WorldWideScience

Sample records for fire safety requirements

  1. Fire safety requirements for electrical cables towards nuclear reactor safety

    International Nuclear Information System (INIS)

    Raju, M.R.

    2002-01-01

    Full text: Electrical power supply forms a very important part of any nuclear reactor. Power supplies have been categorized in to class I, II, III and IV from reliability point. The safety related equipment are provided with highly reliable power supply to achieve the safety of very high order. Vast network of cables in a nuclear reactor are grouped and segregated to ensure availability of power to at least one group under all anticipated occurrences. Since fire can result in failures leading to unavailability of power caused by common cause, both passive and active fire protection methods are adopted in addition to fire detection system. The paper describes the requirement for passive fire protection to electrical cables viz. fire barrier and fire breaks. The paper gives an account of the tests required to standardize the products. Fire safety implementation for cables in research reactors is described

  2. Fire safety

    International Nuclear Information System (INIS)

    Keski-Rahkonen, O.; Bjoerkman, J.; Hostikka, S.; Mangs, J.; Huhtanen, R.; Palmen, H.; Salminen, A.; Turtola, A.

    1998-01-01

    According to experience and probabilistic risk assessments, fires present a significant hazard in a nuclear power plant. Fires may be initial events for accidents or affect safety systems planned to prevent accidents and to mitigate their consequences. The project consists of theoretical work, experiments and simulations aiming to increase the fire safety at nuclear power plants. The project has four target areas: (1) to produce validated models for numerical simulation programmes, (2) to produce new information on the behavior of equipment in case of fire, (3) to study applicability of new active fire protecting systems in nuclear power plants, and (4) to obtain quantitative knowledge of ignitions induced by important electric devices in nuclear power plants. These topics have been solved mainly experimentally, but modelling at different level is used to interpret experimental data, and to allow easy generalisation and engineering use of the obtained data. Numerical fire simulation has concentrated in comparison of CFD modelling of room fires, and fire spreading on cables on experimental data. So far the success has been good to fair. A simple analytical and numerical model has been developed for fire effluents spreading beyond the room of origin in mechanically strongly ventilated compartments. For behaviour of equipment in fire several full scale and scaled down calorimetric experiments were carried out on electronic cabinets, as well as on horizontal and vertical cable trays. These were carried out to supply material for CFD numerical simulation code validation. Several analytical models were developed and validated against obtained experimental results to allow quick calculations for PSA estimates as well as inter- and extrapolations to slightly different objects. Response times of different commercial fire detectors were determined for different types of smoke, especially emanating from smoldering and flaming cables to facilitate selection of proper detector

  3. Fire safety of wood construction

    Science.gov (United States)

    Robert H. White; Mark A. Dietenberger

    2010-01-01

    Fire safety is an important concern in all types of construction. The high level of national concern for fire safety is reflected in limitations and design requirements in building codes. These code requirements and related fire performance data are discussed in the context of fire safety design and evaluation in the initial section of this chapter. Because basic data...

  4. Construction products performances and basic requirements for fire safety of facades in energy rehabilitation of buildings

    Directory of Open Access Journals (Sweden)

    Laban Mirjana Đ.

    2015-01-01

    Full Text Available Construction product means any product or kit which is produced and placed on the market for incorporation in a permanent manner in construction works, or parts thereof, and the performance of which has an effect on the performance of the construction works with respect to the basic requirements for construction works. Safety in case of fire and Energy economy and heat retention represent two among seven basic requirements which building has to meet according to contemporary technical rules on planning and construction. Performances of external walls building materials (particularly reaction to fire could significantly affect to fire spread on the façade and other building parts. Therefore, façade shaping and materialization in building renewal process, has to meet the fire safety requirement, as well as the energy requirement. Brief survey of fire protection regulations development in Serbia is presented in the paper. Preventive measures for fire risk reduction in building façade energy renewal are proposed according to contemporary fire safety requirements.

  5. Fire Safety (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Fire Safety KidsHealth / For Parents / Fire Safety What's in ... event of a fire emergency in your home. Fire Prevention Of course, the best way to practice ...

  6. Utilization of the safety functional analysis techniques to optimize the separation requirements in case of fire

    International Nuclear Information System (INIS)

    Alvarez, L.M.

    1983-01-01

    The present philosophy for the fire protection of the safe shutdown capability in nuclear power plants is based on the separation of the safety-related systems in different fire areas in such a way that the redundant systems are not subject to damage from a single fire risk. The purpose ofthis paper is to show the experience gained in the application of a symmetric method of analysis to minimize the number of fire barriers being compatible with the regulatory requirements and with capability of achieving and maintaining the safe plant shutdown in the event of a fire. As a conclusion of the analysis, the separation criteria for the divisions involved in the safe plant shutdown are obtained

  7. Fires and Food Safety

    Science.gov (United States)

    ... Forms FSIS United States Department of Agriculture Food Safety and Inspection Service About FSIS District Offices Careers ... JSR 286) Actions ${title} Loading... Fires and Food Safety Fire! Few words can strike such terror. Residential ...

  8. Spacecraft Fire Safety Demonstration

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Spacecraft Fire Safety Demonstration project is to develop and conduct large-scale fire safety experiments on an International Space Station...

  9. Fire, safety and ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, D.

    1999-02-01

    Correct ventilation in tunnel environments is vital for the comfort and safety of the people passing through. This article gives details of products from several manufacturers of safety rescue and fire fighting equipment, fire and fume detection equipment, special fire resistant materials, fire resistant hydraulic oils and fire dampers, and ventilation systems. Company addresses and fax numbers are supplied. 4 refs., 5 tabs., 10 photos.

  10. Fire safety requirements for electric cables and lines in deep coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Herms, C D

    1982-01-07

    In the case of a mine fire, an additional hazard from combustible cable material is likely to arise only in those few areas of the mine where special circumstances might help the fire to spread along the cables. It is more important to preserve the functional integrity of cables in the outbye roads which are affected by fire gases then at the actual seat of the fire. Mine cables with better fire-resistant properties should be made from materials which do not propagate fires, do not release burning drops, develop the lowest possible fume density and/or will permanently resist gas temperatures of 200 to 300/sup 0/C. Fire test specifications should be defined for such special cables, based on corresponding draft VDE directives. In proposing these measures the proviso is made then improvement in safety can be clearly demonstrated.

  11. Evaluation of the Cable Types for Safety Requirements during Fire Conditions in Nuclear Facility

    International Nuclear Information System (INIS)

    Al-kattan, W.A.

    2015-01-01

    In Nuclear Power Plants (NPPs), the fire in cables causes many dangerous events in electrical or mechanical operations causing a nuclear reactor melt down. Main Control Room (MCR) in nuclear power plants have therefore, special concern in the fire protection systems. The Nuclear International Atomic Energy Agency (IAEA) has promoted the use of risk-informed and performance based methods for fire protection. These methods affirm the relevant needs to develop realistic methods to quantify the risk of fire to NPPs safety. The recent electrical cable testing has been carried out to provide empirical data on the failure modes and likelihood of fire-induced damage. In this thesis, will use fire modeling to develop fire probabilistic safety assessment to estimate the likelihood of fire induced cable damage given a specified fire profile. The objective of this work is to provide a comprehensive evaluation of the most recent fire-induced circuit failure due to different cables type that used inside the NPPs by simulation using fire modeling. One of this work scope is to suggest a suitable cable insulation material especially in case of the thermal failure thresholds, for developing the electrical cable thermal fragility distributions and evaluate parameters that influence fire-induced circuit failure modes. The main control room is implementing using the CFAST (fire simulation package). The simulation results represent the full development fire temperature and heat flux as well as the output gases. The results can be used as the basic parameters of the cables comparison and then evaluation.The importance of these results are not only for evaluating the cables but one can efficiently use them to improve the whole NPPs safety levels. The gases results of the fire simulation inside the room are oxygen, carbon monoxide, carbon dioxide, and hydrogen chloride. These gases are being used lot achieving the healthy protection of NPPs. Finally, one can measure the healthy environment

  12. Fire safety engineering

    International Nuclear Information System (INIS)

    Smith, D.N.

    1989-01-01

    The periodic occurrence of large-scale, potentially disastrous industrial accidents involving fire in hazardous environments such as oilwell blowouts, petrochemical explosions and nuclear installations highlights the need for an integrated approach to fire safety engineering. Risk reduction 'by design' and rapid response are of equal importance in the saving of life and property in such situations. This volume of papers covers the subject thoroughly, touching on such topics as hazard analysis, safety design and testing, fire detection and control, and includes studies of fire hazard in the context of environment protection. (author)

  13. Evaluation of the Ventilation and Air Cleaning System Design Concepts for Safety Requirements during Fire Conditions in Nuclear Applications

    International Nuclear Information System (INIS)

    Rashad, S.; El-Fawal, M.; Kandil, M.

    2013-01-01

    The ventilation and air cleaning system in the nuclear or radiological installations is one of the essential nuclear safety concerns. It is responsible for confining the radioactive materials involved behind suitable barriers during normal and abnormal conditions. It must be designed to prevent the release of harmful products (radioactive gases, or airborne radioactive materials) from the system or facility, impacting the public or workers, and doing environmental damage. There are two important safety functions common to all ventilation and air cleaning system in nuclear facilities. They are: a) the requirements to maintain the pressure of the ventilated volume below that of surrounding, relatively non-active areas, in order to inhibit the spread of contamination during normal and abnormal conditions, and b) the need to treat the ventilated gas so as to minimize the release of any radioactive or toxic materials. Keeping the two important safety functions is achieved by applying the fire protection for the ventilation system to achieve safety and adequate protection in nuclear applications facilities during fire and accidental criticality conditions.The main purpose of this research is to assist ventilation engineers and experts in nuclear installations for safe operation and maintaining ventilation and air cleaning system during fire accident in nuclear facilities. The research focuses on fire prevention and protection of the ventilation systems in nuclear facilities. High-Efficiency particulate air (HEPA) filters are extremely susceptible to damage when exposed to the effects of fire, smoke, and water; it is the intent of this research to provide the designer with the experience gained over the years from hard lessons learned in protecting HEPA filters from fire. It describes briefly and evaluates the design safety features, constituents and working conditions of ventilation and air cleaning system in nuclear and radioactive industry.This paper provides and

  14. Fire Safety Deficiencies

    Data.gov (United States)

    U.S. Department of Health & Human Services — A list of all fire safety deficiencies currently listed on Nursing Home Compare, including the nursing home that received the deficiency, the associated inspection...

  15. Smoking and Home Fire Safety

    Science.gov (United States)

    ... Materials Working with the Media Fire Protection Technology Smoking fire safety outreach materials As a member of ... Not reported 7% In transport 1% 195 incidents Smoking fire safety messages to share It is important ...

  16. 49 CFR 238.103 - Fire safety.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Fire safety. 238.103 Section 238.103..., DEPARTMENT OF TRANSPORTATION PASSENGER EQUIPMENT SAFETY STANDARDS Safety Planning and General Requirements § 238.103 Fire safety. (a) Materials. (1) Materials used in constructing a passenger car or a cab of a...

  17. The necessity of periodic fire safety review

    International Nuclear Information System (INIS)

    Mowrer, D.S.

    1998-01-01

    Effective fire safety requires the coordinated integration of many diverse elements. Clear fire safety objectives are defined by plant management and/or regulatory authorities. Extensive and time-consuming systematic analyses are performed. Fire safety features (both active and passive) are installed and maintained, and administrative programs are established and implemented to achieve the defined objectives. Personnel are rigorously trained. Given the time, effort and monetary resources expended to achieve a specific level of fire safety, conducting periodic assessments to verify that the specified level of fire safety has been achieved and is maintained is a matter of common sense. Periodic fire safety reviews and assessment play an essential role in assuring continual nuclear safety in the world's power plants

  18. 40 CFR 30.18 - Hotel and motel fire safety.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Hotel and motel fire safety. 30.18... EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Pre-Award Requirements § 30.18 Hotel and motel fire safety. The Hotel and Motel Fire Safety Act of 1990 (Public Law 101-391) establishes a number of fire...

  19. Hotel and Motel Fire Safety Project - USFA

    Data.gov (United States)

    Department of Homeland Security — Provides a listing of properties compliant with the requirements of the Hotel and Motel Fire Safety Act of 1990. Users may search for compliant properties and submit...

  20. Fire safety at home

    Science.gov (United States)

    ... over the smoke alarm as needed. Using a fire extinguisher can put out a small fire to keep it from getting out of control. Tips for use include: Keep fire extinguishers in handy locations, at least one on ...

  1. Fire safety regulations and licensing

    International Nuclear Information System (INIS)

    Berg, H.P.

    1998-01-01

    Experience of the past tow decades of nuclear power plant operation and results obtained from modern analytical techniques confirm that fires may be a real threat to nuclear safety and should receive adequate attention from the design phase throughout the life of the plant. Fire events, in particular influence significantly plant safety due to the fact that fires have the potential to simultaneously damage components of redundant safety-related equipment. Hence, the importance of fire protection for the overall safety of a nuclear power plant has to be reflected by the fire safety regulations and to be checked during the licensing process of a plant as well as during the continuous supervision of the operating plant

  2. 46 CFR 62.35-15 - Fire safety.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Fire safety. 62.35-15 Section 62.35-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING VITAL SYSTEM AUTOMATION Requirements for Specific Types of Automated Vital Systems § 62.35-15 Fire safety. (a) All required fire pump...

  3. The Nuclear Safety Council's Instruction IS-30 on program requirements of fire protection at nuclear power plants; La instruccion IS-30 del consejo de Seguridad Nuclear sobre requisitos del programa de proteccion contraincendios en centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Peco, J.

    2015-07-01

    The Nuclear Safety Councils Instrumentation IS-30 is the standard that establishes the fire protection program requirements for the Spanish nuclear power plants with operating license in order to satisfy the two fire protection objectives, which are the adoption of the defense-in-depth principle for fire protection and, by fire area confinement, to ensure that one train of components needed to achieve and maintain the safe shutdown conditions is free of fire damage, and that radioactive liberation is minimized. (Author)

  4. Fire safety analysis: methodology

    International Nuclear Information System (INIS)

    Kazarians, M.

    1998-01-01

    From a review of the fires that have occurred in nuclear power plants and the results of fire risk studies that have been completed over the last 17 years, we can conclude that internal fires in nuclear power plants can be an important contributor to plant risk. Methods and data are available to quantify the fire risk. These methods and data have been subjected to a series of reviews and detailed scrutiny and have been applied to a large number of plants. There is no doubt that we do not know everything about fire and its impact on a nuclear power plants. However, this lack of knowledge or uncertainty can be quantified and can be used in the decision making process. In other words, the methods entail uncertainties and limitations that are not insurmountable and there is little or no basis for the results of a fire risk analysis fail to support a decision process

  5. Nuclear power plants: a unique challenge to fire safety

    International Nuclear Information System (INIS)

    Nowlen, S.P.

    1992-01-01

    The evaluation of fire safety in a nuclear power plant must include the consideration of the impact of a fire on the operability of plant safety equipment and systems. This issue is not typical of the life safety and property protection issues which dominate traditional fire safety concerns. This paper provides a general discussion of the issue of nuclear power plant fire safety as it currently exists in the USA. Included is a discussion of the past history of nuclear power plant fire events, the development of nuclear industry specific fire safety guidelines, the adverse experience associated with the inadvertent operation of fire suppression systems, and the anticipated direction of fire safety requirements for future reactor designs in the USA. (Author)

  6. Large Scale Experiments on Spacecraft Fire Safety

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Minster, Olivier; Fernandez-Pello, A. Carlos; Tien, James S.; Torero, Jose L.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; hide

    2012-01-01

    Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due to the complexity, cost and risk associated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground-based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame structure. As a result, the prediction of the behaviour of fires in reduced gravity is at present not validated. To address this gap in knowledge, a collaborative international project, Spacecraft Fire Safety, has been established with its cornerstone being the development of an experiment (Fire Safety 1) to be conducted on an ISS resupply vehicle, such as the Automated Transfer Vehicle (ATV) or Orbital Cygnus after it leaves the ISS and before it enters the atmosphere. A computer modelling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the possibility of examining fire behaviour on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This unprecedented opportunity will expand the understanding of the fundamentals of fire behaviour in spacecraft. The experiment is being

  7. Investigation of Fire Safety Awareness and Management in Mall

    Directory of Open Access Journals (Sweden)

    Abdul Rahim N.

    2014-03-01

    Full Text Available In spite of having sufficient fire safety system installed in buildings, the incidence of fire hazard becomes the furthermost and supreme threat to health and safety, as well as property to any community. In order to make sure that the safety of the building and its users, the fundamental features depends on the fire precaution system and equipment which should be according to the standard requirements. Nevertheless, the awareness on fire safety could necessarily alleviate the damages or rate of fatality during the event of fire. This paper presents the results on the investigation of fire safety awareness and management, concentrating on shopping mall. The endeavour of this study is to explore the level of fire safety knowledge of the users in the mall, and to study the effectiveness level of fire safety management in a mall. From the study, public awareness is highly related to understanding human behaviour and their personal background. The respondents’ levels of awareness are rather low, which reflects on their poor action when facing emergency situation during fire. The most effective methods identified to improve the awareness and effectiveness of fire safety level is through involvement in related fire safety programmes, distribution of pamphlets or brochures on fire safety and appointing specific personnel for Emergency Response Team in the mall.

  8. Safety design guides for fire protection for CANDU 9

    International Nuclear Information System (INIS)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; A. C. D. Wright

    1996-03-01

    This safety design guide establishes design requirements to ensure the radiological risk to the public due to fire is acceptable and operating personnel are adequately protected from the hazards of fires. This safety design guide also specifies the safety criteria for fire protection to be applied to mitigate fires and recommends the fire protection program to be established to initiate, coordinate and document the design activities associated with fire protection. The requirements for fire protection outlined in this safety design guide shall be satisfied in the design stage and the change status of the regulatory requirements, code and standards should be traced and incorporated into this safety design guide accordingly. 1 fig., (Author) .new

  9. Motorcoach Fire Safety Analysis.

    Science.gov (United States)

    2009-07-01

    This purpose of this study was to collect and analyze information from Government, industry, and media sources on the causes, frequency, and severity of motorcoach fires in the U.S., and to identify potential risk reduction measures. The Volpe Center...

  10. Large-Scale Spacecraft Fire Safety Tests

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; hide

    2014-01-01

    . The first flight (Saffire-1) is scheduled for July 2015 with the other two following at six-month intervals. A computer modeling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the first examination of fire behavior on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation.

  11. Transport fire safety engineering in the European Union - project TRANSFEU

    Directory of Open Access Journals (Sweden)

    Jolanta Maria RADZISZEWSKA-WOLIŃSKA

    2011-01-01

    Full Text Available Article presents European Research project (of FP7-SST-2008-RTD-1 for Surface transportation TRANSFEU. Projects undertakes to deliver both a reliable toxicity measurement methodology and a holistic fire safety approach for all kind of surface transport. It bases on a harmonized Fire Safety Engineering methodology which link passive fire security with active fire security mode. This all embracing system is the key to attain optimum design solutions in respect to fire safety objectives as an alternative to the prescriptive approach. It will help in the development of innovative solutions (design and products used for the building of the surface transport which will better respect the environment.In order to reach these objectives new toxicity measurement methodology and related classification of materials, new numerical fire simulation tools, fire test methodology (laboratory and full scale and a decisive tool to optimize or explore new design in accordance to the fire safety requirements will be developed.

  12. National and international standards and recommendations on fire protection and fire safety assessment

    International Nuclear Information System (INIS)

    Berg, H.P.

    2007-01-01

    Experience feedback from events in nuclear facilities worldwide has shown that fire can represent a safety significant hazard. Thus, the primary objectives of fire protection programmes are to minimize both the probability of occurrence and the consequences of a fire. The regulator body expects that the licensees justify their arrangements for identifying how fires can occur and spread, assess the vulnerability of plant equipment and structures, determine how the safe operation of a plant is affected, and introduce measures to prevent a fire hazard from developing and propagating as well as to mitigate its effects in case the fire cannot be prevented. For that purpose usually a comprehensive regulatory framework for fire protection has been elaborated, based on national industrial regulations, nuclear specific regulations as well as international recommendations or requirements. Examples of such national and international standards and recommendations on fire protection and fire safety assessment as well as ongoing activities in this field are described. (orig.)

  13. Fire Safety. Managing School Facilities, Guide 6.

    Science.gov (United States)

    Department for Education and Employment, London (England). Architects and Building Branch.

    This booklet discusses how United Kingdom schools can manage fire safety and minimize the risk of fire. The guide examines what legislation school buildings must comply with and covers the major risks. It also describes training and evacuation procedures and provides guidance on fire precautions, alarm systems, fire fighting equipment, and escape…

  14. Fire protection and safety in working with sodium. Pt. 2

    International Nuclear Information System (INIS)

    Foerster, K.; Kremer, K.H.; Wolf, J.

    1978-01-01

    The use of sodium as a heat transfer medium in nuclear plant and the associated development of sodium technology caused the requirement for adapting fire and safety precautions to new conditions of dealing with this liquid. The comparison in the first part of this article of the properties of sodium with those of petrol clarified the different fire characteristics of sodium compared to many other combustible materials and the effects of fires which differ from conventional fires. Based on this, measures for fire precautions and for safety of personnel are introduced. (orig.) [de

  15. The designing of launch vehicles with liquid propulsion engines ensuring fire, explosion and environmental safety requirements of worked-off stages

    Science.gov (United States)

    Trushlyakov, V.; Shatrov, Ya.; Sujmenbaev, B.; Baranov, D.

    2017-02-01

    The paper addresses the problem of the launch vehicles (LV) with main liquid propulsion engines launch technogenic impact in different environment areas. Therefore, as the study subjects were chosen the worked-off stages (WS) with unused propellant residues in tanks, the cosmodrome ecological monitoring system, the worked-off stage design and construction solutions development system and the unified system with the "WS+the cosmodrome ecological monitoring system+design and construction solutions development system" feedback allowing to form the optimal ways of the WS design and construction parameters variations for its fire and explosion hazard management in different areas of the environment. It is demonstrated that the fire hazard effects of propellant residues in WS tanks increase the ecosystem disorder level for the Vostochny cosmodrome impact area ecosystem. Applying the system analysis, the proposals on the selection of technologies, schematic and WS design and construction solutions aimed to the fire and explosion safety improvement during the LV worked-off stages with the main liquid propulsion engines operation were formulated. Among them are the following: firstly, the unused propellant residues in tanks convective gasification based on the hot gas (heat carrier) supply in WS tanks after main liquid propulsion engines cutoff is proposed as the basic technology; secondly, the obtained unused propellant residues in WS tanks gasification products (evaporated propellant residues + pressurizing agent + heat carrier) are used for WS stabilization and orientation while descending trajectory moving. The applying of the proposed technologies allows providing fire and explosion safety requirements of LV with main liquid propulsion engines practically.

  16. Fire safety study of Dodewaard and Borssele nuclear power plants

    International Nuclear Information System (INIS)

    1988-03-01

    From the nuclear and conventional fire safety audits of both Dutch nuclear power plants performed under supervision of the Nuclear Safety Inspectorate and the Inspectorate for the Fire Services it turns out that the fire safety is sufficient however amenable for improvement. Besides a detailed description of the method of examination, the study 'Fire Safety' contains the results of the audit and 14 respectively 15 recommendations for improvement of the fire safety in Dodewaard and Borssele. The suggested recommendations which are applicable to both power plants are the following: fire fighting training for operators and guards, a complete emergency ventilation system of the control room, increase in the number of detectors and alarms, an increase in the quantity of water available for high-pressure fire fighting, improvement of fire barriers between several redundancies of nuclear safety systems, an investigation and possible improvement of the heat and radiation protection offered by presently used fire fighting suits. For Dodewaard a closed emergency staircase in the reactor building (secondary containment) is deemed necessary for personnel emergency escape routes and continued fire fighting if required

  17. Fire safety assessment of tunnel structures

    DEFF Research Database (Denmark)

    Gkoumas, Konstantinos; Giuliani, Luisa; Petrini, Francesco

    2011-01-01

    .g. structural and non structural, organizational, human behavior). This is even more truth for the fire safety design of such structures. Fire safety in tunnels is challenging because of the particular environment, bearing in mind also that a fire can occur in different phases of the tunnel’s lifecycle. Plans...... for upgrading fire safety provisions and tunnel management are also important for existing tunnels. In this study, following a brief introduction of issues regarding the above mentioned aspects, the structural performance of a steel rib for a tunnel infrastructure subject to fire is assessed by means...

  18. Impact of fires on nuclear safety

    International Nuclear Information System (INIS)

    Skvarka, P.; Zmajkovic, I.

    1990-01-01

    Factors which are relevant with respect to fire hazard are summarized based on Revision 1 of IAEA Safety Guide No. 50-SG-D2, ''Fire Protection in Nuclear Power Plants'', of 1990. They include data acquisition, quantification of fire risks, assessment of adequacy of fire protection measures, modification of the fire protection system proposed. According to the above document, fire hazard analysis should define and document those parts of the fire protection system that must be present in order to secure safe operation of the nuclear power plant. (Z.M.). 2 appendices, 4 refs

  19. Appraisal of Fire Safety Management Systems at Educational Buildings

    Directory of Open Access Journals (Sweden)

    Nadzim N.

    2014-01-01

    Full Text Available Educational buildings are one type of government asset that should be protected, and they play an important role as temporary communal meeting places for children, teachers and communities. In terms of management, schools need to emphasize fire safety for their buildings. It is well known that fires are not only a threat to the building’s occupants, but also to the property and the school environment. A study on fire safety management has been carried out on schools that have recently experienced fires in Penang. From the study, it was found that the school buildings require further enhancement in terms of both active and passive fire protection systems. For instance, adequate fire extinguishers should be provided to the school and the management should inspect and maintain fire protection devices regularly. The most effective methods to increase the level of awareness on fire safety are by organizing related programs on the management of fire safety involving all staff, teachers and students, educational talks on the dangers of fire and important actions to take in the event of an emergency, and, lastly, to appoint particular staff to join the management safety team in schools.

  20. Behavior based safety approach towards fire

    International Nuclear Information System (INIS)

    Suresh Kumar, R.

    2009-01-01

    The behavior of the individual who notice fire first is very important because it affect the safety of all occupants of the area. Human behavior on fire depends on variables of the buildings in which fire occurs and by the appearance of the fire when it is detected. Altruistic behavior of human being will help to handle the critical conditions due to fire emergencies. NPCIL have developed a culture of systematic approach to safeguard men and materials from fire by training and awareness. In our Nuclear Power Plants, we have an effective plan and system to test the plans. In each emergency exercises, the behavior of individuals will be monitored and recorded

  1. Fire Safety Trianing in Health Care Institutions.

    Science.gov (United States)

    American Hospital Association, Chicago, IL.

    The manual details the procedures to be followed in developing and implementing a fire safety plan. The three main steps are first, to organize; second, to set up a procedure and put it in writing; and third, to train and drill employees and staff. Step 1 involves organizing a safety committee, appointing a fire marshall, and seeking help from…

  2. Fire Safety Design of Wood Structures

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2006-01-01

    Lecture Notes on Fire Safety Design of Wood Structures including charring of wood and load bearing capacity of beams, columns, and connections.......Lecture Notes on Fire Safety Design of Wood Structures including charring of wood and load bearing capacity of beams, columns, and connections....

  3. Influence of safeguards and fire protection on criticality safety

    International Nuclear Information System (INIS)

    Six, D.E.

    1980-01-01

    There are several positive influences of safeguards and fire protection on criticality safety. Experts in each discipline must be aware of regulations and requirements of the others and work together to ensure a fault-tree design. EG and G Idaho, Inc., routinely uses an Occupancy-Use Readiness Manual to consider all aspects of criticality safety, fire protection, and safeguards. The use of the analytical tree is described

  4. German data for risk based fire safety assessment

    International Nuclear Information System (INIS)

    Roewekamp, M.; Berg, H.P.

    1998-01-01

    Different types of data are necessary to perform risk based fire safety assessments and, in particular, to quantify the fire event tree considering the plant specific conditions. Data on fire barriers, fire detection and extinguishing, including also data on secondary effects of a fire, have to be used for quantifying the potential hazard and damage states. The existing German database on fires in nuclear power plants (NPPs) is very small. Therefore, in general generic data, mainly from US databases, are used for risk based safety assessments. Due to several differences in the plant design and conditions generic data can only be used as conservative assumptions. World-wide existing generic data on personnel failures in case of fire fighting have only to be adapted to the plant specific conditions inside the NPP to be investigated. In contrary, unavailabilities of fire barrier elements may differ strongly depending on different standards, testing requirements, etc. In addition, the operational behaviour of active fire protection equipment may vary depending on type and manufacturer. The necessity for more detailed and for additional plant specific data was the main reason for generating updated German data on the operational behaviour of active fire protection equipment/features in NPPs to support risk based fire safety analyses being recommended to be carried out as an additional tool to deterministic fire hazard analyses in the frame of safety reviews. The results of these investigations revealed a broader and more realistic database for technical reliability of active fire protection means, but improvements as well as collection of further data are still necessary. (author)

  5. 29 CFR 1915.502 - Fire safety plan.

    Science.gov (United States)

    2010-07-01

    ... implement a written fire safety plan that covers all the actions that employers and employees must take to ensure employee safety in the event of a fire. (See Appendix A to this subpart for a Model Fire Safety... safety plan for their employees, and this plan must comply with the host employer's fire safety plan. ...

  6. Safety study of fire protection for nuclear fuel cycle facility

    International Nuclear Information System (INIS)

    2013-01-01

    Insufficiencies in the fire protection system of the nuclear reactor facilities were pointed out when the fire occurred due to the Niigata prefecture-Chuetsu-oki Earthquake in July, 2007. This prompted the revision of the fire protection safety examination guideline for nuclear reactors as well as commercial guidelines. The commercial guidelines have been endorsed by the regulatory body. Now commercial fire protection standards for nuclear facilities such as the design guideline and the management guideline for protecting fire in the Light Water Reactors (LWRs) are available, however, those to apply to the nuclear fuel cycle facilities such as mixed oxide fuel fabrication facility (MFFF) have not been established. For the improvement of fire protection system of the nuclear fuel cycle facilities, the development of a standard for the fire protection, corresponding to the commercial standard for LWRs were required. Thus, Japan Nuclear Energy Safety Organization (JNES) formulated a fire protection guidelines for nuclear fuel cycle facilities as a standard relevant to the fire protection of the nuclear fuel cycle facilities considering functions specific to the nuclear fuel cycle facilities. In formulating the guidelines, investigation has been conduced on the commercial guidelines for nuclear reactors in Japan and the standards relevant to the fire protection of nuclear facilities in USA and other countries as well as non-nuclear industrial fire protection standards. The guideline consists of two parts; Equipments and Management, as the commercial guidances of the nuclear reactor. In addition, the acquisition of fire evaluation data for a components (an electric cabinet, cable, oil etc.) targeted for spread of fire and the evaluation model of fire source were continued for the fire hazard analysis (FHA). (author)

  7. How to increase fire safety in buildings: Fire safety engineering

    NARCIS (Netherlands)

    Herpen, van R.A.P. (Ruud)

    2011-01-01

    Fire means beside direct (financial)damage often far more indirect costs caused by interruption of operations and loss in sales, market share, property and,in the worst case people can get injured or even get killed (on average around80 persons a year). Fire in buildings is clearly a disaster and

  8. Fire safety in dental clinics: Basics for dentists and dental students

    Directory of Open Access Journals (Sweden)

    Kalyana Chakravarthy Pentapati

    2015-01-01

    Full Text Available Fire safety is essential component and requirement in health care sector. It includes components like emergency exits, manual call outs, different types of fire extinguishers, safe assembly area, fire hydrant system with water sprinkler systems etc. We attempt to provide some basics about fire and fire safety that are prerequisite for safe working environment in dental clinics along with some recommendations that can be incorporated in the curriculum.

  9. EFFICIENCY OF FIRE-FIGHTING PROTECTION OBJECTS IN PROVISION OF FIRE SAFETY AT INDUSTRIAL ENTERPRISES

    Directory of Open Access Journals (Sweden)

    A. V. Zhovna

    2008-01-01

    Full Text Available The paper gives an analysis of economic results pertaining to organization of a system for fire-fighting protection of industrial enterprises in theRepublicofBelarus. Statistical data on operational conditions of technical means of fire-fighting protection, particularly, automatic systems for detection and extinguishing of fires, systems of internal fire-fighting water-supply.  Requirements and provisions  of normative and technical documents are thoroughly studied. Observance of these documents is to ensure the required level of  fire safety. On the basis of the obtained results concerning  economic analysis of efficiency optimization directions are defined for selection of technical means of fire-fighting protection at objects of industrial purpose.

  10. Large Scale Experiments on Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Urban, David L.; Ruff, Gary A.; Minster, Olivier

    2012-01-01

    -based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal-gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame......Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due...... to the complexity, cost and risk associ-ated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground...

  11. 34 CFR 668.49 - Institutional fire safety policies and fire statistics.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false Institutional fire safety policies and fire statistics... fire statistics. (a) Additional definitions that apply to this section. Cause of fire: The factor or...; however, it does not include indirect loss, such as business interruption. (b) Annual fire safety report...

  12. Examination of alternatives to upgrade fire safety in operating NPPs

    International Nuclear Information System (INIS)

    Park, J. H.; Jung, I. S.

    2003-01-01

    For the Kori unit 2,3,4, Younggwang 1,2 and Ulchin 1,2 fire protection vulnerabilities and further improvement items are investigated. The most major problem is that those plants do not have plant-specific Fire Hazard Analysis Report. To improve fire safety of those plants, their own Fire Hazard Analysis should be proceed at first. Then, according to results of Fire Hazard Analysis, fire protection improvement program should be implemented. For the assurance of long term fire safety, result of Fire Hazard Analysis should be incorporated in the FSAR and periodically reviewed the impact of design change to fire safety

  13. Range Flight Safety Requirements

    Science.gov (United States)

    Loftin, Charles E.; Hudson, Sandra M.

    2018-01-01

    The purpose of this NASA Technical Standard is to provide the technical requirements for the NPR 8715.5, Range Flight Safety Program, in regards to protection of the public, the NASA workforce, and property as it pertains to risk analysis, Flight Safety Systems (FSS), and range flight operations. This standard is approved for use by NASA Headquarters and NASA Centers, including Component Facilities and Technical and Service Support Centers, and may be cited in contract, program, and other Agency documents as a technical requirement. This standard may also apply to the Jet Propulsion Laboratory or to other contractors, grant recipients, or parties to agreements to the extent specified or referenced in their contracts, grants, or agreements, when these organizations conduct or participate in missions that involve range flight operations as defined by NPR 8715.5.1.2.2 In this standard, all mandatory actions (i.e., requirements) are denoted by statements containing the term “shall.”1.3 TailoringTailoring of this standard for application to a specific program or project shall be formally documented as part of program or project requirements and approved by the responsible Technical Authority in accordance with NPR 8715.3, NASA General Safety Program Requirements.

  14. Evacuation routes performances and fire safety of buildings

    Directory of Open Access Journals (Sweden)

    Laban Mirjana Đ.

    2015-01-01

    Full Text Available Residential buildings, public and business facilities with large number of occupants are particularly exposed to the risk of event with catastrophic consequences, especially in case of fire. Evacuation routes must be separated fire compartments with surfaces made of non-combustible materials. Safe evacuation of building occupants in case of fire is a crucial requirement for the preservation of human life in building. In our engineering practice, calculation model is usually applied in order to determine the time required for evacuation (SRPS TP 21. However, evacuation simulation models are more present in research papers, contributing to better assessment of flow of evacuation in the real time. These models could provide an efficient way of testing the safety of a building in the face of fire and indicate critical points at the evacuation paths. Computer models enable the development and analysis of multiple various scenarios during a fire event, contributing to defining the measures for improving the safety of the building in case of fire. This paper analyses the fulfilment of technical requirements for the safe evacuation and proposes improvement measures based on a comparative analysis of the time required for occupants' evacuation from the building (Department of Civil Engineering and Geodesy in Novi Sad, obtained by calculation model and by using evacuation simulation software.

  15. IRSN global process for leading a comprehensive fire safety analysis for nuclear installations

    International Nuclear Information System (INIS)

    Ormieres, Yannick; Lacoue, Jocelyne

    2013-01-01

    A fire safety analysis (FSA) is requested to justify the adequacy of fire protection measures set by the operator. A recent document written by IRSN outlines a global process for such a comprehensive fire safety analysis. Thanks to the French nuclear fire safety regulation evolutions, from prescriptive requirements to objective requirements, the proposed fire safety justification process focuses on compliance with performance criteria for fire protection measures. These performance criteria are related to the vulnerability of targets to effects of fire, and not only based upon radiological consequences out side the installation caused by a fire. In his FSA, the operator has to define the safety functions that should continue to ensure its mission even in the case of fire in order to be in compliance with nuclear safety objectives. Then, in order to maintain these safety functions, the operator has to justify the adequacy of fire protection measures, defined according to defence in depth principles. To reach the objective, the analysis process is based on the identification of targets to be protected in order to maintain safety functions, taken into account facility characteristics. These targets include structures, systems, components and personal important to safety. Facility characteristics include, for all operating conditions, potential ignition sources and fire protections systems. One of the key points of the fire analysis is the assessment of possible fire scenarios in the facility. Given the large number of possible fire scenarios, it is then necessary to evaluate 'reference fires' which are the worst case scenarios of all possible fire scenarios and which are used by the operator for the design of fire protection measures. (authors)

  16. Use of operational experience in fire safety assessment of nuclear power plants

    International Nuclear Information System (INIS)

    2000-01-01

    Fire hazard has been identified as a major contributor to a plant's operational risk and the international nuclear power industry has been studying and developing tools for defending against this hazard. Considerable progress in design and regulatory requirements for fire safety, in fire protection technology and in related analytical techniques has been made in the past two decades. Substantial efforts have been undertaken worldwide to implement these advances in the interest of improving fire safety both at new and existing nuclear power plants. To assist in these efforts, the IAEA initiated a programme on fire safety that was intended to provide assistance to Member States in improving fire safety in nuclear power plants. In order to achieve this general objective, the IAEA programme aimed at the development of guidelines and good practices, the promotion of advanced fire safety assessment techniques, the exchange of state of the art information between practitioners and the provision of engineering safety advisory services and training in the implementation of internationally accepted practices. During the period 1993-1994, the IAEA activities related to fire safety concentrated on the development of guidelines and good practice documents related to fire safety and fire protection of operating plants. One of the first tasks was the development of a Safety Guide that formulates specific requirements with regard to the fire safety of operating nuclear power plants. Several documents, which provide advice on fire safety inspection, were developed to assist in its implementation. In the period 1995-1996, the programme focused on the preparation of guidelines for the systematic analysis of fire safety at nuclear power plants (NPPs). The IAEA programme on fire safety for 1997-1998 includes tasks aimed at promoting systematic assessment of fire safety related occurrences and dissemination of essential insights from this assessment. One of the topics addressed is the

  17. Safety of Research Reactors. Safety Requirements

    International Nuclear Information System (INIS)

    2010-01-01

    The main objective of this Safety Requirements publication is to provide a basis for safety and a basis for safety assessment for all stages in the lifetime of a research reactor. Another objective is to establish requirements on aspects relating to regulatory control, the management of safety, site evaluation, design, operation and decommissioning. Technical and administrative requirements for the safety of research reactors are established in accordance with these objectives. This Safety Requirements publication is intended for use by organizations engaged in the site evaluation, design, manufacturing, construction, operation and decommissioning of research reactors as well as by regulatory bodies

  18. The aspects of fire safety at landfills

    Directory of Open Access Journals (Sweden)

    Aleshina Tat'yana Anatol'evna

    2014-01-01

    Full Text Available Starting with 2008 and till 2013 there have been alarm messages about fires occurring at landfill places in Russia. Landfill fires are especially dangerous as they emit dangerous fumes from the combustion of the wide range of materials within the landfill. Subsurface landfill fires, unlike typical fires, cannot be put out with water. The article includes the analysis of the sources and causes of conflagrations at landfills. There maintains the necessity to eliminate the reasons, which cause the fires. There are quantification indices of environmental, social and economic effects of fires at landfills all over Russia. Surface fires generally burn at relatively low temperatures and are characterized by the emission of dense white smoke and the products of incomplete combustion. The smoke includes irritating agents, such as organic acids and other compounds. Higher temperature fires can cause the breakdown of volatile compounds, which emit dense black smoke. Surface fires are classified as either accidental or deliberate. For the ecologic security there is a need in the execution of proper hygienic requirements to the content of the places as well as international recommendations. In addition to the burning and explosion hazards posed by landfill fires, smoke and other by-products of landfill fires also present a health risk to firefighters and others exposed to them. Smoke from landfill fires generally contains particulate matter (the products of incomplete combustion of the fuel source, which can aggravate pre-existing pulmonary conditions or cause respiratory distress and damage ecosystem. The monitoring of conducting preventive inflamings and transition to alternative, environment friendly methods of waste disposal is needed.

  19. The influence of sodium fires on LMFBRs safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Justin, F [DSN/Centre de Fontenay-aux-Roses, Fontenay-aux-Roses (France)

    1979-03-01

    In a sodium cooled reactor, sodium fires are accidental conditions to be taken into account in safety analysis. For the various sodium categories, fire conditions, associated risks, safety analysis objectives and detailed corresponding issues are indicated, An experimental research program can be deduced from these considerations. This report covers the following: safety analysis methodology; primary sodium fires; secondary sodium fires; auxiliary sodium fires, and related experimental research programs.

  20. The influence of sodium fires on LMFBRs safety analysis

    International Nuclear Information System (INIS)

    Justin, F.

    1979-01-01

    In a sodium cooled reactor, sodium fires are accidental conditions to be taken into account in safety analysis. For the various sodium categories, fire conditions, associated risks, safety analysis objectives and detailed corresponding issues are indicated, An experimental research program can be deduced from these considerations. This report covers the following: safety analysis methodology; primary sodium fires; secondary sodium fires; auxiliary sodium fires, and related experimental research programs

  1. Different design approaches to structural fire safety

    DEFF Research Database (Denmark)

    Giuliani, Luisa; Budny, I.

    2013-01-01

    -priori evaluate which design is the safest or the most economical one: a punctual analysis of the different aspects and a comparison of the resulting designs is therefore of interest and is presented in this paper with reference to the case study considered.The third approach refers instead to a performance......-based fire design of the structure(PBFD), where safety goals are explicitly defined and a deeper knowledge of the structural response to fire effects can be achieved, for example with the avail of finite element analyses (FEA). On the other hand, designers can’t follow established procedures when undertaking...... such advanced investigations, which are generally quite complex ones, due to the presence of material degradation and large displacements induced by fire, as well as the possible triggering of local mechanism in the system. An example of advanced investigations for fire design is given in the paper...

  2. Linking Safety Analysis to Safety Requirements

    DEFF Research Database (Denmark)

    Hansen, Kirsten Mark

    Software for safety critical systems must deal with the hazards identified by safety analysistechniques: Fault trees, event trees,and cause consequence diagrams can be interpreted as safety requirements and used in the design activity. We propose that the safety analysis and the system design use...

  3. Fire Safety During the Holiday Season | Poster

    Science.gov (United States)

    Winter is here, and that means holiday decorations, a warm hearth, and (hopefully) plenty of homecooked meals. Unfortunately, winter also brings numerous fire hazards both at work and around the house. This year, as you shop, decorate, and celebrate, keep these safety tips in mind to ensure a safe and enjoyable holiday season.

  4. Fire safety assessment for the fire areas of the nuclear power plant using fire model CFAST

    International Nuclear Information System (INIS)

    Lee, Yoon Hwan; Yang, Joon Eon; Kim, Jong Hoon

    2005-03-01

    Now the deterministic analysis results for the cable integrity is not given in case of performing the fire PSA. So it is necessary to develop the assessment methodology for the fire growth and propagation. This document is intended to analyze the peak temperature of the upper gas layer using the fire modeling code, CFAST, to evaluate the integrity of the cable located on the dominant pump rooms, and to assess the CCDP(Conditional Core Damage Probability) using the results of the cable integrity. According to the analysis results, the cable integrity of the pump rooms is maintained and CCDP is reduced about two times than the old one. Accordingly, the fire safety assessment for the dominant fire areas using the fire modeling code will capable to reduce the uncertainty and to develop a more realistic model

  5. Archer Fire and Safety - reducing risk in the offshore

    Energy Technology Data Exchange (ETDEWEB)

    Todd, K

    2000-06-01

    Protecting the lives and safety of offshore oil and gas workers is the business of Newfoundland-based Archer Fire and Safety. Originally established as a supplier of industrial materials focusing on the oil and gas industry, the company narrowed its focus in 1996 to fire and safety protection, introduced more specialized fire and safety equipment, and began to explore service opportunities to the industry in addition to the usual consumables. After some anxious few years, the company now operates two SCBA service centres in Newfoundland, in addition to sales and servicing a wide range of fire and safety equipment such as gas, flame and heat detection.The company is constantly on the lookout for new opportunities and has developed a computer-based pricing system which enables them to provide quick response to pricing inquiries, a big advantage in an industry with relatively unsophisticated business practices. The company's emphasis on research and quick response capability enabled the company to anticipate future requirements and to land major contracts first at Bull Arm, and later on the Terra Nova Project. Its reputation for best-in-class products, high quality service and a business-like approach helped to attract other clients such as Terra Nova Alliance, Canship and Schlumberger, and offshore drilling companies like Glomar International and TransOcean Sedco-Forex, with further opportunities in the offing with upcoming projects such as the White Rose and Hebron.Today about 60 per cent of the business is offshore related.

  6. Archer Fire and Safety - reducing risk in the offshore

    Energy Technology Data Exchange (ETDEWEB)

    Todd, K.

    2000-06-01

    Protecting the lives and safety of offshore oil and gas workers is the business of Newfoundland-based Archer Fire and Safety. Originally established as a supplier of industrial materials focusing on the oil and gas industry, the company narrowed its focus in 1996 to fire and safety protection, introduced more specialized fire and safety equipment, and began to explore service opportunities to the industry in addition to the usual consumables. After some anxious few years, the company now operates two SCBA service centres in Newfoundland, in addition to sales and servicing a wide range of fire and safety equipment such as gas, flame and heat detection.The company is constantly on the lookout for new opportunities and has developed a computer-based pricing system which enables them to provide quick response to pricing inquiries, a big advantage in an industry with relatively unsophisticated business practices. The company's emphasis on research and quick response capability enabled the company to anticipate future requirements and to land major contracts first at Bull Arm, and later on the Terra Nova Project. Its reputation for best-in-class products, high quality service and a business-like approach helped to attract other clients such as Terra Nova Alliance, Canship and Schlumberger, and offshore drilling companies like Glomar International and TransOcean Sedco-Forex, with further opportunities in the offing with upcoming projects such as the White Rose and Hebron.Today about 60 per cent of the business is offshore related.

  7. Engineering judgement and bridging the fire safety gap in existing nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Qamheiah, G.; Wu, Y., E-mail: gqamheiah@plcfire.com, E-mail: dwu@plcfire.com [PLC Fire Safety Solutions, Mississauga, ON (Canada)

    2014-07-01

    Canadian nuclear power plants were constructed in the 1960's through the 1980's. Fire safety considerations were largely based on guidance from general building and fire codes in effect at the time. Since then, nuclear specific fire safety standards have been developed and adopted by the Regulator, increasing the expected level of fire safety in the process. Application of the standards to existing plants was largely limited to operational requirements viewed as retroactive. However, as existing facilities undergo modifications or refurbishment for the purpose of life extension, the expectation is that the design requirements of these fire safety standards also be satisfied. This creates considerable challenges for existing nuclear power plants as fire safety requirements such as those intended to assure means for safe egress, prevention of fire spread and protection of redundancy rely upon fire protection features that are inherent in the physical infrastructural design. This paper focuses on the methodology for conducting fire safety gap analyses on existing plants, and the integral role that engineering judgement plays in the development of viable and cost effective solutions to achieve the objectives of the current fire safety standards. (author)

  8. Topology optimization for simplified structural fire safety

    DEFF Research Database (Denmark)

    Madsen, Søren; Lange, Nis P.; Giuliani, Luisa

    2016-01-01

    Topology optimization is applied in an idealized structural fire safety model, where the minimum compliance problem is constrained by temperature-controlled structural degradation. The constraint ensures a certain structural stiffness after a prescribed time. As this time period is extended......, resulting optimized topologies tend to become thicker or introduce redundant members that can take over when structural parts near the origin of the fire lose their load carrying capability. Hence, the structural degradation model acts as an erosion operator on the topology and indirectly enforces a minimum...

  9. Lessons learned from IAEA fire safety missions

    International Nuclear Information System (INIS)

    Lee, S.P.

    1998-01-01

    The IAEA has conducted expert missions to evaluate fire safety at the following nuclear power plants: the Zaporozhe plant in the Ukraine, the Borselle plant in the Netherlands, the Medzamor plant in Armenia, the Karachi plant in Pakistan, the Temelin plant in the Czech Republic, and the Laguna Verde plant in Mexico. The scope of these missions varied in subject and depth. The teams sent from the IAEA consisted of external fire experts and IAEA staff. All the missions were of great use to the host countries. The participating experts also benefited significantly. A summary of the missions and their findings is given. (author)

  10. Upgrading of fire safety in Indian nuclear power plants

    International Nuclear Information System (INIS)

    Agarwal, N.K.

    1998-01-01

    Indian nuclear power programme started with the installation of 2 nos. of Boiling Water Reactor (BWR) at Tarapur (TAPS I and II) of 210 MWe each commissioned in the year 1996. The Pressurized Heavy Water Reactor (PHWR) programme in the country started with the installation of 2x220 MWe stations at Rawatbhatta near Kota (RAPS I and II) in the State of Rajasthan in the sixties. At the present moment, the country has 10 stations in operation. Construction is going on for 4 more units of 220 MWe where as work on two more 500 MWe units is going to start soon. Fire safety systems for the earlier units were engineered as per the state-of-art knowledge available then. The need for review of fire protection systems in the Indian nuclear power plants has also been felt since long almost after Brown's Ferry fire in 1975 itself. Task forces consisting of fire experts, systems design engineers, O and M personnel as well as the Fire Protection engineers at the plant were constituted for each plant to review the existing fire safety provisions in details and highlight the upgradation needed for meeting the latest requirements as per the national as well as international practices. The recommendations made by three such task forces for the three plants are proposed to be reviewed in this paper. The paper also highlights the recommendations to be implemented immediately as well as on long-term basis over a period of time

  11. The practical implementation of integrated safety management for nuclear safety analysis and fire hazards analysis documentation

    International Nuclear Information System (INIS)

    COLLOPY, M.T.

    1999-01-01

    In 1995 Mr. Joseph DiNunno of the Defense Nuclear Facilities Safety Board issued an approach to describe the concept of an integrated safety management program which incorporates hazard and safety analysis to address a multitude of hazards affecting the public, worker, property, and the environment. Since then the U S . Department of Energy (DOE) has adopted a policy to systematically integrate safety into management and work practices at all levels so that missions can be completed while protecting the public, worker, and the environment. While the DOE and its contractors possessed a variety of processes for analyzing fire hazards at a facility, activity, and job; the outcome and assumptions of these processes have not always been consistent for similar types of hazards within the safety analysis and the fire hazard analysis. Although the safety analysis and the fire hazard analysis are driven by different DOE Orders and requirements, these analyses should not be entirely independent and their preparation should be integrated to ensure consistency of assumptions, consequences, design considerations, and other controls. Under the DOE policy to implement an integrated safety management system, identification of hazards must be evaluated and agreed upon to ensure that the public. the workers. and the environment are protected from adverse consequences. The DOE program and contractor management need a uniform, up-to-date reference with which to plan. budget, and manage nuclear programs. It is crucial that DOE understand the hazards and risks necessarily to authorize the work needed to be performed. If integrated safety management is not incorporated into the preparation of the safety analysis and the fire hazard analysis, inconsistencies between assumptions, consequences, design considerations, and controls may occur that affect safety. Furthermore, confusion created by inconsistencies may occur in the DOE process to grant authorization of the work. In accordance with

  12. Fire-safety engineering and performance-based codes

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    project administrators, etc. The book deals with the following topics: • Historical presentation on the subject of fire • Legislation and building project administration • European fire standardization • Passive and active fire protection • Performance-based Codes • Fire-safety Engineering • Fundamental......Fire-safety Engineering is written as a textbook for Engineering students at universities and other institutions of higher education that teach in the area of fire. The book can also be used as a work of reference for consulting engineers, Building product manufacturers, contractors, building...... thermodynamics • Heat exchange during the fire process • Skin burns • Burning rate, energy release rate and design fires • Proposal to Risk-based design fires • Proposal to a Fire scale • Material ignition and flame spread • Fire dynamics in buildings • Combustion products and toxic gases • Smoke inhalation...

  13. Building safety and human behaviour in fire: A literature review

    NARCIS (Netherlands)

    Kobes, M.; Helsloot, I.; de Vries, B.; Post, J.

    2010-01-01

    The most crucial aspect of a building's safety in the face of fire is the possibility of safe escape. An important precondition is that its fire safety facilities enable independent and adequate fire response performances by the building's occupants. In practice, it appears that the measures

  14. Overview of IAEA guidelines for fire safety inspection and operation in nuclear power plants

    International Nuclear Information System (INIS)

    Mowrer, D.S.

    1998-01-01

    In 1992, the International Atomic Energy Agency began an ambitious project on fire safety in nuclear power plants. The purpose of this ongoing project is to provide specific guidance on compliance with the requirements set forth through the IAEA Nuclear Safety Standards program established in 1974. The scope of the Fire Safety project encompasses several tasks, including the development of new standards and guidelines to assist Member States in assessing the level of fire safety in existing plants. Five new Safety Practices, one new Safety Guide and a Technical Document have been developed for use by the fire safety community. The primary intent of these new documents is to provide detailed guidance and a consistent format for the assessment of the overall level of fire safety being provided in existing nuclear power plants around the world and especially in developing countries. Sufficient detail is provided in the Safety Guide and Safety Practices to allow technically knowledgeable plant personnel, outside consultants or other technical experts to assess the adequacy of fire safety within the plant facilities. This paper describes topics addressed by each of the IAEA Fire Safety documents and discussed the relationship of each document to others in the series. (author)

  15. Safety assessment of outdoor live fire range

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-05-01

    The following Safety Assessment (SA) pertains to the outdoor live fire range facility (LFR). The purpose of this facility is to supplement the indoor LFR. In particular it provides capacity for exercises that would be inappropriate on the indoor range. This SA examines the risks that are attendant to the training on the outdoor LFR. The outdoor LFR used by EG&G Mound is privately owned. It is identified as the Miami Valley Shooting Grounds. Mondays are leased for the exclusive use of EG&G Mound.

  16. Advanced analysis and design for fire safety of steel structures

    CERN Document Server

    Li, Guoqiang

    2013-01-01

    Advanced Analysis and Design for Fire Safety of Steel Structures systematically presents the latest findings on behaviours of steel structural components in a fire, such as the catenary actions of restrained steel beams, the design methods for restrained steel columns, and the membrane actions of concrete floor slabs with steel decks. Using a systematic description of structural fire safety engineering principles, the authors illustrate the important difference between behaviours of an isolated structural element and the restrained component in a complete structure under fire conditions. The book will be an essential resource for structural engineers who wish to improve their understanding of steel buildings exposed to fires. It is also an ideal textbook for introductory courses in fire safety for master’s degree programs in structural engineering, and is excellent reading material for final-year undergraduate students in civil engineering and fire safety engineering. Furthermore, it successfully bridges th...

  17. Safety guide on fire protection in nuclear power plants

    International Nuclear Information System (INIS)

    1976-01-01

    The purpose of the Safety Guide is to give specific design and operational guidance for protection from fire and explosion in nuclear power plants, based on the general guidance given in the relevant sections of the 'Safety Code of Practice - Design' and the 'Safety Code of Practice - Operation' of the International Atomic Energy Agency. The guide will confine itself to fire protection of safety systems and items important to safety, leaving the non-safety matters of fire protection in nuclear power plants to be decided upon the basis of the various available national and international practices and regulations. (HP) [de

  18. The development of safety requirements

    International Nuclear Information System (INIS)

    Jorel, M.

    2009-01-01

    This document describes the safety approach followed in France for the design of nuclear reactors. This safety approach is based on safety principles from which stem safety requirements that set limiting values for specific parameters. The improvements in computerized simulation, the use of more adequate new materials, a better knowledge of the concerned physical processes, the changes in the reactor operations (higher discharge burnups for instance) have to be taken into account for the definition of safety criteria and the setting of limiting values. The developments of the safety criteria linked to the risks of cladding failure and loss of primary coolant are presented. (A.C.)

  19. Fire safety in the atomic age

    International Nuclear Information System (INIS)

    Whitman, L.E.

    1980-01-01

    This nontechnical review of radiation hazards acquaints those faced with radiation fire-safety problems (firemen, plant safety personnel, technicians, and others) with what the hazards are, where they may be found, and how to deal with them. It removes unnecessary fears and misconceptions by giving a picture of radiation as something that is neither to be feared nor ignored, but rather something that can be lived with safely. Since all radioactive materials emit energy that has the power to damage living tissue, those involved with fire protection who might come into contact with such materials must understand both the real dangers from a variety of radiation exposures, and the safest, most-effective ways to avert danger to themselves and others. Whitman discusses in detail the potential hazards, from contamination from radioactive waste to transportation of radioactive materials, from nuclear power plants to radiation machinery and nuclear weapons. He presents the basic facts and includes practical problems to be solved. 14 references, 65 figures

  20. Safety tests carried out at Cadarache. Sodium fires

    International Nuclear Information System (INIS)

    Fruchard, M.

    1976-01-01

    Safety test on sodium fires developed at the Cadarache Nuclear Centre by the Department of Nuclear Safety, section of safety experiments on radioactivity transfer are conducted in two main directions: analysis of the behavior and thermodynamic consequences of accidental fires, working on the basis of typical experimental results; research and development of methods and equipment to control and if possible extinguish these fires. The most important part of this programme is concerned with the sodium pool fires which would result from the failure of a secondary coolant circuit pipe [fr

  1. Evaluation of fire probabilistic safety assessment for a PWR plant

    International Nuclear Information System (INIS)

    Wu, C.H.; Lin, T.J.; Kao, T.M.

    2001-01-01

    The internal fire analysis of the level 1 power operation probability safety assessment (PSA) for Maanshan (PWR) Nuclear Power Plant (MNPP) was updated. The fire analysis adopted a scenario-based PSA approach to systematically evaluate fire and smoke hazards and their associated risk impact to MNPP. The result shows that the core damage frequency (CDF) due to fire is about six times lower than the previous one analyzed by the Atomic Energy Council (AEC), Republic of China in 1987. The plant model was modified to reflect the impact of human events and recovery actions during fire. Many tabulated EXCEL spread-sheets were used for evaluation of the fire risk. The fire-induced CDF for MNPP is found to be 2.1 E-6 per year in this study. The relative results of the fire analysis will provide the bases for further risk-informed fire protection evaluation in the near future. (author)

  2. Safety analysis of the existing 850 Firing Facility

    International Nuclear Information System (INIS)

    Odell, B.N.

    1986-01-01

    A safety analysis was performed to determine if normal operations and/or potential accidents at the 850 Firing Facility at Site 300 could present undue hazards to the general public, personnel at Site 300, or have an adverse effect on the environment. The normal operations and credible accidents that might have an effect on these facilities or have off-site consequences were considered. It was determined by this analysis that all but one of the hazards were either low or of the type or magnitude routinely encountered and/or accepted by the public. The exception was explosives, which was classified as a moderate hazard per the requirements given in DOE Order 5481.1A. This safety analysis concluded that the operation at this facility will present no undue risk to the health and safety of LLNL employees or the public

  3. Safety analysis of the existing 851 Firing Facility

    International Nuclear Information System (INIS)

    Odell, B.N.

    1986-01-01

    A safety analysis was performed to determine if normal operations and/or potential accidents at the 851 Firing Facility at Site 300 could present undue hazards to the general public, personnel at Site 300, or have an adverse effect on the environment. The normal operations and credible accidents that might have an effect on these facilities or have off-site consequences were considered. It was determined by this analysis that all but two of the hazards were either low or of the type or magnitude routinely encountered and/or accepted by the public. The exceptions were the linear accelerator and explosives, which were classified as moderate hazards per the requirements given in DOE Order 5481.1A. This safety analysis concluded that the operation at this facility will present no undue risk to the health and safety of LLNL employees or the public

  4. Human Factors in Fire Safety Management and Prevention

    Directory of Open Access Journals (Sweden)

    M.A. Othuman Mydin

    2014-07-01

    Full Text Available Fire protection is the study and practice of mitigating the unwanted effects of potentially destructive fires. It involves the study of the behavior, compartmentalization, and investigation of fire and its related emergencies, as well as the research and development, production, testing and application of mitigating systems. Problems still occurred despite of the adequate fire safety systems installed. For most people in high-risk buildings, not all accidents were caused by them. They were more likely to be the victims of a fire that occurred. Besides damaging their properties and belongings, some people were burned to death for not knowing what to do if fire happens in their place. This paper will present the human factors in fire safety management and prevention system.

  5. The Safety Analysis of Shipborne Ammunition in Fire Environment

    Science.gov (United States)

    Ren, Junpeng; Wang, Xudong; Yue, Pengfei

    2017-12-01

    The safety of Ammunition has always been the focus of national military science and technology issues. And fire is one of the major safety threats to the ship’s ammunition storage environment, In this paper, Mk-82 shipborne aviation bomb has been taken as the study object, simulated the whole process of fire by using the FDS (Fire Detection System) software. According to the simulation results of FDS, ANSYS software was used to simulate the temperature field of Mk-82 carrier-based aviation bomb under fire environment, and the safety of aviation bomb in fire environment was analyzed. The result shows that the aviation bombs under the fire environment can occur the combustion or explosion after 70s constant cook-off, and it was a huge threat to the ship security.

  6. Spacecraft Fire Safety 1956 to 1999: An Annotated Bibliography

    Science.gov (United States)

    Friedman, Robert; Ruff, Gary A.

    2013-01-01

    Knowledge of fire safety in spacecraft has resulted from over 50 years of investigation and experience in space flight. Current practices and procedures for the operation of the Space Transportation System (STS) shuttle and the International Space Station (ISS) have been developed from this expertise, much of which has been documented in various reports. Extending manned space exploration from low Earth orbit to lunar or Martian habitats and beyond will require continued research in microgravity combustion and fire protection in low gravity. This descriptive bibliography has been produced to document and summarize significant work in the area of spacecraft fire safety that was published between 1956 and July 1999. Although some important work published in the late 1990s may be missing, these citations as well as work since 2000 can generally be found in Web-based resources that are easily accessed and searched. In addition to the citation, each reference includes a short description of the contents and conclusions of the article. The bibliography contains over 800 citations that are cross-referenced both by topic and the authors and editors. There is a DVD that accompanies this bibliography (available by request from the Center for Aerospace Information) containing the full-text articles of selected citations as well as an electronic version of this report that has these citations as active links to their corresponding full-text article.

  7. 76 FR 10246 - Updating Fire Safety Standards

    Science.gov (United States)

    2011-02-24

    ... public noted the importance of requiring facilities to meet up-to-date safety standards. The third... Affairs (VA) regulations concerning community residential care facilities, contract facilities for certain outpatient and residential services, and State home facilities. The final rule will clarify current...

  8. Development of Large-Scale Spacecraft Fire Safety Experiments

    DEFF Research Database (Denmark)

    Ruff, Gary A.; Urban, David L.; Fernandez-Pello, A. Carlos

    2013-01-01

    exploration missions outside of low-earth orbit and accordingly, more complex in terms of operations, logistics, and safety. This will increase the challenge of ensuring a fire-safe environment for the crew throughout the mission. Based on our fundamental uncertainty of the behavior of fires in low...... of the spacecraft fire safety risk. The activity of this project is supported by an international topical team of fire experts from other space agencies who conduct research that is integrated into the overall experiment design. The large-scale space flight experiment will be conducted in an Orbital Sciences...

  9. Industrial safety and fire protection during the construction phase

    International Nuclear Information System (INIS)

    Zimmer, K.

    1977-01-01

    The questions and problems of industrial safety and fire prevention have to be treated like the activities planning, developing, assembly, etc. This statement is illustrated by statistics of the fire insurance companies, from which it can be seen that the number of fire accidents has decreased but that the damage caused has greatly increased. The sooner the fire prevention and industrial safety measures are integrated in the planning phase, the better for the total costs. Preventive measures that possibly have to be introduced at a later stage are not only generally much more expensive but are also seldom as effective. (orig./HK) [de

  10. Traceability of Software Safety Requirements in Legacy Safety Critical Systems

    Science.gov (United States)

    Hill, Janice L.

    2007-01-01

    How can traceability of software safety requirements be created for legacy safety critical systems? Requirements in safety standards are imposed most times during contract negotiations. On the other hand, there are instances where safety standards are levied on legacy safety critical systems, some of which may be considered for reuse for new applications. Safety standards often specify that software development documentation include process-oriented and technical safety requirements, and also require that system and software safety analyses are performed supporting technical safety requirements implementation. So what can be done if the requisite documents for establishing and maintaining safety requirements traceability are not available?

  11. Fire and blast safety manual for fuel element manufacture

    International Nuclear Information System (INIS)

    Ensinger, U.; Koehler, B.; Mester, W.; Riotte, H.G.; Sehrbrock, H.W.

    1988-01-01

    The manual aims to enable people involved in the planning, operation, supervision, licensing or appraisal of fuel element factories to make a quick and accurate assessment of blast safety. In Part A, technical plant principles are shown, and a summary lists the flammable materials and ignition sources to be found in fuel element factories, together with theoretical details of what happens during a fire or a blast. Part B comprises a list of possible fires and explosions in fuel element factories and ways of preventing them. Typical fire and explosion scenarios are analysed more closely on the basis of experiments. Part B also contains a list and an assessment of actual fires and explosions which have occurred in fuel element factories. Part C contains safety measures to protect against fire and explosion, in-built fire safety, fire safety in plant design, explosion protection and measures to protect people from radiation and other hazards when fighting fires. A distinction is drawn between UO 2 , MOX and HTR fuel elements. (orig./DG) [de

  12. EFFICIENCY OF FIRE-FIGHTING PROTECTION OBJECTS IN PROVISION OF FIRE SAFETY AT INDUSTRIAL ENTERPRISES

    OpenAIRE

    A. V. Zhovna

    2008-01-01

    The paper gives an analysis of economic results pertaining to organization of a system for fire-fighting protection of industrial enterprises in theRepublicofBelarus. Statistical data on operational conditions of technical means of fire-fighting protection, particularly, automatic systems for detection and extinguishing of fires, systems of internal fire-fighting water-supply.  Requirements and provisions  of normative and technical documents are thoroughly studied. Observance of these docume...

  13. A study on fire design accidental loads for aluminum safety helidecks

    Directory of Open Access Journals (Sweden)

    Sang Jin Kim

    2016-11-01

    Full Text Available The helideck structure must satisfy the safety requirements associated with various environmental and accidental loads. Especially, there have been a number of fire accidents offshore due to helicopter collision (take-off and/or landing in recent decades. To prevent further accidents, a substantial amount of effort has been directed toward the management of fire in the safety design of offshore helidecks. The aims of this study are to introduce and apply a procedure for quantitative risk assessment and management of fires by defining the fire loads with an applied example. The frequency of helicopter accidents are considered, and design accidental levels are applied. The proposed procedures for determining design fire loads can be efficiently applied in offshore helideck development projects.

  14. Upgrading of fire safety in nuclear power plants. Proceedings of an International Symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The document includes 40 papers presented at the International Symposium on Upgrading of Fire Safety in Nuclear Power Plants held in Vienna between 18-21 November 1997. The symposium presentations were grouped in 6 sessions: Fire safety reviews (5 papers), Fire safety analysis - Methodology (6 papers), Fire safety analysis - Applications (3 papers), Panel 1 - Identification of deficiencies in fire safety in nuclear power plants - Operational experience and data (7 papers), Panel 2 - Experience based data in fire safety assessment - Fire safety regulations and licensing (7 papers), Upgrading programmes (10 papers), and a closing session (2 papers). A separate abstract was prepared for each paper Refs, figs, tabs

  15. Upgrading of fire safety in nuclear power plants. Proceedings of an International Symposium

    International Nuclear Information System (INIS)

    1998-04-01

    The document includes 40 papers presented at the International Symposium on Upgrading of Fire Safety in Nuclear Power Plants held in Vienna between 18-21 November 1997. The symposium presentations were grouped in 6 sessions: Fire safety reviews (5 papers), Fire safety analysis - Methodology (6 papers), Fire safety analysis - Applications (3 papers), Panel 1 - Identification of deficiencies in fire safety in nuclear power plants - Operational experience and data (7 papers), Panel 2 - Experience based data in fire safety assessment - Fire safety regulations and licensing (7 papers), Upgrading programmes (10 papers), and a closing session (2 papers). A separate abstract was prepared for each paper

  16. Instrumentation for mine safety: fire and smoke problems and solutions

    International Nuclear Information System (INIS)

    Stevens, R.B.

    1982-01-01

    Underground fires continue to be one of the most serious hazards to life and property in the mining industry. Although underground mines are analogous to high-rise buildings where persons are isolated from immediate escape or rescue, application of technology to locate and control fire hazards while still in their controllable state is slow to be implemented in underground mines. This paper describes several USBM (Bureau of Mines) safety programs which included in-mine testing with mine fire and smoke sensors, telemetry and instrumentation to develop recommendations for improving mine fire safety. It is hoped that the technology developed during these programs can be added to other programs to provide the mining industry with the necessary fire safety facts. By recognizing fire potentials and being provided with cost-effective, proven components that will perform reliably under the poor environmental conditions of mining, mine operators can provide protection for their working life and property equal to that which they provide for themselves and their families at home. The basis of this report is two USBM programs for fire protection in metal and nonmetal mines and one coal program. The data was collected beginning in May 1974 and continuing through the present with underground tests of a South African fire system installed at Magma Mine in Superior, Arizona, and a computer-assisted, experimental system at Peabody Coal Mine in Pawnee, Illinois

  17. Temperature calculation in fire safety engineering

    CERN Document Server

    Wickström, Ulf

    2016-01-01

    This book provides a consistent scientific background to engineering calculation methods applicable to analyses of materials reaction-to-fire, as well as fire resistance of structures. Several new and unique formulas and diagrams which facilitate calculations are presented. It focuses on problems involving high temperature conditions and, in particular, defines boundary conditions in a suitable way for calculations. A large portion of the book is devoted to boundary conditions and measurements of thermal exposure by radiation and convection. The concepts and theories of adiabatic surface temperature and measurements of temperature with plate thermometers are thoroughly explained. Also presented is a renewed method for modeling compartment fires, with the resulting simple and accurate prediction tools for both pre- and post-flashover fires. The final chapters deal with temperature calculations in steel, concrete and timber structures exposed to standard time-temperature fire curves. Useful temperature calculat...

  18. Integrated approach to fire safety at the Krsko nuclear power plant - fire protection action plan

    International Nuclear Information System (INIS)

    Lambright, J.A.; Cerjak, J.; Spiler, J.; Ioannidi, J.

    1998-01-01

    Nuclear Power Plant Krsko (NPP Krsko) is a Westinghouse design, single-unit, 1882 Megawatt thermal (MWt), two-loop, pressurized water nuclear power plant. The fire protection program at NPP Krsko has been reviewed and reports issued recommending changes and modifications to the program, plant systems and structures. Three reports were issued, the NPP Krsko Fire Hazard Analysis (Safe Shout down Separation Analysis Report), the ICISA Analysis of Core Damage Frequency Due to Fire at the NPP Krsko and IPEEE (Individual Plant External Event Examination) related to fire risk. The Fire Hazard Analysis Report utilizes a compliance - based deterministic approach to identification of fire area hazards. This report focuses on strict compliance from the perspective of US Nuclear Regulatory Commission (USNRC), standards, guidelines and acceptance criteria and does not consider variations to comply with the intent of the regulations. The probabilistic analysis methide used in the ICISA and IPEEE report utilizes a risk based nad intent based approach in determining critical at-risk fire areas. NPP Krsko has already completed the following suggestions/recommendations from the above and OSART reports in order to comply with Appendix R: Installation of smoke detectors in the Control Room; Installation of Emergency Lighting in some plant areas and of Remote Shout down panels; Extension of Sound Power Communication System; Installation of Fire Annunciator Panel at the On-site Fire Brigade Station; Installation of Smoke Detection System in the (a) Main Control Room Panels, (b) Essential Service Water Building. (c) Component Cooling Building pump area, chiller area and HVAC area, (d) Auxiliary Building Safety pump rooms, (e) Fuel Handling room, (f) Intermediate Building AFFW area and compressor room, and (g) Tadwaste building; inclusion of Auxiliary operators in the Fire Brigade; training of Fire Brigade Members in Plant Operation (9 week course); Development of Fire Door Inspection and

  19. The Italian National Guidelines for the fire safety of facades

    Directory of Open Access Journals (Sweden)

    Lamberto Mazziotti

    2013-11-01

    Full Text Available Traditionally, the facades' design buildings where once only focused on architectural or aesthetic purposes (in addition, of course, of whether protective issues. Nowadays, thanks to the technological development of the construction works and the use of new types of materials, the facades' design should also address fire safety related aspects. In Europe and especially in Italy – where the types of building façades are built with windows of small surface and natural stone coverings – the green building/sustainability movement has resulted in the development of new concepts in facade or curtain wall design that intended to enhance the energy efficiency of building façades. These new building surfaces are covered by extensive panelling fitted with insulating materials or by wide glass surfaces, capable of carry out the most diverse purposes including, just to name a few: energy reduction, climate comfort, recovery of electricity through photovoltaic panels that convert sunlight into electricity, large space for advertising purpose. One of the main fire safety goal for a building design is to restrict the vertical fire spread so that the smoke and flames are limited to the fire origin floor. The new building façade and curtain wall topologies could overwhelms concerns for fire safety, therefore the Italian National fire service has released a Fire Code Guideline in order to address the fire safety design for an high rise building façade. This paper aims to show the guideline contents and the related fire safety façades concerns.

  20. Fire safety in atomic power plants

    International Nuclear Information System (INIS)

    Kench, R.L.; British Insurance

    1988-01-01

    The main reactor types are described briefly - Magnox, advanced gas cooled, pressurized water and fast reactors. Fire risks exist at fuel stores and spent fuel storage facilities. Simple fire prevention measures are suggested. Solid radioactive wastes can also be combustible. Various fire prevention measures for the different storage methods, eg compaction, are given. Gaseous and liquid wastes are also considered. The main types of reactor accident are described and the causes of four incidents - at Chernobyl, Windscale, Brownsferry and Three Mile Island, are examined. (U.K.)

  1. Protection against internal fires and explosions in the design of nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Experience of the past two decades in the operation of nuclear power plants and modern analysis techniques confirm that fire may be a real threat to nuclear safety and should receive adequate attention from the beginning of the design process throughout the life of the plant. Within the framework of the NUSS programme, a Safety Guide on fire protection had therefore been developed to enlarge on the general requirements given in the Code. Since its first publication in 1979, there has been considerable development in protection technology and analysis methods and after the Chernobyl accident it was decided to revise the existing Guide. This Safety Guide supplements the requirements established in Safety of Nuclear Power Plants: Design. It supersedes Safety Series No. 50-SG-D2 (Rev. 1), Fire Protection in Nuclear Power Plants: A Safety Guide, issued in 1992.The present Safety Guide is intended to advise designers, safety assessors and regulators on the concept of fire protection in the design of nuclear power plants and on recommended ways of implementing the concept in some detail in practice

  2. Thermal Radiation for Structural Fire Safety Design

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2006-01-01

    The lecture notes give a short introduction of the theory of thermal radiation. The most elementary concepts and methods are presented in order to give a fundamental knowledge for calculation of the load bearing capacities of fire exposed building constructions....

  3. 20 CFR 654.417 - Fire, safety, and first aid.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Fire, safety, and first aid. 654.417 Section..., safety, and first aid. (a) All buildings in which people sleep or eat shall be constructed and maintained...-type water extinguisher. (g) First aid facilities shall be provided and readily accessible for use at...

  4. Safety of Nuclear Power Plants: Design. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  5. Fire safety in nuclear power stations

    International Nuclear Information System (INIS)

    Kench, R.L.

    1988-01-01

    This is the first of a three-part report on the fire hazards in nuclear power stations and some of the precautions necessary. This part lists the United Kingdom reactors, outlines how they work, the fuels used, the use of moderators and coolants and the control systems. Although the risk of fire is no higher than in fossil-fuel stations the consequences can be more serious. The radioactive materials used mean that there is biological shielding round the core, limitations on waste emissions allowed and limited access to some zones. Reliable shut-down systems are needed. Care in the use of water to fight fires must be exercised -it can act as a moderator and cause an otherwise safe core to go critical. The Wigner effect in graphite moderated reactors is explained. Fires in graphite can be extinguished by carbon dioxide. Argon, chlorine and sodium silicate can also be effective. In sodium cooled reactors fires can be allowed to burn themselves out, or TEC and argon could be used to extinguish the flame. (UK)

  6. Fire and explosion safety in the petroleum sector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The conference has 13 presentations in topics on LNG projects nationally and internationally, simulations of gas dispersion due to LNG discharges, transports of pressurized natural gas, technological aspects of fire protection and combat equipment, safety aspects of offshore installations and transportation systems, offshore platform and transportation systems design and various examples of safety design and management. Some experiences within safety engineering in the petroleum exploitation are included.

  7. Sodium fire studies in France safety tests and applications on an LMFBR

    International Nuclear Information System (INIS)

    Fruchard, Y.; Colome, J.; Malet, J.C.; Berlin, M.; de Cuy, G.D.; Justin, J.; Duco, J.; Fourest, B.

    1976-01-01

    The risk of sodium fires in an LMFBR requires thorough analysis, and the possible consequences of an accidental fire must be accurately determined. Not only must means of prevention and detection be perfected, but techniques must be developed to limit the damage caused by a fire: extinguishment, aerosol containment, protection of reactor structures. The program currently undertaken by the CEA's Nuclear Safety Department covering these problems is described. The major results obtained as well as their application to the SUPER-PHENIX reactor are included

  8. Investigation of potential fire-related damage to safety-related equipment in nuclear power plants

    International Nuclear Information System (INIS)

    Wanless, J.

    1985-11-01

    Based on a review of vendor information, fire damage reports, equipment qualification and hydrogen burn test results, and material properties, thirty-three types of equipment found in nuclear power plants were ranked in terms of their potential sensitivity to fire environments. The ranking considered both the functional requirements and damage proneness of each component. A further review of the seven top-ranked components was performed, considering the relative prevalence and potential safety significance of each. From this, relays and hand switches dominate as first choices for fire damage testing with logic equipment, power supplies, transmitters, and motor control centers as future candidates

  9. Microgravity Flammability Experiments for Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Legros, Guillaume; Minster, Olivier; Tóth, Balazs

    2012-01-01

    As fire behaviour in manned spacecraft still remains poorly understood, an international topical team has been created to design a validation experiment that has an unprecedented large scale for a microgravity flammability experiment. While the validation experiment is being designed for a re-sup...

  10. Sodium fires and nuclear power station safety

    International Nuclear Information System (INIS)

    Ivanenko, V.N.; Zubin, A.; Drobyshev, A.V.

    1986-01-01

    The danger of sodium aerosol release at a design basis accident (DBA) of a sodium-cooled fast reactor that involves coolant leakage and burning, is being analyzed. It has been shown that radioactive and toxic releases at DBA do not exceed permissible values. Some means of sodium fire fighting are described. (author)

  11. Evaluation of Fire Hazard and Safety Management of Heritage Buildings in Georgetown, Penang

    Directory of Open Access Journals (Sweden)

    Othuman Mydin M.A.

    2014-03-01

    Full Text Available Fire is a subject that is always neglected and ignored as far as heritage buildings are concerned. Unlike newly-built buildings, which are required under UBBL to undergo certain fire protection system tests, people are less likely to carry out such tests and detailed assessments for heritage buildings. Thus, this research is significant as it is aimed at accomplishing several objectives including studying the current fire emergency plan, besides identifying and assessing the possible fire hazards in heritage buildings in Penang. Several case studies were carried out at a few premises such as the Khoo Kongsi, Cheah Kongsi, Hock Teik Chen Shin Temple and the Teochew Temple with the aid of the Fire Rescue Department Malaysia (FRDM. The results obtained from this study will be discussed according to several aspects focusing on general health and safety management at the site, the fire-fighting system, fire exit routes and signage at the temples, fire hazards, and fire detection and alarm.

  12. Safety of magnetic fusion facilities: Requirements

    International Nuclear Information System (INIS)

    1996-05-01

    This Standard identifies safety requirements for magnetic fusion facilities. Safety functions are used to define outcomes that must be achieved to ensure that exposures to radiation, hazardous materials, or other hazards are maintained within acceptable limits. Requirements applicable to magnetic fusion facilities have been derived from Federal law, policy, and other documents. In addition to specific safety requirements, broad direction is given in the form of safety principles that are to be implemented and within which safety can be achieved

  13. Fire protection requirements of the insurance industry and their impact on nuclear power plant design and construction

    International Nuclear Information System (INIS)

    Deitchman, J.V.; King, W.T. Jr.; Nashman, T.A.

    1976-01-01

    The insurance industry, with its wealth of knowledge and experience in the fire protection area and with preservation of its funds at stake, has always been heavily involved in the fire protection programs of nuclear power plants. Since it was concerned with property preservation in addition to nuclear safety, the insurance industry placed more detailed emphasis on fire protection requirements than did the nuclear regulatory bodies. Since the Browns Ferry fire, however, the insurance industry, the Nuclear Regulatory Commission, the Advisory Committee on Reactor Safeguards and the utilities themselves have re-examined their approaches to fire protection. A more coordinated approach seems to have emerged, which is based largely upon insurance industry specifications and guidelines. The paper briefly summarizes the fire protection requirements of the insurance industry as they apply to nuclear power plants. Some of the ways these requirements affect project planning, plant design, and construction timing are reviewed, as well as some of the more controversial fire protection areas

  14. Operating room fire prevention: creating an electrosurgical unit fire safety device.

    Science.gov (United States)

    Culp, William C; Kimbrough, Bradly A; Luna, Sarah; Maguddayao, Aris J

    2014-08-01

    To reduce the incidence of surgical fires. Operating room fires represent a potentially life-threatening hazard and are triggered by the electrosurgical unit (ESU) pencil. Carbon dioxide is a fire suppressant and is a routinely used medical gas. We hypothesize that a shroud of protective carbon dioxide covering the tip of the ESU pencil displaces oxygen, thereby preventing fire ignition. Using 3-dimensional modeling techniques, a polymer sleeve was created and attached to an ESU pencil. This sleeve was connected to a carbon dioxide source and directed the gas through multiple precisely angled ports, generating a cone of fire-suppressive carbon dioxide surrounding the active pencil tip. This device was evaluated in a flammability test chamber containing 21%, 50%, and 100% oxygen with sustained ESU activation. The sleeve was tested with and without carbon dioxide (control) until a fuel was ignited or 30 seconds elapsed. Time to ignition was measured by high-speed videography. Fires were ignited with each control trial (15/15 trials). The control group median ± SD ignition time in 21% oxygen was 3.0 ± 2.4 seconds, in 50% oxygen was 0.1 ± 1.8 seconds, and in 100% oxygen was 0.03 ± 0.1 seconds. No fire was observed when the fire safety device was used in all concentrations of oxygen (0/15 trials; P fire ignition was 76% to 100%. A sleeve creating a cone of protective carbon dioxide gas enshrouding the sparks from an ESU pencil effectively prevents fire in a high-flammability model. Clinical application of this device may reduce the incidence of operating room fires.

  15. Safety of Research Reactors. Specific Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This Safety Requirements publication establishes requirements for all main areas of safety for research reactors, with particular emphasis on requirements for design and operation. It explains the safety objectives and concepts that form the basis for safety and safety assessment for all stages in the lifetime of a research reactor. Technical and administrative requirements for the safety of new research reactors are established in accordance with these objectives and concepts, and they are to be applied to the extent practicable for existing research reactors. The safety requirements established in this publication for the management of safety and regulatory supervision apply to site evaluation, design, manufacturing, construction, commissioning, operation (including utilization and modification), and planning for decommissioning of research reactors (including critical assemblies and subcritical assemblies). The publication is intended for use by regulatory bodies and other organizations with responsibilities in these areas and in safety analysis, verification and review, and the provision of technical support.

  16. Development of IFC based fire safety assesment tools

    DEFF Research Database (Denmark)

    Taciuc, Anca; Karlshøj, Jan; Dederichs, Anne

    2016-01-01

    Due to the impact that the fire safety design has on the building's layout and on other complementary systems, as installations, it is important during the conceptual design stage to evaluate continuously the safety level in the building. In case that the task is carried out too late, additional...... changes need to be implemented, involving supplementary work and costs with negative impact on the client. The aim of this project is to create a set of automatic compliance checking rules for prescriptive design and to develop a web application tool for performance based design that retrieves data from...... Building Information Models (BIM) to evacuate the safety level in the building during the conceptual design stage. The findings show that the developed tools can be useful in AEC industry. Integrating BIM from conceptual design stage for analyzing the fire safety level can ensure precision in further...

  17. Large-Scale Spacecraft Fire Safety Experiments in ISS Resupply Vehicles

    Science.gov (United States)

    Ruff, Gary A.; Urban, David

    2013-01-01

    Our understanding of the fire safety risk in manned spacecraft has been limited by the small scale of the testing we have been able to conduct in low-gravity. Fire growth and spread cannot be expected to scale linearly with sample size so we cannot make accurate predictions of the behavior of realistic scale fires in spacecraft based on the limited low-g testing to date. As a result, spacecraft fire safety protocols are necessarily very conservative and costly. Future crewed missions are expected to be longer in duration than previous exploration missions outside of low-earth orbit and accordingly, more complex in terms of operations, logistics, and safety. This will increase the challenge of ensuring a fire-safe environment for the crew throughout the mission. Based on our fundamental uncertainty of the behavior of fires in low-gravity, the need for realistic scale testing at reduced gravity has been demonstrated. To address this concern, a spacecraft fire safety research project is underway to reduce the uncertainty and risk in the design of spacecraft fire safety systems by testing at nearly full scale in low-gravity. This project is supported by the NASA Advanced Exploration Systems Program Office in the Human Exploration and Operations Mission Directorate. The activity of this project is supported by an international topical team of fire experts from other space agencies to maximize the utility of the data and to ensure the widest possible scrutiny of the concept. The large-scale space flight experiment will be conducted on three missions; each in an Orbital Sciences Corporation Cygnus vehicle after it has deberthed from the ISS. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew allows the fire products to be released into the cabin. The tests will be fully automated with the data downlinked at the conclusion of the test before the Cygnus vehicle reenters the

  18. Parametric study for the fire safety design of steel structures

    DEFF Research Database (Denmark)

    Aiuti, Riccardo; Giuliani, Luisa

    2013-01-01

    the considered time of fire exposure. A deeper knowledge on the failure mode of steel structure is however important in order to ensure the safety of the people and properties outside the building. Aim of this paper is to analyze the behaviour of single elements, sub-assemblies and frames exposed to fire...... or hindered thermal expansion induced on the element by the rest of the structure. Nevertheless, restrained thermal expansion is known to significantly affect the behaviour of steel structures in fire, and the compliance with a prescribed resistance class doesn’t ensure the integrity of the building after...... and find out the basic collapse mechanisms of structural elements in fire conditions, considering the rest of the construction with appropriate constraints. The analysis is carried out taking into account material and geometrical nonlinearities as well as the degradation of steel properties at high...

  19. Evaluation of fire safety measures at local universities in Kenya with ...

    African Journals Online (AJOL)

    This study establishes fire safety measures in place in local universities in Kenya, and ... fire suppression systems, fire detection and alarm systems and fire Hydrants. ... response backed by university management endorsement and support. The Directorate of occupational safety and health services should also make the ...

  20. Safety demonstration test on solvent fire in fuel reprocessing plant

    International Nuclear Information System (INIS)

    Nishio, Gunji; Hashimoto, Kazuichiro

    1989-03-01

    This report summarizes a fundamental of results obtained in the Reprocessing Plant Safety Demonstration Test Program which was performed under the contract between the Science and Technology Agency of Japan and the Japan Atomic Energy Research Institute. In this test program, a solvent fire was hypothesized, and such data were obtained as fire behavior, smoke behavior and integrity of exhaust filters in the ventilation system. Through the test results, it was confirmed that under the fire condition in hypothetical accident, the integrity of the cell and the cell ventilation system were maintained, and the safety function of the exhaust filters was maintained against the smoke loading. Analytical results by EVENT code agreed well with the present test data on the thermofluid flow in a cell ventilation system. (author)

  1. Organization and conduct of IAEA fire safety reviews at nuclear power plants

    International Nuclear Information System (INIS)

    1998-01-01

    The importance of fire safety in the safe and productive operation of nuclear power plants is recognized worldwide. Lessons learned from experience in nuclear power plants indicate that fire poses a real threat to nuclear safety and that its significance extends far beyond the scope of a conventional fire hazard. With a growing understanding of the close correlation between the fire hazard in nuclear power plants and nuclear safety, backfitting for fire safety has become necessary for a number of operating plants. However, it has been recognized that the expertise necessary for a systematic independent assessment of fire safety of a NPP may not always be available to a number of Member States. In order to assist in enhancing fire safety, the IAEA has already started to offer various services to Member States in the area of fire safety. At the request of a Member State, the IAEA may provide a team of experts to conduct fire safety reviews of varying scope to evaluate the adequacy of fire safety at a specific nuclear power plant during various phases such as construction, operation and decommissioning. The IAEA nuclear safety publications related to fire protection and fire safety form a common basis for these reviews. This report provides guidance for the experts involved in the organization and conduct of fire safety review services to ensure consistency and comprehensiveness of the reviews

  2. Safety assessment of indoor live fire range, May 1989

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-05-01

    The following Safety Assessment (SA) pertains to the indoor live fire range (LFR) at EG&G Mound Applied Technology plant. The purpose of the indoor LFR is to conduct training with live ammunition for all designated personnel. The SA examines the risks that are attendant to the operation of an indoor LFR for this purpose.

  3. Station set requirements document. Volume 82: Fire support. Book 2: Preliminary functional fire plan

    Science.gov (United States)

    Gray, N. C.

    1974-01-01

    The fire prevention/protection requirements for all shuttle facility and ground support equipment are presented for the hazardous operations. These include: preparing the orbiter for launch, launch operations, landing operations, safing operations, and associated off-line activities.

  4. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations. To be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. And to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  5. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2003-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations. To be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. And to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  6. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations; to be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources; and to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  7. Fire safety case study of a railway tunnel: Smoke evacuation

    Directory of Open Access Journals (Sweden)

    van Maele Karim

    2007-01-01

    Full Text Available When a fire occurs in a tunnel, it is of great importance to assure the safety of the occupants of the tunnel. This is achieved by creating smoke-free spaces in the tunnel through control of the smoke gases. In this paper, results are presented of a study concerning the fire safety in a real scale railway tunnel test case. Numerical simulations are performed in order to examine the possibility of natural ventilation of smoke in inclined tunnels. Several aspects are taken into account: the length of the simulated tunnel section, the slope of the tunnel and the possible effects of external wind at one portal of the tunnel. The Fire Dynamics Simulator of the National Institute of Standards and Technology, USA, is applied to perform the simulations. The simulations show that for the local behavior of the smoke during the early stages of the fire, the slope of the tunnel is of little importance. Secondly, the results show that external wind and/or pressure conditions have a large effect on the smoke gases inside the tunnel. Finally, some idea for the value of the critical ventilation velocity is given. The study also shows that computational fluid dynamics calculations are a valuable tool for large scale, real life complex fire cases. .

  8. 76 FR 70885 - Updating Fire Safety Standards

    Science.gov (United States)

    2011-11-16

    ... effect on the economy of $100 million or more or adversely affect in a material way the economy, a sector of the economy, productivity, competition, jobs, the environment, public health or safety, or State...; 64.018, Sharing Specialized Medical Resources; 64.019, Veterans Rehabilitation Alcohol and Drug...

  9. Spacecraft Fire Safety Research at NASA Glenn Research Center

    Science.gov (United States)

    Meyer, Marit

    2016-01-01

    Appropriate design of fire detection systems requires knowledge of both the expected fire signature and the background aerosol levels. Terrestrial fire detection systems have been developed based on extensive study of terrestrial fires. Unfortunately there is no corresponding data set for spacecraft fires and consequently the fire detectors in current spacecraft were developed based upon terrestrial designs. In low gravity, buoyant flow is negligible which causes particles to concentrate at the smoke source, increasing their residence time, and increasing the transport time to smoke detectors. Microgravity fires have significantly different structure than those in 1-g which can change the formation history of the smoke particles. Finally the materials used in spacecraft are different from typical terrestrial environments where smoke properties have been evaluated. It is critically important to detect a fire in its early phase before a flame is established, given the fixed volume of air on any spacecraft. Consequently, the primary target for spacecraft fire detection is pyrolysis products rather than soot. Experimental investigations have been performed at three different NASA facilities which characterize smoke aerosols from overheating common spacecraft materials. The earliest effort consists of aerosol measurements in low gravity, called the Smoke Aerosol Measurement Experiment (SAME), and subsequent ground-based testing of SAME smoke in 55-gallon drums with an aerosol reference instrument. Another set of experiments were performed at NASAs Johnson Space Center White Sands Test Facility (WSTF), with additional fuels and an alternate smoke production method. Measurements of these smoke products include mass and number concentration, and a thermal precipitator was designed for this investigation to capture particles for microscopic analysis. The final experiments presented are from NASAs Gases and Aerosols from Smoldering Polymers (GASP) Laboratory, with selected

  10. Methods for the sodium cooled fast reactor fire safety provisions

    International Nuclear Information System (INIS)

    Gryaznov, B.V.; Dergachev, N.P.

    1983-01-01

    Problems of fire safety provision on NPPs with sodium cooled fast reactor are under discussion. Methods of sodium leak localization, measures eliminating sodium flaring up during leaks and main means of sodium fire extinguishing are considered. An extinguishing of sodium flaring up is performed by means of sodium temperatUre decrease and by limitation of hydrogen access to the flaring up surface. A conclusion is made that the most effective methods of extinguishing are the following: self-extinguishing (due to hydrogen burning out in a limiting volume); extinguishing by a gas mixture of nitrogen and carbonic acid (initial filling and blowing of rooms during sodium flaring up); extinguishing by special powders

  11. Tech assist/fire safety assessment of 100K area facilities

    International Nuclear Information System (INIS)

    Johnson, B.H.

    1994-01-01

    This Tech Assist/Fire Safety Assessment provides a comprehensive assessment of the 100K Area Facilities at the U.S. Department of Energy's Hanford Site for fire protection upgrades that may be needed given the limited remaining service life of these facilities. This assessment considers the relative nature of observed fire risks and whether the installed fire protection systems adequately control this risk. The analysis is based on compliance with DOE Orders, NFPA Codes and Standards, and recognized industry practice. Limited remaining service life (i.e., 6 to 12 years), current value of each facility, comparison to the best protected class of industrial risk, and the potential for exemptions from DOE requirements are key factors for recommendations presented in this report

  12. A study on fire spreading model for the safety distance between the neighborhood occupancies and historical buildings in Taiwan

    Science.gov (United States)

    Chen, C. H.; Chien, S. W.; Ho, M. C.

    2015-08-01

    Cultural heritages and historical buildings are vulnerable against severe threats from fire. Since the 1970s, ten fire-spread events involving historic buildings have occurred in Taiwan, affecting a total of 132 nearby buildings. Developed under the influence of traditional Taiwanese culture, historic buildings in Taiwan are often built using non-fire resistant brick-wood structure and located in proximity to residential occupancies. Fire outbreak in these types of neighborhood will lead to severe damage of antiquities, leaving only unrecoverable historical imagery. This study is aimed to investigate the minimal safety distance required between a historical building and its surroundings in order to reduce the risk of external fire. This study is based on literature analysis and the fire spread model using a Fire Dynamics Simulator. The selected target is Jingmei Temple in Taipei City. This study explored local geography to identify patterns behind historical buildings distribution. In the past, risk reduction engineering for cultural heritages and historical buildings focused mainly on fire equipment and the available personnel with emergency response ability, and little attention was given to external fire risks and the affected damage. Through discussions on the required safety distance, this research provides guidelines for the following items: management of neighborhoods with historical buildings and consultation between the protection of cultural heritages and disaster prevention, reducing the frequency and extent of fire damages, and preserving cultural resource.

  13. Leadership and Management for Safety. General Safety Requirements (Spanish Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    his Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  14. Leadership and Management for Safety. General Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  15. Leadership and Management for Safety. General Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  16. Leadership and Management for Safety. General Safety Requirements (Chinese Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  17. Leadership and Management for Safety. General Safety Requirements

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factor, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations (registrants and licensees) and other organizations concerned with facilities and activities that give rise to radiation risks

  18. EFFECTS OF FIRE FUMES ON ALMOND SAFETY AND QUALITY

    Directory of Open Access Journals (Sweden)

    Amanda Ramírez-Gandolfo

    2011-08-01

    Full Text Available A fire originated and burnt two cold chambers; the present study focused on almonds stored in adjacent chambers (4, 5, 6 and 13 and evaluated both their food safety and quality. Testing for polycyclic aromatic hydrocarbons, polychlorinated dibenzo-p-dioxins and dibenzofurans was carried out in affected facilities, packaging and almonds. Experimental results proved that fire fumes did not reach chambers 4-6, but traces were found in bin packaging of chamber 13; thus, packaging from this chamber were changed. Concentrations of benzo(apyrene were low enough to prove that fire fumes did not get in contact with the stored almonds. Later, only volatile compounds typical of nuts were identified in both raw and toasted almonds. Finally, a trained panel concluded that no sensory signal of fumes reaching almonds was found. This manuscript could be taken as a model protocol to establish whether fire fumes have reached and affected the safety and/or quality of foods. This information will be especially useful for insurance companies.

  19. Statistical assessment of fire safety in multi-residential buildings in Slovenia

    Directory of Open Access Journals (Sweden)

    Domen Kušar

    2009-01-01

    Full Text Available Nearly a third of residential units in Slovenia are located in multi-residential buildings. The majority of such buildings were built after WW2, when the need for suitable accommodation buildings was at its peak. They were built using the construction possibilities and requirements of the time. Every year there are over 200 fires in these buildings, resulting in fatalities and vast material damage. Due to the great efforts over the past centuries, which were all mainly aimed at replacing combustible construction materials with non-combustible ones, and with advancements in fire service equipment and techniques, the number of fires and their scope has decreased significantly but they were not entirely put out. New and greater advances in the field of fire safety of multi-residential buildings became obvious within the last few years, when stricter regulations regarding the construction of such objects came into force. Developments in science and within the industry itself brought about several new solutions in improving the situation in this field, which has been confirmed by experiences from abroad. Unfortunately in Slovenia, the establishment of safety principles still depends mainly on an occupants’ perception, financial means, and at the same time, certain implementation procedures that are much more complicated due to new property ownership. With the aid of the statistical results from the 2002 Census and contemporary fire safety requirements, this article attempts to show the present-day situation of the problem at both the state and municipality level and will propose solutions to improve this situation. The authors established that not even one single older, multi-residential building meets complies with modern requirements. Fortunately, the situation is improved by the fact that most buildings in Slovenia are built from non-combustible materials (concrete, brick, which limit the spread of fire.

  20. Fire Safety Aspects of Polymeric Materials. Volume 7. Buildings

    Science.gov (United States)

    1979-01-01

    Custodial Buildings 136 4.5.5 Retail Stores, Malls, etc. 138 l’ 4.5.6 Restaurants and Nightclubs 4.5.7 Public Assembly Occupancies - Auditoria , Theaters... auditoria , theaters, exhibition halls, arenas, transportation terminals; educational buildings and indus- trial buildings. Many of the fire safety...usage are developed. 4.5.7 Public Assembly Occupancies - Auditoria , Theaters, Exhibition Halls, Arenas, Transportation Terminals, Etc. The factors

  1. Safety of nuclear power plants: Design. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    The present publication supersedes the Code on the Safety of Nuclear Power Plants: Design (Safety Series No. 50-C-D (Rev. 1), issued in 1988). It takes account of developments relating to the safety of nuclear power plants since the Code on Design was last revised. These developments include the issuing of the Safety Fundamentals publication, The Safety of Nuclear Installations, and the present revision of various safety standards and other publications relating to safety. Requirements for nuclear safety are intended to ensure adequate protection of site personnel, the public and the environment from the effects of ionizing radiation arising from nuclear power plants. It is recognized that technology and scientific knowledge advance, and nuclear safety and what is considered adequate protection are not static entities. Safety requirements change with these developments and this publication reflects the present consensus. This Safety Requirements publication takes account of the developments in safety requirements by, for example, including the consideration of severe accidents in the design process. Other topics that have been given more detailed attention include management of safety, design management, plant ageing and wearing out effects, computer based safety systems, external and internal hazards, human factors, feedback of operational experience, and safety assessment and verification. This publication establishes safety requirements that define the elements necessary to ensure nuclear safety. These requirements are applicable to safety functions and the associated structures, systems and components, as well as to procedures important to safety in nuclear power plants. It is expected that this publication will be used primarily for land based stationary nuclear power plants with water cooled reactors designed for electricity generation or for other heat production applications (such as district heating or desalination). It is recognized that in the case of

  2. Safety of nuclear power plants: Design. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    The present publication supersedes the Code on the Safety of Nuclear Power Plants: Design (Safety Series No. 50-C-D (Rev. 1), issued in 1988). It takes account of developments relating to the safety of nuclear power plants since the Code on Design was last revised. These developments include the issuing of the Safety Fundamentals publication, The Safety of Nuclear Installations, and the present revision of various safety standards and other publications relating to safety. Requirements for nuclear safety are intended to ensure adequate protection of site personnel, the public and the environment from the effects of ionizing radiation arising from nuclear power plants. It is recognized that technology and scientific knowledge advance, and nuclear safety and what is considered adequate protection are not static entities. Safety requirements change with these developments and this publication reflects the present consensus. This Safety Requirements publication takes account of the developments in safety requirements by, for example, including the consideration of severe accidents in the design process. Other topics that have been given more detailed attention include management of safety, design management, plant ageing and wearing out effects, computer based safety systems, external and internal hazards, human factors, feedback of operational experience, and safety assessment and verification. This publication establishes safety requirements that define the elements necessary to ensure nuclear safety. These requirements are applicable to safety functions and the associated structures, systems and components, as well as to procedures important to safety in nuclear power plants. It is expected that this publication will be used primarily for land based stationary nuclear power plants with water cooled reactors designed for electricity generation or for other heat production applications (such as district heating or desalination). It is recognized that in the case of

  3. Evaluation Of Fire Safety And Protection At PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Ahmad Nabil Ab Rahim; Alfred Sanggau Ligam; Nurhayati Ramli; Mohd Fazli Zakaria; Naim Syauqi Hamzah; Phongsakorn Prak; Mohammad Suhaimi Kassim; Zarina Masood

    2014-01-01

    Fire hazard is one of many risks that can affect the safety operation of PUSPATI TRIGA Reactor. Reactor building in Malaysian Nuclear Agency was built in 1980s and the fire system has been introduced since then. The evaluation of the fire safety system at this time is important to ensure the efficiency of fire prevention, fighting and mitigation task that probably occurs. This evaluation involves with the fire fighting system and equipment, integrity of the system from the perspective of management and equipment, fire fighting procedure and fire fighting response team. (author)

  4. Requirements of safety and reliability

    International Nuclear Information System (INIS)

    Franzen, L.F.

    1977-01-01

    The safety strategy for nuclear power plants is characterized by the fact that the high level of safety was attained not as a result of experience, but on the basis of preventive accident analyses and the findings derived from such analyses. Although, in these accident analyses, the deterministic approach is predominant it is supplemented by reliability analyses. The accidents analyzed in nuclear licensing procedures cover a wide spectrum from minor incidents to the design basis accidents which determine the design of the safety devices. The initial and boundary conditions, which are essential for accident analyses, and the determination of the loads occuring in various states during regular operation and in accidents flow into the design of the individual systems and components. The inevitable residual risk and its origins are discussed. (orig./HP) [de

  5. A probabilistic method for optimization of fire safety in nuclear power plants

    International Nuclear Information System (INIS)

    Hosser, D.; Sprey, W.

    1986-01-01

    As part of a comprehensive fire safety study for German Nuclear Power Plants a probabilistic method for the analysis and optimization of fire safety has been developed. It follows the general line of the American fire hazard analysis, with more or less important modifications in detail. At first, fire event trees in selected critical plant areas are established taking into account active and passive fire protection measures and safety systems endangered by the fire. Failure models for fire protection measures and safety systems are formulated depending on common parameters like time after ignition and fire effects. These dependences are properly taken into account in the analysis of the fire event trees with the help of first-order system reliability theory. In addition to frequencies of fire-induced safety system failures relative weights of event paths, fire protection measures within these paths and parameters of the failure models are calculated as functions of time. Based on these information optimization of fire safety is achieved by modifying primarily event paths, fire protection measures and parameters with the greatest relative weights. This procedure is illustrated using as an example a German 1300 MW PWR reference plant. It is shown that the recommended modifications also reduce the risk to plant personnel and fire damage

  6. Disposal of Radioactive Waste. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2011-01-01

    This publication establishes requirements applicable to all types of radioactive waste disposal facility. It is linked to the fundamental safety principles for each disposal option and establishes a set of strategic requirements that must be in place before facilities are developed. Consideration is also given to the safety of existing facilities developed prior to the establishment of present day standards. The requirements will be complemented by Safety Guides that will provide guidance on good practice for meeting the requirements for different types of waste disposal facility. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Safety requirements for planning for the disposal of radioactive waste; 4. Requirements for the development, operation and closure of a disposal facility; 5. Assurance of safety; 6. Existing disposal facilities; Appendices.

  7. 78 FR 17140 - Upholstered Furniture Fire Safety Technology; Meeting and Request for Comments

    Science.gov (United States)

    2013-03-20

    ... retardant (FR) chemicals, specialty fibers/fabrics without FR chemicals, inherently fire resistant materials... Furniture Fire Safety Technology; Meeting and Request for Comments AGENCY: Consumer Product Safety... Commission (CPSC, Commission, or we) is announcing its intent to hold a meeting on upholstered furniture fire...

  8. Application of fire and evacuation models in evaluation of fire safety in railway tunnels

    Science.gov (United States)

    Cábová, Kamila; Apeltauer, Tomáš; Okřinová, Petra; Wald, František

    2017-09-01

    The paper describes an application of numerical simulation of fire dynamics and evacuation of people in a tunnel. The software tool Fire Dynamics Simulator is used to simulate temperature resolution and development of smoke in a railway tunnel. Comparing to temperature curves which are usually used in the design stage results of the model show that the numerical model gives lower temperature of hot smoke layer. Outputs of the numerical simulation of fire also enable to improve models of evacuation of people during fires in tunnels. In the presented study the calculated high of smoke layer in the tunnel is in 10 min after the fire ignition lower than the level of 2.2 m which is considered as the maximal limit for safe evacuation. Simulation of the evacuation process in bigger scale together with fire dynamics can provide very valuable information about important security conditions like Available Safe Evacuation Time (ASET) vs Required Safe Evacuation Time (RSET). On given example in software EXODUS the paper summarizes selected results of evacuation model which should be in mind of a designer when preparing an evacuation plan.

  9. Radiation safety requirements for radionuclide laboratories

    International Nuclear Information System (INIS)

    1993-01-01

    In accordance with the section 26 of the Finnish Radiation Act (592/91) the safety requirements to be taken into account in planning laboratories and other premises, which affect safety in the use of radioactive materials, are confirmed by the Finnish Centre for Radiation and Nuclear Safety. The guide specifies the requirements for laboratories and storage rooms in which radioactive materials are used or stored as unsealed sources. There are also some general instructions concerning work procedures in a radionuclide laboratory

  10. Fire safety of LPG in marine transportation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Martinsen, W.E.; Johnson, D.W.; Welker, J.R.

    1980-06-01

    This report contains an analytical examination of cargo spill and fire hazard potential associated with the marine handling of liquefied petroleum gas (LPG) as cargo. Principal emphasis was on cargo transfer operations for ships unloading at receiving terminals, and barges loading or unloading at a terminal. Major safety systems, including emergency shutdown systems, hazard detection systems, and fire extinguishment and control systems were included in the analysis. Spill probabilities were obtained from fault tree analyses utilizing composite LPG tank ship and barge designs. Failure rates for hardware in the analyses were generally taken from historical data on similar generic classes of hardware, there being very little historical data on the specific items involved. Potential consequences of cargo spills of various sizes are discussed and compared to actual LPG vapor cloud incidents. The usefulness of hazard mitigation systems (particularly dry chemical fire extinguishers and water spray systems) in controlling the hazards posed by LPG spills and spill fires is also discussed. The analysis estimates the probability of fatality for a terminal operator is about 10/sup -6/ to 10/sup -5/ per cargo transfer operation. The probability of fatality for the general public is substantially less.

  11. SYSTEMS SAFETY ANALYSIS FOR FIRE EVENTS ASSOCIATED WITH THE ECRB CROSS DRIFT

    International Nuclear Information System (INIS)

    R. J. Garrett

    2001-01-01

    The purpose of this analysis is to systematically identify and evaluate fire hazards related to the Yucca Mountain Site Characterization Project (YMP) Enhanced Characterization of the Repository Block (ECRB) East-West Cross Drift (commonly referred to as the ECRB Cross-Drift). This analysis builds upon prior Exploratory Studies Facility (ESF) System Safety Analyses and incorporates Topopah Springs (TS) Main Drift fire scenarios and ECRB Cross-Drift fire scenarios. Accident scenarios involving the fires in the Main Drift and the ECRB Cross-Drift were previously evaluated in ''Topopah Springs Main Drift System Safety Analysis'' (CRWMS M and O 1995) and the ''Yucca Mountain Site Characterization Project East-West Drift System Safety Analysis'' (CRWMS M and O 1998). In addition to listing required mitigation/control features, this analysis identifies the potential need for procedures and training as part of defense-in-depth mitigation/control features. The inclusion of this information in the System Safety Analysis (SSA) is intended to assist the organization(s) (e.g., Construction, Environmental Safety and Health, Design) responsible for these aspects of the ECRB Cross-Drift in developing mitigation/control features for fire events, including Emergency Refuge Station(s). This SSA was prepared, in part, in response to Condition/Issue Identification and Reporting/Resolution System (CIRS) item 1966. The SSA is an integral part of the systems engineering process, whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach is used which incorporates operating experiences and recommendations from vendors, the constructor and the operating contractor. The risk assessment in this analysis characterizes the scenarios associated with fires in terms of relative risk and includes recommendations for mitigating all identified hazards. The priority for recommending and implementing mitigation control features is: (1) Incorporate

  12. Safety design requirements for safety systems and components of JSFR

    International Nuclear Information System (INIS)

    Kubo, Shigenobu; Shimakawa, Yoshio; Yamano, Hidemasa; Kotake, Shoji

    2011-01-01

    Safety design requirements for JSFR were summarized taking the development targets of the FaCT project and design feature of JSFR into account. The related safety principle and requirements for Monju, CRBRP, PRISM, SPX, LWRs, IAEA standards, goals of GIF, basic principle of INPRO etc. were also taken into account so that the safety design requirements can be a next-generation global standard. The development targets for safety and reliability are set based on those of FaCT, namely, ensuring safety and reliability equal to future LWR and related fuel cycle facilities. In order to achieve these targets, the defence-in-depth concept is used as the basic safety design principle. General features of the safety design requirements are 1) Achievement of higher reliability, 2) Achievement of higher inspectability and maintainability, 3) Introduction of passive safety features, 4) Reduction of operator action needs, 5) Design consideration against Beyond Design Basis Events, 6) In-Vessel Retention of degraded core materials, 7) Prevention and mitigation against sodium chemical reactions, and 8) Design against external events. The current specific requirements for each system and component are summarized taking the basic design concept of JSFR into account, which is an advanced loop-type large-output power plant with a mixed-oxide-fuelled core. (author)

  13. Energy requirement for firing porcelain | M. de O. Madivate | Bulletin ...

    African Journals Online (AJOL)

    Results from studies on the ternary system Ribaué kaolin–Carapira feldspar– Marracuene quartz sands were used to test a procedure that we developed for calculation of the energy requirement for firing porcelain. Results obtained vary between 1300 and 1800 kJ/kg porcelain. These results differ largely from the ones ...

  14. Requirements for VICTORIA Class Fire Control System: Contact Management Function

    Science.gov (United States)

    2014-07-01

    Requirements for VICTORIA Class Fire Control System Contact Management Function Tab Lamoureux CAE Integrated Enterprise Solutions...Contract Report DRDC-RDDC-2014-C190 July 2014 © Her Majesty the Queen in Right of Canada, as represented by the...i Abstract …….. The VICTORIA Class Submarines (VCS) are subject to a continuing program of technical upgrades. One such program is

  15. Frequently Asked Questions in Fire Probabilistic Safety Assessment

    International Nuclear Information System (INIS)

    Kang, Dae Il; Kim, Kil Yoo; Park, Gee Yong

    2010-05-01

    The FAQs(Frequently Asked Questions) in the Fire Probabilistic Safety Assessment(FPSA) are the issues occurred during performing the engineering evaluation based on NFPA-805. In this report, the background and resolutions are reviewed and described for 17 FAQs related to FPSA among 57 FAQs. The current FAQs related to FPSA are the issues concerning to NUREG/CR-6850, and are almost resolved but for the some FAQ, the current resolutions would be changed depending on the results of the future or on-going research. Among FAQs related to FPSA, best estimate approaches are suggested concerning to the conservative method of NUREG/CR-6850. If these best estimate solutions are used in the FPSA of nuclear power plants, realistic evaluation results of fire risk would be obtained

  16. Site evaluation for nuclear installations. Safety requirements

    International Nuclear Information System (INIS)

    2003-01-01

    This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Siting, which was issued in 1988 as Safety Series No. 50-C-S (Rev. 1). It takes account of developments relating to site evaluations for nuclear installations since the Code on Siting was last revised. These developments include the issuing of the Safety Fundamentals publication on The Safety of Nuclear Installations, and the revision of various safety standards and other publications relating to safety. Requirements for site evaluation are intended to ensure adequate protection of site personnel, the public and the environment from the effects of ionizing radiation arising from nuclear installations. It is recognized that there are steady advances in technology and scientific knowledge, in nuclear safety and in what is considered adequate protection. Safety requirements change with these advances and this publication reflects the present consensus among States. This Safety Requirements publication was prepared under the IAEA programme on safety standards for nuclear installations. It establishes requirements and provides criteria for ensuring safety in site evaluation for nuclear installations. The Safety Guides on site evaluation listed in the references provide recommendations on how to meet the requirements established in this Safety Requirements publication. The objective of this publication is to establish the requirements for the elements of a site evaluation for a nuclear installation so as to characterize fully the site specific conditions pertinent to the safety of a nuclear installation. The purpose is to establish requirements for criteria, to be applied as appropriate to site and site-installation interaction in operational states and accident conditions, including those that could lead to emergency measures for: (a) Defining the extent of information on a proposed site to be presented by the applicant; (b) Evaluating a proposed site to ensure that the site

  17. Ongoing enhancements in the German nuclear regulatory framework with respect to fire safety

    Energy Technology Data Exchange (ETDEWEB)

    Elsche, Bjoern [e.on Kernkraft, Hannover (Germany); Roewekamp, Marina [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Koeln (Germany); Neugebauer, Wilfried [AREVA NP, Erlangen (Germany); Gersinska, Rainer [Bundesamt fuer Strahlenschutz (BfS), Salzgitter (Germany). KTA-Geschaeftsstelle

    2015-12-15

    In the recent past, the regulatory framework for nuclear power plants (NPP) in Germany has been updated and enhanced comprising on the one hand comprehensive high level regulatory documents such as the 'Safety Requirements for Nuclear Power Plants' and, on the other hand, revised state-of-the-art nuclear safety standards and rules being incorporated in a corresponding legal structure. A major enhancement concerns the nuclear fire and explosion protection standards being already available as so-called green print for final comments which are expected to be officially published end of 2015. The update became necessary after approx. ten years for better addressing some lessons learnt form the operating experience, the consideration of post- Fukushima insights, such as more systematically addressing event combinations with fires and taking into account deviations from non-nuclear standards for escape and rescue routes. Moreover, fire protections remains an important issue for nuclear power plants in Germany during the longer term post-commercial safe shutdown period before decommissioning during which the spent fuel elements remain either in the containment or in the spent fuel pool for further years requiring suitable fire protection means being in place.

  18. Focus on the studies in support of fire safety analysis. IRSN modelling approach for nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Espargilliere, Julien; Meyrand, Raphael; Vinot, Thierry [Institut de Radioprotection et de Surete Nucleaire (IRSN), Fontenay-aux-Roses (France)

    2015-12-15

    For a fire safety analysis, in order to comply with nuclear safety goals, a nuclear fuel facility operator has to define the elements important for safety to be maintained, even in the case of a fire. One of the key points of this fire analysis is the assessment of possible fire scenarios in the facility. This paper presents the IRSN method applied to a case study to assess fire scenarios which have the most harmful effects on safety targets. The layout consists in a central room (fire cell) containing three glove boxes with radioactive material and three electrical cabinets. This room is linked to two connecting compartments (the fire cell and these two compartments define the containment cell) and then to two corridors. Each room is equipped with a mechanical ventilation system, and a pressure cascade is established from the corridors to the central room. A fire scenario was studied with fire ignition occurring in an electrical cabinet. This scenario has a set of safety goals (prevention of fire cell and containment device failure, propagation of the fire). This case study was conducted with the IRSN code SYLVIA based on two zones modelling. Safety goals were associated with key parameters and performance criteria to be fulfilled. Modelling assumptions were defined in order to maximize physical effects of the fire. Sensitivity studies were also conducted on key parameters such as oxygen limitation, equivalent-fuel definition. Eventually, a critical analysis of the code models was carried out.

  19. Safety of nuclear fuel cycle facilities. Safety requirements

    International Nuclear Information System (INIS)

    2008-01-01

    This publication covers the broad scope of requirements for fuel cycle facilities that, in light of the experience and present state of technology, must be satisfied to ensure safety for the lifetime of the facility. Topics of specific reference include aspects of nuclear fuel generation, storage, reprocessing and disposal. Contents: 1. Introduction; 2. The safety objective, concepts and safety principles; 3. Legal framework and regulatory supervision; 4. The management system and verification of safety; 5. Siting of the facility; 6. Design of the facility; 7. Construction of the facility; 8. Commissioning of the facility; 9. Operation of the facility; 10. Decommissioning of the facility; Appendix I: Requirements specific to uranium fuel fabrication facilities; Appendix II: Requirements specific to mixed oxide fuel fabrication facilities; Appendix III: Requirements specific to conversion facilities and enrichment facilities

  20. Development of High-Level Safety Requirements for a Pyroprocessing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Seok Jun; Jo, Woo Jin; You, Gil Sung; Choung, Won Myung; Lee, Ho Hee; Kim, Hyun Min; Jeon, Hong Rae; Ku, Jeong Hoe; Lee, Hyo Jik [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Korea Atomic Energy Research Institute (KAERI) has been developing a pyroproceesing technology to reduce the waste volume and recycle some elements. The pyroprocessing includes several treatment processes which are related with not only radiological and physical but also chemical and electrochemical properties. Thus, it is of importance to establish safety design requirements considering all the aspects of those properties for a reliable pyroprocessing facility. In this study, high-level requirements are presented in terms of not only radiation protection, nuclear criticality, fire protection, and seismic safety but also confinement and chemical safety for the unique characteristics of a pyroprocessing facility. Several high-level safety design requirements such as radiation protection, nuclear criticality, fire protection, seismic, confinement, and chemical processing were presented for a pyroprocessing facility. The requirements must fulfill domestic and international safety technology standards for a nuclear facility. Furthermore, additional requirements should be considered for the unique electrochemical treatments in a pyroprocessing facility.

  1. Meeting the maglev system's safety requirements

    Energy Technology Data Exchange (ETDEWEB)

    Pierick, K

    1983-12-01

    The author shows how the safety requirements of the maglev track system derive from the general legal conditions for the safety of tracked transport. It is described how their compliance beyond the so-called ''development-accompanying'' and ''acceptance-preparatory'' safety work can be assured for the Transrapid test layout (TVE) now building in Emsland and also for later application as public transport system in Germany within the meaning of the General Railway Act.

  2. Development of photovoltaic array and module safety requirements

    Science.gov (United States)

    1982-01-01

    Safety requirements for photovoltaic module and panel designs and configurations likely to be used in residential, intermediate, and large-scale applications were identified and developed. The National Electrical Code and Building Codes were reviewed with respect to present provisions which may be considered to affect the design of photovoltaic modules. Limited testing, primarily in the roof fire resistance field was conducted. Additional studies and further investigations led to the development of a proposed standard for safety for flat-plate photovoltaic modules and panels. Additional work covered the initial investigation of conceptual approaches and temporary deployment, for concept verification purposes, of a differential dc ground-fault detection circuit suitable as a part of a photovoltaic array safety system.

  3. Public requirement to demonstrate safety

    International Nuclear Information System (INIS)

    Green, P.

    1991-01-01

    To many working within Government or industry, public concern over the disposal of radioactive waste is misplaced and has arisen out of an irrational and unscientific fear of technology, or even science in general. Members of the public, it is argued, are concerned because they do not understand the size of the risk in question. From the industry's point of view, the risk arising from the disposal of radioactive waste is ''negligible when compared to other everyday risks of life. Furthermore, any public exposure that may arise, either soon after closure of a facility or in the far future would comply with internationally accepted safety standards. In this context, the continuing concern over disposal of radioactive waste is viewed as evidence of the irrational and unscientific attitude of the public. The assessment and regulation of risk from waste disposal therefore is presented as a purely scientific question. Some of these issues are examined and public concern is shown not to be irrational but to be based upon legitimate questions over current waste management policy. An important question is not just ''how safe is safe, but who decides and how?''. (Author)

  4. A computer code SPHINCS for sodium fire safety evaluation

    International Nuclear Information System (INIS)

    Yamaguchi, Akira

    2000-01-01

    A computer code SPHINCS solves coupled phenomena of thermal-hydraulics and sodium fire based on a multi-zone model. It deals with arbitrary number of rooms each of which is connected mutually by doorway and penetrations. With regard to the combustion phenomena, flame sheet model and liquid droplet combustion model are used for pool and spray fire, respectively, with the chemical equilibrium model using Gibbs free energy minimization method. The chemical reaction and mass and heat transfer are solved interactively. A specific feature of SPHINCS is detailed representation of thermal-hydraulics of a sodium pool and a steel liner, which is placed on the floor to prevent sodium-concrete contact. The author analyzed a series of pool combustion experiments, in which gas and liner temperatures are measured in detail. It has been found that good agreement is obtained and the SPHINCS has been validated with regard to the pool combustion phenomena. Further research needs are identified for the pool spreading modeling considering thermal deformation of liner and measurement of pool fluidity property of a mixture of liquid sodium and reaction products. SPHINCS code is to be used mainly in the safety evaluation of the consequence of sodium fire accident of liquid metal cooled fast reactor. (author)

  5. Fire and evacuation drills make the CERN safety plans work

    CERN Multimedia

    Antonella Del Rosso

    2013-01-01

    Regular drills are a way of making sure that we are ready and able to react in the event of a fire or other adverse event. They are also a demanding test of all the technical and organisational measures in place to allow the quick and safe evacuation of buildings. Recently, large-scale drills took place in Building 40 and at Point 5 underground.   Group photo at Point 5, after the common evacuation drill. The ability to react to unexpected, adverse events relies in particular on training. This is why CERN’s safety teams organise regular drills. One of the most recent exercises took place on 26 March in Building 40. “Building 40 is a modern building fully equipped against fire, with two emergency exits in the central atrium. We also have 29 emergency guides distributed on each floor to guide people out of their offices,” says Kate Richardson, Territorial Safety Officer of the building. “The drills are very useful for testing the building's insta...

  6. The assessment of fire safety of cast iron structures in historical buildings: Theory and practice

    NARCIS (Netherlands)

    Twilt, L.; Hunen, M. van

    2000-01-01

    The assessment of structural fire safety of cast iron structures in historical buildings is difficult because the available information on the fire behaviour is limited, whilst the fire design assumptions (if any) often are not well docu-mented. A complicating factor with regard to protective

  7. Evaluating a smartphone application to improve child passenger safety and fire safety knowledge and behaviour.

    Science.gov (United States)

    Omaki, Elise; Shields, Wendy C; McDonald, Eileen; Aitken, Mary E; Bishai, David; Case, James; Gielen, Andrea

    2017-02-01

    Although proven measures for reducing injury due to motor vehicle collision and residential fires exist, the number of families properly and consistently using child passenger restraints and smoke alarms remains low. This paper describes the design of the Safety In Seconds (SIS) 2.0 study, which aims to evaluate the impact of a smartphone app on parents' use of child restraints and smoke alarms. SIS is a multisite randomised controlled trial. Participants are parents of children aged 4-7 years who are visiting the Pediatric Emergency Department or Pediatric Trauma Service. Parents are randomised to receive tailored education about child passenger safety or about fire safety via the SIS smartphone app. A baseline and two follow-up surveys at 3 months and 6 months are conducted. Primary outcomes are: (1) having the correct child restraint for the child's age and size; (2) restraining the child in the back seat of the car; (3) buckling the child up for every ride; (4) having the restraint inspected by a child passenger safety technician; (5) having a working smoke alarm on every level of the home; (6) having hard-wired or lithium battery smoke alarms; (7) having and (8) practising a fire escape plan. Finding ways to communicate with parents about child passenger and fire safety continues to be a research priority. This study will contribute to the evidence about how to promote benefits of proper and consistent child restraint and smoke alarm use. NCT02345941; Pre-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  8. Canister Storage Building (CSB) Technical Safety Requirements

    International Nuclear Information System (INIS)

    KRAHN, D.E.

    2000-01-01

    The purpose of this section is to explain the meaning of logical connectors with specific examples. Logical connectors are used in Technical Safety Requirements (TSRs) to discriminate between, and yet connect, discrete Conditions, Required Actions, Completion Times, Surveillances, and Frequencies. The only logical connectors that appear in TSRs are AND and OR. The physical arrangement of these connectors constitutes logical conventions with specific meanings

  9. Safety study of fire protection for nuclear fuel cycle facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Based on the investigation of fire protection standards for domestic and foreign nuclear facilities, the fire protection guideline for nuclear fuel cycle facility has been completed. In 2012, trial operation is started by private company using the guideline. In addition, the acquisition of fire evaluation data for a components (electric cable) targeted for spread of fire and the evaluation model of fire source were continued for the fire hazard analysis (FHA). (author)

  10. Safety study of fire protection for nuclear fuel cycle facility

    International Nuclear Information System (INIS)

    2013-01-01

    Based on the investigation of fire protection standards for domestic and foreign nuclear facilities, the fire protection guideline for nuclear fuel cycle facility has been completed. In 2012, trial operation is started by private company using the guideline. In addition, the acquisition of fire evaluation data for a components (electric cable) targeted for spread of fire and the evaluation model of fire source were continued for the fire hazard analysis (FHA). (author)

  11. Advanced methods for a probabilistic safety analysis of fires. Development of advanced methods for performing as far as possible realistic plant specific fire risk analysis (fire PSA)

    International Nuclear Information System (INIS)

    Hofer, E.; Roewekamp, M.; Tuerschmann, M.

    2003-07-01

    In the frame of the research project RS 1112 'Development of Methods for a Recent Probabilistic Safety Analysis, Particularly Level 2' funded by the German Federal Ministry of Economics and Technology (BMWi), advanced methods, in particular for performing as far as possible realistic plant specific fire risk analyses (fire PSA), should be developed. The present Technical Report gives an overview on the methodologies developed in this context for assessing the fire hazard. In the context of developing advanced methodologies for fire PSA, a probabilistic dynamics analysis with a fire simulation code including an uncertainty and sensitivity study has been performed for an exemplary scenario of a cable fire induced by an electric cabinet inside the containment of a modern Konvoi type German nuclear power plant taking into consideration the effects of fire detection and fire extinguishing means. With the present study, it was possible for the first time to determine the probabilities of specified fire effects from a class of fire events by means of probabilistic dynamics supplemented by uncertainty and sensitivity analyses. The analysis applies a deterministic dynamics model, consisting of a dynamic fire simulation code and a model of countermeasures, considering effects of the stochastics (so-called aleatory uncertainties) as well as uncertainties in the state of knowledge (so-called epistemic uncertainties). By this means, probability assessments including uncertainties are provided to be used within the PSA. (orig.) [de

  12. Safety requirements applicable to the SMART design

    International Nuclear Information System (INIS)

    Seul, Kwang Won; Kim, Wee Kyong; Kim, Hho Jung

    1999-01-01

    The 330 MW thermal power of integral reactor, named SMART (System integrated Modular Advanced ReacTor), is under development at KAERI for seawater desalination application and electricity generation. The final product of nuclear desalination plant (NDP) is electricity and fresh water. Thus, in addition to the protection of the public around the plant facility from the possible release of radioactive materials, the fresh water should be prevented from radioactivity contamination. In this study, to ensure the safety of SMART reactor in the early stage of design development, the safety requirements applicable to the SMART design were investigated, based on the current regulatory requirements for the existing NPPs and the advanced light water reactor (LWR) designs. The interface requirements related to the desalination facility were also investigated, based on the recent IAEA research activities pertaining to the NDP. As a result, it was found that the current regulatory requirements and guidance for the existing NPPs and advanced LWR designs are applicable to the SMART design and its safety evaluation. However, the safety requirements related to the SMART-specific design and the desalination plant are needed to develop in the future to assure the safety of the SMART reactor

  13. TWRS safety SSCs: Requirements and characteristics

    International Nuclear Information System (INIS)

    Smith-Fewell, M.A.

    1997-01-01

    Safety Systems, Structures, and Components (SSCs) have been identified from hazard and accident analyses. These analyses were performed to support the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR) and Basis for Interim Operation (BID). The text identifies and evaluates the SSCs and their supporting SSCs to show that they either prevent the occurrence of the accident or mitigate the consequences of the accident to below the acceptance guidelines. The requirements for the SSCs to fulfill these tasks are described

  14. FDS Modeling of the Sensitivity of the Smoke Potential Values used in Fire Safety Strategies

    DEFF Research Database (Denmark)

    Corches, Andrei-Mircea; Ulriksen, Lene; Jomaas, Grunde

    2014-01-01

    To investigate the sensitivity of Fire Dynamics Simulator (FDS) with respect to the input parameters that are used to define the optical properties of the smoke, a parametric study was performed for relevant fire scenarios in an open plan office building. The parametric study mainly focuses on th...... to defining the design fires will reduce the sensitivity of the numerical fire simulation and further reduce the risk of overestimating the evacuation safety level (ESL) of the building....

  15. Integrated system of occupational safety and health and fire protection of the fire rescue brigades members.

    Science.gov (United States)

    Božović, Marijola; Živković, Snežana; Mihajlović, Emina

    2018-06-01

    The objective of the conducted research is the identification and determination of requirements of members of fire rescue brigades during operations in the conditions of high risk in order to minimize the possibilities for injury incidence during the intervention. The research is focused on examination, determination and identification of factors affecting the increasing number of occupational injuries of members of fire rescue brigades during interventions. Hypothetical framework of the research problem consists of general hypothesis and six special hypotheses. Results suggest that almost all respondents believe that their skills and abilities are applicable in the intervention phase, but less than a half believe that their skills are applicable in prevention phase. Two-thirds of respondents stated that in their organization they have support for further education and upgrading while a half of respondents stated that they need education concerning identification, assessment and management of risks that can lead to emergency situations.

  16. Using Modeling and Rehearsal to Teach Fire Safety to Children with Autism

    Science.gov (United States)

    Garcia, David; Dukes, Charles; Brady, Michael P.; Scott, Jack; Wilson, Cynthia L.

    2016-01-01

    We evaluated the efficacy of an instructional procedure to teach young children with autism to evacuate settings and notify an adult during a fire alarm. A multiple baseline design across children showed that an intervention that included modeling, rehearsal, and praise was effective in teaching fire safety skills. Safety skills generalized to…

  17. Firefighters United for Safety, Ethics, and Ecology (FUSEE): Torchbearers for a new fire management paradigm

    Science.gov (United States)

    Timothy Ingalsbee; Joseph Fox; Patrick Withen

    2007-01-01

    Firefighters United for Safety, Ethics, and Ecology (FUSEE) is a nonprofit organization promoting safe, ethical, ecological wildland fire management. FUSEE believes firefighter and community safety are ultimately interdependent with ethical public service, wildlands protection, and ecological restoration of fire-adapted ecosystems. Our members include current, former,...

  18. 48 CFR 245.7311-2 - Safety, security, and fire regulations.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Safety, security, and fire regulations. 245.7311-2 Section 245.7311-2 Federal Acquisition Regulations System DEFENSE ACQUISITION... Inventory 245.7311-2 Safety, security, and fire regulations. ...

  19. Risk-Based Fire Safety Experiment Definition for Manned Spacecraft

    Science.gov (United States)

    Apostolakis, G. E.; Ho, V. S.; Marcus, E.; Perry, A. T.; Thompson, S. L.

    1989-01-01

    Risk methodology is used to define experiments to be conducted in space which will help to construct and test the models required for accident sequence identification. The development of accident scenarios is based on the realization that whether damage occurs depends on the time competition of two processes: the ignition and creation of an adverse environment, and the detection and suppression activities. If the fire grows and causes damage faster than it is detected and suppressed, then an accident occurred. The proposed integrated experiments will provide information on individual models that apply to each of the above processes, as well as previously unidentified interactions and processes, if any. Initially, models that are used in terrestrial fire risk assessments are considered. These include heat and smoke release models, detection and suppression models, as well as damage models. In cases where the absence of gravity substantially invalidates a model, alternate models will be developed. Models that depend on buoyancy effects, such as the multizone compartment fire models, are included in these cases. The experiments will be performed in a variety of geometries simulating habitable areas, racks, and other spaces. These simulations will necessitate theoretical studies of scaling effects. Sensitivity studies will also be carried out including the effects of varying oxygen concentrations, pressures, fuel orientation and geometry, and air flow rates. The experimental apparatus described herein includes three major modules: the combustion, the fluids, and the command and power modules.

  20. An assessment of the impact of home safety assessments on fires and fire-related injuries: a case study of Cheshire Fire and Rescue Service.

    Science.gov (United States)

    Arch, B N; Thurston, M N

    2013-06-01

    Deaths and injuries related to fires are largely preventable events. In the UK, a plethora of community-based fire safety initiatives have been introduced over the last 25 years, often led by fire and rescue services, to address this issue. This paper focuses on one such initiative--home safety assessments (HSAs). Cheshire Fire and Rescue Service (in England) implemented a uniquely large-scale HSA intervention. This paper assesses its effectiveness. The impact of HSAs was assessed in relation to three outcomes: accidental dwelling fires (ADFs), ADFs contained and injuries arising from ADFs. A two-period comparison in fire-related rates of incidences in Cheshire between 2002 and 2011 was implemented, using Poisson regression and adjusting for the national temporal trend using a control group comprising the 37 other English non-metropolitan fire-services. Significant reductions were observed in rates of ADFs [incidence rate ratios (IRR): 0.79, 95% confidence interval (CI): 0.74-0.83, P fires contained to room of origin. There is strong evidence to suggest that the intervention was successful in reducing domestic fires and related injuries.

  1. Safety analysis of the existing 804 and 845 firing facilities

    International Nuclear Information System (INIS)

    Odell, B.N.

    1986-01-01

    A safety analysis was performed to determine if normal operations and/or potential accidents at the 804 and 845 Firing Facilities at Site 300 could present undue hazards to the general public, peronnel at Site 300, or have an adverse effect on the environment. The normal operation and credible accident that might have an effect on these facilities or have off-site consequence were considered. It was determined by this analysis that all but one of the hazards were either low or of the type or magnitude routinely encountered and/or accepted by the public. The exception was explosives. Since this hazard has the potential for causing significant on-site and minimum off-site consequences, Bunkers 804 and 845 have been classified as moderate hazard facilties per DOE Order 5481.1A. This safety analysis concluded that the operation at these facilities will present no undue risk to the health and safety of LLNL employees or the public

  2. Geological disposal of radioactive waste. Safety requirements

    International Nuclear Information System (INIS)

    2006-01-01

    This Safety Requirements publication is concerned with providing protection to people and the environment from the hazards associated with waste management activities related to disposal, i.e. hazards that could arise during the operating period and following closure. It sets out the protection objectives and criteria for geological disposal and establishes the requirements that must be met to ensure the safety of this disposal option, consistent with the established principles of safety for radioactive waste management. It is intended for use by those involved in radioactive waste management and in making decisions in relation to the development, operation and closure of geological disposal facilities, especially those concerned with the related regulatory aspects. This publication contains 1. Introduction; 2. Protection of human health and the environment; 3. The safety requirements for geological disposal; 4. Requirements for the development, operation and closure of geological disposal facilities; Appendix: Assurance of compliance with the safety objective and criteria; Annex I: Geological disposal and the principles of radioactive waste management; Annex II: Principles of radioactive waste management

  3. Safety of Nuclear Fuel Cycle Facilities. Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    This publication covers the broad scope of requirements for fuel cycle facilities that, in light of the experience and present state of technology, must be satisfied to ensure safety for the lifetime of the facility. Topics of specific relevance include aspects of nuclear fuel generation, storage, reprocessing and disposal

  4. Assessment of the impact of dipped guideways on urban rail transit systems: Ventilation and safety requirements

    Science.gov (United States)

    1982-01-01

    The ventilation and fire safety requirements for subway tunnels with dipped profiles between stations as compared to subway tunnels with level profiles were evaluated. This evaluation is based upon computer simulations of a train fire emergency condition. Each of the tunnel configurations evaluated was developed from characteristics that are representative of modern transit systems. The results of the study indicate that: (1) The level tunnel system required about 10% more station cooling than dipped tunnel systems in order to meet design requirements; and (2) The emergency ventilation requirements are greater with dipped tunnel systems than with level tunnel systems.

  5. Building Fire Safety Audit at Faculty X, University of Indonesia, Year 2006

    Directory of Open Access Journals (Sweden)

    Fatma Lestari

    2010-10-01

    Full Text Available Fire may cause loss of life, material and valuable assets. The objective of this study is to conduct audit for fire safety and emergency response in the building at Faculty X, University of Indonesia, Depok. The audit results on the building fire safety facilities including emergency response and preparedness are then compared to the Building Code Australia (BCA and Indonesian regulation on the building fire safety (Kep.MenPU.No 10 and 11/KPTS/2000. The building selected are Building A, B, C, D, F and G. Building classification for A, B, D, F and G are classified as Class 5, while Building C is classified as Class 9b. Variable which are evaluated including emergency exit, building structure, fire alarm and detector, communication and fire warning system, evacuation procedure, portable fire extinguishers, hydrant, sprinkler, and emergency response preparedness. Results suggested that emergency exit is locked, and this is not comply to the regulation. Building structure has been complied to the regulation since it was made of concrete. Fire detector and alarm only provided in Building G, while other building is not available. There is no evacuation procedure available. Portable fire extinguisher has been available in all the building. Hydrant an sprinkler only available in building G. There is no emergency response preparedness in this faculty. In conclusion, the fire safety facilities in this faculty need to be improved.

  6. 30 CFR 75.1103-2 - Automatic fire sensors; approved components; installation requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensors; approved components... Protection § 75.1103-2 Automatic fire sensors; approved components; installation requirements. (a) The components of each automatic fire sensor required to be installed in accordance with the provisions of § 75...

  7. Fire Support Requirements Methodology Study, Phase 2 Proceedings of the Fire Support Methodology Workshop

    Science.gov (United States)

    1975-12-18

    It was not immediatei- clear that the -approach- would- succeed in overcoming the deficiencies of present fire support methodologies which demand- an...support require analysis up to Level 6. They also felt that deficiencies in f technique were most serious at Levels 3, 4 and 5. It was accepted that...defined as: Tk2 = _Tkl ilk2 kl (2) Tkt = Tk,t-l - ’lMktMk,t-l + 𔃼kt ,t-2 I t > (3. where Mt refers to the-number of type k targets killed in time

  8. Review and investigations of oscillatory flow behaviour of a horizontal ceiling opening for nuclear containment and fire safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, P.K.; Singh, R.K.; Ghosh, A.K. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Reactor Safety Div.

    2011-05-15

    In the thermal hydraulics codes developed for fire safety analysis and for containment thermal hydraulic analysis, junctions in the multi-compartment geometries is often modeled as uni-directional junctions. However, ceiling junctions are known to depict unstable/oscillatory bi-directional flow behavior. Detailed investigations have been carried out to understand the unstable flow behaviour of a junction by analyzing an earlier reported experiment and its subsequent two dimensional numerical RANS based study of fire in an enclosure. The authors attempt more realistic and desired three dimensional and inherently transient large eddy simulations using a computer code Fire Dynamics Simulator (FDS). The paper presents the details of the analysis, the results obtained and further studies required to be conducted so that the findings can be applied to the fire/containment thermal hydraulics analysis codes successfully. (orig.)

  9. Action taken by the french safety authorities for fire protection and fire fighting in basic nuclear plants

    International Nuclear Information System (INIS)

    Savornin, J.; Gibault, M.; Berger, R.; Kaluzny, Y.; Wallard, H.E.; Winter, D.

    1989-03-01

    The safety goal for nuclear installations is to prevent the dispersal of radioactive substances, both in the work area and outside the buildings into the environment. It is therefore at the design stage, then during construction and subsequent operation that it is necessary to take preventive measures against the outbreak of fire, and to take precautions to ensure that the consequences will always be limited. The paper describes the arrangements made by the French safety authorities to provide protection against fire in both nuclear plants and nuclear fuel cycle installations at all these stages

  10. Nuclear fuels with high burnup: safety requirements

    International Nuclear Information System (INIS)

    Phuc Tran Dai

    2016-01-01

    Vietnam authorities foresees to build 3 reactors from Russian design (VVER AES 2006) by 2030. In order to prepare the preliminary report on safety analysis the Vietnamese Agency for Radioprotection and Safety has launched an investigation on the behaviour of nuclear fuels at high burnups (up to 60 GWj/tU) that will be those of the new plants. This study deals mainly with the behaviour of the fuel assemblies in case of loss of coolant (LOCA). It appears that for an average burnup of 50 GWj/tU and for the advanced design of the fuel assembly (cladding and materials) safety requirements are fulfilled. For an average burnup of 60 GWj/tU, a list of issues remains to be assessed, among which the impact of clad bursting or the hydrogen embrittlement of the advanced zirconium alloys. (A.C.)

  11. Safety requirements for the Pu carriers

    International Nuclear Information System (INIS)

    Mishima, H.

    1993-01-01

    Ministry of Transport of Japan has now set about studying requirements for Pu carriers to ensure safety. It was first studied what the basic concept of safe carriage of Pu should be, and the basic ideas have been worked out. Next the requirements for the Pu carriers were studied based on the above. There are at present no international requirements of construction and equipment for the nuclear-material carriers, but MOT of Japan has so far required special construction and equipment for the nuclear-material carriers which carry a large amount of radioactive material, such as spent fuel or low level radioactive waste, corresponding to the level of the respective potential hazard. The requirements of construction and equipment of the Pu carriers have been established considering the difference in heat generation between Pu and spent fuel, physical protection, and so forth, in addition to the above basic concept. (J.P.N.)

  12. Quantitative assessment of safety barrier performance in the prevention of domino scenarios triggered by fire

    International Nuclear Information System (INIS)

    Landucci, Gabriele; Argenti, Francesca; Tugnoli, Alessandro; Cozzani, Valerio

    2015-01-01

    The evolution of domino scenarios triggered by fire critically depends on the presence and the performance of safety barriers that may have the potential to prevent escalation, delaying or avoiding the heat-up of secondary targets. The aim of the present study is the quantitative assessment of safety barrier performance in preventing the escalation of fired domino scenarios. A LOPA (layer of protection analysis) based methodology, aimed at the definition and quantification of safety barrier performance in the prevention of escalation was developed. Data on the more common types of safety barriers were obtained in order to characterize the effectiveness and probability of failure on demand of relevant safety barriers. The methodology was exemplified with a case study. The results obtained define a procedure for the estimation of safety barrier performance in the prevention of fire escalation in domino scenarios. - Highlights: • We developed a methodology for the quantitative assessment of safety barriers. • We focused on safety barriers aimed at preventing domino effect triggered by fire. • We obtained data on effectiveness and availability of the safety barriers. • The methodology was exemplified with a case study of industrial interest. • The results showed the role of safety barriers in preventing fired domino escalation

  13. Nuclear safety review requirements for launch approval

    International Nuclear Information System (INIS)

    Sholtis, J.A. Jr.; Winchester, R.O.

    1992-01-01

    Use of nuclear power systems in space requires approval which is preceded by extensive safety analysis and review. This careful study allows an informed risk-benefit decision at the highest level of our government. This paper describes the process as it has historically been applied to U.S. isotopic power systems. The Ulysses mission, launched in October 1990, is used to illustrate the process. Expected variations to deal with reactor-power systems are explained

  14. Fire Safety Aspects of Polymeric Materials. Volume 2. Test Methods, Specifications and Standards

    Science.gov (United States)

    1979-01-01

    Chairman: Dr. Seymour L. Blum Vice President Northern Energy Corporation 70 Memorial Drive Cambridge, MA 02142 Dr. George S. Ansell Dean, School...limitations, is perhaps the most firmly grounded and thoroughly docu- mented of any in the fire safety field (Benjamin and Adams , 1976). Having established...of the largest fire experiments ever undertaken. Operation Euroka, a 50 acre wildland fuel fire in Australia ( Adams et al., 1973). Scaling and

  15. Evaluation of Fire Hazard and Safety Management of Heritage Buildings in Georgetown, Penang

    OpenAIRE

    Othuman Mydin M.A.; Sani N. Md; Abas N.F.; Khaw Y.Y.

    2014-01-01

    Fire is a subject that is always neglected and ignored as far as heritage buildings are concerned. Unlike newly-built buildings, which are required under UBBL to undergo certain fire protection system tests, people are less likely to carry out such tests and detailed assessments for heritage buildings. Thus, this research is significant as it is aimed at accomplishing several objectives including studying the current fire emergency plan, besides identifying and assessing the possible fire haz...

  16. Probabilistic safety analysis for fire events for the NPP Isar 2

    International Nuclear Information System (INIS)

    Schmaltz, H.; Hristodulidis, A.

    2007-01-01

    The 'Probabilistic Safety Analysis for Fire Events' (Fire-PSA KKI2) for the NPP Isar 2 was performed in addition to the PSA for full power operation and considers all possible events which can be initiated due to a fire. The aim of the plant specific Fire-PSA was to perform a quantitative assessment of fire events during full power operation, which is state of the art. Based on simplistic assumptions referring to the fire induced failures, the influence of system- and component-failures on the frequency of the core damage states was analysed. The Fire-PSA considers events, which will result due to fire-induced failures of equipment on the one hand in a SCRAM and on the other hand in events, which will not have direct operational effects but because of the fire-induced failure of safety related installations the plant will be shut down as a precautionary measure. These events are considered because they may have a not negligible influence on the frequency of core damage states in case of failures during the plant shut down because of the reduced redundancy of safety related systems. (orig.)

  17. Risk based limits for Operational Safety Requirements

    International Nuclear Information System (INIS)

    Cappucci, A.J. Jr.

    1993-01-01

    OSR limits are designed to protect the assumptions made in the facility safety analysis in order to preserve the safety envelope during facility operation. Normally, limits are set based on ''worst case conditions'' without regard to the likelihood (frequency) of a credible event occurring. In special cases where the accident analyses are based on ''time at risk'' arguments, it may be desirable to control the time at which the facility is at risk. A methodology has been developed to use OSR limits to control the source terms and the times these source terms would be available, thus controlling the acceptable risk to a nuclear process facility. The methodology defines a new term ''gram-days''. This term represents the area under a source term (inventory) vs time curve which represents the risk to the facility. Using the concept of gram-days (normalized to one year) allows the use of an accounting scheme to control the risk under the inventory vs time curve. The methodology results in at least three OSR limits: (1) control of the maximum inventory or source term, (2) control of the maximum gram-days for the period based on a source term weighted average, and (3) control of the maximum gram-days at the individual source term levels. Basing OSR limits on risk based safety analysis is feasible, and a basis for development of risk based limits is defensible. However, monitoring inventories and the frequencies required to maintain facility operation within the safety envelope may be complex and time consuming

  18. Fire probability safety analysis in France for 900 MWe nuclear power plants

    International Nuclear Information System (INIS)

    Bertrand, R.; Bonneval, F.; Mattei, J.M.

    2000-01-01

    This paper describes the methodology implemented by the Institute for Nuclear Safety and Protection (IPSN) to carry out the Fire Probabilistic Safety Assessment (Fire PSA) for French 900 MWe pressurised water reactors. The initial results obtained are presented. Additional research and development activities are indicated which IPSN carried out or decided to perform in order to reduce the amount of uncertainty associated with the data or to confirm hypotheses that can impact significantly the study results. (orig.) [de

  19. Presentation of a Software Method for Use of Risk Assessment in Building Fire Safety Measure Optimization

    Directory of Open Access Journals (Sweden)

    A. R. Koohpaei

    2012-05-01

    Full Text Available Background and aims: The property loss and physical injuries due to fire events in buildings demonstrate the necessity of implementation of efficient and performance based fire safety measures. Effective and high efficiency protection is possible when design and selection of protection measures are based on risk assessment. This study aims at presenting a software method to make possible selection and design of building fire safety measures based upon quantitative risk assessment and building characteristics. Methods: based on “Fire Risk Assessment Method for Engineer (FRAME” a program in MATLB software was written. The first section of this program, according to the FRAME method and based on the specification of a building, calculates the potential risk and acceptable risk level. In the second section, according to potential risk, acceptable risk level and the fire risk level that user want, program calculate concession of protective factor for that building.Results: The prepared software make it possible to assign the fire safety measure based on quantitative risk level and all building specifications. All calculations were performed with 0.001 of precision and the accuracy of this software was assessed with handmade calculations. During the use of the software if an error occurs in calculations, it can be distinguished in the output. Conclusion: Application of quantitative risk assessment is a suitable tool for increasing of efficiency in designing and execution of fire protection measure in building. With using this software the selected fire safety measure would be more efficient and suitable since the selection of fire safety measures performed on risk assessment and particular specification of a building. Moreover fire risk in the building can be managed easily and carefully.

  20. Safety evaluation of ventilation networks in case of fire

    International Nuclear Information System (INIS)

    Perdriau, P.; Pourprix, M.; Raboin, S.; Rouyer, J.L.; Tarrago, X.

    1983-01-01

    Several teams from CEA have cooperated to produce a code for modeling ventilation networks under accidental conditions in nuclear facilities. The objective is to study responses to a network to perturbations which are either mechanical or thermal. Such a tool was necessary for safety and protection studies because ventilation network performances are difficult to evaluate when the network gets complex. There was no requirement for a very sophisticated code, considering the margin of error which generally characterizes the ventilation measurements, but this code should be well validated to become a reliable tool for pointing out safety problems at the design stage and during the operating life of the ventilation system. The code has been called PIAF. It solves a set of equations which simulate a ventilation network in a permanent regime

  1. Establishing Fire Safety Skills Using Behavioral Skills Training

    Science.gov (United States)

    Houvouras, Andrew J., IV; Harvey, Mark T.

    2014-01-01

    The use of behavioral skills training (BST) to educate 3 adolescent boys on the risks of lighters and fire setting was evaluated using in situ assessment in a school setting. Two participants had a history of fire setting. After training, all participants adhered to established rules: (a) avoid a deactivated lighter, (b) leave the training area,…

  2. Assessment of the overall fire safety arrangements at nuclear power plants

    International Nuclear Information System (INIS)

    1996-01-01

    The present publication has been developed with the help of experts from regulatory, operating and engineering organizations, all with practical experience in the field of fire safety of nuclear power plants. The publication comprises a detailed checklist of the specific elements to be addressed when assessing the adequacy and effectiveness of the overall fire safety arrangements of operating nuclear power plants. The publication will be useful not only to regulators and safety assessors but also to operators and designers. The book addresses a specialized topic outlined in Safety Guide No. 50-SG-D2 (Rev.1), Fire Protection in Nuclear Power Plants, and it is recommended that it be used in conjunction with this Safety Series publication

  3. Adsorber fires

    International Nuclear Information System (INIS)

    Holmes, W.

    1987-01-01

    The following conclusions are offered with respect to activated charcoal filter systems in nuclear power plants: (1) The use of activated charcoal in nuclear facilities presents a potential for deep-seated fires. (2) The defense-in-depth approach to nuclear fire safety requires that if an ignition should occur, fires must be detected quickly and subsequently suppressed. (3) Deep-seated fires in charcoal beds are difficult to extinguish. (4) Automatic water sprays can be used to extinguish fires rapidly and reliably when properly introduced into the burning medium. The second part of the conclusions offered are more like challenges: (1) The problem associated with inadvertent actuations of fire protection systems is not a major one, and it can be reduced further by proper design review, installation, testing, and maintenance. Eliminating automatic fire extinguishing systems for the protection of charcoal adsorbers is not justified. (2) Removal of automatic fire protection systems due to fear of inadvertent fire protection system operation is a case of treating the effect rather than the cause. On the other hand, properly maintaining automatic fire protection systems will preserve the risk of fire loss at acceptable levels while at the same time reducing the risk of damage presented by inadvertent operation of fire protection systems

  4. An Assessment of the Fire Safety Hazard Associated with External Fire Spread in Tall Buildings with Combustible Façade Material

    DEFF Research Database (Denmark)

    Lavard Brogaard, Nicholas; Torero, Jose L.; Jomaas, Grunde

    2014-01-01

    in order to obtain a conclusive assessment of the fire safety hazards associated with combustible facades. Prescriptive fire safety codes are typically not allowing any type of combustible façade in buildings that are taller than 2-3 stories. However, a performance based approach does not contain height...

  5. Technical safety requirements control level verification

    International Nuclear Information System (INIS)

    STEWART, J.L.

    1999-01-01

    A Technical Safety Requirement (TSR) control level verification process was developed for the Tank Waste Remediation System (TWRS) TSRs at the Hanford Site in Richland, WA, at the direction of the US. Department of Energy, Richland Operations Office (RL). The objective of the effort was to develop a process to ensure that the TWRS TSR controls are designated and managed at the appropriate levels as Safety Limits (SLs), Limiting Control Settings (LCSs), Limiting Conditions for Operation (LCOs), Administrative Controls (ACs), or Design Features. The TSR control level verification process was developed and implemented by a team of contractor personnel with the participation of Fluor Daniel Hanford, Inc. (FDH), the Project Hanford Management Contract (PHMC) integrating contractor, and RL representatives. The team was composed of individuals with the following experience base: nuclear safety analysis; licensing; nuclear industry and DOE-complex TSR preparation/review experience; tank farm operations; FDH policy and compliance; and RL-TWRS oversight. Each TSR control level designation was completed utilizing TSR control logic diagrams and TSR criteria checklists based on DOE Orders, Standards, Contractor TSR policy, and other guidance. The control logic diagrams and criteria checklists were reviewed and modified by team members during team meetings. The TSR control level verification process was used to systematically evaluate 12 LCOs, 22 AC programs, and approximately 100 program key elements identified in the TWRS TSR document. The verification of each TSR control required a team consensus. Based on the results of the process, refinements were identified and the TWRS TSRs were modified as appropriate. A final report documenting key assumptions and the control level designation for each TSR control was prepared and is maintained on file for future reference. The results of the process were used as a reference in the RL review of the final TWRS TSRs and control suite. RL

  6. Technical safety requirements control level verification; TOPICAL

    International Nuclear Information System (INIS)

    STEWART, J.L.

    1999-01-01

    A Technical Safety Requirement (TSR) control level verification process was developed for the Tank Waste Remediation System (TWRS) TSRs at the Hanford Site in Richland, WA, at the direction of the US. Department of Energy, Richland Operations Office (RL). The objective of the effort was to develop a process to ensure that the TWRS TSR controls are designated and managed at the appropriate levels as Safety Limits (SLs), Limiting Control Settings (LCSs), Limiting Conditions for Operation (LCOs), Administrative Controls (ACs), or Design Features. The TSR control level verification process was developed and implemented by a team of contractor personnel with the participation of Fluor Daniel Hanford, Inc. (FDH), the Project Hanford Management Contract (PHMC) integrating contractor, and RL representatives. The team was composed of individuals with the following experience base: nuclear safety analysis; licensing; nuclear industry and DOE-complex TSR preparation/review experience; tank farm operations; FDH policy and compliance; and RL-TWRS oversight. Each TSR control level designation was completed utilizing TSR control logic diagrams and TSR criteria checklists based on DOE Orders, Standards, Contractor TSR policy, and other guidance. The control logic diagrams and criteria checklists were reviewed and modified by team members during team meetings. The TSR control level verification process was used to systematically evaluate 12 LCOs, 22 AC programs, and approximately 100 program key elements identified in the TWRS TSR document. The verification of each TSR control required a team consensus. Based on the results of the process, refinements were identified and the TWRS TSRs were modified as appropriate. A final report documenting key assumptions and the control level designation for each TSR control was prepared and is maintained on file for future reference. The results of the process were used as a reference in the RL review of the final TWRS TSRs and control suite. RL

  7. Evaluation of Generic Issue 57: Effects of fire protection system actuation on safety-related equipment

    International Nuclear Information System (INIS)

    Lambright, J.; Bohn, M.; Lynch, J.; Ross, S.; Brosseau, D.

    1992-12-01

    Nuclear power plants have experienced actuations of fire protection systems (FPSs) under conditions for which these systems were not intended to actuate and also have experienced advertent actuations with the presence of a fire. These actuations have often damaged safety-related equipment. A review of the impact of past occurrences of both types of such events and their impact on plant safety systems, an analysis of the risk impacts of such events on nuclear power plant safety, and a cost-benefit analysis of potential corrective measures have been performed. Thirteen different scenarios leading to actuation of fire protection systems due to a variety of causes were identified. These scenarios ranged from inadvertent actuation caused by human error to hardware failure, and include seismic root causes and seismic/fire interactions. A quantification of these thirteen root causes, where applicable, was performed on generically applicable scenarios. This document, Volume 4, contains appendices E and F of this report

  8. Bridging the divide between fire safety research and fighting fire safely: How do we convey research innovation to contribute more effectively to wildland firefighter safety?

    Science.gov (United States)

    Theodore Ted Adams; Bret W. Butler; Sara Brown; Vita Wright; Anne Black

    2017-01-01

    Creating a safe workplace for wildland firefighters has long been at the centre of discussion for researchers and practitioners. The goal of wildland fire safety research has been to protect operational firefighters, yet its contributions often fall short of potential because much is getting lost in the translation of peer-reviewed results to potential and intended...

  9. 78 FR 46560 - Pipeline Safety: Class Location Requirements

    Science.gov (United States)

    2013-08-01

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part... class location requirements for gas transmission pipelines. Section 5 of the Pipeline Safety, Regulatory... and, with respect to gas transmission pipeline facilities, whether applying IMP requirements to...

  10. Performance Assessment and analysis of national building codes with fire safety in all wards of a hospital

    Directory of Open Access Journals (Sweden)

    M. Mahdinia

    2009-04-01

    Full Text Available Background and aimsAIDS as a re-emergent disease and Viral hepatitis (B and C as one of thBackground and objective: Fire safety is an important problem in hospitals. Movement less, lack of awareness and special situation of residents are the reasons of this subject. In more countries such as Iran, fire protection regulations have compiled within the framework of national building codes. Current building codes don't create sufficient safety for patient in the hospitals in different situations and more of the advanced countries in the world effort to establish building code, base  on performance. This study to be accomplished with this goal that determination of fire risk level in the wards of a hospital and survey the efficiency of the national building codes. Methodsfire risk assesses is done, using "engineering fire risk assessment method" with the checklist for Data gathering. In this manner, risk calculate in all compartments and in the next  stage for survey the effect of building codes, with this supposition that all compartment is  conforming to building code requirement, risk level calculate in two situation.Resultsthe results of present study reveals that, risk level in all wards is more than one and even though risk less than one is acceptable, consequently minimum of safely situations didn't  produce in most wards. The results show the national building code in the different conditions  don't have appropriate efficient for creation of suitable safety. Conclusionin order to access to a fire safety design with sufficient efficiency, suitable selection is use of risk assessment based on, design methods.

  11. 48 CFR 2052.235-71 - Safety, health, and fire protection.

    Science.gov (United States)

    2010-10-01

    ... extension of time or for compensation or damages by reason of, or in connection with, this type of work... performance of the work under this contract to protect the health and safety of its employees and of members... hazards to life and property. The contractor shall comply with all applicable health, safety, and fire...

  12. Evaluation of safety margin of packaging for radioactive materials transport during a severe fire

    International Nuclear Information System (INIS)

    Gilles, P.; Ringot, C.; Warniez, P.; Grall, L.; Perrot, J.

    1986-06-01

    A high safety is obtained by International regulations on radioactive materials transport. It is obtained by packaging design adapted to the potential risk. An important accident to consider is fire for two reasons: the probability of fire occuring for time and temperature higher than conditions applied to type B packaging (800 deg C, 1/2 hr) is not negligible, particularly for air or maritime transport. Safety margins are studied by computation and experimental tests. This report presents results obtained for different types of packagings. Results show a large safety margin [fr

  13. Management of fire and industrial safety - challenges during commissioning of a NPP

    International Nuclear Information System (INIS)

    Maiti, Subhaschandra; Mohan, Nalini; Ghadge, S.G.; Bajaj, S.S.

    2006-01-01

    Construction and commissioning period of NPP are reduced world over drastically by stringent schedule for financial and economic reasons. For meeting the schedule, commissioning of components and systems are started immediate after installation, while construction activities are continued in parallel at the same place. Parallel activities' and 'Time Constraint' have brought new challenges to 'Management of Fire and Industrial Safely' during commissioning. An innovative approach was used during such phase of commissioning of TAPP-3 and 4. This paper outlines challenges encountered during this phase and special approach and measures used to meet those challenges. This paper also outlines problems encountered during implementation of these measures and subsequent change in approach to ensure smooth and safe execution of activities. Primarily, challenges were conflicting requirements by various agencies to carryout commissioning in parallel with construction activities concurrently. Main challenges were related to fall hazard, chemical hazard, fire hazard, electrical safety, work in confined space, housekeeping problem. Moreover it was within exclusion zone of another operating plant, which added one more dimension to those challenges. Conventional Safely management approach was little short to resolve these challenges. Such challenges were envisaged; analyzed and innovative measures were arrived at. Along with conventional safely analysis like Job Safely or Hazard Analysis (JSA or JHA), Accident Analysis, Accident Trend Analysis, Fire Hazard Analysis (FHA), innovative method like 'Area-Job- Hazard Charting' and 'Ratio Analysis' were used to understand activity dependent time varying hazard scenarios. Based on this analysis, decision were taken to change various existing elements of safely management like safety organizations; standard operating procedures (SOP); emergency operating procedures (EOP); resource allocation, planning and scheduling; safely training; safely

  14. Fire Safety Tests for Spherical Resorcinol Formaldehyde Resin: Data Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Sang; Peterson, Reid A.; Schweiger, Michael J.

    2012-07-30

    A draft safety evaluation of the scenario for spherical resorcinol-formaldehyde (SRF) resin fire inside the ion exchange column was performed by the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Fire Safety organization. The result of this draft evaluation suggested a potential change of the fire safety classification for the Cesium Ion Exchange Process System (CXP) emergency elution vessels, equipment, and piping, which may be overly bounding based on the fire performance data from the manufacturer of the ion exchange resin selected for use at the WTP. To resolve this question, the fire properties of the SRF resin were measured by Southwest Research Institute (SwRI), following the American Society for Testing and Materials (ASTM) standard procedures, through a subcontract managed by Pacific Northwest National Laboratory (PNNL). For some tests, the ASTM standard procedures were not entirely appropriate or practical for the SRF resin material, so the procedures were modified and deviations from the ASTM standard procedures were noted. This report summarizes the results of fire safety tests performed and reported by SwRI. The efforts by PNNL were limited to summarizing the test results provided by SwRI into one consolidated data report. All as-received SwRI reports are attached to this report in the Appendix. Where applicable, the precision and bias of each test method, as given by each ASTM standard procedure, are included and compared with the SwRI test results of the SRF resin.

  15. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Chinese Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  16. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (French Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  17. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Arabic Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  18. FIRE HAZARDS ANALYSIS - BUSTED BUTTE

    International Nuclear Information System (INIS)

    Longwell, R.; Keifer, J.; Goodin, S.

    2001-01-01

    The purpose of this fire hazards analysis (FHA) is to assess the risk from fire within individual fire areas at the Busted Butte Test Facility and to ascertain whether the DOE fire safety objectives are met. The objective, identified in DOE Order 420.1, Section 4.2, is to establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees. (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. Critical process controls and safety class systems being damaged as a result of a fire and related events

  19. Safety

    International Nuclear Information System (INIS)

    1998-01-01

    A brief account of activities carried out by the Nuclear power plants Jaslovske Bohunice in 1997 is presented. These activities are reported under the headings: (1) Nuclear safety; (2) Industrial and health safety; (3) Radiation safety; and Fire protection

  20. Work Health & Safety legislation; the fire engineer’s neglected duty?

    OpenAIRE

    P.A. (Tony) Enright

    2014-01-01

    Fire engineers are in general, aware of their duties under Building legislation. However, they are often unfamiliar of separate duties under Work Health and Safety legislation. This paper describes an Australian case-study, but one that is presented generally so as to have applicability in those other jurisdictions where similar Work Health and Safety obligations exist. As society becomes safer, Work Health and Safety has evolved from being solely about the employer–employee relationshi...

  1. Safety during sea transport of radioactive materials. Probabilistic safety analysis of package fro sea surface fire accident

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi; Obara, Isonori; Akutsu, Yukio; Aritomi, Masanori

    2000-01-01

    The ships carrying irradiated nuclear fuel, plutonium and high level radioactive wastes(INF materials) are designed to keep integrity of packaging based on the various safety and fireproof measures, even if the ship encounters a maritime fire accident. However, granted that the frequency is very low, realistic severe accidents should be evaluated. In this paper, probabilistic safety assessment method is applied to evaluate safety margin for severe sea fire accidents using event tree analysis. Based on our separate studies, the severest scenario was estimated as follows; an INF transport ship collides with oil tanker and induces a sea surface fire. Probability data such as ship's collision, oil leakage, ignition, escape from fire region, operations of cask cooling system and water flooding systems were also introduced from above mentioned studies. The results indicate that the probability of which packages cannot keep their integrity during the sea surface fire accident is very low and sea transport of INF materials is carried out very safely. (author)

  2. Forum for fire protection and safety in power plants[Norway

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The conference contains 16 presentations on topics in the fields of fire protection and safety in plants in Western Norway, reorganization and reconstruction of power systems and plants in Norway, various aspects of risk and vulnerability analysis, technological aspects of plant management and construction and problems and risks with particularly transformers. Some views on challenges of the fire departments and the new Norwegian regulations for electrical power supply systems are included. One presentation deals with challenges for Icelandic power production plants.

  3. 33 CFR 154.735 - Safety requirements.

    Science.gov (United States)

    2010-07-01

    ... parts 170 through 179 are kept only in the quantities needed for the operation or maintenance of the... laboratory listed in 46 CFR 162.028-5 for fighting small, localized fires are in place throughout the... protective equipment is ready to operate. (g) Signs indicating that smoking is prohibited are posted in areas...

  4. Sodium fire studies in France. Safety experiments applied to fast reactors

    International Nuclear Information System (INIS)

    Fruchard, Y.; Colome, J.; Malet, J.C.; Berlin, M.; Duverger de Cuy, G.; Justin, J.; Duco, J.

    1976-01-01

    In fast reactors, the risk of sodium fires must be analyzed in detail and the consequences of an accidental fire must be known precisely. Beyond the search for prevention and detection means, techniques must be developed to set up a limit to damages created by an accidental fire: extinguishing, aerosol confinement, protection of the reactor structures. The program developed by the Nuclear Safety Department of the Commissariat a l'Energie Atomique to solve these various problems is described. The main results and their applications to the Super-Phenix reactor are presented [fr

  5. Gypsum plasterboards enhanced with phase change materials: A fire safety assessment using experimental and computational techniques

    Directory of Open Access Journals (Sweden)

    Kolaitis Dionysios I.

    2013-11-01

    Full Text Available Phase Change Materials (PCM can be used for thermal energy storage, aiming to enhance building energy efficiency. Recently, gypsum plasterboards with incorporated paraffin-based PCM blends have become commercially available. In the high temperature environment developed during a fire, the paraffins, which exhibit relatively low boiling points, may evaporate and, escaping through the gypsum plasterboard's porous structure, emerge to the fire region, where they may ignite, thus adversely affecting the fire resistance characteristics of the building. Aiming to assess the fire safety behaviour of such building materials, an extensive experimental and computational analysis is performed. The fire behaviour and the main thermo-physical physical properties of PCM-enhanced gypsum plasterboards are investigated, using a variety of standard tests and devices (Scanning Electron Microscopy, Thermo Gravimetric Analysis, Cone Calorimeter. The obtained results are used to develop a dedicated numerical model, which is implemented in a CFD code. CFD simulations are validated using measurements obtained in a cone calorimeter. In addition, the CFD code is used to simulate an ISO 9705 room exposed to fire conditions, demonstrating that PCM addition may indeed adversely affect the fire safety of a gypsum plasterboard clad building.

  6. Reported fire safety and first-aid amenities in Airbnb venues in 16 American cities.

    Science.gov (United States)

    Kennedy, Hudson R; Jones, Vanya C; Gielen, Andrea

    2018-05-07

    Airbnb helps hosts rent all or part of their home to guests as an alternative to traditional hospitality settings. Airbnb venues are not uniformly regulated across the USA. This study quantified the reported prevalence of fire safety and first-aid amenities in Airbnb venues in the USA. The sample includes 120 691 venues in 16 US cities. Proportions of host-reported smoke and carbon monoxide (CO) detectors, fire extinguishers and first-aid kits were calculated. The proportion of venues that reportedly contained amenities are as follows: smoke detectors 80% (n=96 087), CO detectors 57.5% (n=69 346), fire extinguishers 42% (n=50 884) and first-aid kits 36% (n=43 497). Among this sample of Airbnb venues, safety deficiencies were noted. While most venues had smoke alarms, approximately 1/2 had CO alarms and less than 1/2 reported having a fire extinguishers or first-aid kits. Local and state governments or Airbnb must implement regulations compliant with current National Fire Protection Association fire safety standards. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Disposal of Radioactive Waste. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2011-01-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt... standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the

  8. Fire safety improvement of para-aramid fiber in thermoplastic polyurethane elastomer

    International Nuclear Information System (INIS)

    Chen, Xilei; Wang, Wenduo; Li, Shaoxiang; Jiao, Chuanmei

    2017-01-01

    Highlights: • Fire safety of para-aramid fiber on TPU has been investigated. • Para-aramid fiber has excellent flame retardant abilities and smoke suppression properties on TPU. • A new technique to improve the fire safety polymer is provided in this article. - Abstract: This article mainly studied fire safety effects of para-aramid fiber (AF) in thermoplastic polyurethane (TPU). The TPU/AF composites were prepared by molten blending method, and then the fire safety effects of all TPU composites were tested using cone calorimeter test (CCT), microscale combustion colorimeter test (MCC), smoke density test (SDT), and thermogravimetric/fourier transform infrared spectroscopy (TG-IR). The CCT test showed that AF could improve the fire safety of TPU. Remarkably, the peak value of heat release rate (pHRR) and the peak value of smoke production rate (pSPR) for the sample with 1.0 wt% content of AF were decreased by 52.0% and 40.5% compared with pure TPU, respectively. The MCC test showed that the HRR value of AF-2 decreased by 27.6% compared with pure TPU. TG test showed that AF promoted the char formation in the degradation process of TPU; as a result the residual carbon was increased. The TG-IR test revealed that AF had increased the thermal stability of TPU at the beginning and reduced the release of CO_2 with the decomposition going on. Through the analysis of the results of this experiment, it will make a great influence on the study of the para-aramid fiber in the aspect of fire safety of polymer.

  9. Fire safety improvement of para-aramid fiber in thermoplastic polyurethane elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xilei; Wang, Wenduo; Li, Shaoxiang; Jiao, Chuanmei, E-mail: jiaochm@qust.edu.cn

    2017-02-15

    Highlights: • Fire safety of para-aramid fiber on TPU has been investigated. • Para-aramid fiber has excellent flame retardant abilities and smoke suppression properties on TPU. • A new technique to improve the fire safety polymer is provided in this article. - Abstract: This article mainly studied fire safety effects of para-aramid fiber (AF) in thermoplastic polyurethane (TPU). The TPU/AF composites were prepared by molten blending method, and then the fire safety effects of all TPU composites were tested using cone calorimeter test (CCT), microscale combustion colorimeter test (MCC), smoke density test (SDT), and thermogravimetric/fourier transform infrared spectroscopy (TG-IR). The CCT test showed that AF could improve the fire safety of TPU. Remarkably, the peak value of heat release rate (pHRR) and the peak value of smoke production rate (pSPR) for the sample with 1.0 wt% content of AF were decreased by 52.0% and 40.5% compared with pure TPU, respectively. The MCC test showed that the HRR value of AF-2 decreased by 27.6% compared with pure TPU. TG test showed that AF promoted the char formation in the degradation process of TPU; as a result the residual carbon was increased. The TG-IR test revealed that AF had increased the thermal stability of TPU at the beginning and reduced the release of CO{sub 2} with the decomposition going on. Through the analysis of the results of this experiment, it will make a great influence on the study of the para-aramid fiber in the aspect of fire safety of polymer.

  10. FIRE

    International Nuclear Information System (INIS)

    Brtis, J.S.; Hausheer, T.G.

    1990-01-01

    FIRE, a microcomputer based program to assist engineers in reviewing and documenting the fire protection impact of design changes has been developed. Acting as an electronic consultant, FIRE is designed to work with an experienced nuclear system engineer, who may not have any detailed fire protection expertise. FIRE helps the engineer to decide if a modification might adversely affect the fire protection design of the station. Since its first development, FIRE has been customized to reflect the fire protection philosophy of the Commonwealth Edison Company. That program is in early production use. This paper discusses the FIRE program in light of its being a useful application of expert system technologies in the power industry

  11. Key Problems of Fire Safety Enforcement in Traffic and Communication Centers (TCC)

    Science.gov (United States)

    Medyanik, M.; Zosimova, O.

    2017-10-01

    A Traffic and Communication Center (TCC) means facilities designed and used to distribute and redirect flows of humans and motor vehicles while they get serviced and operate. This paper sets forth the basic problems of fire safety enforcement on the TCC, and the causes that slow down human and vehicle traffic speeds. It proposes ways to solve the problems of fire safety enforcement on the TCC, in the Russian Federation and elsewhere. Engineering solutions are proposed for TCC design, with key outlooks of TCC future development as an alternative way to organize access in transportation.

  12. Failure modes of safety-related components at fires on nuclear power plants

    International Nuclear Information System (INIS)

    Aaslund, A.

    2000-03-01

    Probabilistic assessment methods can be used to identify specific plant vulnerabilities. Application of such methods can also facilitate selection among system design alternatives available for safety enhancements. The quality of assessment results is however strongly dependent on realistic and accurate input data for modelling of system component behaviour and failure modes during conditions to be assessed. Use of conservative input data may not lead to results providing guidance on safety upgrades. Adequate input data for probabilistic assessments seems to be lacking for at least failure modes of some electrical components when exposed to a fire. This report presents an attempt to improve the situation with respect to such input data. In order to take advantage of information in existing documentation of fire incident occurrences some of the lessons learned from the fire at Browns Ferry Nuclear Power Plant on March 22, 1975 are discussed in this report. Also a summary of results from different fire tests of electrical cables presented in a fire risk analysis report is a part of the references. The failure modes used to describe fire-induced damage are 'open circuit' and 'hot short' which seems to be commonly accepted terms within the branch. Definitions of the terms are included in the report. Effects of the failure modes when occurring in some of the channels of the reactor protection system are discussed with respect to the existing design of the reactor protection system at Ringhals 2 nuclear power unit. Experiences from the Browns Ferry fire and results from fire tests of electrical cables indicate that the dominating failure mode for electrical cables is 'open circuit'. An 'open circuit' failure leads to circuit disjunction and loss of continuity. The circuit can no longer transmit its signal or power. When affecting channels of the reactor protection system an 'open circuit' failure can cause extensive inadvertent actions of safety related equipment

  13. 33 CFR 149.416 - What are the requirements for a dry chemical fire suppression system?

    Science.gov (United States)

    2010-07-01

    ... the requirements for a dry chemical fire suppression system? Each natural gas deepwater port must be... dry chemical fire suppression system? 149.416 Section 149.416 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: DESIGN, CONSTRUCTION...

  14. 30 CFR 75.1107-4 - Automatic fire sensors and manual actuators; installation; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensors and manual actuators... § 75.1107-4 Automatic fire sensors and manual actuators; installation; minimum requirements. (a)(1... sensors or equivalent shall be installed for each 50 square feet of top surface area, or fraction thereof...

  15. Tank Farms Technical Safety Requirements. Volume 1 and 2

    International Nuclear Information System (INIS)

    CASH, R.J.

    2000-01-01

    The Technical Safety Requirements (TSRs) define the acceptable conditions, safe boundaries, basis thereof, and controls to ensure safe operation during authorized activities, for facilities within the scope of the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR)

  16. Tank Farms Technical Safety Requirements [VOL 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    CASH, R.J.

    2000-12-28

    The Technical Safety Requirements (TSRs) define the acceptable conditions, safe boundaries, basis thereof, and controls to ensure safe operation during authorized activities, for facilities within the scope of the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR).

  17. Workshop on Program for Elimination of Requirements Marginal to Safety: Proceedings

    International Nuclear Information System (INIS)

    Dey, M.

    1993-09-01

    These are the proceedings of the Public Workshop on the US Nuclear Regulatory Commission's Program for Elimination of Requirements Marginal to Safety. The workshop was held at the Holiday Inn, Bethesda, on April 27 and 28, 1993. The purpose of the workshop was to provide an opportunity for public and industry input to the program. The workshop addressed the institutionalization of the program to review regulations with the purpose of eliminating those that are marginal. The objective is to avoid the dilution of safety efforts. One session was devoted to discussion of the framework for a performance-based regulatory approach. In addition, panelists and attendees discussed scope, schedules and status of specific regulatory items: containment leakage testing requirements, fire protection requirements, requirements for environmental qualification of electrical equipment, requests for information under 10CFR50.54(f), requirements for combustible gas control systems, and quality assurance requirements

  18. Workshop on Program for Elimination of Requirements Marginal to Safety: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Dey, M. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Safety Issue Resolution; Arsenault, F.; Patterson, M.; Gaal, M. [SCIENTECH, Inc., Rockville, MD (United States)

    1993-09-01

    These are the proceedings of the Public Workshop on the US Nuclear Regulatory Commission`s Program for Elimination of Requirements Marginal to Safety. The workshop was held at the Holiday Inn, Bethesda, on April 27 and 28, 1993. The purpose of the workshop was to provide an opportunity for public and industry input to the program. The workshop addressed the institutionalization of the program to review regulations with the purpose of eliminating those that are marginal. The objective is to avoid the dilution of safety efforts. One session was devoted to discussion of the framework for a performance-based regulatory approach. In addition, panelists and attendees discussed scope, schedules and status of specific regulatory items: containment leakage testing requirements, fire protection requirements, requirements for environmental qualification of electrical equipment, requests for information under 10CFR50.54(f), requirements for combustible gas control systems, and quality assurance requirements.

  19. 75 FR 44720 - Safety Zone; Live-Fire Gun Exercise, M/V Del Monte, James River, VA

    Science.gov (United States)

    2010-07-29

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2010-0585] RIN 1625-AA00 Safety Zone; Live-Fire Gun Exercise, M/V Del Monte, James River, VA AGENCY: Coast Guard, DHS... follows: Sec. 165.T05-0585 Safety Zone; Live-Fire Gun Exercise, M/V Del Monte, James River, VA (a...

  20. Regulatory Safety Requirements for Operating Nuclear Installations

    International Nuclear Information System (INIS)

    Gubela, W.

    2017-01-01

    The National Nuclear Regulator (NNR) is established in terms of the National Nuclear Regulator Act (Act No 47 of 1999) and its mandate and authority are conferred through sections 5 and 7 of this Act, setting out the NNR's objectives and functions, which include exercising regulatory control over siting, design, construction etc of nuclear installations through the granting of nuclear authorisations. The NNR's responsibilities embrace all those actions aimed at providing the public with confidence and assurance that the risks arising from the production of nuclear energy remain within acceptable safety limits -> Therefore: Set fundamental safety standards, conducting pro-active safety assessments, determining licence conditions and obtaining assurance of compliance. The promotional aspects of nuclear activities in South Africa are legislated by the Nuclear Energy Act (Act No 46 of 1999). The NNR approach to regulations of nuclear safety and security take into consideration, amongst others, the potential hazards associated with the facility or activity, safety related programmes, the importance of the authorisation holder's safety related processes as well as the need to exercise regulatory control over the technical aspects such as of the design and operation of a nuclear facility in ensuring nuclear safety and security. South Africa does not have national nuclear industry codes and standards. The NNR is therefore non-prescriptive as it comes to the use of industry codes and standards. Regulatory framework (current) provide for the protection of persons, property, and environment against nuclear damage, through Licensing Process: Safety standards; Safety assessment; Authorisation and conditions of authorisation; Public participation process; Compliance assurance; Enforcement

  1. The main requirements of the International Basic Safety Standards

    International Nuclear Information System (INIS)

    Webb, G.A.M.

    1998-01-01

    The main requirements of the new international basic safety standards are discussed, including such topics as health effects of ionizing radiations, the revision of basic safety standards, the requirements for radiation protection practices, the requirements for intervention,and the field of regulatory infrastructures. (A.K.)

  2. Contributions of microgravity test results to the design of spacecraft fire-safety systems

    Science.gov (United States)

    Friedman, Robert; Urban, David L.

    1993-01-01

    Experiments conducted in spacecraft and drop towers show that thin-sheet materials have reduced flammability ranges and flame-spread rates under quiescent low-gravity environments (microgravity) compared to normal gravity. Furthermore, low-gravity flames may be suppressed more easily by atmospheric dilution or decreasing atmospheric total pressure than their normal-gravity counterparts. The addition of a ventilating air flow to the low-gravity flame zone, however, can greatly enhance the flammability range and flame spread. These results, along with observations of flame and smoke characteristics useful for microgravity fire-detection 'signatures', promise to be of considerable value to spacecraft fire-safety designs. The paper summarizes the fire detection and suppression techniques proposed for the Space Station Freedom and discusses both the application of low-gravity combustion knowledge to improve fire protection and the critical needs for further research.

  3. Contributions of Microgravity Test Results to the Design of Spacecraft Fire Safety Systems

    Science.gov (United States)

    Friedman, Robert; Urban, David L.

    1993-01-01

    Experiments conducted in spacecraft and drop towers show that thin-sheet materials have reduced flammability ranges and flame-spread rates under quiescent low-gravity environments (microgravity) as compared to normal gravity. Furthermore, low-gravity flames may be suppressed more easily by atmospheric dilution or decreasing atmospheric total pressure than their normal-gravity counterparts. The addition of a ventilating air flow to the low-gravity flame zone, however, can greatly enhance the flammability range and flame spread. These results, along with observations of flame and smoke characteristics useful for microgravity fire-detection 'signatures', promise to be of considerable value to spacecraft fire-safety designs. The paper summarizes the fire detection and suppression techniques proposed for the Space Station Freedom and discusses both the application of low-gravity combustion knowledge to improve fire protection and the critical needs for further research.

  4. Site safety requirements for high level waste disposal

    International Nuclear Information System (INIS)

    Chen Weiming; Wang Ju

    2006-01-01

    This paper outlines the content, status and trend of site safety requirements of International Atomic Energy Agency, America, France, Sweden, Finland and Japan. Site safety requirements are usually represented as advantageous vis-a-vis disadvantagous conditions, and potential advantage vis-a-vis disadvantage conditions, respectively in aspects of geohydrology, geochemistry, lithology, climate and human intrusion etc. Study framework and steps of site safety requirements for China are discussed under the view of systems science. (authors)

  5. Waste Encapsulation and Storage Facility interim operational safety requirements

    CERN Document Server

    Covey, L I

    2000-01-01

    The Interim Operational Safety Requirements (IOSRs) for the Waste Encapsulation and Storage Facility (WESF) define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation during receipt and inspection of cesium and strontium capsules from private irradiators; decontamination of the capsules and equipment; surveillance of the stored capsules; and maintenance activities. Controls required for public safety, significant defense-in-depth, significant worker safety, and for maintaining radiological consequences below risk evaluation guidelines (EGs) are included.

  6. An evaluation of The Great Escape: can an interactive computer game improve young children's fire safety knowledge and behaviors?

    Science.gov (United States)

    Morrongiello, Barbara A; Schwebel, David C; Bell, Melissa; Stewart, Julia; Davis, Aaron L

    2012-07-01

    Fire is a leading cause of unintentional injury and, although young children are at particularly increased risk, there are very few evidence-based resources available to teach them fire safety knowledge and behaviors. Using a pre-post randomized design, the current study evaluated the effectiveness of a computer game (The Great Escape) for teaching fire safety information to young children (3.5-6 years). Using behavioral enactment procedures, children's knowledge and behaviors related to fire safety were compared to a control group of children before and after receiving the intervention. The results indicated significant improvements in knowledge and fire safety behaviors in the intervention group but not the control. Using computer games can be an effective way to promote young children's understanding of safety and how to react in different hazardous situations.

  7. Fire Protection Program Manual

    Energy Technology Data Exchange (ETDEWEB)

    Sharry, J A

    2012-05-18

    This manual documents the Lawrence Livermore National Laboratory (LLNL) Fire Protection Program. Department of Energy (DOE) Orders 420.1B, Facility Safety, requires LLNL to have a comprehensive and effective fire protection program that protects LLNL personnel and property, the public and the environment. The manual provides LLNL and its facilities with general information and guidance for meeting DOE 420.1B requirements. The recommended readers for this manual are: fire protection officers, fire protection engineers, fire fighters, facility managers, directorage assurance managers, facility coordinators, and ES and H team members.

  8. Firefighter safety for PV systems: Overview of future requirements and protection systems

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Blaabjerg, Frede

    2013-01-01

    for operators during maintenance or fire-fighting. One of the solutions is individual module shutdown by short-circuiting or disconnecting each PV module from the PV string. However, currently no standards have been adopted either for implementing or testing these methods, or doing an evaluation of the module...... shutdown procedures. This paper gives an overview on the most recent fire - and firefighter safety requirements for PV systems, with focus on system and module shutdown systems. Several solutions are presented, analyzed and compared by considering a number of essential characteristics, including......An important and highly discussed safety issue for photovoltaic systems is that, as long as they are illuminated, a high voltage is present at the PV string terminals and cables between the string and inverters, independent of the state of the inverter's dc disconnection switch, which poses a risk...

  9. Gas turbines: gas cleaning requirements for biomass-fired systems

    OpenAIRE

    Oakey, John; Simms, Nigel; Kilgallon, Paul

    2004-01-01

    Increased interest in the development of renewable energy technologies has been hencouraged by the introduction of legislative measures in Europe to reduce CO2 emissions from power generation in response to the potential threat of global warming. Of these technologies, biomass-firing represents a high priority because of the modest risk involved and the availability of waste biomass in many countries. Options based on farmed biomass are also under development. This paper reviews the challenge...

  10. Supplement to safety analysis report. 306-W building operations safety requirement

    International Nuclear Information System (INIS)

    Richey, C.R.

    1979-08-01

    The operations safety requirements (OSRs) presented in this report define the conditions, safe boundaries, and management control needed for safely conducting operations with radioactive materials in the Pacific Northwest Laboratory (PNL) 306-W building. The safety requirements are organized in five sections. Safety limits are safety-related process variables that are observable and measurable. Limiting conditions cover: equipment and technical conditions and characteristics of the facility and operations necessary for continued safe operation. Surveillance requirements prescribe the requirements for checking systems and components that are essential to safety. Equipment design controls require that changes to process equipment and systems be independently checked and approved to assure that the changes will have no adverse effect on safety. Administrative controls describe and discuss the organization and administrative systems and procedures to be used for safe operation of the facility. Details of the implementation of the operations safety requirements are prescribed by internal PNL documents such as criticality safety specifications and radiation work procedures

  11. Advances in safety countermeasures at the Tomari NPP of Hokkaido Electric Power on the basis of Fukushima Daiichi NPP accident. Fire protection and other advances

    International Nuclear Information System (INIS)

    Shibata, Taku; Dasai, Katsumi

    2014-01-01

    Fire protections for the nuclear power plants have been based on the fire laws and the conventional guide. After Fukushima Daiichi NPP accident, many safety countermeasures - also about Fire Protection - have been discussed in the Japanese authorities. This paper shows our present activities in the Tomari NPP about the fire protections from the view points of Fire Prevention, Fire Detection/Suppression Systems and Fire Protection, and other advances. (author)

  12. Cooperation of the site and public fire and safety services in case of an incident

    International Nuclear Information System (INIS)

    Bauch, M.

    1997-01-01

    This report describes the cooperation between the site and the public fire and safety services in case of an incident. As an example, the measures and facilities of the Hoechst site of the Hoechst AG and the organisational and technical background are presented. (orig.) [de

  13. Fire fighting. Measures to guarantee the safety of the radioactive installations

    International Nuclear Information System (INIS)

    Orta Aguilera, R.

    1993-01-01

    The work relates the incidence of the aspects related to the fire prevention and fighting as well as the activities of rescue and saving in the radioactive facilities, with the objective of guaranteeing a strict safety regime of all installations along the country so as to reduce to the minimum the risk for the personnel, the population and the environment

  14. Safety considerations and countermeasures against fire and explosion at an HTGR-hydrogen production system. Proposal of safety design concept

    International Nuclear Information System (INIS)

    Nishihara, T.; Hada, K.; Shibata, T.; Shiozawa, S.

    1996-01-01

    Establishment of safety design concept and countermeasures against fire and explosion accidents is among key safety-related issues in an HTGR-hydrogen production system. We propose the different safety design concepts depending upon the origin of fire and explosion which may happen in the HTGR-hydrogen production plant. Against fire and explosion originated outside the reactor building (R/B), namely in the area of hydrogen production plant, the safety design concept is primarily to take a safe distance for preventing the damage on safety-related items or a proof wall if necessary. Because the hydrogen production plant is designed in the same safety level as a conventional chemical plant. The safe distance is proposed to limit an incident overpressure to 10 kPa so as not to suffer any damage on the items and to limit a wall-averaged temperature of concrete structures of the R/B to 175degC according to the current regulation. On the other hand, against a potential possibility of explosion originated inside the R/B, the safety design concept is to minimize the possibility of explosion low enough to assume no occurrence inside the R/B. That is, the measure is to exclude a simultaneous failure of a secondary helium piping and an endothermic chemical reactor. Furthermore, in severe accident condition in which the explosion may be postulated a priori, an incidental overpressure of explosion inside the reactor containment vessel (C/V) should be limited so as not to fail the C/V through restricting the amount of combustible gas ingress into the C/V by means of a combination of C/V isolation valve installed in the helium piping and emergency shut off valve in the process feed gas line. (author)

  15. 29 CFR 1926.150 - Fire protection.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Fire protection. 1926.150 Section 1926.150 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Fire Protection and Prevention § 1926.150 Fire protection. (a) General requirements. (1) The employer shall be responsible for the development of a fire...

  16. Discussion of important safety requirements for new nuclear power plants

    International Nuclear Information System (INIS)

    Zhang Lin; Jia Xiang; Yan Tianwen; Li Wenhong; Li Chun

    2014-01-01

    This paper presents the analysis of several important safety requirements and improvement direction. Technical view of security goals on site safety evaluation, internal and external events fortification, serious accident prevention and mitigation, as well as the core, containment system and instrument control system design and engineering optimization, and etc are indicated. It will be useful for new plant design, construction and safety improvement. (authors)

  17. Philosophy and safety requirements for land-based nuclear installations

    International Nuclear Information System (INIS)

    Kellermann, Otto

    1978-01-01

    The main ideas of safety philosophy for land-based nuclear installations are presented together with their background of protection goals. Today's requirements for design and quality assurance are deductively shown. Finally a proposition is made for a new balancing of safety philosophy according to the high safety level that nuclear installations have reached

  18. Investigation on regulatory requirements for radiation safety management

    International Nuclear Information System (INIS)

    Han, Eun Ok; Choi, Yoon Seok; Cho, Dae Hyung

    2013-01-01

    NRC recognizes that efficient management of radiation safety plan is an important factor to achieve radiation safety service. In case of Korea, the contents to perform the actual radiation safety management are legally contained in radiation safety management reports based on the Nuclear Safety Act. It is to prioritize the importance of safety regulations in each sector in accordance with the current situation of radiation and radioactive isotopes-used industry and to provide a basis for deriving safety requirements and safety regulations system maintenance by the priority of radiation safety management regulations. It would be helpful to achieve regulations to conform to reality based on international standards if consistent safety requirements is developed for domestic users, national standards and international standards on the basis of the results of questions answered by radiation safety managers, who lead on-site radiation safety management, about the priority of important factors in radioactive sources use, sales, production, moving user companies, to check whether derived configuration requirements for radiation safety management are suitable for domestic status

  19. The French fire protection concept. Vulnerability analysis

    International Nuclear Information System (INIS)

    Kaercher, M.

    1998-01-01

    The French fire protection concept is based on a principle of three levels of defence in depth: fire prevention, fire containing and fire controlling. Fire prevention is based on arrangements which prevent the fire from starting or which make difficult for the fire to start. Fire containing is based on design measures so that the fire will have no impact on the safety of the installation. For fire controlling, equipment nad personnel are on duty in order to detect, to fight and to gain control over the fire as early as possible. The French fire protection concept gives priority to fire containing based on passive structural measures. All buildings containing safety equipment are divided into fire compartments (or fire areas) and fire cells (or fire zones). Basically, a compartment houses safety equipment belonging to one division (or train) so that the other division is always available to reach the plant safe shut down or to mitigate an accident. Because there is a large number of fire compartments and fire cells, deviations from the general principle can be observed. To this reason the RCC-I (Design and Construction Rules applicable for fire protection) requires to implement an assessment of the principle of division. This assessment is called vulnerability analysis. The vulnerability analysis is usually performed at the end of the project, before erection. It is also possible to perform a vulnerability analysis in an operating nuclear power plant in the scope of a fire safety upgrading programme. In the vulnerability analysis, the functional failure of all the equipment (except for those protected by a qualified fire barrier, designed or able to withstand the fire consequences) within the fire compartment or cell, where the fire breaks out, is postulated. The potential consequences for the plant safety are analysed

  20. Subsurface Fire Hazards Technical Report

    International Nuclear Information System (INIS)

    Logan, R.C.

    1999-01-01

    The results from this report are preliminary and cannot be used as input into documents supporting procurement, fabrication, or construction. This technical report identifies fire hazards and proposes their mitigation for the subsurface repository fire protection system. The proposed mitigation establishes the minimum level of fire protection to meet NRC regulations, DOE fire protection orders, that ensure fire containment, adequate life safety provisions, and minimize property loss. Equipment requiring automatic fire suppression systems is identified. The subsurface fire hazards that are identified can be adequately mitigated

  1. IAEA safety requirements for safety assessment of fuel cycle facilities and activities

    International Nuclear Information System (INIS)

    Jones, G.

    2013-01-01

    The IAEA's Statute authorises the Agency to establish standards of safety for protection of health and minimisation of danger to life and property. In that respect, the IAEA has established a Safety Fundamentals publication which contains ten safety principles for ensuring the protection of workers, the public and the environment from the harmful effects of ionising radiation. A number of these principles require safety assessments to be carried out as a means of evaluating compliance with safety requirements for all nuclear facilities and activities and to determine the measures that need to be taken to ensure safety. The safety assessments are required to be carried out and documented by the organisation responsible for operating the facility or conducting the activity, are to be independently verified and are to be submitted to the regulatory body as part of the licensing or authorisation process. In addition to the principles of the Safety Fundamentals, the IAEA establishes requirements that must be met to ensure the protection of people and the environment and which are governed by the principles in the Safety Fundamentals. The IAEA's Safety Requirements publication 'Safety Assessment for Facilities and Activities', establishes the safety requirements that need to be fulfilled in conducting and maintaining safety assessments for the lifetime of facilities and activities, with specific attention to defence in depth and the requirement for a graded approach to the application of these safety requirements across the wide range of fuel cycle facilities and activities. Requirements for independent verification of the safety assessment that needs to be carried out by the operating organisation, including the requirement for the safety assessment to be periodically reviewed and updated are also covered. For many fuel cycle facilities and activities, environmental impact assessments and non-radiological risk assessments will be required. The

  2. Thin-layer boilover in diesel-oil fires: Determining the increase of thermal hazards and safety distances

    International Nuclear Information System (INIS)

    Ferrero, Fabio; Munoz, Miguel; Arnaldos, Josep

    2007-01-01

    A study of the effects of thin-layer boilover on large hydrocarbon fires was carried out. In the experiments, diesel-oil was burned in pools with diameters ranging from 1.5 to 6 m. Previous models used to predict emissive power during the stationary state were analysed and successively modified in order to accurately predict thermal hazard during the water ebullition phase. It was discovered that the increase in emissive power during thin-layer boilover is greater when the pool diameter is smaller. Furthermore, the required increases in safety distances in the case of accidents involving this dangerous phenomenon are provided

  3. High-Speed Maglev Trains; German Safety Requirements

    Science.gov (United States)

    1991-12-31

    This document is a translation of technology-specific safety requirements developed : for the German Transrapid Maglev technology. These requirements were developed by a : working group composed of representatives of German Federal Railways (DB), Tes...

  4. Requirements Engineering for Software Integrity and Safety

    Science.gov (United States)

    Leveson, Nancy G.

    2002-01-01

    Requirements flaws are the most common cause of errors and software-related accidents in operational software. Most aerospace firms list requirements as one of their most important outstanding software development problems and all of the recent, NASA spacecraft losses related to software (including the highly publicized Mars Program failures) can be traced to requirements flaws. In light of these facts, it is surprising that relatively little research is devoted to requirements in contrast with other software engineering topics. The research proposed built on our previous work. including both criteria for determining whether a requirements specification is acceptably complete and a new approach to structuring system specifications called Intent Specifications. This grant was to fund basic research on how these ideas could be extended to leverage innovative approaches to the problems of (1) reducing the impact of changing requirements, (2) finding requirements specification flaws early through formal and informal analysis, and (3) avoiding common flaws entirely through appropriate requirements specification language design.

  5. A safety evaluation of fire and explosion in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Nishio, Gunji; Takada, Junichi; Tukamoto, Michio; Watanabe, Kouji; Miyata, Teijirou

    1996-01-01

    The demonstration test was performed in JAERI to prove the adequacy of a safety evaluation for an air-ventilation system in the case of solvent fire and red-oil explosion in a nuclear fuel reprocessing plant. The test objectives were to obtain data of the safety evaluation on a thermofluid behavior and a confinement effect of radioactive materials during fire and explosion while the system is operating in a cell. The computer code was developed to evaluate the safety of associated network in the ventilation system and to estimate the confinement of radioactive materials in the system. The code was verified by comparison of code calculations with results of the demonstration test. (author)

  6. The Canadian Nuclear Safety Commission's financial guarantee requirements

    International Nuclear Information System (INIS)

    Ferch, R.

    2006-01-01

    The Nuclear Safety and Control Act gives the Canadian Nuclear Safety Commission (CNSC) the legal authority to require licensees to provide financial guarantees in order to meet the purposes of the Act. CNSC policy and guidance with regard to financial guarantees is outlined, and the current status of financial guarantee requirements as applied to various CNSC licensees is described. (author)

  7. Predisposal Management of Radioactive Waste. General Safety Requirements Pt. 5

    International Nuclear Information System (INIS)

    2010-01-01

    There are a large number of facilities and activities around the world in which radioactive material is produced, handled and stored. This Safety Requirements publication presents international consensus requirements for the management of radioactive waste prior to its disposal. It provides the safety imperatives on the basis of which facilities can be designed, operated and regulated. The publication is supported by a number of Safety Guides that provide up to date recommendations and guidance on best practices for management of particular types of radioactive waste, for storage of radioactive waste, for assuring safety by developing safety cases and supporting safety assessments, and for applying appropriate management systems. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Responsibilities associated with the predisposal management of radioactive waste; 4. Steps in the predisposal management of radioactive waste; 5. Development and operation of predisposal radioactive waste management facilities and activities; Annex: Predisposal management of radioactive waste and the fundamental safety principles.

  8. Predisposal Management of Radioactive Waste. General Safety Requirements Pt. 5

    International Nuclear Information System (INIS)

    2009-01-01

    There are a large number of facilities and activities around the world in which radioactive material is produced, handled and stored. This Safety Requirements publication presents international consensus requirements for the management of radioactive waste prior to its disposal. It provides the safety imperatives on the basis of which facilities can be designed, operated and regulated. The publication is supported by a number of Safety Guides that provide up to date recommendations and guidance on best practices for management of particular types of radioactive waste, for storage of radioactive waste, for assuring safety by developing safety cases and supporting safety assessments, and for applying appropriate management systems. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Responsibilities associated with the predisposal management of radioactive waste; 4. Steps in the predisposal management of radioactive waste; 5. Development and operation of predisposal radioactive waste management facilities and activities; Annex: Predisposal management of radioactive waste and the fundamental safety principles.

  9. Analyzing Software Requirements Errors in Safety-Critical, Embedded Systems

    Science.gov (United States)

    Lutz, Robyn R.

    1993-01-01

    This paper analyzes the root causes of safety-related software errors in safety-critical, embedded systems. The results show that software errors identified as potentially hazardous to the system tend to be produced by different error mechanisms than non- safety-related software errors. Safety-related software errors are shown to arise most commonly from (1) discrepancies between the documented requirements specifications and the requirements needed for correct functioning of the system and (2) misunderstandings of the software's interface with the rest of the system. The paper uses these results to identify methods by which requirements errors can be prevented. The goal is to reduce safety-related software errors and to enhance the safety of complex, embedded systems.

  10. Operating safety requirements for the intermediate level liquid waste system

    International Nuclear Information System (INIS)

    1980-07-01

    The operation of the Intermediate Level Liquid Waste (ILW) System, which is described in the Final Safety Analysis, consists of two types of operations, namely: (1) the operation of a tank farm which involves the storage and transportation through pipelines of various radioactive liquids; and (2) concentration of the radioactive liquids by evaporation including rejection of the decontaminated condensate to the Waste Treatment Plant and retention of the concentrate. The following safety requirements in regard to these operations are presented: safety limits and limiting control settings; limiting conditions for operation; and surveillance requirements. Staffing requirements, reporting requirements, and steps to be taken in the event of an abnormal occurrence are also described

  11. Safety design guides for seismic requirements for CANDU 9

    International Nuclear Information System (INIS)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; A. C. D. Wright

    1996-03-01

    This safety design guide for seismic requirements for CANDU 9 describes the seismic design philosophy, defines the applicable earthquakes and identifies the structures and systems requiring seismic qualification to ensure that the essential safety function can be adequately satisfied following earthquake. The detailed requirements for structures, systems and components which must be seismically qualified are specified in the Appendix. The change status of the regulatory requirements, code and standards should be traced and this safety design guide shall be updated accordingly. 1 fig., (Author) .new

  12. Crewed Space Vehicle Battery Safety Requirements

    Science.gov (United States)

    Jeevarajan, Judith A.; Darcy, Eric C.

    2014-01-01

    This requirements document is applicable to all batteries on crewed spacecraft, including vehicle, payload, and crew equipment batteries. It defines the specific provisions required to design a battery that is safe for ground personnel and crew members to handle and/or operate during all applicable phases of crewed missions, safe for use in the enclosed environment of a crewed space vehicle, and safe for use in launch vehicles, as well as in unpressurized spaces adjacent to the habitable portion of a space vehicle. The required provisions encompass hazard controls, design evaluation, and verification. The extent of the hazard controls and verification required depends on the applicability and credibility of the hazard to the specific battery design and applicable missions under review. Evaluation of the design and verification program results shall be completed prior to certification for flight and ground operations. This requirements document is geared toward the designers of battery systems to be used in crewed vehicles, crew equipment, crew suits, or batteries to be used in crewed vehicle systems and payloads (or experiments). This requirements document also applies to ground handling and testing of flight batteries. Specific design and verification requirements for a battery are dependent upon the battery chemistry, capacity, complexity, charging, environment, and application. The variety of battery chemistries available, combined with the variety of battery-powered applications, results in each battery application having specific, unique requirements pertinent to the specific battery application. However, there are basic requirements for all battery designs and applications, which are listed in section 4. Section 5 includes a description of hazards and controls and also includes requirements.

  13. Operational and safety requirement of radiation facility

    International Nuclear Information System (INIS)

    Zulkafli Ghazali

    2007-01-01

    Gamma and electron irradiation facilities are the most common industrial sources of ionizing radiation. They have been used for medical, industrial and research purposes since the 1950s. Currently there are more than 160 gamma irradiation facilities and over 600 electron beam facilities in operation worldwide. These facilities are either used for the sterilization of medical and pharmaceutical products, the preservation of foodstuffs, polymer synthesis and modification, or the eradication of insect infestation. Irradiation with electron beam, gamma ray or ultra violet light can also destroy complex organic contaminants in both liquid and gaseous waste. EB systems are replacing traditional chemical sterilization methods in the medical supply industry. The ultra-violet curing facility, however, has found more industrial application in printing and furniture industries. Gamma and electron beam facilities produce very high dose rates during irradiation, and thus there is a potential of accidental exposure in the irradiation chamber which can be lethal within minutes. Although, the safety record of this industry has been relatively very good, there have been fatalities recorded in Italy (1975), Norway (1982), El Salvador (1989) and Israel (1990). Precautions against uncontrolled entry into irradiation chamber must therefore be taken. This is especially so in the case of gamma irradiation facilities those contain large amounts of radioactivity. If the mechanism for retracting the source is damaged, the source may remain exposed. This paper will, to certain extent, describe safety procedure and system being installed at ALURTRON, Nuclear Malaysia to eliminate accidental exposure of electron beam irradiation. (author)

  14. Safety test of an improved multihundred watt FSA: launch abort, solid propellant fire

    International Nuclear Information System (INIS)

    Seabourn, C.M.

    1978-07-01

    This safety test consisted of exposing a simulant-fueled Improved Multihundred Watt Fuel Sphere Assembly, containing a Pt-3008 sphere holding the fuel simulant, to a single proximity fire of UTP-3001 solid rocket propellant for 10.5 min. The graphite outside shell sustained only minor abrasion damage. It was covered on one side with a heavy deposit of alumina from the fire mixed with silica from the test bed. The Pt-3008 shell had small amounts of carbon, alumina, and silica deposited on its surface but sustained no other damage. The PT-3008 sphere was not breached, and therefore the fuel sphere assembly would not release fuel in a solid-propellant fire of a launch abort. 12 figures

  15. Radiation safety requirements for radionuclide laboratories

    International Nuclear Information System (INIS)

    2000-01-01

    The guide lays down the requirements for laboratories and storage rooms in which radioactive substances are used or stored as unsealed sources. In addition, some general instructions concerning work in radionuclide laboratories are set out

  16. Radiation safety requirements for radionuclide laboratories

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The guide lays down the requirements for laboratories and storage rooms in which radioactive substances are used or stored as unsealed sources. In addition, some general instructions concerning work in radionuclide laboratories are set out.

  17. Performance and results of a fire probability safety analysis for the Grafenrheinfeld nuclear power plant

    International Nuclear Information System (INIS)

    Hristodulidis, A.; Meyer, A.W.

    2000-01-01

    The Full-Power PSA for the Grafenrheinfeld 1300 MWe pressurized water reactor covering the recommended initiating events of the German PSA Procedure Guide published in October 1990 was followed up by a Fire PSA meeting the requirements of the December 1996 edition of the PSA Procedure Guide. In the meantime the Fire PSA has been reviewed by the Authorized Expert, TUeV Bayern. The experts agreed with the methods used and the results obtained; they also suggested some improvements to be made in case of a revision, but these do not affect the overall results of the study. Comparing the core damage frequency caused by the initiating events of the Full-Power PSA (approx. 2.5 E-6/a) with the results of the Fire PSA (approx. 3.5 E-7/a), fire contributes approx. 12% to the overall core damage frequency. (orig.) [de

  18. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is a revision of Safety Requirements No. NS-R-1, Safety of Nuclear Power Plants: Design. It establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in the design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  19. Safety of Nuclear Power Plants: Commissioning and Operation. Specific Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication describes the requirements to be met to ensure the safe operation of nuclear power plants. It takes into account developments in areas such as long term operation of nuclear power plants, plant ageing, periodic safety review, probabilistic safety analysis and risk informed decision making processes. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  20. Safety of Nuclear Power Plants: Commissioning and Operation. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2016-01-01

    This publication describes the requirements to be met to ensure the safe operation of nuclear power plants. It takes into account developments in areas such as long term operation of nuclear power plants, plant ageing, periodic safety review, probabilistic safety analysis and risk informed decision making processes. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication

  1. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Russian Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is a revision of Safety Requirements No. NS-R-1, Safety of Nuclear Power Plants: Design. It establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in the design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  2. 78 FR 20454 - Safety Zones; Annual Events Requiring Safety Zones in the Captain of the Port Lake Michigan Zone

    Science.gov (United States)

    2013-04-05

    ... Zone. The last three entries within this rule have been added for races in the Chicago, IL area and on... written--Celebrate Americafest/Fire over the Fox. This event has historically involved both a fireworks... day of the event. To ensure the safety of the Celebrate Americafest/Fire over the Fox event in its...

  3. Evaluation of the influence of a postulated lubrication oil fire on safety related cables in the top shield platform of PFBR RCB by using FDS Code

    International Nuclear Information System (INIS)

    Mangarjuna Rao, P.; Jayasuriya, C.; Nashine, B.K.; Chellapandi, P.; Velusamy, K.

    2010-01-01

    Top deck of Prototype Fast Breeder Reactor (PFBR) primary system houses redundant safety related systems like Control and Safety Rod Drive Mechanisms (CSRDM), Diverse Safety Rod Drive Mechanism (DSRDM), subassembly outlet sodium temperature measurement system and central canal plug. These systems protrude out from the reactor through the Control Plug (CP), which is supported on the Top Shield (TS) of PFBR. Control and instrumentation signal cables and power cables of these safety related systems that are coming out from the CP are routed through Top Shield Platform (TSP, which is concentric with Reactor Vault (RV) at EL 34.1 m above the TS) to the peripheral local instrumentation control centers via the cable junction boxes supported on TS. Influence approach fire hazard analysis (FHA) has been carried out to evaluate the condition of redundant safety related cables under the scenario of a postulated oil fire in the TSP using Fire Dynamics Simulator code (FDS, Version 5). FDS is a computational fluid dynamics (CFD) based fire analysis code and it is developed by National Institute of Standards and Technology (NIST), USA. In this paper the details of the model developed and the results of the analysis carried out are discussed. In TSP, a postulated oil fire scenario with complete inventory of a primary sodium pump (PSP) lubrication oil leak (200 lt) has been considered at 30 m elevation on the TS. Computational model with the geometry of TSP and with other important structural components on TS like PSPs, intermediate heat exchangers (IHXs), large rotating plug (LRP), small rotating plug (SRP), CP and etc. has been developed along with a fire of 1800 kW/m 2 heat release rate in the vicinity of the PSP1. Numerical simulation has been carried out to evaluate this oil fire influence on the typical safety related cables routed at 34 m elevation. It has been found that the surface temperature of the cables that are routed directly above the fire only crosses the ignition

  4. Generic Safety Requirements for Developing Safe Insulin Pump Software

    Science.gov (United States)

    Zhang, Yi; Jetley, Raoul; Jones, Paul L; Ray, Arnab

    2011-01-01

    Background The authors previously introduced a highly abstract generic insulin infusion pump (GIIP) model that identified common features and hazards shared by most insulin pumps on the market. The aim of this article is to extend our previous work on the GIIP model by articulating safety requirements that address the identified GIIP hazards. These safety requirements can be validated by manufacturers, and may ultimately serve as a safety reference for insulin pump software. Together, these two publications can serve as a basis for discussing insulin pump safety in the diabetes community. Methods In our previous work, we established a generic insulin pump architecture that abstracts functions common to many insulin pumps currently on the market and near-future pump designs. We then carried out a preliminary hazard analysis based on this architecture that included consultations with many domain experts. Further consultation with domain experts resulted in the safety requirements used in the modeling work presented in this article. Results Generic safety requirements for the GIIP model are presented, as appropriate, in parameterized format to accommodate clinical practices or specific insulin pump criteria important to safe device performance. Conclusions We believe that there is considerable value in having the diabetes, academic, and manufacturing communities consider and discuss these generic safety requirements. We hope that the communities will extend and revise them, make them more representative and comprehensive, experiment with them, and use them as a means for assessing the safety of insulin pump software designs. One potential use of these requirements is to integrate them into model-based engineering (MBE) software development methods. We believe, based on our experiences, that implementing safety requirements using MBE methods holds promise in reducing design/implementation flaws in insulin pump development and evolutionary processes, therefore improving

  5. Validation study of computer code SPHINCS for sodium fire safety evaluation of fast reactor

    International Nuclear Information System (INIS)

    Yamaguchi, Akira; Tajima, Yuji

    2003-01-01

    A computer code SPHINCS solves coupled phenomena of thermal hydraulics and sodium fire based on a multi-zone model. It deals with an arbitrary number of rooms, each of which is connected mutually by doorways and penetrations. With regard to the combustion phenomena, a flame sheet model and a liquid droplet combustion model are used for pool and spray fires, respectively, with the chemical equilibrium model based on the Gibbs free energy minimization method. The chemical reaction and mass and heat transfer are solved interactively. A specific feature of SPHINCS is detailed representation of thermalhydraulics of a sodium pool and a steel liner, which is placed on the floor to prevent sodium-concrete contact. The authors analyzed a series of pool combustion experiments, in which gas and liner temperatures are measured in detail. It has been found that good agreement is obtained and the SPHINCS code has been validated with regard to pool combustion phenomena. Further research needs are identified for pool spreading modeling considering thermal deformation of steel liner and measurement of pool fluidity property as a mixture of liquid sodium and reaction products. The SPHINCS code is to be used mainly in the safety evaluation of the consequence of a sodium fire accident in a liquid metal cooled fast reactor as well as fire safety analysis in general

  6. Safety test No. S-6, launch pad abort sequential test Phase II: solid propellant fire

    International Nuclear Information System (INIS)

    Snow, E.C.

    1975-08-01

    In preparation for the Lincoln Laboratory's LES 8/9 space mission, a series of tests was performed to evaluate the nuclear safety capability of the Multi-Hundred Watt (MHW) Radioisotope Thermoelectric Generator (RTG) to be used to supply power for the satellite. One such safety test is Test No. S-6, Launch Pad Abort Sequential Test. The objective of this test was to subject the RTG and its components to the sequential environments characteristic of a catastrophic launch pad accident to evaluate their capability to contain the 238 PuO 2 fuel. This sequence of environments was to have consisted of the blast overpressure and fragments, followed by the fireball, low velocity impact on the launch pad, and solid propellant fire. The blast overpressure and fragments were subsequently eliminated from this sequence. The procedures and results of Phase II of Test S-6, Solid Propellant Fire are presented. In this phase of the test, a simulant Fuel Sphere Assembly (FSA) and a mockup of a damaged Heat Source Assembly (HSA) were subjected to single proximity solid propellant fires of approximately 10-min duration. Steel was introduced into both tests to simulate the effects of launch pad debris and the solid rocket motor (SRM) casing that might be present in the fire zone. (TFD)

  7. Gas turbines: gas cleaning requirements for biomass-fired systems

    Directory of Open Access Journals (Sweden)

    Oakey John

    2004-01-01

    Full Text Available Increased interest in the development of renewable energy technologies has been hencouraged by the introduction of legislative measures in Europe to reduce CO2 emissions from power generation in response to the potential threat of global warming. Of these technologies, biomass-firing represents a high priority because of the modest risk involved and the availability of waste biomass in many countries. Options based on farmed biomass are also under development. This paper reviews the challenges facing these technologies if they are to be cost competitive while delivering the supposed environmental benefits. In particular, it focuses on the use of biomass in gasification-based systems using gas turbines to deliver increased efficiencies. Results from recent studies in a European programme are presented. For these technologies to be successful, an optimal balance has to be achieved between the high cost of cleaning fuel gases, the reliability of the gas turbine and the fuel flexibility of the overall system. Such optimisation is necessary on a case-by-case basis, as local considerations can play a significant part.

  8. Disposal of Radioactive Waste. Specific Safety Requirements (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Requirements publication applies to the disposal of radioactive waste of all types by means of emplacement in designed disposal facilities, subject to the necessary limitations and controls being placed on the disposal of the waste and on the development, operation and closure of facilities. The classification of radioactive waste is discussed. This Safety Requirements publication establishes requirements to provide assurance of the radiation safety of the disposal of radioactive waste, in the operation of a disposal facility and especially after its closure. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. This is achieved by setting requirements on the site selection and evaluation and design of a disposal facility, and on its construction, operation and closure, including organizational and regulatory requirements.

  9. OSHA safety requirements for hazardous chemicals in the workplace.

    Science.gov (United States)

    Dohms, J

    1992-01-01

    This article outlines the Occupational Safety and Health Administration (OSHA) requirements set forth by the Hazard Communication Standard, which has been in effect for the healthcare industry since 1987. Administrators who have not taken concrete steps to address employee health and safety issues relating to hazardous chemicals are encouraged to do so to avoid the potential of large fines for cited violations. While some states administer their own occupational safety and health programs, they must adopt standards and enforce requirements that are at least as effective as federal requirements.

  10. Design requirements of communication architecture of SMART safety system

    International Nuclear Information System (INIS)

    Park, H. Y.; Kim, D. H.; Sin, Y. C.; Lee, J. Y.

    2001-01-01

    To develop the communication network architecture of safety system of SMART, the evaluation elements for reliability and performance factors are extracted from commercial networks and classified the required-level by importance. A predictable determinacy, status and fixed based architecture, separation and isolation from other systems, high reliability, verification and validation are introduced as the essential requirements of safety system communication network. Based on the suggested requirements, optical cable, star topology, synchronous transmission, point-to-point physical link, connection-oriented logical link, MAC (medium access control) with fixed allocation are selected as the design elements. The proposed architecture will be applied as basic communication network architecture of SMART safety system

  11. Cold Vacuum Drying (CVD) Facility Technical Safety Requirements

    International Nuclear Information System (INIS)

    KRAHN, D.E.

    2000-01-01

    The Technical Safety Requirements (TSRs) for the Cold Vacuum Drying Facility define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation during receipt of multi-canister overpacks (MCOs) containing spent nuclear fuel. removal of free water from the MCOs using the cold vacuum drying process, and inerting and testing of the MCOs before transport to the Canister Storage Building. Controls required for public safety, significant defense in depth, significant worker safety, and for maintaining radiological and toxicological consequences below risk evaluation guidelines are included

  12. Fire Safety Consideration in the Pre-conceptual Design State of Pyro-Facillity

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Hong Rae; Seo, Seok Jun; Lee, Hyo Jik [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The government, in order to solve this problem, has organized a public engagement committee and is searching for a solution. To use sustainable nuclear energy, our country is also pursuing research and development of fast breeder reactor and pyroprocessing technology in accordance with the international movement of spent fuel recycling and efforts towards nuclear non-proliferation which is centered on the development and demonstration of recycling spent fuel and fast breeder reactors. Pyro-facility has different features with nuclear power plant. In the pyroprocess, chemical and electrochemical separation were took place in the hot cells and material at risk (MAR) is distributed in many working areas. In this paper, we conducted the fire modeling of hot cells to see the stability of pyrophoric materials which is considered as one of the potential hazardous materials in the main process cell. Based on modeling results, consideration of fire safety pyrofacility will be discussed. We performed preliminary hazard analysis for pyrofacility and summarized potential fire hazard. Pyrophoric material fire is the dominant hazard in the main process hot cell and fire modeling of cable tray in the cell was analyzed to see the stability of pyrophoric materials. Analysis results clearly shows that pyrophoric materials are prone to be affected.

  13. Can fire safety in hotels be improved? Results from the survey of a panel of experts in Spain.

    Science.gov (United States)

    Rubio-Romero, Juan Carlos; Márquez-Sierra, Francisco; Suárez-Cebador, Manuel

    2016-06-08

    The hotel industry is an important driver of the European labour market with over 250,000 hotels employing some 2 million people. In Spain, 240 workers were injured by fires in hotels from 2004 to 2008. Fire is considered to be the most important risk in the hotel industry, but the lack of an EU-wide data recording system for hotels makes it difficult to give exact figures for fire events. We analysed the state of fire prevention systems in hotels in Spain with the aim of proposing strategies to improve fire safety. A 10-item questionnaire was administered from 2007 to 2009 to 15 Spanish experts in fire safety. The questions were measured using a Likert scale and classified into 4 sections: current state of installations, influence of establishment characteristics, application of regulations and priority ranking of actions. Descriptive statistics summarized the data and t-tests evaluated the agreement foreach statement in the questionnaire. The statistical analysis showed homogeneity in the responses by the experts in all four categories: current state of fire safety installations, influence of establishment characteristics, application of regulations, and priority of actions. There was consensus among the experts over the necessity to improve the enforcement of regulations and also regarding the existence of an association between the hotel category (in Spain they are ranked using a 1 to 5 "star" rating system) and the level of fire safety; hotels with a higher category had higher levels of safety. There is a need to identify ways to apply fire safety standards to older hotels so that they comply with new regulations, to standardize regulations for different regions and countries, to improve the maintenance of installations and equipment, to increase the effectiveness of inspections conducted by government bodies, and to raise the general awareness of stakeholders involved in hotel fire prevention.

  14. 46 CFR 167.45-45 - Carbon dioxide fire-extinguishing system requirements.

    Science.gov (United States)

    2010-10-01

    ... SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Special Firefighting and Fire Prevention Requirements § 167.45-45... school ship propelled by internal combustion engines, the quantity of carbon dioxide required may be... arrangement of the piping shall be such as to give a general and fairly uniform distribution over the entire...

  15. A comparison of the difference of requirements between functional safety and nuclear safety controllers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.K.; Lee, C.L.; Shyu, S.S. [Inst. of Nuclear Energy Research, Taoyuan, Taiwan (China)

    2014-07-01

    In order to establish self-reliant capabilities of nuclear I&C systems in Taiwan, Taiwan's Nuclear I&C System (TNICS) project had been established by Institute of Nuclear Energy Research (INER). A Triple Modular Redundant (TMR) safety controller (SCS-2000) has been completed and gone through the IEC 61508 Safety Integrity Level 3 (SIL3) certification of Functional Safety for industries. Based on the certification processes, the difference of requirements between Functional Safety and Nuclear Safety controllers in term of hardware and software are addressed in this study. Besides, the measures used to determine and verify the reliability of the safety control system design are presented. (author)

  16. Safety Design Approach for the Development of Safety Requirements for Design of Commercial HTGR

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Sato, Hiroyuki; Nakagawa, Shigeaki; Tachibana, Yukio; Nishihara, Tetsuo; Yan, Xing; Sakaba, Nariaki; Kunitomi, Kazuhiko

    2014-01-01

    The research committee on “Safety requirements for HTGR design” was established in 2013 under the Atomic Energy Society of Japan to develop the draft safety requirements for the design of commercial High Temperature Gas-cooled Reactors (HTGRs), which incorporate the HTGR safety features demonstrated using the High Temperature Engineering Test Reactor (HTTR), lessons learned from the accident of Fukushima Daiichi Nuclear Power Station and requirements for the integration of the hydrogen production plants. The safety design approach for the commercial HTGRs which is a basement of the safety requirements is determined prior to the development of the safety requirements. The safety design approaches for the commercial HTGRs are to confine the radioactive materials within the coated fuel particles not only during normal operation but also during accident conditions, and the integrity of the coated fuel particles and other requiring physical barriers are protected by the inherent and passive safety features. This paper describes the main topics of the research committee, the safety design approaches and the safety functions of the commercial HTGRs determined in the research committee. (author)

  17. Happy 50th Birthday Smokey Bear! A Learning Kit about Forests and Fire Safety for Grades K-3.

    Science.gov (United States)

    Hall, Meryl

    For over 50 years, the primary goal of Smokey Bear has been to introduce the forest fire prevention message to young children. This learning kit provides the K-3 teacher with activities and resources to help students learn about Smokey Bear and fire safety, about forests as habitats, and about what they can do to protect forests. Students are…

  18. 41 CFR 128-1.8006 - Seismic Safety Program requirements.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Seismic Safety Program requirements. 128-1.8006 Section 128-1.8006 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF JUSTICE 1-INTRODUCTION 1.80-Seismic Safety Program...

  19. Safety assessment requirements for onsite transfers of radioactive material

    International Nuclear Information System (INIS)

    Opperman, E.K.; Jackson, E.J.; Eggers, A.G.

    1992-05-01

    This document contains the requirements for developing a safety assessment document for an onsite package containing radioactive material. It also provides format and content guidance to establish uniformity in the safety assessment documentation and to ensure completeness of the information provided

  20. Cable fire tests in France

    International Nuclear Information System (INIS)

    Kaercher, M.

    2000-01-01

    Modifications are being carried out in all French nuclear power plants to improve fire safety. These modifications are based on a three level defense in depth concept: fire preventing, fire containing and fire controlling. Fire containing requires many modifications such as protection of cable races and assessment of fire propagation which both need R and D development. On one hand, cable wraps made with mineral wool were tested in all configurations including effect of aging, overheating and fire and qualified for the use as protection from common failure modes. On the other hand, cables races in scale one were subject to gas burner or solvent pool fire to simulate ignition and fire propagation between trays and flash over situations. These tests have been performed under several typical lay out conditions. The results of the tests can be used as input data in computer modelling for validation of fire protection measures. (orig.) [de

  1. New requirements on safety of nuclear power plants according to the IAEA safety standards

    International Nuclear Information System (INIS)

    Misak, J.

    2005-01-01

    In this presentation author presents new requirements on safety of nuclear power plants according to the IAEA safety standards. It is concluded that: - New set of IAEA Safety Standards is close to completion: around 40 standards for NPPs; - Different interpretation of IAEA Safety Standards at present: best world practices instead of previous 'minimum common denominator'; - A number of safety improvements required for NPPs; - Requirements related to BDBAs and severe accidents are the most demanding due to degradation of barriers: hardware modifications and accident management; - Large variety between countries in implementation of accident management programmes: from minimum to major hardware modifications; -Distinction between existing and new NPPs is essential from the point of view of the requirements; WWER 440 reactors have potential to reflect IAEA Safety Standards for existing NPPs; relatively low reactor power offers broader possibilities

  2. Fuel Supply Shutdown Facility Interim Operational Safety Requirements

    International Nuclear Information System (INIS)

    BENECKE, M.W.

    2000-01-01

    The Interim Operational Safety Requirements for the Fuel Supply Shutdown (FSS) Facility define acceptable conditions, safe boundaries, bases thereof, and management of administrative controls to ensure safe operation of the facility

  3. Requirements of radiation protection and safety for nuclear medicine services

    International Nuclear Information System (INIS)

    1989-01-01

    The requirements of radiation protection and safety for nuclear medicine services are established. The norms is applied to activities related to the radiopharmaceuticals for therapeutics and 'in vivo' diagnostics purposes. (M.C.K.) [pt

  4. Fire protection and fire fighting in nuclear installations

    International Nuclear Information System (INIS)

    1989-01-01

    Fires are a threat to all technical installations. While fire protection has long been a well established conventional discipline, its application to nuclear facilities requires special considerations. Nevertheless, for a long time fire engineering has been somewhat neglected in the design and operation of nuclear installations. In the nuclear industry, the Browns Ferry fire in 1975 brought about an essential change in the attention paid to fire problems. Designers and plant operators, as well as insurance companies and regulators, increased their efforts to develop concepts and methods for reducing fire risks, not only to protect the capital investment in nuclear plants but also to consider the potential secondary effects which could lead to nuclear accidents. Although the number of fires in nuclear installations is still relatively large, their overall importance to the safety of nuclear power plants was not considered to be very high. Only more recently have probabilistic analyses changed this picture. The results may well have to be taken into account more carefully. Various aspects of fire fighting and fire protection were discussed during the Symposium, the first of its kind to be organized by the IAEA. It was convened in co-operation with several organizations working in the nuclear or fire protection fields. The intention was to gather experts from nuclear engineering areas and the conventional fire protection field at one meeting with a view to enhancing the exchange of information and experience and to presenting current knowledge on the various disciplines involved. The presentations at the meeting were subdivided into eight sessions: standards and licensing (6 papers); national fire safety practices (7 papers); fire safety by design (11 papers); fire fighting (2 papers); computer fire modeling (7 papers); fire safety in fuel center facilities (7 papers); fire testing of materials (3 papers); fire risk assessment (5 papers). A separate abstract was

  5. Safety of Nuclear Power Plants: Commissioning and Operation. Specific Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This publication is a revision of IAEA Safety Standards Series No. NS-R-2, Safety of Nuclear Power Plants: Operation, and has been extended to cover the commissioning stage. It describes the requirements to be met to ensure the safe commissioning, operation, and transition from operation to decommissioning of nuclear power plants. Over recent years there have been developments in areas such as long term operation of nuclear power plants, plant ageing, periodic safety review, probabilistic safety analysis review and risk informed decision making processes. It became necessary to revise the IAEA’s Safety Requirements in these areas and to correct and/or improve the publication on the basis of feedback from its application by both the IAEA and its Member States. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles. A review of Safety Requirements publications, initiated in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan, revealed no significant areas of weakness but resulted in a small set of amendments to strengthen the requirements and facilitate their implementation. These are contained in the present publication.

  6. Safety of Nuclear Power Plants: Commissioning and Operation. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2017-01-01

    This publication is a revision of IAEA Safety Standards Series No. NS-R-2, Safety of Nuclear Power Plants: Operation, and has been extended to cover the commissioning stage. It describes the requirements to be met to ensure the safe commissioning, operation, and transition from operation to decommissioning of nuclear power plants. Over recent years there have been developments in areas such as long term operation of nuclear power plants, plant ageing, periodic safety review, probabilistic safety analysis review and risk informed decision making processes. It became necessary to revise the IAEA’s Safety Requirements in these areas and to correct and/or improve the publication on the basis of feedback from its application by both the IAEA and its Member States. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles. A review of Safety Requirements publications, initiated in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan, revealed no significant areas of weakness but resulted in a small set of amendments to strengthen the requirements and facilitate their implementation. These are contained in the present publication.

  7. Requirements to be met by a safety philosophy

    International Nuclear Information System (INIS)

    Hahn, L.

    1990-01-01

    The author's assessment of the use of safety philosophies is that, since 'safety philosophers' still are not certain whether a safety philosophy ought to be applicable to just one, particular technology, or rather to a variety of different technologies, there is reason to state that the required ethical, philosophical and political foundations to build a safety philosophy on are still missing. And this, the author presumes, is one of the reasons why our society to a far extent is incapable of acting, faced not only with the nuclear issue, but also with the present and future ecological challenge. (orig./DG) [de

  8. Quality assurance requirements for the computer software and safety analyses

    International Nuclear Information System (INIS)

    Husarecek, J.

    1992-01-01

    The requirements are given as placed on the development, procurement, maintenance, and application of software for the creation or processing of data during the design, construction, operation, repair, maintenance and safety-related upgrading of nuclear power plants. The verification and validation processes are highlighted, and the requirements put on the software documentation are outlined. The general quality assurance principles applied to safety analyses are characterized. (J.B.). 1 ref

  9. HTR-PM Safety requirement and Licensing experience

    International Nuclear Information System (INIS)

    Li Fu; Zhang Zuoyi; Dong Yujie; Wu Zongxin; Sun Yuliang

    2014-01-01

    HTR-PM is a 200MWe modular pebble bed high temperature reactor demonstration plant which is being built in Shidao Bay, Weihai, Shandong, China. The main design parameters of HTR-PM were fixed in 2006, the basic design was completed in 2008. The review of Preliminary Safety Analysis Report (PSAR) of HTR-PM was started in April 2008, completed in September 2009. In general, HTR- PM design complies with the current safety requirement for nuclear power plant in China, no special standards are developed for modular HTR. Anyway, Chinese Nuclear Safety Authority, together with the designers, developed some dedicated design criteria for key systems and components and published the guideline for the review of safety analysis report of HTR-PM, based on the experiences from licensing of HTR-10 and new development of nuclear safety. The probabilistic safety goal for HTR-PM was also defined by the safety authority. The review of HTR-PM PSAR lasted for one and a half years, with 3 dialogues meetings and 8 topics meetings, with more than 2000 worksheets and answer sheets. The heavily discussed topics during the PSAR review process included: the requirement for the sub-atmospheric ventilation system, the utilization of PSA in design process, the scope of beyond design basis accidents, the requirement for the qualification of TRISO coating particle fuel, and etc. Because of the characteristics of first of a kind for the demonstration plant, the safety authority emphasized the requirement for the experiment and validation, the PSAR was licensed with certain licensing conditions. The whole licensing process was under control, and was re-evaluated again after Fukushima accident to be shown that the design of HTR-PM complies with current safety requirement. This is a good example for how to license a new reactor. (author)

  10. Regulatory analysis for the resolution of generic issue 57: Effects of Fire Protection System Actuation on Safety-Related Equipment

    International Nuclear Information System (INIS)

    Woods, H.W.

    1993-10-01

    Actuation of Fire Protection Systems (FPS) in Nuclear Power Plants have resulted in adverse interactions with equipment important to safety. Precursor operational experience has shown that 37% of all FPS actuations damaged some equipment, and 20% of all FPS actuations have resulted in a plant transient and reactor trip. On an average 0.17 FPS actuations per reactor year have been experienced in nuclear power plants in this country. This report presents the regulatory analysis for GI-57, ''Effects of Fire Protection System Actuation on Safety-Related Equipment''. The risk reduction estimates, cost/benefit analyses, and other insights gained during this effort have shown that implementation of the recommendations contained in this report can significantly reduce risk, and that these improvements can be warranted in accordance with the backfit rule, 10 CFR 50.109(a)(3). However, plant specific analyses are required in order to identify such improvements. Generic analyses can not serve to identify improvements that could be warranted for individual, specific plants. Plant specific analyses of the type needed for this purpose are underway as part of the Individual Plant Examination of External Events (IPEEE) program

  11. Fire safety of historical buildings traditional versus innovative “behavioural design” solutions by using wayfinding systems

    CERN Document Server

    Bernardini, Gabriele

    2017-01-01

    This book applies a behavioral point of view to individuals’ fire safety in historic buildings. It outlines theoretical and operative issues, based on recent studies and international guidelines. Firstly, critical issues for Building Heritage fire safety are widely discussed, by including the modelling of human factor and man-environment-fire interference in these architectural spaces. A significant part of the book includes a discussion on emergency modeling and simulation. A source code for representing the fire evacuation process (including man-evacuation facilities interactions) is offered to the reader. Methods for effectiveness assessment of risk-reducing solutions are provided and tested in a case-study. Being a structured approach to occupants-related problems during a fire in heritage buildings, it offers an innovative methodology and practical examples that researchers and designers can use as a guide when proposing and testing solutions. Evaluation indexes for effectiveness assessment (also usefu...

  12. International standardization of safety requirements for fast reactors

    International Nuclear Information System (INIS)

    2011-06-01

    Japan Atomic Energy Agency (JAEA) is conducting the FaCT (Fast Reactor Cycle Technology Development) project in cooperation with Japan Atomic Power Company (JAPC) and Mitsubishi FBR systems inc. (MFBR), where an advanced loop-type fast reactor named JSFR (Japan Sodium-cooled Fast Reactor) is being developed. It is important to develop software technologies (a safety guideline, safety design criteria, safety design standards etc.) of FBRs as well as hardware ones (a reactor plant itself) in order to address prospective worldwide utilization of FBR technology. Therefore, it is expected to establish a rational safety guideline applicable to the JSFR and harmonized with national nuclear-safety regulations as well, including Japan, the United States and the European Union. This report presents domestic and international status of safety guideline development for sodium-cooled fast reactors (SFRs), results of comparative study for safety requirements provided in existing documents and a proposal for safety requirements of future SFRs with a roadmap for their refinement and worldwide utilization. (author)

  13. Solving the Problem of Multiple-Criteria Building Design Decisions with respect to the Fire Safety of Occupants: An Approach Based on Probabilistic Modelling

    Directory of Open Access Journals (Sweden)

    Egidijus Rytas Vaidogas

    2015-01-01

    Full Text Available The design of buildings may include a comparison of alternative architectural and structural solutions. They can be developed at different levels of design process. The alternative design solutions are compared and ranked by applying methods of multiple-criteria decision-making (MCDM. Each design is characterised by a number of criteria used in a MCDM problem. The paper discusses how to choose MCDM criteria expressing fire safety related to alternative designs. Probability of a successful evacuation of occupants from a building fire and difference between evacuation time and time to untenable conditions are suggested as the most important criteria related to fire safety. These two criteria are treated as uncertain quantities expressed by probability distributions. Monte Carlo simulation of fire and evacuation processes is natural means for an estimation of these distributions. The presence of uncertain criteria requires applying stochastic MCDM methods for ranking alternative designs. An application of the safety-related criteria is illustrated by an example which analyses three alternative architectural floor plans prepared for a reconstruction of a medical building. A MCDM method based on stochastic simulation is used to solve the example problem.

  14. Radiation safety requirements for training of users of diagnostic X ...

    African Journals Online (AJOL)

    Background. Globally, the aim of requirements regarding the use and ownership of diagnostic medical X-ray equipment is to limit radiation by abiding by the 'as low as reasonably achievable' (ALARA) principle. The ignorance of radiographers with regard to radiation safety requirements, however, is currently a cause of ...

  15. Safety Requirements and Modern Technical Requirements in Human Information Systems in Amman Hotels

    OpenAIRE

    Farouq Ahmad Alazzam; Sattam Rakan Allahawiah; Mohammad Nayef Alsarayreh; Kafa Hmoud Abdallah al Nawaiseh

    2015-01-01

    This study aimed to demonstrate the availability of Safety requirements and modern technical requirements in human information systems in Amman hotels. an the most important results of this study is the availability of security and safety requirements in human information systems In Amman hotels and The adequacy of the information that it provided .and show that all departments are not connected by appropriate and effective communication networks in adequate form . Also sophisticated operatin...

  16. A Survey of a System of Methods for Fire Safety Design of Traditional Concrete Constructions

    DEFF Research Database (Denmark)

    Hertz, Kristian

    2000-01-01

    constructions DS411. And the bases for many of the methods have been distributed by CIB W14 reports. But a survey of all the methods in coherence has never been presented, and much of this documentation and the additional documentation produced for the work with the codes needs still to be printed in papers......During the years since 1978 the author has been developing a series of calculation methods and sup-porting test methods for the fire safety design of concrete constructions. The basic methods have been adopted in the fire chapters of the Eurocode ENV1992-1-2 and the Danish code for concrete.......It is the aim of this paper to give a coherent presentation of the design methods, their degree of documentation and the available references in order to facilitate the application of them....

  17. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.820 Fire pumps, fire mains, fire hydrants, and fire hoses. (a) Each vessel must be equipped with a self-priming, power driven fire...

  18. A consideration of hazards, earthquakes, aircraft crashes, explosions and fires in the safety of laboratories and plants

    International Nuclear Information System (INIS)

    Doumenc, A.; Faure, J.; Mohammadioun, B.; Jacquet, P.

    1987-03-01

    Although laboratories and plants differ from nuclear reactors both in their characteristics and sitings, safety measures developed for the hazards of earthquakes, aircraft crashes, explosions and fires are very similar. These measures provide a satisfactory level of safety for these installations [fr

  19. Predisposal management of radioactive waste. General safety requirements. Pt. 5

    International Nuclear Information System (INIS)

    2009-01-01

    The objective of this Safety Requirements publication is to establish, the requirements that must be satisfied in the predisposal management of radioactive waste. This publication sets out the objectives, criteria and requirements for the protection of human health and the environment that apply to the siting, design, construction, commissioning, operation and shutdown of facilities for the predisposal management of radioactive waste, and the requirements that must be met to ensure the safety of such facilities and activities. This Safety Requirements publication applies to the predisposal management of radioactive waste of all types and covers all the steps in its management from its generation up to its disposal, including its processing (pretreatment, treatment and conditioning), storage and transport. Such waste may arise from the commissioning, operation and decommissioning of nuclear facilities; the use of radionuclides in medicine, industry, agriculture, research and education; the processing of materials that contain naturally occurring radionuclides; and the remediation of contaminated areas. The introduction of the document (Section 1) informs about its objective, scope and structure. The protection of human health and the environment is considered in Section 2 of this publication. Section 3 establishes requirements for the responsibilities associated with the predisposal management of radioactive waste. Requirements for the principal approaches to and the elements of the predisposal management of radioactive waste are established in Section 4. Section 5 establishes requirements for the safe development and operation of predisposal radioactive waste management facilities and safe conduct of activities. The Annex presents a discussion of the consistency of the safety requirements established in this publication with the fundamental safety principles

  20. Fire protection at the Mochovce nuclear power plant

    International Nuclear Information System (INIS)

    Molnarova, Zuzana; Zeman, Peter

    2009-01-01

    A succinct account is given of current situation in fire prevention at the Mochovce NPP and of past fire events. The fact is stressed that no fire ever occurred at any technological facility of the plant since the startup of the reactor units. Steps required to improve fire safety at a nuclear power plant are highlighted. (orig.)

  1. Safety assessment of VHTR hydrogen production system against fire, explosion and acute toxicity

    International Nuclear Information System (INIS)

    Murakami, Tomoyuki; Nishihara, Tetsuo; Kunitomi, Kazuhiko

    2008-01-01

    The Japan Atomic Energy Agency has been developing a nuclear hydrogen production system by using heat from the Very High Temperature Reactor (VHTR). This system will handle a large amount of combustible gas and toxic gas. The risk from fire, explosion and acute toxic exposure caused by an accident involving chemical material release in a hydrogen production system is assessed. It is important to ensure the safety of the nuclear plant, and the risks for public health should be sufficiently small. This report provides the basic policy for the safety evaluation in cases of accident involving fire, explosion and toxic material release in a hydrogen production system. Preliminary safety analysis of a commercial-sized VHTR hydrogen production system, GTHTR300C, is performed. This analysis provides us with useful information on the separation distance between a nuclear plant and a hydrogen production system and a prospect that an accident in a hydrogen production system does not significantly increase the risks of the public. (author)

  2. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This publication establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  3. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Russian Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  4. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This publication establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  5. The Management System for Facilities and Activities. Safety Requirements

    International Nuclear Information System (INIS)

    2011-01-01

    This publication establishes requirements for management systems that integrate safety, health, security, quality assurance and environmental objectives. A successful management system ensures that nuclear safety matters are not dealt with in isolation but are considered within the context of all these objectives. The aim of this publication is to assist Member States in establishing and implementing effective management systems that integrate all aspects of managing nuclear facilities and activities in a coherent manner. It details the planned and systematic actions necessary to provide adequate confidence that all these requirements are satisfied. Contents: 1. Introduction; 2. Management system; 3. Management responsibility; 4. Resource management; 5. Process implementation; 6. Measurement, assessment and improvement.

  6. Recommended general safety requirements for nuclear power plants

    International Nuclear Information System (INIS)

    1983-06-01

    This report presents recommendations for a set of general safety requirements that could form the basis for the licensing of nuclear power plants by the Atomic Energy Control Board. In addition to a number of recommended deterministic requirements the report includes criteria for the acceptability of the design of such plants based upon the calculated probability and consequence (in terms of predicted radiation dose to members of the public) of potential fault sequences. The report also contains a historical review of nuclear safety principles and practices in Canada

  7. Health and safety plan for the removal action at the former YS-860 Firing Ranges, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-24

    This health and safety plan sets forth the requirements and procedures to protect the personnel involved in the removal action project at the former YS-860 Firing Ranges. This project will be conducted in a manner that ensures the protection of the safety and health of workers, the public, and the environment. The purpose of this removal action is to address lead-contaminated soil and reduce a potential risk to human health and the environment. This site is an operable unit within the Upper East Fork Poplar Creek watershed. The removal action will contribute to early source actions within the watershed. The project will accomplish this through the removal of lead-contaminated soil in the target areas of the two small arms firing ranges. The primary hazards include temperature extremes, equipment operation, noise, potential lead exposure, uneven and slippery working surfaces, and insects.

  8. Health and safety plan for the removal action at the former YS-860 Firing Ranges, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-01-01

    This health and safety plan sets forth the requirements and procedures to protect the personnel involved in the removal action project at the former YS-860 Firing Ranges. This project will be conducted in a manner that ensures the protection of the safety and health of workers, the public, and the environment. The purpose of this removal action is to address lead-contaminated soil and reduce a potential risk to human health and the environment. This site is an operable unit within the Upper East Fork Poplar Creek watershed. The removal action will contribute to early source actions within the watershed. The project will accomplish this through the removal of lead-contaminated soil in the target areas of the two small arms firing ranges. The primary hazards include temperature extremes, equipment operation, noise, potential lead exposure, uneven and slippery working surfaces, and insects

  9. Fire safety of ETICS with wood fibreboards for multi-storey buildings – first research and development results

    Directory of Open Access Journals (Sweden)

    Küppers Judith

    2016-01-01

    Full Text Available Wood fibreboards can serve as alternative sustainable insulation material for external thermal insulation component systems (ETICS. In Germany, the application of ETICS with wood fibreboards is restricted to low buildings. The restrictions are mainly caused by the smouldering tendency of the wood fibreboards. Thus, the development of an ETICS with wood fibreboards for multi-storey buildings complying with the requirements would provide a new scope of application for this sustainable insulation material. This paper presents first results of standardised and innovative investigation methods as basis for the development. These investigations and analyses concern the fire behaviour, especially smouldering processes, the plaster system, other constructive protection measures as well as risk and safety analyses.

  10. Safety integrity requirements for computer based I ampersand C systems

    International Nuclear Information System (INIS)

    Thuy, N.N.Q.; Ficheux-Vapne, F.

    1997-01-01

    In order to take into account increasingly demanding functional requirements, many instrumentation and control (I ampersand C) systems in nuclear power plants are implemented with computers. In order to ensure the required safety integrity of such equipment, i.e., to ensure that they satisfactorily perform the required safety functions under all stated conditions and within stated periods of time, requirements applicable to these equipment and to their life cycle need to be expressed and followed. On the other hand, the experience of the last years has led EDF (Electricite de France) and its partners to consider three classes of systems and equipment, according to their importance to safety. In the EPR project (European Pressurized water Reactor), these classes are labeled E1A, E1B and E2. The objective of this paper is to present the outline of the work currently done in the framework of the ETC-I (EPR Technical Code for I ampersand C) regarding safety integrity requirements applicable to each of the three classes. 4 refs., 2 figs

  11. 77 FR 32394 - Safety Zones: Catawba Island Club Fire Works, Catawba Island Club, Port Clinton, OH; Racing for...

    Science.gov (United States)

    2012-06-01

    ...[deg]51'18.70'' W (NAD 83). This safety zone will be enforced from 9:15 p.m. until 9:45 p.m. on May 27...[deg]51[min]18.70[sec] W (NAD 83). (2) Enforcement period. This safety zone will be enforced between 9...-AA00 Safety Zones: Catawba Island Club Fire Works, Catawba Island Club, Port Clinton, OH; Racing for...

  12. Specification of advanced safety modeling requirements (Rev. 0)

    International Nuclear Information System (INIS)

    Fanning, T. H.; Tautges, T. J.

    2008-01-01

    The U.S. Department of Energy's Global Nuclear Energy Partnership has lead to renewed interest in liquid-metal-cooled fast reactors for the purpose of closing the nuclear fuel cycle and making more efficient use of future repository capacity. However, the U.S. has not designed or constructed a fast reactor in nearly 30 years. Accurate, high-fidelity, whole-plant dynamics safety simulations will play a crucial role by providing confidence that component and system designs will satisfy established design limits and safety margins under a wide variety of operational, design basis, and beyond design basis transient conditions. Current modeling capabilities for fast reactor safety analyses have resulted from several hundred person-years of code development effort supported by experimental validation. The broad spectrum of mechanistic and phenomenological models that have been developed represent an enormous amount of institutional knowledge that needs to be maintained. Complicating this, the existing code architectures for safety modeling evolved from programming practices of the 1970s. This has lead to monolithic applications with interdependent data models which require significant knowledge of the complexities of the entire code in order for each component to be maintained. In order to develop an advanced fast reactor safety modeling capability, the limitations of the existing code architecture must be overcome while preserving the capabilities that already exist. To accomplish this, a set of advanced safety modeling requirements is defined, based on modern programming practices, that focuses on modular development within a flexible coupling framework. An approach for integrating the existing capabilities of the SAS4A/SASSYS-1 fast reactor safety analysis code into the SHARP framework is provided in order to preserve existing capabilities while providing a smooth transition to advanced modeling capabilities. In doing this, the advanced fast reactor safety models will

  13. Using GIS to evaluate a fire safety program in North Carolina.

    Science.gov (United States)

    Dudley, Thomas; Creppage, Kathleen; Shanahan, Meghan; Proescholdbell, Scott

    2013-10-01

    Evaluating program impact is a critical aspect of public health. Utilizing Geographic Information Systems (GIS) is a novel way to evaluate programs which try to reduce residential fire injuries and deaths. The purpose of this study is to demonstrate the application of GIS within the evaluation of a smoke alarm installation program in North Carolina. This approach incorporates national fire incident data which, when linked with program data, provides a clear depiction of the 10 years impact of the Get Alarmed, NC! program and estimates the number of potential lives saved. We overlapped Get Alarmed, NC! program installation data with national information on fires using GIS to identify homes that experienced a fire after an alarm was installed and calculated potential lives saved based on program documentation and average housing occupancy. We found that using GIS was an efficient and quick way to match addresses from two distinct sources. From this approach we estimated that between 221 and 384 residents were potentially saved due to alarms installed in their homes by Get Alarmed, NC!. Compared with other program evaluations that require intensive and costly participant telephone surveys and/or in-person interviews, the GIS approach is inexpensive, quick, and can easily analyze large disparate datasets. In addition, it can be used to help target the areas most at risk from the onset. These benefits suggest that by incorporating previously unutilized data, the GIS approach has the potential for broader applications within public health program evaluation.

  14. Measures for ensuring hydrogen fire and explosion safety for VVER-440/230

    International Nuclear Information System (INIS)

    Bezlepkin, V.; Semashko, S.; Svetlov, S.; Sidorov, V.; Ivkov, I.; Krylov, Yu.; Kukhtevich, V.

    2004-01-01

    This paper deals with the findings of calculation analysis as regards the release of mass, energy and hydrogen during beyond-design-basis accident (BDBA) at Kola NPP equipped with VVER-440 reactor (B-230 design) and in respect of distribution of hydrogen throughout NPP tight compartments. The analysis figures out the number and locations of passive catalytic hydrogen recombiners and of the sensors of the hydrogen concentration monitoring system. In order to prove the hydrogen safety of the design, it has been necessary to review accidents accompanied by maximum emissions (both peak and integral ones) of hydrogen into the tight area. During design-basis accident (DBA), no steam/zirconium reactions occur in the reactor core. Out of BDBA, the severe accidents with damage to the core accompanied oxidative reactions between zirconium and steel with emission of hydrogen are regarded as the most dangerous ones. Assessment of additional hydrogen sources shows that the contribution of such sources to the total amount of hydrogen that may emit during a severe accident is insignificant. Calculations have been made for the following scenarios of severe accidents, which seem to be the most important in terms of hydrogen safety analysis: - 20 mm leak from the primary circuit in combination with a failure of the emergency makeup system; - 500 mm PCP rupture in the vicinity of reactor inlet branch with bi-lateral leakage of coolant. Releases of mass and energy during the aforesaid scenarios, changes of medium parameters within the tight compartments and analysis of possible fire conditions have been analyzed by means of Russian computer codes RATEG/SVECHA/HEFEST, KUPOL-M and LIMITS. The said analysis shows that the large break accident (500 mm), i.e. PCP rupture in the vicinity of the reactor branch with bi-lateral leakage of coolant is of the keen interest in terms of hydrogen safety. This accident typifies powerful short-term release of hydrogen at a significantly lesser

  15. Governmental, Legal and Regulatory Framework for Safety. General Safety Requirements. Part 1, Revision 1 (Chinese Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication establishes requirements in respect of the governmental, legal and regulatory framework for safety. It covers the essential aspects of the framework for establishing a regulatory body and taking other actions necessary to ensure the effective regulatory control of facilities and activities utilized for peaceful purposes. Other responsibilities and functions, such as liaison within the global safety regime and on support services for safety (including radiation protection), emergency preparedness and response, nuclear security, and the State system of accounting for and control of nuclear material, are also covered. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  16. Accord on “Fire and Building Safety in Bangladesh”: A Breakthrough Agreement?

    Directory of Open Access Journals (Sweden)

    Zillur Rahman

    2014-03-01

    Full Text Available This discussion aims to review the emergence of the “Accord on Fire and Building Safety in Bangladesh” signed on May 13, 2013, and evaluate if it is an international agreement “breakthrough”. The Accord is signed not only by the global clothing brands and national garment unions but also by international trade union organizations, which is a new development. This raises a question: could this agreement set a new international negotiating precedence in industrial relations between transnational corporations and international trade union organizations? In Bangladesh, globalization has played an important role for booming garment industries. Yet, lack of workers’ rights, weak safety situations, and poor working conditions have continuously been reported. Local and international solidarity movements and garment workers’ welfare associations have been emphasizing workers’ rights and better and safer working environments in workplaces since the beginning of the 1990s. However, their voices were not highly considered even there were some initiatives. Following the ‘Rana Plaza’ garment factory building collapse in April 2013, one of the world’s worst industrial accidents, with more than 1,100 dead workers, some strong measures have been taken—one of these, signing the ‘Accord on Fire and Building Safety in Bangladesh’. This is a strong achievement of a long struggle to take collective action for improving the safety in garment factories in Bangladesh. Although the Accord is understood as a game changer or breakthrough in relation to national and international agreements, do we really know yet if it is a breakthrough or not when it comes to its implementation?

  17. Fuel supply shutdown facility interim operational safety requirements

    International Nuclear Information System (INIS)

    Besser, R.L.; Brehm, J.R.; Benecke, M.W.; Remaize, J.A.

    1995-01-01

    These Interim Operational Safety Requirements (IOSR) for the Fuel Supply Shutdown (FSS) facility define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls to ensure safe operation. The IOSRs apply to the fuel material storage buildings in various modes (operation, storage, surveillance)

  18. Safety improvements made at the Loviisa nuclear power plant to reduce fire risks originating from the turbine generators

    International Nuclear Information System (INIS)

    Virolainen, T.; Marttila, J.; Aulamo, H.

    1998-01-01

    Comprehensive upgrading measures have been completed for the Loviisa Nuclear Power Plant (modified VVER440/V213). These were carried out from the start of the design phase and during operation to ensure safe plant shutdown in the event of a large turbine generator oil fire. These modifications were made mainly on a deterministic basis according to specific risk studies and fire analyses. As part of the probabilistic safety assessment, a fire risk analysis was made that confirmed the importance of these upgrading measures. In fact, they should be considered as design basis modifications for all VVER440 plants. (author)

  19. Safety demonstration tests of postulated solvent fire accidents in extraction process of a fuel reprocessing plant, (2)

    International Nuclear Information System (INIS)

    Tukamoto, Michio; Takada, Junichi; Koike, Tadao; Nishio, Gunji; Uno, Seiichiro; Kamoshida, Atsusi; Watanabe, Hironori; Hashimoto, Kazuichiro; Kitani, Susumu.

    1992-03-01

    Demonstration tests of hypothetical solvent fire in an extraction process of the reprocessing plant were carried out from 1984 to 1985 in JAERI, focusing on the confinement of radioactive materials during the fire by a large-scale fire facility (FFF) to evaluate the safety of air-ventilation system in the plant. Fire data from the demonstration test were obtained by focusing on fire behavior at cells and ducts in the ventilation system, smoke generation during the fire, transport and deposition of smoke containing simulated radioactive species in the ventilation system, confinement of radioactive materials, and integrity of HEPA filters by using the FFF simulating an air-ventilation system of the reference reprocessing plant in Japan. The present report is published in a series of the report Phase I (JAERI-M 91-145) of the demonstration test. Test results in the report will be used for the verification of a computer code FACE to evaluate the safety of postulated fire accidents in the reprocessing plant. (author)

  20. Safety related requirements on future nuclear power plants

    International Nuclear Information System (INIS)

    Niehaus, F.

    1991-01-01

    Nuclear power has the potential to significantly contribute to the future energy supply. However, this requires continuous improvements in nuclear safety. Technological advancements and implementation of safety culture will achieve a safety level for future reactors of the present generation of a probability of core-melt of less than 10 -5 per year, and less than 10 -6 per year for large releases of radioactive materials. There are older reactors which do not comply with present safety thinking. The paper reviews findings of a recent design review of WWER 440/230 plants. Advanced evolutionary designs might be capable of reducing the probability of significant off-site releases to less than 10 -7 per year. For such reactors there are inherent limitations to increase safety further due to the human element, complexity of design and capability of the containment function. Therefore, revolutionary designs are being explored with the aim of eliminating the potential for off-site releases. In this context it seems to be advisable to explore concepts where the ultimate safety barrier is the fuel itself. (orig.) [de

  1. UK experience of safety requirements for thermal reactor stations

    International Nuclear Information System (INIS)

    Matthews, R.R.; Dale, G.C.; Tweedy, J.N.

    1977-01-01

    The paper summarises the development of safety requirements since the first of the Generating Boards' Magnox reactors commenced operation in 1962 and includes A.G.R. safety together with the preparation of S.G.H.W.R. design safety criteria. It outlines the basic principles originally adopted and shows how safety assessment is a continuing process throughout the life of a reactor. Some description is given of the continuous effort over the years to obtain increased safety margins for existing and new reactors, taking into account the construction and operating experience, experimental information, and more sophisticated computer-aided design techniques which have become available. The main safeguards against risks arising from the Generating Boards' reactors are the achievement of high standards of design, construction and operation, in conjunction with comprehensive fault analyses to ensure that adequate protective equipment is provided. The most important analyses refer to faults which can lead to excessive fuel element temperatures arising from an increase in power or a reduction in cooling capacity. They include the possibility of unintended control rod withdrawal at power or at start-up, coolant flow failure, pressure circuit failure, loss of boiler feed water, and failure of electric power. The paper reviews the protective equipment, and the policy for reactor safety assessments which include application of maximum credible accident philosophy and later the limited use of reliability and probability methods. Some of the Generating Boards' reactors are now more than half way through their planned working lives and during this time safety protective equipment has occasionally been brought into operation, often for spurious reasons. The general performance, of safety equipment is reviewed particularly for incidents such as main turbo-alternator trip, circulator failure, fuel element failures and other similar events, and some problems which have given rise to

  2. Young children's perceptions of fire-safety messages: do framing and parental mediation matter?

    Science.gov (United States)

    Borzekowski, Dina; Clearfield, Elizabeth; Rimal, Rajiv; Gielen, Andrea

    2014-01-01

    Media can deliver health and safety messages promoting child health and injury prevention. This study examined the effects of message framing and parental mediation on children's perceptions of fire-safety messages. Using a 2 × 3 randomized experimental design, this study considered both message framing (gain or loss) and parental mediation (no mediation/control, unscripted, or scripted) with 320 children who were 4 and 5 years of age. Children saw two messages (burn and smoke inhalation) embedded in a cartoon. Afterward, researchers assessed children's recall, understanding, and perceptions of self-efficacy and social norms. Children were more likely to recall the safety messages if they were older (burn: adjusted odds ration [AOR] = 2.74 and smoke: AOR = 2.58), and could recall the smoke inhalation message if they had unscripted mediation (AOR = 3.16). Message understanding was poor, with only about 50% of children choosing a correct behavior in a similar scenario. For the burn message, correct understanding was associated with gain-framing and scripted mediation (AOR = 3.22 and 5.77, respectively). Only the scripted mediation group was significantly associated with an increase in perceived social norms (burn: coefficient =.37 and smoke: coefficient =.55; P video-based messages to teach children safety behaviors needs to be enhanced.

  3. Safety and regulatory requirements of nuclear power plants

    International Nuclear Information System (INIS)

    Kumar, S.V.; Bhardwaj, S.A.

    2000-01-01

    A pre-requisite for a nuclear power program in any country is well established national safety and regulatory requirements. These have evolved for nuclear power plants in India with participation of the regulatory body, utility, research and development (R and D) organizations and educational institutions. Prevailing international practices provided a useful base to develop those applicable to specific system designs for nuclear power plants in India. Their effectiveness has been demonstrated in planned activities of building up the nuclear power program as well as with unplanned activities, like those due to safety related incidents etc. (author)

  4. Technical Safety Requirements for the Gamma Irradiation Facility (GIF)

    CERN Document Server

    Mahn, J A E M J G

    2003-01-01

    This document provides the Technical Safety Requirements (TSR) for the Sandia National Laboratories Gamma Irradiation Facility (GIF). The TSR is a compilation of requirements that define the conditions, the safe boundaries, and the administrative controls necessary to ensure the safe operation of a nuclear facility and to reduce the potential risk to the public and facility workers from uncontrolled releases of radioactive or other hazardous materials. These requirements constitute an agreement between DOE and Sandia National Laboratories management regarding the safe operation of the Gamma Irradiation Facility.

  5. Westinghouse Hanford Company safety analysis reports and technical safety requirements upgrade program

    International Nuclear Information System (INIS)

    Busche, D.M.

    1995-09-01

    During Fiscal Year 1992, the US Department of Energy, Richland Operations Office (RL) separately transmitted the following US Department of Energy (DOE) Orders to Westinghouse Hanford Company (WHC) for compliance: DOE 5480.21, ''Unreviewed Safety Questions,'' DOE 5480.22, ''Technical Safety Requirements,'' and DOE 5480.23, ''Nuclear Safety Analysis Reports.'' WHC has proceeded with its impact assessment and implementation process for the Orders. The Orders are closely-related and contain some requirements that are either identical, similar, or logically-related. Consequently, WHC has developed a strategy calling for an integrated implementation of the three Orders. The strategy is comprised of three primary objectives, namely: Obtain DOE approval of a single list of DOE-owned and WHC-managed Nuclear Facilities, Establish and/or upgrade the ''Safety Basis'' for each Nuclear Facility, and Establish a functional Unreviewed Safety Question (USQ) process to govern the management and preservation of the Safety Basis for each Nuclear Facility. WHC has developed policy-revision and facility-specific implementation plans to accomplish near-term tasks associated with the above strategic objectives. This plan, which as originally submitted in August 1993 and approved, provided an interpretation of the new DOE Nuclear Facility definition and an initial list of WHC-managed Nuclear Facilities. For each current existing Nuclear Facility, existing Safety Basis documents are identified and the plan/status is provided for the ISB. Plans for upgrading SARs and developing TSRs will be provided after issuance of the corresponding Rules

  6. Governmental, Legal and Regulatory Framework for Safety. General Safety Requirements. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    The objective of this publication is to establish requirements in respect of the governmental, legal and regulatory framework for safety. It covers the essential aspects of the framework for establishing a regulatory body and taking other actions necessary to ensure the effective regulatory control of facilities and activities utilized for peaceful purposes. Other responsibilities and functions, such as liaison within the global safety regime and on support services for safety (including radiation protection), emergency preparedness and response, nuclear security, and the State system of accounting for and control of nuclear material, are also covered.

  7. Governmental, Legal and Regulatory Framework for Safety. General Safety Requirements. Part 1 (Arabic Edition)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    The objective of this publication is to establish requirements in respect of the governmental, legal and regulatory framework for safety. It covers the essential aspects of the framework for establishing a regulatory body and taking other actions necessary to ensure the effective regulatory control of facilities and activities utilized for peaceful purposes. Other responsibilities and functions, such as liaison within the global safety regime and on support services for safety (including radiation protection), emergency preparedness and response, nuclear security, and the State system of accounting for and control of nuclear material, are also covered.

  8. Governmental, Legal and Regulatory Framework for Safety. General Safety Requirements. Part 1 (Spanish Edition)

    International Nuclear Information System (INIS)

    2010-01-01

    The objective of this publication is to establish requirements in respect of the governmental, legal and regulatory framework for safety. It covers the essential aspects of the framework for establishing a regulatory body and taking other actions necessary to ensure the effective regulatory control of facilities and activities utilized for peaceful purposes. Other responsibilities and functions, such as liaison within the global safety regime and on support services for safety (including radiation protection), emergency preparedness and response, nuclear security, and the State system of accounting for and control of nuclear material, are also covered

  9. Governmental, Legal and Regulatory Framework for Safety. General Safety Requirements. Part 1 (French Edition)

    International Nuclear Information System (INIS)

    2010-01-01

    The objective of this publication is to establish requirements in respect of the governmental, legal and regulatory framework for safety. It covers the essential aspects of the framework for establishing a regulatory body and taking other actions necessary to ensure the effective regulatory control of facilities and activities utilized for peaceful purposes. Other responsibilities and functions, such as liaison within the global safety regime and on support services for safety (including radiation protection), emergency preparedness and response, nuclear security, and the State system of accounting for and control of nuclear material, are also covered

  10. Governmental, Legal and Regulatory Framework for Safety. General Safety Requirements. Part 1 (Chinese Edition)

    International Nuclear Information System (INIS)

    2010-01-01

    The objective of this publication is to establish requirements in respect of the governmental, legal and regulatory framework for safety. It covers the essential aspects of the framework for establishing a regulatory body and taking other actions necessary to ensure the effective regulatory control of facilities and activities utilized for peaceful purposes. Other responsibilities and functions, such as liaison within the global safety regime and on support services for safety (including radiation protection), emergency preparedness and response, nuclear security, and the State system of accounting for and control of nuclear material, are also covered

  11. IoT-Based Intelligent Modeling of Smart Home Environment for Fire Prevention and Safety

    OpenAIRE

    Faisal Saeed; Anand Paul; Abdul Rehman; Won Hwa Hong; Hyuncheol Seo

    2018-01-01

    Fires usually occur in homes because of carelessness and changes in environmental conditions. They cause threats to the residential community and may result in human death and property damage. Consequently, house fires must be detected early to prevent these types of threats. The immediate notification of a fire is the most critical issue in domestic fire detection systems. Fire detection systems using wireless sensor networks sometimes do not detect a fire as a consequence of sensor failure....

  12. Safety research needs for Russian-designed reactors. Requirements situation

    International Nuclear Information System (INIS)

    Brown, R. Allan; Holmstrom, Heikki; Reocreux, Michel; Schulz, Helmut; Liesch, Klaus; Santarossa, Giampiero; Hayamizu, Yoshitaka; Asmolov, Vladimir; Bolshov, Leonid; Strizhov, Valerii; Bougaenko, Sergei; Nikitin, Yuri N.; Proklov, Vladimir; Potapov, Alexandre; Kinnersly, Stephen R.; Voronin, Leonid M.; Honekamp, John R.; Frescura, Gianni M.; Maki, Nobuo; Reig, Javier; ); Bekjord, Eric S.; Rosinger, Herbert E.

    1998-01-01

    integrity must be verified, and material property data bases extended. - VVER severe accident research should focus on validation of codes for accident management procedures, and on extension and qualification of an appropriate data base for materials properties and their interactions. - RBMK thermal-hydraulic research is needed to improve the technical basis for further development of RBMK safety criteria. - Assessment of the integrity of the RBMK primary coolant circuit, and especially the fuel channel, requires urgent research. Methods of assessing RBMK pressure boundary integrity must be verified, and material property data bases extended. - RBMK severe accident research should focus on prevention of accidents and Accident Management for cases of loss of heat sink and Beyond Design-Basis Loss-of-Coolant Accidents. For these purposes, simple physical models and parametric codes need development and should be systematically used in plant specific analysis. Recommendations; - A Safety Research Strategic Plan should be developed. Such a plan sets goals, defines products, and describes when and how work will be done, including determination of research priorities. - Key players, including regulators, operators, plant designers and researchers should be involved in developing and implementing this plan and its execution and applying the results. - International cooperation in safety research should be encouraged for purposes of improving quality, preventing technical isolation and cost sharing. - New approaches, such as technical fora for specific technical topics, should be established to make safety research information in OECD countries available to researchers working on the safety of Russian-designed reactors

  13. Regulatory requirements and administrative practice in safety of nuclear installations

    International Nuclear Information System (INIS)

    Servant, J.

    1977-01-01

    This paper reviews the current situation of the France regulatory rules and procedures dealing with the safety of the main nuclear facilities and, more broadly, the nuclear security. First, the author outlines the policy of the French administration which requires that the licensee responsible for an installation has to demonstrate that all possible measures are taken to ensure a sufficient level of safety, from the early stage of the project to the end of the operation of the plant. Thus, the administration performs the assessment on a case-by-case basis, of the safety of each installation before granting a nuclear license. On the other hand, the administration settles overall safety requirements for specific categories of installations or components, which determine the ultimate safety performances, but avoid, as far as possible, to detail the technical specifications to be applied in order to comply with these goals. This approach, which allows the designers and the licensees to rely upon sound codes and standards, gains the advantage of a great flexibility without imparing the nuclear safety. The author outlines the licensing progress for the main categories of installations: nuclear power plants of the PWR type, fast breeders, uranium isotope separation plants, and irradiated fuel processing plants. Emphasis is placed on the most noteworthy points: standardization of projects, specific risks of each site, problems of advanced type reactors, etc... The development of the technical regulations is presented with emphasis on the importance of an internationally concerned action within the nuclear international community. The second part of this paper describes the France operating experience of nuclear installations from the safety point of view. Especially, the author examines the technical and administrative utilization of data from safety significant incidents in reactors and plants, and the results of the control performed by the nuclear installations

  14. Recommended safety objectives, principles and requirements for mini-reactors

    International Nuclear Information System (INIS)

    1991-05-01

    Canadian and international publications containing objectives, principles and requirements for the safety of nuclear facilities in general and nuclear power plants in particular have been reviewed for their relevance to mini-reactors. Most of the individual recommendations, sometimes with minor wording changes, are applicable to mini-reactors. However, some prescriptive requirements for the shutdown, emergency core cooling and containment systems of power reactors are considered inappropriate for mini-reactors. The Advisory Committee on Nuclear Safety favours a generally non-prescriptive approach whereby the applicant for a mini-reactor license is free to propose any means of satisfying the fundamental objectives, but must convince the regulatory agency to that effect. To do so, a probabilistic safety assessment (PSA) would be the favoured procedure. A generic PSA for all mini-reactors of the same design would be acceptable. Notwithstanding this non-prescriptive approach, the ACNS considers that it would be prudent to require the existence of at least one independent shutdown system and two physically independent locations from which the reactor can be shut down and the shutdown condition monitored, and to require provision for an assumed loss of integrity of the primary cooling system's boundary unless convincing arguments to the contrary are presented. The ACNS endorses in general the objectives and fundamental principles proposed by the interorganizational Small Reactor Criteria working group, and intends to review and comment on the documents on specific applications to be issued by that working group

  15. Assessment of Application Example for a Sodium Fire Extinguishing Facility using Safety Control of Dangerous Substances Act

    International Nuclear Information System (INIS)

    Jung, Minhwan; Jeong, Ji-Young; Kim, Jongman

    2014-01-01

    Sodium is under regulation of four kinds of laws including the Safety Control of Dangerous Substances Act and it is under categorized as Class 3(pyrophoric material, water-prohibiting substance). To obtain a license for a sodium experiment facility, the codes and regulations must be satisfied in the Safety Control of Dangerous Substance Act. However, there are some parts that need to be discussed in related regulations in the Safety Control of Dangerous Substance Act because there are differences with the actual features of sodium. To apply for an actual sodium facility, it is necessary to give a supplementary explanation regarding the regulations. The objective of this study is to assess the application example of a sodium experiment facility using the above mentioned laws and to propose the necessity of an amendment for conventional laws in regard to fire extinguishing systems and agents. In this work, an application example of a sodium experiment facility using the Safety Control of Dangerous Substances Act, and the necessity of amending the existing laws in regard to fire extinguishing systems including the agent used, was assessed. The safest standard was applied for cases in which the consideration of a sodium fire is not mentioned in conventional regulations. For the construction of the PGSFR (Prototype Gen-IV Sodium-cooled Fast Reactor), the described regulations in this work should be reviewed and improved carefully by the fire safety regulatory body

  16. DARHT: INTEGRATION OF AUTHORIZATION BASIS REQUIREMENTS AND WORKER SAFETY

    International Nuclear Information System (INIS)

    MC CLURE, D. A.; NELSON, C. A.; BOUDRIE, R. L.

    2001-01-01

    This document describes the results of consensus agreements reached by the DARHT Safety Planning Team during the development of the update of the DARHT Safety Analysis Document (SAD). The SAD is one of the Authorization Basis (AB) Documents required by the Department prior to granting approval to operate the DARHT Facility. The DARHT Safety Planning Team is lead by Mr. Joel A. Baca of the Department of Energy Albuquerque Operations Office (DOE/AL). Team membership is drawn from the Department of Energy Albuquerque Operations Office, the Department of Energy Los Alamos Area Office (DOE/LAAO), and several divisions of the Los Alamos National Laboratory. Revision 1 of the DARHT SAD had been written as part of the process for gaining approval to operate the Phase 1 (First Axis) Accelerator. Early in the planning stage for the required update of the SAD for the approval to operate both Phase 1 and Phase 2 (First Axis and Second Axis) DARHT Accelerator, it was discovered that a conflict existed between the Laboratory approach to describing the management of facility and worker safety

  17. Long term safety requirements and safety indicators for the assessment of underground radioactive waste repositories

    International Nuclear Information System (INIS)

    Vovk, Ivan

    1998-01-01

    This presentation defines: waste disposal, safety issues, risk estimation; describes the integrated waste disposal process including quality assurance program. Related to actinides inventory it shows the main results of calculated activity obtained by deterministic estimation. It includes the Radioactive Waste Safety Standards and requirements; features related to site, design and waste package characteristics, as technical long term safety criteria for radioactive waste disposal facilities. Fundamental concern regarding the safety of radioactive waste disposal systems is their radiological impact on human beings and the environment. Safety requirements and criteria for judging the level of safety of such systems have been developed and there is a consensus among the international community on their basis within the well-established system of radiological protection. So far, however, little experience has been gained in applying long term safety criteria to actual disposal systems; consequently, there is an international debate on the most appropriate nature and form of the criteria to be used, taking into account the uncertainties involved. Emerging from the debate is the increasing conviction that the combined use of a variety of indicators would be advantageous in addressing the issue of reasonable assurance in the different time frames involved and in supporting the safety case for any particular repository concept. Indicators including risk, dose, radionuclide concentration, transit time, toxicity indices, fluxes at different points within the system, and barrier performance have all been identified as potentially relevant. Dose and risk are the indicators generally seen as most fundamental, as they seek directly to describe the radiological impact of a disposal system, and these are the ones that have been incorporated into most national standards to date. There are, however, certain problems in applying them. Application of a variety of different indicators

  18. 46 CFR 109.329 - Fire pumps.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fire pumps. 109.329 Section 109.329 Shipping COAST GUARD... of Safety Equipment § 109.329 Fire pumps. The master or person in charge shall insure that at least one of the fire pumps required in § 108.415 is ready for use on the fire main system at all times. ...

  19. GENERAL CONSIDERATIONS ON REGULATIONS AND SAFETY REQUIREMENTS FOR QUADRICYCLES

    Directory of Open Access Journals (Sweden)

    Ana Pavlovic

    2015-12-01

    Full Text Available In recent years, a new class of compact vehicles has been emerging and wide-spreading all around Europe: the quadricycle. These four-wheeled motor vehicles, originally derived from motorcycles, are a small and fuel-efficient mean of transportation used in rural or urban areas as an alternative to motorbikes or city cars. In some countries, they are also endorsed by local authorities and institutions which support small and environmentally-friendly vehicles. In this paper, several general considerations on quadricycles will be provided including the vehicle classification, evolution of regulations (as homologation, driver licence, emissions, etc, technical characteristics, safety requirements, most relevant investigations, and other additional useful information (e.g. references, links. It represents an important and actual topic of investigation for designers and manufacturers considering that the new EU regulation on the approval and market surveillance of quadricycles will soon enter in force providing conclusive requirements for functional safety environmental protection of these promising vehicles.

  20. Status of safety issues at licensed power plants: TMI action plan requirements, unresolved safety issues, generic safety issues

    International Nuclear Information System (INIS)

    1991-12-01

    As part of ongoing US Nuclear Regulatory Commission (NRC) efforts to ensure the quality and accountability of safety issue information, a program was established whereby an annual NUREG report would be published on the status of licensee implementation and NRC verification of safety issues in major NRC requirements areas. This information was compiled and reported in three NUREG volumes. Volume 1, published in March 1991, addressed the status of of Three Mile Island (TMI) Action Plan Requirements. Volume 2, published in May 1991, addressed the status of unresolved safety issues (USIs). Volume 3, published in June 1991, addressed the implementation and verification status of generic safety issues (GSIs). This annual NUREG report combines these volumes into a single report and provides updated information as of September 30, 1991. The data contained in these NUREG reports are a product of the NRC's Safety Issues Management System (SIMS) database, which is maintained by the Project Management Staff in the Office of Nuclear Reactor Regulation and by NRC regional personnel. This report is to provide a comprehensive description of the implementation and verification status of TMI Action Plan Requirements, safety issues designated as USIs, and GSIs that have been resolved and involve implementation of an action or actions by licensees. This report makes the information available to other interested parties, including the public. An additional purpose of this NUREG report is to serve as a follow-on to NUREG-0933, ''A Prioritization of Generic Safety Issues,'' which tracks safety issues up until requirements are approved for imposition at licensed plants or until the NRC issues a request for action by licensees

  1. Specification of advanced safety modeling requirements (Rev. 0).

    Energy Technology Data Exchange (ETDEWEB)

    Fanning, T. H.; Tautges, T. J.

    2008-06-30

    The U.S. Department of Energy's Global Nuclear Energy Partnership has lead to renewed interest in liquid-metal-cooled fast reactors for the purpose of closing the nuclear fuel cycle and making more efficient use of future repository capacity. However, the U.S. has not designed or constructed a fast reactor in nearly 30 years. Accurate, high-fidelity, whole-plant dynamics safety simulations will play a crucial role by providing confidence that component and system designs will satisfy established design limits and safety margins under a wide variety of operational, design basis, and beyond design basis transient conditions. Current modeling capabilities for fast reactor safety analyses have resulted from several hundred person-years of code development effort supported by experimental validation. The broad spectrum of mechanistic and phenomenological models that have been developed represent an enormous amount of institutional knowledge that needs to be maintained. Complicating this, the existing code architectures for safety modeling evolved from programming practices of the 1970s. This has lead to monolithic applications with interdependent data models which require significant knowledge of the complexities of the entire code in order for each component to be maintained. In order to develop an advanced fast reactor safety modeling capability, the limitations of the existing code architecture must be overcome while preserving the capabilities that already exist. To accomplish this, a set of advanced safety modeling requirements is defined, based on modern programming practices, that focuses on modular development within a flexible coupling framework. An approach for integrating the existing capabilities of the SAS4A/SASSYS-1 fast reactor safety analysis code into the SHARP framework is provided in order to preserve existing capabilities while providing a smooth transition to advanced modeling capabilities. In doing this, the advanced fast reactor safety models

  2. Responsibility for the Violation of Ecological Safety Requirements

    Science.gov (United States)

    Selivanovskaya, J. I.; Gilmutdinova, I.

    2018-01-01

    The article deals with the problems of responsibility for the violation of ecological safety requirements from the point of view of sustainable development of the state. Such types of responsibility as property, disciplinary, financial, administrative and criminal responsibility in the area are analysed. Suggestions on the improvement of legislation are put forward. Among other things it is suggested to introduce criminal sanctions against legal bodies (enterprises) for ecological crimes with punishments in the form of fines, suspension or discontinuation of activities.

  3. 77 FR 4897 - Safety Zone; M/V Del Monte Live-Fire Gun Exercise, James River, Isle of Wight, VA

    Science.gov (United States)

    2012-02-01

    ...-AA00 Safety Zone; M/V Del Monte Live-Fire Gun Exercise, James River, Isle of Wight, VA AGENCY: Coast... provide for the safety of life on navigable waters during the live-fire gun exercises on the M/V Del Monte... associated with the live-fire gun exercise. DATES: This rule is effective in the CFR on February 1, 2012...

  4. 76 FR 31848 - Safety Zone; M/V Del Monte Live-Fire Gun Exercise, James River, Isle of Wight, Virginia

    Science.gov (United States)

    2011-06-02

    ...-AA00 Safety Zone; M/V Del Monte Live-Fire Gun Exercise, James River, Isle of Wight, Virginia AGENCY... provide for the safety of life on navigable waters during the live-fire gun exercises on the M/V Del Monte... associated with the live-fire gun exercise. DATES: This rule will be effective from 11 a.m. June 6, 2011...

  5. Safety Assessment for Facilities and Activities. General Safety Requirements. Pt. 4

    International Nuclear Information System (INIS)

    2009-01-01

    The Safety Fundamentals publication, Fundamental Safety Principles, establishes principles for ensuring the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation. The objective of this Safety Requirements publication is to establish the generally applicable requirements to be fulfilled in safety assessment for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The publication also addresses the independent verification of the safety assessment that needs to be carried out by the originators and users of the safety assessment. This publication is intended to provide a consistent and coherent basis for safety assessment across all facilities and activities, which will facilitate the transfer of good practices between organizations conducting safety assessments and will assist in enhancing the confidence of all interested parties that an adequate level of safety has been achieved for facilities and activities. The requirements, which are derived from the Fundamental Safety Principles, relate to any human activity that may cause people to be exposed to radiation risks arising from facilities and activities, as follows: Facilities includes: (a) Nuclear power plants; (b) Other reactors (such as research reactors and critical assemblies); (c) Enrichment facilities and fuel fabrication facilities; (d) Conversion facilities used to generate UF6; (e) Storage and reprocessing plants for irradiated fuel; (f) Facilities for radioactive waste management where radioactive waste is treated, conditioned, stored or disposed of; (g) Any other places where radioactive materials are produced, processed, used, handled or stored; (h) Irradiation facilities for medical, industrial, research and other purposes, and any places where radiation generators are installed; (i

  6. Safety assessment for facilities and activities. General safety requirements. Pt. 4

    International Nuclear Information System (INIS)

    2009-01-01

    The Safety Fundamentals publication, Fundamental Safety Principles, establishes principles for ensuring the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation. The objective of this Safety Requirements publication is to establish the generally applicable requirements to be fulfilled in safety assessment for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The publication also addresses the independent verification of the safety assessment that needs to be carried out by the originators and users of the safety assessment. This publication is intended to provide a consistent and coherent basis for safety assessment across all facilities and activities, which will facilitate the transfer of good practices between organizations conducting safety assessments and will assist in enhancing the confidence of all interested parties that an adequate level of safety has been achieved for facilities and activities. The requirements, which are derived from the Fundamental Safety Principles, relate to any human activity that may cause people to be exposed to radiation risks arising from facilities and activities, as follows: Facilities includes: (a) Nuclear power plants; (b) Other reactors (such as research reactors and critical assemblies); (c) Enrichment facilities and fuel fabrication facilities; (d) Conversion facilities used to generate UF 6 ; (e) Storage and reprocessing plants for irradiated fuel; (f) Facilities for radioactive waste management where radioactive waste is treated, conditioned, stored or disposed of; (g) Any other places where radioactive materials are produced, processed, used, handled or stored; (h) Irradiation facilities for medical, industrial, research and other purposes, and any places where radiation generators are installed; (i

  7. Safety Assessment for Facilities and Activities. General Safety Requirements. Pt. 4

    International Nuclear Information System (INIS)

    2010-01-01

    The Safety Fundamentals publication, Fundamental Safety Principles, establishes principles for ensuring the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation. The objective of this Safety Requirements publication is to establish the generally applicable requirements to be fulfilled in safety assessment for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The publication also addresses the independent verification of the safety assessment that needs to be carried out by the originators and users of the safety assessment. This publication is intended to provide a consistent and coherent basis for safety assessment across all facilities and activities, which will facilitate the transfer of good practices between organizations conducting safety assessments and will assist in enhancing the confidence of all interested parties that an adequate level of safety has been achieved for facilities and activities. The requirements, which are derived from the Fundamental Safety Principles, relate to any human activity that may cause people to be exposed to radiation risks arising from facilities and activities, as follows: Facilities includes: (a) Nuclear power plants; (b) Other reactors (such as research reactors and critical assemblies); (c) Enrichment facilities and fuel fabrication facilities; (d) Conversion facilities used to generate UF6; (e) Storage and reprocessing plants for irradiated fuel; (f) Facilities for radioactive waste management where radioactive waste is treated, conditioned, stored or disposed of; (g) Any other places where radioactive materials are produced, processed, used, handled or stored; (h) Irradiation facilities for medical, industrial, research and other purposes, and any places where radiation generators are installed; (i

  8. Safety Assessment for Facilities and Activities. General Safety Requirements. Pt. 4

    International Nuclear Information System (INIS)

    2009-01-01

    The Safety Fundamentals publication, Fundamental Safety Principles, establishes principles for ensuring the protection of workers, the public and the environment, now and in the future, from harmful effects of ionizing radiation.? read more The objective of this Safety Requirements publication is to establish the generally applicable requirements to be fulfilled in safety assessment for facilities and activities, with special attention paid to defence in depth, quantitative analyses and the application of a graded approach to the ranges of facilities and of activities that are addressed. The publication also addresses the independent verification of the safety assessment that needs to be carried out by the originators and users of the safety assessment. This publication is intended to provide a consistent and coherent basis for safety assessment across all facilities and activities, which will facilitate the transfer of good practices between organizations conducting safety assessments and will assist in enhancing the confidence of all interested parties that an adequate level of safety has been achieved for facilities and activities. The requirements, which are derived from the Fundamental Safety Principles, relate to any human activity that may cause people to be exposed to radiation risks arising from facilities and activities, as follows: Facilities includes: (a) Nuclear power plants; (b) Other reactors (such as research reactors and critical assemblies); (c) Enrichment facilities and fuel fabrication facilities; (d) Conversion facilities used to generate UF6; (e) Storage and reprocessing plants for irradiated fuel; (f) Facilities for radioactive waste management where radioactive waste is treated, conditioned, stored or disposed of; (g) Any other places where radioactive materials are produced, processed, used, handled or stored; (h) Irradiation facilities for medical, industrial, research and other purposes, and any places where radiation generators are

  9. Novel PEPA-functionalized graphene oxide for fire safety enhancement of polypropylene

    International Nuclear Information System (INIS)

    Xu, Jia You; Liu, Jie; Li, Kai Dan; Miao, Lei; Tanemura, Sakae

    2015-01-01

    Polypropylene (PP) is a general-purpose plastic, but some applications are constrained by its high flammability. Thus, flame retardant PP is urgently demanded. In this article, intumescent flame retardant PP (IFRPP) composites with enhanced fire safety were prepared using 1-oxo-4-hydroxymethyl-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octane (PEPA) functionalized graphene oxide (PGO) as synergist. The PGO was prepared through a mild chemical reaction by the covalent attachment of a caged-structure organic compound, PEPA, onto GO nanosheets using toluene diisocynate (TDI) as the intermediary agent. The novel PEPA-functionalized graphene oxide not only improves the heat resistance of GO but also converts GO and PEPA from hydrophobic to hydrophilic materials, which leads to even distribution in PP. In our case, 7 wt% addition of PGO as one of the fillers for IFRPP composites significantly reduces its inflammability and fire hazards when compared with PEPA, by the improvement of first release rate peak (PHRR), total heat release, first smoke release rate peak (PSRR) and total smoke release, suggesting its great potential as the IFR synergist in industry. The reason is mainly attributed to the barrier effect of the unburned graphene sheets, which protects by the decomposition products of PEPA and TDI, promotes the formation of graphitized carbon and inhibits the heat and gas release. (paper)

  10. Novel PEPA-functionalized graphene oxide for fire safety enhancement of polypropylene

    Science.gov (United States)

    Xu, Jia You; Liu, Jie; Li, Kai Dan; Tanemura, Sakae

    2015-01-01

    Polypropylene (PP) is a general-purpose plastic, but some applications are constrained by its high flammability. Thus, flame retardant PP is urgently demanded. In this article, intumescent flame retardant PP (IFRPP) composites with enhanced fire safety were prepared using 1-oxo-4-hydroxymethyl-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octane (PEPA) functionalized graphene oxide (PGO) as synergist. The PGO was prepared through a mild chemical reaction by the covalent attachment of a caged-structure organic compound, PEPA, onto GO nanosheets using toluene diisocynate (TDI) as the intermediary agent. The novel PEPA-functionalized graphene oxide not only improves the heat resistance of GO but also converts GO and PEPA from hydrophobic to hydrophilic materials, which leads to even distribution in PP. In our case, 7 wt% addition of PGO as one of the fillers for IFRPP composites significantly reduces its inflammability and fire hazards when compared with PEPA, by the improvement of first release rate peak (PHRR), total heat release, first smoke release rate peak (PSRR) and total smoke release, suggesting its great potential as the IFR synergist in industry. The reason is mainly attributed to the barrier effect of the unburned graphene sheets, which protects by the decomposition products of PEPA and TDI, promotes the formation of graphitized carbon and inhibits the heat and gas release. PMID:27877775

  11. Root cause analysis for fire events at nuclear power plants

    International Nuclear Information System (INIS)

    1999-09-01

    Fire hazard has been identified as a major contributor to a plant' operational safety risk. The International nuclear power community (regulators, operators, designers) has been studying and developing tools for defending against this hazed. Considerable advances have been achieved during past two decades in design and regulatory requirements for fire safety, fire protection technology and related analytical techniques. The IAEA endeavours to provide assistance to Member States in improving fire safety in nuclear power plants. A task was launched by IAEA in 1993 with the purpose to develop guidelines and good practices, to promote advanced fire safety assessment techniques, to exchange state of the art information, and to provide engineering safety advisory services and training in the implementation of internationally accepted practices. This TECDOC addresses a systematic assessment of fire events using the root cause analysis methodology, which is recognized as an important element of fire safety assessment

  12. The Persuasive Power of Virtual Reality: Effects of Simulated Human Distress on Attitudes towards Fire Safety

    Science.gov (United States)

    Chittaro, Luca; Zangrando, Nicola

    Although virtual reality (VR) is a powerful simulation tool that can allow users to experience the effects of their actions in vivid and memorable ways, explorations of VR as a persuasive technology are rare. In this paper, we focus on different ways of providing negative feedback for persuasive purposes through simulated experiences in VR. The persuasive goal we consider concerns awareness of personal fire safety issues and the experiment we describe focuses on attitudes towards smoke in evacuating buildings. We test two techniques: the first technique simulates the damaging effects of smoke on the user through a visualization that should not evoke strong emotions, while the second is aimed at partially reproducing the anxiety of an emergency situation. The results of the study show that the second technique is able to increase user's anxiety as well as producing better results in attitude change.

  13. Fire safety aspects in cultural heritage : a case study in historical Delft

    NARCIS (Netherlands)

    Öhlin Lostetter, S.M.; Breunese, A.J.

    2005-01-01

    Fire is an important threat to cultural heritage. Therefore 12 fire laboratories and consultants across the EU have joined together for the European Thematic-Network Fire Risk Evaluation to European Cultural Heritage (Fire-Tech). The final goal of this thematic network was to develop a decision

  14. Safety requirements and safety experience of nuclear facilities in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Schnurer, H.L.

    1977-01-01

    Peaceful use of nuclear energy within the F.R.G. is rapidly growing. The Energy Programme of the Federal Government forecasts a capacity of up to 50.000 MW in 1985. Whereas most of this capacity will be of the LWR-Type, other activities are related to LMFBR - and HTGR - development, nuclear ships, and facilities of the nuclear fuel cycle. Safety of nuclear energy is the pacemaker for the realization of nuclear programmes and projects. Due to a very high population - and industrialisation density, safety has the priority before economical aspects. Safety requirements are therefore extremely stringent, which will be shown for the legal, the technical as well as for the organizational area. They apply for each nuclear facility, its site and the nuclear energy system as a whole. Regulatory procedures differ from many other countries, assigning executive power to state authorities, which are supervised by the Federal Government. Another particularity of the regulatory process is the large scope of involvement of independent experts within the licensing procedures. The developement of national safety requirements in different countries generates a necessity to collaborate and harmonize safety and radiation protection measures, at least for facilities in border areas, to adopt international standards and to assist nuclear developing countries. However, different nationally, regional or local situations might raise problems. Safety experience with nuclear facilities can be concluded from the positive construction and operation experience, including also a few accidents and incidents and the conclusions, which have been drawn for the respective factilities and others of similar design. Another tool for safety assessments will be risk analyses, which are under development by German experts. Final, a scope of future problems and developments shows, that safety of nuclear installations - which has reached a high performance - nevertheless imposes further tasks to be solved

  15. Fire protection in nuclear power plants. Pt. 3. Fire protection for mechanical and electrotechnical equipment and components

    International Nuclear Information System (INIS)

    1994-01-01

    The KTA rule applies to LWRs and defines requirements to be met for fire protection of equipment and installations of the safety system, and all safety-relevant systems, and of those operating systems that under the effect of fire, may cause improper functioning of safety system components. (orig./HP) [de

  16. 47 CFR 80.305 - Watch requirements of the Communications Act and the Safety Convention.

    Science.gov (United States)

    2010-10-01

    ... and the Safety Convention. 80.305 Section 80.305 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Safety Watch Requirements and Procedures Ship Station Safety Watches § 80.305 Watch requirements of the Communications Act and the Safety...

  17. FIRE SAFETY IN NUCLEAR POWER PLANTS: A RISK-INFORMED AND PERFORMANCE-BASED APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    AZARM,M.A.; TRAVIS,R.J.

    1999-11-14

    The consideration of risk in regulatory decision-making has long been a part of NRC's policy and practice. Initially, these considerations were qualitative and were based on risk insights. The early regulations relied on good practices, past insights, and accepted standards. As a result, most NRC regulations were prescriptive and were applied uniformly to all areas within the regulatory scope. Risk technology is changing regulations by prioritizing the areas within regulatory scope based on risk, thereby focusing on the risk-important areas. Performance technology, on the other hand, is changing the regulations by allowing requirements to be adjusted based on the specific performance expected and manifested, rather than a prior prescriptive requirement. Consistent with the objectives of risk-informed and performance-based regulatory requirements, BNL evaluated the feasibility of applying risk- and performance-technologies to modifying NRC's current regulations on fire protection for nuclear power plants. This feasibility study entailed several case studies (trial applications). This paper describes the results of two of them. Besides the case studies, the paper discusses an overall evaluation of methodologies for fire-risk analysis to support the risk-informed regulation. It identifies some current shortcomings and proposes some near-term solutions.

  18. FIRE SAFETY IN NUCLEAR POWER PLANTS: A RISK-INFORMED AND PERFORMANCE-BASED APPROACH

    International Nuclear Information System (INIS)

    AZARM, M.A.; TRAVIS, R.J.

    1999-01-01

    The consideration of risk in regulatory decision-making has long been a part of NRC's policy and practice. Initially, these considerations were qualitative and were based on risk insights. The early regulations relied on good practices, past insights, and accepted standards. As a result, most NRC regulations were prescriptive and were applied uniformly to all areas within the regulatory scope. Risk technology is changing regulations by prioritizing the areas within regulatory scope based on risk, thereby focusing on the risk-important areas. Performance technology, on the other hand, is changing the regulations by allowing requirements to be adjusted based on the specific performance expected and manifested, rather than a prior prescriptive requirement. Consistent with the objectives of risk-informed and performance-based regulatory requirements, BNL evaluated the feasibility of applying risk- and performance-technologies to modifying NRC's current regulations on fire protection for nuclear power plants. This feasibility study entailed several case studies (trial applications). This paper describes the results of two of them. Besides the case studies, the paper discusses an overall evaluation of methodologies for fire-risk analysis to support the risk-informed regulation. It identifies some current shortcomings and proposes some near-term solutions

  19. Safety climate in the US federal wildland fire management community: influences of organizational, environmental, group, and individual characteristics

    Science.gov (United States)

    Anne E. Black; Brooke Baldauf McBride

    2013-01-01

    This study examined the effects of organisational, environmental, group and individual characteristics on five components of safety climate (High Reliability Organising Practices, Leadership, Group Culture, Learning Orientation and Mission Clarity) in the US federal wildland fire management community. Of particular interest were differences between perceptions based on...

  20. Safety climate in the federal fire management community: Influences of organizational, environmental, group, and individual characteristics (Abstract)

    Science.gov (United States)

    Brooke Baldauf McBride; Anne E. Black

    2012-01-01

    This study examined the effects of organizational, environmental, group and individual characteristics on five components of safety climate in the US federal fire management community (HRO Practices, Leadership, Group Culture, Learning Orientation and Mission Clarity). Multiple analyses of variance revealed that all types of characteristics had a significant effect on...

  1. A Fire Safety Certification System for Board and Care Operators and Staff. SBIR Phase II: Final Report.

    Science.gov (United States)

    Walker, Bonnie L.

    This report describes Phase II of a project which developed a system for delivering fire safety training to board and care providers who serve adults with developmental disabilities. Phase II focused on developing and pilot testing a "train the trainers" workshop for instructors and field testing the provider's workshop. Evaluation of…

  2. A Fire Safety Certification System for Board and Care Operators and Staff. SBIR Phase I: Final Report.

    Science.gov (United States)

    Walker, Bonnie L.

    This report describes the development and pilot testing of a fire safety certification system for board and care operators and staff who serve clients with developmental disabilities. During Phase 1, training materials were developed, including a trainer's manual, a participant's coursebook a videotape, an audiotape, and a pre-/post test which was…

  3. Hazard analysis & safety requirements for small drone operations : to what extent do popular drones embed safety?

    NARCIS (Netherlands)

    Plioutsias, Anastasios; Karanikas, Nektarios; Chatzimichailidou, Maria Mikela

    2018-01-01

    Currently, published risk analyses for drones refer mainly to commercial systems, use data from civil aviation, and are based on probabilistic approaches without suggesting an inclusive list of hazards and respective requirements. Within this context, this paper presents: (1) a set of safety

  4. EPR meets the next generation PWR safety requirements

    International Nuclear Information System (INIS)

    Bouteille, Francois; Czech, Juergen; Sloan, Sandra

    2006-01-01

    At the origin was the common decision in 1989 of Framatome and Siemens to cooperate to design a Nuclear Island which meets the future needs of utilities. EDF and a group of main German Utilities joined this effort in 1991 and from that point were completely involved in the progress of the work. Compliance of the EPR with the European Utility Requirements (EUR) was verified to ensure a large acceptability of the design by other participating utilities. In addition, the entire process was backed up to the end of 1998 by the French and the German Safety Authorities which engaged into a long-lasting cooperation to define common requirements applicable to future Nuclear Power Plants. Upon signature of the Olkiluoto 3 contract, STUK, the Finnish safety and radiation authority, began reviewing the design of the EPR. Upon the favorable recommendation of STUK, the Finnish government delivered a Construction License for the Olkiluoto 3 NPP on February 17, 2005. Following the positive conclusion of the political debate in France with regard to nuclear energy, EDF will also submit a request to start the construction of an EPR on the Flamanville site. In the US, the first steps in view of a Design Certification by the NRC have been taken. These three independent decisions make the EPR the leading first generation 3+ design under construction. Important safety functions are assured by separate systems in a straightforward operating mode. Four separate, redundant trains for all safety systems are installed in four separate layout division for which a strict separation is ensured so that common mode failure, for example due to internal hazards, can be ruled out. A reduction in common mode failure potential is also obtained by design rules ensuring the systematic application of functional diversity. A four train-redundancy for the major safety systems provides flexibility in adapting the design to maintenance requirements, thus contributing to reduce the outage duration. Additional

  5. Safety requirements for long term operation of NPPs

    International Nuclear Information System (INIS)

    Houdre, T.; Osouf, N.; Juvin, J.-C.

    2012-01-01

    In the future, the reactors operating at present will run alongside reactors of the EPR type or their equivalent, designed for a significantly higher level of safety. This raises the question of the acceptability of continued operation of reactors beyond 40 years when there is an available technology that is safer. Two objectives are therefore imperative. First, a re-evaluation of the safety level in the light of that required of EPR type reactors or their equivalent is necessary, with proposals to bring about significant and relevant improvements to the reactors. R and D work in France and elsewhere is already indicating orientations that could lead to answers, and improvements that would provide significant reductions in release in case of severe accident are being studied. Second, strict compliance of the reactors with the applicable regulations must be demonstrated. At the same time, ageing and obsolescence of the equipment will have to be managed. Where these two points are concerned, ASN expects far-reaching proposals from the licensee. With a view to a request for continued operation beyond 40 years, ASN has referred the matter to the Advisory Committee for nuclear reactors which will meet at the end of 2011 to establish the safety requirements for reactors at their fourth ten-yearly outage. (author)

  6. Safety requirements for a nuclear power plant electric power system

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, L F; Shinaishin, M A

    1988-06-15

    This work aims at identifying the safety requirements for the electric power system in a typical nuclear power plant, in view of the UNSRC and the IAEA. Description of a typical system is provided, followed by a presentation of the scope of the information required for safety evaluation of the system design and performance. The acceptance and design criteria that must be met as being specified by both regulatory systems, are compared. Means of implementation of such criteria as being described in the USNRC regulatory guides and branch technical positions on one hand and in the IAEA safety guides on the other hand are investigated. It is concluded that the IAEA regulations address the problems that may be faced with in countries having varying grid sizes ranging from large stable to small potentially unstable ones; and that they put emphasis on the onsite standby power supply. Also, in this respect the Americans identify the grid as the preferred power supply to the plant auxiliaries, while the IAEA leaves the possibility that the preferred power supply could be either the grid or the unit main generator depending on the reliability of each. Therefore, it is found that it is particularly necessary in this area of electric power supplies to deal with the IAEA and the American sets of regulations as if each complements and not supplements the other. (author)

  7. Technical Safety Requirements for the Waste Storage Facilities May 2014

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-04-16

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts of waste from other DOE facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities.

  8. Technical Safety Requirements for the Waste Storage Facilities May 2014

    International Nuclear Information System (INIS)

    Laycak, D. T.

    2014-01-01

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts of waste from other DOE facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities.

  9. Requirements on the provisional safety analyses and technical comparison of safety measures

    International Nuclear Information System (INIS)

    2010-04-01

    decide on the provision of a design license for a repository site for SMA and another one for HAA, or for a common site for both SMA and HAA. The present report concerns the second step and recapitulates the assertions of SGT on the provisional safety analyses and on the safety technical comparison. It establishes the specific requirements of the Swiss Federal Nuclear Safety Inspectorate (ENSI) on provisional safety and the safety technical comparison. Further, it defines the extent and content of the safety technical documentation necessary for step 2

  10. [Storage of plant protection products in farms: minimum safety requirements].

    Science.gov (United States)

    Dutto, Moreno; Alfonzo, Santo; Rubbiani, Maristella

    2012-01-01

    Failure to comply with requirements for proper storage and use of pesticides in farms can be extremely hazardous and the risk of accidents involving farm workers, other persons and even animals is high. There are still wide differences in the interpretation of the concept of "securing or making safe", by workers in this sector. One of the critical points detected, particularly in the fruit sector, is the establishment of an adequate storage site for plant protection products. The definition of "safe storage of pesticides" is still unclear despite the recent enactment of Legislative Decree 81/2008 regulating health and work safety in Italy. In addition, there are no national guidelines setting clear minimum criteria for storage of plant protection products in farms. The authors, on the basis of their professional experience and through analysis of recent legislation, establish certain minimum safety standards for storage of pesticides in farms.

  11. Safety-related requirements for photovoltaic modules and arrays

    Science.gov (United States)

    Levins, A.; Smoot, A.; Wagner, R.

    1984-01-01

    Safety requirements for photovoltaic module and panel designs and configurations for residential, intermediate, and large scale applications are investigated. Concepts for safety systems, where each system is a collection of subsystems which together address the total anticipated hazard situation, are described. Descriptions of hardware, and system usefulness and viability are included. A comparison of these systems, as against the provisions of the 1984 National Electrical Code covering photovoltaic systems is made. A discussion of the Underwriters Laboratory UL investigation of the photovoltaic module evaluated to the provisions of the proposed UL standard for plat plate photovoltaic modules and panels is included. Grounding systems, their basis and nature, and the advantages and disadvantages of each are described. The meaning of frame grounding, circuit groundings, and the type of circuit ground are covered.

  12. Evaluation and qualification of novel control techniques with safety requirements

    International Nuclear Information System (INIS)

    Gossner, S.; Wach, D.

    1985-01-01

    The paper discusses the questions related to the assessment and qualification of new I and C-systems. The tasks of nuclear power plant I and Cs as well as the efficiency of the new techniques are reflected. Problems with application of new I and Cs and the state of application in Germany and abroad are addressed. Starting from the essential differencies between conventional and new I and C-systems it is evaluated, if and in which way existing safety requirements can be met and to what extent new requirements need to be formulated. An overall concept has to be developed comprising the definition of graded requirement profiles for design and qualification. Associated qualification procedures and tools have to be adapted, developed and tuned upon each other. (orig./HP) [de

  13. Health and safety plan for the removal action at the former YS-860 Firing Ranges, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-28

    This health and safety plan sets forth the requirements and procedures to protect the personnel involved in the Lead Source Removal Project at the Former YS-86O Firing Ranges. This project will be conducted in a manner that ensures the protection of the safety and health of workers, the public, and the environment. The purpose of this removal action is to address lead contaminated soil and reduce a potential risk to human health and the environment. This site is an operable unit within the Upper East Fork Poplar Creek watershed. The removal action will contribute to early source actions within the watershed. The project will accomplish this through the removal of lead-contaminated soil in the target areas of the two small arms firing ranges. This plan covers the removal actions at the Former YS-86O Firing Ranges. These actions involve the excavation of lead-contaminated soils, the removal of the concrete trench and macadam (asphalt) paths, verification/confirmation sampling, grading and revegetation. The primary hazards include temperature extremes, equipment operation, noise, potential lead exposure, uneven and slippery working surfaces, and insects.

  14. Health and safety plan for the removal action at the former YS-860 Firing Ranges, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-01-01

    This health and safety plan sets forth the requirements and procedures to protect the personnel involved in the Lead Source Removal Project at the Former YS-86O Firing Ranges. This project will be conducted in a manner that ensures the protection of the safety and health of workers, the public, and the environment. The purpose of this removal action is to address lead contaminated soil and reduce a potential risk to human health and the environment. This site is an operable unit within the Upper East Fork Poplar Creek watershed. The removal action will contribute to early source actions within the watershed. The project will accomplish this through the removal of lead-contaminated soil in the target areas of the two small arms firing ranges. This plan covers the removal actions at the Former YS-86O Firing Ranges. These actions involve the excavation of lead-contaminated soils, the removal of the concrete trench and macadam (asphalt) paths, verification/confirmation sampling, grading and revegetation. The primary hazards include temperature extremes, equipment operation, noise, potential lead exposure, uneven and slippery working surfaces, and insects

  15. Legal and governmental infrastructure for nuclear, radiation, radioactive waste and transport safety. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    This publication establishes requirements for legal and governmental responsibilities in respect of the safety of nuclear facilities, the safe use of sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material. Thus, it covers development of the legal framework for establishing a regulatory body and other actions to achieve effective regulatory control of facilities and activities. Other responsibilities are also covered, such as those for developing the necessary support for safety, involvement in securing third party liability and emergency preparedness

  16. Legal and governmental infrastructure for nuclear, radiation, radioactive waste and transport safety. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    This publication establishes requirements for legal and governmental responsibilities in respect of the safety of nuclear facilities, the safe use of sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material. Thus, it covers development of the legal framework for establishing a regulatory body and other actions to achieve effective regulatory control of facilities and activities. Other responsibilities are also covered, such as those for developing the necessary support for safety, involvement in securing third party liability and emergency preparedness

  17. Parents' Depressive Symptoms and Gun, Fire, and Motor Vehicle Safety Practices.

    Science.gov (United States)

    Morrissey, Taryn W

    2016-04-01

    This study examined associations between mothers' and fathers' depressive symptoms and their parenting practices relating to gun, fire, and motor vehicle safety. Using data from the Early Childhood Longitudinal Study-Birth Cohort (ECLS-B), a nationally representative sample of children birth to age five, linear probability models were used to examine associations between measures of parents' depressive symptoms and their use of firearms, smoke detectors, and motor vehicle restraints. Parents reported use of smoke detectors, motor vehicle restraints, and firearm ownership and storage. Results suggest mothers with moderate or severe depressive symptoms were 2 % points less likely to report that their child always sat in the back seat of the car, and 3 % points less likely to have at least one working smoke detector in the home. Fathers' depressive symptoms were associated with a lower likelihood of both owning a gun and of it being stored locked. Fathers' depressive symptoms amplified associations between mothers' depressive symptoms and owning a gun, such that having both parents exhibit depressive symptoms was associated with an increased likelihood of gun ownership of between 2 and 6 % points. Interventions that identify and treat parental depression early may be effective in promoting appropriate safety behaviors among families with young children.

  18. 41 CFR 102-80.85 - Are Federally owned and leased buildings exempt from State and local code requirements in fire...

    Science.gov (United States)

    2010-07-01

    ... leased buildings exempt from State and local code requirements in fire protection? 102-80.85 Section 102... Fire Prevention State and Local Codes § 102-80.85 Are Federally owned and leased buildings exempt from State and local code requirements in fire protection? Federally owned buildings are generally exempt...

  19. Improving freight fire safety : experiment testing and computer modeling to further development of mist-controlling additives for fire mitigation.

    Science.gov (United States)

    2012-08-01

    With the purpose to minimize or prevent crash-induced fires in road and rail transportation, the : current interest in bio-derived and blended transportation fuels is increasing. Based on two years : of preliminary testing and analysis, it appears to...

  20. CFD simulation of a fire in the living area of three storey residential house to evaluate life safety in houses

    International Nuclear Information System (INIS)

    Bounagui, A.; Benichou, N.; Kashef, A.; McCartney, C.

    2004-01-01

    Over time there have been changes in construction practices, building designs and materials and construction technologies. The Institute for Research in Construction (IRC) at the National Research Council of Canada (NRC) is undertaking research project to determine the impact of innovative residential construction products and systems on the fire safety of houses. The research study includes two phases: experimental and numerical. A new three-level full-scale experimental facility, representing a typical single-family house, has been built to study the structural fire performance, smoke movement and tenability conditions in the event of a fire. In the event of a fire in the first storey of a house, fire and smoke can move up to the main and second floors either through an open door or any openings in the floor structure between the basement and the main floor rendering the upper floor untenable for the occupants. Using CFD simulations this paper investigates the effect of the state of a stairwell door (opened or closed) on the fire development as well as on the moving up of the toxic gases to the upper floors. Simulation results were then used to estimate the time when conditions would become untenable, based on criteria found in the literature. (author)

  1. 10 CFR 36.27 - Fire protection.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Fire protection. 36.27 Section 36.27 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance Requirements for Irradiators § 36.27 Fire protection. (a) The radiation room at a panoramic irradiator must...

  2. The actual development of European aviation safety requirements in aviation medicine: prospects of future EASA requirements.

    Science.gov (United States)

    Siedenburg, J

    2009-04-01

    Common Rules for Aviation Safety had been developed under the aegis of the Joint Aviation Authorities in the 1990s. In 2002 the Basic Regulation 1592/2002 was the founding document of a new entity, the European Aviation Safety Agency. Areas of activity were Certification and Maintenance of aircraft. On 18 March the new Basic Regulation 216/2008, repealing the original Basic Regulation was published and applicable from 08 April on. The included Essential Requirements extended the competencies of EASA inter alia to Pilot Licensing and Flight Operations. The future aeromedical requirements will be included as Annex II in another Implementing Regulation on Personnel Licensing. The detailed provisions will be published as guidance material. The proposals for these provisions have been published on 05 June 2008 as NPA 2008- 17c. After public consultation, processing of comments and final adoption the new proposals may be applicable form the second half of 2009 on. A transition period of four year will apply. Whereas the provisions are based on Joint Aviation Requirement-Flight Crew Licensing (JAR-FCL) 3, a new Light Aircraft Pilot Licence (LAPL) project and the details of the associated medical certification regarding general practitioners will be something new in aviation medicine. This paper consists of 6 sections. The introduction outlines the idea of international aviation safety. The second section describes the development of the Joint Aviation Authorities (JAA), the first step to common rules for aviation safety in Europe. The third section encompasses a major change as next step: the foundation of the European Aviation Safety Agency (EASA) and the development of its rules. In the following section provides an outline of the new medical requirements. Section five emphasizes the new concept of a Leisure Pilot Licence. The last section gives an outlook on ongoing rulemaking activities and the opportunities of the public to participate in them.

  3. Operation of Browns Ferry, Units 1 and 2 following the March 22, 1975 fire. Safety evaluation report

    International Nuclear Information System (INIS)

    1976-03-01

    The Safety Evaluation Report issued February 23, 1976, presents the NRC evaluation regarding the acceptability of the restoration and modifications at the Browns Ferry Plant Units 1 and 2, following the March 22, 1975 fire, to establish that the facility may be operated in the restored and modified condition without endangering the health and safety of the public. The modifications involved enhancing separation of redundant safeguards equipment by some rerouting of cable and by the application of a fire-retardant coating to the cable; enhancing fire extinguishing capability by the addition of fixed spray and sprinkler systems and expanded smoke and heat detection systems; and enhancing the overall fire protection program by changes in procedures, training, and organization. The NRC staff indicated some items that remained to be resolved prior to operation and concluded that subject to their satisfactory resolution the restoration of Browns Ferry Nuclear Plants Units 1 and 2 including the modifications is acceptable and that there is reasonable assurance that the health and safety of the public will not be endangered by operation of the facility as restored and modified

  4. Nuclear safety requirements for operation licensing of Egyptian research reactors

    International Nuclear Information System (INIS)

    Ahmed, E.E.M.; Rahman, F.A.

    2000-01-01

    From the view of responsibility for health and nuclear safety, this work creates a framework for the application of nuclear regulatory rules to ensure safe operation for the sake of obtaining or maintaining operation licensing for nuclear research reactors. It has been performed according to the recommendations of the IAEA for research reactor safety regulations which clearly states that the scope of the application should include all research reactors being designed, constructed, commissioned, operated, modified or decommissioned. From that concept, the present work establishes a model structure and a computer logic program for a regulatory licensing system (RLS code). It applies both the regulatory inspection and enforcement regulatory rules on the different licensing process stages. The present established RLS code is then applied to the Egyptian Research Reactors, namely; the first ET-RR-1, which was constructed and still operating since 1961, and the second MPR research reactor (ET-RR-2) which is now in the preliminary operation stage. The results showed that for the ET-RR-1 reactor, all operational activities, including maintenance, in-service inspection, renewal, modification and experiments should meet the appropriate regulatory compliance action program. Also, the results showed that for the new MPR research reactor (ET-RR-2), all commissioning and operational stages should also meet the regulatory inspection and enforcement action program of the operational licensing safety requirements. (author)

  5. Safety requirements and feedback of commonly used material handling equipment

    International Nuclear Information System (INIS)

    Pathak, M.K.

    2009-01-01

    Different types of cranes, hoists, chain pulley blocks are the most commonly used material handling equipment in industry along with attachments like chains, wire rope slings, d-shackles, etc. These equipment are used at work for transferring loads from one place to another and attachments are used for anchoring, fixing or supporting the load. Selection of the correct equipment, identification of the equipment planning of material handling operation, examination/testing of the equipment, education and training of the persons engaged in operation of the material handling equipment can reduce the risks to safety of people in workplace. Different safety systems like boom angle indicator, overload tripping device, limit switches, etc. should be available in the cranes for their safe use. Safety requirement for safe operation of material handling equipment with emphasis on different cranes and attachments particularly wire rope slings and chain slings have been brought out in this paper. An attempt has also been made to bring out common nature of deficiencies observed during regulatory inspection carried out by AERB. (author)

  6. Safety requirements and options for a large size fast neutron reactor

    International Nuclear Information System (INIS)

    Cogne, F.; Megy, J.; Robert, E.; Benmergui, A.; Villeneuve, J.

    1977-01-01

    Starting from the experience gained in the safety evaluation of the PHENIX reactor, and from results already obtained in the safety studies on fast neutron reactors, the French regulatory bodies have defined since 1973 what could be the requirements and the recommendations in the matter of safety for the first large size ''prototype'' fast neutron power plant of 1200 MWe. Those requirements and recommendations, while not being compulsory due to the evolution of this type of reactors, will be used as a basis for the technical regulation that will be established in France in this field. They define particularly the care to be taken in the following areas which are essential for safety: the protection systems, the primary coolant system, the prevention of accidents at the core level, the measures to be taken with regard to the whole core accident and to the containment, the protection against sodium fires, and the design as a function of external aggressions. In applying these recommendations, the CREYS-MALVILLE plant designers have tried to achieve redundancy in the safety related systems and have justified the safety of the design with regard to the various involved phenomena. In particular, the extensive research made at the levels of the fuel and of the core instrumentation makes it possible to achieve the best defence to avoid the development of core accidents. The overall examination of the measures taken, from the standpoint of prevention and surveyance as well as from the standpoint of means of action led the French regulatory bodies to propose the construction permit of the CREYS MALVILLE plant, provided that additional examinations by the regulatory bodies be made during the construction of the plant on some technological aspects not fully clarified at the authorization time. The conservatism of the corresponding requirements should be demonstrated prior to the commissioning of the power plant. To pursue a programme on reactors of this type, or even more

  7. 78 FR 65427 - Pipeline Safety: Reminder of Requirements for Liquefied Petroleum Gas and Utility Liquefied...

    Science.gov (United States)

    2013-10-31

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2013-0097] Pipeline Safety: Reminder of Requirements for Liquefied Petroleum Gas and Utility Liquefied Petroleum Gas Pipeline Systems AGENCY: Pipeline and Hazardous Materials Safety Administration...

  8. Supervision of nuclear safety - IAEA requirements, accepted solutions, trends

    International Nuclear Information System (INIS)

    Jurkowski, M.

    2007-01-01

    Ten principles of the nuclear safety, based on the IAEA's standards are presented. Convention on Nuclear Safety recommends for nuclear safety landscape, the control transparency, culture safety, legal framework and knowledge preservation. Examples of solutions accepted in France, Finland, and Czech Republic are discussed. New trends in safety fundamentals and Integration Regulatory Review are presented

  9. Fuel characterization requirements for cofiring biomass in coal-fired boilers

    International Nuclear Information System (INIS)

    Prinzing, D.E.; Tillman, D.A.; Harding, N.S.

    1993-01-01

    The cofiring of biofuels with coal in existing boilers, or the cofiring of biofuels in combined cycle combustion turbine (CCCT) systems presents significant potential benefits to utilities, including reductions in SO 2 and NO x emissions as a function of reducing the mass flow of sulfur and nitrogen to the boiler, reducing CO 2 emissions from the combustion of fossil fuels; potentially reducing fuel costs both by the availability of wood residues and by the fact that biofuels are exempt from the proposed BTU tax; and providing support to industrial customers from the forest products industry. At the same time, cofiring requires careful attention to the characterization of the wood and coal, both singly and in combination. This paper reviews characterization requirements associated with cofiring biofuels and fossil fuels in boilers and CCCT installations with particular attention not only to such concerns as sulfur, nitrogen, moisture, and Btu content, but also to such issues as total ash content, base/acid ratio of the wood ash and the coal ash, alkali metal content in the wood ash and wood fuel (including converted fuels such as low Btu gas or pyrolytic oil), slagging and fouling indices, ash fusion temperature, and trace metal contents in the wood and coal. The importance of each parameter is reviewed, along with potential consequences of a failure to adequately characterize these parameters. The consequences of these parameters are reviewed with attention to firing biofuels with coal in pulverized coal (PC) and cyclone boilers, and firing biofuels with natural gas in CCCT installations

  10. Technical Safety Requirements for the B695 Segment

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D

    2008-09-11

    This document contains Technical Safety Requirements (TSRs) for the Radioactive and Hazardous Waste Management (RHWM) Division's B695 Segment of the Decontamination and Waste Treatment Facility (DWTF) at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the B695 Segment. The TSRs are derived from the Documented Safety Analysis (DSA) for the B695 Segment (LLNL 2007). The analysis presented there determined that the B695 Segment is a low-chemical hazard, Hazard Category 3, nonreactor nuclear facility. The TSRs consist primarily of inventory limits as well as controls to preserve the underlying assumptions in the hazard analyses. Furthermore, appropriate commitments to safety programs are presented in the administrative controls section of the TSRs. The B695 Segment (B695 and the west portion of B696) is a waste treatment and storage facility located in the northeast quadrant of the LLNL main site. The approximate area and boundary of the B695 Segment are shown in the B695 Segment DSA. Activities typically conducted in the B695 Segment include container storage, lab-packing, repacking, overpacking, bulking, sampling, waste transfer, and waste treatment. B695 is used to store and treat radioactive, mixed, and hazardous waste, and it also contains equipment used in conjunction with waste processing operations to treat various liquid and solid wastes. The portion of the building called Building 696 Solid Waste Processing Area (SWPA), also referred to as B696S in this report, is used primarily to manage solid radioactive, mixed, and hazardous waste. Operations specific to the SWPA include sorting and segregating waste, lab-packing, sampling, and crushing empty drums that previously contained waste. Furthermore, a Waste Packaging Unit will be permitted to treat hazardous and mixed waste. RHWM generally processes LLW with no, or extremely low, concentrations of transuranics (i.e., much less than 100 n

  11. Technical Safety Requirements for the B695 Segment

    International Nuclear Information System (INIS)

    Laycak, D.

    2008-01-01

    This document contains Technical Safety Requirements (TSRs) for the Radioactive and Hazardous Waste Management (RHWM) Division's B695 Segment of the Decontamination and Waste Treatment Facility (DWTF) at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the B695 Segment. The TSRs are derived from the Documented Safety Analysis (DSA) for the B695 Segment (LLNL 2007). The analysis presented there determined that the B695 Segment is a low-chemical hazard, Hazard Category 3, nonreactor nuclear facility. The TSRs consist primarily of inventory limits as well as controls to preserve the underlying assumptions in the hazard analyses. Furthermore, appropriate commitments to safety programs are presented in the administrative controls section of the TSRs. The B695 Segment (B695 and the west portion of B696) is a waste treatment and storage facility located in the northeast quadrant of the LLNL main site. The approximate area and boundary of the B695 Segment are shown in the B695 Segment DSA. Activities typically conducted in the B695 Segment include container storage, lab-packing, repacking, overpacking, bulking, sampling, waste transfer, and waste treatment. B695 is used to store and treat radioactive, mixed, and hazardous waste, and it also contains equipment used in conjunction with waste processing operations to treat various liquid and solid wastes. The portion of the building called Building 696 Solid Waste Processing Area (SWPA), also referred to as B696S in this report, is used primarily to manage solid radioactive, mixed, and hazardous waste. Operations specific to the SWPA include sorting and segregating waste, lab-packing, sampling, and crushing empty drums that previously contained waste. Furthermore, a Waste Packaging Unit will be permitted to treat hazardous and mixed waste. RHWM generally processes LLW with no, or extremely low, concentrations of transuranics (i.e., much less than 100 n

  12. Decommissioning of Facilities. General Safety Requirements. Pt. 6

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-15

    Decommissioning is the last step in the lifetime management of a facility. It must also be considered during the design, construction, commissioning and operation of facilities. This publication establishes requirements for the safe decommissioning of a broad range of facilities: nuclear power plants, research reactors, nuclear fuel cycle facilities, facilities for processing naturally occurring radioactive material, former military sites, and relevant medical, industrial and research facilities. It addresses all the aspects of decommissioning that are required to ensure safety, aspects such as roles and responsibilities, strategy and planning for decommissioning, conduct of decommissioning actions and termination of the authorization for decommissioning. It is intended for use by those involved in policy development, regulatory control and implementation of decommissioning.

  13. Decommissioning of Facilities. General Safety Requirements. Pt. 6 (Spanish Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    Decommissioning is the last step in the lifetime management of a facility. It must also be considered during the design, construction, commissioning and operation of facilities. This publication establishes requirements for the safe decommissioning of a broad range of facilities: nuclear power plants, research reactors, nuclear fuel cycle facilities, facilities for processing naturally occurring radioactive material, former military sites, and relevant medical, industrial and research facilities. It addresses all the aspects of decommissioning that are required to ensure safety, aspects such as roles and responsibilities, strategy and planning for decommissioning, conduct of decommissioning actions and termination of the authorization for decommissioning. It is intended for use by those involved in policy development, regulatory control and implementation of decommissioning.

  14. Decommissioning of Facilities. General Safety Requirements. Pt. 6 (Russian Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    Decommissioning is the last step in the lifetime management of a facility. It must also be considered during the design, construction, commissioning and operation of facilities. This publication establishes requirements for the safe decommissioning of a broad range of facilities: nuclear power plants, research reactors, nuclear fuel cycle facilities, facilities for processing naturally occurring radioactive material, former military sites, and relevant medical, industrial and research facilities. It addresses all the aspects of decommissioning that are required to ensure safety, aspects such as roles and responsibilities, strategy and planning for decommissioning, conduct of decommissioning actions and termination of the authorization for decommissioning. It is intended for use by those involved in policy development, regulatory control and implementation of decommissioning

  15. Fire protection

    International Nuclear Information System (INIS)

    Janetzky, E.

    1980-01-01

    Safety and fire prevention measurements have to be treated like the activities developing, planning, construction and erection. Therefore it is necessary that these measurements have to be integrated into the activities mentioned above at an early stage in order to guarantee their effectiveness. With regard to fire accidents the statistics of the insurance companies concerned show that the damage caused increased in the last years mainly due to high concentration of material. Organization of fire prevention and fire fighting, reasons of fire break out, characteristics and behaviour of fire, smoke and fire detection, smoke and heat venting, fire extinguishers (portable and stationary), construction material in presence of fire, respiratory protection etc. will be discussed. (orig./RW)

  16. IoT-Based Intelligent Modeling of Smart Home Environment for Fire Prevention and Safety

    Directory of Open Access Journals (Sweden)

    Faisal Saeed

    2018-03-01

    Full Text Available Fires usually occur in homes because of carelessness and changes in environmental conditions. They cause threats to the residential community and may result in human death and property damage. Consequently, house fires must be detected early to prevent these types of threats. The immediate notification of a fire is the most critical issue in domestic fire detection systems. Fire detection systems using wireless sensor networks sometimes do not detect a fire as a consequence of sensor failure. Wireless sensor networks (WSN consist of tiny, cheap, and low-power sensor devices that have the ability to sense the environment and can provide real-time fire detection with high accuracy. In this paper, we designed and evaluated a wireless sensor network using multiple sensors for early detection of house fires. In addition, we used the Global System for Mobile Communications (GSM to avoid false alarms. To test the results of our fire detection system, we simulated a fire in a smart home using the Fire Dynamics Simulator and a language program. The simulation results showed that our system is able to detect early fire, even when a sensor is not working, while keeping the energy consumption of the sensors at an acceptable level.

  17. Propulsion and Energetics Panel Working Group 11 on Aircraft Fire Safety. Volume 2. Main Report

    Science.gov (United States)

    1979-11-01

    which make burning metal particles a potent igni- tion source and extinguishment of bulk metal fires a difficult task. In the latter case, the difficulty...aircraft to fires induced by uncon- tained engine failures and internal engine metal fires . With respect to the uncontained engine failure current engine

  18. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements. Pt. 3 (Chinese Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  19. Radiation protection and safety of radiation sources: International basic safety standards. General safety requirements. Pt. 3 (French Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  20. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements. Pt. 3 (Arabic Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  1. 42 CFR 3.210 - Required disclosure of patient safety work product to the Secretary.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Required disclosure of patient safety work product... HUMAN SERVICES GENERAL PROVISIONS PATIENT SAFETY ORGANIZATIONS AND PATIENT SAFETY WORK PRODUCT Confidentiality and Privilege Protections of Patient Safety Work Product § 3.210 Required disclosure of patient...

  2. Technical safety requirements for the Annular Core Research Reactor Facility (ACRRF)

    International Nuclear Information System (INIS)

    Boldt, K.R.; Morris, F.M.; Talley, D.G.; McCrory, F.M.

    1998-01-01

    The Technical Safety Requirements (TSR) document is prepared and issued in compliance with DOE Order 5480.22, Technical Safety Requirements. The bases for the TSR are established in the ACRRF Safety Analysis Report issued in compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports. The TSR identifies the operational conditions, boundaries, and administrative controls for the safe operation of the facility

  3. Development of Human Factors Engineering Requirements for Fire Fighting Protective Equipment

    National Research Council Canada - National Science Library

    Hopmeier, Michael; Christen, Hank T; Malone, Michael V

    2005-01-01

    This report is the result of an effort to develop an understanding of fire fighter needs through an assessment of relevant research and fire fighter-related literature, forums, conferences, and symposia...

  4. Basing of a complex design measures for protection against fire

    International Nuclear Information System (INIS)

    Kryuger, V.

    1983-01-01

    Fire impact on NPP radiation safety is analyzed. The general industry requirements to the protection system against fire are shown to be insufficient for NPPs. A complex of protection measures against fire is suggested that should be taken into account in the NPP designs [ru

  5. Filter safety tests under solvent fire in a cell of nuclear-fuel reprocessing plant

    International Nuclear Information System (INIS)

    Nishio, Gunji

    1988-01-01

    In a nuclear-fuel reprocessing plant, a solvent fire in an extraction process is postulated. Since 1983, large scale solvent fire tests were carried out by Fire/Filter Facility to demonstrate solvent burning behavior in the cell, HEPA filter integrity by the fire and radioactive confinement by air-ventilation of the plant under postulated fire conditions. From results of 30 % TBP-70 % n-dodecane fire, burning rate of solvent in the cell, smoke generation rate and smoke deposition onto duct surface were obtained by a relation between air-ventilation rate into the cell and burning surface area of the solvent. The endurance of HEPA filter due to smoke plugging was measured by a pressure drop across the filter during the fire. The confinement of radioactive materials from the burning solvent was determined by the measurement of airborne concentrations in the cell for stable nuclei simulated fission products, radioactive tracers and uranium nitrate. (author)

  6. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Russian Edition); Bezopasnost' atomnykh ehlektrostantsij: proektirovanie. Konkretnye trebovaniya bezopasnosti

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-04-15

    This publication is a revision of Safety Requirements No. NS-R-1, Safety of Nuclear Power Plants: Design. It establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in the design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  7. Games that "work": using computer games to teach alcohol-affected children about fire and street safety.

    Science.gov (United States)

    Coles, Claire D; Strickland, Dorothy C; Padgett, Lynne; Bellmoff, Lynnae

    2007-01-01

    Unintentional injuries are a leading cause of death and disability for children. Those with developmental disabilities, including children affected by prenatal alcohol exposure, are at highest risk for injuries. Although teaching safety skills is recommended to prevent injury, cognitive limitations and behavioral problems characteristic of children with fetal alcohol spectrum disorder make teaching these skills challenging for parents and teachers. In the current study, 32 children, ages 4-10, diagnosed with fetal alcohol syndrome (FAS) and partial FAS, learned fire and street safety through computer games that employed "virtual worlds" to teach recommended safety skills. Children were pretested on verbal knowledge of four safety elements for both fire and street safety conditions and then randomly assigned to one condition. After playing the game until mastery, children were retested verbally and asked to "generalize" their newly acquired skills in a behavioral context. They were retested after 1 week follow-up. Children showed significantly better knowledge of the game to which they were exposed, immediately and at follow-up, and the majority (72%) was able to generalize all four steps within a behavioral setting. Results suggested that this is a highly effective method for teaching safety skills to high-risk children who have learning difficulties.

  8. 46 CFR 27.209 - What are the requirements for training crews to respond to fires?

    Science.gov (United States)

    2010-10-01

    ... are familiar with their fire-fighting duties, and, specifically, with the following contingencies: (1) Fighting a fire in the engine room and elsewhere on board the vessel, including how to— (i) Operate all of the fire-extinguishing equipment on board the vessel; (ii) Stop any mechanical ventilation system for...

  9. Alternative approach for fire suppression of class A, B and C fires in gloveboxes

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberger, Mark S [Los Alamos National Laboratory; Tsiagkouris, James A [Los Alamos National Laboratory

    2011-02-10

    Department of Energy (DOE) Orders and National Fire Protection Association (NFPA) Codes and Standards require fire suppression in gloveboxes. Several potential solutions have been and are currently being considered at Los Alamos National Laboratory (LANL). The objective is to provide reliable, minimally invasive, and seismically robust fire suppression capable of extinguishing Class A, B, and C fires; achieve compliance with DOE and NFPA requirements; and provide value-added improvements to fire safety in gloveboxes. This report provides a brief summary of current approaches and also documents the successful fire tests conducted to prove that one approach, specifically Fire Foe{trademark} tubes, is capable of achieving the requirement to provide reliable fire protection in gloveboxes in a cost-effective manner.

  10. Technical Safety Requirements for the Waste Storage Facilities

    International Nuclear Information System (INIS)

    Larson, H L

    2007-01-01

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage

  11. Technical Safety Requirements for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Larson, H L

    2007-09-07

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage

  12. [Protecting Safety During Dust Fires and Dust Explosions - The Example of the Formosa Fun Coast Water Park Accident].

    Science.gov (United States)

    Hsieh, Ming-Hong; Wu, Jia-Wun; Li, Ya-Cing; Tang, Jia-Suei; Hsieh, Chun-Chien

    2016-02-01

    This paper will explore the fire and explosion characteristics of cornstarch powder as well as strategies for protecting the safety of people who are involved a dust fire or dust explosion. We discuss the 5 elements of dust explosions and conduct tests to analyze the fire and explosion characteristics of differently colored powders (yellow, golden yellow, pink, purple, orange and green). The results show that, while all of the tested powders were difficult to ignite, low moisture content was associated with significantly greater risks of ignition and flame spread. We found the auto-ignition temperature (AIT) of air-borne cornstarch powder to be between 385°C and 405°C, with yellow-colored cornstarch powder showing the highest AIT and pink-colored cornstarch powder showing the lowest AIT. The volume resistivity of all powder samples was approximately 108 Ω.m, indicating that they were nonconductive. Lighters and cigarettes are effective ignition sources, as their lit temperatures are higher than the AIT of cornstarch powder. In order to better protect the safety of individuals at venues where cornstarch powder is released, explosion control measures such as explosion containment facilities, vents, and explosion suppression and isolation devices should be installed. Furthermore, employees that work at these venues should be better trained in explosion prevention and control measures. We hope this article is a reminder to the public to recognize the fire and explosion characteristics of flammable powders as well as the preventive and control measures for dust explosions.

  13. Irradiated ignition over solid materials in reduce pressure environment: Fire safety issue in man-made enclosure system

    Science.gov (United States)

    Nakamura, N.; Aoki, A.

    Effects of ambient pressure and oxygen yield on irradiated ignition characteristics over solid combustibles have been studied experimentally Aim of the present study is to elucidate the flammability and chance of fire in depressurized enclosure system and give ideas for the fire safety and fire fighting strategies in such environment Thin cellulosic paper is considered as the solid combustible since cellulose is one of major organic compounds and flammables in the nature Applied atmosphere consists of inert gas either CO2 or N2 and oxygen and various mixture ratios are of concerned Total ambient pressure level is varied from 0 1MPa standard atmospheric pressure to 0 02MPa Ignition is initiated by external thermal flux exposed into the solid surface as a model of unexpected thermal input to initiate the localized fire Thermal degradation of the solid induces combustible gaseous products e g CO H2 or other low class of HCs and the gas mixes with ambient oxygen to form the combustible mixture over the solid Heat transfer from the hot irradiated surface into the mixture accelerates the local exothermic reaction in the gas phase and finally thermal runaway ignition is achieved Ignition event is recorded by high-speed digital video camera to analyze the ignition characteristics Flammable map in partial pressure of oxygen Pox and total ambient pressure Pt plane is made to reveal the fire hazard in depressurized environment Results show that wider flammable range is obtained depending on the imposed ambient

  14. Safety requirements and radiological protection for ore installations

    International Nuclear Information System (INIS)

    2003-06-01

    This norm establishes the safety and radiological protection requirements for mining installations which manipulates, process and storing ores, raw materials, steriles, slags and wastes containing radionuclides of the uranium and thorium natural series, simultaneously or separated, and which can cause undue exposures to the public and workers, at anytime of the functioning or pos operational stage. This norm applies to the mining installations activities, suspended or which have ceased their activities before the issue date of this norm, destined to the mining, physical, chemical and metallurgical processing, and the industrialization of raw materials and residues containing associated radionuclides from the natural series of uranium and thorium, including the stages of implantation, operation and decommissioning of the installation

  15. Exploratory Studies Facility Subsurface Fire Hazards Analysis

    International Nuclear Information System (INIS)

    Logan, Richard C.

    2002-01-01

    The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment; Vital U.S. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events

  16. Exploratory Studies Facility Subsurface Fire Hazards Analysis

    International Nuclear Information System (INIS)

    Kubicek, J. L.

    2001-01-01

    The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: (1) The occurrence of a fire or related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment. (3) Vital US. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. (5) Critical process controls and safety class systems being damaged as a result of a fire and related events

  17. NSPWG-recommended safety requirements and guidelines for SEI nuclear propulsion

    International Nuclear Information System (INIS)

    Marshall, A.C.; Lee, J.H.; McCulloch, W.H.; Sawyer, J.C. Jr.; Bari, R.A.; Brown, N.W.; Cullingford, H.S.; Hardy, A.C.; Remp, K.; Sholtis, J.A.

    1992-01-01

    An Interagency Nuclear Safety Policy Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program to facilitate the implementation of mission planning and conceptual design studies. The NSPWG developed a top- level policy to provide the guiding principles for the development and implementation of the nuclear propulsion safety program and the development of Safety Functional Requirements. In addition the NSPWG reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. Safety requirements were developed for reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, and safeguards. Guidelines were recommended for risk/reliability, operational safety, flight trajectory and mission abort, space debris and meteoroids, and ground test safety. In this paper the specific requirements and guidelines will be discussed

  18. Report of the international fire safety mission to Temelin, unit 1 nuclear power plant Czech Republic 4 to 14 February 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This report presents the results of an IAEA Fire Safety Mission conducted within the scope of Technical Co-operation Project CZR/9/005 to assess the licensing process, design, analysis and operational management of the Temelin Nuclear Power Plant with regards to fire safety of the plant. The Temelin Nuclear Power Plant currently has two units under construction. Each unit is equipped with a pressurized water reactor of the WWER design with a net electrical output of about MWe. The plant has already made significant upgrading in fire protection from the original design. The Team's evaluation is based on the IAEA Safety Series No. 50-SG-D2 (Rev.1), Fire Protection in Nuclear Power Plants, and other fire protection guidelines currently produced by the IAEA. The evaluation, conclusions and recommendations presented in this report reflect the views of the Fire Safety Mission experts. The recommendations are provided for consideration by the responsible authorities in the Czech Republic towards enhancing fire safety at the Temelin plant

  19. 30 CFR 57.4200 - General requirements.

    Science.gov (United States)

    2010-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Firefighting Equipment § 57.4200 General requirements. (a) For fighting fires that could endanger...

  20. 30 CFR 56.4200 - General requirements.

    Science.gov (United States)

    2010-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and Control Firefighting Equipment § 56.4200 General requirements. (a) For fighting fires that could endanger...

  1. Fire Extinguisher Training for Fire Watch and Designated Workers, Course 9893

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Jimmy D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-19

    At Los Alamos National Laboratory (LANL), all workers must be aware of LANL fire protection policies and be trained on what to do in the event of a fire. This course, Fire Extinguisher Training for Fire Watch and Designated Workers (#9893), provides awareness-level and hands-on training for fire watch personnel and designated workers. Fire watch personnel and designated workers are appointed by line management and must receive both awareness-level training and hands-on training in the use of portable fire extinguishers to extinguish an incipient-stage fire. This training meets the requirements of the Occupational Safety and Health Administration (OSHA) Code of Federal Regulations (CFR) 29 CFR 1910.157, Portable Fire Extinguishers, and Procedure (P) 101-26, Welding, Cutting, and Other Spark-/Flame-Producing Operations.

  2. Fire Extinguisher Designated Worker and Fire Watch: Self-Study Course 15672

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Jimmy D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-08

    At Los Alamos National Laboratory (LANL), all workers must be aware of LANL fire protection policies and be trained on what to do in the event of a fire. This course, Fire Extinguisher Training for Fire Watch and Designated Workers (#9893), provides awareness-level and hands-on training for fire watch personnel and designated workers. Fire watch personnel and designated workers are appointed by line management and must receive both awareness-level training and hands-on training in the use of portable fire extinguishers to extinguish an incipient-stage fire. This training meets the requirements of the Occupational Safety and Health Administration (OSHA) Code of Federal Regulations (CFR) 29 CFR 1910.157, Portable Fire Extinguishers, and Procedure (P) 101-26, Welding, Cutting, and Other Spark-/Flame-Producing Operations.

  3. Regulatory framework and safety requirements for new (gen III) reactors

    International Nuclear Information System (INIS)

    Mourlon, Sophie

    2014-01-01

    Sophie Mourlon, ASN Deputy General Director, described the international process to enhance safety between local safety authorities through organizations such as WENRA. Then she explained to the participants the regulatory issues for the next generation of NPPs

  4. Special safety requirements applied to Brazilian nuclear power plant

    International Nuclear Information System (INIS)

    Lepecki, W.P.S.; Hamel, H.J.E.; Koenig, N.; Vieira, P.C.R.; Fritzsche, J.C.

    1981-01-01

    Some safety aspects of the Angra 2 and 3 nuclear power plants are presented. An analysis of the civil and mechanical project of these nuclear power plant having in view a safety analysis is done. (E.G.) [pt

  5. Fire science at LLNL: A review

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, H.K. (ed.)

    1990-03-01

    This fire sciences report from LLNL includes topics on: fire spread in trailer complexes, properties of welding blankets, validation of sprinkler systems, fire and smoke detectors, fire modeling, and other fire engineering and safety issues. (JEF)

  6. Technical Safety Requirements for the Waste Storage Facilities

    International Nuclear Information System (INIS)

    Laycak, D.T.

    2010-01-01

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2009). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting

  7. Technical Safety Requirements for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D T

    2008-06-16

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas

  8. Investigational new drug safety reporting requirements for human drug and biological products and safety reporting requirements for bioavailability and bioequivalence studies in humans. Final rule.

    Science.gov (United States)

    2010-09-29

    The Food and Drug Administration (FDA) is amending its regulations governing safety reporting requirements for human drug and biological products subject to an investigational new drug application (IND). The final rule codifies the agency's expectations for timely review, evaluation, and submission of relevant and useful safety information and implements internationally harmonized definitions and reporting standards. The revisions will improve the utility of IND safety reports, reduce the number of reports that do not contribute in a meaningful way to the developing safety profile of the drug, expedite FDA's review of critical safety information, better protect human subjects enrolled in clinical trials, subject bioavailability and bioequivalence studies to safety reporting requirements, promote a consistent approach to safety reporting internationally, and enable the agency to better protect and promote public health.

  9. What Isn't Working and New Requirements. The Need to Harmonize Safety and Security Requirements

    International Nuclear Information System (INIS)

    Flory, D.

    2011-01-01

    The year 2011 marks the 50th anniversary of the first IAEA regulations governing the transport of radioactive material. However transport safety at the IAEA obviously predates this, since the regulations took time to develop. In 1957, GC. 1/1 already states: 'The Agency should undertake studies with a view to the establishment of regulations relating to the international transportation of radioactive materials. ...'. And goes further: 'The transport of radioisotopes and radiation sources has brought to light many problems and involves the need for uniform packaging and shipping regulations ... facilitate the acceptance of such materials by sea and air carriers'. This conference reiterates the challenge given then through the sub-title 'The next fifty years - Creating a Safe, Secure and Sustainable Framework'. Looking back, we can see that the sustainable framework was a goal in 1957, where radioactive material could be transported should it be desired. Since these early days we have added to safety the need to ensure security. However we still see the same calls today to eradicate denial of shipment, which might suggest we have not progressed. But the picture today is very different - we have today well established requirements for safe transport of radioactive material, and the recommendations for security in transport are coming of age for all radioactive materials. The outstanding issue would seem to be harmonisation, not just between safety and security in IAEA documents, but also harmonisation between Member States.

  10. JET-ISX-B beryllium limiter experiment safety analysis report and operational safety requirements

    International Nuclear Information System (INIS)

    Edmonds, P.H.

    1985-09-01

    An experiment to evaluate the suitability of beryllium as a limiter material has been completed on the ISX-B tokamak. The experiment consisted of two phases: (1) the initial operation and characterization in the ISX experiment, and a period of continued operation to the specified surface fluence (10 22 atoms/cm 2 ) of hydrogen ions; and (2) the disassembly, decontamination, or disposal of the ISX facility. During these two phases of the project, the possibility existed for beryllium and/or beryllium oxide powder to be produced inside the vacuum vessel. Beryllium dust is a highly toxic material, and extensive precautions are required to prevent the release of the beryllium into the experimental work area and to prevent the contamination of personnel working on the device. Details of the health hazards associated with beryllium and the appropriate precautions are presented. Also described in appendixes to this report are the various operational safety requirements for the project

  11. A new approach to determine the environmental qualification requirements for the safety related equipment

    International Nuclear Information System (INIS)

    Hasnaoui, C.; Parent, G.

    2000-01-01

    The objective of the environmental qualification of safety related equipment is to ensure that the plant defense-in-depth is not compromised by common mode failures following design basis accidents with a harsh environment. A new approach based on safety functions has been developed to determine what safety-related equipment is required to function during and after a design basis accident, as well as their environmental qualification requirements. The main feature of this approach is to use auxiliary safety functions established from safety requirements as credited in the safety analyses. This approach is undertaken in three steps: identification of the auxiliary safety functions of each main safety function; determination of the main equipment groups required for each auxiliary safety function; and review of the safety analyses for design basis accidents in order to determine the credited auxiliary safety functions and their mission times for each accident scenario. Some of the benefits of the proposed approach for the determination of the safety environmental qualification requirements are: a systematic approach for the review of safety analyses based on a safety function check list, and the insurance, with the availability of the safety functions, that Gentilly-2 defense-in-depth would not be compromised by design basis accidents with a harsh environment. (author)

  12. Current Status of Fire Risk Assessment in Germany

    International Nuclear Information System (INIS)

    Berg, H. P.

    2002-01-01

    The approach for fire risk assessment to be applied within periodic safety reviews of nuclear power plants in Germany starts with a screening process providing critical fire zones in which a fully developed fire has the potential to both cause an initiating event and impair the function of at least one component or system critical to safety. The second step is to perform a quantitative analysis. For that purpose, a standard event tree has been developed with elements for fire initiation, ventilation of the room, fire detection, fire suppression, and fire propagation. This standard event tree has to be adapted to each critical fire zone or room. In a final step, the fire induced frequency of initiating events, the main contributors and the calculated hazard state frequency for the fire event are determined. In order to perform a quantitative fire risk assessment, a basic data base must be established which should, e.g., include initiating frequencies, reliability data for all fire protection measures, fire barriers, etc. Detailed plant-specific information is needed on ignition sources, detection and extinguishing systems, manual fire fighting, stationary fire suppression systems. As one contributor to fire specific PSA input data, reliability data for the active fire protection measures are required for the application in the fire specific event tree analysis. These data needed to be estimated are unavailabilities per demand or failure rates per hour of plant operation for those components or systems belonging to the active fire protection means. The data on potential failures or unavailabilities per demand of the respective fire protection measures were gained from the plant specific documentation of inspection and maintenance. The assessment whether the detected findings are estimated as failures or only as deficiencies or deteriorations requires a deep insight in the plant specific operating conditions for the fire protection means and needs careful engineering

  13. Determination Of Measures That The Operating Nurses Take For The Fire Safety: Example Of Karabuk

    Directory of Open Access Journals (Sweden)

    Isil Isik Andsoy

    2012-06-01

    Material and Methods: The research group consisted of 32 operating room nurses in Karabuk hospitals who accept volunteer to participate. The data were collected with face to face interviews. Questionnaire was prepared by the researcher with the accompaniment of literature. Evaluation of the data, number and percentage were used. Results: In this study, 96.9% of the nurses have indicated that precautionary measures are taken against fire, and 75% of them have reported to have fire extinguishers and alarm system, and also 93.8% of them have stated that maintenance of existing systems in the operating room is done at certain intervals. Furthermore, 87.6% of the nurses have noted to have a fire extinguisher instruction in the operating room, and 62.5% of them have remarked that there are fire exit signs. Conclusion: Finally all of the nurses have indicated that routine checks of the operating rooms' electirical system are done. It has been found out that most of the nurses are knowledgable but inadequate about precautions against fire. As a result, it has been recommended to do an emergency planning in case of fires in operating rooms; to teach this plan to nurses, anesthetists, surgeon and other surgical team by fire drills; to train surgical team about fire risks and measures and to repeat this training regularly. [J Contemp Med 2012; 2(2.000: 87-93

  14. Fire Safety Aspects of Polymeric Materials. Volume 3. Smoke and Toxicity (Combustion Toxicology of Polymers)

    Science.gov (United States)

    1978-01-01

    complete combustion of these polymers and thus minimize cyanide formation (Ball and Boettner, 1973; Junod , 1976). This one example shows the critical...34Visibility Through Fire Smoke," II. Report of Fire Research Institute of Japan. No. 33. pp. 31-49, 1971. T. L. Junod , "Gaseous Emissions and Toxic Hazard

  15. Applications of Living Fire PRA models to Fire Protection Significance Determination Process in Taiwan

    International Nuclear Information System (INIS)

    De-Cheng, Chen; Chung-Kung, Lo; Tsu-Jen, Lin; Ching-Hui, Wu; Lin, James C.

    2004-01-01

    The living fire probabilistic risk assessment (PRA) models for all three operating nuclear power plants (NPPs) in Taiwan had been established in December 2000. In that study, a scenario-based PRA approach was adopted to systematically evaluate the fire and smoke hazards and associated risks. Using these fire PRA models developed, a risk-informed application project had also been completed in December 2002 for the evaluation of cable-tray fire-barrier wrapping exemption. This paper presents a new application of the fire PRA models to fire protection issues using the fire protection significance determination process (FP SDP). The fire protection issues studied may involve the selection of appropriate compensatory measures during the period when an automatic fire detection or suppression system in a safety-related fire zone becomes inoperable. The compensatory measure can either be a 24-hour fire watch or an hourly fire patrol. The living fire PRA models were used to estimate the increase in risk associated with the fire protection issue in terms of changes in core damage frequency (CDF) and large early release frequency (LERF). In compliance with SDP at-power and the acceptance guidelines specified in RG 1.174, the fire protection issues in question can be grouped into four categories; red, yellow, white and green, in accordance with the guidelines developed for FD SDP. A 24-hour fire watch is suggested only required for the yellow condition, while an hourly fire patrol may be adopted for the white condition. More limiting requirement is suggested for the red condition, but no special consideration is needed for the green condition. For the calculation of risk measures, risk impacts from any additional fire scenarios that may have been introduced, as well as more severe initiating events and fire damages that may accompany the fire protection issue should be considered carefully. Examples are presented in this paper to illustrate the evaluation process. (authors)

  16. Fire protection at nuclear power plants

    International Nuclear Information System (INIS)

    1999-11-01

    The guide presents specific requirements for the design and implementation of fire protection arrangements at nuclear power plants and for the documents relating to the fire protection that are to be submitted to STUK (Finnish Radiation and Nuclear Safety Authority). Inspections of the fire protection arrangements to be conducted by STUK during the construction and operation of the power plants are also described in this guide. The guide can also be followed at other nuclear facilities

  17. Data concentrator requirements for a safety parameter display system

    International Nuclear Information System (INIS)

    Brewer, C.R.

    1983-01-01

    To comply with NUREG 0696 several nuclear plants are being fitted with new facilities and data systems; specifically a Technical Support Center (TSC), Operational Support Center (OSC), Emergency Operational Facility (EOF), and Backup Safety Parameter Display System (SPDS), Emergency Response Computer System (ERCS) and Nuclear Data Link (NDL). The TSC, OSC, and EOF are physical locations while the SPDS, ERCS, and NDL are Systems. The SPDS and ERCS are usually separate and independent systems, however, they may share a common front end data acquisition system that acquires and sends SPDS related data to both the SPDS and to the ERCS. In the situation just described an SPDS system must depend upon input data from a source that is SPDS host computer independent. To achieve this independence the front end data acquisition system may employ a concept of intelligent distributed processing. This concept essentially takes functional capabilities that were once found only in realtime host computers and distributes it to front end data acquisition systems. Thus by expanding the functionality of the data acquisition system in a manner that provides more capability, independence from the computer vendor, links to multiple computer systems, processing power and redundancy, the concept of a data concentrator evolved. This paper will define this new distributed functionality, and its related requirements. It will also examine different system configuration approaches

  18. Regulatory considerations for computational requirements for nuclear criticality safety

    International Nuclear Information System (INIS)

    Bidinger, G.H.

    1995-01-01

    As part of its safety mission, the U.S. Nuclear Regulatory Commission (NRC) approves the use of computational methods as part of the demonstration of nuclear criticality safety. While each NRC office has different criteria for accepting computational methods for nuclear criticality safety results, the Office of Nuclear Materials Safety and Safeguards (NMSS) approves the use of specific computational methods and methodologies for nuclear criticality safety analyses by specific companies (licensees or consultants). By contrast, the Office of Nuclear Reactor Regulation approves codes for general use. Historically, computational methods progressed from empirical methods to one-dimensional diffusion and discrete ordinates transport calculations and then to three-dimensional Monte Carlo transport calculations. With the advent of faster computational ability, three-dimensional diffusion and discrete ordinates transport calculations are gaining favor. With the proper user controls, NMSS has accepted any and all of these methods for demonstrations of nuclear criticality safety

  19. Requirement and prospect of nuclear data activities for nuclear safety

    International Nuclear Information System (INIS)

    Kimura, Itsuro

    2000-01-01

    Owing to continuous efforts by the members of JNDC (Japanese Nuclear Data Committee) and Nuclear Data Center in JAERI (Japan Atomic Energy Research Institute), several superb evaluated nuclear data files, such as JENDL, FP (fission product) yields and decay heat, have been compiled in Japan and opened to the world. However, they are seldom adopted in safety design and safety evaluation of light water reactors and are hardly found in related safety regulatory guidelines and standards except the decay heat. In this report, shown are a few examples of presently used nuclear data in the safety design and the safety evaluation of PWRs (pressurized water reactors) and so forth. And then, several procedures are recommended in order to enhance more utilization of Japanese evaluated nuclear data files for nuclear safety. (author)

  20. Conducting organizational safety reviews - requirements, methods and experience

    International Nuclear Information System (INIS)

    Reiman, T.; Oedewald, P.; Wahlstroem, B.; Rollenhagen, C.; Kahlbom, U.

    2008-03-01

    Organizational safety reviews are part of the safety management process of power plants. They are typically performed after major reorganizations, significant incidents or according to specified review programs. Organizational reviews can also be a part of a benchmarking between organizations that aims to improve work practices. Thus, they are important instruments in proactive safety management and safety culture. Most methods that have been used for organizational reviews are based more on practical considerations than a sound scientific theory of how various organizational or technical issues influence safety. Review practices and methods also vary considerably. The objective of this research is to promote understanding on approaches used in organizational safety reviews as well as to initiate discussion on criteria and methods of organizational assessment. The research identified a set of issues that need to be taken into account when planning and conducting organizational safety reviews. Examples of the issues are definition of appropriate criteria for evaluation, the expertise needed in the assessment and the organizational motivation for conducting the assessment. The study indicates that organizational safety assessments involve plenty of issues and situations where choices have to be made regarding what is considered valid information and a balance has to be struck between focus on various organizational phenomena. It is very important that these choices are based on a sound theoretical framework and that these choices can later be evaluated together with the assessment findings. The research concludes that at its best, the organizational safety reviews can be utilised as a source of information concerning the changing vulnerabilities and the actual safety performance of the organization. In order to do this, certain basic organizational phenomena and assessment issues have to be acknowledged and considered. The research concludes with recommendations on

  1. Conducting organizational safety reviews - requirements, methods and experience

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, T.; Oedewald, P.; Wahlstroem, B. [Technical Research Centre of Finland, VTT (Finland); Rollenhagen, C. [Royal Institute of Technology, KTH, (Sweden); Kahlbom, U. [RiskPilot (Sweden)

    2008-03-15

    Organizational safety reviews are part of the safety management process of power plants. They are typically performed after major reorganizations, significant incidents or according to specified review programs. Organizational reviews can also be a part of a benchmarking between organizations that aims to improve work practices. Thus, they are important instruments in proactive safety management and safety culture. Most methods that have been used for organizational reviews are based more on practical considerations than a sound scientific theory of how various organizational or technical issues influence safety. Review practices and methods also vary considerably. The objective of this research is to promote understanding on approaches used in organizational safety reviews as well as to initiate discussion on criteria and methods of organizational assessment. The research identified a set of issues that need to be taken into account when planning and conducting organizational safety reviews. Examples of the issues are definition of appropriate criteria for evaluation, the expertise needed in the assessment and the organizational motivation for conducting the assessment. The study indicates that organizational safety assessments involve plenty of issues and situations where choices have to be made regarding what is considered valid information and a balance has to be struck between focus on various organizational phenomena. It is very important that these choices are based on a sound theoretical framework and that these choices can later be evaluated together with the assessment findings. The research concludes that at its best, the organizational safety reviews can be utilised as a source of information concerning the changing vulnerabilities and the actual safety performance of the organization. In order to do this, certain basic organizational phenomena and assessment issues have to be acknowledged and considered. The research concludes with recommendations on

  2. Wildland Fire Management Plan for Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Schwager, K.; Green, T. M.

    2014-01-01

    The DOE policy for managing wildland fires requires that all areas managed by DOE and/or Its various contractors which can sustain fire must have a FMP that details fire management guidelines for operational procedures associated with wildland fire, operational, and prescribed fires. FMPs provide guidance on fire preparedness, fire prevention, wildfire suppression, and the use of controlled ''prescribed'' fires and mechanical means to control the amount of available combustible material. Values reflected in the BNL Wildland FMP include protecting life and public safety; Lab properties, structures and improvements; cultural and historical sites; neighboring private and public properties; and endangered, threatened, and species of concern. Other values supported by the plan include the enhancement of fire-dependent ecosystems at BNL. The plan will be reviewed periodically to ensure fire program advances and will evolve with the missions of DOE and BNL.

  3. Wildland Fire Management Plan for Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schwager, K.; Green, T. M.

    2014-10-01

    The DOE policy for managing wildland fires requires that all areas managed by DOE and/or Its various contractors which can sustain fire must have a FMP that details fire management guidelines for operational procedures associated with wildland fire, operational, and prescribed fires. FMPs provide guidance on fire preparedness, fire prevention, wildfire suppression, and the use of controlled ''prescribed'' fires and mechanical means to control the amount of available combustible material. Values reflected in the BNL Wildland FMP include protecting life and public safety; Lab properties, structures and improvements; cultural and historical sites; neighboring private and public properties; and endangered, threatened, and species of concern. Other values supported by the plan include the enhancement of fire-dependent ecosystems at BNL. The plan will be reviewed periodically to ensure fire program advances and will evolve with the missions of DOE and BNL.

  4. Analysis of the prevailing standard and technical documents for their applicability under conditions of the 'Ukrytie' operation and technical proposals relating to the elaboration of new ones concerning fire safety

    International Nuclear Information System (INIS)

    Nazarenko, B.S.; Emets, V.G.

    1998-01-01

    An analysis of the prevailing laws and standards and technical documents (STD) to ensure safe operation of nuclear power installations, with requirements of nuclear, radiation and fire safety taken into account, has been performed. Proposals on application of some items of prevailing STD under conditions of the 'Ukrytie' operation are presented. Also given are technical proposals on correction of the prevailing operational standard documents and elaboration of special STD

  5. Fire hazard analysis at the first unit of the Ignalina nuclear power plant: 1. Analysis of fire prevention and ventilation systems and secondary effects

    International Nuclear Information System (INIS)

    Poskas, P.; Simonis, V.; Zujus, R. and others

    2004-01-01

    Evaluation of the fire prevention and ventilation systems and the secondary effects on safety at the Ignalina NPP from the point of view of fire hazard using computerized system is presented. Simplified screening algorithms for fire prevention, ventilation and the evaluation of secondary effects are developed, which allow accelerating fire hazard analysis at the Ignalina NPP. The analysis indicated that the fire prevention systems practically meet the national requirements and international recommendations for fire prevention. But it is necessary to introduce in separate rooms the measures improving fire prevention to guarantee the effective functioning of the ventilation systems and the reduction of the influence of secondary effects on safety. Computerized system of fire prevention and ventilation systems and evaluation of secondary effects on safety can be easily applied for fire hazard analysis at different big plants. (author)

  6. SAFETY

    CERN Multimedia

    M. Plagge, C. Schaefer and N. Dupont

    2013-01-01

    Fire Safety – Essential for a particle detector The CMS detector is a marvel of high technology, one of the most precise particle measurement devices we have built until now. Of course it has to be protected from external and internal incidents like the ones that can occur from fires. Due to the fire load, the permanent availability of oxygen and the presence of various ignition sources mostly based on electricity this has to be addressed. Starting from the beam pipe towards the magnet coil, the detector is protected by flooding it with pure gaseous nitrogen during operation. The outer shell of CMS, namely the yoke and the muon chambers are then covered by an emergency inertion system also based on nitrogen. To ensure maximum fire safety, all materials used comply with the CERN regulations IS 23 and IS 41 with only a few exceptions. Every piece of the 30-tonne polyethylene shielding is high-density material, borated, boxed within steel and coated with intumescent (a paint that creates a thick co...

  7. Pressure surge free fire water systems increase safety on offshore oil- and gas drilling platforms

    International Nuclear Information System (INIS)

    Carlsen, Randi

    2001-01-01

    The article describes a new fire water system for use on the oil- and gas drilling platforms that is characterized by improved start-up time and reduced energy consumption. Deluge valves are commonly used in fast large-flow fire water systems all over the world. During the test of a new fire water system on a platform a few years ago, a pipe near the living quarter suddenly ruptured due to an unexpected pressure surge thought to be impossible. It was caused by a weakness of the deluge valve. A better valve was needed and the 'UniqValve' was designed and manufactured. The UniqValve operates in cooperation with the fire pumps during start-up as it 'reads' the pressure variations of the water flow and corrects the water flow to the fire areas in less than a tenth of a second. The valve is now integrated in a modular system. The fire water unit is mounted in a container, which reduces cost and simplifies the placement of the fire water installation

  8. Discussion on several important safety requirements for the new nuclear power plant

    International Nuclear Information System (INIS)

    Yan Tianwen; Li Jigen; Zhang Lin; Feng Youcai; Jia Xiang; Li Wenhong

    2013-01-01

    Post the Fukushima nuclear accident, the Chinese government raised higher safety goals and safety requirements for the new nuclear power plant to be constructed. The paper expounded the important indicators of safety requirements and the aspects of safety modification that had been developed for the new NPPs. It also discussed and analyzed the main fields required by the new NPPs safety requirements in the safety goals, safety evaluation of sites, defenses of internal and external events, severe accident prevention and mitigation, design of reactor core, containment system and I and C system, and optimization of engineering measure, which gave some references to the design, construction and safety modifications of new NPPs in China. (authors)

  9. Regulatory requirements for demonstration of the achieved safety level at the Mochovce NPP before commissioning

    International Nuclear Information System (INIS)

    Lipar, M.

    1997-01-01

    A review of regulatory requirements for demonstration of the achieved safety level at the Mochovce NPP before commissioning is given. It contains licensing steps in Slovakia during commissioning; Status and methodology of Mochovce safety analysis report; Mochovce NPP safety enhancement program; Regulatory body policy towards Mochovce NPP safety enhancement; Recent development in Mochovce pre-operational safety enhancement program review and assessment process; Licensing steps in Slovakia during commissioning

  10. Nuclear power plant fire protection: fire detection (subsystems study Task 2)

    International Nuclear Information System (INIS)

    Berry, D.L.

    1977-12-01

    This report examines the adequacy of fire detection in the context of nuclear power plant safety. Topics considered are: (1) establishing area detection requirements, (2) selecting specific detector types, (3) locating and spacing detectors, and (4) performing installation tests and maintenance. Based on a thorough review of fire detection codes and standards and fire detection literature, the report concludes that current design and regulatory guidelines alone are insufficient to ensure satisfactory fire detection system performance. To assure adequate fire detection, this report recommends the use of in-place testing of detectors under conditions expected to occur normally in areas being protected

  11. Passive fire protection role and evolutions

    Energy Technology Data Exchange (ETDEWEB)

    Cerosky, Tristan [NUVIA (France); Perdrix, Johan [NUVIA Protection (France)

    2015-12-15

    Major incidents associated with nuclear power plants often invoke a re-examination of key safety barriers. Fire hazard, in particular, is a key concern for safe operation of nuclear power plants given its propensity to damage safety systems which could ultimately lead to radioactive release into the atmosphere. In the recent past, events such as the Fukushima disaster have led to an industry-wide push to improve nuclear safety arrangements. As part of these measures, upgrading of fire safety systems has received significant attention. In addition to the inherent intricacies associated with such a complex undertaking, factors such as frequent changes in the national and European fire regulations also require due attention while formulating a fire protection strategy. This paper will highlight some salient aspects underpinning an effective fire protection strategy. This will involve: A) A comprehensive introduction to the different aspects of fire safety (namely prevention, containment and mitigation) supported by a review of the development of the RCC-I from 1993 to 1997 editions and the ETC-F (AFCEN codes used by EDF in France). B) Development of the fire risk analysis methodology and the different functions of passive fire protection within this method involving confinement and protection of safety-related equipment. C) A review of the benefits of an effective passive fire protection strategy, alongside other arrangements (such as active fire protection) to a nuclear operator in term of safety and cost savings. It is expected that the paper will provide nuclear operators useful guidelines for strengthening existing fire protection systems.

  12. Legal requirements concerning the technical safety of nuclear installations

    International Nuclear Information System (INIS)

    Nolte, R.

    1984-01-01

    A short survey on nuclear risks and the nuclear safety conception is followed by the attempted clear definition of the semantic import of section 7, sub-section (2), No. 3 of the Atomic Energy Act. There are first beginnings of a concretization of the state-of-the-art in science and technology, i.e. all kinds of sub-legislative regulations such as the regulations of the Radiation Protection Ordinance which show scientific substance, guidelines issued by the Ministers, as well as codes for practice set up by various technical bodies and standardization associations, all of which are designed to compensate for this loop hole in the legislation. This study goes to examine to what extent administration and jurisdiction may take into account such codes of practice for the concretization of the legal requirements, and whether they are even binding on those executing the law. Only the respective regulations of the Radiation Protection Ordinance have a binding effect. All other guidelines and codes of practice are not legally binding per se, nor are they capable of being legally permitted by being referred to in terms of legal norms or by the self-commitment of those executing the law. Any attempt of using them, as the basis of a prime facie evidence or as an anticipating expertise, at least evidentarily for the concretization will have to fail owing to their evaluating character and to the fact that they may interfere in sociological conflict. An exception may be a case where a clear distinction can be made as to what extent the contents of such codes of practice is related to scientific and technological findings or to decisions based on evaluations. In such a case, a prima facil evicdence for the conformity of the regulation in question with the state-of-the-art in science and technology may be considered, which would easy the concretization of Art. 7 II Section 3 of the Atomic Law. (orig./HSCH) [de

  13. 77 FR 75439 - Guidances for Industry and Investigators on Safety Reporting Requirements for Investigational New...

    Science.gov (United States)

    2012-12-20

    ...] Guidances for Industry and Investigators on Safety Reporting Requirements for Investigational New Drug Applications and Bioavailability/Bioequivalence Studies, and a Small Entity Compliance Guide; Availability... Reporting Requirements for INDs and BA/BE Studies'' and ``Safety Reporting Requirements for INDs and BA/BE...

  14. 10 CFR 76.87 - Technical safety requirements.

    Science.gov (United States)

    2010-01-01

    ...: (1) Effects of natural phenomena; (2) Building and process ventilation and offgas; (3) Criticality...; (8) Environmental protection; (9) Packaging and transporting nuclear materials; (10) Accident analysis; (11) Chemical safety; (12) Sharing of facilities, structures, systems and components; (13...

  15. Preparedness of fire safety in underground train station: Comparison between train operators in Malaysia with other operators from the developed countries

    Science.gov (United States)

    Tajedi, Noor Aqilah A.; Sukor, Nur Sabahiah A.; Ismail, Mohd Ashraf M.; Shamsudin, Shahrul A.

    2017-10-01

    The purpose of this paper is to compare the fire evacuation plan and preparation at the underground train stations in the different countries. The methodology for this study was using the extended questionnaire survey to investigate the Rapid Rail Sdn Bhd, Malaysia's fire safety plan and preparation at the underground train stations. There were four sections in the questionnaire which included (i) background of the respondents, (ii) the details on the train stations, safety instruction and fire evacuation exercises (iii) technical systems, installation and equipment at the underground stations and (iv) procedures and technical changes related to fire safety that had been applied by the operators. Previously, the respondents from the different train operator services in the developed countries had completed the questionnaires. This paper extends the response from the Rapid Rail Sdn Bhd to compare the emergency procedures and preparation for fire event with the developed countries. As a result, this study found that the equipment and facilities that provided at the underground train stations that operated by Rapid Rail are relevant for fire safety procedures and needs. The main advantage for Rapid Rail is the underground stations were designed with two or more entrances/exits that may perform better evacuation compare to one main entrance/exit train stations in the other developed countries.

  16. Proposal of safety design methodologies for an HTGR-hydrogen production system. Mainly on countermeasures against fire and explosion

    International Nuclear Information System (INIS)

    Nishihara, Tetsuo; Hada, Kazuhiko; Shiozawa, Syusaku

    1996-03-01

    Among key issues of the safety design for an HTGR-hydrogen production system is to ensure the safety of the nuclear reactor against fire and explosion accidents in the hydrogen production plant. The fire and explosion accidents in the hydrogen production plant are categorized into the following two cases; Accidents inside the reactor building (R/B) and accidents outside the R/B. Against accidents inside the R/B, the proposed safety design concept is to prevent the occurrence of the accidents based on the defence in depth concept. The piping system and/or heat transfer tubes which have the potential possibility of combustible materials ingress into the R/B due to the failure are designed at the highest aseismic level to prevent the failure against severe earthquake. Even if the failure occurs, the piping trench and related compartments are fulfilled with nitrogen so as to prevent the occurrence of accidents. The proposed safety design concept for the accidents outside the R/B is the mitigation of effects of accidents. Proposed countermeasures is to take the safe distance between the hydrogen production plant and the items important to safety in the nuclear plant. We showed that the anticipated accidents to estimate the safe distance are large scale pool burning, fireball, pressure vessel burst and vapor cloud explosion. Especially, new estimating concept to establish the safe distance is proposed for the vapor cloud explosion. To reduce the safe distance, we proposed the underground non-pressurized storage tank and ventilation system for the storage of large amount of combustible liquid. (author). 61 refs

  17. Reactivity requirements and safety systems for heavy water reactors

    International Nuclear Information System (INIS)

    Kati, S.L.; Rustagi, R.S.

    1977-01-01

    The natural uranium fuelled pressurised heavy water reactors are currently being installed in India. In the design of nuclear reactors, adequate attention has to be given to the safety systems. In recent years, several design modifications having bearing on safety, in the reactor processes, protective and containment systems have been made. These have resulted either from new trends in safety and reliability standards or as a result of feed-back from operating reactors of this type. The significant areas of modifications that have been introduced in the design of Indian PHWR's are: sophisticated theoretical modelling of reactor accidents, reactivity control, two independent fast acting systems, full double containment and improved post-accident depressurisation and building clean-up. This paper brings out the evolution of design of safety systems for heavy water reactors. A short review of safety systems which have been used in different heavy water reactors, of varying sizes, has been made. In particular, the safety systems selected for the latest 235 MWe twin reactor unit station in Narora, in Northern India, have been discussed in detail. Research and Development efforts made in this connection are discussed. The experience of design and operation of the systems in Rajasthan and Kalpakkam reactors has also been outlined

  18. Shal/K(v4 channels are required for maintaining excitability during repetitive firing and normal locomotion in Drosophila.

    Directory of Open Access Journals (Sweden)

    Yong Ping

    2011-01-01

    Full Text Available Rhythmic behaviors, such as walking and breathing, involve the coordinated activity of central pattern generators in the CNS, sensory feedback from the PNS, to motoneuron output to muscles. Unraveling the intrinsic electrical properties of these cellular components is essential to understanding this coordinated activity. Here, we examine the significance of the transient A-type K(+ current (I(A, encoded by the highly conserved Shal/K(v4 gene, in neuronal firing patterns and repetitive behaviors. While I(A is present in nearly all neurons across species, elimination of I(A has been complicated in mammals because of multiple genes underlying I(A, and/or electrical remodeling that occurs in response to affecting one gene.In Drosophila, the single Shal/K(v4 gene encodes the predominant I(A current in many neuronal cell bodies. Using a transgenically expressed dominant-negative subunit (DNK(v4, we show that I(A is completely eliminated from cell bodies, with no effect on other currents. Most notably, DNK(v4 neurons display multiple defects during prolonged stimuli. DNK(v4 neurons display shortened latency to firing, a lower threshold for repetitive firing, and a progressive decrement in AP amplitude to an adapted state. We record from identified motoneurons and show that Shal/K(v4 channels are similarly required for maintaining excitability during repetitive firing. We then examine larval crawling, and adult climbing and grooming, all behaviors that rely on repetitive firing. We show that all are defective in the absence of Shal/K(v4 function. Further, knock-out of Shal/K(v4 function specifically in motoneurons significantly affects the locomotion behaviors tested.Based on our results, Shal/K(v4 channels regulate the initiation of firing, enable neurons to continuously fire throughout a prolonged stimulus, and also influence firing frequency. This study shows that Shal/K(v4 channels play a key role in repetitively firing neurons during prolonged

  19. Fire-eater's lung complicated by an infectious abscess requiring surgical treatment.

    Science.gov (United States)

    Harlander, Matevz; Tercelj, Marjeta; Sok, Mihael; Rott, Tomaz

    2010-02-01

    We describe a case of fire-eater's pneumonia that was complicated by an infectious lung abscess with substantial haemoptysis. Conservative treatment was inadequate. Surgical resection was necessary and proved to be successful.

  20. An assessment of the fire protection requirements throughout a NPP life related to current IAEA regulations and American, Canadian and UE regulations

    International Nuclear Information System (INIS)

    Branzeu, N.; Necula, D.; Badea, M.; Teodorescu, D.; Peteu, M.

    2006-01-01

    Statistics on fires has surprisingly shown that the frequency of fires in a nuclear power plant are as high as in the conventional industrial units. The analyses on fires occurred in a NPP need to consider both their well-known severe damages and the nuclear consequences. In 1975 a severe fire occurred in BROWNS FERRY NPP due to the ignition of the polyurethane foam used in the electric cable penetration sealings. The fire propagated to the cable channels and damaged over 1600 cables. The fire event revealed important shortcomings in the fire protection design and procedures. The fire represented a crucial event that changed fundamentally the fire protection regulation in the United States nuclear industry. The fire protection programs, standards and guides currently applied, have been developed on basis of this fire analysis and gained conclusions/experience. The purpose of the article is to be a short presentation of the fire protection requirements for all NPP life stages (i.e. design, construction, commissioning, operation and decommissioning), including the most recent issues of the standards, codes, guides and regulations in US, Canada, IAEA and some European countries. Such documentation represented the main technical support in establishing the national fire protection standard design regarding all the stages of a CANDU-6 NPP life, all the types of operational NPPs, particularly for Cernavoda NPP Unit 1 and Unit 2 (now in an advanced stage of construction). In order to satisfy the requirements provided by this documentation, as practically as possible, a list of analyses and fire protection improvement measures for Cernavoda NPP is presented. (authors)

  1. Safety evaluations required in the safety regulations for Monju and the validity confirmation of safety evaluation methods

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The purposes of this study are to perform the safety evaluations of the fast breeder reactor 'Monju' and to confirm the validity of the safety evaluation methods. In JFY 2012, the following results were obtained. As for the development of safety evaluation methods needed in the safety examination achieved for the reactor establishment permission, development of the analysis codes, such as a core damage analysis code, were carried out according to the plan. As for the development of the safety evaluation method needed for the risk informed safety regulation, the quantification technique of the event tree using the Continuous Markov chain Monte Carlo method (CMMC method) were studied. (author)

  2. Fire risk assessment for hydrogen at EDG/battery room

    Energy Technology Data Exchange (ETDEWEB)

    Jee, Moon Hak; Hong, Sung Yull; Choi, Kwang Hee; Jung, Hyun Jong; Park, Kyung Hyum [Korea electric Power Research Institute, Taejon (Korea, Republic of); Song, Jin Bae [KHNP, Wolsong (Korea, Republic of)

    2004-07-01

    At the design stage of Nuclear Power Plant, the fire hazard analysis for the fire zone or compartment is implemented according to the fire protection requirement and the document is required for the licensing approval. On the basis of fire hazard analysis, the evaluation for the safe shutdown capability is preceded for each fire zone that contains safety-important systems and facilities. The primary philosophy for the fire safety is to secure fire defense-in-depth at Nuclear Power Plants that represents fire prevention, fire protection, and mitigation from fire damage. One of the concerning fire zones that need quantitative fire hazard analysis as well as qualitative fire evaluation at Nuclear Power Plants is the battery room at Emergency Diesel Generator (EDG) Room. For an example, Emergency Power Supply System called as EPS at Wolsong Nuclear Power Plant generates emergency power and supply the electric power to the safety-related systems and essential facilities during the loss of on-site and off-site AC power. For the start of emergency power generator, it needs DC power from the battery units inside the EPS room. For the emergency supply of DC power, the battery at EPS room should be recharged during the standby period to compensate the reduced chemical energy that was converted to the electric energy or depleted through the natural process. During the recharge process, especially at the time of charging current becoming greater than the nominal floating current or at the time of over-charging period, the hydrogen and the oxygen are generated from the positive plate and cathodic part respectively and escaped through the vent holes or crevices. In this context, the fire hazard assessment should be done for the EPS/battery room with quantitative approach and the fire safety evaluation for the explosion of hydrogen gas must be done under the specific fire protection program at Nuclear Power Plants.

  3. Fire risk assessment for hydrogen at EDG/battery room

    International Nuclear Information System (INIS)

    Jee, Moon Hak; Hong, Sung Yull; Choi, Kwang Hee; Jung, Hyun Jong; Park, Kyung Hyum; Song, Jin Bae

    2004-01-01

    At the design stage of Nuclear Power Plant, the fire hazard analysis for the fire zone or compartment is implemented according to the fire protection requirement and the document is required for the licensing approval. On the basis of fire hazard analysis, the evaluation for the safe shutdown capability is preceded for each fire zone that contains safety-important systems and facilities. The primary philosophy for the fire safety is to secure fire defense-in-depth at Nuclear Power Plants that represents fire prevention, fire protection, and mitigation from fire damage. One of the concerning fire zones that need quantitative fire hazard analysis as well as qualitative fire evaluation at Nuclear Power Plants is the battery room at Emergency Diesel Generator (EDG) Room. For an example, Emergency Power Supply System called as EPS at Wolsong Nuclear Power Plant generates emergency power and supply the electric power to the safety-related systems and essential facilities during the loss of on-site and off-site AC power. For the start of emergency power generator, it needs DC power from the battery units inside the EPS room. For the emergency supply of DC power, the battery at EPS room should be recharged during the standby period to compensate the reduced chemical energy that was converted to the electric energy or depleted through the natural process. During the recharge process, especially at the time of charging current becoming greater than the nominal floating current or at the time of over-charging period, the hydrogen and the oxygen are generated from the positive plate and cathodic part respectively and escaped through the vent holes or crevices. In this context, the fire hazard assessment should be done for the EPS/battery room with quantitative approach and the fire safety evaluation for the explosion of hydrogen gas must be done under the specific fire protection program at Nuclear Power Plants

  4. Small nuclear reactor safety design requirements for autonomous operation

    International Nuclear Information System (INIS)

    Kozier, K.S.; Kupca, S.

    1997-01-01

    Small nuclear power reactors offer compelling safety advantages in terms of the limited consequences that can arise from major accident events and the enhanced ability to use reliable, passive means to eliminate their occurrence by design. Accordingly, for some small reactor designs featuring a high degree of safety autonomy, it may be-possible to delineate a ''safety envelope'' for a given set of reactor circumstances within which safe reactor operation can be guaranteed without outside intervention for time periods of practical significance (i.e., days or weeks). The capability to operate a small reactor without the need for highly skilled technical staff permanently present, but with continuous remote monitoring, would aid the economic case for small reactors, simplify their use in remote regions and enhance safety by limiting the potential for accidents initiated by inappropriate operator action. This paper considers some of the technical design options and issues associated with the use of small power reactors in an autonomous mode for limited periods. The focus is on systems that are suitable for a variety of applications, producing steam for electricity generation, district heating, water desalination and/or marine propulsion. Near-term prospects at low power levels favour the use of pressurized, light-water-cooled reactor designs, among which those having an integral core arrangement appear to offer cost and passive-safety advantages. Small integral pressurized water reactors have been studied in many countries, including the test operation of prototype systems. (author)

  5. 75 FR 60129 - Draft Guidance for Industry and Investigators on Safety Reporting Requirements for...

    Science.gov (United States)

    2010-09-29

    ...., Bldg. 51, rm. 2201, Silver Spring, MD 20993-0002; or the Office of Communication, Outreach, and...'s ability to review critical safety information, improve safety monitoring of human drug and..., will represent the Agency's current thinking on safety reporting requirements for INDs and BA/BE...

  6. 42 CFR 9.10 - Occupational Health and Safety Program (OHSP) and biosafety requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Occupational Health and Safety Program (OHSP) and... SANCTUARY SYSTEM § 9.10 Occupational Health and Safety Program (OHSP) and biosafety requirements. (a) How are employee Occupational Health and Safety Program risks and concerns addressed? The sanctuary shall...

  7. Evaluation of safety, an unavoidable requirement in the applications of ionizing radiations

    International Nuclear Information System (INIS)

    Jova Sed, Luis Andres

    2013-01-01

    The safety assessments should be conducted as a means to evaluate compliance with safety requirements (and thus the application of fundamental safety principles) for all facilities and activities in order to determine the measures to be taken to ensure safety. It is an essential tool in decision making. For long time we have linked the safety assessment to nuclear facilities and not to all practices involving the use of ionizing radiation in daily life. However, the main purpose of the safety assessment is to determine if it has reached an appropriate level of safety for an installation or activity and if it has fulfilled the objectives of safety and basic safety criteria set by the designer, operating organization and the regulatory body under the protection and safety requirements set out in the International Basic safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. This paper presents some criteria and personal experiences with the new international recommendations on this subject and its practical application in the region and demonstrates the importance of this requirement. Reflects the need to train personnel of the operator and the regulatory body in the proportional application of this requirement in practice with ionizing radiation

  8. Research on consequence analysis method for probabilistic safety assessment of nuclear fuel facilities (4). Investigation of safety evaluation method for fire and explosion incidents

    International Nuclear Information System (INIS)

    Abe, Hitoshi; Tashiro, Shinsuke; Ueda, Yoshinori

    2010-01-01

    A special committee on 'Research on the analysis methods for accident consequence of nuclear fuel facilities (NFFs)' was organized by the Atomic Energy Society of Japan (AESJ) under the entrustment of Japan Atomic Energy Agency (JAEA). The committee aims to research on the state-of-the-art consequence analysis method for Probabilistic Safety Assessment (PSA) of NFFs, such as fuel reprocessing and fuel fabrication facilities. The objective of this research is to obtain the useful information related to the establishment of quantitative performance objectives and to risk-informed regulation through qualifying issues needed to be resolved for applying PSA to NFFs. The research activities of the committee were mainly focused on the analysis method of consequences for postulated accidents with potentially large consequences in NFFs, e.g., events of criticality, spill of molten glass, hydrogen explosion, boiling of radioactive solution, and fire (including rapid decomposition of TBP complexes), resulting in the release of radio active materials into the environment. The results of the research were summarized in a series of six reports, which consist of a review report and five technical ones. In this technical report, the research results about basic experimental data and the method for safety evaluation of fire and explosion incidents were summarized. (author)

  9. Specification of materials Data for Fire Safety Calculations based on ENV 1992-1-2

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    1997-01-01

    of constructions of any concrete exposed to any time of any fire exposure can be calculated.Chapter 4.4 provides information on what should be observed if more general calculation methods are used.Annex A provides some additional information on materials data. This chapter is not a part of the code......The part 1-2 of the Eurocode on Concrete deals with Structural Fire Design.In chapter 3, which is partly written by the author of this paper, some data are given for the development of a few material parameters at high temperatures. These data are intended to represent the worst possible concrete...... to experience form tests on structural specimens based on German siliceous concrete subjected to Standard fire exposure until the time of maximum gas temperature.Chapter 4.3, which is written by the author of this paper, provides a simplified calculation method by means of which the load bearing capacity...

  10. SMiRT 23. 14{sup th} international seminar on fire safety in nuclear power plants and installations

    Energy Technology Data Exchange (ETDEWEB)

    Roewekamp, Marina (ed.) [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Koeln (Germany); Berg, Heinz-Peter [Bundesamt fuer Strahlenschutz, Salzgitter (Germany)

    2015-12-15

    In the frame of the project 3614R01575 funded by the German Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (Bundesministerium fuer Umwelt, Naturschutz, Bau und Reaktorsicherheit, BMUB) the meanwhile fourteenth international seminar on ''Fire Safety in Nuclear Power Plants and Installations'' has been conducted as P ost-Conference Seminar of the 23{sup rd} International Conference on Structural Mechanics In Reactor Technology (SMiRT 23) in Salford, United Kingdom in August 2015. The following seminar proceedings contain the entire twenty-one technical contributions to the two day s seminar with in total fifty-five participants from ten countries in Asia, Europe and America.

  11. Jefferson Proving Ground, South of the Firing Line Health and Safety Plan, Volume 4

    National Research Council Canada - National Science Library

    1992-01-01

    .... The purpose of this Site Health and Safety Plan (SHSP) is to assign SECD personnel health and safety responsibilities, to prescribe mandatory operating procedures, and to establish personal-protective-equipment (PPE...

  12. Design safety improvements of Kozloduy NPP to meet the modern safety requirements towards the old generation PWR

    International Nuclear Information System (INIS)

    Hinovski, M.P.; Sabinov, S.

    2001-01-01

    Activities related to safety improvement of Kozloduy NPP units, started at the end of 1970s included seismic resistance upgrading, fire safety improvement, reliable heat final absorber etc. During the last 10 years the approach was systematized and improved. Units 1 to 4 are of great interest; therefore here we will discuss these units only. As a result of studies and analyses performed at the end of the 1980s and the beginning of the 1990s, problems related to the safety were identified and complex of technical measures was developed and planned. A considerable part of these measures has already been implemented, and the rest will be performed during the next years. Activities were performed by stages, and at the moment the last stage is under way. It shall be finished by the year 2003. The number of the measures is quite large to describe them here in full scope -- during the first stage of the safety program (1991-1993) were developed and analyzed more than 4200 documents and more than 160 measures were executed. During the second and third stages more than 300 important improvements were realized. In the frame of the program, financed by EBRD, 10 new systems with great importance were implemented and 8 systems were significantly modified. The main measures are described below. (author)

  13. Hazard Analysis and Safety Requirements for Small Drone Operations: To What Extent Do Popular Drones Embed Safety?

    Science.gov (United States)

    Plioutsias, Anastasios; Karanikas, Nektarios; Chatzimihailidou, Maria Mikela

    2018-03-01

    Currently, published risk analyses for drones refer mainly to commercial systems, use data from civil aviation, and are based on probabilistic approaches without suggesting an inclusive list of hazards and respective requirements. Within this context, this article presents: (1) a set of safety requirements generated from the application of the systems theoretic process analysis (STPA) technique on a generic small drone system; (2) a gap analysis between the set of safety requirements and the ones met by 19 popular drone models; (3) the extent of the differences between those models, their manufacturers, and the countries of origin; and (4) the association of drone prices with the extent they meet the requirements derived by STPA. The application of STPA resulted in 70 safety requirements distributed across the authority, manufacturer, end user, or drone automation levels. A gap analysis showed high dissimilarities regarding the extent to which the 19 drones meet the same safety requirements. Statistical results suggested a positive correlation between drone prices and the extent that the 19 drones studied herein met the safety requirements generated by STPA, and significant differences were identified among the manufacturers. This work complements the existing risk assessment frameworks for small drones, and contributes to the establishment of a commonly endorsed international risk analysis framework. Such a framework will support the development of a holistic and methodologically justified standardization scheme for small drone flights. © 2017 Society for Risk Analysis.

  14. Probabilistic assessment of fire related events in CWPH (Pilot study)

    International Nuclear Information System (INIS)

    Chatterjee, D.; Maity, S.C.; Guptan, Rajee; Mohan, Nalini; Ghadge, S.G.; Bajaj, S.S.

    2006-01-01

    As a part of Fire PSA for KAPS, a pilot study has been taken up identifying CWPH as the important zone vulnerable to fire. As the CWPH houses pumps belonging to all important cooling (APWC, FFW, NAHPPW, NALPW, etc.) of both the units, a single fire leads to failure of multiple safety/safety support system cooling affecting the safety of the plant. The objective of this study is as follows: Familiarising with the various published Fire-PSA study, comparing and finalisation of the computer code amongst various codes available with DAE, identifying and sequencing different activities involved for carrying out Fire PSA, i.e. Zoning and Sub-Zoning of Fire Source Area, Fire vulnerability of System and Component surrounding Fire Source, etc., finalization of report format and documentation. Computer Code FDS is used to carry out Fire Hazard Analysis. FDS is the latest state-of the-art software package extensively used for Fire Hazard Analysis. It develops a 3D scenario for any given fire giving credit to actual physical location of fire load and ventilation. It gives the time dependent of any fire in a specific zone crediting the time required by operator to take necessary preventive action which helps in quantifying the probability of error for any particular operator's for PSA study. To identify the most vulnerable sub-zone in CWPH, a walk down was organized and physical location of each load; their separation, fire barrier, ventilator in the room, arrangement of fire protection/fighting system, localized operator's room were reviewed. Fire in the middle diesel tank with pump is considered as initiating event in the sub-zone of CWPH. The Event Tree for this initiating event for CWPH was developed. Event Tree end states are identified as large fire i.e. fire which is failed to be detected by both means, i.e. early and late and failure in fighting by both means i.e. early and late. (author)

  15. Repository Subsurface Preliminary Fire Hazard Analysis

    International Nuclear Information System (INIS)

    Logan, Richard C.

    2001-01-01

    This fire hazard analysis identifies preliminary design and operations features, fire, and explosion hazards, and provides a reasonable basis to establish the design requirements of fire protection systems during development and emplacement phases of the subsurface repository. This document follows the Technical Work Plan (TWP) (CRWMS M and O 2001c) which was prepared in accordance with AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''; Attachment 4 of AP-ESH-008, ''Hazards Analysis System''; and AP-3.11Q, ''Technical Reports''. The objective of this report is to establish the requirements that provide for facility nuclear safety and a proper level of personnel safety and property protection from the effects of fire and the adverse effects of fire-extinguishing agents

  16. Meeting the next generation PWR safety requirements: The EPR Reactor

    International Nuclear Information System (INIS)

    Salhi, Othman

    2008-01-01

    The development process pursued the harmonization of technical solutions and the integration of all the lessons learned from earlier nuclear plants built by both vendors. As far as safety more specifically is concerned, the basic choice for the EPR was to adopt an evolutionary approach based on experience feedback from the reactors built by Areva, which at the time already amounted to nearly 100. This philosophy makes today's Areva EPR the natural descendant of the most advanced French N4 and German Konvoi power reactors currently in operation. EPR design choices affecting safety were motivated by a continuous quest for higher levels of safety. A two-fold approach was followed: 1. improvement of the measures aimed at further reducing the already very low probability of core melt 2. incorporation of measures aimed at further limiting the consequences of a severe accident, in the knowledge that its probability of occurrence has been considerably reduced. Through its filiations with French N4 and German Konvoi power reactors, the EPR benefits from the uninterrupted, evolutionary innovation process that has supported the development of PWRs since their introduction into the market place. This is especially true for safety where the EPR brings a unique combination of both tried and tested and innovative features that further improve the prevention of severe accidents and their mitigation

  17. Environmental and Personal Safety: No Vision Required. Practice Report

    Science.gov (United States)

    Bozeman, Laura A.

    2004-01-01

    Personal safety is an important issue for all people, regardless of their physical capabilities. For people with visual impairments (that is, those who are blind or have low vision), real concerns exist regarding their vulnerability to crime and their greater risk of attack. With a nationwide increase in crime in the United States, "Three out of…

  18. 76 FR 5494 - Pipeline Safety: Mechanical Fitting Failure Reporting Requirements

    Science.gov (United States)

    2011-02-01

    ... style'' fittings ( provides no explanation or e.g. stab, nut follower, bolted). justification for the...-RELATED CONDITION REPORTS 0 1. The authority citation for part 191 continues to read as follows: Authority... OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS 0 3. The authority citation...

  19. Chemical research projects office functions accomplishments programs. [applied research in the fields of polymer chemistry and polymeric composites with emphasis on fire safety

    Science.gov (United States)

    Heimbuch, A. H.; Parker, J. A.

    1975-01-01

    Basic and applied research in the fields of polymer chemistry, polymeric composites, chemical engineering, and biophysical chemistry is summarized. Emphasis is placed on fire safety and human survivability as they relate to commercial and military aircraft, high-rise buildings, mines and rapid transit transportation. Materials systems and other fire control systems developed for aerospace applications and applied to national domestic needs are described along with bench-scale and full-scale tests conducted to demonstrate the improvements in performance obtained through the utilization of these materials and fire control measures.

  20. Preparation, review, and approval of implementation plans for nuclear safety requirements

    International Nuclear Information System (INIS)

    1994-10-01

    This standard describes an acceptable method to prepare, review, and approve implementation plans for DOE Nuclear Safety requirements. DOE requirements are identified in DOE Rules, Orders, Notices, Immediate Action Directives, and Manuals