale wildland fire emissions with the wildland fire emissions information system

    Science.gov (United States)

    Nancy H.F. French; Donald McKenzie; Tyler Erickson; Benjamin Koziol; Michael Billmire; K. Endsley; Naomi K.Y. Scheinerman; Liza Jenkins; Mary E. Miller; Roger Ottmar; Susan Prichard

    2014-01-01

    As carbon modeling tools become more comprehensive, spatial data are needed to improve quantitative maps of carbon emissions from fire. The Wildland Fire Emissions Information System (WFEIS) provides mapped estimates of carbon emissions from historical forest fires in the United States through a web browser. WFEIS improves access to data and provides a consistent...

  1. The Fire Effects Information System - serving managers since before the Yellowstone fires

    Science.gov (United States)

    Jane Kapler Smith; Janet L. Fryer; Kristin Zouhar

    2009-01-01

    This presentation will describe the current status of the Fire Effects Information System (FEIS) and explore lessons learned from this 23-yearold project about the application of science to fire management issues. FEIS contains literature reviews covering biology and fire ecology for approximately 1,100 species in North America: plants and animals, native and nonnative...

  2. Seismic design criteria of fire protection systems for DOE facilities

    International Nuclear Information System (INIS)

    Hardy, G.; Cushing, R.; Driesen, G.

    1991-01-01

    Fire protection systems are critical to the safety of personnel and to the protection of inventory during any kind of emergency situation that involves a fire. The importance of these fire protection systems is hightened for DOE facilities which often house nuclear, chemical or scientific processes. Current research into the topic of open-quotes fires following earthquakesclose quotes has demonstrated that the risks of a fire starting as a result of a major earthquake can be significant. Thus, fire protection systems need to be designed to withstand the anticipated seismic event for the site in question

  3. New supply for canyon fire foam system

    International Nuclear Information System (INIS)

    Gainey, T.

    1995-01-01

    The raw water supply for the B-Plant Canyon fire foam system is being replaced. The 4 inche water supply line to the foam system is being rerouted from the 6 inches raw water line in the Pipe Gallery to the 10 inches raw water main in the Operating Gallery. This document states the acceptance criteria for the flushing and testing to be performed by the contractor

  4. POWER SUPPLY MANAGEMENT SYSTEM DESIGN ON NODE EARLY WARNING SYSTEM FOR PEATLANDS FIRE MITIGATION

    Directory of Open Access Journals (Sweden)

    Taufiq Muammar

    2018-02-01

    Full Text Available Early warning system is one of the technology to detect land fires by utilizing a network of wireless sensors. Constant data transmission by the sensor nodes consumes a large amount of energy on the nodes’ sides that could affect the battery’s longevity. This research is done to discover the amount of power consumption and battery longevity during fire emergencies, and during non-emergency situation on peatlands. Power saving on the fire detecting system uses an LM35 temperature sensor, ATmega8 micro-controller and HC-12 transmission module. The overall result of powered by a 9 volt battery during fire emergencies, and during non-emergency, the power consumption reaches up to 1 Wh, with various longevity levels of the battery. The implementation of sleep/wake up mode scheduling during fire emergencies and non-emergencies could save battery for 2 hours compared to those without the power saving mode implementation. Power saving during fire emergency could be minimalized by activating the sleep mode activation power-down on the micro controller and it can also set the data transmission schedule to minimalize data usage during fire emergency, so that the usage of sleep/wake up mode interval scheduling during transmission could minimalize energy consumption and elongate the power supply active period.

  5. Retrofit options to enable biomass firing at Irish peat plants: Background report 4.2 for the EU Joule 2+ project: Energy from biomass: An assessment of two promising systems for energy production

    International Nuclear Information System (INIS)

    Van den Broek, R.; Faaij, A.; Blaney, G.

    1995-05-01

    An overview is given of the most promising options for retrofitting existing Irish peat plants to accept biomass fuel. It is expected that with low investment costs the existing peat stations can be adapted to enable them to fire biomass. It will also be possible to co-fire peat and biomass, this option will become a way of using biomass in power generation with relatively low risk, both on the field of initial investments and supply security. The objectives of this report are: assessing the different technical options for retrofitting the plants to enable biomass firing; provide investment costs, efficiencies, emissions and expected lifetimes for the different retrofit options. The results from this study are used in the final integration phase of the EU-Joule project 'Energy from biomass'. Chapter 2 deals with methodological considerations which have been made in estimation of the investment costs. In chapter 3 the present situation is described. Both peat harvesting and power plant operation of both sod and milled peat plants are explained. Also some past experiences with wood chips firing in Irish peat stations are discussed. Chapter 4 gives a general view on retrofitting peat plants to enable biomass firing. Some starting points like biomass fuel feeding and emission standards that have to be met are highlighted. The rationale behind four main choices are given. Finally, a technical description is presented of the two boiler adaptations that will be considered among the different retrofit options, namely conversion of milled peat units into bubbling fluidized bed and into a whole tree energy unit. Six retrofit options are described in more detail in chapter 5. Information is given on the present status of the plants, the technical considerations of the retrofit, expected performance and an estimation of a range in which the investment costs can be expected. 4 figs., 10 tabs., 5 appendices

  6. Gas-Fired Distributed Energy Resource Technology Characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

    2003-11-01

    The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

  7. Prototype firing range air cleaning system

    International Nuclear Information System (INIS)

    Glissmeyer, J.A.; Mishima, J.; Bamberger, J.A.

    1984-07-01

    PNL's study proceeded by examining the characteristics of the aerosol challenge to the filtration system and the operating experience at similar firing ranges. Candidate filtration systems were proposed; including baghouses, cartridge houses, electrostatic precipitators, cleanable high efficiency filters, rolling filters and cyclones--each followed by one or more of the existing filter banks. Methodology was developed to estimate the operating costs of the candidate systems. Costs addressed included the frequency (based on fractional efficiency and loading data) and cost of media replacement, capital investment, maintenance, waste disposal and electrical power consumption. The recommended system will be installed during calendar year 1984

  8. Fire Resistant Aircraft Hydraulic System.

    Science.gov (United States)

    1982-07-01

    Chemical Division "Fluorinert" FC-48 - Fluorinated Hydrocarbon "Fluorinert" FC-70 - Fluorinated Hydrocarbon Montedison S. p. A. "Fomblin" Z-04...forming substances such as varnish which could seize a spool valve or other small-clearance sliding surfaces. The test setup is pictorially described in...breakdown products such as solid particles, gels, and sludge’can plug system filters and even small fluid passages, nozzles, and orifices. Varnish -like

  9. Laboratory investigation of fire radiative energy and smoke aerosol emissions

    Science.gov (United States)

    Charles Ichoku; J. Vanderlei Martins; Yoram J. Kaufman; Martin J. Wooster; Patrick H. Freeborn; Wei Min Hao; Stephen Baker; Cecily A. Ryan; Bryce L. Nordgren

    2008-01-01

    Fuel biomass samples from southern Africa and the United States were burned in a laboratory combustion chamber while measuring the biomass consumption rate, the fire radiative energy (FRE) release rate (Rfre), and the smoke concentrations of carbon monoxide (CO), carbon dioxide (CO2), and particulate matter (PM). The PM mass emission rate (RPM) was quantified from...

  10. Report on task I: fire protection system study

    International Nuclear Information System (INIS)

    Bernard, E.A.; Cano, G.L.

    1977-02-01

    This study (1) evaluates, on a comparative basis, the national and international regulatory and insurance standards that serve as guidance for fire protection within the nuclear power industry; (2) analyzes the recommendations contained in the major reports on the Browns Ferry Fire; (3) proposes quantitative safety goals and evaluation methods for Nuclear Power Plant Fire Protection Systems (NPPFPS); (4) identifies potential improvements that may be incorporated into NPPFPS; and (5) recommends a plan of action for continuation of the fire protections systems study

  11. The Calculation and Design of Fire suppression system in the proton accelerator research center

    International Nuclear Information System (INIS)

    Jeon, G. P.; Kim, J. Y.; Cho, J. H.; Min, Y. S.; Mun, K. J.; Cho, J. S.; Nam, J. M.; Park, S. S.; Joo, H. G.

    2010-01-01

    The fire protection system is composed of various fire suppression systems and fire detection and alarm systems. The primary function of the fire protection system is to protect life and property from a fire through detecting fires quickly and suppressing those fires that occur. In this paper, we described the fire suppression system only. The fire suppression system capacity for fire hydrant, the water mist system, sprinkler system and clean agent system is calculated and designed in compliance with the applicable Korean Acts that are applicable to fire protection and the NFSC code

  12. Energy poverty, shack fires and childhood burns

    Directory of Open Access Journals (Sweden)

    D K Kimemia

    2017-04-01

    Full Text Available Burn injuries are a persisting challenge in South Africa. Energy poverty, prevalent in under-resourced communities, is a key contributor to the problem. The energy-poor rely on solid fuels and flammable hydrocarbons, such as paraffin, for energy services. The fuels are burnt in inefficient, leaky and unstable appliances, leading to health losses from pollutant emissions, burns, and conflagrations. Within cramped informal home settings, using flammable fuels and risky combustion technologies, the situation can become devastating, especially for young children. Those who survive fiery incidents have to contend with trauma and property losses that may lead to further impoverishment. Proactive intervention strategies are required and should include the broadening of access to safe and sustainable energy. We advocate greater enforcement of home appliance standards and targeted support for the distribution of proven alternative energy technologies, such as liquefied petroleum gas and solar power. Support and advocacy from professional and citizen groups would be necessary to ensure that government prioritises the safe energy requirements of poor citizens.

  13. Decision algorithms in fire detection systems

    Directory of Open Access Journals (Sweden)

    Ristić Jovan D.

    2011-01-01

    Full Text Available Analogue (and addressable fire detection systems enables a new quality in improving sensitivity to real fires and reducing susceptibility to nuisance alarm sources. Different decision algorithms types were developed with intention to improve sensitivity and reduce false alarm occurrence. At the beginning, it was free alarm level adjustment based on preset level. Majority of multi-criteria decision work was based on multi-sensor (multi-signature decision algorithms - using different type of sensors on the same location or, rather, using different aspects (level and rise of one sensor measured value. Our idea is to improve sensitivity and reduce false alarm occurrence by forming groups of sensors that work in similar conditions (same world side in the building, same or similar technology or working time. Original multi-criteria decision algorithms based on level, rise and difference of level and rise from group average are discussed in this paper.

  14. The improvement of the fire protections system for nuclear cycle facilities. Formulation of a fire protection guideline for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    2012-04-01

    The private side Fire Protection Guideline was investigated with respect to the fire having taken place at the nuclear reactor site followed by the Chuetsu-Oki earthquake in Niigata Prefecture in 2007. To improve the fire protection system especially applicable to MOX fuel fabrication facilities, JNES (Japan Nuclear Energy Safety Organization) investigated private guidelines adopted in Japanese Light Water cooled Reactors, the standardized guidelines used in Nuclear Facilities in other countries including USA, and the standards in the chemical plants. The content of the guideline concerns the prevention of the fire breakout, the prevention of fire extension, the reduction of the fire effects, as well as the facility-characteristic protection countermeasures and the fire effect evaluations. (S. Ohno)

  15. Use of ordinary kriging and Gaussian conditional simulation to interpolate airborne fire radiative energy density estimates

    Science.gov (United States)

    C. Klauberg; A. T. Hudak; B. C. Bright; L. Boschetti; M. B. Dickinson; R. L. Kremens; C. A. Silva

    2018-01-01

    Fire radiative energy density (FRED, J m-2) integrated from fire radiative power density (FRPD, W m-2) observations of landscape-level fires can present an undersampling problem when collected from fixed-wing aircraft. In the present study, the aircraft made multiple passes over the fire at ~3 min intervals, thus failing to observe most of the FRPD emitted as the flame...

  16. Development of the fire PSA methodology and the fire analysis computer code system

    International Nuclear Information System (INIS)

    Katsunori, Ogura; Tomomichi, Ito; Tsuyoshi, Uchida; Yusuke, Kasagawa

    2009-01-01

    Fire PSA methodology has been developed and was applied to NPPs in Japan for power operation and LPSD states. CDFs of preliminary fire PSA for power operation were the higher than that of internal events. Fire propagation analysis code system (CFAST/FDS Network) was being developed and verified thru OECD-PRISME Project. Extension of the scope for LPSD state is planned to figure out the risk level. In order to figure out the fire risk level precisely, the enhancement of the methodology is planned. Verification and validation of phenomenological fire propagation analysis code (CFAST/FDS Network) in the context of Fire PSA. Enhancement of the methodology such as an application of 'Electric Circuit Analysis' in NUREG/CR-6850 and related tests in order to quantify the hot-short effect precisely. Development of seismic-induced fire PSA method being integration of existing seismic PSA and fire PSA methods is ongoing. Fire PSA will be applied to review the validity of fire prevention and mitigation measures

  17. Cold Vacuum Drying facility fire protection system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) fire protection system (FPS). The FPS provides fire detection, suppression, and loss limitation for the CVDF structure, personnel, and in-process spent nuclear fuel. The system provides, along with supporting interfacing systems, detection, alarm, and activation instrumentation and controls, distributive piping system, isolation valves, and materials and controls to limit combustibles and the associated fire loadings

  18. Towards Improved Airborne Fire Detection Systems Using Beetle Inspired Infrared Detection and Fire Searching Strategies

    Directory of Open Access Journals (Sweden)

    Herbert Bousack

    2015-06-01

    Full Text Available Every year forest fires cause severe financial losses in many countries of the world. Additionally, lives of humans as well as of countless animals are often lost. Due to global warming, the problem of wildfires is getting out of control; hence, the burning of thousands of hectares is obviously increasing. Most important, therefore, is the early detection of an emerging fire before its intensity becomes too high. More than ever, a need for early warning systems capable of detecting small fires from distances as large as possible exists. A look to nature shows that pyrophilous “fire beetles” of the genus Melanophila can be regarded as natural airborne fire detection systems because their larvae can only develop in the wood of fire-killed trees. There is evidence that Melanophila beetles can detect large fires from distances of more than 100 km by visual and infrared cues. In a biomimetic approach, a concept has been developed to use the surveying strategy of the “fire beetles” for the reliable detection of a smoke plume of a fire from large distances by means of a basal infrared emission zone. Future infrared sensors necessary for this ability are also inspired by the natural infrared receptors of Melanophila beetles.

  19. 29 CFR 1910.164 - Fire detection systems.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Fire detection systems. 1910.164 Section 1910.164 Labor... detection systems. (a) Scope and application. This section applies to all automatic fire detection systems... detection systems and components to normal operating condition as promptly as possible after each test or...

  20. Systems thinking and wildland fire management

    Science.gov (United States)

    Matthew P. Thompson; Christopher J. Dunn; David E. Calkin

    2017-01-01

    A changing climate, changing development and land use patterns, and increasing pressures on ecosystem services raise global concerns over growing losses associated with wildland fires. New management paradigms acknowledge that fire is inevitable and often uncontrollable, and focus on living with fire rather than attempting to eliminate it from the landscape. A notable...

  1. FIREMON: Fire effects monitoring and inventory system

    Science.gov (United States)

    Duncan C. Lutes; Robert E. Keane; John F. Caratti; Carl H. Key; Nathan C. Benson; Steve Sutherland; Larry J. Gangi

    2006-01-01

    Monitoring and inventory to assess the effects of wildland fire is critical for 1) documenting fire effects, 2) assessing ecosystem damage and benefit, 3) evaluating the success or failure of a burn, and 4) appraising the potential for future treatments. However, monitoring fire effects is often difficult because data collection requires abundant funds, resources, and...

  2. Maintenance of fire systems and equipment at Virginia Power

    International Nuclear Information System (INIS)

    Doubrely, E.B. Jr.

    1989-01-01

    The basics of fire protection systems maintenance are well codified and documented in the National Fire Codes published by the National Fire Protection Association. In addition, Insurers often promulgate minimum standards for fire protection systems design and maintenance to which they attach conditions of insurability. Regulatory agencies and even in-house corporate policies can impact the maintenance of fire protection systems and equipment. This presentation will focus on the various methods and alternate ways of performing system maintenance, whether required by code, insurer, or by some regulatory commitment at Virginia Powers North Anna and Surry nuclear power stations. The approach to performing similar work is handled differently at each station. This difference can be attributed to proximity to outside assistance as well as plant philosophy. In addition to station maintenance practices, a discussion of in-house servicing of portable fire suppression equipment is offered. 1 tab

  3. 46 CFR 153.460 - Fire protection systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Fire protection systems. 153.460 Section 153.460... Requirements for Flammable Or Combustible Cargoes § 153.460 Fire protection systems. Each self-propelled ship... protection system listed beside the cargo in Table 1 and described in the footnotes to Table 1. (b) The...

  4. Energy infrastructure: hydrogen energy system

    Energy Technology Data Exchange (ETDEWEB)

    Veziroglu, T N

    1979-02-01

    In a hydrogen system, hydrogen is not a primary source of energy, but an intermediary, an energy carrier between the primary energy sources and the user. The new unconventional energy sources, such as nuclear breeder reactors, fusion reactors, direct solar radiation, wind energy, ocean thermal energy, and geothermal energy have their shortcomings. These shortcomings of the new sources point out to the need for an intermediary energy system to form the link between the primary energy sources and the user. In such a system, the intermediary energy form must be transportable and storable; economical to produce; and if possible renewable and pollution-free. The above prerequisites are best met by hydrogen. Hydrogen is plentiful in the form of water. It is the cheapest synthetic fuel to manufacture per unit of energy stored in it. It is the least polluting of all of the fuels, and is the lightest and recyclable. In the proposed system, hydrogen would be produced in large plants located away from the consumption centers at the sites where primary new energy sources and water are available. Hydrogen would then be transported to energy consumption centers where it would be used in every application where fossil fuels are being used today. Once such a system is established, it will never be necessary to change to any other energy system.

  5. Perspective pulse devices and automatic systems fire explosive protection of the radioactive infected objects

    International Nuclear Information System (INIS)

    Zakhmatov, V.D.; Kozhemyakin, A.S.; Pyatova, A.V.

    1999-01-01

    The suppression of fires in Chernobyl zone has shown complete unprofitable of traditional fire engineering to work on is radioactive of the infected district. In this connection as effective ways extinguishive in object 'Shelter' alongside with known traditional means and the systems offer to apply more perspective pulse systems, based on use energy small practically safe charges of gunpowder or explosive substances, in particular. Pulse explosive cone extinguishive of the device various sizes

  6. Forest fire forecasting tool for air quality modelling systems

    International Nuclear Information System (INIS)

    San Jose, R.; Perez, J. L.; Perez, L.; Gonzalez, R. M.; Pecci, J.; Palacios, M.

    2015-01-01

    Adverse effects of smoke on air quality are of great concern; however, even today the estimates of atmospheric fire emissions are a key issue. It is necessary to implement systems for predicting smoke into an air quality modelling system, and in this work a first attempt towards creating a system of this type is presented. Wild land fire spread and behavior are complex phenomena due to both the number of involved physic-chemical factors, and the nonlinear relationship between variables. WRF-Fire was employed to simulate spread and behavior of some real fires occurred in South-East of Spain and North of Portugal. The use of fire behavior models requires the availability of high resolution environmental and fuel data. A new custom fuel moisture content model has been developed. The new module allows each time step to calculate the fuel moisture content of the dead fuels and live fuels. The results confirm that the use of accurate meteorological data and a custom fuel moisture content model is crucial to obtain precise simulations of fire behavior. To simulate air pollution over Europe, we use the regional meteorological-chemistry transport model WRF-Chem. In this contribution, we show the impact of using two different fire emissions inventories (FINN and IS4FIRES) and how the coupled WRF-Fire- Chem model improves the results of the forest fire emissions and smoke concentrations. The impact of the forest fire emissions on concentrations is evident, and it is quite clear from these simulations that the choice of emission inventory is very important. We conclude that using the WRF-fire behavior model produces better results than using forest fire emission inventories although the requested computational power is much higher. (Author)

  7. Forest fire forecasting tool for air quality modelling systems

    Energy Technology Data Exchange (ETDEWEB)

    San Jose, R.; Perez, J.L.; Perez, L.; Gonzalez, R.M.; Pecci, J.; Palacios, M.

    2015-07-01

    Adverse effects of smoke on air quality are of great concern; however, even today the estimates of atmospheric fire emissions are a key issue. It is necessary to implement systems for predicting smoke into an air quality modelling system, and in this work a first attempt towards creating a system of this type is presented. Wildland fire spread and behavior are complex Phenomena due to both the number of involved physic-chemical factors, and the nonlinear relationship between variables. WRF-Fire was employed to simulate spread and behavior of some real fires occurred in South-East of Spain and North of Portugal. The use of fire behavior models requires the availability of high resolution environmental and fuel data. A new custom fuel moisture content model has been developed. The new module allows each time step to calculate the fuel moisture content of the dead fuels and live fuels. The results confirm that the use of accurate meteorological data and a custom fuel moisture content model is crucial to obtain precise simulations of fire behavior. To simulate air pollution over Europe, we use the regional meteorological-chemistry transport model WRF-Chem. In this contribution, we show the impact of using two different fire emissions inventories (FINN and IS4FIRES) and how the coupled WRF-FireChem model improves the results of the forest fire emissions and smoke concentrations. The impact of the forest fire emissions on concentrations is evident, and it is quite clear from these simulations that the choice of emission inventory is very important. We conclude that using the WRF-fire behavior model produces better results than using forest fire emission inventories although the requested computational power is much higher. (Author)

  8. Forest fire forecasting tool for air quality modelling systems

    Energy Technology Data Exchange (ETDEWEB)

    San Jose, R.; Perez, J. L.; Perez, L.; Gonzalez, R. M.; Pecci, J.; Palacios, M.

    2015-07-01

    Adverse effects of smoke on air quality are of great concern; however, even today the estimates of atmospheric fire emissions are a key issue. It is necessary to implement systems for predicting smoke into an air quality modelling system, and in this work a first attempt towards creating a system of this type is presented. Wild land fire spread and behavior are complex phenomena due to both the number of involved physic-chemical factors, and the nonlinear relationship between variables. WRF-Fire was employed to simulate spread and behavior of some real fires occurred in South-East of Spain and North of Portugal. The use of fire behavior models requires the availability of high resolution environmental and fuel data. A new custom fuel moisture content model has been developed. The new module allows each time step to calculate the fuel moisture content of the dead fuels and live fuels. The results confirm that the use of accurate meteorological data and a custom fuel moisture content model is crucial to obtain precise simulations of fire behavior. To simulate air pollution over Europe, we use the regional meteorological-chemistry transport model WRF-Chem. In this contribution, we show the impact of using two different fire emissions inventories (FINN and IS4FIRES) and how the coupled WRF-Fire- Chem model improves the results of the forest fire emissions and smoke concentrations. The impact of the forest fire emissions on concentrations is evident, and it is quite clear from these simulations that the choice of emission inventory is very important. We conclude that using the WRF-fire behavior model produces better results than using forest fire emission inventories although the requested computational power is much higher. (Author)

  9. Wind energy systems

    Science.gov (United States)

    Stewart, H. J.

    1978-01-01

    A discussion on wind energy systems involved with the DOE wind energy program is presented. Some of the problems associated with wind energy systems are discussed. The cost, efficiency, and structural design of wind energy systems are analyzed.

  10. Wildland fire management. Volume 1: Prevention methods and analysis. [systems engineering approach to California fire problems

    Science.gov (United States)

    Weissenberger, S. (Editor)

    1973-01-01

    A systems engineering approach is reported for the problem of reducing the number and severity of California's wildlife fires. Prevention methodologies are reviewed and cost benefit models are developed for making preignition decisions.

  11. 46 CFR 28.830 - Fire detection system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fire detection system. 28.830 Section 28.830 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.830 Fire detection system. (a) Each accommodation space...

  12. 46 CFR 28.325 - Fire detection systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fire detection systems. 28.325 Section 28.325 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS REQUIREMENTS FOR COMMERCIAL FISHING... Operate With More Than 16 Individuals on Board § 28.325 Fire detection systems. (a) Each accommodation...

  13. Wood-Fired Boiler System Evaluation at Fort Stewart, GA

    National Research Council Canada - National Science Library

    Potts, Noel

    2002-01-01

    Part of the plan to modernize the central energy plant (CEP) at Fort Stewart, GA is focused on the installations wood-fired boiler, which provides steam for heating, cooling, and domestic hot water. The U.S...

  14. Fire hazard analysis for the K basin fuel transfer system anneses project A-15

    International Nuclear Information System (INIS)

    BARILO, N.F.

    2001-01-01

    The purpose of the Fuel Transfer System (FTS) is to move the spent nuclear fuel currently stored in the K East (KE) Basin and transfer it by shielded cask to the K West (KW) Basin. The fuel will then be processed through the existing fuel cleaning and loading system prior to being loaded into Multi-Canister Overpacks (MCO). The FTS operation is considered an intra-facility transfer because the spent fuel will stay within the 100 K area and between the K Basins. This preliminary Fire Hazards Analysis (FHA) for the K Basin FTS Annexes addresses fire hazards or fire-related concerns in accordance with U.S. Department of Energy (DOE) 420.1 (DOE 2000), and RLID 420.1 (DOE 1999), resulting from or related to the processes and equipment. It is intended to assess the risk from fire associated within the FTS Annexes to ensure that there are no undue fire hazards to site personnel and the public; the potential for the occurrence of a fire is minimized; process control and safety systems are not damaged by fire or related perils; and property damage from fire and related perils does not exceed an acceptable level. Consistent with the preliminary nature of the design information, this FHA is performed on a graded approach

  15. Monitoring system of multiple fire fighting based on computer vision

    Science.gov (United States)

    Li, Jinlong; Wang, Li; Gao, Xiaorong; Wang, Zeyong; Zhao, Quanke

    2010-10-01

    With the high demand of fire control in spacious buildings, computer vision is playing a more and more important role. This paper presents a new monitoring system of multiple fire fighting based on computer vision and color detection. This system can adjust to the fire position and then extinguish the fire by itself. In this paper, the system structure, working principle, fire orientation, hydrant's angle adjusting and system calibration are described in detail; also the design of relevant hardware and software is introduced. At the same time, the principle and process of color detection and image processing are given as well. The system runs well in the test, and it has high reliability, low cost, and easy nodeexpanding, which has a bright prospect of application and popularization.

  16. Using satellite fire detection to calibrate components of the fire weather index system in Malaysia and Indonesia.

    Science.gov (United States)

    Dymond, Caren C; Field, Robert D; Roswintiarti, Orbita; Guswanto

    2005-04-01

    Vegetation fires have become an increasing problem in tropical environments as a consequence of socioeconomic pressures and subsequent land-use change. In response, fire management systems are being developed. This study set out to determine the relationships between two aspects of the fire problems in western Indonesia and Malaysia, and two components of the Canadian Forest Fire Weather Index System. The study resulted in a new method for calibrating components of fire danger rating systems based on satellite fire detection (hotspot) data. Once the climate was accounted for, a problematic number of fires were related to high levels of the Fine Fuel Moisture Code. The relationship between climate, Fine Fuel Moisture Code, and hotspot occurrence was used to calibrate Fire Occurrence Potential classes where low accounted for 3% of the fires from 1994 to 2000, moderate accounted for 25%, high 26%, and extreme 38%. Further problems arise when there are large clusters of fires burning that may consume valuable land or produce local smoke pollution. Once the climate was taken into account, the hotspot load (number and size of clusters of hotspots) was related to the Fire Weather Index. The relationship between climate, Fire Weather Index, and hotspot load was used to calibrate Fire Load Potential classes. Low Fire Load Potential conditions (75% of an average year) corresponded with 24% of the hotspot clusters, which had an average size of 30% of the largest cluster. In contrast, extreme Fire Load Potential conditions (1% of an average year) corresponded with 30% of the hotspot clusters, which had an average size of 58% of the maximum. Both Fire Occurrence Potential and Fire Load Potential calibrations were successfully validated with data from 2001. This study showed that when ground measurements are not available, fire statistics derived from satellite fire detection archives can be reliably used for calibration. More importantly, as a result of this work, Malaysia and

  17. 20000G shock energy harvesters for gun-fired munition

    International Nuclear Information System (INIS)

    Willemin, J.; Boisseau, S.; Olmos, L.; Gallardo, M.; Despesse, G.; Robert, T.

    2016-01-01

    This paper presents a 20000G shock energy harvester dedicated to gun-fired munitions and based on a mass-spring resonant structure coupled to a coil-magnet electromagnetic converter. The 20000G shock energy is firstly stored in the spring as elastic potential energy, released as mass-spring mechanical oscillations right after the shock and finally converted into electricity thanks to the coil-magnet transducer. The device has been modeled, sized to generate 200mJ in 150ms, manufactured and tested in a gun-fired munition. The prototype sizes 117cm 3 and weighs 370g. 210mJ have been generated in a test bench and 140mJ in real conditions; this corresponds to a mean output power of 0.93W (7.9mW/cm 3 ) and a maximum output power of 4.83W (41.3mW/cm 3 ) right after the shock. (paper)

  18. 20000G shock energy harvesters for gun-fired munition

    Science.gov (United States)

    Willemin, J.; Boisseau, S.; Olmos, L.; Gallardo, M.; Despesse, G.; Robert, T.

    2016-11-01

    This paper presents a 20000G shock energy harvester dedicated to gun-fired munitions and based on a mass-spring resonant structure coupled to a coil-magnet electromagnetic converter. The 20000G shock energy is firstly stored in the spring as elastic potential energy, released as mass-spring mechanical oscillations right after the shock and finally converted into electricity thanks to the coil-magnet transducer. The device has been modeled, sized to generate 200mJ in 150ms, manufactured and tested in a gun-fired munition. The prototype sizes 117cm3 and weighs 370g. 210mJ have been generated in a test bench and 140mJ in real conditions; this corresponds to a mean output power of 0.93W (7.9mW/cm3) and a maximum output power of 4.83W (41.3mW/cm3) right after the shock.

  19. Appraisal of Fire Safety Management Systems at Educational Buildings

    Directory of Open Access Journals (Sweden)

    Nadzim N.

    2014-01-01

    Full Text Available Educational buildings are one type of government asset that should be protected, and they play an important role as temporary communal meeting places for children, teachers and communities. In terms of management, schools need to emphasize fire safety for their buildings. It is well known that fires are not only a threat to the building’s occupants, but also to the property and the school environment. A study on fire safety management has been carried out on schools that have recently experienced fires in Penang. From the study, it was found that the school buildings require further enhancement in terms of both active and passive fire protection systems. For instance, adequate fire extinguishers should be provided to the school and the management should inspect and maintain fire protection devices regularly. The most effective methods to increase the level of awareness on fire safety are by organizing related programs on the management of fire safety involving all staff, teachers and students, educational talks on the dangers of fire and important actions to take in the event of an emergency, and, lastly, to appoint particular staff to join the management safety team in schools.

  20. Life cycle assessment of solar aided coal-fired power system with and without heat storage

    International Nuclear Information System (INIS)

    Zhai, Rongrong; Li, Chao; Chen, Ying; Yang, Yongping; Patchigolla, Kumar; Oakey, John E.

    2016-01-01

    Highlights: • The comprehensive performances of three kinds of different systems were compared through LCA. • The comprehensive results of all systems were evaluated by grey relation theory. • The effects of life span, coal price, and solar collector field cost, among other factors, on the results were explored. - Abstract: Pollutant emissions from coal-fired power system have been receiving increasing attention over the past few years. Integration of solar thermal energy can greatly reduce pollutant emissions from these power stations. The performances of coal-fired power system (S1), solar aided coal-fired power system with thermal storage (S2), and solar aided coal-fired power system without thermal storage (S3) with three capacities of each kind of system (i.e., nine subsystems) were analyzed over the entire life span. The pollutant emissions and primary energy consumptions (PECs) of S1, S2, and S3 were estimated using life cycle assessment (LCA). The evaluation value of global warming potential (GWP), acidification potential (AP), respiratory effects potential (REP) and PEC were obtained based on the LCA results. Furthermore, the system investments were estimated, and grey relation theory was used to evaluate the performance of the three types of systems comprehensively. Finally, in order to find the effect of some main factors on the solar aided coal-fired power system (SACFPS), uncertainty analysis has been carried out. The LCA results show that the pollutant emissions and PEC mainly take place in the fuel processing and operation stages for all three system types, and S2 performs the best among the three systems based on the grey relation analysis results. And the uncertainty analysis shows that with longer life span, the power system have better performance; with higher coal price, the power system will have worse performance; with lower solar collector field cost, the solar aided coal-fired power system will be more profitable than the base

  1. Converting Existing Copper Wire Firing System to a Fiber Optically Controlled Firing System for Electromagnetic Pulsed Power Experiments

    Science.gov (United States)

    2017-12-19

    Pulsed Power Experiments by Robert Borys Jr Weapons and Materials Research Directorate, ARL Colby Adams Bowhead Total Enterprise Solutions...ARL-TN-0863 ● DEC 2017 US Army Research Laboratory Converting Existing Copper Wire Firing System to a Fiber-Optically Controlled...Firing System for Electromagnetic Pulsed Power Experiments by Robert Borys Jr and Colby Adams Approved for public release

  2. Environmental and economical aspects of selected energy system

    International Nuclear Information System (INIS)

    1991-11-01

    An analysis of environmental and economical aspects of selected renewable energy systems is presented. The aim was to provide a basis for estimating the competitive status in each case, to review the consequences of technological development, to identify attractive markets and to evaluate the effects of various economic conditions. Calculation methods are described and individual solar heating systems are compared to oil-fired boilers, boilers fired with solid fuels are compared to oil-fired boilers and straw-fired cogeneration plants are compared with coal, fuel-oil and straw-fired district heating plants. Results are presented in the form of tables and graphs. (AB)

  3. Liquid nitrogen fire extinguishing system test report

    International Nuclear Information System (INIS)

    Beidelman, J.A.

    1972-01-01

    The objective of this test series was to demonstrate the feasibility of using liquid nitrogen as a fire-extinguishing agent for certain types of metal fires. It was intended to provide data and experience appropriate to the design of a second series which will test the applicability of this technique to plutonium fires and which will develop more detailed operating information and permit more precise measurement of test parameters-oxygen depletion rates and equilibrium concentrations, temperature effects, and nitrogen pressures, flow rates, spray methods and patterns, etc. The test series was directed specifically toward extinguishment of metal fires occurring in well-confined areas and was not intended to be representative of any larger classification. Fires of several types were tested, e.g., magnesium, mixed magnesium and zirconium, sodium and cerium

  4. Fire deaths in aircraft without the crashworthy fuel system.

    Science.gov (United States)

    Springate, C S; McMeekin, R R; Ruehle, C J

    1989-10-01

    Cases reported to the Armed Forces Institute of Pathology were examined for occupants of helicopters without the crashworthy fuel system (CWFS) who survived crashes but died as a result of postcrash fires. There were 16 fire deaths in the 9 such accidents which occurred between January 1976 and April 1984. All of these victims would have survived if there had been no postcrash fire. Partial body destruction by fire probably prevented inclusion of many other cases. The dramatic reduction in fire deaths and injuries due to installation of the CWFS in Army helicopters is discussed. The author concludes that fire deaths and injuries in aircraft accidents could almost be eliminated by fitting current and future aircraft with the CWFS.

  5. Performance Evaluation of the Combined Agent Fire Fighting System (CAFFS)

    National Research Council Canada - National Science Library

    Kalberer, Jennifer

    2003-01-01

    ... of the location. The Combined Agent Fire Fighting System (CAFFS) employs innovations in nozzle design, lightweight composites and combination agents to design a system with extinguishment capabilities of much larger ARFF vehicles...

  6. Fire in the Earth System: Bridging data and modeling research

    Science.gov (United States)

    Hantson, Srijn; Kloster, Silvia; Coughlan, Michael; Daniau, Anne-Laure; Vanniere, Boris; Bruecher, Tim; Kehrwald, Natalie; Magi, Brian I.

    2016-01-01

    Significant changes in wildfire occurrence, extent, and severity in areas such as western North America and Indonesia in 2015 have made the issue of fire increasingly salient in both the public and scientific spheres. Biomass combustion rapidly transforms land cover, smoke pours into the atmosphere, radiative heat from fires initiates dramatic pyrocumulus clouds, and the repeated ecological and atmospheric effects of fire can even impact regional and global climate. Furthermore, fires have a significant impact on human health, livelihoods, and social and economic systems.Modeling and databased methods to understand fire have rapidly coevolved over the past decade. Satellite and ground-based data about present-day fire are widely available for applications in research and fire management. Fire modeling has developed in part because of the evolution in vegetation and Earth system modeling efforts, but parameterizations and validation are largely focused on the present day because of the availability of satellite data. Charcoal deposits in sediment cores have emerged as a powerful method to evaluate trends in biomass burning extending back to the Last Glacial Maximum and beyond, and these records provide a context for present-day fire. The Global Charcoal Database version 3 compiled about 700 charcoal records and more than 1,000 records are expected for the future version 4. Together, these advances offer a pathway to explore how the strengths of fire data and fire modeling could address the weaknesses in the overall understanding of human-climate–fire linkages.A community of researchers studying fire in the Earth system with individual expertise that included paleoecology, paleoclimatology, modern ecology, archaeology, climate, and Earth system modeling, statistics, geography, biogeochemistry, and atmospheric science met at an intensive workshop in Massachusetts to explore new research directions and initiate new collaborations. Research themes, which emerged from

  7. Central display system of figures in fire alarm

    International Nuclear Information System (INIS)

    Fang Shaohong; Zhu Zicheng; Zhu Liqun; Ren Yi; Yu Hongmei; Du Chengbao; Xie Guoxue

    1997-01-01

    A new type of 'central display system of figures in fire alarm' includes two parts: (1) software package of drawing picture; (2) real time processing and operate system (POS). Main function of the software package is to draw floor plane figures, fire-fighting facility signs and room numbers; and then all pictures are used in POS. Main functions of POS are to process fire alarm, faults and activation of fire fighting control facility, save and print reports, look over floor plane figures, look over concrete condition of fire fighting facilities, and to show appropriate prompt according to different case. This system realizes many functions, such as, control with mouse, operation with push-button, menu operation interface, flip windows to prompt, and chinese character. It have won acclaim for its amazing interface, its convenience to operate, its reliability and flexibility

  8. General multiplex centralized fire-alarm display system

    International Nuclear Information System (INIS)

    Zhu Liqun; Chen Jinming

    2002-01-01

    The fire-alarm display system is developed, which can connect with each type of fire controllers produced in the factory and SIGMASYS controllers. It can display whole alarm information. The display system software gathers communication, database and multimedia, has functions of inspecting fire, showing alarm, storing data, searching information and so on. The drawing software lets the user expediently add, delete, move and modify fire detection or fire fighting facilities on the building floor maps. The graphic transform software lets the display use the vectorgraph produced by popular plotting software such as Auto CAD. The system software provides the administration function, such as log book of changing shift and managing workers etc.. The software executed on Windows 98 platform. The user interface is friendly and reliable in operation

  9. Groundwater controls on post-fire permafrost thaw: Water and energy balance effects

    OpenAIRE

    Rocha, Adrian; Mckenzie, Jeffrey; Lamontagne-Halle, Pierrick; Zipper, Samuel

    2018-01-01

    Fire frequency and severity is increasing in high latitude regions, with large impacts on the water and energy balances. However, the degree to which groundwater flow impacts the permafrost response to fire remains poorly understood and understudied. Here, we use the Anaktuvuk River Fire (Alaska, USA) as an archetypal example to investigate groundwater-permafrost interactions following fire. We identify key thermal and hydrologic parameters controlling permafrost and active layer response to ...

  10. Fire Effects Information System: New engine, remodeled interior, added options

    Science.gov (United States)

    Jane Kapler Smith

    2010-01-01

    Some of today's firefighters weren't even born when the Fire Effects Information System (FEIS) (Web site ) "hit the streets" in 1986. Managers might remember using a dial-up connection in the early 1990s to access information on biology, ecology, and fire offered by FEIS.

  11. Fire protection system operating experience review for fusion applications

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1995-12-01

    This report presents a review of fire protection system operating experiences from particle accelerator, fusion experiment, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of fire protection system component failure rates and fire accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with these systems are discussed, including spurious operation. This information should be useful to fusion system designers and safety analysts, such as the team working on the Engineering Design Activities for the International Thermonuclear Experimental Reactor

  12. Fire protection system operating experience review for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.

    1995-12-01

    This report presents a review of fire protection system operating experiences from particle accelerator, fusion experiment, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of fire protection system component failure rates and fire accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with these systems are discussed, including spurious operation. This information should be useful to fusion system designers and safety analysts, such as the team working on the Engineering Design Activities for the International Thermonuclear Experimental Reactor.

  13. Pressure surge free fire water systems increase safety on offshore oil- and gas drilling platforms

    International Nuclear Information System (INIS)

    Carlsen, Randi

    2001-01-01

    The article describes a new fire water system for use on the oil- and gas drilling platforms that is characterized by improved start-up time and reduced energy consumption. Deluge valves are commonly used in fast large-flow fire water systems all over the world. During the test of a new fire water system on a platform a few years ago, a pipe near the living quarter suddenly ruptured due to an unexpected pressure surge thought to be impossible. It was caused by a weakness of the deluge valve. A better valve was needed and the 'UniqValve' was designed and manufactured. The UniqValve operates in cooperation with the fire pumps during start-up as it 'reads' the pressure variations of the water flow and corrects the water flow to the fire areas in less than a tenth of a second. The valve is now integrated in a modular system. The fire water unit is mounted in a container, which reduces cost and simplifies the placement of the fire water installation

  14. Fire-Protection Research for Energy-Technology Projects: FY 1981 year-end report

    International Nuclear Information System (INIS)

    Hasegawa, H.K.; Alvares, N.J.; Lipska-Quinn, A.E.; Beason, D.G.; Foote, K.L.; Priante, S.J.

    1982-01-01

    This report summarizes research conducted in fiscal year 1981 for the DOE-supported project, Fire Protection Research for Energy Technology Projects. Initiated in 1977, this ongoing research program was conceived to advance fire protection strategies for Energy Technology Projects to keep abreast of the unique fire problems that are developing with the complexity of energy technology research. We are developing an analytical methodology through detailed study of fusion energy experiments at Lawrence Livermore National Laboratory (LLNL). Employing these facilities as models for methodology development, we are simultaneously advancing three major task areas: (1) determination of unique fire hazards of current fusion energy facilities; (2) evaluation of the ability of accepted fire management measures to meet and negate hazards; and (3) performance of unique research into problem areas we have identified to provide input into analytical fire-growth and damage-assessment models

  15. Fire-Protection Research for Energy-Technology Projects: FY 1981 year-end report

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, H.K.; Alvares, N.J.; Lipska-Quinn, A.E.; Beason, D.G.; Foote, K.L.; Priante, S.J.

    1982-07-20

    This report summarizes research conducted in fiscal year 1981 for the DOE-supported project, Fire Protection Research for Energy Technology Projects. Initiated in 1977, this ongoing research program was conceived to advance fire protection strategies for Energy Technology Projects to keep abreast of the unique fire problems that are developing with the complexity of energy technology research. We are developing an analytical methodology through detailed study of fusion energy experiments at Lawrence Livermore National Laboratory (LLNL). Employing these facilities as models for methodology development, we are simultaneously advancing three major task areas: (1) determination of unique fire hazards of current fusion energy facilities; (2) evaluation of the ability of accepted fire management measures to meet and negate hazards; and (3) performance of unique research into problem areas we have identified to provide input into analytical fire-growth and damage-assessment models.

  16. Fire Hazard Analysis for the Cold Neutron Source System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung Won; Kim, Young Ki; Wu, Sang Ik; Park, Young Cheol; Kim, Bong Soo; Kang, Mee Jin; Oh, Sung Wook

    2006-04-15

    As the Cold Neutron Source System for its installation in HANARO has been designing, the fire hazard analysis upon the CNS system becomes required under No. 2003-20 of the MOST notice, Technical Standard about the Fire Hazard Analysis. As a moderator, the strongly flammable hydrogen is filled in the hydrogen system of CNS. Against the fire or explosion in the reactor hall, accordingly, the physical damage on the reactor safety system should be evaluated in order to reflect the safety protection precaution in the design of CNS system. For the purpose of fire hazard analysis, the accident scenarios were divided into three: hydrogen leak during the hydrogen charging in the system, hydrogen leak during the normal operation of CNS, explosion of hydrogen buffer tank by the external fire. The analysis results can be summarized as follows. First, there is no physical damage threatening the reactor safety system although all hydrogen gas came out of the system then ignited as a jet fire. Second, since the CNS equipment island (CEI) is located enough away from the reactor, no physical damage caused by the buffer tank explosion is on the reactor in terms of the overpressure except the flying debris so that the light two-hour fireproof panel is installed in an one side of hydrogen buffer tank. Third, there are a few combustibles on the second floor of CEI so that the fire cannot be propagated to other areas in the reactor hall; however, the light two-hour fireproof panel will be built on the second floor against the external or internal fire so as to play the role of a fire protection area.

  17. Fire Hazard Analysis for the Cold Neutron Source System

    International Nuclear Information System (INIS)

    Choi, Jung Won; Kim, Young Ki; Wu, Sang Ik; Park, Young Cheol; Kim, Bong Soo; Kang, Mee Jin; Oh, Sung Wook

    2006-04-01

    As the Cold Neutron Source System for its installation in HANARO has been designing, the fire hazard analysis upon the CNS system becomes required under No. 2003-20 of the MOST notice, Technical Standard about the Fire Hazard Analysis. As a moderator, the strongly flammable hydrogen is filled in the hydrogen system of CNS. Against the fire or explosion in the reactor hall, accordingly, the physical damage on the reactor safety system should be evaluated in order to reflect the safety protection precaution in the design of CNS system. For the purpose of fire hazard analysis, the accident scenarios were divided into three: hydrogen leak during the hydrogen charging in the system, hydrogen leak during the normal operation of CNS, explosion of hydrogen buffer tank by the external fire. The analysis results can be summarized as follows. First, there is no physical damage threatening the reactor safety system although all hydrogen gas came out of the system then ignited as a jet fire. Second, since the CNS equipment island (CEI) is located enough away from the reactor, no physical damage caused by the buffer tank explosion is on the reactor in terms of the overpressure except the flying debris so that the light two-hour fireproof panel is installed in an one side of hydrogen buffer tank. Third, there are a few combustibles on the second floor of CEI so that the fire cannot be propagated to other areas in the reactor hall; however, the light two-hour fireproof panel will be built on the second floor against the external or internal fire so as to play the role of a fire protection area

  18. Energy Information Systems

    Science.gov (United States)

    Home > Building Energy Information Systems and Performance Monitoring (EIS-PM) Building Energy evaluate and improve performance monitoring tools for energy savings in commercial buildings. Within the and visualization capabilities to energy and facility managers. As an increasing number of

  19. New probabilistic decision-making tools for fire protection systems

    International Nuclear Information System (INIS)

    Ksobiech, C.; Mowrer, F.

    1991-01-01

    The FIVE methodology provides guidance to utilities in performing an examination of potential plant severe accidents caused by fire initiated events. FIVE is oriented toward uncovering limiting plant design or operating characteristics (vulnerabilities) that make certain fire-initiated events more likely than others. It provides a combination of deterministic and probabilistic techniques for examining a power plant's fire probability and protection characteristics. It includes a two phase progressive screening method and a third phase consisting of a plant walkdown/verification process. The FIVE methodology centers on providing assurance of the availability of at least one train of the safe shutdown systems. FIVE has been developed for implementation by plant personnel who are most experienced with their plant's operations, fire hazards and fire protection features. The methodology provides these plant personnel with guidelines to quickly screen the plant down to the most significant locations where vulnerabilities may exist and then identify options to reduce the vulnerabilities

  20. Miniature Intelligent Wireless Fire Detector System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project is to develop a wireless intelligent dual-band photodetector system for advanced fire detection/recognition, combining UV/IR III...

  1. Water Supply Systems For Aircraft Fire And Rescue Protection

    Science.gov (United States)

    1995-01-01

    This Advisory Circular (AC) provides guidance for the selection : of a water source and standards for the design of a distribution system to : support aircraft rescue and fire fighting (ARFF) service operations on : airports.

  2. Keynote address: Reinventing fire: Physics + markets = energy solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lovins, Amory B., E-mail: ablovins@rmi.org [Cofounder and Chief Scientist, Rocky Mountain Institute, 2317 Snowmass Creek Road, Snowmass CO 81654 (United States)

    2015-03-30

    Rocky Mountain Institute's multi-year, 61-author, peer-reviewed Reinventing Fire synthesis showed how the U.S. can realistically run a 2.6× bigger U.S. economy in 2050 with no oil, coal, or nuclear energy, one-third less natural gas, tripled efficiency, and 74% renewable supplies (80% for electricity). This transition, at historically reasonable rates, could be led by business for profit, applying normal rates of return, with some innovative subnational and administrative policies but no Acts of Congress. Excluding carbon emissions and all other externalities, the net present value would be $5 trillion more favorable than business-as-usual, averaging a 14% Internal Rate of Return.

  3. Keynote address: Reinventing fire: Physics + markets = energy solutions

    International Nuclear Information System (INIS)

    Lovins, Amory B.

    2015-01-01

    Rocky Mountain Institute's multi-year, 61-author, peer-reviewed Reinventing Fire synthesis showed how the U.S. can realistically run a 2.6× bigger U.S. economy in 2050 with no oil, coal, or nuclear energy, one-third less natural gas, tripled efficiency, and 74% renewable supplies (80% for electricity). This transition, at historically reasonable rates, could be led by business for profit, applying normal rates of return, with some innovative subnational and administrative policies but no Acts of Congress. Excluding carbon emissions and all other externalities, the net present value would be $5 trillion more favorable than business-as-usual, averaging a 14% Internal Rate of Return

  4. A heuristic expert system for forest fire guidance in Greece.

    Science.gov (United States)

    Iliadis, Lazaros S; Papastavrou, Anastasios K; Lefakis, Panagiotis D

    2002-07-01

    Forests and forestlands are common inheritance for all Greeks and a piece of the national wealth that must be handed over to the next generations in the best possible condition. After 1974, Greece faces a severe forest fire problem and forest fire forecasting is the process that will enable the Greek ministry of Agriculture to reduce the destruction. This paper describes the basic design principles of an Expert System that performs forest fire forecasting (for the following fire season) and classification of the prefectures of Greece into forest fire risk zones. The Expert system handles uncertainty and uses heuristics in order to produce scenarios based on the presence or absence of various qualitative factors. The initial research focused on the construction of a mathematical model which attempted to describe the annual number of forest fires and burnt area in Greece based on historical data. However this has proven to be impossible using regression analysis and time series. A closer analysis of the fire data revealed that two qualitative factors dramatically affect the number of forest fires and the hectares of burnt areas annually. The first is political stability and national elections and the other is drought cycles. Heuristics were constructed that use political stability and drought cycles, to provide forest fire guidance. Fuzzy logic was applied to produce a fuzzy expected interval for each prefecture of Greece. A fuzzy expected interval is a narrow interval of values that best describes the situation in the country or a part of the country for a certain time period. A successful classification of the prefectures of Greece in forest fire risk zones was done by the system, by comparing the fuzzy expected intervals to each other. The system was tested for the years 1994 and 1995. The testing has clearly shown that the system can predict accurately, the number of forest fires for each prefecture for the following year. The average accuracy was as high as 85

  5. Low NOx firing systems for bituminous coal and lignite

    International Nuclear Information System (INIS)

    Knyrim, W.; Scheffknecht, G.

    1997-01-01

    In the case of lignite fluidized boilers the denitrification down to less than 200 mg/m 3 was possible with primary measures on the firing side only. On account of the excellent results achieved with the reconstructed plants the firing systems for the new generation of brown coal fire steam generators with a capacity of 800 MW and more is designed in a similar way. For bituminous coal fire steam generators the primary measures on the firing side are nor sufficient to keep the German NO x emission limit. Therefore these units had to be retrofitted with a SCR-DENOX plant. The experience with the new firing system made in a 110 MW steam generator in Austria with a wide range of fuels is introduced. One of the largest bituminous coal fired once-trough steam generator built by EVT is the boiler for the power station Bexbach I (750 MW). The firing system is designed as a tangential firing system with 32 jet burners. These are arranged in pairs in the corners and divided into 4 burner levels with 4 burner pairs each. One mill is allocated to each burner level. An important characteristic feature is that the four bowl mills are arranged on one side of the steam generator. The plant is constructed with upper air nozzles which are arranged above the top burner level for the reduced of nitrogen oxides. During tests at steam generator with similar design, the nO x formation could be reduced from 750 to 500 mg/m 3 s.t.p. (dry, 6% O 2 ) with an addition of upper air of 20% at 100% unit capacity and constant total flow. As a main approach for the further reduction of the primary NO x emission at bituminous coal fired steam generators with tangential firing systems, the experience gained from the firing of brown coal has also been taken into account. A fundamental aspect in this respect was the vertical air staging in the direction of the furnace height. The results of many tests in a test reactor have shown that the differences of the achievable NO x values of brown and

  6. 46 CFR 161.002-10 - Automatic fire detecting system control unit.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Automatic fire detecting system control unit. 161.002-10...-10 Automatic fire detecting system control unit. (a) General. The fire detecting system control unit... and the battery to be charged. (h) Automatic fire detecting system, battery charging and control—(1...

  7. 46 CFR 108.407 - Detectors for electric fire detection system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Detectors for electric fire detection system. 108.407... DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.407 Detectors for electric fire detection system. (a) Each detector in an electric fire detection system must be located where— (1) No...

  8. Croatian Energy System Defossilization

    International Nuclear Information System (INIS)

    Potocnik, V.

    2013-01-01

    Defossilization of an energy system, as primary cause of the actual climate change, means exchange of predominantly imported fossil fuels with climate more convenient energy carriers, facilitating thus the way out of crisis.Overview of the world and Croatian energy system situation is presented as well as the overview of climate change. The most important Croatian energy system defossilization measures-energy efficiency increase, renewable energy inclusion and others - are described.(author)

  9. Systems and models of fire blight (Erwinia amylovora prediction

    Directory of Open Access Journals (Sweden)

    Krzysztof Kielak

    2013-12-01

    Full Text Available The paper presents fire blight prediction models and systems, developed in Europe (system Billing - versions: BOS, BRS, BIS95 and originated from this system: Firescreen, FEUERBRA and ANLAFBRA and in United States (Californian system, model Maryblyt and system Cougarblight. Use of above models and systems in various climatic-geographic conditions and comparison of obtained prognostic data to real fire blight occurrence is reviewed. The newest trends in research on improvement of prognostic analyses parameters with their adjustment to particular conditions and consideration of infection source occurrence are also presented.

  10. Energy systems security

    CERN Document Server

    Voeller, John G

    2014-01-01

    Energy Systems Security features articles from the Wiley Handbook of Science and Technology for Homeland Security covering topics related to electricity transmission grids and their protection, risk assessment of energy systems, analysis of interdependent energy networks. Methods to manage electricity transmission disturbances so as to avoid blackouts are discussed, and self-healing energy system and a nano-enabled power source are presented.

  11. Computer-aided system for fire fighting in an underground mine

    Energy Technology Data Exchange (ETDEWEB)

    Rosiek, F; Sikora, M; Urbanski, J [Politechnika Wroclawska (Poland). Instytut Gornictwa

    1989-01-01

    Discusses structure of an algorithm for computer-aided planning of fire fighting and rescue in an underground coal mine. The algorithm developed by the Mining Institute of the Wroclaw Technical University consists of ten options: regulations on fire fighting, fire alarm for miners working underground (rescue ways, fire zones etc.), information system for mine management, movements of fire fighting teams, distribution of fire fighting equipment, assessment of explosion hazards of fire gases, fire gas temperature control of blower operation, detection of endogenous fires, ventilation control. 2 refs.

  12. Complex systems approach to fire dynamics and climate change impacts

    Science.gov (United States)

    Pueyo, S.

    2012-04-01

    I present some recent advances in complex systems theory as a contribution to understanding fire regimes and forecasting their response to a changing climate, qualitatively and quantitatively. In many regions of the world, fire sizes have been found to follow, approximately, a power-law frequency distribution. As noted by several authors, this distribution also arises in the "forest fire" model used by physicists to study mechanisms that give rise to scale invariance (the power law is a scale-invariant distribution). However, this model does not give and does not pretend to give a realistic description of fire dynamics. For example, it gives no role to weather and climate. Pueyo (2007) developed a variant of the "forest fire" model that is also simple but attempts to be more realistic. It also results into a power law, but the parameters of this distribution change through time as a function of weather and climate. Pueyo (2007) observed similar patterns of response to weather in data from boreal forest fires, and used the fitted response functions to forecast fire size distributions in a possible climate change scenario, including the upper extreme of the distribution. For some parameter values, the model in Pueyo (2007) displays a qualitatively different behavior, consisting of simple percolation. In this case, fire is virtually absent, but megafires sweep through the ecosystem a soon as environmental forcings exceed a critical threshold. Evidence gathered by Pueyo et al. (2010) suggests that this is realistic for tropical rainforests (specifically, well-conserved upland rainforests). Some climate models suggest that major tropical rainforest regions are going to become hotter and drier if climate change goes ahead unchecked, which could cause such abrupt shifts. Not all fire regimes are well described by this model. Using data from a tropical savanna region, Pueyo et al. (2010) found that the dynamics in this area do not match its assumptions, even though fire

  13. Understanding coupled natural and human systems on fire prone landscapes: integrating wildfire simulation into an agent based planning system.

    Science.gov (United States)

    Barros, Ana; Ager, Alan; Preisler, Haiganoush; Day, Michelle; Spies, Tom; Bolte, John

    2015-04-01

    Agent-based models (ABM) allow users to examine the long-term effects of agent decisions in complex systems where multiple agents and processes interact. This framework has potential application to study the dynamics of coupled natural and human systems where multiple stimuli determine trajectories over both space and time. We used Envision, a landscape based ABM, to analyze long-term wildfire dynamics in a heterogeneous, multi-owner landscape in Oregon, USA. Landscape dynamics are affected by land management policies, actors decisions, and autonomous processes such as vegetation succession, wildfire, or at a broader scale, climate change. Key questions include: 1) How are landscape dynamics influenced by policies and institutions, and 2) How do land management policies and actor decisions interact to produce intended and unintended consequences with respect to wildfire on fire-prone landscapes. Applying Envision to address these questions required the development of a wildfire module that could accurately simulate wildfires on the heterogeneous landscapes within the study area in terms of replicating historical fire size distribution, spatial distribution and fire intensity. In this paper we describe the development and testing of a mechanistic fire simulation system within Envision and application of the model on a 3.2 million fire prone landscape in central Oregon USA. The core fire spread equations use the Minimum Travel Time algorithm developed by M Finney. The model operates on a daily time step and uses a fire prediction system based on the relationship between energy release component and historical fires. Specifically, daily wildfire probabilities and sizes are generated from statistical analyses of historical fires in relation to daily ERC values. The MTT was coupled with the vegetation dynamics module in Envision to allow communication between the respective subsystem and effectively model fire effects and vegetation dynamics after a wildfire. Canopy and

  14. Configuration of electro-optic fire source detection system

    Science.gov (United States)

    Fabian, Ram Z.; Steiner, Zeev; Hofman, Nir

    2007-04-01

    The recent fighting activities in various parts of the world have highlighted the need for accurate fire source detection on one hand and fast "sensor to shooter cycle" capabilities on the other. Both needs can be met by the SPOTLITE system which dramatically enhances the capability to rapidly engage hostile fire source with a minimum of casualties to friendly force and to innocent bystanders. Modular system design enable to meet each customer specific requirements and enable excellent future growth and upgrade potential. The design and built of a fire source detection system is governed by sets of requirements issued by the operators. This can be translated into the following design criteria: I) Long range, fast and accurate fire source detection capability. II) Different threat detection and classification capability. III) Threat investigation capability. IV) Fire source data distribution capability (Location, direction, video image, voice). V) Men portability. ) In order to meet these design criteria, an optimized concept was presented and exercised for the SPOTLITE system. Three major modular components were defined: I) Electro Optical Unit -Including FLIR camera, CCD camera, Laser Range Finder and Marker II) Electronic Unit -including system computer and electronic. III) Controller Station Unit - Including the HMI of the system. This article discusses the system's components definition and optimization processes, and also show how SPOTLITE designers successfully managed to introduce excellent solutions for other system parameters.

  15. Duct System Flammability and Air Sealing Fire Separation Assemblies in the International Residential Code

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, A.; Prahl, D.

    2014-12-01

    IBACOS identified two barriers that limit the ability of builders to cost-effectively achieve higher energy efficiency levels in housing. These are (1) the use of duct system materials that inherently achieve airtightness and are appropriately sized for low-load houses and (2) the ability to air seal fire separation assemblies. The issues identified fall into a gray area of the codes.

  16. Duct System Flammability and Air Sealing Fire Separation Assemblies in the International Residential Code

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, A. [ABT Systems, LLC, Annville, PA (United States); Prahl, D. [IBACOS, Inc., Pittsburgh, PA (United States)

    2014-12-01

    IBACOS identified two barriers that limit the ability of builders to cost-effectively achieve higher energy efficiency levels in housing. These are the use of duct system materials that inherently achieve airtightness and are appropriately sized for low-load houses and the ability to air seal fire separation assemblies. The issues identified fall into a gray area of the codes.

  17. Fire Risk in MTBF Evaluation for UPS System

    Directory of Open Access Journals (Sweden)

    Stefano Elia

    2016-01-01

    Full Text Available The reliability improvement of no-break redundant electrical systems is the first aim of the proposed strategy. The failure of some UPS (Uninterruptible Power Supply system may lead to the fire occurrence. The most used electrical configurations are presented and discussed in the paper. The innovation of the proposed method consists of taking into account the fire risk to improve the accuracy of wiring configuration and component’s failure rate. Thorough research on MTBF (Mean Time Between Failure data has been performed for each wiring component and UPS. The fire risk is taken into account introducing an equivalent fire block in the Reliability Block Diagram scheme; it has an MTBF value calculated form yearly statistics of UPS fire events. The reliability of the most used UPS electrical configurations is evaluated by means of the RBD method. Different electrical systems have been investigated and compared based on MTBF. The importance of fire compartmentation between two or more UPS’ connected in parallel is proved here.

  18. Application of the Haines Index in the fire warning system

    Science.gov (United States)

    Kalin, Lovro; Marija, Mokoric; Tomislav, Kozaric

    2016-04-01

    Croatia, as all Mediterranean countries, is strongly affected by large wildfires, particularly in the coastal region. In the last two decades the number and intensity of fires has been significantly increased, which is unanimously associated with climate change, e.g. global warming. More extreme fires are observed, and the fire-fighting season has been expanded to June and September. The meteorological support for fire protection and planning is therefore even more important. At the Meteorological and Hydrological Service of Croatia a comprehensive monitoring and warning system has been established. It includes standard components, such as short term forecast of Fire Weather Index (FWI), but long range forecast as well. However, due to more frequent hot and dry seasons, FWI index often does not provide additional information of extremely high fire danger, since it regularly takes the highest values for long periods. Therefore the additional tools have been investigated. One of widely used meteorological products is the Haines index (HI). It provides information of potential fire growth, taking into account only the vertical instability of the atmosphere, and not the state of the fuel. Several analyses and studies carried out at the Service confirmed the correlation of high HI values with large and extreme fires. The Haines index forecast has been used at the Service for several years, employing European Centre for Medium Range Weather Forecast (ECMWF) global prediction model, as well as the limited-area Aladin model. The verification results show that these forecast are reliable, when compared to radiosonde measurements. All these results provided the introduction of the additional fire warnings, that are issued by the Service's Forecast Department.

  19. Kinetic energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggi, M.; Folini, P.

    1983-09-03

    A flywheel system for the purpose of energy storage in decentral solar- or wind energy plants is introduced. The system comprises a rotor made out of plastic fibre, a motor/generator serving as electro-mechanical energy converter and a frequency-voltage transformer serving as electric adapter. The storable energy quantity amounts to several kWh.

  20. Upgrading the Fermilab fire and security reporting system

    International Nuclear Information System (INIS)

    King, C.; Neswold, R.

    2012-01-01

    Fermilab's home grown fire and security system (known as FIRUS - Fire Incident Reporting and Utility System) is highly reliable and has been used for nearly thirty years. The system has gone through some minor upgrades, however, none of those changes made significant, visible changes. In this paper, we present a major overhaul to the system that is halfway complete. We discuss the use of Apple's OS X for the new GUI (Graphical User Interface), upgrading the servers to use the Erlang programming language and allowing limited access for iOS and Android-based mobile devices. (authors)

  1. Literature study regarding fire protection in nuclear power plants. Part 2: Fire detection and -extinguishing systems

    International Nuclear Information System (INIS)

    Isaksson, S.

    1996-01-01

    This literature study has been made on behalf of the Swedish Nuclear Power Inspectorate. The aim is to describe different aspects of fire protection in nuclear power plants. Detection and extinguishing systems in Swedish nuclear power plants have only to a limited extent been designed after functional demands, such as a maximum acceptable damage or a maximum time to detect a fire. The availability of detection systems is difficult to assess, partly because of lack of statistics. The user interface is very important in complex systems as nuclear plants. An extinguishing system designed according to the insurance companies' regulations will only fulfill the basic demands. It should be noted that normal sprinkler design does not aim for extinguishing fires, the objective is to control fire until manual extinguishment is possible. There is a great amount of statistics on wet and dry pipe sprinkler systems, while statistics are more scarce for deluge systems. The statistics on the reliability of gaseous extinguishing systems have been found very scarce. A drawback of these systems is that they are normally designed for one shot only. There are both traditional and more recent extinguishing systems that can replace halons. From now on there will be a greater need for a thorough examination of the properties needed for the individual application and a quantification of the acceptable damage. There are several indications on the importance of a high quality maintenance program as well as carefully developed routines for testing and surveillance to ensure the reliability of detection and extinguishing systems. 78 refs, 8 figs, 10 tabs

  2. Weather Observation Systems and Efficiency of Fighting Forest Fires

    Science.gov (United States)

    Khabarov, N.; Moltchanova, E.; Obersteiner, M.

    2007-12-01

    Weather observation is an essential component of modern forest fire management systems. Satellite and in-situ based weather observation systems might help to reduce forest loss, human casualties and destruction of economic capital. In this paper, we develop and apply a methodology to assess the benefits of various weather observation systems on reductions of burned area due to early fire detection. In particular, we consider a model where the air patrolling schedule is determined by a fire hazard index. The index is computed from gridded daily weather data for the area covering parts Spain and Portugal. We conduct a number of simulation experiments. First, the resolution of the original data set is artificially reduced. The reduction of the total forest burned area associated with air patrolling based on a finer weather grid indicates the benefit of using higher spatially resolved weather observations. Second, we consider a stochastic model to simulate forest fires and explore the sensitivity of the model with respect to the quality of input data. The analysis of combination of satellite and ground monitoring reveals potential cost saving due to a "system of systems effect" and substantial reduction in burned area. Finally, we estimate the marginal improvement schedule for loss of life and economic capital as a function of the improved fire observing system.

  3. 33 CFR 149.419 - Can the water supply for the helicopter deck fire protection system be part of a fire water system?

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Can the water supply for the... § 149.419 Can the water supply for the helicopter deck fire protection system be part of a fire water system? (a) The water supply for the helicopter deck fire protection system required under § 149.420 or...

  4. Users Guide for Fire Image Analysis System - Version 5.0: A Tool for Measuring Fire Behavior Characteristics

    Science.gov (United States)

    Carl W. Adkins

    1995-01-01

    The Fire Image Analysis System is a tool for quantifying flame geometry and relative position at selected points along a spreading line fire. At present, the system requires uniform terrain (constant slope). The system has been used in field and laboratory studies for determining flame length, depth, cross sectional area, and rate of spread.

  5. Fire protection research for energy technology projects; FY 79 year-end report

    International Nuclear Information System (INIS)

    Hasegawa, H.K.; Alvares, N.J.; Lipska, A.E.; Ford, H.; Beason, D.G.

    1981-01-01

    This report describes work performed in fiscal year 1979, on a DOE funded study entitled Fire Protection Research for Energy Technology Projects. The primary goal of this program is to ensure that fire protection measures for Fusion Energy Experiments (FEE) evolve concurrently with the complexity of FEE. Ultimately, it is planned that the detailed study of fusion experiments will provide an analytical methodology which can be applied to the full range of energy technology projects. We attempt to achieve this objective by coordinately advancing 3 (three) major task areas; (a) determine the fire hazards of current FEE facilities (b) assess the ability of accepted fire management strategies to meet and negate the hazard, (c) perform unique research into problem areas we have identified to provide input into analytical fire growth and damage assessment models

  6. Quantifying the role of fire in the Earth system – Part 1: Improved global fire modeling in the Community Earth System Model (CESM1)

    OpenAIRE

    F. Li; S. Levis; D. S. Ward

    2013-01-01

    Modeling fire as an integral part of an Earth system model (ESM) is vital for quantifying and understanding fire–climate–vegetation interactions on a global scale and from an Earth system perspective. In this study, we introduce to the Community Earth System Model (CESM) the new global fire parameterization proposed by Li et al. (2012a, b), now with a more realistic representation of the anthropogenic impacts on fires, with a parameterization of peat fires, and with other minor modifications....

  7. Systems for animal exposure in full-scale fire tests

    Science.gov (United States)

    Hilado, C. J.; Cumming, H. J.; Kourtides, D. A.; Parker, J. A.

    1977-01-01

    Two systems for exposing animals in full-scale fire tests are described. Both systems involve the simultaneous exposure of two animal species, mice and rats, in modular units; determination of mortality, morbidity, and behavioral response; and analysis of the blood for carboxyhemoglobin. The systems described represent two of many possible options for obtaining bioassay data from full-scale fire tests. In situations where the temperatures to which the test animals are exposed can not be controlled, analytical techniques may be more appropriate than bioassay techniques.

  8. The development and evaluation of water-mist fire extinguishing systems

    Science.gov (United States)

    Beason, D. G.; Staggs, K. J.

    1994-08-01

    Fire protection for underfloor space is primarily provided by Halon 1301 which has proven to be very effective. However, due to the link between halons and the possible depletion of the stratospheric ozone layer, plans have been implemented to eventually phase out Halon 1301 and 1211. In September 1987 the Montreal Protocol concerning chlorofluorocarbons (CFC) and halons was signed by the United States, the European Economic Community, and 23 other nations. The Montreal Protocol calls for freezing halon production at 1986 levels. Because the majority of underfloor fire protection at Lawrence Livermore National Laboratory (LLNL), as well as other Department of Energy (DOE) sites, is either Halon 1301 or sprinklers, some other means of suppression will have to be developed and verified. The potential loss to facilities housing computer or control rooms damaged by underfloor fires can be extreme. These losses would not only include hardware and software replacement costs, but also lost computing and control capability. Here at LLNL technical research in a facility could be severely affected. Recent studies conducted by the Fire Research Discipline of the Special Projects Division have shown that severe fires fueled by cable insulation can develop within as little as a 6-in-high underfloor space (even with mechanical ventilation shut off). Studies also show that conventional sprinklers may not be effective in preventing this destruction. Therefore, we are investigating the water-mist fire extinguishing system as an alternative to Halon 1301 and sprinklers.

  9. Evaluation methods of solar contribution in solar aided coal-fired power generation system

    International Nuclear Information System (INIS)

    Zhu, Yong; Zhai, Rongrong; Zhao, Miaomiao; Yang, Yongping; Yan, Qin

    2015-01-01

    Highlights: • Five methods for evaluating solar contribution are analyzed. • Method based on the second law of thermodynamics and thermal economics is more suitable for SACPGS. • Providing reliable reference for the formulation of feed-in tariff policies in China. - Abstract: Solar aided coal-fired power plants utilize solar thermal energy to couple with coal-fired power plants of various types by adopting characteristics of different thermal needs of plants. In this way, the costly thermal storage system and power generating system will become unnecessary, meanwhile the intermittent and unsteady nature of power generation can be avoided. In addition, large-scale utilization of solar thermal power and energy saving can be achieved. With the ever-deepening analyses of solar aided coal-fired power plants, the contribution evaluating system of solar thermal power is worth further exploration. In this paper, five common evaluation methods of solar contribution are analyzed, and solar aided coal-fired power plants of 1000 MW, 600 MW and 330 MW are studied with these five methods in a comparative manner. Therefore, this study can serve as a theoretical reference for future research of evaluation methods and subsidies for new energy

  10. Greener energy systems energy production technologies with minimum environmental impact

    CERN Document Server

    Jeffs, Eric

    2012-01-01

    Recent years have seen acceleration in the development of cleaner energy systems. In Europe and North America, many old coal-fired power plants will be shut down in the next few years and will likely be replaced by combined cycle plants with higher-efficiency gas turbines that can start up and load quickly. With the revival of nuclear energy, designers are creating smaller nuclear reactors of a simpler integrated design that could expand the application of clean, emission-free energy to industry. And a number of manufacturers now offer hybrid cars with an electric motor and a gasoline engine t

  11. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  12. Renewable Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad; Connolly, David

    2014-01-01

    on the electricity sector, smart energy systems include the entire energy system in its approach to identifying suitable energy infrastructure designs and operation strategies. The typical smart grid sole focus on the electricity sector often leads to the conclusion that transmission lines, flexible electricity......This paper presents the learning of a series of studies that analyse the problems and perspectives of converting the present energy system into a 100 % renewable energy system using a smart energy systems approach. As opposed to, for instance, the smart grid concept, which takes a sole focus...... are to be found when the electricity sector is combined with the heating and cooling sectors and/or the transportation sector. Moreover, the combination of electricity and gas infrastructures may play an important role in the design of future renewable energy systems. The paper illustrates why electricity smart...

  13. 78 FR 70076 - Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and...

    Science.gov (United States)

    2013-11-22

    ... Systems, Atmospheric Storage Tanks, and Corrosion Under Insulation AGENCY: Nuclear Regulatory Commission... Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and Corrosion Under Insulation.'' This LR... related to internal surface aging effects, fire water systems, atmospheric storage tanks, and corrosion...

  14. Gas turbines: gas cleaning requirements for biomass-fired systems

    Directory of Open Access Journals (Sweden)

    Oakey John

    2004-01-01

    Full Text Available Increased interest in the development of renewable energy technologies has been hencouraged by the introduction of legislative measures in Europe to reduce CO2 emissions from power generation in response to the potential threat of global warming. Of these technologies, biomass-firing represents a high priority because of the modest risk involved and the availability of waste biomass in many countries. Options based on farmed biomass are also under development. This paper reviews the challenges facing these technologies if they are to be cost competitive while delivering the supposed environmental benefits. In particular, it focuses on the use of biomass in gasification-based systems using gas turbines to deliver increased efficiencies. Results from recent studies in a European programme are presented. For these technologies to be successful, an optimal balance has to be achieved between the high cost of cleaning fuel gases, the reliability of the gas turbine and the fuel flexibility of the overall system. Such optimisation is necessary on a case-by-case basis, as local considerations can play a significant part.

  15. Wind energy analysis system

    OpenAIRE

    2014-01-01

    M.Ing. (Electrical & Electronic Engineering) One of the most important steps to be taken before a site is to be selected for the extraction of wind energy is the analysis of the energy within the wind on that particular site. No wind energy analysis system exists for the measurement and analysis of wind power. This dissertation documents the design and development of a Wind Energy Analysis System (WEAS). Using a micro-controller based design in conjunction with sensors, WEAS measure, calcu...

  16. An operational system of fire danger rating over Mediterranean Europe

    Science.gov (United States)

    Pinto, Miguel M.; DaCamara, Carlos C.; Trigo, Isabel F.; Trigo, Ricardo M.

    2017-04-01

    A methodology is presented to assess fire danger based on the probability of exceedance of prescribed thresholds of daily released energy. The procedure is developed and tested over Mediterranean Europe, defined by latitude circles of 35 and 45°N and meridians of 10°W and 27.5°E, for the period 2010-2016. The procedure involves estimating the so-called static and daily probabilities of exceedance. For a given point, the static probability is estimated by the ratio of the number of daily fire occurrences releasing energy above a given threshold to the total number of occurrences inside a cell centred at the point. The daily probability of exceedance which takes into account meteorological factors by means of the Canadian Fire Weather Index (FWI) is in turn estimated based on a Generalized Pareto distribution with static probability and FWI as covariates of the scale parameter. The rationale of the procedure is that small fires, assessed by the static probability, have a weak dependence on weather, whereas the larger fires strongly depend on concurrent meteorological conditions. It is shown that observed frequencies of exceedance over the study area for the period 2010-2016 match with the estimated values of probability based on the developed models for static and daily probabilities of exceedance. Some (small) variability is however found between different years suggesting that refinements can be made in future works by using a larger sample to further increase the robustness of the method. The developed methodology presents the advantage of evaluating fire danger with the same criteria for all the study area, making it a good parameter to harmonize fire danger forecasts and forest management studies. Research was performed within the framework of EUMETSAT Satellite Application Facility for Land Surface Analysis (LSA SAF). Part of methods developed and results obtained are on the basis of the platform supported by The Navigator Company that is currently providing

  17. 75 FR 52713 - Nationwide Aerial Application of Fire Retardant on National Forest System Lands

    Science.gov (United States)

    2010-08-27

    ... DEPARTMENT OF AGRICULTURE Forest Service Nationwide Aerial Application of Fire Retardant on... statement for the continued nationwide aerial application of fire retardant on National Forest System lands... Forest Service is working to restore fire-adapted ecosystems through prescribed fire, other fuel...

  18. Flexible energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik

    2003-01-01

    The paper discusses and analyses diffent national strategies and points out key changes in the energy system in order to achieve a system which can benefit from a high percentage of wind and CHP without having surplus production problems, introduced here as a flexible energy system....

  19. Fire protection in Angra-2 nuclear power plant. The use of fire protection collars on plastic piping systems

    International Nuclear Information System (INIS)

    Oliveira Segabinaze, R. de

    1994-01-01

    The object of this paper is to briefly the use of fire protection collars on plastic piping systems passing through wall and floor penetration. The fire protection collars consist of a stainless steel housing, in which the leading edges of two pivoting plates are in constant pressure contact with the pipe. In case of fire these plates react on the softened pipe with a guillotine action, thereby stopping the flow; within the housing a foam material expands to fill the space when subject to the heat of the fire. The piping project has to be modified to permit the fixing of the collars to walls and floor penetrations. (author). 2 refs, 9 figs

  20. LCA of Energy Systems

    DEFF Research Database (Denmark)

    Laurent, Alexis; Espinosa Martinez, Nieves; Hauschild, Michael Zwicky

    2018-01-01

    Energy systems are essential in the support of modern societies’ activities, and can span a wide spectrum of electricity and heat generation systems and cooling systems. Along with their central role and large diversity, these systems have been demonstrated to cause serious impacts on human health...... , ecosystems and natural resources. Over the past two decades, energy systems have thus been the focus of more than 1000 LCA studies, with the aim to identify and reduce these impacts. This chapter addresses LCA applications to energy systems for generation of electricity and heat . The chapter gives insight...

  1. Decision Support System for Blockage Management in Fire Service

    Directory of Open Access Journals (Sweden)

    Krasuski Adam

    2014-08-01

    Full Text Available In this article we present the foundations of a decision support system for blockage management in Fire Service. Blockage refers to the situation when all fire units are out and a new incident occurs. The approach is based on two phases: off-line data preparation and online blockage estimation. The off-line phase consists of methods from data mining and natural language processing and results in semantically coherent information granules. The online phase is about building the probabilistic models that estimate the block-age probability based on these granules. Finally, the selected classifier judges whether a blockage can occur and whether the resources from neighbour fire stations should be asked for assistance.

  2. Air-cleaning systems for sodium-fire-aerosol control

    International Nuclear Information System (INIS)

    Hilliard, R.K.; Muhlestein, L.D.

    1982-05-01

    A development program has been carried out at the Hanford Engineering Development Laboratory (HEDL) with the purpose of developing and proof testing air cleaning components and systems for use under severe sodium fire conditions, including those involving high levels of radioactivity. The air cleaning components tested can be classified as either dry filters or aqueous scrubbers. Test results are presented

  3. Communication interface of computerized automatic fire alarm system

    International Nuclear Information System (INIS)

    Yu Hongmei; Zhu Liqun; Fang Shaohong; Du Chengbao

    1997-01-01

    The problems of communication between multiple single-chip computers and microcomputer have been solved by the way of hardware and software. The automatic fire alarm system is realized by using the serial port both on single-chip computer and microcomputer

  4. The 1978 National Fire-Danger Rating System: technical documentation

    Science.gov (United States)

    Larry S. Bradshaw; John E. Deeming; Robert E. Burgan; Jack D. Cohen

    1984-01-01

    The National Fire-Danger Rating System (NFDRS), implemented in 1972, has been revised and reissued as the 1978 NFDRS. This report describes the full developmental history of the NFDRS, including purpose, technical foundation, and structure. Includes an extensive bibliography and appendixes.

  5. Requirements for VICTORIA Class Fire Control System: Contact Management Function

    Science.gov (United States)

    2014-07-01

    Requirements for VICTORIA Class Fire Control System Contact Management Function Tab Lamoureux CAE Integrated Enterprise Solutions...Contract Report DRDC-RDDC-2014-C190 July 2014 © Her Majesty the Queen in Right of Canada, as represented by the...i Abstract …….. The VICTORIA Class Submarines (VCS) are subject to a continuing program of technical upgrades. One such program is

  6. 46 CFR 95.05-10 - Fixed fire extinguishing systems.

    Science.gov (United States)

    2010-10-01

    ... oil units, valves, or manifolds in the line between the settling tanks and the boilers. (e) Fire... approved system must be installed in all cargo compartments and tanks for combustible cargo, except for vessels engaged exclusively in the carriage of coal or grain in bulk. For cargo compartments and tanks...

  7. COUNTERMEASURE FOR MINIMIZE UNWANTED ALARM OF AUTOMATIC FIRE NOTIFICATION SYSTEM IN THE REPUBLIC OF KOREA

    Directory of Open Access Journals (Sweden)

    Hasung Kong

    2015-01-01

    Full Text Available In this article investigated the cause of error through survey to building officials for minimizing the unwanted alarm of automatic fire notification and suggested countermeasure for minimizing the unwanted alarm. The main cause of the unwanted alarm is defective fire detector, interlocking with automatic fire detection system, lack in fire safety warden’s ability, worn-out fire detect receiving system. The countermeasure for minimizing unwanted alarm is firstly, tightening up the standard of model approval, Secondly, interlocking with cross-section circuit method fire extinguishing system or realizing automatic fire notification system interlocking with home network, thirdly, tightening up licensing examination of fire safety warden, lastly, it suggested term of use rule of fire detect receiving system

  8. COUNTERMEASURE FOR MINIMIZE UNWANTED ALARM OF AUTOMATIC FIRE NOTIFICATION SYSTEM IN THE REPUBLIC OF KOREA

    Directory of Open Access Journals (Sweden)

    Hasung Kong

    2015-01-01

    Full Text Available In this article investigated the cause of error through survey to building officials for minimizing the unwanted alarm of automatic fire notification and suggested countermeasure for minimizing the unwanted alarm. The main cause of the unwanted alarm is defective fire detector, interlocking with automatic fire detection system, lack in fire safety warden’s ability, worn-out fire detect receiving system. The countermeasure for minimizing unwanted alarm is firstly, tightening up the standard of model approval, Secondly, interlocking with cross-section circuit method fire extinguishing system or realizing automatic fire notification system interlocking with home network, thirdly, tightening up licensing examination of fire safety warden, lastly, it suggested term of use rule of fire detect receiving system.

  9. Construction products performances and basic requirements for fire safety of facades in energy rehabilitation of buildings

    Directory of Open Access Journals (Sweden)

    Laban Mirjana Đ.

    2015-01-01

    Full Text Available Construction product means any product or kit which is produced and placed on the market for incorporation in a permanent manner in construction works, or parts thereof, and the performance of which has an effect on the performance of the construction works with respect to the basic requirements for construction works. Safety in case of fire and Energy economy and heat retention represent two among seven basic requirements which building has to meet according to contemporary technical rules on planning and construction. Performances of external walls building materials (particularly reaction to fire could significantly affect to fire spread on the façade and other building parts. Therefore, façade shaping and materialization in building renewal process, has to meet the fire safety requirement, as well as the energy requirement. Brief survey of fire protection regulations development in Serbia is presented in the paper. Preventive measures for fire risk reduction in building façade energy renewal are proposed according to contemporary fire safety requirements.

  10. Gas turbines: gas cleaning requirements for biomass-fired systems

    OpenAIRE

    Oakey, John; Simms, Nigel; Kilgallon, Paul

    2004-01-01

    Increased interest in the development of renewable energy technologies has been hencouraged by the introduction of legislative measures in Europe to reduce CO2 emissions from power generation in response to the potential threat of global warming. Of these technologies, biomass-firing represents a high priority because of the modest risk involved and the availability of waste biomass in many countries. Options based on farmed biomass are also under development. This paper reviews the challenge...

  11. Renewable Energy Tracking Systems

    Science.gov (United States)

    Renewable energy generation ownership can be accounted through tracking systems. Tracking systems are highly automated, contain specific information about each MWh, and are accessible over the internet to market participants.

  12. Evaluation of a Spoken Dialogue System for Virtual Reality Call for Fire Training

    National Research Council Canada - National Science Library

    Robinson, Susan M; Roque, Antonio; Vaswani, Ashish; Traum, David; Hernandez, Charles; Millspaugh, Bill

    2007-01-01

    .... We briefly describe aspects of the Joint Fires and Effects Trainer System, and the Radiobot-CFF dialogue system, which can engage in voice communications with a trainee in call for fire dialogues...

  13. New secondary energy systems

    International Nuclear Information System (INIS)

    Schulten, R.

    1977-01-01

    As an introduction, the FRG's energy industry situation is described, secondary energy systems to be taken into consideration are classified, and appropriate market requirements are analyzed. Dealt with is district heating, i.e. the direct transport of heat by means of circulating media, and long-distance energy, i.e. the long-distance energy transport by means of chemical conversion in closed- or open-cycle systems. In closed-cycle systems heat is transported in the form of chemical latent energy. In contrast to this, chemical energy is transported in open-cycle systems in the form of fuel gases produced by coal gasification or by thermochemical water splitting. (GG) [de

  14. Feedlot biomass co-firing: a renewable energy alternative for coal-fired utilities. Paper no. IGEC-1-128

    International Nuclear Information System (INIS)

    Arumugam, S.; Thien, B.; Annamalai, K.; Sweeten, J.

    2005-01-01

    The swiftly growing feedlot industry in the United States upshots in the production of manure from one or more animal species in excess of what can safely be applied to farmland in accordance with nutrient management plans. Disposal of the vast quantity of manure produced as a by-product of the cattle feeding industry is one of the major operating tasks of the industry. Aside from the traditional means of disposal as fertilizer, an alternative and attractive way of overcoming this threat is to develop processes that make use of manure as an energy resource. In the present study, the feasibility of using of manure as a fuel in existing coal fired power plants is considered and appropriately termed Feedlot Biomass (FB). The technology of co-firing coal: feedlot biomass facilitates an environment friendly utilization of animal waste for the production of valuable power/steam concurrently addressing the renewable energy, groundwater contamination, and greenhouse gas concerns. Co-firing tests were performed at the Texas AandM University 30 kW t (100,000 Btu/h) laboratory-scale facility. The trials revealed the enhanced combustion of the blends. The NO emissions were less for the blend even with higher nitrogen content of FB as compared to coal. (author)

  15. Energy Systems Integration Facility News | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems Integration Facility News Energy Systems Integration Facility Energy Dataset A massive amount of wind data was recently made accessible online, greatly expanding the Energy's National Renewable Energy Laboratory (NREL) has completed technology validation testing for Go

  16. Fire hazard analysis at the first unit of the Ignalina nuclear power plant: 1. Analysis of fire prevention and ventilation systems and secondary effects

    International Nuclear Information System (INIS)

    Poskas, P.; Simonis, V.; Zujus, R. and others

    2004-01-01

    Evaluation of the fire prevention and ventilation systems and the secondary effects on safety at the Ignalina NPP from the point of view of fire hazard using computerized system is presented. Simplified screening algorithms for fire prevention, ventilation and the evaluation of secondary effects are developed, which allow accelerating fire hazard analysis at the Ignalina NPP. The analysis indicated that the fire prevention systems practically meet the national requirements and international recommendations for fire prevention. But it is necessary to introduce in separate rooms the measures improving fire prevention to guarantee the effective functioning of the ventilation systems and the reduction of the influence of secondary effects on safety. Computerized system of fire prevention and ventilation systems and evaluation of secondary effects on safety can be easily applied for fire hazard analysis at different big plants. (author)

  17. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-12-30

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further

  18. Small Wind Energy Systems

    DEFF Research Database (Denmark)

    Simões, Marcelo Godoy; Farret, Felix Alberto; Blaabjerg, Frede

    2017-01-01

    considered when selecting a generator for a wind power plant, including capacity of the AC system, types of loads, availability of spare parts, voltage regulation, technical personal and cost. If several loads are likely inductive, such asphase-controlled converters, motors and fluorescent lights......This chapter intends to serve as a brief guide when someone is considering the use of wind energy for small power applications. It is discussed that small wind energy systems act as the major energy source for residential or commercial applications, or how to make it part of a microgrid...... as a distributed generator. In this way, sources and loads are connected in such a way to behave as a renewable dispatch center. With this regard, non-critical loads might be curtailed or shed during times of energy shortfall or periods of high costs of energy production. If such a wind energy system is connected...

  19. 46 CFR 108.409 - Location and spacing of tubing in pneumatic fire detection system.

    Science.gov (United States)

    2010-10-01

    ... detection system. 108.409 Section 108.409 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... and spacing of tubing in pneumatic fire detection system. (a) All tubing in a pneumatic fire detection... exposed in the space. (c) A pneumatic fire detection system must be set to activate after approximately a...

  20. Smart energy management system

    Science.gov (United States)

    Desai, Aniruddha; Singh, Jugdutt

    2010-04-01

    Peak and average energy usage in domestic and industrial environments is growing rapidly and absence of detailed energy consumption metrics is making systematic reduction of energy usage very difficult. Smart energy management system aims at providing a cost-effective solution for managing soaring energy consumption and its impact on green house gas emissions and climate change. The solution is based on seamless integration of existing wired and wireless communication technologies combined with smart context-aware software which offers a complete solution for automation of energy measurement and device control. The persuasive software presents users with easy-to-assimilate visual cues identifying problem areas and time periods and encourages a behavioural change to conserve energy. The system allows analysis of real-time/statistical consumption data with the ability to drill down into detailed analysis of power consumption, CO2 emissions and cost. The system generates intelligent projections and suggests potential methods (e.g. reducing standby, tuning heating/cooling temperature, etc.) of reducing energy consumption. The user interface is accessible using web enabled devices such as PDAs, PCs, etc. or using SMS, email, and instant messaging. Successful real-world trial of the system has demonstrated the potential to save 20 to 30% energy consumption on an average. Low cost of deployment and the ability to easily manage consumption from various web enabled devices offers gives this system a high penetration and impact capability offering a sustainable solution to act on climate change today.

  1. What Is Energy Systems Integration? | Energy Systems Integration Facility |

    Science.gov (United States)

    NREL What Is Energy Systems Integration? What Is Energy Systems Integration? Energy systems integration (ESI) is an approach to solving big energy challenges that explores ways for energy systems to Research Community NREL is a founding member of the International Institute for Energy Systems Integration

  2. Teaching methodology of the diagnosing process on the example of the fire alarm system

    Directory of Open Access Journals (Sweden)

    Paś Jacek

    2017-03-01

    Full Text Available The article presents a method of teaching the process of diagnosing the technical and functional condition of the fire alarm system (SSP. The fire alarm system’s laboratory model is a representation of a real fire alarm system. The lecturer has the opportunity to inflict several different independent damage. The aim of the laboratory exercise is to familiarize students with the methodology and structure of the fire alarm system diagnosing process.

  3. Handheld Delivery System for Modified Boron-Type Fire Extinguishment Agent

    Science.gov (United States)

    1993-11-01

    was to develop and test a handheld portable delivery system for use with the modified boron-type fire extinguishing agent for metal fires . B...BACKGROUND A need exists for an extinguishing agent and accompanying delivery system that are effective against complex geometry metal fires . A modified...agent and its delivery system have proven effective against complex geometry metal fires containing up to 200 pounds of magnesium metal. Further

  4. The impact of fire on the Late Paleozoic Earth System

    Directory of Open Access Journals (Sweden)

    Ian J. Glasspool

    2015-09-01

    Full Text Available Analyses of bulk petrographic data indicate that during the Late Paleozoic wildfires were more prevalent than at present. We propose that the development of fire systems through this interval was controlled predominantly by the elevated atmospheric oxygen concentration (p(O2 that mass balance models predict prevailed. At higher levels of p(O2, increased fire activity would have rendered vegetation with high moisture contents more susceptible to ignition and would have facilitated continued combustion. We argue that coal petrographic data indicate that p(O2 rather than global temperatures or climate, resulted in the increased levels of wildfire activity observed during the Late Paleozoic and can therefore be used to predict it. These findings are based upon analyses of charcoal volumes in multiple coals distributed across the globe and deposited during this time period, and that were then compared with similarly diverse modern peats and Cenozoic lignites and coals. Herein, we examine the environmental and ecological factors that would have impacted fire activity and we conclude that of these factors p(O2 played the largest role in promoting fires in Late Paleozoic peat-forming environments and, by inference, ecosystems generally, when compared with their prevalence in the modern world.

  5. The impact of fire on the Late Paleozoic Earth system.

    Science.gov (United States)

    Glasspool, Ian J; Scott, Andrew C; Waltham, David; Pronina, Natalia; Shao, Longyi

    2015-01-01

    Analyses of bulk petrographic data indicate that during the Late Paleozoic wildfires were more prevalent than at present. We propose that the development of fire systems through this interval was controlled predominantly by the elevated atmospheric oxygen concentration (p(O2)) that mass balance models predict prevailed. At higher levels of p(O2), increased fire activity would have rendered vegetation with high-moisture contents more susceptible to ignition and would have facilitated continued combustion. We argue that coal petrographic data indicate that p(O2) rather than global temperatures or climate, resulted in the increased levels of wildfire activity observed during the Late Paleozoic and can, therefore, be used to predict it. These findings are based upon analyses of charcoal volumes in multiple coals distributed across the globe and deposited during this time period, and that were then compared with similarly diverse modern peats and Cenozoic lignites and coals. Herein, we examine the environmental and ecological factors that would have impacted fire activity and we conclude that of these factors p(O2) played the largest role in promoting fires in Late Paleozoic peat-forming environments and, by inference, ecosystems generally, when compared with their prevalence in the modern world.

  6. Energy production systems engineering

    CERN Document Server

    Blair, Thomas Howard

    2017-01-01

    Energy Production Systems Engineering presents IEEE, Electrical Apparatus Service Association (EASA), and International Electrotechnical Commission (IEC) standards of engineering systems and equipment in utility electric generation stations. Electrical engineers that practice in the energy industry must understand the specific characteristics of electrical and mechanical equipment commonly applied to energy production and conversion processes, including the mechanical and chemical processes involved, in order to design, operate and maintain electrical systems that support and enable these processes. To aid this understanding, Energy Production Systems Engineeringdescribes the equipment and systems found in various types of utility electric generation stations. This information is accompanied by examples and practice problems. It also addresses common issues of electrical safety that arise in electric generation stations.

  7. Compressive behavior of energy-saving fired facing brick composite wall

    Science.gov (United States)

    Guo, Kai; Wu, Cai

    2018-03-01

    The energy-saving fired facing brick composite wall has a broad development prospects due to its merits of thermal insulation, energy conservation, beautiful, and natural. The construction and characteristics of this wall are introduced and analyzed in this paper. Experimental studies of samples are also conducted to investigate its compressive performance. The results show that the energy-saving fired facing brick composite wall has high compressive capacity. It has considerable application prospect, the study in this paper provides foundation to further studies.

  8. Joint Fire Support in 2020: Development of a Future Joint Fires Systems Architecture for Immediate, Unplanned Targets

    National Research Council Canada - National Science Library

    Gabriel, J. T; Bartel, Matthew; Dorrough, Grashawn J; Paiz, B. L; Peters, Brian; Savage, Matthew; Nordgran, Spencer

    2006-01-01

    ... in support of the commander. In this context, the Joint Fire Support in 2020 project applied systems engineering procedures and principles to develop functional, physical, and operational architectures that maximize rapid...

  9. Energy efficiency system development

    Science.gov (United States)

    Leman, A. M.; Rahman, K. A.; Chong, Haw Jie; Salleh, Mohd Najib Mohd; Yusof, M. Z. M.

    2017-09-01

    By subjecting to the massive usage of electrical energy in Malaysia, energy efficiency is now one of the key areas of focus in climate change mitigation. This paper focuses on the development of an energy efficiency system of household electrical appliances for residential areas. Distribution of Questionnaires and pay a visit to few selected residential areas are conducted during the fulfilment of the project as well as some advice on how to save energy are shared with the participants. Based on the collected data, the system developed by the UTHM Energy Team is then evaluated from the aspect of the consumers' behaviour in using electrical appliances and the potential reduction targeted by the team. By the end of the project, 60% of the participants had successfully reduced the electrical power consumption set by the UTHM Energy Team. The reasons for whether the success and the failure is further analysed in this project.

  10. Expert System Development for Urban Fire Hazard Assessment. Study Case: Kendari City, Indonesia

    Science.gov (United States)

    Taridala, S.; Yudono, A.; Ramli, M. I.; Akil, A.

    2017-08-01

    Kendari City is a coastal urban region with the smallest area as well as the largest population in Southeast Sulawesi. Fires in Kendari City had rather frequently occurred and caused numerous material losses. This study aims to develop a model of urban fire risk and fire station site assessment. The model is developed using Expert Systems with the Geographic Information System (GIS). The high risk of fire area is the area which of high building density with combustible material, not crossed by arterial nor collector road. The fire station site should be appropriately close by high risk of fire area, located on arterial road and near with potential water resource.

  11. Seismic Fragility of the LANL Fire Water Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Greg Mertz

    2007-03-30

    The purpose of this report is to present the results of a site-wide system fragility assessment. This assessment focuses solely on the performance of the water distribution systems that supply Chemical and Metallurgy Research (CMR), Weapons Engineering and Tritium Facility (WETF), Radioactive Liquid Waste Treatment Facility (RLWTF), Waste Characterization, Reduction, Repackaging Facility (WCRRF), and Transuranic Waste Inspectable Storage Project (TWISP). The analysis methodology is based on the American Lifelines Alliance seismic fragility formulations for water systems. System fragilities are convolved with the 1995 LANL seismic hazards to develop failure frequencies. Acceptance is determined by comparing the failure frequencies to the DOE-1020 Performance Goals. This study concludes that: (1) If a significant number of existing isolation valves in the water distribution system are closed to dedicate the entire water system to fighting fires in specific nuclear facilities; (2) Then, the water distribution systems for WETF, RLWTF, WCRRF, and TWISP meet the PC-2 performance goal and the water distribution system for CMR is capable of surviving a 0.06g earthquake. A parametric study of the WETF water distribution system demonstrates that: (1) If a significant number of valves in the water distribution system are NOT closed to dedicate the entire water system to fighting fires in WETF; (2) Then, the water distribution system for WETF has an annual probability of failure on the order of 4 x 10{sup -3} that does not meet the PC-2 performance goal. Similar conclusions are expected for CMR, RLWTF, WCRRF, and TWISP. It is important to note that some of the assumptions made in deriving the results should be verified by personnel in the safety-basis office and may need to be incorporated in technical surveillance requirements in the existing authorization basis documentation if credit for availability of fire protection water is taken at the PC-2 level earthquake levels

  12. Seismic Fragility of the LANL Fire Water Distribution System

    International Nuclear Information System (INIS)

    Greg Mertz Jason Cardon Mike Salmon

    2007-01-01

    The purpose of this report is to present the results of a site-wide system fragility assessment. This assessment focuses solely on the performance of the water distribution systems that supply Chemical and Metallurgy Research (CMR), Weapons Engineering and Tritium Facility (WETF), Radioactive Liquid Waste Treatment Facility (RLWTF), Waste Characterization, Reduction, Repackaging Facility (WCRRF), and Transuranic Waste Inspectable Storage Project (TWISP). The analysis methodology is based on the American Lifelines Alliance seismic fragility formulations for water systems. System fragilities are convolved with the 1995 LANL seismic hazards to develop failure frequencies. Acceptance is determined by comparing the failure frequencies to the DOE-1020 Performance Goals. This study concludes that: (1) If a significant number of existing isolation valves in the water distribution system are closed to dedicate the entire water system to fighting fires in specific nuclear facilities; (2) Then, the water distribution systems for WETF, RLWTF, WCRRF, and TWISP meet the PC-2 performance goal and the water distribution system for CMR is capable of surviving a 0.06g earthquake. A parametric study of the WETF water distribution system demonstrates that: (1) If a significant number of valves in the water distribution system are NOT closed to dedicate the entire water system to fighting fires in WETF; (2) Then, the water distribution system for WETF has an annual probability of failure on the order of 4 x 10 -3 that does not meet the PC-2 performance goal. Similar conclusions are expected for CMR, RLWTF, WCRRF, and TWISP. It is important to note that some of the assumptions made in deriving the results should be verified by personnel in the safety-basis office and may need to be incorporated in technical surveillance requirements in the existing authorization basis documentation if credit for availability of fire protection water is taken at the PC-2 level earthquake levels

  13. Biomass co-firing

    DEFF Research Database (Denmark)

    Yin, Chungen

    2013-01-01

    Co-firing biomass with fossil fuels in existing power plants is an attractive option for significantly increasing renewable energy resource utilization and reducing CO2 emissions. This chapter mainly discusses three direct co-firing technologies: pulverized-fuel (PF) boilers, fluidized-bed combus......Co-firing biomass with fossil fuels in existing power plants is an attractive option for significantly increasing renewable energy resource utilization and reducing CO2 emissions. This chapter mainly discusses three direct co-firing technologies: pulverized-fuel (PF) boilers, fluidized......-bed combustion (FBC) systems, and grate-firing systems, which are employed in about 50%, 40% and 10% of all the co-firing plants, respectively. Their basic principles, process technologies, advantages, and limitations are presented, followed by a brief comparison of these technologies when applied to biomass co...

  14. CFES--California Fire Economics Simulator: A Computerized System for Wildland Fire Protection Planning

    Science.gov (United States)

    Jeremy S. Fried; J. Keith Gilless; Robert E. Martin

    1987-01-01

    The University of California's Department of Forestry and Resource Management, under contract with the California Department of Forestry and Fire Protection, has developed and released the first version of the California Fire Economics Simulator (CFES). The current release is adapted from the Initial Action Assessment component of the USFS's National Fire...

  15. Energy Usage Analysis System

    Data.gov (United States)

    General Services Administration — The EUAS application is a web based system which serves Energy Center of Expertise, under the Office of Facilitates Management and Service Programs. EUAS is used for...

  16. Using plasma-fuel systems at Eurasian coal-fired thermal power stations

    Science.gov (United States)

    Karpenko, E. I.; Karpenko, Yu. E.; Messerle, V. E.; Ustimenko, A. B.

    2009-06-01

    The development of plasma technology for igniting solid fuels at coal-fired thermal power stations in Russia, Kazakhstan, China, and other Eurasian countries is briefly reviewed. Basic layouts and technical and economic characteristics of plasma-fuel systems installed in different coal-fired boiles are considered together with some results from using these systems at coal-fired thermal power stations.

  17. Training Effectiveness Evaluation (TEE) of the Advanced Fire Fighting Training System. Focus on the Trained Person.

    Science.gov (United States)

    Cordell, Curtis C.; And Others

    A training effectiveness evaluation of the Navy Advanced Fire Fighting Training System was conducted. This system incorporates simulated fires as well as curriculum materials and instruction. The fires are non-pollutant, computer controlled, and installed in a simulated shipboard environment. Two teams of 15 to 16 persons, with varying amounts of…

  18. BehavePlus fire modeling system, version 5.0: Variables

    Science.gov (United States)

    Patricia L. Andrews

    2009-01-01

    This publication has been revised to reflect updates to version 4.0 of the BehavePlus software. It was originally published as the BehavePlus fire modeling system, version 4.0: Variables in July, 2008.The BehavePlus fire modeling system is a computer program based on mathematical models that describe wildland fire behavior and effects and the...

  19. Cold Vacuum Dryer (CVD) Facility Fire Protection System Design Description (SYS 24)

    Energy Technology Data Exchange (ETDEWEB)

    SINGH, G.

    2000-10-17

    This system design description (SDD) addresses the Cold Vacuum Drying (CVD) Facility fire protection system (FPS). The primary features of the FPS for the CVD are a fire alarm and detection system, automatic sprinklers, and fire hydrants. The FPS also includes fire extinguishers located throughout the facility and fire hydrants to assist in manual firefighting efforts. In addition, a fire barrier separates the operations support (administrative) area from the process bays and process bay support areas. Administrative controls to limit combustible materials have been established and are a part of the overall fire protection program. The FPS is augmented by assistance from the Hanford Fire Department (HED) and by interface systems including service water, electrical power, drains, instrumentation and controls. This SDD, when used in conjunction with the other elements of the definitive design package, provides a complete picture of the FPS for the CVD Facility.

  20. Strategy and system of fire protection at Guangdong Daya Bay Nuclear Power Plant

    International Nuclear Information System (INIS)

    Zhou Weihong

    1999-12-01

    The fire protection is an important safety issue of nuclear power utilities. The author depicts the strategy and management system of fire protection implemented successfully at Guangdong Daya Bay Nuclear Power Plant of China

  1. OCULUS fire: a command and control system for fire management with crowd sourcing and social media interconnectivity

    Science.gov (United States)

    Thomopoulos, Stelios C. A.; Kyriazanos, Dimitris M.; Astyakopoulos, Alkiviadis; Dimitros, Kostantinos; Margonis, Christos; Thanos, Giorgos Konstantinos; Skroumpelou, Katerina

    2016-05-01

    AF3 (Advanced Forest Fire Fighting2) is a European FP7 research project that intends to improve the efficiency of current fire-fighting operations and the protection of human lives, the environment and property by developing innovative technologies to ensure the integration between existing and new systems. To reach this objective, the AF3 project focuses on innovative active and passive countermeasures, early detection and monitoring, integrated crisis management and advanced public information channels. OCULUS Fire is the innovative control and command system developed within AF3 as a monitoring, GIS and Knowledge Extraction System and Visualization Tool. OCULUS Fire includes (a) an interface for real-time updating and reconstructing of maps to enable rerouting based on estimated hazards and risks, (b) processing of GIS dynamic re-construction and mission re-routing, based on the fusion of airborne, satellite, ground and ancillary geolocation data, (c) visualization components for the C2 monitoring system, displaying and managing information arriving from a variety of sources and (d) mission and situational awareness module for OCULUS Fire ground monitoring system being part of an Integrated Crisis Management Information System for ground and ancillary sensors. OCULUS Fire will also process and visualise information from public information channels, social media and also mobile applications by helpful citizens and volunteers. Social networking, community building and crowdsourcing features will enable a higher reliability and less false alarm rates when using such data in the context of safety and security applications.

  2. Flow energy conversion system

    International Nuclear Information System (INIS)

    Sargsyan, R.A.

    2011-01-01

    A cost-effective hydropower system called here Flow Energy Converter was developed, patented, manufactured and tested for water pumping, electricity generation and other purposes especially useful for the rural communities. The system consists of water-driven turbine with plane-surface blades, power transmission means and pump and/or generator. Working sample of the Flow Energy Converter was designed and manufactured at the Institute of Radio Physics and Electronics

  3. Pool fires in a large scale ventilation system

    International Nuclear Information System (INIS)

    Smith, P.R.; Leslie, I.H.; Gregory, W.S.; White, B.

    1991-01-01

    A series of pool fire experiments was carried out in the Large Scale Flow Facility of the Mechanical Engineering Department at New Mexico State University. The various experiments burned alcohol, hydraulic cutting oil, kerosene, and a mixture of kerosene and tributylphosphate. Gas temperature and wall temperature measurements as a function of time were made throughout the 23.3m 3 burn compartment and the ducts of the ventilation system. The mass of the smoke particulate deposited upon the ventilation system 0.61m x 0.61m high efficiency particulate air filter for the hydraulic oil, kerosene, and kerosene-tributylphosphate mixture fires was measured using an in situ null balance. Significant increases in filter resistance were observed for all three fuels for burning time periods ranging from 10 to 30 minutes. This was found to be highly dependent upon initial ventilation system flow rate, fuel type, and flow configuration. The experimental results were compared to simulated results predicted by the Los Alamos National Laboratory FIRAC computer code. In general, the experimental and the computer results were in reasonable agreement, despite the fact that the fire compartment for the experiments was an insulated steel tank with 0.32 cm walls, while the compartment model FIRIN of FIRAC assumes 0.31 m thick concrete walls. This difference in configuration apparently caused FIRAC to consistently underpredict the measured temperatures in the fire compartment. The predicted deposition of soot proved to be insensitive to ventilation system flow rate, but the measured values showed flow rate dependence. However, predicted soot deposition was of the same order of magnitude as measured soot deposition

  4. Nuclear energy cost data base: A reference data base for nuclear and coal-fired powerplant power generation cost analysis

    International Nuclear Information System (INIS)

    1988-09-01

    A reference data base and standard methodology are needed for performing comparative nuclear and fossil power generation cost analyses for the Department of Energy, Office of Nuclear Energy. This report contains such a methodology together with reference assumptions and data to be used with the methodology. It is intended to provide basic guidelines or a starting point for analyses and to serve as a focal point in establishing parameters and methods to be used in economic comparisons of nuclear systems with alternatives. The data base is applicable for economic comparisons of new base load light-water reactors on a once-through cycle, and high- and low-sulfur coal-fired plants, and oil- and natural gas-fired electric generating plants coming on line around the turn of the century. In addition to current generation light-water reactors and fossil fuel-fired plants, preliminary cost information is also presented on improved and advanced light-water reactors, liquid metal reactor plants and fuel cycle facilities. This report includes an updated data base containing proposed technical and economic assumptions to be used in analyses, discussions of a recommended methodology to be used in calculating power generation costs, a sample calculation for illustrative and benchmark purposes and projected power generation costs for fission and coal-fired alternatives. Effects of the 1986 Tax Reform Act are included. 126 refs., 17 figs., 47 tabs

  5. Solar Energy Systems

    Science.gov (United States)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  6. Remote multi-function fire alarm system based on internet of things

    Science.gov (United States)

    Wang, Lihui; Zhao, Shuai; Huang, Jianqing; Ji, Jianyu

    2018-05-01

    This project uses MCU STC15W408AS (stable, energy saving, high speed), temperature sensor DS18B20 (cheap, high efficiency, stable), MQ2 resistance type semiconductor smog sensor (high stability, fast response and economy) and NRF24L01 wireless transmitting and receiving module (energy saving, small volume, reliable) as the main body to achieve concentration temperature data presentation, intelligent voice alarming and short distance wireless transmission. The whole system is safe, reliable, cheap, quick reaction and good performance. This project uses the MCU STM32F103RCT6 as the main control chip, and use WIFI module ESP8266, wireless module NRF24L01 to make the gateway. Users can remotely check and control the related devices in real-time on smartphones or computers. We can also realize the functions of intelligent fire monitoring, remote fire extinguishing, cloud data storage through the third party server Big IOT.

  7. Living Systems Energy Module

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-26

    The Living Systems Energy Module, renamed Voyage from the Sun, is a twenty-lesson curriculum designed to introduce students to the major ways in which energy is important in living systems. Voyage from the Sun tells the story of energy, describing its solar origins, how it is incorporated into living terrestrial systems through photosynthesis, how it flows from plants to herbivorous animals, and from herbivores to carnivores. A significant part of the unit is devoted to examining how humans use energy, and how human impact on natural habitats affects ecosystems. As students proceed through the unit, they read chapters of Voyage from the Sun, a comic book that describes the flow of energy in story form (Appendix A). During the course of the unit, an ``Energy Pyramid`` is erected in the classroom. This three-dimensional structure serves as a classroom exhibit, reminding students daily of the importance of energy and of the fragile nature of our living planet. Interactive activities teach students about adaptations that allow plants and animals to acquire, to use and to conserve energy. A complete list of curricular materials and copies of all activity sheets appear in Appendix B.

  8. Small Wind Energy Systems

    DEFF Research Database (Denmark)

    Simoes, Marcelo; Farret, Felix Alberto; Blaabjerg, Frede

    2015-01-01

    devices, and a centralized distribution control. In order to establish a small wind energy system it is important to observe the following: (i) Attending the energy requirements of the actual or future consumers; (ii) Establishing civil liabilities in case of accidents and financial losses due to shortage...... or low quality of energy; (iii) Negotiating collective conditions to interconnect the microgrid with the public network or with other sources of energy that is independent of wind resources; (iv) Establishing a performance criteria of power quality and reliability to end-users, in order to reduce costs...... and guaranteeing an acceptable energy supply. This paper discuss how performance is affected by local conditions and random nature of the wind, power demand profiles, turbine related factors, and presents the technical issues for implementing a self-excited induction generator system, or a permanent magnet based...

  9. Alternative Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    West, M.; Duckers, L.; Lockett, P.; Loughridge, B.; Peatfield, T.; White, P.

    1984-01-01

    The Coventry (Lanchester) Polytechnic Wave Energy Group has been involved in the United Kingdom wave energy research programme since its inception in 1975. Whilst the work of the group is mainly concerned with wave energy, and currently is directed towards the design of a wave energy device tailored to the needs of isolated/island communities, it has some involvement with other aspects of the alternatives. This conference, dealing with alternative energy systems and their electrical integration and utilisation was engendered by the general interest which the Polytechnic group members have in the alternatives and their use. The scope for electrical integration and utilisation is very broad. Energy for family groups may be provided in a relatively unsophisticated way which is acceptable to them. Small population centres, for example island communities relying upon diesel equipment, can reap the benefits of the alternatives through their ability to accept novel integration schemes and a flexible approach to the use of the energy available. Consumers already enjoying the benefits of a 'firm' electricity grid supply can use energy from a variety of alternative systems, via the grid, without having to modify their energy consumption habits. In addition to the domestic and industrial applications and coastal possibilities, specialist applications in isolated environments have also emerged. The Proceedings detail practical, technical and economic aspects of the alternatives and their electrical integration and utilisation.

  10. Effective technology of wood and gaseous fuel co-firing for clean energy production

    International Nuclear Information System (INIS)

    Zake, M.; Barmina, I.; Gedrovics, M.; Desnickis, A.

    2007-01-01

    The main aim of the study was to develop and optimise a small-scale experimental co-firing technique for the effective and clean heat energy production by replacing a proportion of fossil fuel (propane) with renewable one (wood biomass). Technical solutions of propane co-fire presenting two different ways of additional heat supply to the wood biomass are proposed and analysed. The experiments have shown that a better result can be obtained for the direct propane co-fire of the wood biomass, when the rate of wood gasification and the ignition of volatiles are controlled by additional heat energy supply to the upper portion of wood biomass. A less effective though cleaner way of heat energy production is the direct propane co-fire of volatiles when low-temperature self-sustaining burnout of the wood biomass controls the rate of the volatile formation, while additional heat energy supply to the flow of volatiles controls their burnout. The effect of propane co-fire on the heat production rate and the composition of polluting emissions is studied and analysed for different rates of the additional heat supply to the wood biomass and of the swirling air supply as well as for different charge of wood biomass above the inlet of the propane flame flow. (Authors)

  11. Forest-fire models

    Science.gov (United States)

    Haiganoush Preisler; Alan Ager

    2013-01-01

    For applied mathematicians forest fire models refer mainly to a non-linear dynamic system often used to simulate spread of fire. For forest managers forest fire models may pertain to any of the three phases of fire management: prefire planning (fire risk models), fire suppression (fire behavior models), and postfire evaluation (fire effects and economic models). In...

  12. Energy saving synergies in national energy systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck; Lund, Henrik

    2015-01-01

    In the transition towards a 100% renewable energy system, energy savings are essential. The possibility of energy savings through conservation or efficiency increases can be identified in, for instance, the heating and electricity sectors, in industry, and in transport. Several studies point...... to various optimal levels of savings in the different sectors of the energy system. However, these studies do not investigate the idea of energy savings being system dependent. This paper argues that such system dependency is critical to understand, as it does not make sense to analyse an energy saving...... without taking into account the actual benefit of the saving in relation to the energy system. The study therefore identifies a need to understand how saving methods may interact with each other and the system in which they are conducted. By using energy system analysis to do hourly simulation...

  13. Summary of fire protection programs of the United States Department of Energy

    International Nuclear Information System (INIS)

    1991-10-01

    This edition of the Annual Summary of DOE Fire Protection Programs continues the series started in 1972. Since May 1950, an annual report has been required from each field organization. The content has varied through the years and most of the accident data reporting requirements have been superseded by the Computerized Accident/Incident Reporting System administered by EG ampersand G, Idaho. However, this report is the sole source of information relating to fire protection programs, and to the actions of the field offices and to headquarters that are of general fire protection interest

  14. Application of Composite Materials in the Fire Explosion Suppression System

    Institute of Scientific and Technical Information of China (English)

    REN Shah

    2012-01-01

    In order to lighten the weight of the special vehicles and improve their mobility and flexibility, the weight of all subsystems of the whole vehicle must be reduced in the general planning. A fire explosion suppression system is an important subsystem for the self-protection of vehicle, protection of crews and safety of a vehicle. The performances of the special vehicles determine their survival ability and combat capability. The composite bottle is made of aluminum alloy with externally wrapped carbon fiber ; it has been proven by a large number of tests that the new type explosion suppression fire distinguisher made of such composite materials applied in the special vehicle has reliable performance, each of its technical indexes is higher or equal to that of a steel distinguisher, and the composites can also optimize the assembly structure of the bottle, and improve the reliability and corrosion resistance. Most important is that the composite materials can effectively lighten the weight of the fire explosion suppression system to reach the target of weight reduction of the subsystem in general planning.

  15. Electrical energy systems

    CERN Document Server

    El-Hawary, Mohamed E

    2007-01-01

    Features discussions ranging from the technical aspects of generation, transmission, distribution, and utilization to power system components, theory, protection, and the energy control center that offer an introduction to effects of deregulating electric power systems, blackouts and their causes, and minimizing their effects.

  16. Energy and water conservation at lignite-fired power plants using drying and water recovery technologies

    International Nuclear Information System (INIS)

    Liu, Ming; Qin, Yuanzhi; Yan, Hui; Han, Xiaoqu; Chong, Daotong

    2015-01-01

    Highlights: • Pre-drying and water recovery technologies were used to conserve energy and water. • The energy and water conservation potential were analyzed with reference cases. • The air-cooling unit produces water when the water content of lignite is high enough. • Influences of main parameters on energy and water conservation were analyzed. - Abstract: Lignite is considered as a competitive energy raw material with high security of supply viewed from a global angle. However, lignite-fired power plants have many shortcomings, including high investment, low energy efficiency and high water use. To address these issues, the drying and water recovery technologies are integrated within lignite-fired power plants. Both air-cooling and wet-cooling units with three kinds of lignite as feeding fuel were analyzed quantitatively. Results showed that energy conservation and water conservation are obtained simultaneously. The power plant firing high moisture lignite becomes more environmental friendly with higher power generation efficiency and a lower water makeup rate than the one firing low moisture lignite. And further calculation revealed that the air-cooling unit needs no makeup water and even produces some water as it generates power, when the water carrying coefficient is higher than 40 g/MJ.

  17. The Smart Energy System

    DEFF Research Database (Denmark)

    Jurowetzki, Roman; Dyrelund, Anders; Hummelmose, Lars

    Copenhagen Cleantech Cluster has launched a new report, which provides an overview of Danish competencies relating to smart energy systems. The report, which is based on a questionnaire answered by almost 200 companies working with smart energy as well as a number of expert interviews, focuses on...... production, large scale solar heat, fuel cells, heat storage, waste incineration, among others, the report draws a picture of Denmark as a research and development hub for smart energy system solutions.......Copenhagen Cleantech Cluster has launched a new report, which provides an overview of Danish competencies relating to smart energy systems. The report, which is based on a questionnaire answered by almost 200 companies working with smart energy as well as a number of expert interviews, focuses...... on the synergies which are obtained through integration of the district heating and district cooling, gas, and electricity grid into a single smart energy system. Besides documenting the technology and innovation strengths that Danish companies possess particularly relating to wind, district heating, CHP...

  18. Understanding renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Quaschning, Volker

    2005-01-15

    Beginning with an overview of renewable energy sources including biomass, hydroelectricity, geothermal, tidal, wind and solar power, this book explores the fundamentals of different renewable energy systems. The main focus is on technologies with high development potential such as solar thermal systems, photovoltaics and wind power. This text not only describes technological aspects, but also deals consciously with problems of the energy industry. In this way, the topics are treated in a holistic manner, bringing together maths, engineering, climate studies and economics, and enabling readers to gain a broad understanding of renewable energy technologies and their potential. The book also contains a free CD-ROM resource, which includes a variety of specialist simulation software and detailed figures from the book. (Author)

  19. FireSignal - Data Acquisition and Control System Software

    International Nuclear Information System (INIS)

    Neto, A.; Fernandes, H.; Duarte, A.; Carvalho, B.; Sousa, J.; Valcarcel, D.; Varandas, C.; Hron, M.

    2006-01-01

    Control of fusion devices requires good, non-ambiguous, easy to use user-interfaces to configure hardware devices. To solve this problem a highly generic system for data control and acquisition has been developed. Among the main features it allows remote hardware configuration, shot launching, data sharing between connected users and experiment monitoring. The system is fully distributed: the hardware driver nodes, clients and server are completely independent from each other and might be running in different operating systems and programmed in different languages. All the communication is provided through the Common Object Request Broker Architecture (CORBA) protocol. FireSignal was designed from the beginning to be as independent as possible from any kind of constraints as it's a plugin based system. Database, data viewers and the security system are some examples of what can easily be changed and adapted to the target machine's needs. All hardware is described in eXtendend Markup Language (XML) and from this information the FireSignal client application can build automatically Graphical User Interfaces (GUI) and validate the user's parameter configuration. Any type of hardware can be integrated in the system as long as it is described in XML and the respective driver is developed. Any modern programming language can be used to develop these drivers, and currently we use Python and Java generic drivers. All data storage and indexing is time stamped event-based s. Nodes are responsible for tagging the acquired samples with the absolute time stamps and to react to machine events. FireSignal is currently being used to control the ISTTOK/PT and CASTOR/CZ tokamaks. (author)

  20. Real Time Fire Reconnaissance Satellite Monitoring System Failure Model

    Science.gov (United States)

    Nino Prieto, Omar Ariosto; Colmenares Guillen, Luis Enrique

    2013-09-01

    In this paper the Real Time Fire Reconnaissance Satellite Monitoring System is presented. This architecture is a legacy of the Detection System for Real-Time Physical Variables which is undergoing a patent process in Mexico. The methodologies for this design are the Structured Analysis for Real Time (SA- RT) [8], and the software is carried out by LACATRE (Langage d'aide à la Conception d'Application multitâche Temps Réel) [9,10] Real Time formal language. The system failures model is analyzed and the proposal is based on the formal language for the design of critical systems and Risk Assessment; AltaRica. This formal architecture uses satellites as input sensors and it was adapted from the original model which is a design pattern for physical variation detection in Real Time. The original design, whose task is to monitor events such as natural disasters and health related applications, or actual sickness monitoring and prevention, as the Real Time Diabetes Monitoring System, among others. Some related work has been presented on the Mexican Space Agency (AEM) Creation and Consultation Forums (2010-2011), and throughout the International Mexican Aerospace Science and Technology Society (SOMECYTA) international congress held in San Luis Potosí, México (2012). This Architecture will allow a Real Time Fire Satellite Monitoring, which will reduce the damage and danger caused by fires which consumes the forests and tropical forests of Mexico. This new proposal, permits having a new system that impacts on disaster prevention, by combining national and international technologies and cooperation for the benefit of humankind.

  1. District heating with SLOWPOKE energy systems

    International Nuclear Information System (INIS)

    Lynch, G.F.

    1988-03-01

    The SLOWPOKE Energy System, a benign nuclear heat source designed to supply 10 thermal megawatts in the form of hot water for local heating systems in buildings and institutions, is at the forefront of these developments. A demonstration unit has been constructed in Canada and is currently undergoing an extensive test program. Because the nuclear heat source is small, operates at atmospheric pressure, and produces hot water below 100 degrees Celcius, intrinsic safety features will permit minimum operator attention and allow the heat source to be located close to the load and hence to people. In this way, a SLOWPOKE Energy System can be considered much like the oil- or coal-fired furnace it is designed to replace. The low capital investment requirements, coupled with a high degree of localization, even for the first unit, are seen as attractive features for the implementation of SLOWPOKE Energy Systems in many countries

  2. Water augmented indirectly-fired gas turbine systems and method

    Science.gov (United States)

    Bechtel, Thomas F.; Parsons, Jr., Edward J.

    1992-01-01

    An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

  3. Project 93L-EWL-097, fire alarm system improvements, 300 Area

    International Nuclear Information System (INIS)

    Scott, M.V.

    1995-01-01

    This document contains the Acceptance Test Procedure (ATP) which will demonstrate that the modifications to the Fire Protection systems in the 338 Building function as intended. The ATP will test the fire alarm control panel, flow alarm pressure switch, post indicator valve tamper switch, heat detectors, flow switches, and fire alarm signaling devices

  4. Effect of air ingress on the energy performance of coal fired thermal power plants

    International Nuclear Information System (INIS)

    Siddhartha Bhatt, M.

    2007-01-01

    Ingress of air in boilers leads to drops in energy efficiency. This paper presents the effects of air ingress in the combustion zone, post-combustion zone and air pre-heater (APH) on the energy efficiency and loading capacity of a coal fired thermal power plant operating on fuel with high ash (35-45%). The optimal O 2 in the flue gas for a pulverized coal fired system is 3.5% (corresponding to 20% excess air). The operating values are in the range of 4.2-6.0% in membrane type boilers and up to 10% in refractory type boilers (after sustained periods of operation). The leakage rate of boilers (up to the entrance of the APH) is designed at 0.2% while the average operating values are 7.25% for membrane type enclosures and 33.61% for refractory enclosures. The leakage rate of the APH is designed at 5.0% while the operating values range from 13.66% to 20.13% for rotary and tubular APHs. When the O 2 in the combustion zone varies from 3.5% to 8.0%, efficiency drops of 2.0% points are experienced in the boiler and turbine separately, and the gross overall efficiency drop is ∼3.0% points. The units do not experience any capacity drop up to an O 2 in the flue gas of 6.0% before the APH. At an O 2 in the flue gas (before APH) of 7.2%, a mild limitation on the unit capacity of around 2-3% is experienced. When O 2 in the flue gas (before APH) reaches a level of 9.0%, 20% capacity drop of the unit is experienced due to which the plant load cannot be raised higher than 80%. Beyond the level of 9.0% (rare occurrence), the unit is quite difficult to operate and has to be taken off for overhaul

  5. Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K. [eds.

    1994-06-01

    The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume I contains papers presented at the following sessions: opening commentaries; changes in the market and technology drivers; advanced IGCC systems; advanced PFBC systems; advanced filter systems; desulfurization system; turbine systems; and poster session. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  6. Evolving energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Mills, E.

    1991-04-01

    This thesis presents scenarios of future energy systems, a cost-benefit analysis of measures to avoid greenhouse-gas emissions, an analysis of the effect of energy prices on end-use efficiencies and fuel choices, and an evaluation of financial-incentive programs designed to induce investments in efficient energy use. Twelve integrated energy supply/demand scenarios for the Swedish heat-and-power sector are presented to illustrate the potential for improvements in end-use efficiency and increased utilization of renewable energy sources. The results show that greenhouse-gas emissions could be reduced by 35 per cent from 1987 levels by 2010, with a net economic benefit compared to a business-as-usual scenario. A generalized methodology for calculating the net costs of reducing greenhouse-gas emissions is applied to a variety of fuel choices and energy end-use technologies. A key finding is that a combination of increased end-use efficiencies and use of renewable energy systems is required to achieve maximum cost-effective emissions reductions. End-use efficiencies and inter-fuel competition in Denmark and Sweden are compared during a time period in which real electricity prices were declining in Sweden and increasing in Denmark. Despite these different price environments, efficiencies and choices of heating fuels did not generally develop as expected according to economic theory. The influences of counter-price and non-price factors are important in understanding this outcome. Relying on prices alone injects considerable uncertainty into the energy planning process, and precludes efficiency improvements and fuel choices attainable with other mechanisms. Incentive programs can be used to promote energy-efficient technologies. Utilities in Europe have recently offered financial incentives intended to stimulate the adoption of compact-fluorescent lamps. These programs have been cost-effective in comparison to new electric supply. (au).

  7. In-situ characterization of wildland fire behavior

    Science.gov (United States)

    Bret Butler; D. Jimenez; J. Forthofer; Paul Sopko; K. Shannon; Jim Reardon

    2010-01-01

    A system consisting of two enclosures has been developed to characterize wildand fire behavior: The first enclosure is a sensor/data logger combination that measures and records convective/radiant energy released by the fire. The second is a digital video camera housed in a fire proof enclosure that records visual images of fire behavior. Together this system provides...

  8. Identifying and quantifying energy savings on fired plant using low cost modelling techniques

    International Nuclear Information System (INIS)

    Tucker, Robert; Ward, John

    2012-01-01

    Research highlights: → Furnace models based on the zone method for radiation calculation are described. → Validated steady-state and transient models have been developed. → We show how these simple models can identify the best options for saving energy. → High emissivity coatings predicted to give performance enhancement on a fired heater. → Optimal heat recovery strategies on a steel reheating furnace are predicted. -- Abstract: Combustion in fired heaters, boilers and furnaces often accounts for the major energy consumption on industrial processes. Small improvements in efficiency can result in large reductions in energy consumption, CO 2 emissions, and operating costs. This paper will describe some useful low cost modelling techniques based on the zone method to help identify energy saving opportunities on high temperature fuel-fired process plant. The zone method has for many decades, been successfully applied to small batch furnaces through to large steel-reheating furnaces, glass tanks, boilers and fired heaters on petrochemical plant. Zone models can simulate both steady-state furnace operation and more complex transient operation typical of a production environment. These models can be used to predict thermal efficiency and performance, and more importantly, to assist in identifying and predicting energy saving opportunities from such measures as: ·Improving air/fuel ratio and temperature controls. ·Improved insulation. ·Use of oxygen or oxygen enrichment. ·Air preheating via flue gas heat recovery. ·Modification to furnace geometry and hearth loading. There is also increasing interest in the application of refractory coatings for increasing surface radiation in fired plant. All of the techniques can yield savings ranging from a few percent upwards and can deliver rapid financial payback, but their evaluation often requires robust and reliable models in order to increase confidence in making financial investment decisions. This paper gives

  9. Energy systems transformation.

    Science.gov (United States)

    Dangerman, A T C Jérôme; Schellnhuber, Hans Joachim

    2013-02-12

    The contemporary industrial metabolism is not sustainable. Critical problems arise at both the input and the output side of the complex: Although affordable fossil fuels and mineral resources are declining, the waste products of the current production and consumption schemes (especially CO(2) emissions, particulate air pollution, and radioactive residua) cause increasing environmental and social costs. Most challenges are associated with the incumbent energy economy that is unlikely to subsist. However, the crucial question is whether a swift transition to its sustainable alternative, based on renewable sources, can be achieved. The answer requires a deep analysis of the structural conditions responsible for the rigidity of the fossil-nuclear energy system. We argue that the resilience of the fossil-nuclear energy system results mainly from a dynamic lock-in pattern known in operations research as the "Success to the Successful" mode. The present way of generating, distributing, and consuming energy--the largest business on Earth--expands through a combination of factors such as the longevity of pertinent infrastructure, the information technology revolution, the growth of the global population, and even the recent financial crises: Renewable-energy industries evidently suffer more than the conventional-energy industries under recession conditions. Our study tries to elucidate the archetypical traits of the lock-in pattern and to assess the respective importance of the factors involved. In particular, we identify modern corporate law as a crucial system element that thus far has been largely ignored. Our analysis indicates that the rigidity of the existing energy economy would be reduced considerably by the assignment of unlimited liabilities to the shareholders.

  10. Wind Energy Systems.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    During the 1920s and 1930s, millions of wind energy systems were used on farms and other locations far from utility lines. However, with passage of the Rural Electrification Act in 1939, cheap electricity was brought to rural areas. After that, the use of wind machines dramatically declined. Recently, the rapid rise in fuel prices has led to a…

  11. Energy Systems Integration Facility Videos | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems Integration Facility Videos Energy Systems Integration Facility Integration Facility NREL + SolarCity: Maximizing Solar Power on Electrical Grids Redefining What's Possible for Renewable Energy: Grid Integration Robot-Powered Reliability Testing at NREL's ESIF Microgrid

  12. Energy Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Integration Laboratory Energy Systems Integration Laboratory Research in the Energy Systems Integration Laboratory is advancing engineering knowledge and market deployment of hydrogen technologies. Applications include microgrids, energy storage for renewables integration, and home- and station

  13. National policies. Cease-fire in the energy war

    Energy Technology Data Exchange (ETDEWEB)

    Beckman, K.

    2008-05-15

    In the energy war between producers and consumers that has been heating up in recent years, the ministerial gathering at the International Energy Forum (IEF) in Rome, Italy, April 2008 marked a ceasefire. But whether this leads to a permanent peace remains to be seen.

  14. Coal-fired high performance power generating system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  15. Proof of safer operation of power station plant during a fire by linking in fire simulation and system technical analysis

    International Nuclear Information System (INIS)

    Hensel, W.; Beyer, H.; Samman, A.

    1997-01-01

    In order to attain the basic aims of protection in power station plant, a series of systems, which must be available also in the event of a fire, are provided. The thermal loads for the systems and components which are necessary to attain the aims of protection are ascertained by means of a simulation of the cause of the fire for the specific scenario. Statements on the availability of the systems and components in the specific scenario are derived from the design values used as the basis. (orig.) [de

  16. Chemical Sensor Systems and Associated Algorithms for Fire Detection: A Review

    Directory of Open Access Journals (Sweden)

    Jordi Fonollosa

    2018-02-01

    Full Text Available Indoor fire detection using gas chemical sensing has been a subject of investigation since the early nineties. This approach leverages the fact that, for certain types of fire, chemical volatiles appear before smoke particles do. Hence, systems based on chemical sensing can provide faster fire alarm responses than conventional smoke-based fire detectors. Moreover, since it is known that most casualties in fires are produced from toxic emissions rather than actual burns, gas-based fire detection could provide an additional level of safety to building occupants. In this line, since the 2000s, electrochemical cells for carbon monoxide sensing have been incorporated into fire detectors. Even systems relying exclusively on gas sensors have been explored as fire detectors. However, gas sensors respond to a large variety of volatiles beyond combustion products. As a result, chemical-based fire detectors require multivariate data processing techniques to ensure high sensitivity to fires and false alarm immunity. In this paper, we the survey toxic emissions produced in fires and defined standards for fire detection systems. We also review the state of the art of chemical sensor systems for fire detection and the associated signal and data processing algorithms. We also examine the experimental protocols used for the validation of the different approaches, as the complexity of the test measurements also impacts on reported sensitivity and specificity measures. All in all, further research and extensive test under different fire and nuisance scenarios are still required before gas-based fire detectors penetrate largely into the market. Nevertheless, the use of dynamic features and multivariate models that exploit sensor correlations seems imperative.

  17. Chemical Sensor Systems and Associated Algorithms for Fire Detection: A Review.

    Science.gov (United States)

    Fonollosa, Jordi; Solórzano, Ana; Marco, Santiago

    2018-02-11

    Indoor fire detection using gas chemical sensing has been a subject of investigation since the early nineties. This approach leverages the fact that, for certain types of fire, chemical volatiles appear before smoke particles do. Hence, systems based on chemical sensing can provide faster fire alarm responses than conventional smoke-based fire detectors. Moreover, since it is known that most casualties in fires are produced from toxic emissions rather than actual burns, gas-based fire detection could provide an additional level of safety to building occupants. In this line, since the 2000s, electrochemical cells for carbon monoxide sensing have been incorporated into fire detectors. Even systems relying exclusively on gas sensors have been explored as fire detectors. However, gas sensors respond to a large variety of volatiles beyond combustion products. As a result, chemical-based fire detectors require multivariate data processing techniques to ensure high sensitivity to fires and false alarm immunity. In this paper, we the survey toxic emissions produced in fires and defined standards for fire detection systems. We also review the state of the art of chemical sensor systems for fire detection and the associated signal and data processing algorithms. We also examine the experimental protocols used for the validation of the different approaches, as the complexity of the test measurements also impacts on reported sensitivity and specificity measures. All in all, further research and extensive test under different fire and nuisance scenarios are still required before gas-based fire detectors penetrate largely into the market. Nevertheless, the use of dynamic features and multivariate models that exploit sensor correlations seems imperative.

  18. Chemical Sensor Systems and Associated Algorithms for Fire Detection: A Review

    Science.gov (United States)

    Fonollosa, Jordi

    2018-01-01

    Indoor fire detection using gas chemical sensing has been a subject of investigation since the early nineties. This approach leverages the fact that, for certain types of fire, chemical volatiles appear before smoke particles do. Hence, systems based on chemical sensing can provide faster fire alarm responses than conventional smoke-based fire detectors. Moreover, since it is known that most casualties in fires are produced from toxic emissions rather than actual burns, gas-based fire detection could provide an additional level of safety to building occupants. In this line, since the 2000s, electrochemical cells for carbon monoxide sensing have been incorporated into fire detectors. Even systems relying exclusively on gas sensors have been explored as fire detectors. However, gas sensors respond to a large variety of volatiles beyond combustion products. As a result, chemical-based fire detectors require multivariate data processing techniques to ensure high sensitivity to fires and false alarm immunity. In this paper, we the survey toxic emissions produced in fires and defined standards for fire detection systems. We also review the state of the art of chemical sensor systems for fire detection and the associated signal and data processing algorithms. We also examine the experimental protocols used for the validation of the different approaches, as the complexity of the test measurements also impacts on reported sensitivity and specificity measures. All in all, further research and extensive test under different fire and nuisance scenarios are still required before gas-based fire detectors penetrate largely into the market. Nevertheless, the use of dynamic features and multivariate models that exploit sensor correlations seems imperative. PMID:29439490

  19. Energy storage connection system

    Science.gov (United States)

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  20. Installation and operation of the Plantwide Fire Protection Systems and related Domestic Water Supply Systems

    International Nuclear Information System (INIS)

    1991-12-01

    A safe work environment is needed to support the Savannah River Site (SRS) mission of producing special nuclear material. This Environmental Assessment (EA) assesses the potential environmental impact(s) of adding to and upgrading the Plantwide Fire Protection System and selected related portions of the Domestic Water Supply System at SRS, Aiken, South Carolina. The following objectives are expected to be met by this action: Prevent undue threat to public health and welfare from fire at SRS; prevent undue hazard to employees at SRS from fire; prevent unacceptable delay to vital DOE programs as a result of fire at SRS; keep fire related property damage at SRS to a manageable level;, and provide an upgraded supply of domestic water for the Reactor Areas. The Reactor Areas' domestic water supplies do not meet current demand capacity due to the age and condition of the 30-year old iron piping. In addition, the water quality for these supplies is not consistent with current SCDHEC requirements. Therefore, DOE proposes to upgrade this Domestic Water Supply System to meet current demand and quality levels, as well as the needs of fire protection system improvement

  1. Energy Storage System

    Science.gov (United States)

    1996-01-01

    SatCon Technology Corporation developed the drive train for use in the Chrysler Corporation's Patriot Mark II, which includes the Flywheel Energy Storage (FES) system. In Chrysler's experimental hybrid- electric car, the hybrid drive train uses an advanced turboalternator that generates electricity by burning a fuel; a powerful, compact electric motor; and a FES that eliminates the need for conventional batteries. The FES system incorporates technology SatCon developed in more than 30 projects with seven NASA centers, mostly for FES systems for spacecraft attitude control and momentum recovery. SatCon will continue to develop the technology with Westinghouse Electric Corporation.

  2. Slag processing system for direct coal-fired gas turbines

    Science.gov (United States)

    Pillsbury, Paul W.

    1990-01-01

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

  3. Energy Storage and Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Østergaard, Poul Alberg; Connolly, David

    2016-01-01

    It is often highlighted how the transition to renewable energy supply calls for significant electricity storage. However, one has to move beyond the electricity-only focus and take a holistic energy system view to identify optimal solutions for integrating renewable energy. In this paper......, an integrated cross-sector approach is used to determine the most efficient and least-cost storage options for the entire renewable energy system concluding that the best storage solutions cannot be found through analyses focusing on the individual sub-sectors. Electricity storage is not the optimum solution...... to integrate large inflows of fluctuating renewable energy, since more efficient and cheaper options can be found by integrating the electricity sector with other parts of the energy system and by this creating a Smart Energy System. Nevertheless, this does not imply that electricity storage should...

  4. Energy Storage and Smart Energy Systems

    Directory of Open Access Journals (Sweden)

    Poul Alberg Østergaard

    2016-12-01

    Full Text Available It is often highlighted how the transition to renewable energy supply calls for significant electricity storage. However, one has to move beyond the electricity-only focus and take a holistic energy system view to identify optimal solutions for integrating renewable energy. In this paper, an integrated cross-sector approach is used to determine the most efficient and least-cost storage options for the entire renewable energy system concluding that the best storage solutions cannot be found through analyses focusing on the individual sub-sectors. Electricity storage is not the optimum solution to integrate large inflows of fluctuating renewable energy, since more efficient and cheaper options can be found by integrating the electricity sector with other parts of the energy system and by this creating a Smart Energy System. Nevertheless, this does not imply that electricity storage should be disregarded but that it will be needed for other purposes in the future.

  5. Evaluation of retrofitting gas-fired cooling and heating systems into BCHP using design optimization

    International Nuclear Information System (INIS)

    Cao Jiacong

    2009-01-01

    The influence of energy prices on the feasibility of a retrofit is investigated. The retrofit describes the conversion of a system from HVAC to BCHP for energy-saving. This includes two optimal retrofit design models, of which the exergetic efficiency and annual costs (AC) are the separate objective functions. The retrofit scheme is planned to insert gas engines as prime movers into the original system, which have adopted gas-fired absorption chillers. The solutions of the optimizations show that such a retrofit can result in a remarkable rise in exergetic efficiency but is not viable with current energy prices. The contradictory solutions reveal a gap between the current energy prices system of the country and the present energy situation. Further investigation gives the critical lines of which each divides the coordinate plane of natural gas-electric prices into two parts of benefit and deficit. If the electric price rises to a certain extent, the retrofit will be advantageous both in benefit and energy-saving. So it is really an urgent task to reform the energy prices system in China. Conclusions may be helpful for other similar retrofit projects, and for legislators and the government which are responsible for improving the energy market in China.

  6. Wind energy systems

    International Nuclear Information System (INIS)

    Richardson, R.D.; McNerney, G.M.

    1993-01-01

    Wind energy has matured to a level of development where it is ready to become a generally accepted utility generation technology. A brief discussion of this development is presented, and the operating and design principles are discussed. Alternative designs for wind turbines and the tradeoffs that must be considered are briefly compared. Development of a wind energy system and the impacts on the utility network including frequency stability, voltage stability, and power quality are discussed. The assessment of wind power station economics and the key economic factors that determine the economic viability of a wind power plant are presented

  7. Applying the Wildland Fire Decision Support System (WFDSS) to support risk-informed decision making: The Gold Pan Fire, Bitterroot National Forest, Montana, USA

    Science.gov (United States)

    Erin K. Noonan-Wright; Tonja S. Opperman

    2015-01-01

    In response to federal wildfire policy changes, risk-informed decision-making by way of improved decision support, is increasingly becoming a component of managing wildfires. As fire incidents escalate in size and complexity, the Wildland Fire Decision Support System (WFDSS) provides support with different analytical tools as fire conditions change. We demonstrate the...

  8. Fire Danger of Interaction Processes of Local Sources with a Limited Energy Capacity and Condensed Substances

    OpenAIRE

    Glushkov, Dmitry Olegovich; Strizhak, Pavel Alexandrovich; Vershinina, Kseniya Yurievna

    2015-01-01

    Numerical investigation of flammable interaction processes of local energy sources with liquid condensed substances has been carried out. Basic integrated characteristic values of process have been defined – ignition delay time at different energy sources parameters. Recommendations have been formulated to ensure fire safety of technological processes, characterized by possible local heat sources formation (cutting, welding, friction, metal grinding etc.) in the vicinity of storage areas, tra...

  9. Fire Danger of Interaction Processes of Local Sources with a Limited Energy Capacity and Condensed Substances

    Directory of Open Access Journals (Sweden)

    Glushkov Dmitrii O.

    2015-01-01

    Full Text Available Numerical investigation of flammable interaction processes of local energy sources with liquid condensed substances has been carried out. Basic integrated characteristic values of process have been defined – ignition delay time at different energy sources parameters. Recommendations have been formulated to ensure fire safety of technological processes, characterized by possible local heat sources formation (cutting, welding, friction, metal grinding etc. in the vicinity of storage areas, transportation, transfer and processing of flammable liquids (gasoline, kerosene, diesel fuel.

  10. Stochastic Model Predictive Control with Applications in Smart Energy Systems

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil; Edlund, Kristian; Mølbak, Tommy

    2012-01-01

    to cover more than 50% of the total consumption by 2050. Energy systems based on significant amounts of renewable energy sources are subject to uncertainties. To accommodate the need for model predictive control (MPC) of such systems, the effect of the stochastic effects on the constraints must...... study, we consider a system consisting of fuel-fired thermal power plants, wind farms and electric vehicles....

  11. Planning an Automatic Fire Detection, Alarm, and Extinguishing System for Research Laboratories

    Directory of Open Access Journals (Sweden)

    Rostam Golmohamadi

    2014-04-01

    Full Text Available Background & Objectives: Educational and research laboratories in universities have a high risk of fire, because they have a variety of materials and equipment. The aim of this study was to provide a technical plan for safety improvement in educational and research laboratories of a university based on the design of automatic detection, alarm, and extinguishing systems . Methods : In this study, fire risk assessment was performed based on the standard of Military Risk Assessment method (MIL-STD-882. For all laboratories, detection and fire alarm systems and optimal fixed fire extinguishing systems were designed. Results : Maximum and minimum risks of fire were in chemical water and wastewater (81.2% and physical agents (62.5% laboratories, respectively. For studied laboratories, we designed fire detection systems based on heat and smoke detectors. Also in these places, fire-extinguishing systems based on CO2 were designed . Conclusion : Due to high risk of fire in studied laboratories, the best control method for fire prevention and protection based on special features of these laboratories is using automatic detection, warning and fire extinguishing systems using CO2 .

  12. Study on aging management of fire protection system in nuclear power plant

    International Nuclear Information System (INIS)

    Fang Huasong; Du Yu; Li Jianwen; Shi Haining; Tu Fengsheng

    2010-01-01

    Fire prevention, fire fighting and fire automatic alarms are three aspects which be included in fire protection system in nuclear power plants. The fire protection system can protect personnel, equipment etc in the fire, so their performance will have a direct influence on the safe operation in nuclear power plants. The disabled accidents caused by aging have happened continuously with the extension of time in the fire protection system, which is the major security risk during the running time in nuclear power plants. In view of the importance of fire protection system and the severity of aging problems, the aging are highly valued by the plant operators and related organizations. Though the feedback of operating experience in nuclear power plant, the impact of the fire-fighting equipment aging on system performance and reliability be assessed, the aging sensitive equipment be selected to carry out the aging analysis and to guide the management and maintenance to guarantee the healthy operation in life time of fire protection system in nuclear power plant. (authors)

  13. Research of the Fire Resistance оf Translucent and Composite Facade System

    Directory of Open Access Journals (Sweden)

    Nedryshkin Oleg

    2016-01-01

    Full Text Available The paper aims at researching fire resistance of a prototype facade system “Technocom” (type Alucobond A2. Experimental and theoretical research of fire hazard facade system is carried out. The objectives of the study are to determine compliance with the applicable front of special technical requirements. The status of problem reducing fire hazard facade system is reviewed. The method developed by compensatory measures is applied.

  14. Fire hazards evaluation for light duty utility arm system

    International Nuclear Information System (INIS)

    HUCKFELDT, R.A.

    1999-01-01

    In accordance with DOE Order 5480.7A, Fire Protection, a Fire Hazards Analysis must be performed for all new facilities. LMHC Fire Protection has reviewed and approved the significant documentation leading up to the LDUA operation. This includes, but is not limited to, development criteria and drawings, Engineering Task Plan, Quality Assurance Program Plan, and Safety Program Plan. LMHC has provided an appropriate level of fire protection for this activity as documented

  15. Effect of water side deposits on the energy performance of coal fired thermal power plants

    International Nuclear Information System (INIS)

    Bhatt, M. Siddhartha

    2006-01-01

    This paper presents the effects of water side deposits in the 210 MW coal fired thermal power plant components (viz., boiler, turbine, feed water heaters, condensers and lube oil coolers) on the energy efficiency of these components and that of the overall system at 100% maximum continuous rating (MCR). The origin, composition and rate of build up of deposits on the water side are presented. A linear growth rate of deposits is assumed for simplicity. The effects of the reduction in heat transfer, increased pressure drop and increased pumping power/reduced power output in the components are quantified in the form of curve fits as functions of the deposit thickness (μm). The reduction in heat transfer in the boiler components is in the range of 0.2-2.0% under normal scaling. The increased pumping power is of the order of 0.6-7.6% in the boiler components, 29% in the BFP circuit, 26% in the LPH circuit, 21% in the HPH circuit and 18% in the lube oil cooler circuits. The effects on the overall coal fired plant is quantified through functional relations between the efficiencies and the notional deposit thickness. The sensitivity indices to the notional deposit thickness are: boiler efficiency: -0.0021% points/μm, turbine circuit efficiency: -0.0037% points/μm, auxiliary power efficiency: -0.00129% points/μm, gross overall efficiency: -0.0039% points/μm and net overall efficiency: -0.0040% points/μm. The overall effect of scale build up is either increased power input of ∼68 kW/μm (at a constant power output) or decreased power output ∼25 kW/μm (at a constant power input). Successful contaminant control techniques are highlighted. Capacity reduction effects due to water side deposits are negligible

  16. FireSignal-Data acquisition and control system software

    Energy Technology Data Exchange (ETDEWEB)

    Neto, A. [Associacao Euratom/IST, Centro de Fusao Nuclear, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal)], E-mail: andre.neto@cfn.ist.utl.pt; Fernandes, H.; Duarte, A.; Carvalho, B.B.; Sousa, J.; Valcarcel, D.F. [Associacao Euratom/IST, Centro de Fusao Nuclear, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Hron, M. [Asociace EURATOM IPP.CR, Prague (Czech Republic); Varandas, C.A.F. [Associacao Euratom/IST, Centro de Fusao Nuclear, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal)

    2007-10-15

    Control of fusion experiments requires non-ambiguous, easy to use, user-interfaces to configure hardware devices. With that aim, a highly generic system for data control and acquisition has been developed. Among the main features it allows remote hardware configuration, shot launching, data sharing between connected users and experiment monitoring. The system is fully distributed: the hardware driver nodes, clients and servers are completely independent from each other and might run in different operating systems and programmed in different languages. All the communication is provided through the Common Object Request Broker Architecture (CORBA) protocol. FireSignal is designed to be as independent as possible from any kind of constraints as it is a plugin based system. Database, data viewers and the security system are some examples of what can easily be changed and adapted to the target machine's needs. In this system, every hardware is described in eXtensible Markup Language (XML) and with this information Graphical User Interfaces (GUI) are automatically built and user's parameter configuration validated. Any type of hardware device can be integrated in the system as long as it is described in XML and the respective driver developed. Any modern programming language can be used to develop these drivers. Currently Python and Java generic drivers are used. Data storage and indexing is time stamp event-based. Nodes are responsible for tagging the acquired samples with the absolute time stamps and to react to machine events. FireSignal is currently being used to control the ISTTOK/PT and CASTOR/CZ tokamaks.

  17. FireSignal-Data acquisition and control system software

    International Nuclear Information System (INIS)

    Neto, A.; Fernandes, H.; Duarte, A.; Carvalho, B.B.; Sousa, J.; Valcarcel, D.F.; Hron, M.; Varandas, C.A.F.

    2007-01-01

    Control of fusion experiments requires non-ambiguous, easy to use, user-interfaces to configure hardware devices. With that aim, a highly generic system for data control and acquisition has been developed. Among the main features it allows remote hardware configuration, shot launching, data sharing between connected users and experiment monitoring. The system is fully distributed: the hardware driver nodes, clients and servers are completely independent from each other and might run in different operating systems and programmed in different languages. All the communication is provided through the Common Object Request Broker Architecture (CORBA) protocol. FireSignal is designed to be as independent as possible from any kind of constraints as it is a plugin based system. Database, data viewers and the security system are some examples of what can easily be changed and adapted to the target machine's needs. In this system, every hardware is described in eXtensible Markup Language (XML) and with this information Graphical User Interfaces (GUI) are automatically built and user's parameter configuration validated. Any type of hardware device can be integrated in the system as long as it is described in XML and the respective driver developed. Any modern programming language can be used to develop these drivers. Currently Python and Java generic drivers are used. Data storage and indexing is time stamp event-based. Nodes are responsible for tagging the acquired samples with the absolute time stamps and to react to machine events. FireSignal is currently being used to control the ISTTOK/PT and CASTOR/CZ tokamaks

  18. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System.

    Science.gov (United States)

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W; Dong, Fengzhong

    2016-06-06

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.

  19. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System

    Directory of Open Access Journals (Sweden)

    Miao Sun

    2016-06-01

    Full Text Available We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.

  20. Energy Efficient Mobile Operating Systems

    OpenAIRE

    Muhammad Waseem

    2013-01-01

    Energy is an important resource in mobile computers now days. It is important to manage energy in efficient manner so that energy consumption will be reduced. Developers of operating system decided to increase the battery life time of mobile phones at operating system level. So, design of energy efficient mobile operating system is the best way to reduce the energy consumption in mobile devices. In this paper, currently used energy efficient mobile operating system is discussed and compared. ...

  1. The importance of fossil-fired power plants for the future energy supply

    International Nuclear Information System (INIS)

    Czychon, K.H.

    2013-01-01

    In response to the nuclear disaster in Fukushima and the phasing out of nuclear energy in Germany which is planned up to the year 2022, in addition to the already decommissioned nuclear power plants, a further outage capacity of approximately 13 MW will result. Against the background of the unresolved storage problem, regardless of further expansion of the use of renewable energy sources, the need arises for additional fossil-fueled power plants, i.e. gas and coal power plants. The development of gas prices shows that a further expansion of the gas turbine power plants is limited for economic reasons. This leads to the consequence that the future coal-fired power plants are needed to produce electricity. To meet the requirements for a reduction of CO 2 emissions laws, new power plants must be built with increased efficiency compared to previous systems. In order to meet the challenges of future fossil fuel power plant generations, the Grosskraftwerk Mannheim (Large-scale Power Plant Mannheim) is involved in numerous research projects to increase efficiency, reduce harmful emissions and economic implementation of ambitious technologies.

  2. Wellons Canada energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Wellons Canada is a British Columbia-based company that specializes in the manufacture and installation of lumber drying and energy conversion equipment. This brochure provided details of the Wellons energy system designed for oriented strand board (OSB) plants. The brochure outlined the system's scope of supply, and provided illustrations of system procedures from the initial wet fuel bin through to the electric precipitator used for air clean-up. During the process, fuel was conveyed from the bin to metering bins into combustors and through a cyclo-blast cell. Forced draft fan systems were then used to provide primary and secondary combustion air. Radiant heaters were then used. A drop-out chamber was supplied to allow for complete combustion of fuel particles and to provide a drop-out of ash. A fan was then used to deliver diluent air to maintain the set point temperature in the hot gas stream. Refractory lined hot gas ducts were used to deliver heat to the dryers. Hot gas was then drawn through a multi-cyclone collector for ash removal. Electrostatic precipitators were used to clean up emissions on a continuous operating basis. An automatic system was used to collect ash from the combustion system grates and other areas. Details of installation services provided by the company were also included. 42 figs.

  3. Nuclear Energy Cost Data Base: A reference data base for nuclear and coal-fired powerplant power generation cost analysis

    International Nuclear Information System (INIS)

    Delene, J.G.; Bowers, H.I.

    1986-12-01

    A reference data base and standard methodology are needed for performing comparative nuclear and fossil power generation cost analyses for the Department of Energy, Office of Nuclear Energy. This report contains such a methodology together with reference assumptions and data to be used with the methodology. It is intended to provide basic guidelines or a starting point for analyses and to serve as a focal point in establishing parameters and methods to be used in economic comparisons of nuclear systems with alternatives. The data base is applicable for economic comparisons of new base load light-water reactors on either the current once-through cycle or self-generated recycle, high- and low-sulfur coal-fired plants, and oil- and natural gas-fired electric generating plants coming on line around the turn of the century. In additions to light-water reactors and fossil fuel-fired plants, preliminary cost information is also presented on liquid metal reactor plants. This report includes a data base containing proposed technical and economic assumptions to be used in analyses, discussions of recommended methodology to be used in calculating power generation costs, and a sample calculation for illustrative benchmark purposes

  4. Nuclear Energy Cost Data Base: a reference data base for nuclear and coal-fired powerplant power generation cost analysis

    International Nuclear Information System (INIS)

    1985-06-01

    A reference data base and standard methodology are needed for performing comparative nuclear and fossil power generation cost analyses for the Department of Energy, Office of Nuclear Energy. This report contains such a methodology together with reference assumptions and data to be used with the methodology. It is intended to provide basic guidelines or a starting point for analyses and to serve as a focal point in establishing parameters and methods to be used in economic comparisons of nuclear systems with alternatives. The data base is applicable for economic comparisons of new base load light-water reactors on either the current once-through cycle or self-generated recycle, high- and low-sulfur coal-fired plants, and oil- and natural gas-fired electric generating plants coming on line in the last decade of this century. In addition to light-water reactors and fossil fuel-fired plants, preliminary cost information is also presented on liquid metal reactor plants. This report includes a data base containing proposed technical and economic assumptions to be used in analyses, discussions of a recommended methodology to be used in calculating power generation costs, and a sample calculation for illustrative and benchmark purposes

  5. Wind energy conversion system

    Science.gov (United States)

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  6. 21st Century's energy: Hydrogen energy system

    International Nuclear Information System (INIS)

    Veziroglu, T. Nejat; Sahin, Suemer

    2008-01-01

    Fossil fuels (i.e., petroleum, natural gas and coal), which meet most of the world's energy demand today, are being depleted fast. Also, their combustion products are causing the global problems, such as the greenhouse effect, ozone layer depletion, acid rains and pollution, which are posing great danger for our environment and eventually for the life in our planet. Many engineers and scientists agree that the solution to these global problems would be to replace the existing fossil fuel system by the hydrogen energy system. Hydrogen is a very efficient and clean fuel. Its combustion will produce no greenhouse gases, no ozone layer depleting chemicals, little or no acid rain ingredients and pollution. Hydrogen, produced from renewable energy (e.g., solar) sources, would result in a permanent energy system, which we would never have to change. However, there are other energy systems proposed for the post-petroleum era, such as a synthetic fossil fuel system. In this system, synthetic gasoline and synthetic natural gas will be produced using abundant deposits of coal. In a way, this will ensure the continuation of the present fossil fuel system. The two possible energy systems for the post-fossil fuel era (i.e., the solar-hydrogen energy system and the synthetic fossil fuel system) are compared with the present fossil fuel system by taking into consideration production costs, environmental damages and utilization efficiencies. The results indicate that the solar-hydrogen energy system is the best energy system to ascertain a sustainable future, and it should replace the fossil fuel system before the end of the 21st century

  7. 21st century's energy: hydrogen energy system

    International Nuclear Information System (INIS)

    Veziroglu, T. N.

    2007-01-01

    Fossil fuels (i.e., petroleum, natural gas and coal), which meet most of the world's energy demand today, are being depleted fast. Also, their combustion products are causing the global problems, such as the greenhouse effect, ozone layer depletion, acid rains and pollution, which are posing great danger for our environment and eventually for the life in our planet. Many engineers and scientists agree that the solution to these global problems would be to replace the existing fossil fuel system by the Hydrogen Energy System. Hydrogen is a very efficient and clean fuel. Its combustion will produce no greenhouse gases, no ozone layer depleting chemicals, little or no acid rain ingredients and pollution. Hydrogen, produced from renewable energy (e.g., solar) sources, would result in a permanent energy system, which we would never have to change. However, there are other energy systems proposed for the post-petroleum era, such as a synthetic fossil fuel system. In this system, synthetic gasoline and synthetic natural gas will be produced using abundant deposits of coal. In a way, this will ensure the continuation of the present fossil fuel system. The two possible energy systems for the post-fossil fuel era (i.e., the solar hydrogen energy system and the synthetic fossil fuel system) are compared with the present fossil fuel system by taking into consideration production costs, environmental damages and utilization efficiencies. The results indicate that the solar hydrogen energy system is the best energy system to ascertain a sustainable future, and it should replace the fossil fuel system before the end of the 21st Century

  8. Proceedings of the joint contractors meeting: FE/EE Advanced Turbine Systems conference FE fuel cells and coal-fired heat engines conference

    Energy Technology Data Exchange (ETDEWEB)

    Geiling, D.W. [ed.

    1993-08-01

    The joint contractors meeting: FE/EE Advanced Turbine Systems conference FEE fuel cells and coal-fired heat engines conference; was sponsored by the US Department of Energy Office of Fossil Energy and held at the Morgantown Energy Technology Center, P.O. Box 880, Morgantown, West Virginia 26507-0880, August 3--5, 1993. Individual papers have been entered separately.

  9. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  10. Appraisal of Passive and Active Fire Protection Systems in Student’s Accommodation

    Directory of Open Access Journals (Sweden)

    Ismail I.

    2014-03-01

    Full Text Available Fire protection systems are very important systems that must be included in buildings. They have a great significance in reducing or preventing the occurrences of fire. This paper presents an assessment of fire protection systems in student’s accommodation. Student accommodation is a particular type of building that provides shelter for students at University. In addition, it is also supposed to be an attractive environment, conducive to learning, and importantly, safe for occupation. The fire safety of occupants in a building, must be in accordance with the requirements of the building’s code. Therefore, the design of the building must comply with the Uniform Building By-Law (UBBL 1984 of Malaysia, and provide all of the required safety features. This paper describes the findings from investigations of passive and active fire protection systems installed in buildings, based on fire safety requirements, UBBL (1984.

  11. 46 CFR 167.45-1 - Steam, carbon dioxide, and halon fire extinguishing systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Steam, carbon dioxide, and halon fire extinguishing....45-1 Steam, carbon dioxide, and halon fire extinguishing systems. (a) General requirements. (1...-extinguishing system. On such vessels contracted for prior to January 1, 1962, a steam smothering system may be...

  12. 14 CFR 25.858 - Cargo or baggage compartment smoke or fire detection systems.

    Science.gov (United States)

    2010-01-01

    ... detection systems. 25.858 Section 25.858 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... Construction Fire Protection § 25.858 Cargo or baggage compartment smoke or fire detection systems. If... must be met for each cargo or baggage compartment with those provisions: (a) The detection system must...

  13. ANALISA KEHILANGAN ENERGI PADA FIRE TUBE BOILER KAPASITAS 10 TON

    Directory of Open Access Journals (Sweden)

    Aditio Primayudi Aji Nugroho

    2015-06-01

    Full Text Available Tujuan dari penulisan ini adalah menghitung kinerja boiler dengan mengetahui kerugian energi pada saat produksi steam. Analisa teknis pada boiler sangat diperlukan, sebagai upaya peningkatan efisiensi dan mengetahui banyaknya energi yang terbuang sebagai kerugian. Faktorfaktor penyebab kehilangan panas/heat loss terbesar pada boiler antara lain : “kehilangan panas akibat gas buang kering, kandungan steam dalam gas buang, kandungan air dalam bahan bakar, kandungan air dalam suplai udara dan lain-lain”.Kehilangan panas/heat loss atau juga bisa disebut kehilangan energi merupakan salah satu faktor penting yang sangat berpengaruh dalam mengidentifikasi efisiensi pada boiler.Untuk itu dilakukan studi analisa dengan perhitungan kehilangan panas dengan tujuan untuk mengetahui besarnya penurunan performance dan penyebab dari penurunan performance. Berdasarkan data dan analisa metode direct diketahui penurunan sebesar 21% pada kondisi normal (operasi 79% dan dari hasil perhitungan kehilangan panas indirect sebesar 16.68% efisiensi boiler sebesar 83.32% maka dari itu adanya kehilangan panas, perlu adanya perbaikan dalam control pengaturan bahan bakar dan udara yang masuk secara optimum dengan cara menggunakan Oxygen Trim Control yang berfungsi untuk mengukur konsentrasi oksigen pada cerobong dan secara otomatis mengatur oksigen pada udara yang masuk burner sehingga dihasilkan pembakaran dengan efisiensi yang optimal.dan dengan menggunakan economizer pada pemanasan awal suhu air umpan dapat menaikan efisiensi boiler.

  14. Direct energy balance based active disturbance rejection control for coal-fired power plant.

    Science.gov (United States)

    Sun, Li; Hua, Qingsong; Li, Donghai; Pan, Lei; Xue, Yali; Lee, Kwang Y

    2017-09-01

    The conventional direct energy balance (DEB) based PI control can fulfill the fundamental tracking requirements of the coal-fired power plant. However, it is challenging to deal with the cases when the coal quality variation is present. To this end, this paper introduces the active disturbance rejection control (ADRC) to the DEB structure, where the coal quality variation is deemed as a kind of unknown disturbance that can be estimated and mitigated promptly. Firstly, the nonlinearity of a recent power plant model is analyzed based on the gap metric, which provides guidance on how to set the pressure set-point in line with the power demand. Secondly, the approximate decoupling effect of the DEB structure is analyzed based on the relative gain analysis in frequency domain. Finally, the synthesis of the DEB based ADRC control system is carried out based on multi-objective optimization. The optimized ADRC results show that the integrated absolute error (IAE) indices of the tracking performances in both loops can be simultaneously improved, in comparison with the DEB based PI control and H ∞ control system. The regulation performance in the presence of the coal quality variation is significantly improved under the ADRC control scheme. Moreover, the robustness of the proposed strategy is shown comparable with the H ∞ control. Copyright © 2017. Published by Elsevier Ltd.

  15. Multiple Energy System Analysis of Smart Energy Systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck

    2015-01-01

    thermal grids and smart gas grids, Smart Energy Systems moves the flexibility away from the fuel as is the case in current energy systems and into the system itself. However, most studies applying a Smart Energy System approach deals with analyses for either single countries or whole continents......To eliminate the use of fossil fuels in the energy sector it is necessary to transition to future 100% renewable energy systems. One approach for this radical change in our energy systems is Smart Energy Systems. With a focus on development and interaction between smart electricity grids, smart......, but it is unclear how regions, municipalities, and communities should deal with these national targets. It is necessary to be able to provide this information since Smart Energy Systems utilize energy resources and initiatives that have strong relations to local authorities and communities, such as onshore wind...

  16. A system extinguishing a fire by insulating a liquid fuel

    International Nuclear Information System (INIS)

    Colome, Jacques; Duchene, Alain; Regnier, Jean.

    1975-01-01

    The invention refers to a system for quickly extinguishing a liquid fuel body on fire by insulating it completely from the ambient air. It applies particularly to the case of a high temperature liquid sodium sheet flowing accidentally from a circuit belonging to a fast neutron reactor. The system in question includes a lower receptacle for collecting the liquid fuel and a top cover shutting off the receptacle. This cover has inclined channels to take the liquid fuel flow and openings to allow this liquid through at the bottom end of the channels. These openings are closed by retractable shutters moving away under the pressure of the liquid in the channels and closing automatically after the liquid has flowed into the receptacle [fr

  17. Energy systems in transition

    International Nuclear Information System (INIS)

    Haefele, W.

    1989-01-01

    The principal point of the author was to discuss energy systems (ES) in transition, transition addresses the next 10-25 years, and strategy of the transition. He considers different scenarios of future development of ES. Further he presents considerations elaborated during the last years on the concept of novel horizontally integrated ES which gives promise to be at least an approximation to the desired object of no emissions. The main ideas of the concept are: to decompose and thereby clean all the primary inputs before they are brought to combustion; to develop a network combining all the primary inputs to an integrated supply structure of high absorption, buffer, and storage capacity that resembles in some way the supply and utility functions of the well established electric grid but completes it at best on the basis of mass flows; to achieve a high flexibility in supplying the final energy. The author considers the long run perspective of hydrogen, solar, and nuclear energy with respect to alternative energy sources. 6 refs, 24 figs

  18. Chaos in integrate-and-fire dynamical systems

    International Nuclear Information System (INIS)

    Coombes, S.

    2000-01-01

    Integrate-and-fire (IF) mechanisms are often studied within the context of neural dynamics. From a mathematical perspective they represent a minimal yet biologically realistic model of a spiking neuron. The non-smooth nature of the dynamics leads to extremely rich spike train behavior capable of explaining a variety of biological phenomenon including phase-locked states, mode-locking, bursting and pattern formation. The conditions under which chaotic spike trains may be generated in synaptically interacting networks of neural oscillators is an important open question. Using techniques originally introduced for the study of impact oscillators we develop the notion of a Liapunov exponent for IF systems. In the strong coupling regime a network may undergo a discrete Turing-Hopf bifurcation of the firing times from a synchronous state to a state with periodic or quasiperiodic variations of the interspike intervals on closed orbits. Away from the bifurcation point these invariant circles may break up. We establish numerically that in this case the largest IF Liapunov exponent becomes positive. Hence, one route to chaos in networks of synaptically coupled IF neurons is via the breakup of invariant circles

  19. Single vs. dual color fire detection systems: operational tradeoffs

    Science.gov (United States)

    Danino, Meir; Danan, Yossef; Sinvani, Moshe

    2017-10-01

    In attempt to supply a reasonable fire plume detection, multinational cooperation with significant capital is invested in the development of two major Infra-Red (IR) based fire detection alternatives, single-color IR (SCIR) and dual-color IR (DCIR). False alarm rate was expected to be high not only as a result of real heat sources but mainly due to the IR natural clutter especially solar reflections clutter. SCIR uses state-of-the-art technology and sophisticated algorithms to filter out threats from clutter. On the other hand, DCIR are aiming at using additional spectral band measurements (acting as a guard), to allow the implementation of a simpler and more robust approach for performing the same task. In this paper we present the basics of SCIR & DCIR architecture and the main differences between them. In addition, we will present the results from a thorough study conducted for the purpose of learning about the added value of the additional data available from the second spectral band. Here we consider the two CO2 bands of 4-5 micron and of 2.5-3 micron band as well as off peak band (guard). The findings of this study refer also to Missile warning systems (MWS) efficacy, in terms of operational value. We also present a new approach for tunable filter to such sensor.

  20. INFORMATION-ANALYTICAL SYSTEM OF FORECAST VEGETATION FIRES IN NATURAL CONDITIONS

    Directory of Open Access Journals (Sweden)

    R. M. Kogan

    2015-01-01

    Full Text Available A system for spatial prediction for fire danger as function of weather and pyrological vegetation characteristics was constructed. The method of calculating the time conducted vegetable combustible materials in fire condition of each month of the season was suggested. Calculate the probability of fires and danger periods of plant formations in a monsoon climate. The geographic information system was developed, it was tested in the Middle Amur region in the Russian Far East.

  1. Exergy Analysis of Complex Ship Energy Systems

    Directory of Open Access Journals (Sweden)

    Pierre Marty

    2016-04-01

    Full Text Available With multiple primary and secondary energy converters (diesel engines, steam turbines, waste heat recovery (WHR and oil-fired boilers, etc. and extensive energy networks (steam, cooling water, exhaust gases, etc., ships may be considered as complex energy systems. Understanding and optimizing such systems requires advanced holistic energy modeling. This modeling can be done in two ways: The simpler approach focuses on energy flows, and has already been tested, approved and presented; a new, more complicated approach, focusing on energy quality, i.e., exergy, is presented in this paper. Exergy analysis has rarely been applied to ships, and, as a general rule, the shipping industry is not familiar with this tool. This paper tries to fill this gap. We start by giving a short reminder of what exergy is and describe the principles of exergy modeling to explain what kind of results should be expected from such an analysis. We then apply these principles to the analysis of a large two-stroke diesel engine with its cooling and exhaust systems. Simulation results are then presented along with the exergy analysis. Finally, we propose solutions for energy and exergy saving which could be applied to marine engines and ships in general.

  2. Safety assessment of VHTR hydrogen production system against fire, explosion and acute toxicity

    International Nuclear Information System (INIS)

    Murakami, Tomoyuki; Nishihara, Tetsuo; Kunitomi, Kazuhiko

    2008-01-01

    The Japan Atomic Energy Agency has been developing a nuclear hydrogen production system by using heat from the Very High Temperature Reactor (VHTR). This system will handle a large amount of combustible gas and toxic gas. The risk from fire, explosion and acute toxic exposure caused by an accident involving chemical material release in a hydrogen production system is assessed. It is important to ensure the safety of the nuclear plant, and the risks for public health should be sufficiently small. This report provides the basic policy for the safety evaluation in cases of accident involving fire, explosion and toxic material release in a hydrogen production system. Preliminary safety analysis of a commercial-sized VHTR hydrogen production system, GTHTR300C, is performed. This analysis provides us with useful information on the separation distance between a nuclear plant and a hydrogen production system and a prospect that an accident in a hydrogen production system does not significantly increase the risks of the public. (author)

  3. Convective heat exposure from large fires to the final filters of ventilation systems

    International Nuclear Information System (INIS)

    Alvares, N.J.

    1979-01-01

    The Fire Science Group of the Hazards Control Department, Lawrence Livermore Laboratory has been asked to design a probable fire scenario for a fuel-pellet fabrication facility. This model was used to estimate the potential for thermal damage to the final HEPA filters. These filters would not experience direct fire exposure because they are the last component of the ventilation system before the exhaust air pumps. However, they would be exposed to hot air and fire gases that are drawn into the ventilation system. Because fire is one of the few occurrences that can defeat the containment integrity of facilities where radioactive materials are stored and processed, the fire scenarios must be defined to ensure that containment systems are adequate to meet the threat of such events. Fire-growth calculations are based on the measured fuel load of materials within the fabrication enclosure and on semi-empirical fire-spread models. It is assumed that the fire never becomes ventilation controlled. The temperature rise of ceiling gases and heat transfer from ventilation ducting are calculated using accepted empirical relationships, and the analysis shows that even under the most severe exposure conditions, heat transfer from the duct reduces the fire gas temperatures to levels that would not hamper filter function

  4. Characterization of a mine fire using atmospheric monitoring system sensor data.

    Science.gov (United States)

    Yuan, L; Thomas, R A; Zhou, L

    2017-06-01

    Atmospheric monitoring systems (AMS) have been widely used in underground coal mines in the United States for the detection of fire in the belt entry and the monitoring of other ventilation-related parameters such as airflow velocity and methane concentration in specific mine locations. In addition to an AMS being able to detect a mine fire, the AMS data have the potential to provide fire characteristic information such as fire growth - in terms of heat release rate - and exact fire location. Such information is critical in making decisions regarding fire-fighting strategies, underground personnel evacuation and optimal escape routes. In this study, a methodology was developed to calculate the fire heat release rate using AMS sensor data for carbon monoxide concentration, carbon dioxide concentration and airflow velocity based on the theory of heat and species transfer in ventilation airflow. Full-scale mine fire experiments were then conducted in the Pittsburgh Mining Research Division's Safety Research Coal Mine using an AMS with different fire sources. Sensor data collected from the experiments were used to calculate the heat release rates of the fires using this methodology. The calculated heat release rate was compared with the value determined from the mass loss rate of the combustible material using a digital load cell. The experimental results show that the heat release rate of a mine fire can be calculated using AMS sensor data with reasonable accuracy.

  5. Energy System Analysis of 100 Per cent Renewable Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad

    2007-01-01

    This paper presents the methodology and results of the overall energy system analysis of a 100 per cent renewable energy system. The input for the systems is the result of a project of the Danish Association of Engineers, in which 1600 participants during more than 40 seminars discussed...... and designed a model for the future energy system of Denmark, putting emphasis on energy efficiency, CO2 reduction, and industrial development. The energy system analysis methodology includes hour by hour computer simulations leading to the design of flexible energy systems with the ability to balance...... the electricity supply and demand and to exchange electricity productions on the international electricity markets. The results are detailed system designs and energy balances for two energy target years: year 2050 with 100 per cent renewable energy from biomass and combinations of wind, wave and solar power...

  6. Battery energy storage systems life cycle costs case studies

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Miller, N.F.; Sen, R.K. [SENTECH, Inc., Bethesda, MD (United States)

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  7. A novel solar energy integrated low-rank coal fired power generation using coal pre-drying and an absorption heat pump

    International Nuclear Information System (INIS)

    Xu, Cheng; Bai, Pu; Xin, Tuantuan; Hu, Yue; Xu, Gang; Yang, Yongping

    2017-01-01

    Highlights: •An improved solar energy integrated LRC fired power generation is proposed. •High efficient and economic feasible solar energy conversion is achieved. •Cold-end losses of the boiler and condenser are reduced. •The energy and exergy efficiencies of the overall system are improved. -- Abstract: A novel solar energy integrated low-rank coal (LRC) fired power generation using coal pre-drying and an absorption heat pump (AHP) was proposed. The proposed integrated system efficiently utilizes the solar energy collected from the parabolic trough to drive the AHP to absorb the low-grade waste heat of the steam cycle, achieving larger amount of heat with suitable temperature for coal’s moisture removal prior to the furnace. Through employing the proposed system, the solar energy could be partially converted into the high-grade coal’s heating value and the cold-end losses of the boiler and the steam cycle could be reduced simultaneously, leading to a high-efficient solar energy conversion together with a preferable overall thermal efficiency of the power generation. The results of the detailed thermodynamic and economic analyses showed that, using the proposed integrated concept in a typical 600 MW LRC-fired power plant could reduce the raw coal consumption by 4.6 kg/s with overall energy and exergy efficiencies improvement of 1.2 and 1.8 percentage points, respectively, as 73.0 MW th solar thermal energy was introduced. The cost of the solar generated electric power could be as low as $0.044/kW h. This work provides an improved concept to further advance the solar energy conversion and utilisation in solar-hybrid coal-fired power generation.

  8. Energy Storage Systems

    Science.gov (United States)

    Elliott, David

    2017-07-01

    As renewable energy use expands there will be a need to develop ways to balance its variability. Storage is one of the options. Presently the main emphasis is for systems storing electrical power in advanced batteries (many of them derivatives of parallel developments in the electric vehicle field), as well as via liquid air storage, compressed air storage, super-capacitors and flywheels, and, the leader so far, pumped hydro reservoirs. In addition, new systems are emerging for hydrogen generation and storage, feeding fuel cell power production. Heat (and cold) is also a storage medium and some systems exploit thermal effects as part of wider energy management activity. Some of the more exotic ones even try to use gravity on a large scale. This short book looks at all the options, their potentials and their limits. There are no clear winners, with some being suited to short-term balancing and others to longer-term storage. The eventual mix adopted will be shaped by the pattern of development of other balancing measures, including smart-grid demand management and super-grid imports and exports.

  9. Energy analysis of power systems

    International Nuclear Information System (INIS)

    2004-01-01

    Next to economic viability, the holistic energy balance of electricity generation options' is a factor of major importance. All aspects of the energy balance, i. e. all expenditures and all revenues, are compared in a life cycle analysis. This turns out to be a complex task, especially because of the large number of input quantities to be determined, including the balancing limits to be taken into account. The article presents in detail the findings of analyses of energy balances for various types of nuclear power plants as well as electricity generation in fossil-fired power plants, and for renewable energies. The analyses and their databases are discussed. Moreover, the findings are presented for the energetic amortization periods and the amounts of CO 2 emissions specific to the respective generating technologies. (orig.)

  10. A method for ensemble wildland fire simulation

    Science.gov (United States)

    Mark A. Finney; Isaac C. Grenfell; Charles W. McHugh; Robert C. Seli; Diane Trethewey; Richard D. Stratton; Stuart Brittain

    2011-01-01

    An ensemble simulation system that accounts for uncertainty in long-range weather conditions and two-dimensional wildland fire spread is described. Fuel moisture is expressed based on the energy release component, a US fire danger rating index, and its variation throughout the fire season is modeled using time series analysis of historical weather data. This analysis...

  11. Smart energy and smart energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Østergaard, Poul Alberg; Connolly, David

    2017-01-01

    In recent years, the terms “Smart Energy” and “Smart Energy Systems” have been used to express an approach that reaches broader than the term “Smart grid”. Where Smart Grids focus primarily on the electricity sector, Smart Energy Systems take an integrated holistic focus on the inclusion of more...... sectors (electricity, heating, cooling, industry, buildings and transportation) and allows for the identification of more achievable and affordable solutions to the transformation into future renewable and sustainable energy solutions. This paper first makes a review of the scientific literature within...... the field. Thereafter it discusses the term Smart Energy Systems with regard to the issues of definition, identification of solu- tions, modelling, and integration of storage. The conclusion is that the Smart Energy System concept represents a scientific shift in paradigms away from single-sector thinking...

  12. Spatial products available for identifying areas of likely wildfire ignitions using lightning location data-Wildland Fire Assessment System (WFAS)

    Science.gov (United States)

    Paul Sopko; Larry Bradshaw; Matt Jolly

    2016-01-01

    The Wildland Fire Assessment System (WFAS, www.wfas.net) is a one-stop-shop giving wildland fire managers the ability to assess fire potential ranging in scale from national to regional and temporally from 1 to 5 days. Each day, broad-area maps are produced from fire weather station and lightning location networks. Three products are created using 24 hour...

  13. A WebGIS-based command control system for forest fire fighting

    Science.gov (United States)

    Yang, Jianyu; Ming, Dongping; Zhang, Xiaodong; Huang, Haitao

    2006-10-01

    Forest is a finite resource and fire prevention is crucial work. However, once a forest fire or accident occurs, timely and effective fire-fighting is the only necessary measure. The aim of this research is to build a computerized command control system based on WEBGIS to direct fire-fighting. Firstly, this paper introduces the total technique flow and functional modules of the system. Secondly, this paper analyses the key techniques for building the system, and they are data obtaining, data organizing & management, architecture of WebGIS and sharing & interoperation technique. In the end, this paper demonstrates the on line martial symbol editing function to show the running result of system. The practical application of this system showed that it played very important role in the forest fire fighting work. In addition, this paper proposes some strategic recommendations for the further development of the system.

  14. RF Systems for a Proposed Next Step Option (FIRE)

    Energy Technology Data Exchange (ETDEWEB)

    Carter, M.D.; Swain, D.W.

    1999-04-12

    FIRE (Fusion Ignition Research Experiment) is a high-field, burning-plasma tokamak that is being studied as a possible option for future fusion research. Preliminary parameters for this machine are R0 approximately equal to 2 m, a approximately equal to 0.5 m, B0 approximately equal to 10 T, and Ip approximately equal to 6 MA. Magnetic field coils are to be made of copper and precooled with LN2 before each shot. The flat-top pulse length desired is greater than or equal to 10s. Ion cyclotron and lower hybrid rf systems will be used for heating and current drive. Present specifications call for 30 MW of ion cyclotron heating power, with 25 MW of lower hybrid power as an upgrade option.

  15. RF Systems for a Proposed Next Step Option (FIRE)

    International Nuclear Information System (INIS)

    Carter, M.D.; Swain, D.W.

    1999-01-01

    FIRE (Fusion Ignition Research Experiment) is a high-field, burning-plasma tokamak that is being studied as a possible option for future fusion research. Preliminary parameters for this machine are R 0 approximately equal to 2 m, a approximately equal to 0.5 m, B 0 approximately equal to 10 T, and I p approximately equal to 6 MA. Magnetic field coils are to be made of copper and precooled with LN 2 before each shot. The flat-top pulse length desired is greater than or equal to 10s. Ion cyclotron and lower hybrid rf systems will be used for heating and current drive. Present specifications call for 30 MW of ion cyclotron heating power, with 25 MW of lower hybrid power as an upgrade option

  16. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    the Energy Systems Integration Facility as part of NREL's work with SolarCity and the Hawaiian Electric Companies. Photo by Amy Glickson, NREL Welcome to Energy Systems Integration News, NREL's monthly date on the latest energy systems integration (ESI) developments at NREL and worldwide. Have an item

  17. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  18. 33 CFR 149.416 - What are the requirements for a dry chemical fire suppression system?

    Science.gov (United States)

    2010-07-01

    ... the requirements for a dry chemical fire suppression system? Each natural gas deepwater port must be... dry chemical fire suppression system? 149.416 Section 149.416 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: DESIGN, CONSTRUCTION...

  19. Monitoring of pipeline oil spill fire events using Geographical Information System and Remote Sensing

    Science.gov (United States)

    Ogungbuyi, M. G.; Eckardt, F. D.; Martinez, P.

    2016-12-01

    Nigeria, the largest producer of crude oil in Africa occupies sixth position in the world. Despite such huge oil revenue potentials, its pipeline network system is consistently susceptible to leaks causing oil spills. We investigate ground based spill events which are caused by operational error, equipment failure and most importantly by deliberate attacks along the major pipeline transport system. Sometimes, these spills are accompanied with fire explosion caused by accidental discharge, natural or illegal refineries in the creeds, etc. MODIS satellites fires data corresponding to the times and spill events (i.e. ground based data) of the Area of Interest (AOI) show significant correlation. The open source Quantum Geographical Information System (QGIS) was used to validate the dataset and the spatiotemporal analyses of the oil spill fires were expressed. We demonstrate that through QGIS and Google Earth (using the time sliders), we can identify and monitor oil spills when they are attended with fire events along the pipeline transport system accordingly. This is shown through the spatiotemporal images of the fires. Evidence of such fire cases resulting from bunt vegetation as different from industrial and domestic fire is also presented. Detecting oil spill fires in the study location may not require an enormous terabyte of image processing: we can however rely on a near-real-time (NRT) MODIS data that is readily available twice daily to detect oil spill fire as early warning signal for those hotspots areas where cases of oil seepage is significant in Nigeria.

  20. Passive fire building protection system evaluation (case study: millennium ict centre)

    Science.gov (United States)

    Rahman, Vinky; Stephanie

    2018-03-01

    Passive fire protection system is a system that refers to the building design, both regarding of architecture and structure. This system usually consists of structural protection that protects the structure of the building and prevents the spread of fire and facilitate the evacuation process in case of fire. Millennium ICT Center is the largest electronic shopping center in Medan, Indonesia. As a public building that accommodates the crowd, this building needs a fire protection system by the standards. Therefore, the purpose of this study is to evaluate passive fire protection system of Millennium ICT Center building. The study was conducted to describe the facts of the building as well as direct observation to the research location. The collected data is then processed using the AHP (Analytical Hierarchy Process) method in its weighting process to obtain the reliability value of passive fire protection fire system. The results showed that there are some components of passive fire protection system in the building, but some are still unqualified. The first section in your paper

  1. HYDROKINETIC ENERGY CONVERSION SYSTEMS: PROSPECTS ...

    African Journals Online (AJOL)

    eobe

    Hydrokinetic energy conversion systems utilize the kinetic energy of flowing water bodies with little or no head to generate ... generator. ... Its principle of operation is analogous to that of wind ..... Crisis-solar and wind power systems, 2009,.

  2. Adsorber fires

    International Nuclear Information System (INIS)

    Holmes, W.

    1987-01-01

    The following conclusions are offered with respect to activated charcoal filter systems in nuclear power plants: (1) The use of activated charcoal in nuclear facilities presents a potential for deep-seated fires. (2) The defense-in-depth approach to nuclear fire safety requires that if an ignition should occur, fires must be detected quickly and subsequently suppressed. (3) Deep-seated fires in charcoal beds are difficult to extinguish. (4) Automatic water sprays can be used to extinguish fires rapidly and reliably when properly introduced into the burning medium. The second part of the conclusions offered are more like challenges: (1) The problem associated with inadvertent actuations of fire protection systems is not a major one, and it can be reduced further by proper design review, installation, testing, and maintenance. Eliminating automatic fire extinguishing systems for the protection of charcoal adsorbers is not justified. (2) Removal of automatic fire protection systems due to fear of inadvertent fire protection system operation is a case of treating the effect rather than the cause. On the other hand, properly maintaining automatic fire protection systems will preserve the risk of fire loss at acceptable levels while at the same time reducing the risk of damage presented by inadvertent operation of fire protection systems

  3. Integrated energy systems and local energy markets

    DEFF Research Database (Denmark)

    Lund, Henrik; Münster, Ebbe

    2006-01-01

    Significant benefits are connected with an increase in the flexibility of the Danish energy system. On the one hand, it is possible to benefit from trading electricity with neighbouring countries, and on the other, Denmark will be able to make better use of wind power and other types of renewable...... energy in the future. This paper presents the analysis of different ways of increasing flexibility in the Danish energy system by the use of local regulation mechanisms. This strategy is compared with the opposite extreme, i.e. trying to solve all balancing problems via electricity trade...

  4. Forest fire management to avoid unintended consequences: a case study of Portugal using system dynamics.

    Science.gov (United States)

    Collins, Ross D; de Neufville, Richard; Claro, João; Oliveira, Tiago; Pacheco, Abílio P

    2013-11-30

    Forest fires are a serious management challenge in many regions, complicating the appropriate allocation to suppression and prevention efforts. Using a System Dynamics (SD) model, this paper explores how interactions between physical and political systems in forest fire management impact the effectiveness of different allocations. A core issue is that apparently sound management can have unintended consequences. An instinctive management response to periods of worsening fire severity is to increase fire suppression capacity, an approach with immediate appeal as it directly treats the symptom of devastating fires and appeases the public. However, the SD analysis indicates that a policy emphasizing suppression can degrade the long-run effectiveness of forest fire management. By crowding out efforts to preventative fuel removal, it exacerbates fuel loads and leads to greater fires, which further balloon suppression budgets. The business management literature refers to this problem as the firefighting trap, wherein focus on fixing problems diverts attention from preventing them, and thus leads to inferior outcomes. The paper illustrates these phenomena through a case study of Portugal, showing that a balanced approach to suppression and prevention efforts can mitigate the self-reinforcing consequences of this trap, and better manage long-term fire damages. These insights can help policymakers and fire managers better appreciate the interconnected systems in which their authorities reside and the dynamics that may undermine seemingly rational management decisions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Characterization of modulated integrate-and-fire systems

    International Nuclear Information System (INIS)

    Alstroem, P.; Christiansen, B.; Levinsen, M.T.

    1988-01-01

    The phase locking structure in threshold modulated integrate-and-fire systems is explored. The existence of a smooth critical line where the Poincare map has an infinite slope inflection point is emphasized. At and below this line the system is related to circle map systems. Especially, this allows realization of systems with higher order scaling structures, qualitatively distinct from ordinary third order circle map structures. Hourglass patterns develop in parameter space and at small modulation amplitudes the behavior of the phase-locking regions (Arnold tongues) change dramatically. Above the critical line the Arnold tongues complete the parameter space, leaving along any line a zero-dimensional Cantor set of points associated with irrational rotation numbers. The critical line is not associated with a transition to chaos. In particular non-chaotic regions with complete phase-locking exist. In the supercritical region a gap is present in the Poincare map. The features at this gap are examined. Also local hysteresis may occur. We discuss the applicability of the local approximation. (orig.)

  6. Integrating geothermal into coal-fired power plant with carbon capture: A comparative study with solar energy

    International Nuclear Information System (INIS)

    Wang, Fu; Deng, Shuai; Zhao, Jun; Zhao, Jiapei; Yang, Guohua; Yan, Jinyue

    2017-01-01

    Highlights: • Post-combustion carbon capture integrating geothermal energy was proposed. • A 300 MWe subcritical coal-fired plant was selected as the baseline. • The geothermal assisted carbon capture system was compared with solar assisted carbon capture plant. • Two different locations were chosen for the technical and economical comparison. • Using medium temperature geothermal thermal energy to replace steam extraction performs better performance. - Abstract: A new system integrating geothermal energy into post-combustion carbon capture is proposed in this paper. Geothermal energy at medium temperatures is used to provide the required thermal heat for solvent regeneration. The performance of this system is compared with solar assisted carbon capture plant via technical and economic evaluation. A 300 MWe coal-fired power plant is selected as the reference case, and two different locations based on the local climatic conditions and geothermal resources are chosen for the comparison. The results show that the geothermal assisted post-combustion carbon capture plant has better performances than the solar assisted one in term of the net power output and annual electricity generation. The net plant average efficiency based on lower heating value can be increased by 2.75% with a thermal load fraction of about 41%. Results of economic assessment show that the proposed geothermal assisted post-combustion carbon capture system has lower levelized costs of electricity and cost of carbon dioxide avoidance compared to the solar assisted post-combustion carbon capture plant. In order to achieve comparative advantages over the reference post-combustion carbon capture plant in both locations, the price of solar collector has to be lower than 70 USD/m 2 , and the drilling depth of the geothermal well shall be less than 2.1 km.

  7. Coal fires, fresh air and the hardy British: A historical view of domestic energy efficiency and thermal comfort in Britain

    International Nuclear Information System (INIS)

    Rudge, Janet

    2012-01-01

    Fuel poverty has been most commonly researched in the UK although it is experienced in other parts of Europe, to varying degrees. showed that energy inefficient buildings and heating systems are the most significant components of fuel poverty and highlighted the legacy of older buildings in this country that remain the majority of those now recognised as hard to treat. This paper considers the historical context for fuel poverty as a particularly British phenomenon. It examines claims that this is due to the mild climate and low indoor temperature expectations. It is concluded that there are significant differences from the European situation. The climate, particularly its characteristic changeability, has influenced building and heating methods, and the low priority given to energy efficiency by legislators. Significantly, economic priorities produced poor quality mass housing during the industrial revolution. The availability of coal encouraged the use of open fires, which demanded high ventilation rates. The British do value warmth but older buildings designed for heating with radiant open fires are difficult to adapt to convective central heating. Lessons can be drawn for newly industrialised economies similarly producing poor quality mass housing with low priorities for energy efficiency. - Highlights: ► Historical reasons for fuel poverty as a particularly UK phenomenon are considered. ► There are significant differences with the European situation. ► The changeable climate influenced building and heating methods as well as health. ► Fuel supply encouraged heating by inefficient open fires that needed draughts. ► Improving airtightness in an oldhousing stock remains challenging.

  8. Geometry-Of-Fire Tracking Algorithm for Direct-Fire Weapon Systems

    Science.gov (United States)

    2015-09-01

    this specific application. A scaled-down version for a fire team was created with XBee Pro radios, Arduino Uno microcontrollers, Raspberry Pi computers...constructed with XBee Pro radios, Arduino Uno microcontrollers, Raspberry Pi computers and ROS [5]. The XBee Pro radios and Arduino Uno microcontrollers

  9. Wildland fire decision support system air quality tools

    Science.gov (United States)

    Sim Larkin; Tim Brown; Pete Lahm; Tom Zimmerman

    2010-01-01

    Smoke and air quality information have an important role in wildland fire decisionmaking that is reinforced in the 2009 "Guidance for Implementation of Federal Wildland Fire Management Policy." A key intent of the guidance is to allow consideration and use of the full range of strategic and tactical options that are available in the response to every wildland...

  10. Additives for Water Mist Fire Suppression Systems: A Review

    Science.gov (United States)

    2012-11-01

    matériel et aux composants électroniques exposés aux vapeurs acides. Le brouillard d’eau ne contient pas de gaz acides et, par conséquent, peut être...diesel fuel) fire decreased from 175 seconds to 8 seconds when the additive was used and an Avtur (aviation turbine fuel) fire that was not

  11. Co-firing biomass and fossil fuels

    International Nuclear Information System (INIS)

    Junge, D.C.

    1991-01-01

    In June 1989, the Alaska Energy Authority and the University of Alaska Anchorage published a monograph summarizing the technology of co-firing biomass and fossil fuels. The title of the 180 page monograph is 'Use of Mixed Fuels in Direct Combustion Systems'. Highlights from the monograph are presented in this paper with emphasis on the following areas: (1) Equipment design and operational experience co-firing fuels; (2) The impact of co-firing on efficiency; (3) Environmental considerations associated with co-firing; (4) Economic considerations in co-firing; and (5) Decision making criteria for co-firing

  12. Wind Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke

    2017-01-01

    transmission networks at the scale of hundreds of megawatts. As its level of grid penetration has begun to increase dramatically, wind power is starting to have a significant impact on the operation of the modern grid system. Advanced power electronics technologies are being introduced to improve......Wind power now represents a major and growing source of renewable energy. Large wind turbines (with capacities of up to 6-8 MW) are widely installed in power distribution networks. Increasing numbers of onshore and offshore wind farms, acting as power plants, are connected directly to power...... the characteristics of the wind turbines, and make them more suitable for integration into the power grid. Meanwhile, there are some emerging challenges that still need to be addressed. This paper provides an overview and discusses some trends in the power electronics technologies used for wind power generation...

  13. Mathematical Modelling of Drying Kinetics of Wheat in Electron Fired Fluidized Bed Drying System

    Science.gov (United States)

    Deomore, Dayanand N.; Yarasu, Ravindra B.

    2018-02-01

    The conventional method of electrical heating is replaced by electron firing system. The drying kinetics of wheat is studied using electron fired fluidized bed dryer. The results are simulated by using ANSYS. It was observed that the graphs are in agreement with each other. Therefore, the new proposed electronic firing system can be employed instead of electrical firing. It was observed that the drop in Relative Humidity in case of Electrical heating is 68.75% for temp reaching up to 70° C in 67 sec for pressure drop of 13 psi while for the electronic Firing system it is 67.6 % temp reaches to 70° C in 70 sec for pressure drop of 12.67 psi. As the results are in agreement with each other it was concluded that for the grains like wheat which has low initial moisture content both systems can be used.

  14. Coupling Strength and System Size Induce Firing Activity of Globally Coupled Neural Network

    International Nuclear Information System (INIS)

    Wei Duqu; Luo Xiaoshu; Zou Yanli

    2008-01-01

    We investigate how firing activity of globally coupled neural network depends on the coupling strength C and system size N. Network elements are described by space-clamped FitzHugh-Nagumo (SCFHN) neurons with the values of parameters at which no firing activity occurs. It is found that for a given appropriate coupling strength, there is an intermediate range of system size where the firing activity of globally coupled SCFHN neural network is induced and enhanced. On the other hand, for a given intermediate system size level, there exists an optimal value of coupling strength such that the intensity of firing activity reaches its maximum. These phenomena imply that the coupling strength and system size play a vital role in firing activity of neural network

  15. Design and Realization of Ship Fire Simulation Training System Based on Unity3D

    Science.gov (United States)

    Ting, Ye; Feng, Chen; Wenqiang, Wang; Kai, Yang

    2018-01-01

    Ship fire training is a very important training to ensure the safety of the ship, but limited by the characteristics of the ship itself, it is difficult to carry out fire training on the ship. This paper proposes to introduce a virtual reality technology to build a set of ship fire simulation training system, used to improve the quality of training, reduce training costs. First, the system design ideas are elaborated, and the system architecture diagram is given. Then, the key technologies in the process of system implementation are analyzed. Finally, the system examples are built and tested.

  16. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    organization and independent system operator settle energy transactions in its real-time markets at the same time interval it dispatches energy, and settle operating reserves transactions in its real-time markets the electric grid. These control systems will enable real-time coordination between distributed energy

  17. FUEGO — Fire Urgency Estimator in Geosynchronous Orbit — A Proposed Early-Warning Fire Detection System

    Directory of Open Access Journals (Sweden)

    Scott Stephens

    2013-10-01

    Full Text Available Current and planned wildfire detection systems are impressive but lack both sensitivity and rapid response times. A small telescope with modern detectors and significant computing capacity in geosynchronous orbit can detect small (12 m2 fires on the surface of the earth, cover most of the western United States (under conditions of moderately clear skies every few minutes or so, and attain very good signal-to-noise ratio against Poisson fluctuations in a second. Hence, these favorable statistical significances have initiated a study of how such a satellite could operate and reject the large number of expected systematic false alarms from a number of sources. Here we present both studies of the backgrounds in Geostationary Operational Environmental Satellites (GOES 15 data and studies that probe the sensitivity of a fire detection satellite in geosynchronous orbit. We suggest a number of algorithms that can help reduce false alarms, and show efficacy on a few. Early detection and response would be of true value in the United States and other nations, as wildland fires continue to severely stress resource managers, policy makers, and the public, particularly in the western US. Here, we propose the framework for a geosynchronous satellite with modern imaging detectors, software, and algorithms able to detect heat from early and small fires, and yield minute-scale detection times.

  18. Fire protection program fiscal year 1995 site support program plan, Hanford Fire Department

    International Nuclear Information System (INIS)

    Good, D.E.

    1994-09-01

    The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, or interest of the US Department of Energy operated Hanford Site. This includes response to surrounding fire departments/districts under a mutual aid agreement and contractual fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System). The fire department also provides site fire marshal overview authority, fire system testing and maintenance, self-contained breathing apparatus maintenance, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education. This report describes the specific responsibilities and programs that the HFD must support and the estimated cost of this support for FY1995

  19. Fire Protection Program fiscal year 1996, site support program plan Hanford Fire Department. Revision 2

    International Nuclear Information System (INIS)

    Good, D.E.

    1995-09-01

    The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, or interest of the US Department of Energy operated Hanford Site. This includes response to surrounding fire departments/districts under a mutual aid agreement and contractual fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System). The fire department also provides site fire marshal overview authority, fire system testing and maintenance, self-contained breathing apparatus maintenance, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education. This report gives a program overview, technical program baselines, and cost and schedule baseline

  20. Renewable energy covernance systems

    International Nuclear Information System (INIS)

    Hvelplund, F.

    2001-01-01

    The 'political quota-/certificate price market' system introduces an inefficient competition between energy robots, and weakens the increasingly important competition between equipment producers. It hampers the competition between investors by making it difficult for neighbours and local investors to invest in wind turbines. Due to its mono price character, it gives too high profits to wind turbine owners at very good wind sites, and not high enough to wind turbine owners at poor wind sites. The 'political quota-/certificate price market' system is very far from being a market model, as the RE amount is politically decided and the certificate market price is also political influenced. The conclusion, therefore, is that it is time to find a RE governance model that considers the specific needs and characteristics of RE technologies. The present analysis strongly indicates that a 'political price-/amount market' model in this connection is far better than the 'political quota-/certificate price market' model. Furthermore, a common EU model, based on the principle of site efficiency, would be much more flexible, cheaper and easier to pursue than the 'political quota-/certificate price market', or mono price model, which is designed for uranium and fossil fuel technologies, and represents a governance model designed for the technologies of yesterday. (EHS)

  1. Analysis of the evaporative towers cooling system of a coal-fired power plant

    Directory of Open Access Journals (Sweden)

    Laković Mirjana S.

    2012-01-01

    Full Text Available The paper presents a theoretical analysis of the cooling system of a 110 MW coal-fired power plant located in central Serbia, where eight evaporative towers cool down the plant. An updated research on the evaporative tower cooling system has been carried out to show the theoretical analysis of the tower heat and mass balance, taking into account the sensible and latent heat exchanged during the processes which occur inside these towers. Power plants which are using wet cooling towers for cooling condenser cooling water have higher design temperature of cooling water, thus the designed condensing pressure is higher compared to plants with a once-through cooling system. Daily and seasonal changes further deteriorate energy efficiency of these plants, so it can be concluded that these plants have up to 5% less efficiency compared to systems with once-through cooling. The whole analysis permitted to evaluate the optimal conditions, as far as the operation of the towers is concerned, and to suggest an improvement of the plant. Since plant energy efficiency improvement has become a quite common issue today, the evaluation of the cooling system operation was conducted under the hypothesis of an increase in the plant overall energy efficiency due to low cost improvement in cooling tower system.

  2. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    grids. In terms of paper sessions, NREL ESI researcher Santosh Veda chaired a session on energy Kroposki chaired a session on advanced renewable energy power systems. While Veda, Muljadi, and Kroposki

  3. Applying Open Source Game Engine for Building Visual Simulation Training System of Fire Fighting

    Science.gov (United States)

    Yuan, Diping; Jin, Xuesheng; Zhang, Jin; Han, Dong

    There's a growing need for fire departments to adopt a safe and fair method of training to ensure that the firefighting commander is in a position to manage a fire incident. Visual simulation training systems, with their ability to replicate and interact with virtual fire scenarios through the use of computer graphics or VR, become an effective and efficient method for fire ground education. This paper describes the system architecture and functions of a visual simulated training system of fire fighting on oil storage, which adopting Delat3D, a open source game and simulation engine, to provide realistic 3D views. It presents that using open source technology provides not only the commercial-level 3D effects but also a great reduction of cost.

  4. Experimental study of fire barriers preventing vertical fire spread in ETISs

    Directory of Open Access Journals (Sweden)

    Xin Huang

    2013-11-01

    Full Text Available In recent years, the external thermal insulation system (ETIS has been applied increasingly in a large amount of buildings for energy conservation purpose. However, the increase use of combustible insulation materials in the ETIS has raised serious fire safety problems. Fires involving this type of ETIS have caused severe damage and loss. In order to improve its fire safety, fire barriers were suggested to be installed. This paper introduces fire experiments that have been done to study the effects of fire barriers on preventing vertical fire spread along the ETIS. The experiments were performed according to BS 8414-1:2002 “Fire performance of external cladding systems – Part 1: Test method for non-loadbearing external cladding systems applied to the face of the building”. The test facility consists of a 9 m high wall. The fire sources were wood cribs with a fire size of 3 ± 0.5 MW. The insulation materials were expanded polystyrene foam (EPS. The fire barrier was a horizontal strip of rockwool with a width of 300 mm. Thermocouples were used to measure temperatures outside and inside the ETIS. A series of experiments with different fire scenarios were done: no fire barrier, two fire barriers and three fire barriers at different heights. Test results were compared. The results show that the ETIS using EPS without fire barriers almost burned out, while the ETIS with fire barriers performed well in preventing fire spread. The temperatures above the fire barrier were much lower than those below the fire barrier, and most of the insulation materials above the top fire barrier stayed in place.

  5. Updating of the fire fighting systems and organization at the Embalse nuclear power plant, Argentina

    International Nuclear Information System (INIS)

    Acevedo, C.F.

    1998-01-01

    A brief description is given of the updating carried out at the Embalse NPP after commissioning, covering the station fire equivalent loads, the station weak points from the fire point of view, the possible upgrading of systems or technological improvements, early alarm and automatic actions, organizations, education and training, and drills. (author)

  6. Grazing management, resilience and the dynamics of a fire driven rangeland system

    NARCIS (Netherlands)

    Anderies, J.M.; Janssen, M.A.; Walker, B.H.

    2002-01-01

    We developed a stylized mathematical model to explore the effects of physical, ecological, and economic factors on the resilience of a managed fire-driven rangeland system. Depending on grazing pressure, the model exhibits one of three distinct configurations: a fire-dominated, grazing-dominated, or

  7. Fuels planning: science synthesis and integration; environmental consequences fact sheet 01: Fire Effects Information System (FEIS)

    Science.gov (United States)

    Steve Sutherland

    2004-01-01

    The Fire Effects Information System (FEIS) provides accessible, up-to-date fire effects summaries, taken from current English-language literature, for almost 900 plant species, about 100 animal species, and 16 Kuchler plant communities found on the North American continent. This fact sheet discusses the development of FEIS and what is contained in the species summary....

  8. The state of development of fire management decision support systems in America and Europe

    Science.gov (United States)

    Robert Mavsar; Armando González-Cabán; Elsa. Varela

    2013-01-01

    Forest fires affect millions of people worldwide, and cause major ecosystem and economic impacts at different scales. The management policies implemented to minimize the negative impacts of forest fires require substantial investment of financial, human and organizational resources, which must be justifiable and efficient. Decision support systems based on economic...

  9. BEHAVE: fire behavior prediction and fuel modeling system-BURN Subsystem, part 1

    Science.gov (United States)

    Patricia L. Andrews

    1986-01-01

    Describes BURN Subsystem, Part 1, the operational fire behavior prediction subsystem of the BEHAVE fire behavior prediction and fuel modeling system. The manual covers operation of the computer program, assumptions of the mathematical models used in the calculations, and application of the predictions.

  10. Recommendations for ionization chamber smoke detectors for commercial and industrial fire protection systems (1988)

    International Nuclear Information System (INIS)

    1989-01-01

    Ionization chamber smoke detectors (ICSDs) utilising a radioactive substance as the source of ionization are used to detect the presence of smoke and hence give early warning of a fire. These recommendations are intended to ensure that the use of ICSDs incorporating radium-226 and americium-241 in commercial/industrial fire protection systems does not give rise to any unnecessary radiation exposure

  11. Integrated system of occupational safety and health and fire protection of the fire rescue brigades members.

    Science.gov (United States)

    Božović, Marijola; Živković, Snežana; Mihajlović, Emina

    2018-06-01

    The objective of the conducted research is the identification and determination of requirements of members of fire rescue brigades during operations in the conditions of high risk in order to minimize the possibilities for injury incidence during the intervention. The research is focused on examination, determination and identification of factors affecting the increasing number of occupational injuries of members of fire rescue brigades during interventions. Hypothetical framework of the research problem consists of general hypothesis and six special hypotheses. Results suggest that almost all respondents believe that their skills and abilities are applicable in the intervention phase, but less than a half believe that their skills are applicable in prevention phase. Two-thirds of respondents stated that in their organization they have support for further education and upgrading while a half of respondents stated that they need education concerning identification, assessment and management of risks that can lead to emergency situations.

  12. National Energy Outlook Modelling System

    Energy Technology Data Exchange (ETDEWEB)

    Volkers, C.M. [ECN Policy Studies, Petten (Netherlands)

    2013-12-15

    For over 20 years, the Energy research Centre of the Netherlands (ECN) has been developing the National Energy Outlook Modelling System (NEOMS) for Energy projections and policy evaluations. NEOMS enables 12 energy models of ECN to exchange data and produce consistent and detailed results.

  13. RCC-F: Design and construction rules for PWR fire protection systems

    International Nuclear Information System (INIS)

    2013-01-01

    The RCC-F code defines the rules for designing, building and installing the fire protection systems used to manage the nuclear hazards inherent in the outbreak of a fire inside the facility and thereby control the fundamental nuclear functions. The code provides fire protection recommendations in terms of: the industrial risk (loss of assets and/or operation), personnel safety, the environment. The code is divided into five main sections: generalities, design safety principles, fire protection design bases, construction provisions, rules for installing the fire protection components and equipment. The RCC-F code is available as an ETC-F version specifically for EPR projects (European pressurized reactor). Contents of the 2013 edition of the ETC-F code: Volume A - Generalities: Structure of ETC-F general points, documentation (in progress), chapter (provision) quality assurance; Volume B - Design safety principles: design nuclear safety principles; Volume C - Fire protection design bases: fire protection design bases; Volume D - Construction provisions: construction provisions; Volume E - Installation rules for fire protection: rules for installing the fire protection, components and equipment

  14. Smart Energy Systems and Energy Transition

    International Nuclear Information System (INIS)

    Duic, N.

    2016-01-01

    Transition to decarbonized energy systems is becoming more attractive with fall of investment costs of renewables and volatile prices and political insecurity of fossil fuels. Improving energy efficiency, especially of buildings and transport, is important, but due to long life of buildings, it will be a slow way of decarbonization. The renewable energy resources are bountiful, especially wind and solar, while integrating them into current energy systems is proving to be a challenge. Solar has reached grid parity making it cheapest electricity source for retail customers in most of the World, creating new prosumer markets. It has started to reach cost parity in sunny countries, and soon solar energy will be cheapest everywhere. The limit of cheap and easy integration for wind is around 20% of yearly electricity generation, while a combined wind and solar may reach 30%. Going any further asks for implementation of completely free energy markets (involving day ahead, intraday and various reserve and ancillary services markets), demand response, coupling of wholesale and retail energy prices, and it involves integration between electricity, heat, water and transport systems. The cheapest and simplest way of increasing further the penetration of renewables is integrating power and heating/cooling systems through the use of district heating and cooling (which may be centrally controlled and may have significant heat storage capacity), since power to heat technologies are excellent for demand response. District cooling is of particular importance to historic cities that want to remove split systems from their facades. In countries with low heat demand water supply system may be used to increase the penetration of renewables, by using water at higher potential energy as storage media, or in dry climates desalination and stored water may be used for those purposes, and reversible hydro may be used as balancing technology. Electrification of personal car transport allows

  15. Continental-scale simulation of burn probabilities, flame lengths, and fire size distribution for the United States

    Science.gov (United States)

    Mark A. Finney; Charles W. McHugh; Isaac Grenfell; Karin L. Riley

    2010-01-01

    Components of a quantitative risk assessment were produced by simulation of burn probabilities and fire behavior variation for 134 fire planning units (FPUs) across the continental U.S. The system uses fire growth simulation of ignitions modeled from relationships between large fire occurrence and the fire danger index Energy Release Component (ERC). Simulations of 10,...

  16. 14 CFR 23.1359 - Electrical system fire protection.

    Science.gov (United States)

    2010-01-01

    ... procedures must be fire-resistant. (c) Insulation on electrical wire and electrical cable must be self... this part, or other approved equivalent methods. The average burn length must not exceed 3 inches (76...

  17. NESDIS Hazard Mapping System Fire and Smoke Program

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Satellite Services Division of NESDIS/NOAA created an interactive Web-based GIS used to display satellite data of fire detects in near-real time. It converts the...

  18. Dynamical behaviour of the firing in coupled neuronal system

    International Nuclear Information System (INIS)

    Wei Wang; Perez, G.; Cerdeira, H.A.

    1993-03-01

    The time interval sequences and the spatio-temporal patterns of the firings of a coupled neuronal network are investigated in this paper. For a single neuron stimulated by an external stimulus I, the time interval sequences show a low frequency firing of bursts of spikes, and reversed period-doubling cascade to a high frequency repetitive firing state as the stimulus I is increased. For two neurons coupled to each other through the firing of the spikes, the complexity of the time interval sequences becomes simple as the coupling strength increases. A network with large numbers of neurons shows a complex spatio-temporal pattern structure. As the coupling strength increases, the numbers of phase locked neurons increase and the time interval diagram shows temporal chaos and a bifurcation in the space. The dynamical behaviour is also verified by the Lyapunov exponent. (author). 17 refs, 6 figs

  19. Fire fighting system for inflammable liquids and process using it

    International Nuclear Information System (INIS)

    Levillain, C.

    1988-01-01

    For fighting fires of flammable liquids, such as liquid sodium or hydrocarbons, a layer of floating spheres (cellular concrete or hollow metal) is maintained on the surface by a square or preferentially triangular-meshed metallic net [fr

  20. Process and fire extinguishing system for inflammable liquids

    International Nuclear Information System (INIS)

    Levillain, C.

    1988-01-01

    A fire on the surface of a flammable liquid is extinguished by spreading a compact layer of sphere of uniform diameter, floating on the liquid surface. Spheres are stored in a tank and run out by gravity [fr

  1. Polish energy-system modernisation

    International Nuclear Information System (INIS)

    Drozdz, M.

    2003-01-01

    The Polish energy-system needs intensive investments in new technologies, which are energy efficient, clean and cost effective. Since the early 1990s, the Polish economy has had practically full access to modern technological devices, equipment and technologies. Introducing new technologies is a difficult task for project teams, constructors and investors. The author presents a set of principles for project teams useful in planning and energy modernisation. Several essential features are discussed: Energy-efficient appliances and systems; Choice of energy carriers, media and fuels; Optimal tariffs, maximum power and installed power; Intelligent, integrated, steering systems; Waste-energy recovery; Renewable-energy recovery. In practice there are several difficulties connected with planning and realising good technological and economic solutions. The author presents his own experiences of energy-system modernisation of industrial processes and building new objects. (Author)

  2. Constitutional compatibility of energy systems

    International Nuclear Information System (INIS)

    Rossnagel, A.

    1983-01-01

    The paper starts from the results of the Enquiry Commission on 'Future Nuclear Energy Policy' of the 8th Federal German Parliament outlining technically feasible energy futures in four 'pathways'. For the purpose of the project, which was to establish the comparative advantages and disadvantages of different energy systems, these four scenarios were reduced to two alternatives: cases K (= nuclear energy) and S (= solar energy). The question to Ge put is: Which changes within our legal system will be ushered in by certain technological developments and how do these changes relate to the legal condition intended so far. Proceeding in this manner will not lead to the result of a nuclear energy system or a solar energy system being in conformity or in contradiction with the constitutional law, but will provide a catalogue of implications orientated to the aims of legal standards: a person deciding in favour of a nuclear energy system or a solar energy system supports this or that development of constitutional policy, and a person purishing this or that aim of legal policy should be consistent and decide in favour of this or that energy system. The investigation of constitutional compatibility leads to the question what effects different energy systems will have on the forms of political intercourse laid down in the constitutional law, which are orientated to models of a liberal constitutional tradition of citizens. (orig./HSCH) [de

  3. Computational study of smoke flow control in garage fires and optimization of the ventilation system

    Directory of Open Access Journals (Sweden)

    Banjac Miloš J.

    2009-01-01

    Full Text Available With the aim of evaluating capabilities of a ventilation system to control the spread of smoke in the emergency operating mode, thereby providing conditions for safe evacuation of people from a fire-struck area, computational fluid dynamics simulation of a fire in a semi-bedded garage was conducted. Using the experimental results of combustion dynamics of a passenger car on fire, optimal positions of ventilation openings were determined. According to recommendations by DIN EN 12101 standard, the operating modes of a ventilation system were verified and optimal start time of the smoke extraction system was defined.

  4. Development of a high-performance, coal-fired power generating system with a pyrolysis gas and char-fired high-temperature furnace

    International Nuclear Information System (INIS)

    Shenker, J.

    1995-01-01

    A high-performance power system (HIPPS) is being developed. This system is a coal-fired, combined-cycle plant that will have an efficiency of at least 47 percent, based on the higher heating value of the fuel. The original emissions goal of the project was for NOx and SOx to each be below 0.15 lb/MMBtu. In the Phase 2 RFP this emissions goal was reduced to 0.06 lb/MMBtu. The ultimate goal of HIPPS is to have an all-coal-fueled system, but initial versions of the system are allowed up to 35 percent heat input from natural gas. Foster Wheeler Development Corporation is currently leading a team effort with AlliedSignal, Bechtel, Foster Wheeler Energy Corporation, Research-Cottrell, TRW and Westinghouse. Previous work on the project was also done by General Electric. The HIPPS plant will use a high-Temperature Advanced Furnace (HITAF) to achieve combined-cycle operation with coal as the primary fuel. The HITAF is an atmospheric-pressure, pulverized-fuel-fired boiler/air heater. The HITAF is used to heat air for the gas turbine and also to transfer heat to the steam cycle. its design and functions are very similar to conventional PC boilers. Some important differences, however, arise from the requirements of the combined cycle operation

  5. Development of a high-performance, coal-fired power generating system with a pyrolysis gas and char-fired high-temperature furnace

    Energy Technology Data Exchange (ETDEWEB)

    Shenker, J.

    1995-11-01

    A high-performance power system (HIPPS) is being developed. This system is a coal-fired, combined-cycle plant that will have an efficiency of at least 47 percent, based on the higher heating value of the fuel. The original emissions goal of the project was for NOx and SOx to each be below 0.15 lb/MMBtu. In the Phase 2 RFP this emissions goal was reduced to 0.06 lb/MMBtu. The ultimate goal of HIPPS is to have an all-coal-fueled system, but initial versions of the system are allowed up to 35 percent heat input from natural gas. Foster Wheeler Development Corporation is currently leading a team effort with AlliedSignal, Bechtel, Foster Wheeler Energy Corporation, Research-Cottrell, TRW and Westinghouse. Previous work on the project was also done by General Electric. The HIPPS plant will use a high-Temperature Advanced Furnace (HITAF) to achieve combined-cycle operation with coal as the primary fuel. The HITAF is an atmospheric-pressure, pulverized-fuel-fired boiler/air heater. The HITAF is used to heat air for the gas turbine and also to transfer heat to the steam cycle. its design and functions are very similar to conventional PC boilers. Some important differences, however, arise from the requirements of the combined cycle operation.

  6. Coal-fired generation

    CERN Document Server

    Breeze, Paul

    2015-01-01

    Coal-Fired Generation is a concise, up-to-date and readable guide providing an introduction to this traditional power generation technology. It includes detailed descriptions of coal fired generation systems, demystifies the coal fired technology functions in practice as well as exploring the economic and environmental risk factors. Engineers, managers, policymakers and those involved in planning and delivering energy resources will find this reference a valuable guide, to help establish a reliable power supply address social and economic objectives. Focuses on the evolution of the traditio

  7. FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants.

    Science.gov (United States)

    Bednar, David; Beerens, Koen; Sebestova, Eva; Bendl, Jaroslav; Khare, Sagar; Chaloupkova, Radka; Prokop, Zbynek; Brezovsky, Jan; Baker, David; Damborsky, Jiri

    2015-11-01

    There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C) by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.

  8. FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants.

    Directory of Open Access Journals (Sweden)

    David Bednar

    2015-11-01

    Full Text Available There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.

  9. Impending sources of energy to replace fire wood in semi arid climatic zones: A case study in Ethiopia

    Directory of Open Access Journals (Sweden)

    Mihret Dananto Ulsido

    2013-06-01

    Full Text Available The present study paper shows an alternative source of energy that can decrease the extensive use of fire wood in Ethiopia. The country’s entire rural area and significant part of urban population is completely dependent on fire wood as a source of energy. This practice takes its own toll, the forest is on the verge of being wiped out and as a result a clear change of climate and loss of natural biodiversity resources is visible. Fire wood is not the only source of energy available in the country. In this paper, based on their low cost, construction material availability and the required unskilled labor it is shown that biogas and solar energy are potentially feasible source of energy to replace firewood for cooking.

  10. Howden-Microcoal system for the conversion of industrial oil or gas fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J

    1985-01-01

    The technical and economic aspects of the conversion of an industrial boiler designed for oil firing at Courtaulds plc Greenfield site in North Wales to Howden-Microcoal firing are discussed. The production of Howden-Micro coal (an ultrafine or 'micronised' coal) is described and the Howden-Microcoal processor is compared with other fluid energy and mechanical mills. A typical boiler installation and modifications required for conversion to Howden-Microcoal firing are presented along with the main results of the Courtauld's tests. Cost, conversion time and the effect on average steam generation costs are considered.

  11. Application of programmable controllers to oil fired boiler light-off system

    International Nuclear Information System (INIS)

    Copeland, H.C.; Gallaway, E.N.

    1978-01-01

    A programmable controller has been used to improve the reliability of an oil-fired boiler burner control system. An outdated and failing Germanium discrete transistor logic control system was replaced with a modern solid state large scale integrated circuit programmable controller. The ease of making this conversion at a modest expenditure during a limited boiler outage is explained, as well as pitfalls and problems encountered. Light-off reliability with fuel savings were prime objectives. The boiler, rated at 575,000 lb/hr at 450 psig, is used as a backup steam supply for the dual purpose N Reactor at Hanford, Washington, which supplies 860 MWe to the Bonneville Power Administration and weapons grade Plutonium for the Department of Energy. High reliability in light-off and load ascension from standby is required of the boiler which serves as the backup power supply for the reactor

  12. Utilization of net energy analysis as a method of evaluating energy systems

    International Nuclear Information System (INIS)

    Lee, Gi Won; Cho, Joo Hyun; Hah, Yung Joon

    1994-01-01

    It can be said that the upturn of Korean nuclear power program started in early 70's while future plants for the construction of new nuclear power plants virtually came to a halt in United States since the late 70's. It is projected that power plant systems from combination of nuclear and coal fired types might shift to all coal fired type in U.S., considering the current U.S. trend of construction on the new plants. However, with the depletion of natural resources, it may be desirable to understand the utilization of two competitive utility technologies in terms of invested energy. Presented in this paper is a method of comparing two energy systems in terms of energy investment and a brief result from energy economic analysis of nuclear power plant and coal fired steam power plant to illustrate the methodology. The method of comparison is Net Energy Analysis (NEA). In doing so, Input-Output Analysis (lOA) among industries and commodities is done. Using these information, net energy ratios are calculated and compared. Although NEA does not offer conclusive solution, it can be used as a screening process in decision making

  13. Preliminary experimental investigation of a natural gas-fired ORC-based micro-CHP system for residential buildings

    International Nuclear Information System (INIS)

    Farrokhi, M.; Noie, S.H.; Akbarzadeh, A.A.

    2014-01-01

    The continual increases in energy demand and greenhouse gas emissions, call for efficient use of energy resources. Decentralized combined heat and power (CHP) technology provides an alternative for the world to meet and solve energy-related problems including energy shortages, energy supply security, emission control and conservation of energy. This paper presents the preliminary results of an experimental investigation of a natural gas-fired micro-CHP system for residential buildings based on an organic Rankine cycle (ORC). Isopentane was used as the ORC working fluid in consideration of several criteria including its environmentally-friendly characteristics. Experiments were conducted to evaluate the performance of the developed system at different heat source temperatures of nominally 85, 80, 75, 70, and 65 °C. The maximum electrical power output of 77.4 W was generated at heating water entry temperature of 84.1 °C, corresponding to net cycle electrical efficiency of 1.66%. Further work will be done with a view to increasing the cycle electrical efficiency by using more efficient components, in particular the expander and generator. - Highlights: •A natural gas-fired ORC-based micro-scale CHP system has been developed and tested. •The good agreement between the mechanical and gross power validates the assumptions. •A vane expander suits a micro-CHP system based on an organic Rankine cycle. •A vane expander does not suit power generation by a Trilateral Flash Cycle (TFC). •Domestic gas-fired ORC systems may reduce reliance on central power stations

  14. Smart Energy Systems

    DEFF Research Database (Denmark)

    Connolly, David; Lund, Henrik; Mathiesen, Brian Vad

    2013-01-01

    • To reduce the costs of energy towards 2050 This transition faces many challenges from a variety of different perspectives, including: • Technology: The development of new technologies and infrastructures, which will enable us to utilise renewable energy resources. • Business: The design of new markets...

  15. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    , utilities can operate more efficiently and profitably. That can increase the use of renewable energy sources challenge to utility companies, grid operators, and other stakeholders involved in wind energy integration recording is available from the July 16 webinar "Smart Grid Research at NREL's Energy Systems

  16. Energy, exergy, environmental and economic analysis of industrial fired heaters based on heat recovery and preheating techniques

    International Nuclear Information System (INIS)

    Shekarchian, M.; Zarifi, F.; Moghavvemi, M.; Motasemi, F.; Mahlia, T.M.I.

    2013-01-01

    Highlights: • 4-E analysis of a typical industrial grade fired heater unit is studied. • This analysis is accomplished for the first time in this study. • Heat recovery and air preheating lead to substantial reduction in the fuel consumption. • The company’s current costs are tremendously reduced by these methods. • The methods lead to mitigation in GHG emission and to reduction in the associated taxes. - Abstract: Fired heaters are ubiquitous in both the petroleum and petrochemical industries, due to it being vital in their day to day operations. They form major components in petroleum refineries, petrochemical facilities, and processing units. This study was commissioned in order to analyze the economic benefits of incorporating both heat recovery and air preheating methods into the existing fired heater units. Four fired heater units were analyzed from the energy and environmental point of views. Moreover, the second law efficiency and the rate of irreversibility were also analyzed via the exergy analysis. Both analyses was indicative of the fact that the heat recovery process enhances both the first and second law efficiencies while simultaneously assisting in the production of high and low pressure water steam. The implementation and usage of the process improves the thermal and exergy efficiencies from 63.4% to 71.7% and 49.4%, to 54.8%, respectively. Additionally, the heat recovery and air preheating methods leads to a substantial reduction in fuel consumption, in the realm of up to 7.4%, while also simultaneously decreasing heat loss and the irreversibility of the unit. Nevertheless, the results of the economic analysis posits that although utilizing an air preheater unit enhances the thermal performance of the system, due to the air preheater’s capital and maintenance costs, incorporating an air preheater unit to an existing fired heater is not economically justifiable. Furthermore, the results of the sensitivity analysis and payback period

  17. Seasonal performance and energy costs of oil or gas-fired boilers and furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Berlad, A.L.; Lin, H.C.; Batey, J.; Salzano, F.J.; Yu, W.S.; Hoppe, R.J.; Allen, T.

    1977-03-01

    The seasonal operating cost of a small oil or gas-fired boiler or furnace depends upon the intrinsic merits of the device itself, the appropriateness of its capacity and cycle characteristics to the imposed load conditions, the weather characteristics and heat loss characteristics of the building being heated, and the control philosophy employed. The current study provides the bases for comparing quantitatively the seasonal operating costs of various specific space heating and/or domestic hot water systems, as influenced by the device specifics and device interaction with the space conditioned system that it serves. The resulting formalism is applied to various space-heating systems. Quantitative cost comparisons are presented.

  18. Fusion in the energy system

    DEFF Research Database (Denmark)

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  19. The Research of Utilization Hours of Coal-Fired Power Generation Units Based on Electric Energy Balance

    Science.gov (United States)

    Liu, Junhui; Yang, Jianlian; Wang, Jiangbo; Yang, Meng; Tian, Chunzheng; He, Xinhui

    2018-01-01

    With grid-connected scale of clean energy such as wind power and photovoltaic power expanding rapidly and cross-province transmission scale being bigger, utilization hours of coal-fired power generation units become lower and lower in the context of the current slowdown in electricity demand. This paper analyzes the influencing factors from the three aspects of demand, supply and supply and demand balance, and the mathematical model has been constructed based on the electric energy balance. The utilization hours of coal-fired power generation units have been solved considering the relationship among proportion of various types of power installed capacity, the output rate and utilization hours. By carrying out empirical research in Henan Province, the utilization hours of coal-fired units of Henan Province in 2020 has been achieved. The example validates the practicability and the rationality of the model, which can provide a basis for the decision-making for coal-fired power generation enterprises.

  20. An evaluation of the fire barrier system thermo-lag 330-1

    International Nuclear Information System (INIS)

    Nowlen, S.P.

    1994-09-01

    This report presents the results of three fire endurance tests and one ampacity derating test set of the fire barrier system Thermo-Lag 330-1 Subliming Coating. Each test was performed using cable tray specimens protected by a nominal three-hour fire barrier envelope comprised of two layers of nominal 1/2 inch thick material. The fire barrier systems for two of the three fire endurance test articles and for the ampacity derating test article were installed in accordance with the manufacturer's installations procedures. The barrier system for the third fire endurance test article was a full reproduction of one of the original manufacturer's qualification test articles. This final test article included certain installation enhancements not considered typical of current nuclear power plant installations. The primary criteria for fire endurance performance evaluation was based on cable circuit integrity testing. Secondary consideration was also given to the temperature rise limits set forth in the ASTM E119 standard fire barrier test procedure. All three of the fire endurance specimens failed prematurely. Circuit integrity failures for the two fire endurance test articles with procedures-based installations were recorded at approximately 76 and 59 minutes into the exposures for a 6 inch wide and 12 inch wide cable tray respectively. Temperature excursion failures (single point) for these two test articles were noted at approximately 65 and 56 minutes respectively. The first circuit integrity failure for the full reproduction test article was recorded approximately 119 minutes into the exposure, and the first temperature excursion failure for this test article was recorded approximately 110 minutes into the exposure

  1. Installation of a direct fired Lanham bread baking system. A demonstration at Family Loaf Bakery Ltd. (Bristol)

    Energy Technology Data Exchange (ETDEWEB)

    1985-10-01

    The first installation in the UK of a direct-fired continuous conveyor oven capable of producing 8,500 loaves/hour has reduced energy costs at Family Loaf Bakery's Avonmouth plant by pound 66,680/year and resulted in net cost savings to the company of pound 59,680/year. This saving was achieved by using a direct-fired oven which had a low thermal mass and small oven openings. When baking identical products, a 30% saving in oven fuel was obtained using the new system compared to conventional systems. For this bakery, it is expected to save over 12,000 GJ/year. The bread baking system was of USA development and initial teething problems adapting to the more dense UK bread have now been overcome. (U.K.).

  2. Coal-fired high performance power generating system

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of > 47% thermal efficiency; NO[sub x] SO [sub x] and Particulates < 25% NSPS; Cost of electricity 10% lower; coal > 65% of heat input and all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW[sub e] combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. Most of this report discusses the details of work on these components, and the R D Plan for future work. The discussion of the combustor designs illustrates how detailed modeling can be an effective tool to estimate NO[sub x] production, minimum burnout lengths, combustion temperatures and even particulate impact on the combustor walls. When our model is applied to the long flame concept it indicates that fuel bound nitrogen will limit the range of coals that can use this approach. For high nitrogen coals a rapid mixing, rich-lean, deep staging combustor will be necessary. The air heater design has evolved into two segments: a convective heat exchanger downstream of the combustion process; a radiant panel heat exchanger, located in the combustor walls; The relative amount of heat transferred either radiatively or convectively will depend on the combustor type and the ash properties.

  3. Evaluating the sustainability of an energy supply system using renewable energy sources: An energy demand assessment of South Carolina

    Science.gov (United States)

    Green, Cedric Fitzgerald

    Sustainable energy is defined as a dynamic harmony between the equitable availability of energy-intensive goods and services to all people and the preservation of the earth for future generations. Sustainable energy development continues to be a major focus within the government and regulatory governing bodies in the electric utility industry. This is as a result of continued demand for electricity and the impact of greenhouse gas emissions from electricity generating plants on the environment by way of the greenhouse effect. A culmination of increasing concerns about climate change, the nuclear incident in Fukushima four years ago, and discussions on energy security in a world with growing energy demand have led to a movement for increasing the share of power generation from renewable energy sources. This work studies demand for electricity from primarily residential, commercial, agricultural, and industrial customers in South Carolina (SC) and its effect on the environment from coal-fired electricity generating plants. Moreover, this work studies sustainable renewable energy source-options based on the renewable resources available in the state of SC, as viable options to supplement generation from coal-fired electricity generating plants. In addition, greenhouse gas emissions and other pollutants from primarily coal-fired plants will be defined and quantified. Fundamental renewable energy source options will be defined and quantified based on availability and sustainability of SC's natural resources. This work studies the environmental, economic, and technical aspects of each renewable energy source as a sustainable energy option to replace power generation from coal-fired plants. Additionally, social aspect implications will be incorporated into each of the three aspects listed above, as these aspects are explored during the research and analysis. Electricity demand data and alternative energy source-supply data in SC are carried out and are used to develop and

  4. Design criteria document, Fire Protection Task, K Basin Essential Systems Recovery, Project W-405

    International Nuclear Information System (INIS)

    Johnson, B.H.

    1994-01-01

    The K Basin were constructed in the early 1950's with a 20 year design life. The K Basins are currently in their third design life and are serving as a near term storage facility for irradiated N Reactor fuel until an interim fuel storage solution can be implemented. In April 1994, Project W-405, K Basin Essential Systems Recovery, was established to address (among other things) the immediate fire protection needs of the 100K Area. A Fire Barrier Evaluation was performed for the wall between the active and inactive areas of the 105KE and 105KW buildings. This evaluation concludes that the wall is capable of being upgraded to provide an equivalent level of fire resistance as a qualified barrier having a fire resistance rating of 2 hours. The Fire Protection Task is one of four separate Tasks included within the scope of Project W405, K Basin Essential systems Recovery. The other three Tasks are the Water Distribution System Task, the Electrical System Task, and the Maintenance Shop/Support Facility Task. The purpose of Project W-405's Fire Protection Task is to correct Life Safety Code (NFPA 101) non-compliances and to provide fire protection features in Buildings 105KE, 105KW and 190KE that are essential for assuring the safe operation and storage of spent nuclear fuel at the 100K Area Facilities' Irradiated Fuel Storage Basins (K Basins)

  5. Energy Systems Integration News - October 2016 | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL October 2016 Energy Systems Integration News A monthly recap of the latest energy systems integration (ESI) developments at NREL and around the world. Subscribe Archives October Integration Facility's main control room. OMNETRIC Group Demonstrates a Distributed Control Hierarchy for

  6. Computer-aided safety systems of industrial high energy objects

    International Nuclear Information System (INIS)

    Topolsky, N.G.; Gordeev, S.G.

    1995-01-01

    Modern objects of fuel and energy, chemical industries are characterized by high power consumption; by presence of large quantities of combustible and explosive substances used in technological processes; by advanced communications of submission systems of initial liquid and gasiform reagents, lubricants and coolants, the products of processing, and wastes of production; by advanced ventilation and pneumatic transport; and by complex control systems of energy, material and information flows. Such objects have advanced infrastructures, including a significant quantity of engineering buildings intended for storage, transportation, and processing of combustible liquids, gasiform fuels and materials, and firm materials. Examples of similar objects are nuclear and thermal power stations, chemical plants, machine-building factories, iron and steel industry enterprises, etc. Many tasks and functions characterizing the problem of fire safety of these objects can be accomplished only upon the development of special Computer-Aided Fire Safety Systems (CAFSS). The CAFSS for these objects are intended to reduce the hazard of disastrous accidents both causing fires and caused by them. The tasks of fire prevention and rescue work of large-scale industrial objects are analyzed within the bounds of the recommended conception. A functional structure of CAFSS with a list of the main subsystems forming a part of its composition has been proposed

  7. The Simulations of Wildland Fire Smoke PM25 in the NWS Air Quality Forecasting Systems

    Science.gov (United States)

    Huang, H. C.; Pan, L.; McQueen, J.; Lee, P.; ONeill, S. M.; Ruminski, M.; Shafran, P.; Huang, J.; Stajner, I.; Upadhayay, S.; Larkin, N. K.

    2017-12-01

    The increase of wildland fire intensity and frequency in the United States (U.S.) has led to property loss, human fatality, and poor air quality due to elevated particulate matters and surface ozone concentrations. The NOAA/National Weather Service (NWS) built the National Air Quality Forecast Capability (NAQFC) based on the U.S. Environmental Protection Agency (EPA) Community Multi-scale Air Quality (CMAQ) Modeling System driven by the NCEP North American Mesoscale Forecast System meteorology to provide ozone and fine particulate matter (PM2.5) forecast guidance publicly. State and local forecasters use the NWS air quality forecast guidance to issue air quality alerts in their area. The NAQFC PM2.5 predictions include emissions from anthropogenic and biogenic sources, as well as natural sources such as dust storms and wildland fires. The wildland fire emission inputs to the NAQFC is derived from the NOAA National Environmental Satellite, Data, and Information Service Hazard Mapping System fire and smoke detection product and the emission module of the U.S. Forest Service (USFS) BlueSky Smoke Modeling Framework. Wildland fires are unpredictable and can be ignited by natural causes such as lightning or be human-caused. It is extremely difficult to predict future occurrences and behavior of wildland fires, as is the available bio-fuel to be burned for real-time air quality predictions. Assumptions of future day's wildland fire behavior often have to be made from older observed wildland fire information. The comparisons between the NAQFC modeled PM2.5 and the EPA AirNow surface observation show that large errors in PM2.5 prediction can occur if fire smoke emissions are sometimes placed at the wrong location and/or time. A configuration of NAQFC CMAQ-system to re-run previous 24 hours, during which wildland fires were observed from satellites has been included recently. This study focuses on the effort performed to minimize the error in NAQFC PM2.5 predictions

  8. Stochastic Energy Deployment System

    Energy Technology Data Exchange (ETDEWEB)

    2011-11-30

    SEDS is an economy-wide energy model of the U.S. The model captures dynamics between supply, demand, and pricing of the major energy types consumed and produced within the U.S. These dynamics are captured by including: the effects of macroeconomics; the resources and costs of primary energy types such as oil, natural gas, coal, and biomass; the conversion of primary fuels into energy products like petroleum products, electricity, biofuels, and hydrogen; and lastly the end- use consumption attributable to residential and commercial buildings, light and heavy transportation, and industry. Projections from SEDS extend to the year 2050 by one-year time steps and are generally projected at the national level. SEDS differs from other economy-wide energy models in that it explicitly accounts for uncertainty in technology, markets, and policy. SEDS has been specifically developed to avoid the computational burden, and sometimes fruitless labor, that comes from modeling significantly low-level details. Instead, SEDS focuses on the major drivers within the energy economy and evaluates the impact of uncertainty around those drivers.

  9. Engineering development of coal-fired high-performance power systems

    International Nuclear Information System (INIS)

    1998-01-01

    A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolyzation process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2, which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and after each experimental program has been completed, a larger scale pyrolyzer will be tested at the Power Systems Development Facility (PSDF) in Wilsonville, Al. The facility is equipped with a gas turbine and a topping combustor, and as such, will provide an opportunity to evaluate integrated pyrolyzer and turbine operation. During this quarter, initial char combustion tests were performed at the CETF using a Foster Wheeler commercial burner. These preliminary tests were encouraging and will be used to support the development of an innovative char burner for the HIPPS

  10. The Integration of the Fire Scout Tactical Unmanned Aerial System into Littoral Combat Ship Missions

    National Research Council Canada - National Science Library

    Marsh, James J

    2007-01-01

    ...) is an effective mission multiplier for the Littoral Combat Ship (LCS). The U.S. Navy relies heavily on unmanned systems, such as the Fire Scout UAS, to enable LCS to conduct several complex littoral missions...

  11. Evaluation of Generic Issue 57: Effects of fire protection system actuation on safety-related equipment

    International Nuclear Information System (INIS)

    Lambright, J.; Bohn, M.; Lynch, J.; Ross, S.; Brosseau, D.

    1992-12-01

    Nuclear power plants have experienced actuations of fire protection systems (FPSs) under conditions for which these systems were not intended to actuate and also have experienced advertent actuations with the presence of a fire. These actuations have often damaged safety-related equipment. A review of the impact of past occurrences of both types of such events and their impact on plant safety systems, an analysis of the risk impacts of such events on nuclear power plant safety, and a cost-benefit analysis of potential corrective measures have been performed. Thirteen different scenarios leading to actuation of fire protection systems due to a variety of causes were identified. These scenarios ranged from inadvertent actuation caused by human error to hardware failure, and include seismic root causes and seismic/fire interactions. A quantification of these thirteen root causes, where applicable, was performed on generically applicable scenarios. This document, Volume 4, contains appendices E and F of this report

  12. Impact of Land Cover Change Induced by a Fire Event on the Surface Energy Fluxes Derived from Remote Sensing

    Directory of Open Access Journals (Sweden)

    Juan M. Sánchez

    2015-11-01

    Full Text Available Forest fires affect the natural cycle of the vegetation, and the structure and functioning of ecosystems. As a consequence of defoliation and vegetation mortality, surface energy flux patterns can suffer variations. Remote sensing techniques together with surface energy balance modeling offer the opportunity to explore these changes. In this paper we focus on a Mediterranean forest ecosystem. A fire event occurred in 2001 in Almodóvar del Pinar (Spain affecting a pine and shrub area. A two-source energy balance approach was applied to a set of Landsat 5-TM and Landsat 7-EMT+ images to estimate the surface fluxes in the area. Three post-fire periods were analyzed, six, seven, nine, and 11 years after the fire event. Results showed the regeneration of the shrub area in 6–7 years, in contrast to the pine area, where an important decrease in evapotranspiration, around 1 mm·day−1, remained. Differences in evapotranspiration were mitigated nine and 11 years after the fire in the pine area, whereas significant deviations in the rest of the terms of the energy balance equation were still observed. The combined effect of changes in the vegetation structure and surface variables, such as land surface temperature, albedo, or vegetation coverage, is responsible for these variations in the surface energy flux patterns.

  13. Network-Based Real-time Integrated Fire Detection and Alarm (FDA) System with Building Automation

    Science.gov (United States)

    Anwar, F.; Boby, R. I.; Rashid, M. M.; Alam, M. M.; Shaikh, Z.

    2017-11-01

    Fire alarm systems have become increasingly an important lifesaving technology in many aspects, such as applications to detect, monitor and control any fire hazard. A large sum of money is being spent annually to install and maintain the fire alarm systems in buildings to protect property and lives from the unexpected spread of fire. Several methods are already developed and it is improving on a daily basis to reduce the cost as well as increase quality. An integrated Fire Detection and Alarm (FDA) systems with building automation was studied, to reduce cost and improve their reliability by preventing false alarm. This work proposes an improved framework for FDA system to ensure a robust intelligent network of FDA control panels in real-time. A shortest path algorithmic was chosen for series of buildings connected by fiber optic network. The framework shares information and communicates with each fire alarm panels connected in peer to peer configuration and declare the network state using network address declaration from any building connected in network. The fiber-optic connection was proposed to reduce signal noises, thus increasing large area coverage, real-time communication and long-term safety. Based on this proposed method an experimental setup was designed and a prototype system was developed to validate the performance in practice. Also, the distributed network system was proposed to connect with an optional remote monitoring terminal panel to validate proposed network performance and ensure fire survivability where the information is sequentially transmitted. The proposed FDA system is different from traditional fire alarm and detection system in terms of topology as it manages group of buildings in an optimal and efficient manner.Introduction

  14. Development and demonstration of sodium fire mitigation system in the SAPFIRE facility

    International Nuclear Information System (INIS)

    Himeno, Y.; Miyahara, S.; Morii, T.; Sasaki, K.

    1989-01-01

    Flow pattern of a realistic sodium leak from the sodium piping equipped with jackets and thermal insulator was experimentally investigated. Then, based on this result, the fire mitigation system consisting of an inclined liner, a drain piping, and a smothering tank has been developed. The performance of the system was, in final, validated in the large-scale sodium leak and fire test in the SAPFIRE facility. (author)

  15. Energy policies and renewable energy systems monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Di Nisio, Attilio; Savino, Mario; Spadavecchia, Maurizio [Electrical and Electronic Measurements Laboratory, Dept. of Electrical and Electronic Engineering - Politecnico di Bari, Bari (Italy)], e-mails: dinisio@misure.poliba.it, savino@misure.poliba.it, spadavecchia@misure.poliba.it

    2011-07-01

    Full text: The global energy crisis is forcing every country worldwide to review its policies on energy. The environmental disaster at Japan's Fukushima Daiichi nuclear power plant has accelerated this process. Many people around the world are citing the disaster as evidence that nuclear power would endanger the survival of mankind on earth and should be banned. Today we need to focus more substantially on energy saving, especially using smart devices with low power consumption. We have also to review the approach to the exploitation of energy and move from a philosophy 'from the ground to the subsurface' to another 'from the earth to the sun'. This paper highlights the increasing importance of solar power in meeting energy needs while achieving security of supply and minimising carbon dioxide (CO{sub 2}) emissions. It deals also with the development of solar power plants, which require a supervisory control system that improves their efficiency and reliability. (author)

  16. Sustainable Energy Systems and Applications

    CERN Document Server

    Dinçer, İbrahim

    2012-01-01

    Sustainable Energy Systems and Applications presents analyses of sustainable energy systems and their applications, providing new understandings, methodologies, models and applications along with descriptions of several illustrative examples and case studies. This textbook aims to address key pillars in the field, such as: better efficiency, cost effectiveness, use of energy resources, environment, energy security, and sustainable development. It also includes some cutting-edge topics, such as hydrogen and fuel cells, renewable, clean combustion technologies, CO2 abatement technologies, and some potential tools for design, analysis and performance improvement. The book also: Discusses producing energy by increasing systems efficiency in generation, conversion, transportation and consumption Analyzes the conversion of fossil fuels to clean fuels for limiting  pollution and creating a better environment Sustainable Energy Systems and Applications is a research-based textbook which can be used by senior u...

  17. Energy management systems in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lush, D. M.

    1979-07-01

    An investigation is made of the range of possibilities available from three types of systems (automatic control devices, building envelope, and the occupants) in buildings. The following subjects are discussed: general (buildings, design and personnel); new buildings (envelope, designers, energy and load calculations, plant design, general design parameters); existing buildings (conservation measures, general energy management, air conditioned buildings, industrial buildings); man and motivation (general, energy management and documentation, maintenance, motivation); automatic energy management systems (thermostatic controls, optimized plant start up, air conditioned and industrial buildings, building automatic systems). (MCW)

  18. Low Power Wireless Smoke Alarm System in Home Fires

    Directory of Open Access Journals (Sweden)

    Juan Aponte Luis

    2015-08-01

    Full Text Available A novel sensing device for fire detection in domestic environments is presented. The fire detector uses a combination of several sensors that not only detect smoke, but discriminate between different types of smoke. This feature avoids false alarms and warns of different situations. Power consumption is optimized both in terms of hardware and software, providing a high degree of autonomy of almost five years. Data gathered from the device are transmitted through a wireless communication to a base station. The low cost and compact design provides wide application prospects.

  19. Modeling and performance analysis of CCHP (combined cooling, heating and power) system based on co-firing of natural gas and biomass gasification gas

    International Nuclear Information System (INIS)

    Wang, Jiangjiang; Mao, Tianzhi; Sui, Jun; Jin, Hongguang

    2015-01-01

    Co-firing biomass and fossil energy is a cost-effective and reliable way to use renewable energy and offer advantages in flexibility, conversion efficiency and commercial possibility. This study proposes a co-fired CCHP (combined cooling, heating and power) system based on natural gas and biomass gasification gas that contains a down-draft gasifier, ICE (internal combustion engine), absorption chiller and heat exchangers. Thermodynamic models are constructed based on a modifying gasification thermochemical equilibrium model and co-fired ICE model for electricity and heat recovery. The performance analysis for the volumetric mixture ratio of natural gas and product gas indicates that the energy and exergy efficiencies are improved by 9.5% and 13.7%, respectively, for an increasing mixture ratio of 0–1.0. Furthermore, the costs of multi-products, including electricity, chilled water and hot water, based on exergoeconomic analysis are analyzed and discussed based on the influences of the mixture ratio of the two gas fuels, investment cost and biomass cost. - Highlights: • Propose a co-fired CCHP system by natural gas and biomass gasification gas. • Modify biomass gasification and co-fired ICE models. • Present the thermodynamic analysis of the volumetric mixture ratios of two gas fuels. • Energy and exergy efficiencies are improved 9.5% and 13.7%. • Discuss multi-products’ costs influenced by investment and fuel costs.

  20. Battery energy storage system

    NARCIS (Netherlands)

    Tol, C.S.P.; Evenblij, B.H.

    2009-01-01

    The ability to store electrical energy adds several interesting features to a ships distribution network, as silent power, peak shaving and a ride through in case of generator failure. Modern intrinsically safe Li-ion batteries bring these within reach. For this modern lithium battery applications

  1. Coal-fired high performance power generating system. Quarterly progress report, July 1, 1993--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This report covers work carried out under Task 3, Preliminary Research and Development, and Task 4, Commercial Generating Plant Design, under contract DE-AC22-92PC91155, {open_quotes}Engineering Development of a Coal Fired High Performance Power Generation System{close_quotes} between DOE Pittsburgh Energy Technology Center and United Technologies Research Center. The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of >47% thermal efficiency; NO{sub x}, SO{sub x}, and particulates {le} 25% NSPS; cost {ge} 65% of heat input; and all solid wastes benign. The report discusses progress in cycle analysis, chemical reactor modeling, ash deposition rate calculations for HITAF (high temperature advanced furnace) convective air heater, air heater materials, and deposit initiation and growth on ceramic substrates.

  2. Decarbonization of Croatian Energy System

    International Nuclear Information System (INIS)

    Potocnik, V.

    2012-01-01

    Energy system decarbonization is reduction of greenhouse gases (CO 2 ) emission, chiefly from the fossil fuels (coal, oil, natural gas) combustion. The main objective of an energy system decarbonization is the climate change mitigation, and at the same time development of local industry and employment, better environment and health protection, as well as reduction of the fossil fuels import and foreign debt. Croatia has small fossil fuels reserves and large renewable energy sources (RES) reserves, energy efficiency (ENEF) is relatively low, and energy import, according to the actual Energy strategy 2009, should increase from 50% to 70% until 2020. Croatian energy system participates with about one third in the Croatian foreign trade deficit. The main measures of the Croatian energy system decarbonization should be: increasing ENEF (energy savings), switch from fossil fuels to RES, administrative measures (low carbon development strategy, environmental tax reform, and decoupling income from energy sales). By urgent application of these measures, Croatia could become fossil fuels free until the year 2050.(author)

  3. Integrated energy systems and local energy markets

    International Nuclear Information System (INIS)

    Lund, Henrik; Muenster, Ebbe

    2006-01-01

    Significant benefits are connected with an increase in the flexibility of the Danish energy system. On the one hand, it is possible to benefit from trading electricity with neighbouring countries, and on the other, Denmark will be able to make better use of wind power and other types of renewable energy in the future. This paper presents the analysis of different ways of increasing flexibility in the Danish energy system by the use of local regulation mechanisms. This strategy is compared with the opposite extreme, i.e. trying to solve all balancing problems via electricity trade on the international market. The conclusion is that it is feasible for the Danish society to include the CHP plants in the balancing of fluctuating wind power. There are major advantages in equipping small CHP plants as well as the large CHP plants with heat pumps. By doing so, it will be possible to increase the share of wind power from the present 20 to 40% without causing significant problems of imbalance between electricity consumption and production. Investment in increased flexibility is in itself profitable. Furthermore, the feasibility of wind power is improved

  4. Advanced energy system with nuclear reactors as an energy source

    International Nuclear Information System (INIS)

    Kato, Y.; Ishizuka, T.; Nikitin, K.

    2007-01-01

    About two-thirds of the energy generated in a light water reactors (LWRs) core is currently dissipated to the ocean as lukewarm water through steam condensers; more than half the energy in helium (He) gas turbine high temperature gas cooled reactors (HTGRs) is dissipated through pre-coolers and inter coolers. The new waste heat recovery system efficiently recovers the waste heat from reactors using boiling heat transfer of 20 degree C liquid carbon dioxide (CO 2 ) instead of conventional sea water as a cooling medium. The CO 2 gasified in the cooling process is used directly as a working fluid of mechanical heat pumps for hot water supply. In LWRs, the net energy utilization fraction to total heat generation in the core exceeds 85% through the waste heat recovery. This cogeneration system is about 2.5 times more effective than current systems in reducing global warming gas emissions and long half- life radioactive material accumulation. It also increases uranium resource utilization relative to current LWRs. In the HTGR cogeneration system, the waste heat is also useful for cold water supply by introducing an adsorption refrigeration system since the gas temperature is still as high as about 190 degree Celsius. When the heat recovery system is incorporated into the HTGR, the electricity to heat-supply ratio of the HTGR cogeneration system accommodates the demand ratio in cities well; it would be suited to dispersed energy sources. The heat supply cost is expected to be lower than those of conventional fossil-fired boilers beyond operation of about four years. The waste heat recovered is able to be utilized not only for local heat supply but also for methane and methanol production from waste products of cities and farms through high-temperature fermentation, e.g., garbage, waste wood and used paper that are produced in cities, along with excreta produced through farming. The methane and methanol can be used to generate hydrogen for fuel cells. The new waste heat

  5. Water-Energy-Food Nexus in Asia-Pacific Ring of Fire

    Science.gov (United States)

    Taniguchi, M.; Endo, A.; Gurdak, J. J.; Allen, D. M.; Siringan, F.; Delinom, R.; Shoji, J.; Fujii, M.; Baba, K.

    2013-12-01

    Climate change and economic development are causing increased pressure on water, energy and food resources, presenting communities with increased levels of tradeoffs and potential conflicts among these resources. Therefore, the water-energy-food nexus is one of the most important and fundamental global environmental issues facing the world. For the purposes of this research project, we define human-environmental security as the joint optimization between human and environmental security as well as the water-energy-food nexus. To optimize the governance and management within these inter-connected needs, it is desirable to increase human-environmental security by improving social managements for the water-energy-food nexus. In this research project, we intend to establish a method to manage and optimize the human-environmental security of the water-energy-food nexus by using integrated models, indices, and maps as well as social and natural investigations with stakeholder analyses. We base our approach on the viewpoint that it is important for a sustainable society to increase human-environmental security with decreasing risk and increasing resilience by optimizing the connections within the critical water-energy and water-food clusters. We will take a regional perspective to address these global environmental problems. The geological and geomorphological conditions in our proposed study area are heavily influenced by the so-called 'Ring of Fire,' around the Pacific Ocean. Within these areas including Japan and Southeast Asia, the hydro-meteorological conditions are dominated by the Asia monsoon. The populations that live under these natural conditions face elevated risk and potential disaster as negative impacts, while also benefitting from positive ecological goods and services. There are therefore tradeoffs and conflicts within the water-energy-food nexus, as well as among various stakeholders in the region. The objective of this project is to maximize human

  6. Evaluating Greenhouse Gas Emissions Reporting Systems for Agricultural Waste Burning Using MODIS Active Fires

    Science.gov (United States)

    Lin, H.; Jin, Y.; Giglio, L.; Foley, J. A.; Randerson, J. T.

    2010-12-01

    Fires in agricultural ecosystems emit greenhouse gases and aerosols that influence climate on multiple spatial and temporal scales. Annex 1 countries of the United Nations Framework Convention on Climate Change (UNFCCC), many of which ratified the Kyoto Protocol, are required to report emissions of CO2, CH4 and N2O from these fires annually. We evaluated several aspects of this reporting system, including the optimality of the crops targeted by the UNFCCC globally and within Annex 1 countries and the consistency of emissions reporting among countries. We also evaluated the success of the individual countries in capturing interannual variability and long-term trends in agricultural fire activity. We combined global crop maps with Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) active fire detections. At a global scale, we recommend adding ground nuts, cocoa, cotton and oil palm, and removing potato, oats, pulse other and rye from the UNFCCC list of 14 crops. This leads to an overall increase of 6% of the active fires covered by the reporting system. Optimization led to a different recommended list for Annex 1 countries. Extending emissions reporting to all Annex 1 countries (from the current set of 19 countries) would increase the efficacy of the reporting system from 10% to 20%, and further including several non-Annex 1 countries (Argentina, Brazil, China, India, Indonesia, Thailand, Kazakhstan, Mexico and Nigeria) would capture over 58% of active fires in croplands worldwide. Analyses of interannual trends from the U.S. and Australia showed the importance of both intensity of fire use and crop production in controlling year-to-year variations in agricultural fire emissions. Remote sensing provides an efficient tool for an independent assessment of current UNFCCC emissions reporting system; and, if combined with census data, field experiments and expert opinion, has the potential for improving the robustness of the next generation inventory

  7. The commercialization of decentralized energy systems (DES) in the Philippines

    International Nuclear Information System (INIS)

    Bernardo, J.Y.; Navarro, L.B.; Abito, G.; Lim, B.P.

    1992-01-01

    PNOC-ERDC is implementing the project ''Commercialization of Decentralized Energy Systems or DES'' with assistance from the European Community. The project hopes to promote the utilization of DES technologies by providing financial and technical assistance to enterpreneurs engaged in the manufacture and/or distribution of DES technologies. At present, the DES project has provided loans totalling P17.9 million to 6 entrepreneurs. Technologies supported include photovoltaics, biogas and agricultural waste-fired dryers. (auth.). 2 tabs

  8. Fire protection system management in nuclear facilities: strengthening factor of integrated management system - a case study

    International Nuclear Information System (INIS)

    Santos, Joao Regis dos

    2005-01-01

    The present study investigated and analyzed the importance of a system of integrated safety manage, environment and health in a nuclear installation, having as perspective, the fire protection manage. The inquiry was made using a qualitative research involving a case study, where the considered environment was the Reconversion and UO 2 Plant of the Industrias Nucleares do Brasil (INB), located in Resende, Rio de Janeiro and the studied population, the managers and the staff directly involved with the aspects related to the safety of the industrial complex of the related company. The motivation for the research was the search of a bigger interaction of the questions related to the safety, environment and health in the nuclear industry having, as axle of the investigation, the fire protection. As a result, it was observed that in a nuclear installation, although dealing with diversified safety processes, integration is possible and necessary, since there are more reasons for integration than otherwise. (author)

  9. A Drone Remote Sensing for Virtual Reality Simulation System for Forest Fires: Semantic Neural Network Approach

    Science.gov (United States)

    Narasimha Rao, Gudikandhula; Jagadeeswara Rao, Peddada; Duvvuru, Rajesh

    2016-09-01

    Wild fires have significant impact on atmosphere and lives. The demand of predicting exact fire area in forest may help fire management team by using drone as a robot. These are flexible, inexpensive and elevated-motion remote sensing systems that use drones as platforms are important for substantial data gaps and supplementing the capabilities of manned aircraft and satellite remote sensing systems. In addition, powerful computational tools are essential for predicting certain burned area in the duration of a forest fire. The reason of this study is to built up a smart system based on semantic neural networking for the forecast of burned areas. The usage of virtual reality simulator is used to support the instruction process of fire fighters and all users for saving of surrounded wild lives by using a naive method Semantic Neural Network System (SNNS). Semantics are valuable initially to have a enhanced representation of the burned area prediction and better alteration of simulation situation to the users. In meticulous, consequences obtained with geometric semantic neural networking is extensively superior to other methods. This learning suggests that deeper investigation of neural networking in the field of forest fires prediction could be productive.

  10. Study on the Performance of a Proposed Fire Safe Elevator System used for Evacuation in Supertall Buildings

    Directory of Open Access Journals (Sweden)

    Cai Na

    2016-01-01

    Full Text Available Long evacuation time is a key fire safety concern when a supertall building is on fire. The elevator system can be an effective alternative. The performance of a design of fire safe elevator system combining the refuge place with fire safe elevator is studied. An example building based on this proposed design is considered. Smoke spread to the system is studied by the Computational Fluid Dynamics (CFD code Fire Dynamics Simulator (FDS. Different arrangements of smoke extraction with pressurization systems are evaluated by analysing the smoke dispersion and pressure distributions in this fire safe elevator system. Numerical results were compared with that by theoretical equations. The results show that a smoke extraction system with a four-floor approach pressurization system can be an efficient method for smoke control in elevator system for supertall buildings.

  11. PyrE, an interactive fire module within the NASA-GISS Earth System Model

    Science.gov (United States)

    Mezuman, K.; Bauer, S. E.; Tsigaridis, K.

    2017-12-01

    Fires directly affect the composition of the atmosphere and Earth's radiation balance by emitting a suite of reactive gases and particles. Having an interactive fire module in an Earth System Model allows us to study the natural and anthropogenic drivers, feedbacks, and interactions of biomass burning in different time periods. To do so we have developed PyrE, the NASA-GISS interactive fire emissions model. PyrE uses the flammability, ignition, and suppression parameterization proposed by Pechony and Shindell (2009), and is coupled to a burned area and surface recovery parameterization. The burned area calculation follows CLM's approach (Li et al., 2012), paired with an offline recovery scheme based on Ent's Terrestrial Biosphere Model (Ent TBM) carbon pool turnover time. PyrE is driven by environmental variables calculated by climate simulations, population density data, MODIS fire counts and LAI retrievals, as well as GFED4s emissions. Since the model development required extensive use of reference datasets, in addition to comparing it to GFED4s BA, we evaluate it by studying the effect of fires on atmospheric composition and climate. Our results show good agreement globally, with some regional differences. Finally, we quantify the present day fire radiative forcing. The development of PyrE allowed us for the first time to interactively simulate climate and fire activity with GISS-ModelE3

  12. Multiple-Parameter, Low-False-Alarm Fire-Detection Systems

    Science.gov (United States)

    Hunter, Gary W.; Greensburg, Paul; McKnight, Robert; Xu, Jennifer C.; Liu, C. C.; Dutta, Prabir; Makel, Darby; Blake, D.; Sue-Antillio, Jill

    2007-01-01

    Fire-detection systems incorporating multiple sensors that measure multiple parameters are being developed for use in storage depots, cargo bays of ships and aircraft, and other locations not amenable to frequent, direct visual inspection. These systems are intended to improve upon conventional smoke detectors, now used in such locations, that reliably detect fires but also frequently generate false alarms: for example, conventional smoke detectors based on the blockage of light by smoke particles are also affected by dust particles and water droplets and, thus, are often susceptible to false alarms. In contrast, by utilizing multiple parameters associated with fires, i.e. not only obscuration by smoke particles but also concentrations of multiple chemical species that are commonly generated in combustion, false alarms can be significantly decreased while still detecting fires as reliably as older smoke-detector systems do. The present development includes fabrication of sensors that have, variously, micrometer- or nanometer-sized features so that such multiple sensors can be integrated into arrays that have sizes, weights, and power demands smaller than those of older macroscopic sensors. The sensors include resistors, electrochemical cells, and Schottky diodes that exhibit different sensitivities to the various airborne chemicals of interest. In a system of this type, the sensor readings are digitized and processed by advanced signal-processing hardware and software to extract such chemical indications of fires as abnormally high concentrations of CO and CO2, possibly in combination with H2 and/or hydrocarbons. The system also includes a microelectromechanical systems (MEMS)-based particle detector and classifier device to increase the reliability of measurements of chemical species and particulates. In parallel research, software for modeling the evolution of a fire within an aircraft cargo bay has been developed. The model implemented in the software can

  13. The testing of the in situ fire extinction system of the Trawsfynydd splitter debris storage package

    International Nuclear Information System (INIS)

    Newman, R.N.

    1987-01-01

    The proposed design of a Magnox splitter debris storage drum for Trawsfynydd incorporates an in situ solid fire extinguishant Graphex CK23 on the debris surface. This is an interlamellar graphite residue compound that intumesces when heated to provide an air-restricting layer. Two series of fire tests with the extinguishant in place have been carried out on full sized drums containing unirradiated splitter debris, to demonstrate the effectiveness of the system. (author)

  14. Principles of sustainable energy systems

    CERN Document Server

    Kreith, Frank

    2013-01-01

    … ""This is an ideal book for seniors and graduate students interested in learning about the sustainable energy field and its penetration. The authors provide very strong discussion on cost-benefit analysis and ROI calculations for various alternate energy systems in current use. This is a descriptive book with detailed case-based analyses of various systems and engineering applications. The text book provides real-world case studies and related problems pertaining to sustainable energy systems.""--Dr. Kuruvilla John, University of North Texas""The new edition of ""Principles of Sustainable En

  15. Energy transfer in plasmonic systems

    International Nuclear Information System (INIS)

    Pustovit, Vitaliy N; Urbas, Augustine M; Shahbazyan, Tigran V

    2014-01-01

    We present our results on energy transfer between donor and acceptor molecules or quantum dots near a plasmonic nanoparticle. In such systems, the Förster resonance energy transfer is strongly modified due to plasmon-mediated coupling between donors and acceptors. The transfer efficiency is determined by a competition between transfer, radiation and dissipation that depends sensitively on system parameters. When donor and accepror spectral bands overlap with dipole surface plasmon resonance, the dominant transfer mechanism is through plasmon-enhanced radiative coupling. When transfer takes place from an ensemble of donors to an acceptor, a cooperative amplification of energy transfer takes place in a wide range of system parameters. (paper)

  16. A ballistics module as a part of the fire control system

    Directory of Open Access Journals (Sweden)

    Branka R. Luković

    2013-10-01

    Full Text Available This article presents a ballistics module as a part of the fire control system of weapons for fire support (mortars, artillery weapons and rocket launchers. The software is "open" with the prominence of autonomy work. It can be modulated and adapted on the user demand. Moreover, it is independent of the hardware base. Introduction: The fire control system is based on a ballistic module (BM which determines the firing data for each weapon tool in the battery. Ballistic calculations, for the given position of the target in relation to the position of tools in the given weather conditions, determine firing data (elevation, direction, timing and locating devices so that the missile seems to cause the desired effect. This paper gives the basic information about the features the BM performs and the manner of their implementation in the fire control system without going into algorithmic solution procedures. Ballistic problem in the fire control system: Ballistic calculation is based on a trajectory calculation of all kinds of projectiles (current, time-fuze, illuminating, smoke, with conventional propulsion, rocket, with built-in gas generator, etc.. Instead of previous solutions, where a trajectory calculation of the fire control system was done by approximate methods, in this BM the trajectory calculation is made by the same model with the same data as for a weapon and ammunition in the process of creating a firing table. The data used in the fire control system are made simultaneously with the preparation of firing tables for a particular tool and associated ammunition,. A modified model of particle, standardized at the NATO level, is also used. Taking into account the meteorological situation, before the trajectory calculation is done, a relative position of the target in relation to the position of the tool should be determined. A selection or loading check is carried out (possibility of reaching a given target as well as the point at which the

  17. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  18. The role of cogeneration systems in sustainability of energy

    International Nuclear Information System (INIS)

    Çakir, Uğur; Çomakli, Kemal; Yüksel, Fikret

    2012-01-01

    Highlights: ► Energy source on the world is tending to run out day by day while the energy need of humanity is increasing simultaneously. ► There are two ways to overcome this problem; one of them is renewable energy sources like solar or wind energy systems. ► The other way is like cogeneration systems. ► Cogeneration system is one of the ways to save the energy and use the energy efficiently. ► A case study is made for a hospital to present the sustainability aspects of cogeneration systems. - Abstract: Cogeneration system (CHP) is one of the ways to save the energy and use the energy efficiently. When compared to separate fossil-fired generation of heat and electricity, CHP may result in a consistent energy conservation (usually ranging from 10% to 30%) while the avoided CO 2 emissions are, as a first approximation, similar to the amount of energy saving. In terms of sustainability, one of the primary considerations is energy efficiency. Sustainable energy is considered as a kind of energy which is renewable and continuous, meaning that the use of such energy can potentially be kept up well into the future without causing harmful repercussions for future generations. In this study, environmental benefits and sustainability aspects of cogeneration systems and importance of those systems to the use of sustainable energy are underlined. To support this idea, first we have referred some scientific studies previously made on cogeneration systems and then we have used our own case study. The case study made on gas engined cogeneration system was applied for a hospital to show the sustainability aspects of cogeneration systems.

  19. Photovoltaic Energy Conversion Systems

    DEFF Research Database (Denmark)

    Kouro, Samir; Wu, Bin; Abu-Rub, Haitham

    2014-01-01

    This chapter presents a comprehensive overview of grid-connected PV systems, including power curves, grid-connected configurations, different converter topologies (both single- and three-phase), control schemes, MPPT, and anti-islanding detection methods. The focus of the chapter has been on the ...

  20. A new fire alarm system for electrical installations

    CERN Document Server

    Pietersen, A H

    1978-01-01

    Fires in electrical installations are considered to develop in four phases - initiation, smouldering, flame formation and heat development. Cables are among the more sensitive components, with working temperatures around 50 degrees C and fire detection at 70 degrees C. Conventional alarms include smoke detectors. The new technique described uses microcapsules containing powder forming a gas of the Freon type after diffusion. A typical microcapsule loses 4% per year and has a natural life of 10 years. Fabrication methods are described. Detection is by gas concentration, with a sensitivity of 1 to 10 ppm, or by acoustic methods with microphones to pick up the sound of fractures. Pressure/temperature characteristics of various types of Freon mixtures commercially available are given in graphical form.

  1. Probabilistic Approaches to Energy Systems

    DEFF Research Database (Denmark)

    Iversen, Jan Emil Banning

    of renewable energy generation. Particularly we focus on producing forecasting models that can predict renewable energy generation, single user demand, and provide advanced forecast products that are needed for an efficient integration of renewable energy into the power generation mix. Such forecasts can...... integration of renewable energy.Thus forecast products should be developed in unison with the decision making tool as they are two sides of the same overall challenge.......Energy generation from wind and sun is increasing rapidly in many parts of the world. This presents new challenges on how to integrate this uncertain, intermittent and non-dispatchable energy source. This thesis deals with forecasting and decision making in energy systems with a large proportion...

  2. Secure Automated Microgrid Energy System

    Science.gov (United States)

    2016-12-01

    O&M Operations and Maintenance PSO Power System Optimization PV Photovoltaic RAID Redundant Array of Independent Disks RBAC Role...elements of the initial study and operational power system model (feeder size , protective devices, generation sources, controllable loads, transformers...EW-201340) Secure Automated Microgrid Energy System December 2016 This document has been cleared for public release; Distribution Statement A

  3. Electrical Energy Storage for Renewable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Helms, C. R. [Univ. of Texas, Dallas, TX (United States); Cho, K. J. [Univ. of Texas, Dallas, TX (United States); Ferraris, John [Univ. of Texas, Dallas, TX (United States); Balkus, Ken [Univ. of Texas, Dallas, TX (United States); Chabal, Yves [Univ. of Texas, Dallas, TX (United States); Gnade, Bruce [Univ. of Texas, Dallas, TX (United States); Rotea, Mario [Univ. of Texas, Dallas, TX (United States); Vasselli, John [Univ. of Texas, Dallas, TX (United States)

    2012-08-31

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

  4. Techno-economic analysis of a coal-fired CHP based combined heating system with gas-fired boilers for peak load compensation

    International Nuclear Information System (INIS)

    Wang Haichao; Jiao Wenling; Lahdelma, Risto; Zou Pinghua

    2011-01-01

    Combined heat and power (CHP) plants dominate the heating market in China. With the ongoing energy structure reformation and increasing environmental concerns, we propose gas-fired boilers to be deployed in underperforming heating substations of heating networks for peak load compensation, in order to improve both energy efficiency and environmental sustainability. However, due to the relatively high price of gas, techno-economic analysis is required for evaluating different combined heating scenarios, characterized by basic heat load ratio (β). Therefore, we employ the dynamic economics and annual cost method to develop a techno-economic model for computing the net heating cost of the system, considering the current state of the art of cogeneration systems in China. The net heating cost is defined as the investment costs and operations costs of the system subtracted by revenues from power generation. We demonstrate the model in a real-life combined heating system of Daqing, China. The results show that the minimum net heating cost can be realized at β=0.75 with a cost reduction of 16.8% compared to coal heating alone. Since fuel cost is the dominating factor, sensitivity analyses on coal and gas prices are discussed subsequently. - Highlights: ► Combined heating systems comply with the energy structure reformation in China. ► We consider the current state of the art of cogeneration systems in China. ► Combined heating systems can be economically more feasible and sustainable. ► The net heating cost of a combined heating system is more sensitive to coal price. ► The optimal basic heat load ratio is more easily influenced by gas price.

  5. The baltic states' energy system

    OpenAIRE

    Nikitaravičius, Martynas

    2006-01-01

    THE BALTIC STATES’ ENERGY SYSTEM SUMMARY The goal of paper – the comparative analysis of Baltic states‘ (i.e. of Lithuania, Latvia, Estonia) energy systems in 1990-2004. The main causes that affected the development of Baltic states’ energetics are indicated in this work. By the method of statistical analysis, the comparative advantages of Baltic states‘ energetics are detected. Moreover, the main trends of further development of integration of Baltic states ‘ energetics into the energetics o...

  6. Effectiveness of fire-detection systems in light-water-reactor facilities

    International Nuclear Information System (INIS)

    DiNenno, P.J.; Dungan, K.W.

    1981-08-01

    This report presents a critical review of methods for evaluating fire detection system capabilities. These capabilities must include some measurement of success. The problem of evaluating the effectiveness in terms of probability of success or certainty of success of fire detection systems must be answered either to enable the correct selection of system when a need is identified, or to assess the acceptability of an existing system in meeting an identified need. These methods are complementary to a hazards analysis, which identifies the need, but can be quite independent in their development and use

  7. TEXT Energy Storage System

    International Nuclear Information System (INIS)

    Weldon, W.F.; Rylander, H.G.; Woodson, H.H.

    1977-01-01

    The Texas Experimental Tokamak (TEXT) Enery Storage System, designed by the Center for Electromechanics (CEM), consists of four 50 MJ, 125 V homopolar generators and their auxiliaries and is designed to power the toroidal and poloidal field coils of TEXT on a two-minute duty cycle. The four 50 MJ generators connected in series were chosen because they represent the minimum cost configuration and also represent a minimal scale up from the successful 5.0 MJ homopolar generator designed, built, and operated by the CEM

  8. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    determine how well a solar photovoltaic (PV) system with battery energy storage can provide backup power to . These analyses will result in a design guide for climate-specific sizing of the system. NREL's Erfan , feasibility, and operational analyses for photovoltaic and concentrating solar power generation projects

  9. Refurbishment priorities at the Russian coal-fired power sector for cleaner energy production case studies

    Energy Technology Data Exchange (ETDEWEB)

    P. Grammelis; N. Koukouzas; G. Skodras; E. Kakaras; A. Tumanovsky; V. Kotler [Centre for Research and Technology Hellas/Institute of Solid Fuels Technology and Applications (CERTH/ISFTA), Ptolemaida (Greece)

    2006-11-15

    The paper reviews the current status of the coal-fired power sector in Russia, the prospects for renovation activities based on Clean Coal Technologies (CCT) and presents two case studies on potential refurbishment projects. Data were collected for 180 thermoelectric units with capacity higher than 100 MWe and the renovation needs of the power sector, among the retrofitting, repowering and reconstruction options, were estimated through a multi-criteria analysis. The most attractive system to renovate a power plant between the Supercritical Combustion (SC) and the Fluidized Bed Combustion (FBC) technologies was evaluated. The application of each of the aforementioned technologies at the Kashirskaya and Shaturskaya power plants was studied and their replication potential in the Russian coal-fired power plant park was examined. Nowadays, the installed capacity of coal-fired power plants in the Russian Federation is 29.3 GWe, while they account for about 19% of the total electricity generation in the area. The low efficiency and especially the advanced age are the determinant factors for renovation applications at the Russian units. Even in the more conservative modernization scenario, over 30% of the thermoelectric units have to be repowered or reconstructed. Concrete proposals about the profitable and reliable operation of two Russian thermoelectric units with minimized environmental effects were elaborated. A new unit of 315 MWe with supercritical steam parameters and reburning for NOx abatement is envisaged to upgrade Unit 1 of Kashirskaya power station, while new circulating fluidized bed (CFB) boilers of the same steam generation is the most promising renovation option for the boilers of Unit 1 in Shaturskaya power station. 11 refs., 15 figs., 7 tabs.

  10. Energy Monitoring System Berbasis Web

    Directory of Open Access Journals (Sweden)

    Novan Zulkarnain

    2013-12-01

    Full Text Available Government through the Ministry of Energy and Mineral Resources (ESDM encourages the energy savings at whole buildings in Indonesia. Energy Monitoring System (EMS is a web-based solution to monitor energy usage in a building. The research methods used are the analysis, prototype design and testing. EMSconsists of hardware which consists of electrical sensors, temperature-humidity sensor, and a computer. Data on EMS are designed using Modbus protocol, stored in MySQL database application, and displayed on charts through Dashboard on LED TV using PHP programming.

  11. High energy arcing fault fires in switchgear equipment : a literature review.

    Energy Technology Data Exchange (ETDEWEB)

    Nowlen, Steven Patrick; Brown, Jason W.; Wyant, Francis John

    2008-10-01

    In power generating plants, switchgear provide a means to isolate and de-energize specific electrical components and buses in order to clear downstream faults, perform routine maintenance, and replace necessary electrical equipment. These protective devices may be categorized by the insulating medium, such as air or oil, and are typically specified by voltage classes, i.e. low, medium, and high voltage. Given their high energy content, catastrophic failure of switchgear by means of a high energy arcing fault (HEAF) may occur. An incident such as this may lead to an explosion and fire within the switchgear, directly impact adjacent components, and possibly render dependent electrical equipment inoperable. Historically, HEAF events have been poorly documented and discussed in little detail. Recent incidents involving switchgear components at nuclear power plants, however, were scrupulously investigated. The phenomena itself is only understood on a very elementary level from preliminary experiments and theories; though many have argued that these early experiments were inaccurate due to primitive instrumentation or poorly justified methodologies and thus require re-evaluation. Within the past two decades, however, there has been a resurgence of research that analyzes previous work and modern technology. Developing a greater understanding of the HEAF phenomena, in particular the affects on switchgear equipment and other associated switching components, would allow power generating industries to minimize and possibly prevent future occurrences, thereby reducing costs associated with repair and downtime. This report presents the findings of a literature review focused on arc fault studies for electrical switching equipment. The specific objective of this review was to assess the availability of the types of information needed to support development of improved treatment methods in fire Probabilistic Risk Assessment (PRA) for nuclear power plant applications.

  12. Innovative nuclear energy systems roadmap

    International Nuclear Information System (INIS)

    2007-12-01

    Developing nuclear energy that is sustainable, safe, has little waste by-product, and cannot be proliferated is an extremely vital and pressing issue. To resolve the four issues through free thinking and overall vision, research activities of 'innovative nuclear energy systems' and 'innovative separation and transmutation' started as a unique 21st Century COE Program for nuclear energy called the Innovative Nuclear Energy Systems for Sustainable Development of the World, COE-INES. 'Innovative nuclear energy systems' include research on CANDLE burn-up reactors, lead-cooled fast reactors and using nuclear energy in heat energy. 'Innovative separation and transmutation' include research on using chemical microchips to efficiently separate TRU waste to MA, burning or destroying waste products, or transmuting plutonium and other nuclear materials. Research on 'nuclear technology and society' and 'education' was also added in order for nuclear energy to be accepted into society. COE-INES was a five-year program ending in 2007. But some activities should be continued and this roadmap detailed them as a rough guide focusing inventions and discoveries. This technology roadmap was created for social acceptance and should be flexible to respond to changing times and conditions. (T. Tanaka)

  13. Fires and Smoke Observed from the Earth Observing System MODIS Instrument: Products, Validation, and Operational Use

    Science.gov (United States)

    Kaufman, Y. J.; Ichoku, C.; Giglio, L.; Korontzi, S.; Chu, D. A.; Hao, W. M.; Justice, C. O.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The MODIS sensor, launched on NASA's Terra satellite at the end of 1999, was designed with 36 spectral channels for a wide array of land, ocean, and atmospheric investigations. MODIS has a unique ability to observe fires, smoke, and burn scars globally. Its main fire detection channels saturate at high brightness temperatures: 500 K at 4 microns and 400 K at 11 microns, which can only be attained in rare circumstances at the I kin fire detection spatial resolution. Thus, unlike other polar orbiting satellite sensors with similar thermal and spatial resolutions, but much lower saturation temperatures (e.g. AVHRR and ATSR), MODIS can distinguish between low intensity ground surface fires and high intensity crown forest fires. Smoke column concentration over land is for the first time being derived from the MOMS solar channels, extending from 0.41 microns to 2.1 microns. The smoke product has been provisionally validated both globally and regionally over southern Africa and central and south America. Burn scars are observed from MODIS even in the presence of smoke, using the 1.2 to 2.1 micron channels. MODIS burned area information is used to estimate pyrogenic emissions. A wide range of these fire and related products and validation are demonstrated for the wild fires that occurred in northwestern United States in the summer of 2000. The MODIS rapid response system and direct broadcast capability is being developed to enable users to obtain and generate data in near real time. It is expected that health and land management organizations will use these systems for monitoring the occurrence of fires and the dispersion of smoke within two to six hours after data acquisition.

  14. Proceedings of the advanced coal-fired power systems `95 review meeting, Volume II

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, H.M.; Mollot, D.J.; Venkataraman, V.K.

    1995-06-01

    This report contains papers which were presented at the advanced coal-fired power sytems review meeting. This is volume II. Topics include: hot gas filter issues, hazardous air pollutants, sorbent development, and separation technologies. Individual papers were processed separately for the United States Department of Energy databases.

  15. Efficiency Evaluation of Energy Systems

    CERN Document Server

    Kanoğlu, Mehmet; Dinçer, İbrahim

    2012-01-01

    Efficiency is one of the most frequently used terms in thermodynamics, and it indicates how well an energy conversion or process is accomplished. Efficiency is also one of the most frequently misused terms in thermodynamics and is often a source of misunderstanding. This is because efficiency is often used without being properly defined first. This book intends to provide a comprehensive evaluation of various efficiencies used for energy transfer and conversion systems including steady-flow energy devices (turbines, compressors, pumps, nozzles, heat exchangers, etc.), various power plants, cogeneration plants, and refrigeration systems. The book will cover first-law (energy based) and second-law (exergy based) efficiencies and provide a comprehensive understanding of their implications. It will help minimize the widespread misuse of efficiencies among students and researchers in energy field by using an intuitive and unified approach for defining efficiencies. The book will be particularly useful for a clear ...

  16. Control of Solar Energy Systems

    CERN Document Server

    Camacho, Eduardo F; Rubio, Francisco R; Martínez, Diego

    2012-01-01

    Control of Solar Energy Systems details the main solar energy systems, problems involved with their control, and how control systems can help in increasing their efficiency.  After a brief introduction to the fundamental concepts associated with the use of solar energy in both photovoltaic and thermal plants, specific issues related to control of solar systems are embarked upon. Thermal energy systems are then explored in depth, as well as  other solar energy applications such as solar furnaces and solar refrigeration systems. Problems of variable generation profile and of the contribution of many solar plants to the same grid system are considered with the necessary integrated and supervisory control solutions being discussed. The text includes material on: ·         A comparison of basic and advanced control methods for parabolic troughs from PID to nonlinear model-based control; ·         solar towers and solar tracking; ·         heliostat calibration, characterization and off...

  17. Integrated roof wind energy system

    Directory of Open Access Journals (Sweden)

    Moonen S.P.G.

    2012-10-01

    Full Text Available Wind is an attractive renewable source of energy. Recent innovations in research and design have reduced to a few alternatives with limited impact on residential construction. Cost effective solutions have been found at larger scale, but storage and delivery of energy to the actual location it is used, remain a critical issue. The Integrated Roof Wind Energy System is designed to overcome the current issues of urban and larger scale renewable energy system. The system is built up by an axial array of skewed shaped funnels that make use of the Venturi Effect to accelerate the wind flow. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a vertical-axis wind turbine in the top of the roof for generation of a relatively high amount of energy. The methods used in this overview of studies include an array of tools from analytical modelling, PIV wind tunnel testing, and CFD simulation studies. The results define the main design parameters for an efficient system, and show the potential for the generation of high amounts of renewable energy with a novel and effective system suited for the built environment.

  18. Energy Systems Integration Partnerships: NREL + Cogent Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Berdahl, Sonja E [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-09

    NREL is collaborating with Cogent Energy Systems (Cogent) to introduce small-scale waste-to-energy technology in microgrids.The focus of the project is to test and demonstrate the feasibility, reliability, and usefulness of integrating electricity generated using a simulated syngas composition matching the syngas stream to be produced by a HelioStorm-based WTE gasifier to power a microgrid as a means of addressing and complementing the intermittency of other sources of electricity.

  19. Modelling fire frequency and area burned across phytoclimatic regions in Spain using reanalysis data and the Canadian Fire Weather Index System

    Science.gov (United States)

    Bedia, J.; Herrera, S.; Gutiérrez, J. M.

    2013-09-01

    We develop fire occurrence and burned area models in peninsular Spain, an area of high variability in climate and fuel types, for the period 1990-2008. We based the analysis on a phytoclimatic classification aiming to the stratification of the territory into homogeneous units in terms of climatic and fuel type characteristics, allowing to test model performance under different climatic and fuel conditions. We used generalized linear models (GLM) and multivariate adaptive regression splines (MARS) as modelling algorithms and temperature, relative humidity, precipitation and wind speed, taken from the ERA-Interim reanalysis, as well as the components of the Canadian Forest Fire Weather Index (FWI) System as predictors. We also computed the standardized precipitation-evapotranspiration index (SPEI) as an additional predictor for the models of burned area. We found two contrasting fire regimes in terms of area burned and number of fires: one characterized by a bimodal annual pattern, characterizing the Nemoral and Oro-boreal phytoclimatic types, and another one exhibiting an unimodal annual cycle, with the fire season concentrated in the summer months in the Mediterranean and Arid regions. The fire occurrence models attained good skill in most of the phytoclimatic zones considered, yielding in some zones notably high correlation coefficients between the observed and modelled inter-annual fire frequencies. Total area burned also exhibited a high dependence on the meteorological drivers, although their ability to reproduce the observed annual burned area time series was poor in most cases. We identified temperature and some FWI system components as the most important explanatory variables, and also SPEI in some of the burned area models, highlighting the adequacy of the FWI system for fire modelling applications and leaving the door opened to the development a more complex modelling framework based on these predictors. Furthermore, we demonstrate the potential usefulness

  20. Energy-Water System Solutions | Energy Analysis | NREL

    Science.gov (United States)

    System Solutions Energy-Water System Solutions NREL has been a pioneer in the development of energy -water system solutions that explicitly address and optimize energy-water tradeoffs. NREL has evaluated energy-water system solutions for Department of Defense bases, islands, communities recovering from

  1. Effects of invasive insects and fire on energy exchange and evapotranspiration in the New Jersey pine lands

    Science.gov (United States)

    Kenneth L. Clark; Nicholas Skowronski; Michael Gallagher; Hedi Renninger; Karina. Schafer

    2012-01-01

    We used eddy covariance and meteorological measurements to quantify energy exchange and evapotranspiration (Et) in three representative upland forest stands in the New Jersey Pinelands that were either defoliated by gypsy moth (Lymantria dispar L.) or burned in prescribed fires during the study period. Latent (λE) and sensible heat (H)...

  2. New methods for testing fire resistance of wood façade systems

    Directory of Open Access Journals (Sweden)

    Mårtensson August

    2016-01-01

    Full Text Available Arson in schools has been a huge problem in Sweden over the last fifteen years. The average amount of school arsons between 2000 and 2014 was 285 cases each year which corresponds to 50% of the total amount of reported fires in school buildings. This is a well-known problem and a lot of research has been done in this area. Investigations has been done about fire and heat detection systems, different technical factors significance in fire scenarios and how to prevent adolescents from starting fires. Another part of the problem that partly been investigated is how the schools are constructed. Roughly 50% of the arsons are outside of the school building. In Sweden one and two storey buildings are allowed to be built with wooden façades in accordance with the building code, which is one of the reasons many schools are built with wooden façade systems. The most critical part in a wood façade system from a fire safety perspective is concluded to be the eaves because of how they usually are built to let air pass through. Even though a wood façade isn't as well resistant to fire compared to a concrete façade, three versions of new test methods for combustible façades have been developed to make it possible to make sure in advance that a construction is resistant enough. The new test methods are focused on specific details and parts of a façade system to provide a more informative and useful result compared to SP Fire 105. Observations and measurements of flame spread and temperature changes in the eave, over the window joints and in the air gap are made. With these parameters in consideration criteria's has been chosen for a critical temperature of 280 ∘C at a critical time of 20 minutes.

  3. Automatic sprinkler system performance and reliability in United States Department of Energy Facilities, 1952 to 1980

    International Nuclear Information System (INIS)

    1982-06-01

    The automatic sprinkler system experiences of the United States Department of Energy and its predecessor agencies are analyzed. Based on accident and incident files in the Office of Operational Safety and on supplementary responses, 587 incidents including over 100 fires are analyzed. Tables and figures, with supplementary narratives discuss fire experience by various categories such as number of heads operating, type of system, dollar losses, failures, extinguished vs. controlled, and types of sprinkler heads. Use is made of extreme value projections and frequency-severity plots to compare past experience and predict future experience. Non-fire incidents are analyzed in a similar manner by cause, system types and failure types. Discussion of no-loss incidents and non-fire protection water systems is included. The author's conclusions and recommendations and appendices listing survey methodology, major incidents, and a bibliography are included

  4. Monitoring Fires from Space and Getting Data in to the hands of Users: An Example from NASA's Fire Information for Resource Management System (FIRMS)

    Science.gov (United States)

    Davies, D.; Wong, M.; Ilavajhala, S.; Molinario, G.; Justice, C. O.

    2012-12-01

    This paper discusses the broad uptake of MODIS near-real-time (NRT) active fire data for applications. Prior to the launch of MODIS most real-time satellite-derived fire information was obtained from NOAA AVHRR via direct broadcast (DB) systems. Whilst there were efforts to make direct broadcast stations affordable in developing countries, such as through the Local Applications of Satellite Remote Technologies (LARST), these systems were relatively few and far between and required expertise to manage and operate. One such system was in Etosha National Park (ENP) in Namibia. Prior to the installation of the AVHRR DB system in ENP, fires were reported by rangers and the quality, accuracy and timing of reports was variable. With the introduction of the DB station, early warning of fires improved and fire maps could be produced for park managers within 2-3 hours by staff trained to process data, interpret images and produce maps. Up keep and maintenance of such systems was relatively costly for parks with limited resources therefore when global fire data from MODIS became available uptake was widespread. NRT data from MODIS became availalbe through a collaboration between the MODIS Fire Team and the US Forest Service (USFS) Remote Sensing Applications Center to provide rapid access to imagery to help fight the Montana wildfires of 2001. This prompted the development of a Rapid Response System for fire data that eventually led to the operational use of MODIS data by the USFS for fire monitoring. Building on this success, the Fire Information for Resource Management System (FIRMS) project was funded by NASA Applications, and developed under the umbrella of the GOFC-GOLD Fire program, to further improve products and services for the global fire information community. FIRMS was developed as a web-based geospatial tool, offering a range of geospatial data services, including a fire email alert service which is widely used around the world. FIRMS was initially developed to

  5. EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    J. A. Withum; S.C. Tseng; J. E. Locke

    2004-10-31

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on Hg speciation and the efficacy of different FGD technologies for Hg capture. This document, the second in a series of topical reports, describes the results and analysis of mercury sampling performed on a 330 MW unit burning a bituminous coal containing 1.0% sulfur. The unit is equipped with a SCR system for NOx control and a spray dryer absorber for SO{sub 2} control followed by a baghouse unit for particulate emissions control. Four sampling tests were performed in March 2003. Flue gas mercury speciation and concentrations were determined at the SCR inlet, air heater outlet (ESP inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. Due to mechanical problems with the boiler feed water pumps, the actual gross output was between 195 and 221 MW during the tests. The results showed that the SCR/air heater combination oxidized nearly 95% of the elemental mercury. Mercury removal, on a

  6. Analysis of integrated energy systems

    International Nuclear Information System (INIS)

    Matsuhashi, Takaharu; Kaya, Yoichi; Komiyama, Hiroshi; Hayashi, Taketo; Yasukawa, Shigeru.

    1988-01-01

    World attention is now attracted to the concept of Novel Horizontally Integrated Energy System (NHIES). In NHIES, all fossil fuels are fist converted into CO and H 2 . Potential environmental contaminants such as sulfur are removed during this process. CO turbines are mainly used to generate electric power. Combustion is performed in pure oxygen produced through air separation, making it possible to completely prevent the formation of thermal NOx. Thus, NHIES would release very little amount of such substances that would contribute to acid rain. In this system, the intermediate energy sources of CO, H 2 and O 2 are integrated horizontally. They are combined appropriately to produce a specific form of final energy source. The integration of intermediate energy sources can provide a wide variety of final energy sources, allowing any type of fossil fuel to serve as an alternative to other types of fossil fuel. Another feature of NHIES is the positive use of nuclear fuel to reduce the formation of CO 2 . Studies are under way in Japan to develop a new concept of integrated energy system. These studies are especially aimed at decreased overall efficiency and introduction of new liquid fuels that are high in conversion efficiency. Considerations are made on the final form of energy source, robust control, acid fallout, and CO 2 reduction. (Nogami, K.)

  7. Renewable Energy Devices and Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ionel, Dan M.

    2015-01-01

    In this paper, essential statistics demonstrating the increasing role of renewable energy generation are firstly discussed. A state of the art review section covers fundamentals of wind turbines and PV systems. Included are schematic diagrams illustrating the main components and system topologies...... and the fundamental and increasing role of power electronics as an enabler for renewable energy integration, and for the future power system and smart grid. Recent examples of research and development, including new devices and system installations for utility power plants, as well for as residential and commercial......, fuel cells, and storage with batteries and hydrogen, respectively. Recommended further readings on topics of electric power engineering for renewable energy are included in a final section. This paper also represents an editorial introduction for two special issues of the Electric Power Component...

  8. World energy data system (WENDS)

    International Nuclear Information System (INIS)

    Lareau, W.E.

    1979-01-01

    This paper presents a unique application of System 2000: the storage of preformatted textual information in a completely user oriented data base. The World Energy Data System is an information system which allows qualified users online access to non-classified management level data on worldwide energy technology and research and development activities. WENDS has been used to transmit up-to-date informaion on foreign energy technology and research and development programs to DOE program divisions, the Congress, and other U.S. government officials going abroad. The WENDS concept is first described. Then, the method of storage of the textual information is discussed followed by a discussion of the retrieval system which is thoroughly designed to serve the user

  9. Water-cooled, fire boom blanket, test and evaluation for system prototype development

    International Nuclear Information System (INIS)

    Stahovec, J. G.; Urban, R. W.

    1999-01-01

    Initial development of actively cooled fire booms indicated that water-cooled barriers could withstand direct oil fire for several hours with little damage if cooling water were continuously supplied. Despite these early promising developments, it was realized that to build reliable full-scale system for Navy host salvage booms would require several development tests and lengthy evaluations. In this experiment several types of water-cooled fire blankets were tested at the Oil and Hazardous Materials Simulated Test Tank (OHMSETT). After the burn test the blankets were inspected for damage and additional tests were conducted to determine handling characteristics for deployment, recovery, cleaning and maintenance. Test results showed that water-cooled fire boom blankets can be used on conventional offshore oil containment booms to extend their use for controlling large floating-oil marine fires. Results also demonstrated the importance of using thermoset rubber coated fabrics in the host boom to maintain sufficient reserve seam strength at elevated temperatures. The suitability of passively cooled covers should be investigated to protect equipment and boom from indirect fire exposure. 1 ref., 2 tabs., 8 figs

  10. Thermal biology of eastern box turtles in a longleaf pine system managed with prescribed fire.

    Science.gov (United States)

    Roe, John H; Wild, Kristoffer H; Hall, Carlisha A

    2017-10-01

    Fire can influence the microclimate of forest habitats by removing understory vegetation and surface debris. Temperature is often higher in recently burned forests owing to increased light penetration through the open understory. Because physiological processes are sensitive to temperature in ectotherms, we expected fire-maintained forests to improve the suitability of the thermal environment for turtles, and for turtles to seasonally associate with the most thermally-optimal habitats. Using a laboratory thermal gradient, we determined the thermal preference range (T set ) of eastern box turtles, Terrapene carolina, to be 27-31°C. Physical models simulating the body temperatures experienced by turtles in the field revealed that surface environments in a fire-maintained longleaf pine forest were 3°C warmer than adjacent unburned mixed hardwood/pine forests, but the fire-maintained forest was never of superior thermal quality owing to wider T e fluctuations above T set and exposure to extreme and potentially lethal temperatures. Radiotracked turtles using fire-managed longleaf pine forests maintained shell temperatures (T s ) approximately 2°C above those at a nearby unburned forest, but we observed only moderate seasonal changes in habitat use which were inconsistent with thermoregulatory behavior. We conclude that turtles were not responding strongly to the thermal heterogeneity generated by fire in our system, and that other aspects of the environment are likely more important in shaping habitat associations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. An Improved Flexible Solar Thermal Energy Integration Process for Enhancing the Coal-Based Energy Efficiency and NOx Removal Effectiveness in Coal-Fired Power Plants under Different Load Conditions

    Directory of Open Access Journals (Sweden)

    Yu Han

    2017-09-01

    Full Text Available An improved flexible solar-aided power generation system (SAPG for enhancing both selective catalytic reduction (SCR de-NOx efficiency and coal-based energy efficiency of coal-fired power plants is proposed. In the proposed concept, the solar energy injection point is changed for different power plant loads, bringing about different benefits for coal-fired power generation. For partial/low load, solar energy is beneficially used to increase the flue gas temperature to guarantee the SCR de-NOx effectiveness as well as increase the boiler energy input by reheating the combustion air. For high power load, solar energy is used for saving steam bleeds from turbines by heating the feed water. A case study for a typical 1000 MW coal-fired power plant using the proposed concept has been performed and the results showed that, the SCR de-NOx efficiency of proposed SAPG could increase by 3.1% and 7.9% under medium load and low load conditions, respectively, as compared with the reference plant. The standard coal consumption rate of the proposed SAPG could decrease by 2.68 g/kWh, 4.05 g/kWh and 6.31 g/kWh for high, medium and low loads, respectively, with 0.040 USD/kWh of solar generated electricity cost. The proposed concept opens up a novel solar energy integration pattern in coal-fired power plants to improve the pollutant removal effectiveness and decrease the coal consumption of the power plant.

  12. Gas fired combined cycle plant in Singapore: energy use, GWP and cost-a life cycle approach

    International Nuclear Information System (INIS)

    Kannan, R.; Leong, K.C.; Osman, Ramli; Ho, H.K.; Tso, C.P.

    2005-01-01

    A life cycle assessment was performed to quantify the non-renewable (fossil) energy use and global warming potential (GWP) in electricity generation from a typical gas fired combined cycle power plant in Singapore. The cost of electricity generation was estimated using a life cycle cost analysis (LCCA) tool. The life cycle assessment (LCA) of a 367.5 MW gas fired combined cycle power plant operating in Singapore revealed that hidden processes consume about 8% additional energy in addition to the fuel embedded energy, and the hidden GWP is about 18%. The natural gas consumed during the operational phase accounted for 82% of the life cycle cost of electricity generation. An empirical relation between plant efficiency and life cycle energy use and GWP in addition to a scenario for electricity cost with varying gas prices and plant efficiency have been established

  13. Fire science at LLNL: A review

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, H.K. (ed.)

    1990-03-01

    This fire sciences report from LLNL includes topics on: fire spread in trailer complexes, properties of welding blankets, validation of sprinkler systems, fire and smoke detectors, fire modeling, and other fire engineering and safety issues. (JEF)

  14. Proposal for the award of a blanket purchase contract for the design, supply, installation and maintenance of automatic fire-detection, fire-protection and voice-alarm systems for the Super Proton Synchrotron

    CERN Document Server

    2017-01-01

    Proposal for the award of a blanket purchase contract for the design, supply, installation and maintenance of automatic fire-detection, fire-protection and voice-alarm systems for the Super Proton Synchrotron

  15. Engineering development of advanced coal-fired low-emission boiler systems. Technical progress report No. 15, April 15 1996--June 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-19

    The Pittsburgh Energy Technology center of the US Department of Energy (DOE) has contracted with Combustion Engineering; Inc. (ABB CE) to perform work on the {open_quotes}Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems{close_quote} Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis and Phases II and III on a cost-share basis.

  16. EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    J.A. Withum; S.C. Tseng; J.E. Locke

    2005-11-01

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dryer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the seventh in a series of topical reports, describes the results and analysis of mercury sampling performed on a 1,300 MW unit burning a bituminous coal containing three percent sulfur. The unit was equipped with an ESP and a limestone-based wet FGD to control particulate and SO2 emissions, respectively. At the time of sampling an SCR was not installed on this unit. Four sampling tests were performed in September 2003. Flue gas mercury speciation and concentrations were determined at the ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. The results show that the FGD inlet flue gas oxidized:elemental mercury ratio was roughly 2:1, with 66% oxidized mercury and 34% elemental mercury. Mercury removal, on a coal

  17. Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems

    Energy Technology Data Exchange (ETDEWEB)

    J. A. Withum; S. C. Tseng; J. E. Locke

    2006-01-31

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that these data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the ninth in a series of topical reports, describes the results and analysis of mercury sampling performed on Unit 1 at Plant 7, a 566 MW unit burning a bituminous coal containing 3.6% sulfur. The unit is equipped with a SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO

  18. Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems

    Energy Technology Data Exchange (ETDEWEB)

    J. A. Withum; J. E. Locke

    2006-02-01

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the tenth in a series of topical reports, describes the results and analysis of mercury sampling performed on two 468 MW units burning bituminous coal containing 1.3-1.7% sulfur. Unit 2 is equipped with an SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO{sub 2} emissions

  19. Introduction to Renewable Energy Systems

    DEFF Research Database (Denmark)

    Ma, Ke; Yang, Yongheng; Blaabjerg, Frede

    2014-01-01

    . It is concluded that as the quick development of renewable energy, wind power and PV power both show great potential to be largely integrated into the power grid. Power electronics is playing essential role in both of the systems to achieve more controllable, efficient, and reliable energy production......In this chapter, the state-of-the-arts developments of renewable energy are reviewed in respect to the installed power and market share, where wind power and photovoltaic power generation are the main focuses due to the fast growing speed and large share of installed capacity. Some basic principles...... of operation, mission profiles, as well as power electronics solutions and corresponding controls are discussed respectively in the case of wind power and photovoltaic power systems. Finally a few development trends for renewable energy conversions are also given from a power electronics point of view...

  20. 30 CFR 75.1101-16 - Dry powder chemical systems; sensing and fire-suppression devices.

    Science.gov (United States)

    2010-07-01

    ...-contained dry powder chemical system shall be equipped with sensing devices which shall be designed to activate the fire-control system, sound an alarm and stop the conveyor drive motor in the event of a rise... belt drive, each sensor shall be equipped with a standby power source which shall be capable of...

  1. Examining fire-prone forest landscapes as coupled human and natural systems

    Science.gov (United States)

    Thomas A. Spies; Eric M. White; Jeffrey D. Kline; A. Paige Fisher; Alan Ager; John Bailey; John Bolte; Jennifer Koch; Emily Platt; Christine S. Olsen; Derric Jacobs; Bruce Shindler; Michelle M. Steen-Adams; Roger. Hammer

    2014-01-01

    Fire-prone landscapes are not well studied as coupled human and natural systems (CHANS) and present many challenges for understanding and promoting adaptive behaviors and institutions. Here, we explore how heterogeneity, feedbacks, and external drivers in this type of natural hazard system can lead to complexity and can limit the development of more adaptive approaches...

  2. 30 CFR 75.1912 - Fire suppression systems for permanent underground diesel fuel storage facilities.

    Science.gov (United States)

    2010-07-01

    ... Diesel-Powered Equipment § 75.1912 Fire suppression systems for permanent underground diesel fuel storage... system by a nationally recognized independent testing laboratory and appropriate for installation at a... recommended inspection and maintenance program and as required by the nationally recognized independent...

  3. Autonomous renewable energy conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Valtchev, V. [Technical University of Varna (Bulgaria). Dept. of Electronics; Bossche, A. van den; Ghijselen, J.; Melkebeek, J. [University of Gent (Belgium). Dept. of Electrical Power Engineering

    2000-02-01

    This paper briefly reviews the need for renewable power generation and describes a medium-power Autonomous Renewable Energy Conversion System (ARECS), integrating conversion of wind and solar energy sources. The objectives of the paper are to extract maximum power from the proposed wind energy conversion scheme and to transfer this power and the power derived by the photovoltaic system in a high efficiency way to a local isolated load. The wind energy conversion operates at variable shaft speed yielding an improved annual energy production over constant speed systems. An induction generator (IG) has been used because of its reduced cost, robustness, absence of separate DC source for excitation, easier dismounting and maintenance. The maximum energy transfer of the wind energy is assured by a simple and reliable control strategy adjusting the stator frequency of the IG so that the power drawn is equal to the peak power production of the wind turbine at any wind speed. The presented control strategy also provides an optimal efficiency operation of the IG by applying a quadratic dependence between the IG terminal voltage and frequency V {approx} f{sup 2}. For improving the total system efficiency, high efficiency converters have been designed and implemented. The modular principle of the proposed DC/DC conversion provides the possibility for modifying the system structure depending on different conditions. The configuration of the presented ARECS and the implementation of the proposed control algorithm for optimal power transfer are fully discussed. The stability and dynamic performance as well as the different operation modes of the proposed control and the operation of the converters are illustrated and verified on an experimental prototype. (author)

  4. Energy Analysis and Environmental Impacts of Hybrid Giant Napier (Pennisetum Hydridum) Direct-fired Power Generation in South China

    Science.gov (United States)

    Liao, Yanfen; Fang, Hailin; Zhang, Hengjin; Yu, Zhaosheng; Liu, Zhichao; Ma, Xiaoqian

    2017-05-01

    To meet with the demand of energy conservation and emission reduction policies, the method of life cycle assessment (LCA) was used to assess the feasibility of Hybrid Giant Napier (HGN) direct-fired power generation in this study. The entire life cycle is consisted of five stages (cultivation and harvesting, transportation, drying and comminuting, direct-fired power generation, constructing and decommissioning of biomass power plant). Analytical results revealed that to generate 10000kWh electricity, 10.925 t of customized HGN fuel (moisture content: 30 wt%) and 6659.430 MJ of energy were required. The total environmental impact potential was 0.927 PET2010 (person equivalents, targeted, in 2010) and the global warming (GW), acidification (AC), and nutrient (NE) emissions were 339.235 kg CO2-eq, 22.033 kg SO2-eq, and 25.486 kg NOx-eq respectively. The effect of AC was the most serious among all calculated category impacts. The energy requirements and environmental impacts were found to be sensitive to single yield, average transport distance, cutting frequency, and moisture content. The results indicated that HGN direct-fired power generation accorded well with Chinese energy planning; in addition, HGN proved to be a promising contribution to reducing non-renewable energy consumption and had encouraging prospects as a renewable energy plant.

  5. Energy Systems Integration Newsletter - December 2016 | Energy Systems

    Science.gov (United States)

    system makes renewable energy integration easier. ESIF Research Shows That Connected Residential Devices and business intelligence. Baggu also noted the opportunity to harness next-generation graphical -through, ramp rate control, soft-start reconnection, and voltage-watt control. NREL then conducted power

  6. DEVELOPMENT OF USER-FRIENDLY SIMULATION SYSTEM OF EARTHQUAKE INDUCED URBAN SPREADING FIRE

    Science.gov (United States)

    Tsujihara, Osamu; Gawa, Hidemi; Hayashi, Hirofumi

    In the simulation of earthquake induced urban spreading fire, the produce of the analytical model of the target area is required as well as the analysis of spreading fire and the presentati on of the results. In order to promote the use of the simulation, it is important that the simulation system is non-intrusive and the analysis results can be demonstrated by the realistic presentation. In this study, the simulation system is developed based on the Petri-net algorithm, in which the easy operation can be realized in the modeling of the target area of the simulation through the presentation of analytical results by realistic 3-D animation.

  7. Exploratory Studies Facility Subsurface Fire Hazards Analysis

    International Nuclear Information System (INIS)

    Logan, Richard C.

    2002-01-01

    The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment; Vital U.S. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events

  8. Exploratory Studies Facility Subsurface Fire Hazards Analysis

    International Nuclear Information System (INIS)

    Kubicek, J. L.

    2001-01-01

    The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: (1) The occurrence of a fire or related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment. (3) Vital US. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. (5) Critical process controls and safety class systems being damaged as a result of a fire and related events

  9. The Hazard Mapping System (HMS)-a Multiplatform Remote Sensing Approach to Fire and Smoke Detection

    Science.gov (United States)

    Kibler, J.; Ruminski, M. G.

    2003-12-01

    The HMS is a multiplatform remote sensing approach to detecting fires and smoke over the US and adjacent areas of Canada and Mexico that has been in place since June 2002. This system is an integral part of the National Environmental Satellite and Data Information Service (NESDIS) near realtime hazard detection and mitigation efforts. The system utilizes NOAA's Geostationary Operational Environmental Satellites (GOES), Polar Operational Environmental Satellites (POES) and the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on NASA's Terra and Aqua spacecraft. Automated detection algorithms are employed for each of the satellites for the fire detects while smoke is added by a satellite image analyst. In June 2003 the HMS underwent an upgrade. A number of features were added for users of the products generated on the HMS. Sectors covering Alaska and Hawaii were added. The use of Geographic Information System (GIS) shape files for smoke analysis is a new feature. Shape files show the progression and time of a single smoke plume as each analysis is drawn and then updated. The analyst now has the ability to view GOES, POES, and MODIS data in a single loop. This allows the fire analyst the ability to easily confirm a fire in three different data sets. The upgraded HMS has faster satellite looping and gives the analyst the ability to design a false color image for a particular region. The GOES satellites provide a relatively coarse 4 km infrared resolution at satellite subpoint for thermal fire detection but provide the advantage of a rapid update cycle. GOES imagery is updated every 15 minutes utilizing both GOES-10 and GOES-12. POES imagery from NOAA-15, NOAA-16 and NOAA-17 and MODIS from Terra and Aqua are employed with each satellite providing twice per day coverage (more frequent over Alaska). While the frequency of imagery is much less than with GOES the higher resolution of these satellites (1 km along the suborbital track) allows for detection of

  10. A 3D vision system for the measurement of the rate of spread and the height of fire fronts

    International Nuclear Information System (INIS)

    Rossi, L; Molinier, T; Tison, Y; Pieri, A; Akhloufi, M

    2010-01-01

    This paper presents a three-dimensional (3D) vision-based instrumentation system for the measurement of the rate of spread and height of complex fire fronts. The proposed 3D imaging system is simple, does not require calibration, is easily deployable in indoor and outdoor environments and can handle complex fire fronts. New approaches for measuring the position, the rate of spread and the height of a fire front during its propagation are introduced. Experiments were conducted in indoor and outdoor conditions with fires of different scales. Linear and curvilinear fire front spreading were studied. The obtained results are promising and show the interesting performance of the proposed system in operational and complex fire scenarios

  11. Mine shaft fire and smoke protection systems - an update on hardware development and in-mine testing

    International Nuclear Information System (INIS)

    Johnson, G.A.

    1982-01-01

    In 1976, The Bureau of Mines developed a prototype system to sense and extinguish fires in shafts and shaft stations in underground metal and nonmetal mines. Subsequent work modified this technology to include fueling areas, spontaneous combustion zones and coal mines. This paper updates IC-8783 ''In-mine Fire Tests of Mine Shaft Fire and Smoke Protection Systems'', which was published in 1978 and summarized the design and in-mine, actual fire testing of the first prototype mine shaft fire and smoke protection system. This paper also updates related work from IC-8775 ''Spontaneous Oxidation and Combustion of Sulfide Ores in Underground Mines, (also published in 1978) and IC-8808 ''In-mine Evaluation of Underground Fire and Smoke Detectors'', (published in early 1979)

  12. Long-term energy and climate implications of carbon capture and storage deployment strategies in the US coal-fired electricity fleet.

    Science.gov (United States)

    Sathre, Roger; Masanet, Eric

    2012-09-04

    To understand the long-term energy and climate implications of different implementation strategies for carbon capture and storage (CCS) in the US coal-fired electricity fleet, we integrate three analytical elements: scenario projection of energy supply systems, temporally explicit life cycle modeling, and time-dependent calculation of radiative forcing. Assuming continued large-scale use of coal for electricity generation, we find that aggressive implementation of CCS could reduce cumulative greenhouse gas emissions (CO(2), CH(4), and N(2)O) from the US coal-fired power fleet through 2100 by 37-58%. Cumulative radiative forcing through 2100 would be reduced by only 24-46%, due to the front-loaded time profile of the emissions and the long atmospheric residence time of CO(2). The efficiency of energy conversion and carbon capture technologies strongly affects the amount of primary energy used but has little effect on greenhouse gas emissions or radiative forcing. Delaying implementation of CCS deployment significantly increases long-term radiative forcing. This study highlights the time-dynamic nature of potential climate benefits and energy costs of different CCS deployment pathways and identifies opportunities and constraints of successful CCS implementation.

  13. Environmental performance assessment of utility boiler energy conversion systems

    International Nuclear Information System (INIS)

    Li, Changchun; Gillum, Craig; Toupin, Kevin; Park, Young Ho; Donaldson, Burl

    2016-01-01

    Highlights: • Sustainability analyses of utility boilers are performed. • Natural gas fired boilers have the least CO_2 emissions in fossil fueled boilers. • Solar boilers rank last with an emergy yield ratio of 1.2. • Biomass boilers have the best emergy sustainability index. - Abstract: A significant amount of global electric power generation is produced from the combustion of fossil fuels. Steam boilers are one of the most important components for steam and electricity production. The objective of this paper is to establish a theoretical framework for the sustainability analysis of a utility boiler. These analyses can be used by decision-makers to diagnose and optimize the sustainability of a utility boiler. Seven utility boiler systems are analyzed using energy and embodied solar energy (emergy) principles in order to evaluate their environmental efficiencies. They include a subcritical coal fired boiler, a supercritical coal fired boiler, an oil fired boiler, a natural gas fired boiler, a concentrating solar power boiler utilizing a tower configuration, a biomass boiler, and a refuse derived fuel boiler. Their relative environmental impacts were compared. The results show that the natural gas boiler has significantly lower CO_2 emission than an equivalent coal or oil fired boiler. The refuse derived fuel boiler has about the same CO_2 emissions as the natural gas boiler. The emergy sustainability index of a utility boiler system is determined as the measure of its sustainability from an environmental perspective. Our analyses results indicate that the natural gas boiler has a relatively high emergy sustainability index compared to other fossil fuel boilers. Converting existing coal boilers to natural gas boilers is a feasible option to achieve better sustainability. The results also show that the biomass boiler has the best emergy sustainability index and it will remain a means to utilize the renewable energy within the Rankine steam cycle. Before

  14. Fire hazards analysis for the uranium oxide (UO3) facility

    International Nuclear Information System (INIS)

    Wyatt, D.M.

    1994-01-01

    The Fire Hazards Analysis (FHA) documents the deactivation end-point status of the UO 3 complex fire hazards, fire protection and life safety systems. This FHA has been prepared for the Uranium Oxide Facility by Westinghouse Hanford Company in accordance with the criteria established in DOE 5480.7A, Fire Protection and RLID 5480.7, Fire Protection. The purpose of the Fire Hazards Analysis is to comprehensively and quantitatively assess the risk from a fire within individual fire areas in a Department of Energy facility so as to ascertain whether the objectives stated in DOE Order 5480.7, paragraph 4 are met. Particular attention has been paid to RLID 5480.7, Section 8.3, which specifies the criteria for deactivating fire protection in decommission and demolition facilities

  15. Energy efficient distributed computing systems

    CERN Document Server

    Lee, Young-Choon

    2012-01-01

    The energy consumption issue in distributed computing systems raises various monetary, environmental and system performance concerns. Electricity consumption in the US doubled from 2000 to 2005.  From a financial and environmental standpoint, reducing the consumption of electricity is important, yet these reforms must not lead to performance degradation of the computing systems.  These contradicting constraints create a suite of complex problems that need to be resolved in order to lead to 'greener' distributed computing systems.  This book brings together a group of outsta

  16. Seed recovery and regeneration in coal-fired, open-cycle magnetohydrodynamic systems

    International Nuclear Information System (INIS)

    Sheth, A.C.; Jackson, D.M.; Attig, R.C.

    1986-01-01

    Coal-fired magnetohydrodynamic (MHD) power systems not only have high cycle efficiency, but they also have an inherent sulfur removal capability. The potassium compound uses as ''seed'' plays a dual role. It 1) increases the electrical conductivity of the plasma needed to produce power in the MHD electrical topping cycle, and 2) reacts with sulfur dioxide to form potassium sulfate, thereby eliminating most of the sulfur oxides from the gaseous effluent. For economical reasons, the spent seed must be recovered, desulfurized and recycled to the MHD power plant. This paper reviews some of the available experimental results and literature relating to SO 2 removal and seed recovery, and will also discuss several potential seed regeneration processes. Three methods of potassium extraction are discussed, i.e., hot aqueous digestion with CA(OH) 2 /NaOH, acid washing, and aqueous extraction. The selected candidate regeneration systems are discussed from the viewpoint of energy and process water requirements and environmental considerations such as waste discharges and emissions of gaseous, particulate and trace element pollutants

  17. Enhanced distributed energy resource system

    Science.gov (United States)

    Atcitty, Stanley [Albuquerque, NM; Clark, Nancy H [Corrales, NM; Boyes, John D [Albuquerque, NM; Ranade, Satishkumar J [Las Cruces, NM

    2007-07-03

    A power transmission system including a direct current power source electrically connected to a conversion device for converting direct current into alternating current, a conversion device connected to a power distribution system through a junction, an energy storage device capable of producing direct current connected to a converter, where the converter, such as an insulated gate bipolar transistor, converts direct current from an energy storage device into alternating current and supplies the current to the junction and subsequently to the power distribution system. A microprocessor controller, connected to a sampling and feedback module and the converter, determines when the current load is higher than a set threshold value, requiring triggering of the converter to supply supplemental current to the power transmission system.

  18. Radio frequency security system, method for a building facility or the like, and apparatus and methods for remotely monitoring the status of fire extinguishers

    Science.gov (United States)

    Runyon, Larry [Richland, WA; Gunter, Wayne M [Richland, WA; Gilbert, Ronald W [Gilroy, CA

    2006-07-25

    A system for remotely monitoring the status of one or more fire extinguishers includes means for sensing at least one parameter of each of the fire extinguishers; means for selectively transmitting the sensed parameters along with information identifying the fire extinguishers from which the parameters were sensed; and means for receiving the sensed parameters and identifying information for the fire extinguisher or extinguishers at a common location. Other systems and methods for remotely monitoring the status of multiple fire extinguishers are also provided.

  19. Photovoltaic power systems energy storage

    International Nuclear Information System (INIS)

    Buldini, P.L.

    1991-01-01

    Basically, the solar photovoltaic power system consists of: Array of solar panels; Charge/voltage stabilizer; Blocking diode and Storage device. The storage device is a very important part of the system due to the necessity to harmonize the inevitable time shift between energy supply and demand. As energy storage, different devices can be utilized, such as hydropumping, air or other gas compression, flywheel, superconducting magnet, hydrogen generation and so on, but actually secondary (rechargeable) electrochemical cells appear to be the best storage device, due to the direct use for recharge of the d.c. current provided by the solar panels, without any intermediate step of energy transformation and its consequent loss of efficiency

  20. Smart campus: Data on energy generation costs from distributed generation systems of electrical energy in a Nigerian University

    Directory of Open Access Journals (Sweden)

    Joshua O. Okeniyi

    2018-04-01

    Full Text Available This data article presents comparisons of energy generation costs from gas-fired turbine and diesel-powered systems of distributed generation type of electrical energy in Covenant University, Ota, Nigeria, a smart university campus driven by Information and Communication Technologies (ICT. Cumulative monthly data of the energy generation costs, for consumption in the institution, from the two modes electric power, which was produced at locations closed to the community consuming the energy, were recorded for the period spanning January to December 2017. By these, energy generation costs from the turbine system proceed from the gas-firing whereas the generation cost data from the diesel-powered generator also include data on maintenance cost for this mode of electrical power generation. These energy generation cost data that were presented in tables and graphs employ descriptive probability distribution and goodness-of-fit tests of statistical significance as the methods for the data detailing and comparisons. Information details from this data of energy generation costs are useful for furthering research developments and aiding energy stakeholders and decision-makers in the formulation of policies on energy generation modes, economic valuation in terms of costing and management for attaining energy-efficient/smart educational environment. Keywords: Smart campus, Energy consumption, Energy efficiency, Load forecasting, Energy management, Learning analytics, Nigerian university, Education data mining

  1. Investigation of Lab Fire Prevention Management System of Combining Root Cause Analysis and Analytic Hierarchy Process with Event Tree Analysis

    Directory of Open Access Journals (Sweden)

    Cheng-Chan Shih

    2016-01-01

    Full Text Available This paper proposed a new approach, combining root cause analysis (RCA, analytic hierarchy process (AHP, and event tree analysis (ETA in a loop to systematically evaluate various laboratory safety prevention strategies. First, 139 fire accidents were reviewed to identify the root causes and draw out prevention strategies. Most fires were caused due to runaway reactions, operation error and equipment failure, and flammable material release. These mostly occurred in working places of no prompt fire protection. We also used AHP to evaluate the priority of these strategies and found that chemical fire prevention strategy is the most important control element, and strengthening maintenance and safety inspection intensity is the most important action. Also together with our surveys results, we proposed that equipment design is also critical for fire prevention. Therefore a technical improvement was propounded: installing fire detector, automatic sprinkler, and manual extinguisher in the lab hood as proactive fire protections. ETA was then used as a tool to evaluate laboratory fire risks. The results indicated that the total risk of a fire occurring decreases from 0.0351 to 0.0042 without/with equipment taking actions. Establishing such system can make Environment, Health and Safety (EH&S office not only analyze and prioritize fire prevention policies more practically, but also demonstrate how effective protective equipment improvement can achieve and the probabilities of the initiating event developing into a serious accident or controlled by the existing safety system.

  2. Multi-Sensor Building Fire Alarm System with Information Fusion Technology Based on D-S Evidence Theory

    Directory of Open Access Journals (Sweden)

    Qian Ding

    2014-10-01

    Full Text Available Multi-sensor and information fusion technology based on Dempster-Shafer evidence theory is applied in the system of a building fire alarm to realize early detecting and alarming. By using a multi-sensor to monitor the parameters of the fire process, such as light, smoke, temperature, gas and moisture, the range of fire monitoring in space and time is expanded compared with a single-sensor system. Then, the D-S evidence theory is applied to fuse the information from the multi-sensor with the specific fire model, and the fire alarm is more accurate and timely. The proposed method can avoid the failure of the monitoring data effectively, deal with the conflicting evidence from the multi-sensor robustly and improve the reliability of fire warning significantly.

  3. Energy savings potential from energy-conserving irrigation systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Patton, W.P.; Harrer, B.J.; Clark, M.A.

    1982-11-01

    This report systematically compares, within a consistent framework, the technical and economic characteristics of energy-conserving irrigation systems with those of conventional irrigation systems and to determine total energy savings. Levelized annual costs of owning and operating both energy-conserving and conventional irrigation systems have been developed and compared for all 17 states to account for the differences in energy costs and irrigation conditions in each state. Market penetration of energy-conserving systems is assessed for those systems having lower levelized annual costs than conventional systems performing the same function. Annual energy savings were computed by matching the energy savings per system with an assumed maximum market penetration of 100 percent in those markets where the levelized annual costs of energy-conserving systems are lower than the levelized annual costs of conventional systems.

  4. Thermal design and technical economical and environmental analyses of a hydrogen fired multi-objective cogeneration system

    International Nuclear Information System (INIS)

    Durmaz, A; Yilmazoglu, M. Z.; Pasoglu, A.

    2007-01-01

    Approximately 85% of rapidly increasing world energy demand is supplied by fossil fuels. Extreme usage of fossil fuels causes serious global warming and environmental problems in form of air, soil and water pollutions. The period, in which fossil fuel reserves are decreasing, energy costs are increasing rapidly and new energy sources and technologies do not exist on the horizon, can be called as the expensive and critical energy period. Hydrogen becomes a matter of primary importance as a candidate energy source and carrier in the critical energy period and beyond to solve the energy and environmental problems radically. In this respect, the main obstacle for the use of hydrogen is the high cost of hydrogen production, which is expected to be decreased in the feature. The aim of this study is to examine how hydrogen energy will be able to be integrated with the existing energy substructure with technical and economical dimensions. In this sense, a multi objective hydrogen fired gas turbine cogeneration system is designed and optimized. Technical and economical analyses depending on the load conditions and different hydrogen production cost are carried out. It is possible that the co-generated heat is to be marketed for residence and industrial plants in the surrounding at or under market prices. The produced electricity however can only be sold to the public grid at a high unit support price which is only obtainable in case of the development of new energy technologies. This price should however be kept within the nowadays supportable energy price range. The main mechanism to be used during the design stage of the system to achieve this goal is to decrease the amortization and operational costs which lead to decrease investment and fuel costs and to increase the system load factor and co-generated heat revenues

  5. Energy savings for solar heating systems; Solvarmeanlaegs energibesparelser

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Fan, J.

    2011-01-15

    Energy savings for a number of new solar heating systems in one family houses have been determined by means of information on the energy consumption of the houses before and after installation of the solar heating systems. The investigated solar heating systems are marketed by Velux Danmark A/S, Sonnnenkraft Scandinavia A/S and Batec Solvarme A/S. Solar domestic hot water systems as well as solar combi systems are included in the investigations The houses have different auxiliary energy supply systems: Natural gas boilers, oil fired burners, electrical heating and district heating. Some of the houses have a second auxiliary energy supply system. The collector areas vary from 1.83 m{sup 2} to 9.28 m{sup 2}. Some of the solar heating systems are based on energy units with a new integrated natural gas boiler and a heat storage for the solar heating system. The existing energy systems in the houses are for most of the houses used as the auxiliary energy systems for the solar heating systems. The yearly energy savings for the houses where the only change is the installation of the solar heating system vary from 300 kWh per m{sup 2} solar collector to 1300 kWh per m{sup 2} solar collector. The average yearly energy savings is about 670 kWh per m{sup 2} solar collector for these solar heating systems. The energy savings per m{sup 2} solar collector are not influenced by the solar heating system type, the company marketing the system, the auxiliary energy supply system, the collector area, the collector tilt, the collector azimuth, the energy consumption of the house or the location of the house. The yearly energy savings for the houses with solar heating systems based on energy units including a new natural gas boiler vary from 790 kWh per m{sup 2} solar collector to 2090 kWh per m{sup 2} solar collector. The average yearly energy savings is about 1520 kWh per m{sup 2} solar collector for these solar heating systems. The energy savings per m{sup 2} solar collector for

  6. Analysis of the Earthquake Impact towards water-based fire extinguishing system

    Science.gov (United States)

    Lee, J.; Hur, M.; Lee, K.

    2015-09-01

    Recently, extinguishing system installed in the building when the earthquake occurred at a separate performance requirements. Before the building collapsed during the earthquake, as a function to maintain a fire extinguishing. In particular, the automatic sprinkler fire extinguishing equipment, such as after a massive earthquake without damage to piping also must maintain confidentiality. In this study, an experiment installed in the building during the earthquake, the water-based fire extinguishing saw grasp the impact of the pipe. Experimental structures for water-based fire extinguishing seismic construction step by step, and then applied to the seismic experiment, the building appears in the extinguishing of the earthquake response of the pipe was measured. Construction of acceleration caused by vibration being added to the size and the size of the displacement is measured and compared with the data response of the pipe from the table, thereby extinguishing water piping need to enhance the seismic analysis. Define the seismic design category (SDC) for the four groups in the building structure with seismic criteria (KBC2009) designed according to the importance of the group and earthquake seismic intensity. The event of a real earthquake seismic analysis of Category A and Category B for the seismic design of buildings, the current fire-fighting facilities could have also determined that the seismic performance. In the case of seismic design categories C and D are installed in buildings to preserve the function of extinguishing the required level of seismic retrofit design is determined.

  7. Environment-friendly type energy and coordinated community development project. Feasibility study for industrialization of high efficiency waste-fired power generation system using general RDF; Kankyo chowagata energy community keisei sokushin. Kokoritsu haikibutsu hatsuden (ippainado RDF riyo) jigyoka FS chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The refuse-derived fuel (RDF) has been holding public attention not only as the energy resource of stable high calorific value for local energy development, but also as the effective method for waste treatment. As one of the effective utilization methods for waste treatment, this investigation was conducted to industrialize and establish the RDF power generation system, in which power generation and ash treatment are integrated in Tochigi Prefecture which is located inland. The base supply type was adopted as a way of operation from the menu of the electricity wholesale project of Tokyo Electric Power Co. and its rate of operation is 80 percent a year. Then, the fluidized bed combustion method, a dry exhaust gas treatment method, and continuous electric melting furnaces were decided as the RDF power generation system. According to this system, it is possible to obtain 26 percent gross thermal efficiency by conventional generation facilities. It was estimated that the expenses reduction for 15 years will be 17.6 billion yen compared with the ordinary combustion system. Also, the following effects can be expected; the reduction of CO2 emission, improvement of energy efficiency, and the extension of life of landfills capacity. 36 figs., 51 tabs.

  8. Fire hazards analysis for the replacement cross-site transfer system, project W-058

    International Nuclear Information System (INIS)

    Sepahpur, J.B.

    1996-01-01

    The fire hazards analysis assess the risk from fire and determines compliance with the applicable criteria of DOE 5480.7A, DOE 6430.1A, and RLID 5480.7. (Project W-058 will provide encased pipelines to connect the SY Tank Farms in 200 West Area with the tank farms in 200 East Area via an interface with the 244-A lift station. Function of the cross-site transfer system will be to transfer radioactive waste from the SY Tank Farm to treatment, storage, and disposal facilities in 200 East Area.)

  9. Design and performance of a skid-mounted portable compartment fire gas furnace and monitoring system

    Directory of Open Access Journals (Sweden)

    Mueller K.

    2013-09-01

    Full Text Available A custom, portable natural gas fire furnace was designed and constructed for use at the University of Notre Dame to experimentally investigate the out-of-plane behavior of full-scale reinforced concrete (RC bearing walls under fire. The unique aspects of this furnace allowed the application of large mechanical loads and non-contact optical response monitoring to be done while subjecting the wall to elevated temperatures. The performance of the experimental furnace, mechanical loading, and response monitoring system is reported using the results from the first two RC wall test specimens.

  10. Fire for Effect: Calling for a More Potent Energy System

    Science.gov (United States)

    2008-05-22

    20080415Stratfor_Daily_Podcast-EDITED.mp3; Internet; Accessed 30 April 2008) quoted UN Special Rapporteur for the Right to Food Jean Ziegler’s comment on...Murray, Williamson and Allan R. Millet ed. Military Innovations in the Interwar Period. New York, NY: Cambridge University Press 1996 Naveh, Shimon, In

  11. Energy Systems and Population Health

    Energy Technology Data Exchange (ETDEWEB)

    Ezzati, Majid; Bailis, Rob; Kammen, Daniel M.; Holloway, Tracey; Price, Lynn; Cifuentes, Luis A.; Barnes, Brendon; Chaurey, Akanksha; Dhanapala, Kiran N.

    2004-04-12

    It is well-documented that energy and energy systems have a central role in social and economic development and human welfare at all scales, from household and community to regional and national (41). Among its various welfare effects, energy is closely linked with people s health. Some of the effects of energy on health and welfare are direct. With abundant energy, more food or more frequent meals can be prepared; food can be refrigerated, increasing the types of food items that are consumed and reducing food contamination; water pumps can provide more water and eliminate the need for water storage leading to contamination or increased exposure to disease vectors such as mosquitoes or snails; water can be disinfected by boiling or using other technologies such as radiation. Other effects of energy on public health are mediated through more proximal determinants of health and disease. Abundant energy can lead to increased irrigation, agricultural productivity, and access to food and nutrition; access to energy can also increase small-scale income generation such as processing of agricultural commodities (e.g., producing refined oil from oil seeds, roasting coffee, drying and preserving fruits and meats) and production of crafts; ability to control lighting and heating allows education or economic activities to be shielded from daily or seasonal environmental constraints such as light, temperature, rainfall, or wind; time and other economic resources spent on collecting and/or transporting fuels can be used for other household needs if access to energy is facilitated; energy availability for transportation increases access to health and education facilities and allow increased economic activity by facilitating the transportation of goods and services to and from markets; energy for telecommunication technology (radio, television, telephone, or internet) provides increased access to information useful for health, education, or economic purposes; provision of energy

  12. Decentralized Energy from Waste Systems

    Directory of Open Access Journals (Sweden)

    Blanca Antizar-Ladislao

    2010-01-01

    Full Text Available In the last five years or so, biofuels have been given notable consideration worldwide as an alternative to fossil fuels, due to their potential to reduce greenhouse gas emissions by partial replacement of oil as a transport fuel. The production of biofuels using a sustainable approach, should consider local production of biofuels, obtained from local feedstocks and adapted to the socio-economical and environmental characteristics of the particular region where they are developed. Thus, decentralized energy from waste systems will exploit local biomass to optimize their production and consumption. Waste streams such as agricultural and wood residues, municipal solid waste, vegetable oils, and algae residues can all be integrated in energy from waste systems. An integral optimization of decentralized energy from waste systems should not be based on the optimization of each single process, but the overall optimization of the whole process. This is by obtaining optimal energy and environmental benefits, as well as collateral beneficial co-products such as soil fertilizers which will result in a higher food crop production and carbon dioxide fixation which will abate climate change.

  13. Decentralized energy from waste systems

    International Nuclear Information System (INIS)

    Antizar-Ladislao, B.; Turrion-Gomez, J. L.

    2010-01-01

    In the last five years or so, biofuels have been given notable consideration worldwide as an alternative to fossil fuels, due to their potential to reduce greenhouse gas emissions by partial replacement of oil as a transport fuel. The production of biofuels using a sustainable approach, should consider local production of biofuels, obtained from local feedstocks and adapted to the socio-economical and environmental characteristics of the particular region where they are developed. Thus, decentralized energy from waste systems will exploit local biomass to optimize their production and consumption. Waste streams such as agricultural and wood residues, municipal solid waste, vegetable oils, and algae residues can all be integrated in energy from waste systems. An integral optimization of decentralized energy from waste systems should not be based on the optimization of each single process, but the overall optimization of the whole process. This is by obtaining optimal energy and environmental benefits, as well as collateral beneficial co-products such as soil fertilizers which will result in a higher food crop production and carbon dioxide fixation which will abate climate change. (author)

  14. Monitoring and advisory system for refractory materials fireing production in VSŽ Košice

    Directory of Open Access Journals (Sweden)

    Kostúr Karol

    1996-03-01

    Full Text Available The tunnel furnace produces refractory building materials. Various types of building materials are fired in the temperature interval 1450-1700 •C. The tunnel furnace is approximately 160 m long and consists of 53 moduls, each about length 3 m. Usually three zones of the tunnel furnace are considering: warming, firing and colding. The furnace works in upstream regime. The fired material moves againts the flow of cold air and combustion products. The fuel is the earth gas. The paper is devoted to pointing out some opportunities for the use of classical IBM PC compatible computers for the design of small on-line real-time systems. PC’ s data acquisition card provides high transfer rate for data transfer and primary processing of measured values of technological processes in a tunnel furnace.

  15. Diffusion and electromigration in clay bricks influenced by differences in the pore system resulting from firing

    DEFF Research Database (Denmark)

    Rörig-Dalgaard, Inge; Ottosen, Lisbeth M.; Hansen, Kurt Kielsgaard

    2012-01-01

    Ion transport in porous materials has been subject of study for several decades. However, the interaction between the pores and the overall pore system make it complicated to obtain a clear picture and predict diffusion and electromigration (transport induced by an applied electric field). Specific...... to the distance to the surface.The influence of the pore system on ion transport through the water saturated pore system of the bricks was supported by measurements for calculation of the electrical resistance and an increasing resistance was found for increasing brick firing temperatures. The effective diffusion...... the pore system to contribute to an overall understanding of ion transport in porous materials.The pore system in bricks are influenced by the firing degree, clay mixture composition and ion content. The present paper focuses on the pore system and effects from clay mixture composition and ion content were...

  16. 30 CFR 75.1103-4 - Automatic fire sensor and warning device systems; installation; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... systems that use carbon monoxide sensors shall provide identification of fire along all belt conveyors. (1... downwind of each belt drive unit, each tailpiece transfer point, and each belt take-up. If the belt drive, tailpiece, and/or take-up for a single transfer point are installed together in the same air course, and the...

  17. Fire Setting Behavior in a Child Welfare System: Prevalence, Characteristics and Co-Occurring Needs

    Science.gov (United States)

    Lyons, John S.; McClelland, Gary; Jordan, Neil

    2010-01-01

    Fire setting is one of the most challenging behaviors for the child welfare system. However, existing knowledge about its prevalence and correlates has been limited to research on single programs. The Illinois Department of Children and Family Services initiated a uniform assessment process at entry into state custody using a trauma-informed…

  18. Greek Students Research the Effects of Fire on the Soil System through Project-Based Learning

    Science.gov (United States)

    Kioupi, Vasiliki; Arianoutsou, Margarita

    2016-01-01

    This study is focused on the development, implementation and evaluation of an environmental education programme for secondary education students. The programme was entitled "?he effects of fire on the soil system" and it was implemented during the school period of 2008. Twenty-four (24) students (aged from 15 to 20) coming from Lidoriki…

  19. BEHAVE: fire behavior prediction and fuel modeling system--FUEL subsystem

    Science.gov (United States)

    Robert E. Burgan; Richard C. Rothermel

    1984-01-01

    This manual documents the fuel modeling procedures of BEHAVE--a state-of-the-art wildland fire behavior prediction system. Described are procedures for collecting fuel data, using the data with the program, and testing and adjusting the fuel model.

  20. NFDRSPC: The National Fire-Danger Rating System on a Personal Computer

    Science.gov (United States)

    Bryan G. Donaldson; James T. Paul

    1990-01-01

    This user's guide is an introductory manual for using the 1988 version (Burgan 1988) of the National Fire-Danger Rating System on an IBM PC or compatible computer. NFDRSPC is a window-oriented, interactive computer program that processes observed and forecast weather with fuels data to produce NFDRS indices. Other program features include user-designed display...